SEVO (Space Environment Viability of Organics) Preliminary Results from Orbit
NASA Technical Reports Server (NTRS)
Cook, A.; Ehrenfreund, P.; Mattioda, A.; Quinn, R.; Ricco, A. J.; Bramall, N.; Chittenden, J.; Bryson, K.; Minelli, G.
2012-01-01
SEVO (Space Environment Viability of Organics) is one of two astrobiology experiments onboard the NASA Organism/Organics Exposure to Orbital Stresses (O/OREOS) cubesat, launched in November 2010. The satellite is still operational with nominal performance and records data on a regular basis. In the SEVO experiment, four astrobiologically relevant organic thin films are exposed to radiation in low-earth orbit, including the unfiltered solar spectrum from approximately 120 - 2600 nm. The thin films are contained in each of four separate micro-environments: an atmosphere containing CO2, a low relative humidity (approximately 2%) atmosphere, an inert atmosphere representative of interstellar/interplanetary space, and a SiO2 mineral surface to measure the effects of surface catalysis. The UV/Vis spectrum of each sample is monitored in situ, with a spectrometer onboard the satellite.
Low frequency vibration isolation technology for microgravity space experiments
NASA Technical Reports Server (NTRS)
Grodsinsky, Carlos M.; Brown, Gerald V.
1989-01-01
The dynamic acceleration environment observed on Space Shuttle flights to date and predicted for the Space Station has complicated the analysis of prior microgravity experiments and prompted concern for the viability of proposed space experiments requiring long-term, low-g environments. Isolation systems capable of providing significant improvements in this environment exist, but have not been demonstrated in flight configurations. This paper presents a summary of the theoretical evaluation for two one degree-of-freedom (DOF) active magnetic isolators and their predicted response to both direct and base excitations, that can be used to isolate acceleration sensitive microgravity space experiments.
The growth and harvesting of algae in a micro-gravity environment
NASA Technical Reports Server (NTRS)
Wiltberger, Nancy L.
1987-01-01
Algae growth in a micro-gravity environment is an important factor in supporting man's permanent presence in space. Algae can be used to produce food, oxygen, and pure water in a manned space station. A space station is one example of a situation where a Controlled Ecological Life Support System (CELSS) is imperative. In setting up a CELSS with an engineering approach at the Aerospace department of the University of Colorado, questions concerning algae growth in micro-g have arisen. The Get Away Special (GAS) Fluids Management project is a means through which many questions about the effects of a micro-g environment on the adequacy of growth rates, the viability of micro-organisms, and separation of gases and solids for harvesting purposes can be answered. In order to be compatible with the GAS tests, the algae must satisfy the following criteria: (1) rapid growth rates, (2) sustain viability over long periods of non-growth storage, and (3) very brief latency from storage to rapid growth. Testing indicates that the overall growth characteristics of Anacystis Nidulans satisfy the specifications of GAS's design constraints. In addition, data acquisition and the method of growth instigation are two specific problems being examined, as they will be encountered in interfacing with the GAS project. Flight testing will be two-fold, measurement of algae growth in micro-g and separation of algae from growth medium in an artificial gravitation field. Post flight results will provide information on algae viability in a micro-g environment as reflected by algal growth rates in space. Other post flight results will provide a basis for evaluating techniques for harvesting algae. The results from the GAS project will greatly assist the continuing effort of developing the CELSS and its applications for space.
Development and approach to low-frequency microgravity isolation systems
NASA Technical Reports Server (NTRS)
Grodsinsky, Carlos M.
1990-01-01
The low-gravity environment provided by space flight has afforded the science community a unique arena for the study of fundamental and technological sciences. However, the dynamic environment observed on space shuttle flights and predicted for Space Station Freedom has complicated the analysis of prior microgravity experiments and prompted concern for the viability of proposed space experiments requiring long-term, low-gravity environments. Thus, isolation systems capable of providing significant improvements to this random environment are being developed. The design constraints imposed by acceleration-sensitive, microgravity experiment payloads in the unique environment of space and a theoretical background for active isolation are discussed. A design is presented for a six-degree-of-freedom, active, inertial isolation system based on the baseline relative and inertial isolation techniques described.
Impact of Pancreatic Rat Islet Density on Cell Survival during Hypoxia
Rodriguez-Brotons, A.; Bietiger, W.; Peronet, C.; Magisson, J.; Sookhareea, C.; Langlois, A.; Mura, C.; Jeandidier, N.; Pinget, M.; Sigrist, S.; Maillard, E.
2016-01-01
In bioartificial pancreases (BP), the number of islets needed to restore normoglycaemia in the diabetic patient is critical. However, the confinement of a high quantity of islets in a limited space may impact islet survival, particularly in regard to the low oxygen partial pressure (PO2) in such environments. The aim of the present study was to evaluate the impact of islet number in a confined space under hypoxia on cell survival. Rat islets were seeded at three different concentrations (150, 300, and 600 Islet Equivalents (IEQ)/cm2) and cultured in normal atmospheric pressure (160 mmHg) as well as hypoxic conditions (15 mmHg) for 24 hours. Cell viability, function, hypoxia-induced changes in gene expression, and cytokine secretion were then assessed. Notably, hypoxia appeared to induce a decrease in viability and increasing islet density exacerbated the observed increase in cellular apoptosis as well as the loss of function. These changes were also associated with an increase in inflammatory gene transcription. Taken together, these data indicate that when a high number of islets are confined to a small space under hypoxia, cell viability and function are significantly impacted. Thus, in order to improve islet survival in this environment during transplantation, oxygenation is of critical importance. PMID:26824040
A thermal vacuum-UV solar simulator test system for assessing microbiological viability
NASA Technical Reports Server (NTRS)
Ross, D. S.; Wardle, M. D.; Taylor, D. M.
1975-01-01
Microorganisms were exposed to a simulated space environment in order to assess the photobiological effect of broad spectrum, nonionizing solar electromagnetic radiation in terms of viability. A thermal vacuum chamber capable of maintaining a vacuum of 0.000133n/sq m and an ultraviolet rich solar simulator were the main ingredients of the test system. Results to date indicate the system to be capable of providing reliable microbiological data.
The embodiment design of the heat rejection system for the portable life support system
NASA Technical Reports Server (NTRS)
Stuckwisch, Sue; Francois, Jason; Laughlin, Julia; Phillips, Lee; Carrion, Carlos A.
1994-01-01
The Portable Life Support System (PLSS) provides a suitable environment for the astronaut in the Extravehicular Mobility Unit (EMU), and the heat rejection system controls the thermal conditions in the space suit. The current PLSS sublimates water to the space environment; therefore, the system loses mass. Since additional supplies of fluid must be available on the Space Shuttle, NASA desires a closed heat rejecting system. This document presents the embodiment design for a radiative plate heat rejection system without mass transfer to the space environment. This project will transform the concept variant into a design complete with material selection, dimensions of the system, layouts of the heat rejection system, suggestions for manufacturing, and financial viability.
Nanotechnology - Enabling Future Space Viability
2009-03-18
nanotechnology dates back to 1987 when K. Eric Drexler published Engines of Creation: The Coming Era of Nanotechnology; however, the concept itself...The Joint Operating Environment 2008, (Suffolk, VA: USFJCOM, 25 November 2008), 23. 14 Peter Eisler , “Commercial Satellites Alter Global Security
Optimizing Orbital Debris Monitoring with Optical Telescopes
2010-09-01
poses an increasing risk to manned space missions and operational satellites ; however, the majority of debris large enough to cause catastrophic...cameras hosted on GEO- based satellites for monitoring GEO. Performance analysis indicates significant potential contributions of these systems as a...concerns over the long term-viability of the space environment and the resulting economic impacts. The 2007 China anti- satellite test and the 2009
Technology Thresholds for Microgravity: Status and Prospects
NASA Technical Reports Server (NTRS)
Noever, D. A.
1996-01-01
The technological and economic thresholds for microgravity space research are estimated in materials science and biotechnology. In the 1990s, the improvement of materials processing has been identified as a national scientific priority, particularly for stimulating entrepreneurship. The substantial US investment at stake in these critical technologies includes six broad categories: aerospace, transportation, health care, information, energy, and the environment. Microgravity space research addresses key technologies in each area. The viability of selected space-related industries is critically evaluated and a market share philosophy is developed, namely that incremental improvements in a large markets efficiency is a tangible reward from space-based research.
NASA Astrophysics Data System (ADS)
Arenberg, Jonathan; Conti, Alberto; Atkinson, Charles
2017-01-01
Pursuing ground breaking science in a highly cost and funding constrained environment presents new challenges to the development of future space astrophysics missions. Within the conventional cost models for large observatories, executing a flagship “mission after next” appears to be unstainable. To achieve our nation’s space astrophysics ambitions requires new paradigms in system design, development and manufacture. Implementation of this new paradigm requires that the space astrophysics community adopt new answers to a new set of questions. This paper will discuss the origins of these new questions and the steps to their answers.
Microbial response to space environment, part B
NASA Technical Reports Server (NTRS)
Taylor, G. R.; Chassay, C. E.; Ellis, W. L.; Foster, B. G.; Volz, P. A.; Spizizen, J.; Buecker, H.; Wrenn, R. T.; Simmonds, R. C.; Long, R. A.
1972-01-01
The performance of the microbial response to space environment experiment is considered excellent by all investigators. For most microbial systems, only preliminary survival data are available at this time. None of the available data indicate space flight-mediated changes in cell viability or recovery. One quite important observation has been made at this early date, however. The eggs produced after mice had been infected with N. dubius larvae demonstrated a significant decrease in hatchability when compared to identical ground controls. Except for the fact that the Apollo 16 flight larvae had been on board the command module, treatment of the flown larvae and ground control larvae was the same; neither had been exposed to UV irradiation. The significance and implications of this finding are currently being studied.
Fungal Spores Viability on the International Space Station
NASA Astrophysics Data System (ADS)
Gomoiu, I.; Chatzitheodoridis, E.; Vadrucci, S.; Walther, I.; Cojoc, R.
2016-11-01
In this study we investigated the security of a spaceflight experiment from two points of view: spreading of dried fungal spores placed on the different wafers and their viability during short and long term missions on the International Space Station (ISS). Microscopic characteristics of spores from dried spores samples were investigated, as well as the morphology of the colonies obtained from spores that survived during mission. The selected fungal species were: Aspergillus niger, Cladosporium herbarum, Ulocladium chartarum, and Basipetospora halophila. They have been chosen mainly based on their involvement in the biodeterioration of different substrate in the ISS as well as their presence as possible contaminants of the ISS. From biological point of view, three of the selected species are black fungi, with high melanin content and therefore highly resistant to space radiation. The visual inspection and analysis of the images taken before and after the short and the long term experiments have shown that all biocontainers were returned to Earth without damages. Microscope images of the lids of the culture plates revealed that the spores of all species were actually not detached from the surface of the wafers and did not contaminate the lids. From the adhesion point of view all types of wafers can be used in space experiments, with a special comment on the viability in the particular case of iron wafers when used for spores that belong to B. halophila (halophilic strain). This is encouraging in performing experiments with fungi without risking contamination. The spore viability was lower in the experiment for long time to ISS conditions than that of the short experiment. From the observations, it is suggested that the environment of the enclosed biocontainer, as well as the species'specific behaviour have an important effect, reducing the viability in time. Even the spores were not detached from the surface of the wafers, it was observed that spores used in the long term experiment lost the outer layer of their coat without affecting the viability since they were still protected by the middle and the inner layer of the coating. This research highlights a new protocol to perform spaceflight experiments inside the ISS with fungal spores in microgravity conditions, under the additional effect of possible cosmic radiation. According to this protocol the results are expressed in terms of viability, microscopic and morphological changes.
Fungal Spores Viability on the International Space Station.
Gomoiu, I; Chatzitheodoridis, E; Vadrucci, S; Walther, I; Cojoc, R
2016-11-01
In this study we investigated the security of a spaceflight experiment from two points of view: spreading of dried fungal spores placed on the different wafers and their viability during short and long term missions on the International Space Station (ISS). Microscopic characteristics of spores from dried spores samples were investigated, as well as the morphology of the colonies obtained from spores that survived during mission. The selected fungal species were: Aspergillus niger, Cladosporium herbarum, Ulocladium chartarum, and Basipetospora halophila. They have been chosen mainly based on their involvement in the biodeterioration of different substrate in the ISS as well as their presence as possible contaminants of the ISS. From biological point of view, three of the selected species are black fungi, with high melanin content and therefore highly resistant to space radiation. The visual inspection and analysis of the images taken before and after the short and the long term experiments have shown that all biocontainers were returned to Earth without damages. Microscope images of the lids of the culture plates revealed that the spores of all species were actually not detached from the surface of the wafers and did not contaminate the lids. From the adhesion point of view all types of wafers can be used in space experiments, with a special comment on the viability in the particular case of iron wafers when used for spores that belong to B. halophila (halophilic strain). This is encouraging in performing experiments with fungi without risking contamination. The spore viability was lower in the experiment for long time to ISS conditions than that of the short experiment. From the observations, it is suggested that the environment of the enclosed biocontainer, as well as the species'specific behaviour have an important effect, reducing the viability in time. Even the spores were not detached from the surface of the wafers, it was observed that spores used in the long term experiment lost the outer layer of their coat without affecting the viability since they were still protected by the middle and the inner layer of the coating. This research highlights a new protocol to perform spaceflight experiments inside the ISS with fungal spores in microgravity conditions, under the additional effect of possible cosmic radiation. According to this protocol the results are expressed in terms of viability, microscopic and morphological changes.
New Paradigms for Ensuring the Enduring Viability of the Space Science Enterprise
NASA Astrophysics Data System (ADS)
Arenberg, Jonathan; Conti, Alberto
2018-01-01
Pursuing ground breaking science in a highly cost and funding constrained environment presents new challenges to the development of future large space astrophysics missions. Within the conventional cost models for large observatories, executing a flagship “mission after next” appears to be unstainable. To achieve our nation’s space astrophysics ambitions requires new paradigms in system design, development and manufacture. Implementation of this new paradigm requires that the space astrophysics community adopt new answers to a new set of questions. This poster will present our recent results on the origins of these new questions and the steps to their answers.
The effects of space relevant environmental factors on halophilic Archaea
NASA Astrophysics Data System (ADS)
Leuko, Stefan; Moeller, Ralf; Rettberg, Petra
Within the last 50 years, space technology has provided tools for transporting terrestrial (microbial) life beyond Earth's protective shield in order to study its responses to selected conditions of space. Microorganisms are ubiquitous and can be found in almost every environment on Earth. They thrive and survive in a broad spectrum of environments and are true masters in adapting to rapidly changing external conditions. Although microorganisms cannot actively grow under the harsh conditions of outer space or other known planets, some microorganisms might be able to survive for a time in space or other planets as dormant, inactive spores or in similar desiccation-resistant resting states, e.g., enclosed in halite crystals or biofilms. Halite crystals are the realm of halophilic Archaea as they have adapted to life at extreme salt concentrations. They can stay entrapped in such crystals for millions of years without losing viability and therefore the family Halobacteriaceae belongs to the group of microorganisms which may survive space travel or may even be found on other planets. Several members of this family have been utilized in space relevant experiments where they were exposed to detrimental environmental conditions such as UV-C radiation, vacuum, temperature cycles (+60(°) C and -25(°) C) and heavy iron bombardment (150 MeV He, 500 MeV Ar and 500 MeV Fe ions). The viability was evaluated by colony forming unit (cfu) counts as well as with the LIFE/DEAD kit. Results revealed that UV-C radiation (up to 1.000 J/m (2) ) has a considerable effect on the viability, whereas the other tested parameters inflict little damage onto the organisms. Repair of UV-C inflicted damage is efficient and several DNA damage repair genes are up-regulated following exposure. Halophilic archaea display a strong resistance against heavy iron bombardment, with dosages of up to 2.000 Gy 500 MeV Fe ions needed to establish a visible effect on the vitality. Genomic integrity after exposure was investigated by several different methods e.g. RAPD - PCR, a technique that elucidates damages within the genome by different amplification patterns. Overall experimental results indicate that halophilic Archaea are able to withstand the exposure to space related environmental factors for a considerable time. This work in combined with others will lead to a detailed understanding of the response of extraterrestrial conditions to halophilic Archaea for astrobiological considerations.
NASA Astrophysics Data System (ADS)
Horneck, Gerda; Moeller, Ralf
Spore-forming microbes are of particular concern in the context of planetary protection, be-cause their endospores are highly resistant to a variety of environmental extremes, including certain sterilization procedures and the harsh environment of outer space or planetary sur-faces (Nicholson et al., 2000; Horneck et al. 2009). Furthermore, isolates from space craft and space craft assembly facilities have been identified that form spores of an elevated resistance to various physical and chemical conditions, such as ionizing and UV radiation, desiccation and oxidative stress (La Duc et al., 2007). This observation led to the supposition that the spe-cial conditions of ultraclean spacecraft assembly facilities and the applied spacecraft cleaning and decontamination measures cause a selection of the most resistant organisms as survivors. To test this hypothesis, spores of B. pumilus SAFR-032 isolated from these environments as well as spores of the laboratory strain B. subtilis 168 were subjected to selected parameters of space in the experiment PROTECT during the EXPOSE-E mission (February 7, 2008 -September 12, 2009), attached to the EuTEF platform outside of the Columbus module of the International Space Station. The spores were mounted as dry layers onto spacecraft-qualified material (aluminum coupons) and exposed to the following parameters of space, applied sep-arately or in selected combinations: (i) space vacuum, (ii) solar extraterrestrial UV radiation including vacuum-UV, (iii) simulated Mars atmosphere and UV radiation climate, and (iv) galactic cosmic radiation. After recovery, visual inspection showed color changes of the sun-exposed spore samples from white to brownish demonstrating photochemical damage caused by solar extraterrestrial UV radiation. On-going analyses include studies of viability and capabil-ity of repair of damage, mutagenic spectrum, e.g. trp-revertants, rifampicin-resistant mutants, DNA lesion, global gene expression, and genomic and proteomic characterizations using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). First viability studies gave the following survival rates: 20 -30 References: Horneck,G., D.M. Klaus, R.L. Mancinelli (2010) Space microbiology, Microb. Mol. Biol. Rev. (in press) La Duc MT, Dekas A, Osman S, Moissl C, Newcombe D, Venkateswaran K. (2007) Isolation and character-ization of bacteria capable of tolerating the extreme conditions of clean room environments. Appl Environ Microbiol. 73, 2600-11. Nicholson WL, Munakata N, Horneck G, Melosh HJ, and Setlow P (2000) Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments, Microb. Mol. Biol. Rev. 64, 548-572.
NASA Technical Reports Server (NTRS)
Klein, H. P. (Editor); Horneck, G. (Editor)
1984-01-01
Space research in biology is presented with emphasis on flight experiment results and radiation risks. Topics discussed include microorganisms and biomolecules in the space-environment experiment ES 029 on Spacelab-1, the preliminary characterization of persisting circadian rhythms during space flight; plant growth, development, and embryogenesis during the Salyut-7 flight, and the influence of space-flight factors on viability and mutability of plants. Consideration is also given to radiation-risk estimation and its application to human beings in space, the radiation situation in space and its modification by the geomagnetic field and shielding, the quantitative interpretation of cellular heavy-ion action, and the effects of heavy-ion radiation on the brain vascular system and embryonic development.
NASA Astrophysics Data System (ADS)
Novikova, N.; Deshevaya, E.; Levinskikh, M.; Polikarpov, N.; Poddubko, S.; Gusev, O.
2015-01-01
Investigations of the effects of solar radiation combined with the spaceflight factors on biological objects were performed in the «EXPOSE-R» experiment on the outer surface of ISS. After more than 1 year of outer space exposure, the spores of microorganisms and fungi, as well as two species of plant seeds were analysed for viability and the set of biological properties. The experiment provided evidence that not only bacterial and fungal spores but also dormant forms of plants had the capability to survive a long-term exposure to outer space.
Consideration of adding a commercial module to the International Space Station
NASA Astrophysics Data System (ADS)
Friefeld, J.; Fugleberg, D.; Patel, J.; Subbaraman, G.
1999-01-01
The National Aeronautics and Space Administration (NASA) is currently assembling the International Space Station in Low Earth Orbit. One of NASA's program objectives is to encourage space commercialization. Through NASA's Engineering Research and Technology Development program, Boeing is conducting a study to ascertain the feasibility of adding a commercial module to the International Space Station. This module (facility) that can be added, following on-orbit assembly is described. The facility would have the capability to test large, engineering scale payloads in a space environment. It would also have the capability to provide services to co-orbiting space vehicles as well as gathering data for commercial terrestrial applications. The types of industries to be serviced are described as are some of the technical and business considerations that need to be addressed in order to achieve commercial viability.
The O/OREOS Mission - Astrobiology in Low Earth Orbit. [Astrobiology in Low Earth Orbit
NASA Technical Reports Server (NTRS)
Ehrenfreund, P.; Ricco, A. J.; Squires, D.; Kitts, C.; Agasid, E.; Bramall, N.; Bryson, K.; Chittenden, J.; Conley, C.; Cook, A.;
2014-01-01
The O/OREOS (Organism/Organic Exposure to Orbital Stresses) nanosatellite is the first science demonstration spacecraft and flight mission of the NASA Astrobiology Small- Payloads Program (ASP). O/OREOS was launched successfully on November 19, 2010, to a high-inclination (72 deg), 650-km Earth orbit aboard a US Air Force Minotaur IV rocket from Kodiak, Alaska. O/OREOS consists of 3 conjoined cubesat (each 1000 cu cm) modules: (i) a control bus; (ii) the Space Environment Survivability of Living Organisms (SESLO) experiment; and (iii) the Space Environment Viability of Organics (SEVO) experiment. Among the innovative aspects of the O/OREOS mission are a real-time analysis of the photostability of organics and biomarkers and the collection of data on the survival and metabolic activity for microorganisms at 3 times during the 6-month mission. We report on the spacecraft characteristics, payload capabilities, and present operational phase and flight data from the O/OREOS mission. The science and technology rationale of O/OREOS supports NASA0s scientific exploration program by investigating the local space environment as well as space biology relevant to Moon and Mars missions. It also serves as a precursor for experiments on small satellites, the International Space Station (ISS), future free-flyers and lunar surface exposure facilities.
The O/OREOS mission—Astrobiology in low Earth orbit
NASA Astrophysics Data System (ADS)
Ehrenfreund, P.; Ricco, A. J.; Squires, D.; Kitts, C.; Agasid, E.; Bramall, N.; Bryson, K.; Chittenden, J.; Conley, C.; Cook, A.; Mancinelli, R.; Mattioda, A.; Nicholson, W.; Quinn, R.; Santos, O.; Tahu, G.; Voytek, M.; Beasley, C.; Bica, L.; Diaz-Aguado, M.; Friedericks, C.; Henschke, M.; Landis, D.; Luzzi, E.; Ly, D.; Mai, N.; Minelli, G.; McIntyre, M.; Neumann, M.; Parra, M.; Piccini, M.; Rasay, R.; Ricks, R.; Schooley, A.; Stackpole, E.; Timucin, L.; Yost, B.; Young, A.
2014-01-01
The O/OREOS (Organism/Organic Exposure to Orbital Stresses) nanosatellite is the first science demonstration spacecraft and flight mission of the NASA Astrobiology Small-Payloads Program (ASP). O/OREOS was launched successfully on November 19, 2010, to a high-inclination (72°), 650-km Earth orbit aboard a US Air Force Minotaur IV rocket from Kodiak, Alaska. O/OREOS consists of 3 conjoined cubesat (each 1000 cm3) modules: (i) a control bus; (ii) the Space Environment Survivability of Living Organisms (SESLO) experiment; and (iii) the Space Environment Viability of Organics (SEVO) experiment. Among the innovative aspects of the O/OREOS mission are a real-time analysis of the photostability of organics and biomarkers and the collection of data on the survival and metabolic activity for microorganisms at 3 times during the 6-month mission. We report on the spacecraft characteristics, payload capabilities, and present operational phase and flight data from the O/OREOS mission. The science and technology rationale of O/OREOS supports NASA's scientific exploration program by investigating the local space environment as well as space biology relevant to Moon and Mars missions. It also serves as a precursor for experiments on small satellites, the International Space Station (ISS), future free-flyers and lunar surface exposure facilities.
NASA Technical Reports Server (NTRS)
Grodsinsky, Carlos M.
1993-01-01
The low gravity environment provided by space flight has afforded the science community a unique area for the study of fundamental and technological sciences. However, the dynamic environment observed on space shuttle flights and predicted for Space Station Freedom has complicated the analysis of prior 'microgravity' experiments and prompted concern for the viability of proposed space experiments requiring long term, low gravity environments. Thus, isolation systems capable of providing significant improvements to this random environment have been developed. This dissertation deals with the design constraints imposed by acceleration sensitive, microgravity experiment payloads in the unique environment of space. A theoretical background for the inertial feedback and feedforward isolation of a payload was developed giving the basis for two experimental active inertial isolation systems developed for the demonstration of these advanced active isolation techniques. A prototype six degree of freedom digital active isolation system was designed and developed for the ground based testing of an actively isolated payload in three horizontal degrees of freedom. A second functionally equivalent system was built for the multi-dimensional testing of an active inertial isolation system in a reduced gravity environment during low gravity aircraft trajectories. These multi-input multi-output control systems are discussed in detail with estimates on acceleration noise floor performance as well as the actual performance acceleration data. The attenuation performance is also given for both systems demonstrating the advantages between inertial and non-inertial control of a payload for both the ground base environment and the low gravity aircraft acceleration environment. A future goal for this area of research is to validate the technical approaches developed to the 0.01 Hz regime by demonstrating a functional active inertial feedforward/feedback isolation system during orbital flight. A NASA IN-STEP flight experiment has been proposed to accomplish this goal, and the expected selection for the IN-STEP program has been set for Jul. of 1993.
Building Better Biosensors for Exploration into Deep-Space, Using Humanized Yeast
NASA Technical Reports Server (NTRS)
Liddell, Lauren; Santa Maria, Sergio; Tieze, Sofia; Bhattacharya, Sharmila
2017-01-01
1.BioSentinel is 1 of 13 secondary payloads hitching a ride beyond Low Earth Orbit on Exploration Mission 1 (EM-1), set to launch from NASAs Space Launch System in 2019. EM-1 is our first opportunity to investigate the effects of the deep space environment on a eukaryotic biological system, the budding yeast S. cerevisiae. Though separated by a billion years of evolution we share hundreds of genes important for basic cell function, including responses to DNA damage. Thus, yeast is an ideal biosensor for detecting typesextent of damage induced by deep-space radiation.We will fly desiccated cells, then rehydrate to wake them up when the automated payload is ready to initiate the experiment. Rehydration solution contains SC (Synthetic Complete) media and alamarBlue, an indicator for changes in growth and metabolism. Telemetry of LED readings will then allow us to detect how cells respond throughout the mission. The desiccation-rehydration process can be extremely damaging to cells, and can severely diminish our ability to accurately measure and model cellular responses to deep-space radiation. The aim of this study is to develop a better biosensor: yeast strains that are more resistant to desiccation stress. We will over-express known cellular protectants, including hydrophilin Sip18, the protein disaggregase Hsp104, and thioredoxin Trx2, a responder to oxidative stress, then measure cell viability after desiccation to determine which factors improve stress tolerance. Over-expression of SIP18 in wine yeast starter cultures was previously reported to increase viability following desiccation stress by up to 70. Thus, we expect similar improvements in our space-yeast strains. By designing better yeast biosensors we can better prepare for and mitigate the potential dangers of deep-space radiation for future missions.This work is funded by NASAs AES program.
NASA Technical Reports Server (NTRS)
Ruschmeyer, O. R.; Pflug, I. J.; Gove, R.; Heisserer, Y.
1975-01-01
Research efforts were concentrated on attempts to obtain data concerning the dry heat resistance of particle microflora in Kennedy Space Center soil samples. The in situ dry heat resistance profiles at selected temperatures for the aggregate microflora on soil particles of certain size ranges were determined. Viability profiles of older soil samples were compared with more recently stored soil samples. The effect of increased particle numbers on viability profiles after dry heat treatment was investigated. These soil particle viability data for various temperatures and times provide information on the soil microflora response to heat treatment and are useful in making selections for spacecraft sterilization cycles.
Scanning electron microscope observations of brine shrimp larvae from space shuttle experiments
NASA Technical Reports Server (NTRS)
DeBell, L.; Paulsen, A.; Spooner, B.
1992-01-01
Brine shrimp are encysted as gastrula stage embryos, and may remain dehydrated and encysted for years without compromising their viability. This aspect of brine shrimp biology is desirable for studying development of animals during space shuttle flight, as cysts placed aboard a spacecraft may be rehydrated at the convenience of an astronaut, guaranteeing that subsequent brine shrimp development occurs only on orbit and not on the pad during launch delays. Brine shrimp cysts placed in 5 ml syringes were rehydrated with salt water and hatched during a 9 day space shuttle mission. Subsequent larvae developed to the 8th larval stage in the sealed syringes. We studied the morphogenesis of the brine shrimp larvae and found the larvae from the space shuttle experiments similar in rate of growth and extent of development, to larvae grown in sealed syringes on the ground. Extensive differentiation and development of embryos and larvae can occur in a microgravity environment.
Fault tolerant testbed evaluation, phase 1
NASA Technical Reports Server (NTRS)
Caluori, V., Jr.; Newberry, T.
1993-01-01
In recent years, avionics systems development costs have become the driving factor in the development of space systems, military aircraft, and commercial aircraft. A method of reducing avionics development costs is to utilize state-of-the-art software application generator (autocode) tools and methods. The recent maturity of application generator technology has the potential to dramatically reduce development costs by eliminating software development steps that have historically introduced errors and the need for re-work. Application generator tools have been demonstrated to be an effective method for autocoding non-redundant, relatively low-rate input/output (I/O) applications on the Space Station Freedom (SSF) program; however, they have not been demonstrated for fault tolerant, high-rate I/O, flight critical environments. This contract will evaluate the use of application generators in these harsh environments. Using Boeing's quad-redundant avionics system controller as the target system, Space Shuttle Guidance, Navigation, and Control (GN&C) software will be autocoded, tested, and evaluated in the Johnson (Space Center) Avionics Engineering Laboratory (JAEL). The response of the autocoded system will be shown to match the response of the existing Shuttle General Purpose Computers (GPC's), thereby demonstrating the viability of using autocode techniques in the development of future avionics systems.
Space Technology Research Vehicle (STRV)-2 program
NASA Astrophysics Data System (ADS)
Shoemaker, James; Brooks, Paul; Korevaar, Eric J.; Arnold, Graham S.; Das, Alok; Stubstad, John; Hay, R. G.
2000-11-01
The STRV-2 program is the second in a series of three collaborative flight test programs between the U.S. Ballistic Missile Defense Organization (BMDO) and the United Kingdom (UK) Minstry of Defence (MoD). The STRV-2 Experiment Module contains five major experiments to provide proof-of-concept data on system design, data on the mid-earth orbit (MEO) space environment, and data on durability of materials and components operating in the MEO environment. The UK Defence Evaluation and Research Agency (DERA) has provided a mid- wavelength infrared (MWIF) imager to evaluate passive detection of aircraft from space. BMDO, in conjunction with the US Air Force Research Laboratory (AFRL) and the National Aeronautics and Space Administration (NASA), have provided experiments to evaluate use of adaptive structures for vibration suppression, to investigate the use of high bandwidth laser communications to transmit data from space to ground or airborne receivers, to study the durability of materials and components in the MEO space environment, and to measure radiation and micrometeoroid/debris fluence. These experiments are mounted on all- composite structure. This structure provides a significant reduction in weight and cost over comparable aluminum designs while maintaining the high stiffness required by optical payloads. In 1994, STRV-2 was manifested for launch by the DOD Space Test Program. STRV-2, the primary payload on the Tri-Service eXperiment (TSX)-5 spacecraft, was successfully launched on 7 June 2000 on a Pegasus XL from Vandenbery AFB, CA. The STRV-2 program, like the companion STRV-1 program, validates the viability of multi-national, multi-agency collaborations to provide cost effective acquisition of space test data. The experimental data to be obtained will reduce future satellite risk and provide guidelines for further system development.
A risk management approach to CAIS development
NASA Technical Reports Server (NTRS)
Hart, Hal; Kerner, Judy; Alden, Tony; Belz, Frank; Tadman, Frank
1986-01-01
The proposed DoD standard Common APSE Interface Set (CAIS) was developed as a framework set of interfaces that will support the transportability and interoperability of tools in the support environments of the future. While the current CAIS version is a promising start toward fulfilling those goals and current prototypes provide adequate testbeds for investigations in support of completing specifications for a full CAIS, there are many reasons why the proposed CAIS might fail to become a usable product and the foundation of next-generation (1990'S) project support environments such as NASA's Space Station software support environment. The most critical threats to the viability and acceptance of the CAIS include performance issues (especially in piggybacked implementations), transportability, and security requirements. To make the situation worse, the solution to some of these threats appears to be at conflict with the solutions to others.
The ancient heritage of water ice in the solar system.
Cleeves, L Ilsedore; Bergin, Edwin A; Alexander, Conel M O'D; Du, Fujun; Graninger, Dawn; Öberg, Karin I; Harries, Tim J
2014-09-26
Identifying the source of Earth's water is central to understanding the origins of life-fostering environments and to assessing the prevalence of such environments in space. Water throughout the solar system exhibits deuterium-to-hydrogen enrichments, a fossil relic of low-temperature, ion-derived chemistry within either (i) the parent molecular cloud or (ii) the solar nebula protoplanetary disk. Using a comprehensive treatment of disk ionization, we find that ion-driven deuterium pathways are inefficient, which curtails the disk's deuterated water formation and its viability as the sole source for the solar system's water. This finding implies that, if the solar system's formation was typical, abundant interstellar ices are available to all nascent planetary systems. Copyright © 2014, American Association for the Advancement of Science.
2014-01-01
Background A metabolism can evolve through changes in its biochemical reactions that are caused by processes such as horizontal gene transfer and gene deletion. While such changes need to preserve an organism’s viability in its environment, they can modify other important properties, such as a metabolism’s maximal biomass synthesis rate and its robustness to genetic and environmental change. Whether such properties can be modulated in evolution depends on whether all or most viable metabolisms – those that can synthesize all essential biomass precursors – are connected in a space of all possible metabolisms. Connectedness means that any two viable metabolisms can be converted into one another through a sequence of single reaction changes that leave viability intact. If the set of viable metabolisms is disconnected and highly fragmented, then historical contingency becomes important and restricts the alteration of metabolic properties, as well as the number of novel metabolic phenotypes accessible in evolution. Results We here computationally explore two vast spaces of possible metabolisms to ask whether viable metabolisms are connected. We find that for all but the simplest metabolisms, most viable metabolisms can be transformed into one another by single viability-preserving reaction changes. Where this is not the case, alternative essential metabolic pathways consisting of multiple reactions are responsible, but such pathways are not common. Conclusions Metabolism is thus highly evolvable, in the sense that its properties could be fine-tuned by successively altering individual reactions. Historical contingency does not strongly restrict the origin of novel metabolic phenotypes. PMID:24758311
Plant Seeds as Model Vectors for the Transfer of Life Through Space
NASA Astrophysics Data System (ADS)
Tepfer, David; Leach, Sydney
2006-12-01
We consider plant seeds as terrestrial models for a vectored life form that could protect biological information in space. Seeds consist of maternal tissue surrounding and protecting an embryo. Some seeds resist deleterious conditions found in space: ultra low vacuum, extreme temperatures and radiation, including intense UV light. In a receptive environment, seeds could liberate a viable embryo, viable higher cells or a viable free-living organism (an endosymbiont or endophyte). Even if viability is lost, seeds still contain functional macro and small molecules (DNA, RNA, proteins, amino acids, lipids, etc.) that could provide the chemical basis for starting or modifying life. The possible release of endophytes or endosymbionts from a seed-like space traveler suggests that multiple domains of life, defined in DNA sequence phylogenies, could be disseminated simultaneously from Earth. We consider the possibility of exospermia, the outward transfer of life, as well as introspermia, the inward transfer of life-both as a contemporary and ancient events.
Survival of Bacillus pumilus spores for a prolonged period of time in real space conditions.
Vaishampayan, Parag A; Rabbow, Elke; Horneck, Gerda; Venkateswaran, Kasthuri J
2012-05-01
To prevent forward contamination and maintain the scientific integrity of future life-detection missions, it is important to characterize and attempt to eliminate terrestrial microorganisms associated with exploratory spacecraft and landing vehicles. Among the organisms isolated from spacecraft-associated surfaces, spores of Bacillus pumilus SAFR-032 exhibited unusually high resistance to decontamination techniques such as UV radiation and peroxide treatment. Subsequently, B. pumilus SAFR-032 was flown to the International Space Station (ISS) and exposed to a variety of space conditions via the European Technology Exposure Facility (EuTEF). After 18 months of exposure in the EXPOSE facility of the European Space Agency (ESA) on EuTEF under dark space conditions, SAFR-032 spores showed 10-40% survivability, whereas a survival rate of 85-100% was observed when these spores were kept aboard the ISS under dark simulated martian atmospheric conditions. In contrast, when UV (>110 nm) was applied on SAFR-032 spores for the same time period and under the same conditions used in EXPOSE, a ∼7-log reduction in viability was observed. A parallel experiment was conducted on Earth with identical samples under simulated space conditions. Spores exposed to ground simulations showed less of a reduction in viability when compared with the "real space" exposed spores (∼3-log reduction in viability for "UV-Mars," and ∼4-log reduction in viability for "UV-Space"). A comparative proteomics analysis indicated that proteins conferring resistant traits (superoxide dismutase) were present in higher concentration in space-exposed spores when compared to controls. Also, the first-generation cells and spores derived from space-exposed samples exhibited elevated UVC resistance when compared with their ground control counterparts. The data generated are important for calculating the probability and mechanisms of microbial survival in space conditions and assessing microbial contaminants as risks for forward contamination and in situ life detection.
Amine Swingbed Payload Testing on ISS
NASA Technical Reports Server (NTRS)
Button, Amy B.; Sweterlitsch, Jeffrey J.
2014-01-01
One of NASA Johnson Space Center's test articles of the amine-based carbon dioxide (CO2) and water vapor sorbent system known as the CO2 And Moisture Removal Amine Swing-bed, or CAMRAS, was incorporated into a payload on the International Space Station (ISS). The intent of the payload is to demonstrate the spacecraft-environment viability of the core atmosphere revitalization technology baselined for the new Orion vehicle. In addition to the air blower, vacuum connection, and controls needed to run the CAMRAS, the payload incorporates a suite of sensors for scientific data gathering, a water save function, and an air save function. The water save function minimizes the atmospheric water vapor reaching the CAMRAS unit, thereby reducing ISS water losses that are otherwise acceptable, and even desirable, in the Orion environment. The air save function captures about half of the ullage air that would normally be vented overboard every time the cabin air-adsorbing and space vacuum-desorbing CAMRAS beds swap functions. The JSC team conducted 1000 hours of on-orbit Amine Swingbed Payload testing in 2013 and early 2014. This paper presents the basics of the payload's design and history, as well as a summary of the test results, including comparisons with prelaunch testing.
NASA Technical Reports Server (NTRS)
Dito, Scott J.
2014-01-01
The Universal Propellant Servicing System (UPSS) is a dedicated mobile launcher propellant delivery method that will minimize danger and complexity in order to allow vehicles to be serviced and ultimately launched from a variety of locations previously not seen fit for space launch. The UPPS/G2 project is the development of a model, simulation, and ultimately a working application that will control and monitor the cryogenic fluid delivery to the rocket for testing purposes. To accomplish this, the project is using the programming language/environment Gensym G2. The environment is an all-inclusive application that allows development, testing, modeling, and finally operation of the unique application through graphical and programmatic methods. We have learned G2 through classes and trial-and-error, and are now in the process of building the application that will soon be able to be tested on apparatuses here at Kennedy Space Center, and eventually on the actual unit. The UPSS will bring near-autonomous control of launches to those that need it, as well it will be a great addition to NASA and KSC's operational viability and the opportunity to bring space launches to parts of the world, and in time constraints, once not thought possible.
NASA Technical Reports Server (NTRS)
Long, R. A.; Ellis, W. L.; Taylor, G. R.
1973-01-01
Nematospiroides dubius was tested to determine the infective potential of the third stage larvae and the egg-production and egg-viability rates of the resulting adults after they are exposed to space flight and solar ultraviolet irradiation. The results are indicative that space-flown larvae exposed to solar ultraviolet irradiation were rendered noninfective in C57 mice, whereas flight control larvae that received no solar ultraviolet irradiation matured at the same rate as the ground control larvae. However, depressed egg viability was evident in the flight control larvae.
Influence of electric current on bacterial viability in wastewater treatment.
Wei, V; Elektorowicz, M; Oleszkiewicz, J A
2011-10-15
Minimizing the influence of electric current on bacterial viability in the electro-technologies such as electrophoresis and electrocoagulation is crucial in designing and operating the electric hybrid wastewater treatment system. In this study the biomass from a membrane bioreactor (MBR) was subjected to constant direct current and the bacterial viability was monitored against electrical intensity, duration as well as the spatial vicinity related to the electrodes. It was found that the bacterial viability was not significantly affected (less than 10% of death percentage) when the applied electric current density (CD) was less than 6.2 A/m2 after 4 h. The percentage of live cell dropped by 15% and 29% at CD of 12.3 A/m2 and 24.7 A/m2, respectively. The pH of electrolytic biomass fluid has shifted to alkaline (from nearly neutral to around pH 10) at CD above 12.3 A/m2, which could have been the contributing factor for the bacterial inactivation. The temperature change in the electrolytic media at all current densities during 4 h of experiment was less than 2 °C, thus temperature effects were negligible. Bacteria experienced different micro-environments in the electrochemical reactor. Bacterial cells on the cathode surface exhibited highest death rate, whereas bacteria outside the space between electrodes were the least affected. It was concluded that in an electro-technology integrated wastewater treatment process, sufficient mixing should be used to avoid localized inactivation of bacterial cells. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
de la Torre Noetzel, Rosa; Miller, Ana Z.; Cubero, Beatriz; Raguse, Marina; Meessen, Joachim
2016-04-01
Space constitutes an extremely harmful environment for survival of terrestrial organisms. Amongst extremophiles on Earth, lichens are one of the most resistant organisms to harsh terrestrial environments, as well as some species of microorganisms, such as bacteria (Moeller et al., 2010), criptoendolithic cyanobacteria and lithic fungi (de los Ríos et al. 2004). To study the survival capacity of lichens to the harmful radiation environment of space, we have selected the lichen Circinaria gyrosa, an astrobiological model defined by its high capacity of resistance to space conditions (De la Torre et al. 2010) and to a simulated Mars environment (Sanchez et al., 2012). Samples were irradiated with four types of space-relevant ionizing radiation in the STARLIFE campaign: helium and iron ion doses (up to 2,000 Gy), X-ray doses (up to 5,000 Gy) and ultra-high γ-ray doses (from 6 to 113 kGy). Results on resistance of C. gyrosa to space-relevant ionizing radiation and its post-irradiation viability were obtained by: (i) chlorophyll a fluorescence of photosystem II (PS II); (ii) epifluorescence microscopy; (iii) confocal laser-scanning microscopy (CLSM), and (iv) field emission scanning electron microscopy (FESEM). Results of photosynthetic activity and epifluorescence showed no significant changes on the viability of C. gyrosa with increasing doses of helium and iron ions as well as X-rays. In contrast, γ-irradiation elicited significant dose-correlated effects as revealed by all applied techniques. Relevant is the presence of whewellite-like crystals, detected by FESEM on C. gyrosa thalli after high irradiation doses, which has been also identified in previous Mars simulation studies (Böttcher et al., 2014). These studies contribute to the better understanding of the adaptability of extremophile organisms to harsh environments, as well as to estimate the habitability of a planet's surface, like Mars; they will be important for planning experiments on the search of life in the universe, and as contribution of lithopanspermia, the theory that supports the interplanetary transfer of rock inhabiting life by means of meteorites (Mileikovsky et al., 2000). Acknowledgements: AZ Miller acknowledges the support from the Marie Skłodowska-Curie actions (PIEF-GA-2012-328689). References Böttger U, Meessen J, Martinez-Frias J, Hübers H-W, Rull F, Sánchez FJ, de la Torre R, de Vera J-P. 2014. International Journal of Astrobiology 13: 19-27. de la Torre R, Sancho LG, Horneck G, de los Ríos A, Wierzchos J, Olsson-Francis K, et al. 2010. Icarus 208: 735-748. de los Ríos A, Wierzchos J, Sancho LG, Ascaso C. 2004. FEMS Microbiology Ecology 50: 143-152. Mileikovsky C, Cucinotta F, Wilson JW, Gladman B, Horneck G, Lindegren L, Melosh J, Rickman H, Valtonen M, Zheng JQ. 2000. Icarus 145, 391-427. Moeller R, Rohde M, Reitz G. 2010. Icarus 206: 783-786. Sánchez FJ, Mateo-Martí E, Raggio J, Meeßen J, Martínez-Frías J, Sancho LG, et al. 2012. Planetary and Space Science 72: 102-110.
Cable in Boston; A Basic Viability Report.
ERIC Educational Resources Information Center
Hauben, Jan Ward; And Others
The viability of urban cable television (CATV) as an economic phenomenon is examined via a case study of its feasibility in Boston, a microcosm of general urban environment. To clarify cable's economics, a unitary concept of viability is used in which all local characteristics, cost assumptions, and growth estimates are structured dynamically as a…
Identification of Novel Desiccation-Tolerant S. cerevisiae Strains for Deep Space Biosensors
NASA Technical Reports Server (NTRS)
Tieze, Sofia Massaro; Santa Maria, Sergio R.; Liddell, Lauren C.; Bhattacharya, Sharmila
2017-01-01
NASA's BioSentinel mission, a secondary payload that will fly on the Space Launch System's first Exploration Mission (EM-1), utilizes the budding yeast S. cerevisiae to study the biological response to the deep space radiation environment. Yeast samples are desiccated prior to launch to suspend growth and metabolism while the spacecraft travels to its target heliocentric orbit beyond Low Earth Orbit. Each sample is then rehydrated at the desired time points to reactivate the cells. A major risk in this mission is the loss of cell viability that occurs in the recovery period following the desiccation and rehydration process. Cell survival is essential for the detection of the biological response to features in the deep space environment, including ionizing radiation. The aim of this study is to mitigate viable cell loss in future biosensors by identifying mutations and genes that confer tolerance to desiccation stress in rad51, a radiation-sensitive yeast strain. We initiated a screen for desiccation-tolerance after rehydrating cells that were desiccated for three years, and selected various clones exhibiting robust growth. To verify retention of radiation sensitivity in the isolated clones - a crucial feature for a successful biosensor - we exposed them to ionizing radiation. Finally, to elucidate the genetic and molecular bases for observed desiccation-tolerance, we will perform whole-genome sequencing of those rad51 clones that exhibit both robust growth and radiation sensitivity following desiccation. The identification and characterization of desiccation-tolerant strains will allow us to engineer a biological model that will be resilient in face of the challenges of the deep space environment, and will thus ensure the experimental success of future biosensor missions.
Identification of Novel Desiccation-Tolerant S. cerevisiae Strains for Deep Space Biosensors
NASA Technical Reports Server (NTRS)
Tieze, Sofia Massaro; Santa Maria, Sergio R.; Liddell, Lauren; Bhattacharya, Sharmila
2017-01-01
NASA's BioSentinel mission, a secondary payload that will fly on the Space Launch Systems first Exploration Mission (EM-1), utilizes the budding yeast S. cerevisiae to study the biological response to the deep space radiation environment. Yeast samples are desiccated prior to launch to suspend growth and metabolism while the spacecraft travels to its target heliocentric orbit beyond Low Earth Orbit. Each sample is then rehydrated at the desired time points to reactivate the cells. A major risk in this mission is the loss of cell viability that occurs in the recovery period following the desiccation and rehydration process. Cell survival is essential for the detection of the biological response to features in the deep space environment, including ionizing radiation.The aim of this study is to mitigate viable cell loss in future biosensors by identifying mutations and genes that confer tolerance to desiccation stress in rad51, a radiation-sensitive yeast strain. We initiated a screen for desiccation-tolerance after rehydrating cells that were desiccated for three years, and selected various clones exhibiting robust growth. To verify retention of radiation sensitivity in the isolated clonesa crucial feature for a successful biosensorwe exposed them to ionizing radiation. Finally, to elucidate the genetic and molecular bases for observed desiccation-tolerance, we will perform whole-genome sequencing of those rad51 clones that exhibit both robust growth and radiation sensitivity following desiccation. The identification and characterization of desiccation-tolerant strains will allow us to engineer a biological model that will be resilient in face of the challenges of the deep space environment, and will thus ensure the experimental success of future biosensor missions.
2015-01-01
Conventional physical and chemical methods that efficiently deliver molecules into cells are often associated with low cell viability. In this study, we evaluated the cellular effects of carbon nanoparticles believed to emit photoacoustic waves due to nanosecond-pulse laser activation to test the hypothesis that this method could achieve efficient intracellular delivery while maintaining high cell viability. Suspensions of DU145 human prostate carcinoma cells, carbon black (CB) nanoparticles, and calcein were exposed to 5–9 ns long laser pulses of near-infrared (1064 nm wavelength) light and then analyzed by flow cytometry for intracellular uptake of calcein and cell viability by propidium iodide staining. We found that intracellular uptake increased and in some cases saturated at high levels with only small losses in cell viability as a result of increasing laser fluence, laser exposure time, and as a unifying parameter, the total laser energy. Changing interpulse spacing between 0.1 and 10 s intervals showed no significant change in bioeffects, suggesting that the effects of each pulse were independent when spaced by at least 0.1 s intervals. Pretreatment of CB nanoparticles to intense laser exposure followed by mixing with cells also had no significant effect on uptake or viability. Similar uptake and viability were seen when CB nanoparticles were substituted with India ink, when DU145 cells were substituted with H9c2 rat cardiomyoblast cells, and when calcein was substituted with FITC-dextran. The best laser exposure conditions tested led to 88% of cells with intracellular uptake and close to 100% viability, indicating that nanosecond-pulse laser-activated carbon nanoparticles can achieve efficient intracellular delivery while maintaining high cell viability. PMID:24547946
Preparatory space experiments for development of a CELSS
NASA Technical Reports Server (NTRS)
Salisbury, Frank B.
1990-01-01
The goal of Closed Ecological Life Support System (CELSS) studies is to examine the effects of microgravity on yield and quality of plant products and on the interactions between irradiance and crop area. Measuring yield and quality of crops as a function of irradiance in microgravity is virtually unique to the CELSS program, as is the emphasis on canopies rather than individual plants. The first step for space experiments is to develop a relatively stress free environment for plant growth, something that has so far never been achieved. High light levels are essential, and there must be time enough to complete a significant portion of the life cycle. Optimal atmosphere and nutrients must be provided. Such responses as germination, orientation of roots and shoots, photosynthesis and respiration, floral initiation and development, and seed maturation and viability will be studied.
The impact of the postharvest environment on the viability and virulence of decay fungi.
Liu, Jia; Sui, Yuan; Wisniewski, Michael; Xie, Zhigang; Liu, Yiqing; You, Yuming; Zhang, Xiaojing; Sun, Zhiqiang; Li, Wenhua; Li, Yan; Wang, Qi
2018-07-03
Postharvest decay of fruits, vegetables, and grains by fungal pathogens causes significant economic losses. Infected produce presents a potential health risk since some decay fungi produce mycotoxins that are hazardous to human health. Infections are the result of the interplay between host resistance and pathogen virulence. Both of these processes, however, are significantly impacted by environmental factors, such as temperature, UV, oxidative stress, and water activity. In the present review, the impact of various physical postharvest treatments (e.g., heat and UV) on the viability and virulence of postharvest pathogens is reviewed and discussed. Oxidative injury, protein impairment, and cell wall degradation have all been proposed as the mechanisms by which these abiotic stresses reduce fungal viability and pathogenicity. The response of decay fungi to pH and the ability of pathogens to modulate the pH of the host environment also affect pathogenicity. The effects of the manipulation of the postharvest environment by ethylene, natural edible coatings, and controlled atmosphere storage on fungal viability are also discussed. Lastly, avenues of future research are proposed.
NASA Technical Reports Server (NTRS)
Schatten, Heide
1999-01-01
Calcium loss and muscle atrophy are two of the main metabolic changes experienced by astronauts and crew members during exposure to microgravity in space. For long-term exposure to space it is crucial to understand the underlying mechanisms for altered physiological functions. Fundamental occurrences in cell biology which are likely to depend on gravity include cytoskeletal dynamics, chromatin and centrosome cycling, and ion immobilization. These events can be studied during fertilization and embryogenesis within invertebrate systems. We have chosen the sea urchin system to study the effects of microgravity on cytoskeletal processes and calcium metabolism during fertilization, cell division, development, and embryogenesis. Experiments during an aircraft parabolic flight (KC-135) demonstrated: (1) the viability of sea urchin eggs prior to fertilization, (2) the suitability of our specimen containment system, (3) the feasibility of fertilization in a reduced gravity environment (which was achieved during 25 seconds of reduced gravity under parabolic flight conditions). Two newly developed pieces of spaceflight hardware made further investigations possible on a spaceflight (STS-77); (1) the Aquatic Research Facility (ARF), and (2) the Fertilization Syringe Unit (FSU). The Canadian Space Agency developed ARF to conduct aquatic spaceflight experiments requiring controlled conditions of temperature, humidity, illumination, and fixation at predetermined time points. It contained a control centrifuge which simulated the 1 g environment of earth during spaceflight. The FSU was developed at the Kennedy Space Center (KSC) by the Bionetics Corporation specifically to enable the crew to perform sea urchin fertilization operations in space.
Protecting the GEO Environment: Policies and Practices
NASA Technical Reports Server (NTRS)
Johnson, Nicholas L.; McKay, Gordon A. (Technical Monitor)
1999-01-01
The geosynchronous orbital regime has long been recognized as a unique space resource, dictating special measures to ensure its continuing use for future generations. During the past 20 years a variety of national and international policies have been developed to preserve this environment. A review of current practices involving the deployment and disposal of geosynchronous spacecraft, associated upper stages and apogee kick motors, and geosynchronous orbit transfer objects indicates both positive and negative trends. Most spacecraft operators are indeed performing end-of-mission maneuvers, but the boost altitudes normally fall short of policy guidelines. Russia, a major operator in geosynchronous orbit, maneuvers only 1 in 3 spacecraft out of the region, while China has never refired a spacecraft above GEO. The viability of voluntary protection measures for this regime depends upon the responsible actions of the aerospace community as a whole.
Viability and Biological Properties of Barley Seeds Expose to Outside of International Space Station
NASA Astrophysics Data System (ADS)
Sugimoto, Manabu; Ishii, Makoto; Mori, Izumi; Shagimardanova, Elena; Gusev, Oleg; Sychev, Vladimir; Levinskikh, Margarita; Novikova, Nataliya; Grigoriev, Anatoly
Plants play an important role in supplying nutrients and oxygen to human under material recycle system in space as well as on earth, therefore, seed storage in space should be necessary to self-supply foods when number of astronauts would stay and investigate for a long-term habitation of orbit and the bases of the Moon and Mars. In order to understand the effect of real space environment on the preservation of seeds, the seeds of malting barley, Haruna Nijo, were exposed to outside of the Pier docking station of International Space Station in the framework of the Biorisk-MSN program. After exposure to outside of International Space Station for 13 months, the seeds (SP) were transported to Earth, soaked in water, and germinated on the filter paper filled with water. The germination ratio of SP was 82%, while that of the ground control was 96%, showing that the barley seeds survived cosmic radiation, vacuum, and temperature excursion in space. The germinated seeds of SP and ground control were transplanted to the Wagner pots filled with soil and grown for 5 months in the greenhouse. The agronomic character, such as number of main stem leaf and ear, straw weight, culm length, ear length, thousand kernel weight, and percentage of ripening, were not different significantly between SP and ground control. The germination ratio of the harvested SP was 96% as same as that of the harvested ground control. Genomic DNA and protein were extracted from leaves of the barleys and analyzed by AFLP and 2-DE, respectively. The results demonstrated no significant difference in genetic polymorphism and protein production in these barleys. From our results, barley seeds could survive real space environment for the long-term habitation without phenotypic and genotypic damages.
Population-specific life histories contribute to metapopulation viability
Halsey, Samniqueka J.; Bell, Timothy J.; McEachern, A. Kathryn; Pavlovic, Noel B.
2016-01-01
Restoration efforts can be improved by understanding how variations in life-history traits occur within populations of the same species living in different environments. This can be done by first understanding the demographic responses of natural occurring populations. Population viability analysis continues to be useful to species management and conservation with sensitivity analysis aiding in the understanding of population dynamics. In this study, using life-table response experiments and elasticity analyses, we investigated how population-specific life-history demographic responses contributed to the metapopulation viability of the Federally threatened Pitcher's thistle (Cirsium pitcheri). Specifically, we tested the following hypotheses: (1) Subpopulations occupying different environments within a metapopulation have independent demographic responses and (2) advancing succession results in a shift from a demographic response focused on growth and fecundity to one dominated by stasis. Our results showed that reintroductions had a positive contribution to the metapopulation growth rate as compared to native populations which had a negative contribution. We found no difference in succession on the contribution to metapopulation viability. In addition, we identified distinct population-specific contributions to metapopulation viability and were able to associate specific life-history demographic responses. For example, the positive impact of Miller High Dunes population on the metapopulation growth rate resulted from high growth contributions, whereas increased time of plant in stasis for the State Park Big Blowout population resulted in negative contributions. A greater understanding of how separate populations respond in their corresponding environment may ultimately lead to more effective management strategies aimed at reducing extinction risk. We propose the continued use of sensitivity analyses to evaluate population-specific demographic influences on metapopulation viability. In understanding the underlying causes of the projected extinction probabilities of each population and identifying broad-scale contributions of different populations to the metapopulation, the process of pinpointing target populations is simplified. More detailed analyses can then be applied to the target populations to increase population viability and consequently metapopulation viability. Based on our research, we suggest that the best approach to improve the overall metapopulation viability is to manage the contributions to population growth for each population separately.
The cybernetics of viability: an overview
NASA Astrophysics Data System (ADS)
Nechansky, Helmut
2011-10-01
A three-level approach to viability is developed, considering (1) living systems, (2) a niche, understood as the area within the reach of their actions, and (3) an environment. A systematic analysis of the interrelations between these levels shows that living systems emerge with matter/energy processing systems. These can add controller structures when producing excess energy. A three-sensor controller structure enables a living system to deal with unfavourable and scarce environments. Further evolution of these controller structures offers improved ways to act on niches. Maintaining niches in scarce environments can require technology or economy. So social systems emerge, which are understood as aggregates of living systems. Basic patterns of interactions within social systems are analysed. So the introduction of the notion of the niche into the discussion of viability allows us to explain phenomena ranging from properties of single living systems to societal organization.
Habitability as a Tier One Criterion in Exploration Mission and Vehicle Design. Part 1; Habitability
NASA Technical Reports Server (NTRS)
Adams, Constance M.; McCurdy, Matthew Riegel
1999-01-01
Habitability and human factors are necessary criteria to include in the iterative process of Tier I mission design. Bringing these criteria in at the first, conceptual stage of design for exploration and other human-rated missions can greatly reduce mission development costs, raise the level of efficiency and viability, and improve the chances of success. In offering a rationale for this argument, the authors give an example of how the habitability expert can contribute to early mission and vehicle architecture by defining the formal implications of a habitable vehicle, assessing the viability of units already proposed for exploration missions on the basis of these criteria, and finally, by offering an optimal set of solutions for an example mission. In this, the first of three papers, we summarize the basic factors associated with habitability, delineate their formal implications for crew accommodations in a long-duration environment, and show examples of how these principles have been applied in two projects at NASA's Johnson Space Center: the BIO-Plex test facility, and TransHab.
NASA Astrophysics Data System (ADS)
Catauro, M.; Bollino, F.; Papale, F.
2016-05-01
The health of astronauts, during space flight, is threatened by bone loss induced by microgravity, mainly attributed to an imbalance in the bone remodeling process. In the present work, the response to the microgravity of bone cells has been studied using the SAOS-2 cell line grown under the condition of weightlessness, simulated by means of a Random Positioning Machine (RPM). Cell viability after 72 h of rotation has been evaluated by means of WST-8 assay and compared to that of control cells. Although no significant difference between the two cell groups has been observed in terms of viability, F-actin staining showed that microgravity environment induces cell apoptosis and altered F-actin organization. To investigate the possibility of hindering the trend of the cells towards the death, after 72 h of rotation the cells have been seeded onto biocompatible ZrO2/PCL hybrid coatings, previously obtained using a sol-gel dip coating procedure. WST-8 assay, carried out after 24 h, showed that the materials are able to inhibit the pro-apoptotic effect of microgravity on cells.
Code of Federal Regulations, 2010 CFR
2010-07-01
... species diversity or their high social, cultural or economic value. Disturbance regime: Actions, functions... environment that can affect the diversity of plant and animal communities, including species viability, and... be used as surrogates to represent ecological conditions that provide for viability of some other...
Code of Federal Regulations, 2011 CFR
2011-07-01
... species diversity or their high social, cultural or economic value. Disturbance regime: Actions, functions... environment that can affect the diversity of plant and animal communities, including species viability, and... be used as surrogates to represent ecological conditions that provide for viability of some other...
Navigational Heads-Up Display: Will a Shipboard Augmented Electronic Navigation System Sink or Swim?
2015-03-01
of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503. 1. AGENCY USE ONLY (Leave blank) I 2. REPORT DATE I 3. REPORT...empirical results demonstrate the viability of using such a system in an operation environment and support a need for further research and development...empirical results demonstrate the viability of using such a system in an operation environment and support a need for further research and development
Advanced Computational Modeling Approaches for Shock Response Prediction
NASA Technical Reports Server (NTRS)
Derkevorkian, Armen; Kolaini, Ali R.; Peterson, Lee
2015-01-01
Motivation: (1) The activation of pyroshock devices such as explosives, separation nuts, pin-pullers, etc. produces high frequency transient structural response, typically from few tens of Hz to several hundreds of kHz. (2) Lack of reliable analytical tools makes the prediction of appropriate design and qualification test levels a challenge. (3) In the past few decades, several attempts have been made to develop methodologies that predict the structural responses to shock environments. (4) Currently, there is no validated approach that is viable to predict shock environments overt the full frequency range (i.e., 100 Hz to 10 kHz). Scope: (1) Model, analyze, and interpret space structural systems with complex interfaces and discontinuities, subjected to shock loads. (2) Assess the viability of a suite of numerical tools to simulate transient, non-linear solid mechanics and structural dynamics problems, such as shock wave propagation.
NASA Astrophysics Data System (ADS)
Santos, Orlando; Ehrenfreund, Pascale; Mancinelli, Rocco; Nicholson, Wayne; Ricco, Antonio
NASA's Organism/Organic Exposure to Orbital Stresses, or O/OREOS, nanosatellite is a sci-ence demonstration mission that showcases achievements in using hardware from a technology development program led by the Small Spacecraft Division at NASA's Ames Research Center, Moffett Field, California. Continuing Ames' development of triple-cube nanosatellite tech-nology and flight systems, which includes the successful GeneSat-1 and PharmaSat missions, O/OREOS is constructed from off-the-shelf commercial and NASA-designed parts to create a fully self-contained, automated, stable, light-weight space science laboratory with innovative environment and power control techniques; sensors to monitor the levels of pressure, temper-ature, humidity, radiation and acceleration; and a communications system able to regularly accept commands from the ground and transmit data back to Earth for scientific analysis. The overall goal of the O/OREOS mission is to demonstrate the capability to do low-cost sci-ence experiments on autonomous nanosatellites in space in support of the Astrobiology Small Payloads program under the Planetary Science Division of the Science Mission Directorate at NASA Headquarters. The spacecraft houses two science payloads: the Space Environment Viability of Organics (SEVO) experiment will monitor the stability and changes in four classes of organic matter (results presented at another COSPAR session); and the Space Environment Survivability of Live Organisms (SESLO) experiment (presented here). SESLO will charac-terize the growth, activity, health, and ability of microorganisms to adapt to the stresses of the space environment. The experiment is sealed in a vessel at one atmosphere and contains two types of microbes commonly found in salt ponds and soil, in a dried and dormant state: Halorubrum chaoviator and Bacillus subtilis. After it reaches orbit, the experiment will initiate and begin to rehydrate and grow three sets of the microbes at three different times: a few days, three months, and six months after launch. Once the satellite is in its highly inclined orbit, the microbes are constantly being exposed to space's high-energy radiation while in micro-gravity. The SESLO experiment measures the microbes' population density as they consume the components of the nutrient medium; a metabolism indicator dye included in the medium changes color, enabling quantitative tracking of metabolic activity. Together, these data en-able determination of the effects of the combined exposure to space radiation and microgravity on organism growth, health and survival. The design of the spacecraft, its ability to support Astrobiology goals, and the actual spaceflight data obtained will be presented.
Investigating the importance of flow when utilizing hyaluronan scaffolds for tissue engineering.
Donegan, Gail C; Hunt, John A; Rhodes, Nicholas
2010-02-01
Esterified hyaluronan scaffolds offer significant advantages for tissue engineering. They are recognized by cellular receptors, interact with many other extracellular matrix proteins and their metabolism is mediated by intrinsic cellular pathways. In this study differences in the viability and structural integrity of vascular tissue models cultured on hyaluronan scaffolds under laminar flow conditions highlighted potential differences in the biodegradation kinetics, processes and end-products, depending on the culture environment. Critical factors are likely to include seeding densities and the duration and magnitude of applied biomechanical stress. Proteomic evaluation of the timing and amount of remodelling protein expression, the resulting biomechanical changes arising from this response and metabolic cell viability assay, together with examination of tissue morphology, were conducted in vascular tissue models cultured on esterified hyaluronan felt and PTFE mesh scaffolds. The vascular tissue models were derived using complete cell sheets derived from harvested and expanded umbilical cord vein cells. This seeding method utilizes high-density cell populations from the outset, while the cells are already supported by their own abundant extracellular matrix. Type I and type IV collagen expression in parallel with MMP-1 and MMP-2 expression were monitored in the tissue models over a 10 day culture period under laminar flow regimes using protein immobilization technologies. Uniaxial tensile testing and scanning electron microscopy were used to compare the resulting effects of hydrodynamic stimulation upon structural integrity, while viability assays were conducted to evaluate the effects of shear on metabolic function. The proteomic results showed that the hyaluronan felt-supported tissues expressed higher levels of all remodelling proteins than those cultured on PTFE mesh. Overall, a 21% greater expression of type I collagen, 24% higher levels of type IV collagen, 24% higher levels of MMP-1 and 34% more MMP-2 were observed during hydrodynamic stress. This was coupled with a loss of structural integrity in these models after the introduction of laminar flow, as compared to the increases in all mechanical properties observed in the PTFE mesh-supported tissues. However, under flow conditions, the hyaluronan-supported tissues showed some recovery of the viability originally lost during static culture conditions, in contrast to PTFE mesh-based models, where initial gains were followed by a decline in metabolic viability after applied shear stress. Proteomic, cell viability and mechanical testing data emphasized the need for extended in vitro evaluations to enable better understanding of multi-stage remodelling and reparative processes in tissues cultured on biodegradable scaffolds. This study also highlighted the possibility that in high-density tissue culture with a biodegradable component, dynamic conditions may be more conducive to optimal tissue development than the static environment because they facilitate the efficient removal of high concentrations of degradation end-products accumulating in the pericellular space.
Hiwasa-Tanase, Kyoko; Ezura, Hiroshi
2016-01-01
Crop cultivation in controlled environment plant factories offers great potential to stabilize the yield and quality of agricultural products. However, many crops are currently unsuited to these environments, particularly closed cultivation systems, due to space limitations, low light intensity, high implementation costs, and high energy requirements. A major barrier to closed system cultivation is the high running cost, which necessitates the use of high-margin crops for economic viability. High-value crops include those with enhanced nutritional value or containing additional functional components for pharmaceutical production or with the aim of providing health benefits. In addition, it is important to develop cultivars equipped with growth parameters that are suitable for closed cultivation. Small plant size is of particular importance due to the limited cultivation space. Other advantageous traits are short production cycle, the ability to grow under low light, and high nutriculture availability. Cost-effectiveness is improved from the use of cultivars that are specifically optimized for closed system cultivation. This review describes the features of closed cultivation systems and the potential application of molecular breeding to create crops that are optimized for cost-effectiveness and productivity in closed cultivation systems.
Hiwasa-Tanase, Kyoko; Ezura, Hiroshi
2016-01-01
Crop cultivation in controlled environment plant factories offers great potential to stabilize the yield and quality of agricultural products. However, many crops are currently unsuited to these environments, particularly closed cultivation systems, due to space limitations, low light intensity, high implementation costs, and high energy requirements. A major barrier to closed system cultivation is the high running cost, which necessitates the use of high-margin crops for economic viability. High-value crops include those with enhanced nutritional value or containing additional functional components for pharmaceutical production or with the aim of providing health benefits. In addition, it is important to develop cultivars equipped with growth parameters that are suitable for closed cultivation. Small plant size is of particular importance due to the limited cultivation space. Other advantageous traits are short production cycle, the ability to grow under low light, and high nutriculture availability. Cost-effectiveness is improved from the use of cultivars that are specifically optimized for closed system cultivation. This review describes the features of closed cultivation systems and the potential application of molecular breeding to create crops that are optimized for cost-effectiveness and productivity in closed cultivation systems. PMID:27200016
Establishing lunar resource viability
NASA Astrophysics Data System (ADS)
Carpenter, J.; Fisackerly, R.; Houdou, B.
2016-11-01
Recent research has highlighted the potential of lunar resources as an important element of space exploration but their viability has not been demonstrated. Establishing whether or not they can be considered in future plans is a multidisciplinary effort, requiring scientific expertise and delivering scientific results. To this end various space agencies and private entities are looking to lunar resources, extracted and processed in situ, as a potentially game changing element in future space architectures, with the potential to increase scale and reduce cost. However, before any decisions can be made on the inclusion of resources in exploration roadmaps or future scenarios some big questions need to be answered about the viability of different resource deposits and the processes for extraction and utilisation. The missions and measurements that will be required to answer these questions, and which are being prepared by agencies and others, can only be performed through the engagement and support of the science community. In answering questions about resources, data and knowledge will be generated that is of fundamental scientific importance. In supporting resource prospecting missions the science community will de facto generate new scientific knowledge. Science enables exploration and exploration enables science.
NASA Astrophysics Data System (ADS)
Babidge, S.; Cokley, J.; Gordon, F.; Louw, E.
2005-10-01
As humans expand into space communities will form. These have already begun to form in small ways, such as long-duration missions on the International Space Station and the space shuttle, and small-scale tourist excursions into space. Social, behavioural and communications data emerging from such existing communities in space suggest that the physically-bounded, work-oriented and traditionally male-dominated nature of these extremely remote groups present specific problems for the resident astronauts, groups of them viewed as ‘communities’, and their associated groups who remain on Earth, including mission controllers, management and astronauts’ families. Notionally feminine group attributes such as adaptive competence, social adaptation skills and social sensitivity will be crucial to the viability of space communities and in the absence of gender equity, ‘staying in touch’ by means of ‘news from home’ becomes more important than ever. A template of news and media forms and technologies is suggested to service those needs and enhance the social viability of future terraforming activities.
NASA Astrophysics Data System (ADS)
Ehricke, Krafft A.
This first of several study papers, based on a fundamental paper presented in 1972, provides an independent conceptual analysis and evaluation of the lunar environment as industrial base and habitat. A selenosphere system strategy is outlined. The underlying concept is that of one or several lunar industrial zones for resource extraction and on-surface processing, integrated with a circumlunar zero-g processing capability, serving markets in geolunar space. A classification of lunar elements by utilization category is presented. Lunar oxygen is a prime candidate for being an initial economic "drawing card", because of its value for fast transportation in geolunar space, requiring significantly fewer ships for equal transfer capability per unit time than electric transports which, however, have value, especially between geosynchronous and lunar orbit. The reduced development difficulties of controlled fusion outside the atmosphere and its advantages for extracting oxygen and other elements in quantity are summarized. Examples of lunar cycle management as fundamental exoindustrial requirement for economic resource enhancement are presented. The principal initial socio-economic value of lunar industry lies in the use of lunar resources for exoindustrial products and operations designed to accelerate, intensify and diversify Earth-related benefits. In the longer run, lunar settlements are a highly suitable proving ground for studying and testing the complex matrix of technological, biological, cultural, social and psychological aspects that must be understood and manageable before large settlements beyond Earth can have a realistic basis for viability. The lunar environment is more suitable for experimentation and comparatively more "forgiving" in case of failures than is orbital space.
NASA Technical Reports Server (NTRS)
Clipson, Colin
1994-01-01
This paper will review and summarize research initiatives conducted between 1987 and 1992 at NASA Ames Research Center by a research team from the University of Michigan Architecture Research Laboratory. These research initiatives, funded by a NASA grant NAG2-635, examined the viability of establishing collaborative, reconfigurable research environments for the Human Performance Research Laboratory at NASA Ames in California. Collaborative Research Environments are envisioned as a way of enhancing the work of NASA research teams, optimizing the use of shared resources, and providing superior environments for housing research activities. The Integrated Simulation Project at NASA, Ames Human Performance Research Laboratory is one of the current realizations of this initiative.
Klemuk, Sarah A; Jaiswal, Sanyukta; Titze, Ingo R
2008-10-01
Effects of vibration on human vocal fold extracellular matrix composition and the resultant tissue viscoelastic properties are difficult to study in vivo. Therefore, an in vitro bioreactor, simulating the in vivo physiological environment, was explored. A stress-controlled commercial rheometer was used to administer shear vibrations to living tissues at stresses and frequencies corresponding to male phonation, while simultaneously measuring tissue viscoelastic properties. Tissue environment was evaluated and adjustments made in order to sustain cell life for short term experimentation up to 6 h. Cell nutrient medium evaporation, osmolality, pH, and cell viability of cells cultured in three-dimensional synthetic scaffolds were quantified under comparably challenging environments to the rheometer bioreactor for 4 or 6 h. The functionality of the rheometer bioreactor was demonstrated by applying three vibration regimes to cell-seeded three-dimensional substrates for 2 h. Resulting strain was quantified throughout the test period. Rheologic data and cell viability are reported for each condition, and future improvements are discussed.
Space Telecommunications Radio Architecture (STRS)
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.
2006-01-01
A software defined radio (SDR) architecture used in space-based platforms proposes to standardize certain aspects of radio development such as interface definitions, functional control and execution, and application software and firmware development. NASA has charted a team to develop an open software defined radio hardware and software architecture to support NASA missions and determine the viability of an Agency-wide Standard. A draft concept of the proposed standard has been released and discussed among organizations in the SDR community. Appropriate leveraging of the JTRS SCA, OMG's SWRadio Architecture and other aspects are considered. A standard radio architecture offers potential value by employing common waveform software instantiation, operation, testing and software maintenance. While software defined radios offer greater flexibility, they also poses challenges to the radio development for the space environment in terms of size, mass and power consumption and available technology. An SDR architecture for space must recognize and address the constraints of space flight hardware, and systems along with flight heritage and culture. NASA is actively participating in the development of technology and standards related to software defined radios. As NASA considers a standard radio architecture for space communications, input and coordination from government agencies, the industry, academia, and standards bodies is key to a successful architecture. The unique aspects of space require thorough investigation of relevant terrestrial technologies properly adapted to space. The talk will describe NASA s current effort to investigate SDR applications to space missions and a brief overview of a candidate architecture under consideration for space based platforms.
Space Telecommunications Radio Architecture (STRS): Technical Overview
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.
2006-01-01
A software defined radio (SDR) architecture used in space-based platforms proposes to standardize certain aspects of radio development such as interface definitions, functional control and execution, and application software and firmware development. NASA has charted a team to develop an open software defined radio hardware and software architecture to support NASA missions and determine the viability of an Agency-wide Standard. A draft concept of the proposed standard has been released and discussed among organizations in the SDR community. Appropriate leveraging of the JTRS SCA, OMG s SWRadio Architecture and other aspects are considered. A standard radio architecture offers potential value by employing common waveform software instantiation, operation, testing and software maintenance. While software defined radios offer greater flexibility, they also poses challenges to the radio development for the space environment in terms of size, mass and power consumption and available technology. An SDR architecture for space must recognize and address the constraints of space flight hardware, and systems along with flight heritage and culture. NASA is actively participating in the development of technology and standards related to software defined radios. As NASA considers a standard radio architecture for space communications, input and coordination from government agencies, the industry, academia, and standards bodies is key to a successful architecture. The unique aspects of space require thorough investigation of relevant terrestrial technologies properly adapted to space. The talk will describe NASA's current effort to investigate SDR applications to space missions and a brief overview of a candidate architecture under consideration for space based platforms.
NASA's SDR Standard: Space Telecommunications Radio System
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.; Johnson, Sandra K.
2007-01-01
A software defined radio (SDR) architecture used in space-based platforms proposes to standardize certain aspects of radio development such as interface definitions, functional control and execution, and application software and firmware development. NASA has charted a team to develop an open software defined radio hardware and software architecture to support NASA missions and determine the viability of an Agency-wide Standard. A draft concept of the proposed standard has been released and discussed among organizations in the SDR community. Appropriate leveraging of the JTRS SCA, OMG s SWRadio Architecture and other aspects are considered. A standard radio architecture offers potential value by employing common waveform software instantiation, operation, testing and software maintenance. While software defined radios offer greater flexibility, they also poses challenges to the radio development for the space environment in terms of size, mass and power consumption and available technology. An SDR architecture for space must recognize and address the constraints of space flight hardware, and systems along with flight heritage and culture. NASA is actively participating in the development of technology and standards related to software defined radios. As NASA considers a standard radio architecture for space communications, input and coordination from government agencies, the industry, academia, and standards bodies is key to a successful architecture. The unique aspects of space require thorough investigation of relevant terrestrial technologies properly adapted to space. The talk will describe NASA s current effort to investigate SDR applications to space missions and a brief overview of a candidate architecture under consideration for space based platforms.
Space solar array reliability: A study and recommendations
NASA Astrophysics Data System (ADS)
Brandhorst, Henry W., Jr.; Rodiek, Julie A.
2008-12-01
Providing reliable power over the anticipated mission life is critical to all satellites; therefore solar arrays are one of the most vital links to satellite mission success. Furthermore, solar arrays are exposed to the harshest environment of virtually any satellite component. In the past 10 years 117 satellite solar array anomalies have been recorded with 12 resulting in total satellite failure. Through an in-depth analysis of satellite anomalies listed in the Airclaim's Ascend SpaceTrak database, it is clear that solar array reliability is a serious, industry-wide issue. Solar array reliability directly affects the cost of future satellites through increased insurance premiums and a lack of confidence by investors. Recommendations for improving reliability through careful ground testing, standardization of testing procedures such as the emerging AIAA standards, and data sharing across the industry will be discussed. The benefits of creating a certified module and array testing facility that would certify in-space reliability will also be briefly examined. Solar array reliability is an issue that must be addressed to both reduce costs and ensure continued viability of the commercial and government assets on orbit.
College Students' View of Biotechnology Products and Practices in Sustainable Agriculture Systems
ERIC Educational Resources Information Center
Anderson, William A.
2008-01-01
Sustainable agriculture implies the use of products and practices that sustain production, protect the environment, ensure economic viability, and maintain rural community viability. Disagreement exists as to whether or not the products and practices of modern biotechnological support agricultural sustainability. The purpose of this study was to…
Purple nutsedge (Cyperus rotundus) tuber production and viability is reduced by imazapic
USDA-ARS?s Scientific Manuscript database
Weeds exploit underutilized space, causing economic losses in cropping systems. Weed management tactics alter that underutilized space until the crop can mature and efficiently use that space. One tactic is to reduce the weed populations that persist quiescent in the soil, including minimizing pro...
Kawaguchi, Yuko; Yang, Yinjie; Kawashiri, Narutoshi; Shiraishi, Keisuke; Takasu, Masako; Narumi, Issay; Satoh, Katsuya; Hashimoto, Hirofumi; Nakagawa, Kazumichi; Tanigawa, Yoshiaki; Momoki, Yoh-Hei; Tanabe, Maiko; Sugino, Tomohiro; Takahashi, Yuta; Shimizu, Yasuyuki; Yoshida, Satoshi; Kobayashi, Kensei; Yokobori, Shin-Ichi; Yamagishi, Akihiko
2013-10-01
To investigate the possible interplanetary transfer of life, numerous exposure experiments have been carried out on various microbes in space since the 1960s. In the Tanpopo mission, we have proposed to carry out experiments on capture and space exposure of microbes at the Exposure Facility of the Japanese Experimental Module of the International Space Station (ISS). Microbial candidates for the exposure experiments in space include Deinococcus spp.: Deinococcus radiodurans, D. aerius and D. aetherius. In this paper, we have examined the survivability of Deinococcus spp. under the environmental conditions in ISS in orbit (i.e., long exposure to heavy-ion beams, temperature cycles, vacuum and UV irradiation). A One-year dose of heavy-ion beam irradiation did not affect the viability of Deinococcus spp. within the detection limit. Vacuum (10(-1) Pa) also had little effect on the cell viability. Experiments to test the effects of changes in temperature from 80 °C to -80 °C in 90 min (± 80 °C/90 min cycle) or from 60 °C to -60 °C in 90 min (± 60 °C/90 min cycle) on cell viability revealed that the survival rate decreased severely by the ± 80 °C/90 min temperature cycle. Exposure of various thicknesses of deinococcal cell aggregates to UV radiation (172 nm and 254 nm, respectively) revealed that a few hundred micrometer thick aggregate of deinococcal cells would be able to withstand the solar UV radiation on ISS for 1 year. We concluded that aggregated deinococcal cells will survive the yearlong exposure experiments. We propose that microbial cells can aggregate as an ark for the interplanetary transfer of microbes, and we named it 'massapanspermia'.
The ISES: A non-intrusive medium for in-space experiments in on-board information extraction
NASA Technical Reports Server (NTRS)
Murray, Nicholas D.; Katzberg, Stephen J.; Nealy, Mike
1990-01-01
The Information Science Experiment System (ISES) represents a new approach in applying advanced systems technology and techniques to on-board information extraction in the space environment. Basically, what is proposed is a 'black box' attached to the spacecraft data bus or local area network. To the spacecraft the 'black box' appears to be just another payload requiring power, heat rejection, interfaces, adding weight, and requiring time on the data management and communication system. In reality, the 'black box' is a programmable computational resource which eavesdrops on the data network, taking and producing selectable, real-time science data back on the network. This paper will present a brief overview of the ISES Concept and will discuss issues related to applying the ISES to the polar platform and Space Station Freedom. Critical to the operation of ISES is the viability of a payload-like interface to the spacecraft data bus or local area network. Study results that address this question will be reviewed vis-a-vis the solar platform and the core space station. Also, initial results of processing science and other requirements for onboard, real-time information extraction will be presented with particular emphasis on the polar platform. Opportunities for a broader range of applications on the core space station will also be discussed.
Horneck, Gerda; Klaus, David M.; Mancinelli, Rocco L.
2010-01-01
Summary: The responses of microorganisms (viruses, bacterial cells, bacterial and fungal spores, and lichens) to selected factors of space (microgravity, galactic cosmic radiation, solar UV radiation, and space vacuum) were determined in space and laboratory simulation experiments. In general, microorganisms tend to thrive in the space flight environment in terms of enhanced growth parameters and a demonstrated ability to proliferate in the presence of normally inhibitory levels of antibiotics. The mechanisms responsible for the observed biological responses, however, are not yet fully understood. A hypothesized interaction of microgravity with radiation-induced DNA repair processes was experimentally refuted. The survival of microorganisms in outer space was investigated to tackle questions on the upper boundary of the biosphere and on the likelihood of interplanetary transport of microorganisms. It was found that extraterrestrial solar UV radiation was the most deleterious factor of space. Among all organisms tested, only lichens (Rhizocarpon geographicum and Xanthoria elegans) maintained full viability after 2 weeks in outer space, whereas all other test systems were inactivated by orders of magnitude. Using optical filters and spores of Bacillus subtilis as a biological UV dosimeter, it was found that the current ozone layer reduces the biological effectiveness of solar UV by 3 orders of magnitude. If shielded against solar UV, spores of B. subtilis were capable of surviving in space for up to 6 years, especially if embedded in clay or meteorite powder (artificial meteorites). The data support the likelihood of interplanetary transfer of microorganisms within meteorites, the so-called lithopanspermia hypothesis. PMID:20197502
Sepulveda-Medina, Paola; Katsenovich, Yelena; Musaramthota, Vishal; Lee, Michelle; Lee, Brady; Dua, Rupak; Lagos, Leonel
2015-06-01
Past disposal practices at nuclear production facilities have led to the release of liquid waste into the environment creating multiple radionuclide plumes. Microorganisms are known for the ability to interact with radionuclides and impact their mobility in soils and sediments. Gram-positive Arthrobacter sp. are one of the most common bacterial groups in soils and are found in large numbers in subsurface environments contaminated with radionuclides. This study experimentally analyzed changes on the bacteria surface at the nanoscale level after uranium exposure and evaluated the effect of aqueous bicarbonate ions on U(VI) toxicity of a low uranium-tolerant Arthrobacter oxydans strain G968 by investigating changes in adhesion forces and cell dimensions via atomic force microscopy (AFM). Experiments were extended to assess cell viability by the Live/Dead BacLight Bacterial Viability Kit (Molecular Probes) and quantitatively illustrate the effect of uranium exposure in the presence of varying concentrations of bicarbonate ions. AFM and viability studies showed that samples containing bicarbonate were able to withstand uranium toxicity and remained viable. Samples containing no bicarbonate exhibited deformed surfaces and a low height profile, which, in conjunction with viability studies, indicated that the cells were not viable. Copyright © 2015 Institut Pasteur. All rights reserved.
Microbial astronauts: assembling microbial communities for advanced life support systems.
Roberts, M S; Garland, J L; Mills, A L
2004-02-01
Extension of human habitation into space requires that humans carry with them many of the microorganisms with which they coexist on Earth. The ubiquity of microorganisms in close association with all living things and biogeochemical processes on Earth predicates that they must also play a critical role in maintaining the viability of human life in space. Even though bacterial populations exist as locally adapted ecotypes, the abundance of individuals in microbial species is so large that dispersal is unlikely to be limited by geographical barriers on Earth (i.e., for most environments "everything is everywhere" given enough time). This will not be true for microbial communities in space where local species richness will be relatively low because of sterilization protocols prior to launch and physical barriers between Earth and spacecraft after launch. Although community diversity will be sufficient to sustain ecosystem function at the onset, richness and evenness may decline over time such that biological systems either lose functional potential (e.g., bioreactors may fail to reduce BOD or nitrogen load) or become susceptible to invasion by human-associated microorganisms (pathogens) over time. Research at the John F. Kennedy Space Center has evaluated fundamental properties of microbial diversity and community assembly in prototype bioregenerative systems for NASA Advanced Life Support. Successional trends related to increased niche specialization, including an apparent increase in the proportion of nonculturable types of organisms, have been consistently observed. In addition, the stability of the microbial communities, as defined by their resistance to invasion by human-associated microorganisms, has been correlated to their diversity. Overall, these results reflect the significant challenges ahead for the assembly of stable, functional communities using gnotobiotic approaches, and the need to better define the basic biological principles that define ecosystem processes in the space environment. Copyright 2004 Springer-Verlag
Microbial astronauts: assembling microbial communities for advanced life support systems
NASA Technical Reports Server (NTRS)
Roberts, M. S.; Garland, J. L.; Mills, A. L.
2004-01-01
Extension of human habitation into space requires that humans carry with them many of the microorganisms with which they coexist on Earth. The ubiquity of microorganisms in close association with all living things and biogeochemical processes on Earth predicates that they must also play a critical role in maintaining the viability of human life in space. Even though bacterial populations exist as locally adapted ecotypes, the abundance of individuals in microbial species is so large that dispersal is unlikely to be limited by geographical barriers on Earth (i.e., for most environments "everything is everywhere" given enough time). This will not be true for microbial communities in space where local species richness will be relatively low because of sterilization protocols prior to launch and physical barriers between Earth and spacecraft after launch. Although community diversity will be sufficient to sustain ecosystem function at the onset, richness and evenness may decline over time such that biological systems either lose functional potential (e.g., bioreactors may fail to reduce BOD or nitrogen load) or become susceptible to invasion by human-associated microorganisms (pathogens) over time. Research at the John F. Kennedy Space Center has evaluated fundamental properties of microbial diversity and community assembly in prototype bioregenerative systems for NASA Advanced Life Support. Successional trends related to increased niche specialization, including an apparent increase in the proportion of nonculturable types of organisms, have been consistently observed. In addition, the stability of the microbial communities, as defined by their resistance to invasion by human-associated microorganisms, has been correlated to their diversity. Overall, these results reflect the significant challenges ahead for the assembly of stable, functional communities using gnotobiotic approaches, and the need to better define the basic biological principles that define ecosystem processes in the space environment. Copyright 2004 Springer-Verlag.
Qian, Ai-Rong; Gao, Xiang; Zhang, Wei; Li, Jing-Bao; Wang, Yang; Di, Sheng-Meng; Hu, Li-Fang; Shang, Peng
2013-01-01
The superconducting magnet generates a field and field gradient product that can levitate diamagnetic materials. In this study a specially designed superconducting magnet with a large gradient high magnetic field (LG-HMF), which can provide three apparent gravity levels (μ-g, 1-g, and 2-g), was used to simulate a space-like gravity environment. The effects of LG-HMF on the ultrastructure and function of osteoblast-like cells (MG-63 and MC3T3-E1) and the underlying mechanism were investigated by transmission electromicroscopy (TEM), MTT, and cell western (ICW) assays. Under LG-HMF significant morphologic changes in osteoblast-like cells occurred, including expansion of endoplasmic reticulum and mitochondria, an increased number of lysosomes, distorted microvilli, and aggregates of actin filaments. Compared to controls, cell viability and alkaline phosphatase (ALP) secretion were significantly increased, and collagen I (col I), fibronectin (FN), vinculin, integrin α3, αv, and β1 expression were changed under LG-HMF conditions. In conclusion, LG-HMF affects osteoblast ultrastructure, cell viability, and ALP secretion, and the changes caused by LG-HMF may be related to disrupting col I or FN/αβ1 integrin. PMID:23382804
Sard, Nicholas M; Jacobson, Dave P; Banks, Michael A
2016-10-01
Diversity in life history tactics contributes to the persistence of a population because it helps to protect against stochastic environments by varying individuals in space and time. However, some life history tactics may not be accounted for when assessing the demographic viability of a population. One important factor in demographic viability assessments is cohort replacement rate (CRR), which is defined as the number of future adults produced by an adult. We assessed if precocial resident males (
Qian, Ai-Rong; Gao, Xiang; Zhang, Wei; Li, Jing-Bao; Wang, Yang; Di, Sheng-Meng; Hu, Li-Fang; Shang, Peng
2013-01-01
The superconducting magnet generates a field and field gradient product that can levitate diamagnetic materials. In this study a specially designed superconducting magnet with a large gradient high magnetic field (LG-HMF), which can provide three apparent gravity levels (μ-g, 1-g, and 2-g), was used to simulate a space-like gravity environment. The effects of LG-HMF on the ultrastructure and function of osteoblast-like cells (MG-63 and MC3T3-E1) and the underlying mechanism were investigated by transmission electromicroscopy (TEM), MTT, and cell western (ICW) assays. Under LG-HMF significant morphologic changes in osteoblast-like cells occurred, including expansion of endoplasmic reticulum and mitochondria, an increased number of lysosomes, distorted microvilli, and aggregates of actin filaments. Compared to controls, cell viability and alkaline phosphatase (ALP) secretion were significantly increased, and collagen I (col I), fibronectin (FN), vinculin, integrin α3, αv, and β1 expression were changed under LG-HMF conditions. In conclusion, LG-HMF affects osteoblast ultrastructure, cell viability, and ALP secretion, and the changes caused by LG-HMF may be related to disrupting col I or FN/αβ1 integrin.
NASA Technical Reports Server (NTRS)
Johnson, Jacqueline U.
1996-01-01
Previous space flight studies have described unfavorable effects of microgravity on testicular morphology and spermatogenesis (Cosmos 1887 Biosputnik flight, 9/29/87 - 10/12/87). The flight animals demonstrated small reductions in testicular and epididymal size, the phenomenon explained as resulting water loss. Yet, light microscopic histological preparations revealed few spermatozoa in the rete testis of the flight males compared to control animals. The cause for this finding was subjectively assessed to be due to "the anatomical dislocation of the organs... and a disturbance in testicular blood supply". Unfortunately, the reported effects of microgravity on the reproductive processes (particularly within males) are few and divergent. If habitation in space is a futuristic goal, more objective testing (of male and female gametes) in a microgravity environment will provide insight to the developmental potential of these reproductive cells. As part of the Marshall Space Flight Centers' Summer Faculty Fellowship Program within the Biophysics Branch, a key component of the research investigation was to develop a test to evaluate individual cell motility and orientation in varying gravitational environments, using computerized assessment of sperm cell concentration, morphology and motility to provide objective, quantitative experimental control. In previous work performed jointly by the author and a NASA colleague, it has been shown that macroscopic motile aggregates of spermatozoa were not altered by the absence of microgravity. Variations in the number of normal versus abnormal sperm due to microgravity influences have yet to be established. It is therefore of interest to monitor the cytoskeletal matrix (microtubulin) of these organisms as a possible indicator of cell viability and/or function.
Multi-electron double quantum dot spin qubits
NASA Astrophysics Data System (ADS)
Nielsen, Erik; Kestner, Jason; Barnes, Edwin; Das Sarma, Sankar
2013-03-01
Double quantum dot (DQD) spin quits in a solid state environment typically consist of two electron spins confined to a DQD potential. We analyze the viability and potential advantages of DQD qubits which use greater then two electrons, and present results for six-electron qubits using full configuration interaction methods. The principal results of this work are that such six electron DQDs can retain an isolated low-energy qubit space that is more robust to charge noise due to screening. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Economic viability of access broadband multiservice networks
NASA Astrophysics Data System (ADS)
Castelli, Francesco; Dammicco, Giacinto; Mocci, Ugo
1995-02-01
In this paper the economic viability of alternative architectures for optical access networks providing broad band services to different subscriber classes in a metropolitan environment, is investigated by a specific tool, NEVE (Network Economic Viability Evaluator), developed for broad band multiservice network planning, service evolutionary scenarios assessment, evaluation of tariff strategies and other actions taken at stimulating the demand growth. As the viability target can be achieved in different ways, different studies can be carried out by NEVE. In the paper some of them are discussed, particularly the ones addressed: to evaluate the impact on viability of alternative service scenarios; to determine the critical mass of broad band subscribers and the critical joint service adoption cost; to evaluate cross subsidiary policies among different subscriber classes and services; to perform sensitivity analysis with respect to variations of demand parameters and tariffs.
Gas Foil Bearings for Space Propulsion Nuclear Electric Power Generation
NASA Technical Reports Server (NTRS)
Howard, Samuel A.; DellaCorte, Christopher
2006-01-01
The choice of power conversion technology is critical in directing the design of a space vehicle for the future NASA mission to Mars. One candidate design consists of a foil bearing supported turbo alternator driven by a helium-xenon gas mixture heated by a nuclear reactor. The system is a closed-loop, meaning there is a constant volume of process fluid that is sealed from the environment. Therefore, foil bearings are proposed due to their ability to use the process gas as a lubricant. As such, the rotor dynamics of a foil bearing supported rotor is an important factor in the eventual design. The current work describes a rotor dynamic analysis to assess the viability of such a system. A brief technology background, assumptions, analyses, and conclusions are discussed in this report. The results indicate that a foil bearing supported turbo alternator is possible, although more work will be needed to gain knowledge about foil bearing behavior in helium-xenon gas.
Muniraj, Murali; Arulmozhiyal, Ramaswamy
2015-01-01
A control actuation system has been used extensively in automotive, aerospace, and defense applications. The major challenges in modeling control actuation system are rise time, maximum peak to peak overshoot, and response to nonlinear system with percentage error. This paper addresses the challenges in modeling and real time implementation of control actuation system for missiles glider applications. As an alternative fuzzy-PID controller is proposed in BLDC motor drive followed by linkage mechanism to actuate fins in missiles and gliders. The proposed system will realize better rise time and less overshoot while operating in extreme nonlinear dynamic system conditions. A mathematical model of BLDC motor is derived in state space form. The complete control actuation system is modeled in MATLAB/Simulink environment and verified by performing simulation studies. A real time prototype of the control actuation is developed with dSPACE-1104 hardware controller and a detailed analysis is carried out to confirm the viability of the proposed system. PMID:26613102
Muniraj, Murali; Arulmozhiyal, Ramaswamy
2015-01-01
A control actuation system has been used extensively in automotive, aerospace, and defense applications. The major challenges in modeling control actuation system are rise time, maximum peak to peak overshoot, and response to nonlinear system with percentage error. This paper addresses the challenges in modeling and real time implementation of control actuation system for missiles glider applications. As an alternative fuzzy-PID controller is proposed in BLDC motor drive followed by linkage mechanism to actuate fins in missiles and gliders. The proposed system will realize better rise time and less overshoot while operating in extreme nonlinear dynamic system conditions. A mathematical model of BLDC motor is derived in state space form. The complete control actuation system is modeled in MATLAB/Simulink environment and verified by performing simulation studies. A real time prototype of the control actuation is developed with dSPACE-1104 hardware controller and a detailed analysis is carried out to confirm the viability of the proposed system.
NASA Astrophysics Data System (ADS)
Lambreva, Maya; Rea, Giuseppina; Antonacci, Amina; Serafini, Agnese; Damasso, Mario; Margonelli, Andrea; Johanningmeier, Udo; Bertalan, Ivo; Pezzotti, Gianni; Giardi, Maria Teresa
Long-term space exploration, colonization or habitation requires biological life support systems capable to cope with the deleterious space environment. The use of oxygenic photosynthetic microrganisms is an intriguing possibility mainly for food, O2 and nutraceutical compounds production. The critical points of utilizing plantsor algae-based life support systems are the microgravity and the ionizing radiation, which can influence the performance of these organisms. The aim of the present study was to assess the effects of space environment on the photosynthetic activity of various microrganisms and to select space stress-tolerant strains. Site-directed and random mutants of the unicellular green alga Chlamydomonas reinhardtii of Photosystem II D1 protein were used as a model system to test and select the amino acid substitutions capable to account for space stress tolerance. We focussed our studies also on the accumulation of the Photosystem II photoprotective carotenoids (the xantophylls violaxanthin, anteraxanthin and zeaxanthin), powerful antioxidants that epidemiological studies demonstrated to be human vision protectors. Metabolite profiling by quantitative HPLC methods revealed the organisms and the stress conditions capable to accumulate the highest pigment levels. In order to develop a project for a rationale metabolic engineering of algal secondary metabolites overproduction, we are performing expression analyses on the carotenoid biosynthetic pathway under physiological and mimicked space conditions. To identify the consequences of the space environment on the photosynthetic apparatus the changes in the Photosystem II efficiency were monitored in real time during the ESA-Russian Foton-M3 mission in September 2007. For the space flight a high-tech, multicell fluorescence biosensor, Photo-II, was designed and built by the Centre for Advanced Research in Space Optics in collaboration with Kayser-Italy, Biosensor and DAS. Photo-II is an automatic device developed to measure the chlorophyll fluorescence and to provide a living conditions for 24 different algae strains. Twelve different C. reinhardtii strains were analytically selected and two replications for each strain were brought to space, among them, some mutants modified at the level of enzymes involved in the biosynthesis of xanthophylls. We analysed the hourly changes and the daily light/dark trend in the maximum quantum yield of PSII photochemistry as well as some physiological parameters that characterize the post-flight effect on algae viability and photosynthetic performance. The ground control experiments were performed following the same protocol for the sample preparation and the temperature recorded during the pre-flight, flight and post-flight phases. The space flight results in comparison to the ground simulations are discussed.
Komatsu, Hirotake; Cook, Colin; Wang, Chia-Hao; Medrano, Leonard; Lin, Henry; Kandeel, Fouad; Tai, Yu-Chong; Mullen, Yoko
2017-01-01
Background Type 1 diabetes is an autoimmune disease that destroys insulin-producing beta cells in the pancreas. Pancreatic islet transplantation could be an effective treatment option for type 1 diabetes once several issues are resolved, including donor shortage, prevention of islet necrosis and loss in pre- and post-transplantation, and optimization of immunosuppression. This study seeks to determine the cause of necrotic loss of isolated islets to improve transplant efficiency. Methodology The oxygen tension inside isolated human islets of different sizes was simulated under varying oxygen environments using a computational in silico model. In vitro human islet viability was also assessed after culturing in different oxygen conditions. Correlation between simulation data and experimentally measured islet viability was examined. Using these in vitro viability data of human islets, the effect of islet diameter and oxygen tension of the culture environment on islet viability was also analyzed using a logistic regression model. Principal findings Computational simulation clearly revealed the oxygen gradient inside the islet structure. We found that oxygen tension in the islet core was greatly lower (hypoxic) than that on the islet surface due to the oxygen consumption by the cells. The hypoxic core was expanded in the larger islets or in lower oxygen cultures. These findings were consistent with results from in vitro islet viability assays that measured central necrosis in the islet core, indicating that hypoxia is one of the major causes of central necrosis. The logistic regression analysis revealed a negative effect of large islet and low oxygen culture on islet survival. Conclusions/Significance Hypoxic core conditions, induced by the oxygen gradient inside islets, contribute to the development of central necrosis of human isolated islets. Supplying sufficient oxygen during culture could be an effective and reasonable method to maintain isolated islets viable. PMID:28832685
Software Defined Radio Standard Architecture and its Application to NASA Space Missions
NASA Technical Reports Server (NTRS)
Andro, Monty; Reinhart, Richard C.
2006-01-01
A software defined radio (SDR) architecture used in space-based platforms proposes to standardize certain aspects of radio development such as interface definitions, functional control and execution, and application software and firmware development. NASA has charted a team to develop an open software defined radio hardware and software architecture to support NASA missions and determine the viability of an Agency-wide Standard. A draft concept of the proposed standard has been released and discussed among organizations in the SDR community. Appropriate leveraging of the JTRS SCA, OMG's SWRadio Architecture and other aspects are considered. A standard radio architecture offers potential value by employing common waveform software instantiation, operation, testing and software maintenance. While software defined radios offer greater flexibility, they also poses challenges to the radio development for the space environment in terms of size, mass and power consumption and available technology. An SDR architecture for space must recognize and address the constraints of space flight hardware, and systems along with flight heritage and culture. NASA is actively participating in the development of technology and standards related to software defined radios. As NASA considers a standard radio architecture for space communications, input and coordination from government agencies, the industry, academia, and standards bodies is key to a successful architecture. The unique aspects of space require thorough investigation of relevant terrestrial technologies properly adapted to space. The talk will describe NASA's current effort to investigate SDR applications to space missions and a brief overview of a candidate architecture under consideration for space based platforms.
Hydrogen Research for Spaceport and Space-Based Applications: Hydrogen Sensors and Systems. Part 2
NASA Technical Reports Server (NTRS)
Anderson, Tim; Balaban, Canan
2008-01-01
The activities presented are a broad based approach to advancing key hydrogen related technologies in areas such as fuel cells, hydrogen production, and distributed sensors for hydrogen-leak detection, laser instrumentation for hydrogen-leak detection, and cryogenic transport and storage. Presented are the results from research projects, education and outreach activities, system and trade studies. The work will aid in advancing the state-of-the-art for several critical technologies related to the implementation of a hydrogen infrastructure. Activities conducted are relevant to a number of propulsion and power systems for terrestrial, aeronautics and aerospace applications. Sensor systems research was focused on hydrogen leak detection and smart sensors with adaptive feedback control for fuel cells. The goal was to integrate multifunction smart sensors, low-power high-efficiency wireless circuits, energy harvesting devices, and power management circuits in one module. Activities were focused on testing and demonstrating sensors in a realistic environment while also bringing them closer to production and commercial viability for eventual use in the actual operating environment.
Zustiak, Silviya P.; Pubill, Stephanie; Ribeiro, Andreia; Leach, Jennie B.
2013-01-01
The central nervous system (CNS) has a low intrinsic potential for regeneration following injury and disease, yet neural stem/progenitor cell (NPC) transplants show promise to provide a dynamic therapeutic in this complex tissue environment. Moreover, biomaterial scaffolds may improve the success of NPC-based therapeutics by promoting cell viability and guiding cell response. We hypothesized that a hydrogel scaffold could provide a temporary neurogenic environment that supports cell survival during encapsulation, and degrades completely in a temporally controlled manner to allow progression of dynamic cellular processes such as neurite extension. We utilized PC12 cells as a model cell line with an inducible neuronal phenotype to define key properties of hydrolytically-degradable poly(ethylene glycol) hydrogel scaffolds that impact cell viability and differentiation following release from the degraded hydrogel. Adhesive peptide ligands (RGDS, IKVAV or YIGSR), were required to maintain cell viability during encapsulation; as compared to YIGSR, the RGDS and IKVAV ligands were associated with a higher percentage of PC12 cells that differentiated to the neuronal phenotype following release from the hydrogel. Moreover, among the hydrogel properties examined (e.g., ligand type, concentration), total polymer density within the hydrogel had the most prominent effect on cell viability, with densities above 15% w/v leading to decreased cell viability likely due to a higher shear modulus. Thus, by identifying key properties of degradable hydrogels that affect cell viability and differentiation following release from the hydrogel, we lay the foundation for application of this system towards future applications of the scaffold as a neural cell delivery vehicle. PMID:24474590
NASA Astrophysics Data System (ADS)
Lambreva, M.; Rea, G.; Antonacci, A.; Serafini, A.; Damasso, M.; Pastorelli, S.; Margonelli, A.; Johanningmeier, U.; Bertalan, I.; Pezzotti, G.; Giardi, M. T.
2008-09-01
Long-term space exploration, colonization or habitation requires biological life support systems capable to cope with the deleterious space environment. The use of oxygenic photosynthetic microrganisms is an intriguing possibility mainly for food, O2 and nutraceutical compounds production. The critical points of utilizing plants- or algae-based life support systems are the microgravity and the ionizing radiation, which can influence the performance of these organisms. The aim of the present study was to assess the effects of space environment on the photosynthetic activity of various microrganisms and to select space stresstolerant strains. Photosystem II D1 protein sitedirected and random mutants of the unicellular green alga Chlamydomonas reinhardtii [1] were used as a model system to test and select the amino acid substitutions capable to account for space stress tolerance. We focussed our studies also on the accumulation of the Photosystem II photoprotective carotenoids (the xantophylls violaxanthin, anteraxanthin and zeaxanthin), powerful antioxidants that epidemiological studies demonstrated to be human vision protectors. For this purpose some mutants modified at the level of enzymes involved in the biosynthesis of xanthophylls were included in the study [2]. To identify the consequences of the space environment on the photosynthetic apparatus the changes in the Photosystem II efficiency were monitored in real time during the ESA-Russian Foton- M3 mission in September 2007. For the space flight a high-tech, multicell fluorescence detector, Photo-II, was designed and built by the Centre for Advanced Research in Space Optics in collaboration with Kayser-Italy, Biosensor and DAS. Photo-II is an automatic device developed to measure the chlorophyll fluorescence and to provide a living conditions for several different algae strains (Fig.1). Twelve different C. reinhardti strains were analytically selected and two replications for each strain were brought to space. We analysed the hourly changes and the daily light/dark trend in the maximum quantum yield of PSII photochemistry, Fv/Fm (Fig.2). Some physiological parameters that characterize the post-flight effect on algae viability and photosynthetic performance were also determined. The dose and particle flux during Foton-M3 flight were monitored in real time by the active spectrum-dosimeter Liulin- Photo, mounted on the top of Photo-II fluorimeter (Fig.2). Liulin-Photo measurements provided information on the amount of the energy released on the samples and the quality of the incident ionizing radiation [3]. The space flight results in relationship with the ground control simulation are discussed.
Report of the Horizontal Launch Study
NASA Technical Reports Server (NTRS)
Wilhite, Alan W.; Bartolotta, Paul A.
2011-01-01
A study of horizontal launch concepts has been conducted. This study, jointly sponsored by the Defense Advanced Research Projects Agency (DARPA) and the National Aeronautics and Space Administration (NASA) was tasked to estimate the economic and technical viability of horizontal launch approaches. The study team identified the key parameters and critical technologies which determine mission viability and reported on the state of the art of critical technologies, along with objectives for technology development.
Space Station Furnace Facility. Volume 2: Summary of technical reports
NASA Technical Reports Server (NTRS)
1992-01-01
The Space Station Furnace Facility (SSFF) is a modular facility for materials research in the microgravity environment of the Space Station Freedom (SSF). The SSFF is designed for crystal growth and solidification research in the fields of electronic and photonic materials, metals and alloys, and glasses and ceramics, and will allow for experimental determination of the role of gravitational forces in the solidification process. The facility will provide a capability for basic scientific research and will evaluate the commercial viability of low-gravity processing of selected technologically important materials. In order to accommodate the furnace modules with the resources required to operate, SSFF developed a design that meets the needs of the wide range of furnaces that are planned for the SSFF. The system design is divided into subsystems which provide the functions of interfacing to the SSF services, conditioning and control for furnace module use, providing the controlled services to the furnace modules, and interfacing to and acquiring data from the furnace modules. The subsystems, described in detail, are as follows: Power Conditioning and Distribution Subsystem; Data Management Subsystem; Software; Gas Distribution Subsystem; Thermal Control Subsystem; and Mechanical Structures Subsystem.
NASA Astrophysics Data System (ADS)
Guidetti, Roberto; Rizzo, Angela Maria; Altiero, Tiziana; Rebecchi, Lorena
2012-12-01
Space missions of long duration required a series of preliminary experiments on living organisms, validated by a substantial phase of ground simulation experiments, in the field of micro- and inter-mediate gravities, radiobiology, and, for planetary explorations, related to risks deriving from regolith and dust exposure. In this review, we present the tardigrades, whose characteristics that recommend them as an emerging model for space biology. They are microscopic animals but are characterized by a complex structural organization similar to that of larger animals; they can be cultured in lab in small facilities, having small size; they are able to produce clonal lineages by means of parthenogenesis; they can completely suspend their metabolism when entering in dormant states (anhydrobiosis induced by dehydration and cryobiosis induced by freezing); desiccated anhydrobiotic tardigrades are able to withstand chemical and physical extremes, but a large tolerance is showed also by active animals; they can be stored in dry state for many years without loss of viability. Tardigrades have already been exposed to space stressors on Low Earth Orbit several times. The relevance of ground-based and space studies on tardigrades rests on the presumption that results could suggest strategies to protect organisms, also humans, when exposed to the space and lunar environments.
NASA Astrophysics Data System (ADS)
Norsk, P.; Simonsen, L. C.; Alwood, J.
2018-02-01
Investigations of mammalian cell cultures as well as organs-on-chips will be done from the Deep Space Gateway by telemetry. Cells will be monitored regularly for metabolic activity, growth, and viability, and results compared to ground control data.
An Architectural Concept for ISS Contingency Resupply
NASA Astrophysics Data System (ADS)
Gurevich, G.; Chinnery, A. E.
2002-01-01
The International Space Station (ISS) is a unique Earth orbiting laboratory drawing upon the expertise of 16 nations: the US, Canada, Japan, Russia, 11 member nations of the European Space Agency, and Brazil to promote advances in science and technology. This capability is extremely valuable, but comes at very high cost. Under contract to the Marshall Space Flight Center, Microcosm identified an architectural concept to reduce the overhead cost burden associated with ISS operations. The concept focuses on the development of a responsive contingency resupply capability. This concept makes use of non-traditional station resources, minimizes the impact to the station infrastructure, supports an evolution of operations from supervised to full autonomy, and is scaleable from a small cargo delivery to a larger capability. The concept addresses the three mission phases -- launch, phasing and transfer to the Station orbit, and proximity operations. The elements of the architecture include the following: Both the launch vehicle design and launch operations are simple, robust, and fully support a launch-on-demand environment. The launch vehicle third stage is equipped to maneuver the cargo cannister to station altitude, where it awaits rendezvous from the small, yet fully capable multi-mission Orbit Transfer Vehicle (OTV). The OTV performs the close in orbit transfer and proximity operations. Due to the criticality of these operations and the safety required, the OTV is two failure tolerant. The concept allows for the cargo cannisters to be unloaded and reloaded with waste at the convenience of the ISS crew. Safe return of cargo is also addressed. This paper describes the concept in more detail. The various elements of the architecture are defined, the phases of re-supply operations are explained, and concepts for improving the viability of the service are suggested. Perceived obstacles for implementing the service are discussed. System costs are discussed as well as alternative uses of the architecture to enhance commercial viability.
Algae viability over time in a ballast water sample
NASA Astrophysics Data System (ADS)
Gollasch, Stephan; David, Matej
2018-03-01
The biology of vessels' ballast water needs to be analysed for several reasons, one of these being performance tests of ballast water management systems. This analysis includes a viability assessment of phytoplankton. To overcome logistical problems to get algae sample processing gear on board of a vessel to document algae viability, samples may be transported to land-based laboratories. Concerns were raised how the storage conditions of the sample may impact algae viability over time and what the most appropriate storage conditions were. Here we answer these questions with a long-term algae viability study with daily sample analysis using Pulse-Amplitude Modulated (PAM) fluorometry. The sample was analysed over 79 days. We tested different storage conditions: fridge and room temperature with and without light. It seems that during the first two weeks of the experiment the viability remains almost unchanged with a slight downwards trend. In the continuing period, before the sample was split, a slightly stronger downwards viability trend was observed, which occurred at a similar rate towards the end of the experiment. After the sample was split, the strongest viability reduction was measured for the sample stored without light at room temperature. We concluded that the storage conditions, especially regarding temperature and light exposure, have a stronger impact on algae viability compared to the storage duration and that inappropriate storage conditions reduce algal viability. A sample storage time of up to two weeks in a dark and cool environment has little influence on the organism viability. This indicates that a two week time duration between sample taking on board a vessel and the viability measurement in a land-based laboratory may not be very critical.
An adaptive paradigm for human space settlement
NASA Astrophysics Data System (ADS)
Smith, Cameron M.
2016-02-01
Because permanent space settlement will be multigenerational it will have to be viable on ecological timescales so far unfamiliar to those planning space exploration. Long-term viability will require evolutionary and adaptive planning. Adaptations in the natural world provide many lessons for such planning, but implementing these lessons will require a new, evolutionary paradigm for envisioning and carrying out Earth-independent space settlement. I describe some of these adaptive lessons and propose some cognitive shifts required to implement them in a genuinely evolutionary approach to human space settlement.
NASA Technical Reports Server (NTRS)
1981-01-01
Space systems concepts were identified and defined and evaluated as to their performance, risks, and technical viability in order to select the most attractive approach for disposal of high level nuclear wastes in space. Major study areas discussed include: (1) mission and operations analysis; (2) waste payload systems; (3) flight support system; (4) launch site systems; (5) launch vehicle systems; (6) orbit transfer system; (7) space disposal destinations; and (8) systems integration and evaluation.
40 CFR 745.327 - State or Indian Tribal lead-based paint compliance and enforcement programs.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false State or Indian Tribal lead-based paint compliance and enforcement programs. 745.327 Section 745.327 Protection of Environment... or viability of the business, enforcement history, risks to human health or the environment posed by...
40 CFR 745.327 - State or Indian Tribal lead-based paint compliance and enforcement programs.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false State or Indian Tribal lead-based paint compliance and enforcement programs. 745.327 Section 745.327 Protection of Environment... or viability of the business, enforcement history, risks to human health or the environment posed by...
40 CFR 745.327 - State or Indian Tribal lead-based paint compliance and enforcement programs.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false State or Indian Tribal lead-based paint compliance and enforcement programs. 745.327 Section 745.327 Protection of Environment... or viability of the business, enforcement history, risks to human health or the environment posed by...
Structural concepts for very large (400-meter-diameter) solar concentrators
NASA Technical Reports Server (NTRS)
Mikulas, Martin M., Jr.; Hedgepeth, John M.
1989-01-01
A general discussion of various types of large space structures is presented. A brief overview of the history of space structures is presented to provide insight into the current state-of-the art. Finally, the results of a structural study to assess the viability of very large solar concentrators are presented. These results include weight, stiffness, part count, and in-space construction time.
Project environmental microbiology as related to planetary quarantine
NASA Technical Reports Server (NTRS)
Pflug, I. J.
1973-01-01
The viability and dry heat resistance of indigenous microflora associated with small soil particles were investigated. An aluminum boat TDT CUP-TSA solid media system was developed for the analyses; a complete description of the technique is included. Data cited here were obtained using analyses of individual soil particles. Detailed particle viability profiles for dry heat effects were determined for Kennedy Space Center soil. At 110 C at least some particles retained viability through a heating period of between 8 and 16 hours. Single particles heated at 125 C for 80 minutes or longer did not show evidence of viability under test conditions. Preliminary aerobic, mesophilic plate counts of the 74-88 micron m soil fraction yielded mean values of 16.2 organisms per dark particle and 2.6 organisms per light particle. Heat treatment of particles in a dry atmosphere did not appear to increase the rate of inactivation for in situ soil particle microflora.
Postural Responses Following Space Flight and Ground Based Analogs
NASA Technical Reports Server (NTRS)
Kofman, Igor S.; Reschke, Millard F.; Cerisano, Jody M.; Fisher, Elizabeth A.; Tomilovskaya, Elena V.; Kozlovskaya, Inessa B.; Bloomberg, Jacob B.
2013-01-01
With the transition from the Shuttle program to the International Space Station (ISS), the opportunity to fly sensorimotor experiments in a weightless environment has become increasingly more difficult to obtain. As a result, more investigations have turned to ground-based analogs as a way of evaluating an experiment's viability. The two primary analogs available to most investigators are 6deg head down bed rest (HDBR) and dry immersion (DI). For the time being, HDBR investigations have been associated with studies conducted in the United States while the Russians and several other European Union states have concentrated their efforts on using DI as the space flight analog of choice. While either model may be viable for cardiovascular, bone and other system changes, vestibular and sensorimotor investigators have retained serious reservations of either analog's potential to serve as a replacement for a true weightless environment. These reservations have merit, but it is worthwhile to consider that not all changes associated with sensorimotor function during space flight are the result of top-down modifications, but may also be due to the lack, or change, of appropriate support surfaces applying force to the bottom of the feet. To this end we have compared quiet stance postural responses between short duration Space Shuttle flights, long duration ISS flights and HDBR of varying duration. Using these three platforms, representing different modifications of support we investigated postural ataxia using a quiet stance model. Quiet stance was obtained by asking the subjects to stand upright on a force plate, eyes open, arms at the side of the body for three min. From the force plate we obtained average sway velocity in two axes as well as length of line (stabilogram). These parameters were then related to EMG activity recorded from the medial gastrocnemius and lateral tibialis. It is significant to note that postural ataxia measured as quiet stance shows analogous changes between HDBR and space flight. Primary differences across short duration, long duration space flight and HDBR are related to the length of exposure associated with both space flight and HDBR.
NASA Astrophysics Data System (ADS)
Zhang, Ye; Wu, Honglu
2012-07-01
RESPONSE OF HUMAN PROSTATE CANCER CELLS TO MITOXANTRONE TREATMENT IN SIMULATED MICROGRAVITY ENVIRONMENT Ye Zhang1,2, Christopher Edwards3, and Honglu Wu1 1 NASA-Johnson Space Center, Houston, TX 2 Wyle Integrated Science and Engineering Group, Houston, TX 3 Oregon State University, Corvallis, OR This study explores the changes in growth of human prostate cancer cells (LNCaP) and their response to the treatment of an antineoplastic agent, mitoxantrone, under the simulated microgravity condition. In comparison to static 1g, microgravity and simulated microgravity have been shown to alter global gene expression patterns and protein levels in various cultured cell models or animals. However, very little is known about the effect of altered gravity on the responses of cells to the treatment of drugs, especially chemotherapy drugs. To test the hypothesis that zero gravity would result in altered regulations of cells in response to antineoplastic agents, we cultured LNCaP cells in either a High Aspect Ratio Vessel (HARV) bioreactor at the rotating condition to model microgravity in space or in the static condition as control, and treated the cells with mitoxantrone. Cell growth, as well as expressions of oxidative stress related genes, were analyzed after the drug treatment. Compared to static 1g controls, the cells cultured in the simulated microgravity environment did not present significant differences in cell viability, growth rate, or cell cycle distribution. However, after mitoxantrone treatment, a significant proportion of bioreactor cultured cells became apoptotic or was arrested in G2. Several oxidative stress related genes also showed a higher expression level post mitoxantrone treatment. Our results indicate that simulated microgravity may alter the response of LNCaP cells to mitoxantrone treatment. Understanding the mechanisms by which cells respond to drugs differently in an altered gravity environment will be useful for the improvement of cancer treatment on the ground. This study explores the changes in growth of human prostate cancer cells (LNCaP) and their response to the treatment of an antineoplastic agent, mitoxantrone, under the simulated microgravity condition. In comparison to static 1g, microgravity and simulated microgravity have been shown to alter global gene expression patterns and protein levels in various cultured cell models or animals. However, very little is known about the effect of altered gravity on the responses of cells to the treatment of drugs, especially chemotherapy drugs. To test the hypothesis that zero gravity would result in altered regulations of cells in response to antineoplastic agents, we cultured LNCaP cells in either a High Aspect Ratio Vessel (HARV) bioreactor at the rotating condition to model microgravity in space or in the static condition as control, and treated the cells with mitoxantrone. Cell growth, as well as expressions of oxidative stress related genes, were analyzed after the drug treatment. Compared to static 1g controls, the cells cultured in the simulated microgravity environment did not present significant differences in cell viability, growth rate, or cell cycle distribution. However, after mitoxantrone treatment, a significant proportion of bioreactor cultured cells became apoptotic or was arrested in G2. Several oxidative stress related genes also showed a higher expression level post mitoxantrone treatment. Our results indicate that simulated microgravity may alter the response of LNCaP cells to mitoxantrone treatment. Understanding the mechanisms by which cells respond to drugs differently in an altered gravity environment will be useful for the improvement of cancer treatment on the ground.
Propulsion System Modeling and Simulation
NASA Technical Reports Server (NTRS)
Tai, Jimmy C. M.; McClure, Erin K.; Mavris, Dimitri N.; Burg, Cecile
2002-01-01
The Aerospace Systems Design Laboratory at the School of Aerospace Engineering in Georgia Institute of Technology has developed a core competency that enables propulsion technology managers to make technology investment decisions substantiated by propulsion and airframe technology system studies. This method assists the designer/manager in selecting appropriate technology concepts while accounting for the presence of risk and uncertainty as well as interactions between disciplines. This capability is incorporated into a single design simulation system that is described in this paper. This propulsion system design environment is created with a commercially available software called iSIGHT, which is a generic computational framework, and with analysis programs for engine cycle, engine flowpath, mission, and economic analyses. iSIGHT is used to integrate these analysis tools within a single computer platform and facilitate information transfer amongst the various codes. The resulting modeling and simulation (M&S) environment in conjunction with the response surface method provides the designer/decision-maker an analytical means to examine the entire design space from either a subsystem and/or system perspective. The results of this paper will enable managers to analytically play what-if games to gain insight in to the benefits (and/or degradation) of changing engine cycle design parameters. Furthermore, the propulsion design space will be explored probabilistically to show the feasibility and viability of the propulsion system integrated with a vehicle.
NASA Astrophysics Data System (ADS)
Defanti, Thomas A.; Acevedo, Daniel; Ainsworth, Richard A.; Brown, Maxine D.; Cutchin, Steven; Dawe, Gregory; Doerr, Kai-Uwe; Johnson, Andrew; Knox, Chris; Kooima, Robert; Kuester, Falko; Leigh, Jason; Long, Lance; Otto, Peter; Petrovic, Vid; Ponto, Kevin; Prudhomme, Andrew; Rao, Ramesh; Renambot, Luc; Sandin, Daniel J.; Schulze, Jurgen P.; Smarr, Larry; Srinivasan, Madhu; Weber, Philip; Wickham, Gregory
2011-03-01
The CAVE, a walk-in virtual reality environment typically consisting of 4-6 3 m-by-3 m sides of a room made of rear-projected screens, was first conceived and built in 1991. In the nearly two decades since its conception, the supporting technology has improved so that current CAVEs are much brighter, at much higher resolution, and have dramatically improved graphics performance. However, rear-projection-based CAVEs typically must be housed in a 10 m-by-10 m-by-10 m room (allowing space behind the screen walls for the projectors), which limits their deployment to large spaces. The CAVE of the future will be made of tessellated panel displays, eliminating the projection distance, but the implementation of such displays is challenging. Early multi-tile, panel-based, virtual-reality displays have been designed, prototyped, and built for the King Abdullah University of Science and Technology (KAUST) in Saudi Arabia by researchers at the University of California, San Diego, and the University of Illinois at Chicago. New means of image generation and control are considered key contributions to the future viability of the CAVE as a virtual-reality device.
European development experience on energy storage wheels for space
NASA Technical Reports Server (NTRS)
Robinson, A. A.
1984-01-01
High speed fiber composite rotors suspended by contactless magnetic bearings were produced. European industry has acquired expertise in the study and fabrication of energy storage wheels and magnetic suspension systems for space. Sufficient energy density performance for space viability is being achieved on fully representative hardware. Stress cycle testing to demonstrate life capability and the development of burst containment structures remains to be done and is the next logical step.
Space-to-Space Power Beaming Enabling High Performance Rapid Geocentric Orbit Transfer
NASA Technical Reports Server (NTRS)
Dankanich, John W.; Vassallo, Corinne; Tadge, Megan
2015-01-01
The use of electric propulsion is more prevalent than ever, with industry pursuing all electric orbit transfers. Electric propulsion provides high mass utilization through efficient propellant transfer. However, the transfer times become detrimental as the delta V transitions from near-impulsive to low-thrust. Increasing power and therefore thrust has diminishing returns as the increasing mass of the power system limits the potential acceleration of the spacecraft. By using space-to-space power beaming, the power system can be decoupled from the spacecraft and allow significantly higher spacecraft alpha (W/kg) and therefore enable significantly higher accelerations while maintaining high performance. This project assesses the efficacy of space-to-space power beaming to enable rapid orbit transfer while maintaining high mass utilization. Concept assessment requires integrated techniques for low-thrust orbit transfer steering laws, efficient large-scale rectenna systems, and satellite constellation configuration optimization. This project includes the development of an integrated tool with implementation of IPOPT, Q-Law, and power-beaming models. The results highlight the viability of the concept, limits and paths to infusion, and comparison to state-of-the-art capabilities. The results indicate the viability of power beaming for what may be the only approach for achieving the desired transit times with high specific impulse.
Simulation experiments of the effect of space environment on bacteriophage and DNA thin films
NASA Astrophysics Data System (ADS)
Fekete, A.; Rontó, G.; Hegedûs, M.; Módos, K.; Bérces, A.; Kovács, G.; Lammer, H.
PUR experiment (phage and uracil response) is part of the ROSE consortium selected for the first mission on the ISS and its main goal to examine and quantify the effect of specific space parameters such as VUV, UV radiation, dehydration effects, non-oxidative environments etc. related to space vacuum conditions on nucleic acid models. An improved method for the preparation of DNA thin films (NaDNA and LiDNA) was elaborated and the homogeneity of the films were controlled by spectroscopy and phase contrast microscopy. The complete recovery of the amount of DNA from the thin film was found after dissolution. Electrophoresis of the dissolved DNA indicated an intact DNA structure, while successful PCR amplification an intact function of the molecule, so they are likely candidates for the flight on the EXPOSE facility. A new method for preparation of bacteriophage T7 thin layer has been developed, the quality was controlled by spectroscopy and microscopy. After dissolution almost 90% of the viability of the phage particles remained, and the intactness of DNA structure was checked by PCR. DNA and phage thin films were produced in sandwich form as well, and stored in an atmosphere containing a mixture of N2 and H2 , by quality control of the samples no change has been found. They were tested under simulated space conditions at IWF space simulation facility in Graz. DNA thin films and bacteriophage T7 thin layers at different r.h. values have been irradiated in sandwich form in normal atmospheric conditions by using a low pressure Mercury lamp and high power (300W) Deuterium lamp containing short wavelength ( < 240 nm) UVC components simulating theextraterrestrial solar radiation. Characteristic change in the absorption spectrum and the decrease of the amount of PCR products have been detected indicating the photodamage of isolated and intraphage DNA.
Impact of ZnO and Ag Nanoparticles on Bacterial Growth and Viability
NASA Astrophysics Data System (ADS)
Olson, M. S.; Digiovanni, K. A.
2007-12-01
Hundreds of consumer products containing nanomaterials are currently available in the U.S., including computers, clothing, cosmetics, sports equipment, medical devices and product packaging. Metallic nanoparticles can be embedded in or coated on product surfaces to provide antimicrobial, deodorizing, and stain- resistant properties. Although these products have the potential to provide significant benefit to the user, the impact of these products on the environment remains largely unknown. The purpose of this project is to study the effect of metallic nanoparticles released to the environment on bacterial growth and viability. Inhibition of bacterial growth was tested by adding doses of suspended ZnO and Ag nanoparticles into luria broth prior to inoculation of Escherichia coli cells. ZnO particles (approximately 40 nm) were obtained commercially and Ag particles (12-14 nm) were fabricated by reduction of silver nitrate with sodium borohydride. Toxicity assays were performed to test the viability of E. coli cells exposed to both ZnO and Ag nanoparticles using the LIVE/DEAD BacLight bacterial viability kit (Invitrogen). Live cells stain green whereas cells with compromised membranes that are considered dead or dying stain red. Cells were first grown, stained, and exposed to varying doses of metallic nanoparticles, and then bacterial viability was measured hourly using fluorescence microscopy. Results indicate that both ZnO and Ag nanoparticles inhibit the growth of E. coli in liquid media. Preliminary results from toxicity assays confirm the toxic effect of ZnO and Ag nanoparticles on active cell cultures. Calculated death rates resulting from analyses of toxicity studies will be presented.
The Influence of Power Limitations on Closed Environment Life Support System Applications
NASA Technical Reports Server (NTRS)
Flynn, Michael; Kliss, Mark (Technical Monitor)
1997-01-01
The future of manned space exploration will be determined through a process which balances the innate need of humanity to explore its surroundings and the costs associated with accomplishing these goals. For NASA, this balance is derived from economics and budgetary constraints that hold it accountable for the expenditure of public funds. These budgetary realities demand a reduction in cost and expenditures of exploration and research activities. For missions venturing out to the edge of habitability, the development of cost effective life support approaches will have a significant influence on mission viability. Over the past several years, a variety of mission scenarios for potential Lunar and Mars missions have been developed. The most promising of these scenarios attempt to provide basic mission requirements at a minimum cost. As a result, these scenarios are extremely power limited. For Closed Environment Life Support System (CELSS) applications, these realities impose both limitations and direction to future research. This paper presents a summary of these mission scenarios and an evaluation of the impact which these power limitations will have on CELSS system design.
[Bone marrow mononuclear cells from murine tibia after the space flight on biosatellite "Bion-M1"].
Andreeva, E R; Goncharova, E A; Gornostaeva, A N; Grigor'eva, O V; Buravkova, L B
2014-01-01
Cellularity, viability and immunophenotype of mononuclear cells derived from the tibial marrow of C57bL/6 mice were measured after the 30-day "Bion-M1" space flight and subsequent 7-day recovery. Cell number in the flight group was significantly less than in the group of vivarium control. There was no difference in the parameter between the flight and control groups after the recovery. Viability of mononuclear cells was more than 95% in all examined groups. Flow cytometric analysis failed to show differences in bone marrow cell immunophenotype (CD45, CD34, CD90.1 (Thy1); however, the flight animals had more large-sized CD45+ mononuclears than the control groups of mice. These results indicate that spaceflight factors did not have significant damaging effects on the number or immunophenotype of murine bone marrow mononuclears. These observations are consistent with the previously made assumption of a moderate and reversible stress reaction of mammals to space flight.
NASA Astrophysics Data System (ADS)
Yoon, Minchul; Choi, Jong-il; Yamashita, Masamichi
2013-05-01
The composting system is the most efficient method for processing organic waste in space; however, the composting activity of microorganisms can be altered by cosmic rays. In this study, the effect of ionizing irradiation on composting bacteria was investigated. Sequence analyses of amplified 16S rRNA, 18S rRNA, and amoA genes were used to identify hyperthermal composting microorganisms. The viability of microorganisms in compost soil after gamma irradiation was directly determined using LIVE/DEAD BacLight viability kit. The dominant bacterial genera were Weissella cibaria and Leuconostoc sp., and the fungal genera were Metschnikowia bicuspidata and Pichia guilliermondii. Gamma irradiation up to a dose of 10 kGy did not significantly alter the microbial population. Furthermore, amylase and cellulase activities were maintained after high-dose gamma irradiation. Our results show that hyperthermal microorganisms can be used to recycle agricultural and fermented material in space stations and other human-inhabiting facilities on the Moon, Mars, and other planets.
Standards for space automation and robotics
NASA Technical Reports Server (NTRS)
Kader, Jac B.; Loftin, R. B.
1992-01-01
The AIAA's Committee on Standards for Space Automation and Robotics (COS/SAR) is charged with the identification of key functions and critical technologies applicable to multiple missions that reflect fundamental consideration of environmental factors. COS/SAR's standards/practices/guidelines implementation methods will be based on reliability, performance, and operations, as well as economic viability and life-cycle costs, simplicity, and modularity.
Multiple Restart Testing of a Stainless Steel Sodium Heat Pipe Module
NASA Astrophysics Data System (ADS)
Martin, James; Mireles, Omar; Reid, Robert
2005-02-01
A heat pipe cooled reactor is one of several candidate reactor concepts being considered for space power and propulsion systems to support future space exploration activities. Long life heat pipe modules, with concepts verified through a combination of theoretical analysis and experimental evaluations, would be necessary to establish the viability of this option. A number of stainless steel/sodium heat pipe modules have been designed and fabricated to support experimental testing of a Safe Affordable Fission Engine (SAFE) project, a 100-kWt core design pursued jointly by the Marshall Space Flight Center and the Los Alamos National Laboratory. One of the SAFE heat pipe modules was successfully subjected to over 200 restarts, examining the behavior of multiple passive freeze/thaw operations. Typical operation included a 1-hour startup to an average evaporator temperature of 1000 K followed by a 15-minute hold at temperature. Nominal maximum input power to the evaporator (measured at the power supply) during the hold period was 1.9 kW, with approximately 1.6 kW calculated as the axial power transfer to the condenser (the 300W difference was lost to environment at the evaporator surface). Between heating cycles the module was cooled to less than 325 K, returning the sodium to a frozen state in preparation for the next startup cycle.
Gomoiu, Ioana; Chatzitheodoridis, Elias; Vadrucci, Sonia; Walther, Isabelle
2013-01-01
The objectives of this 14 days experiment were to investigate the effect of spaceflight on the growth of Ulocladium chartarum, to study the viability of the aerial and submerged mycelium and to put in evidence changes at the cellular level. U. chartarum was chosen for the spaceflight experiment because it is well known to be involved in biodeterioration of organic and inorganic substrates covered with organic deposits and expected to be a possible contaminant in Spaceships. Colonies grown on the International Space Station (ISS) and on Earth were analysed post-flight. This study clearly indicates that U. chartarum is able to grow under spaceflight conditions developing, as a response, a complex colony morphotype never mentioned previously. We observed that spaceflight reduced the rate of growth of aerial mycelium, but stimulated the growth of submerged mycelium and of new microcolonies. In Spaceships and Space Stations U. chartarum and other fungal species could find a favourable environment to grow invasively unnoticed in the depth of surfaces containing very small amount of substrate, posing a risk factor for biodegradation of structural components, as well as a direct threat for crew health. The colony growth cycle of U. chartarum provides a useful eukaryotic system for the study of fungal growth under spaceflight conditions. PMID:23637980
NASA Technical Reports Server (NTRS)
Culbert, Chris
1990-01-01
Although they have reached a point of commercial viability, expert systems were originally developed in artificial intelligence (AI) research environments. Many of the available tools still work best in such environments. These environments typically utilize special hardware such as LISP machines and relatively unfamiliar languages such as LISP or Prolog. Space Station applications will require deep integration of expert system technology with applications developed in conventional languages, specifically Ada. The ability to apply automation to Space Station functions could be greatly enhanced by widespread availability of state-of-the-art expert system tools based on Ada. Although there have been some efforts to examine the use of Ada for AI applications, there are few, if any, existing products which provide state-of-the-art AI capabilities in an Ada tool. The goal of the ART/Ada Design Project is to conduct research into the implementation in Ada of state-of-the-art hybrid expert systems building tools (ESBT's). This project takes the following approach: using the existing design of the ART-IM ESBT as a starting point, analyze the impact of the Ada language and Ada development methodologies on that design; redesign the system in Ada; and analyze its performance. The research project will attempt to achieve a comprehensive understanding of the potential for embedding expert systems in Ada systems for eventual application in future Space Station Freedom projects. During Phase 1 of the project, initial requirements analysis, design, and implementation of the kernel subset of ART-IM functionality was completed. During Phase 2, the effort has been focused on the implementation and performance analysis of several versions with increasing functionality. Since production quality ART/Ada tools will not be available for a considerable time, and additional subtask of this project will be the completion of an Ada version of the CLIPS expert system shell developed by NASA. This tool will provide full syntactic compatibility with any eventual products of the ART/Ada design while allowing SSFP developers early access to this technology.
Geurtzen, Rosa; Hogeveen, Marije; Rajani, Anand K; Chitkara, Ritu; Antonius, Timothy; van Heijst, Arno; Draaisma, Jos; Halamek, Louis P
2014-06-01
Prenatal counseling at the threshold of viability is a challenging yet critically important activity, and care guidelines differ across cultures. Studying how this task is performed in the actual clinical environment is extremely difficult. In this pilot study, we used simulation as a methodology with 2 aims as follows: first, to explore the use of simulation incorporating a standardized pregnant patient as an investigative methodology and, second, to determine similarities and differences in content and style of prenatal counseling between American and Dutch neonatologists. We compared counseling practice between 11 American and 11 Dutch neonatologists, using a simulation-based investigative methodology. All subjects performed prenatal counseling with a simulated pregnant patient carrying a fetus at the limits of viability. The following elements of scenario design were standardized across all scenarios: layout of the physical environment, details of the maternal and fetal histories, questions and responses of the standardized pregnant patient, and the time allowed for consultation. American subjects typically presented several treatment options without bias, whereas Dutch subjects were more likely to explicitly advise a specific course of treatment (emphasis on partial life support). American subjects offered comfort care more frequently than the Dutch subjects and also discussed options for maximal life support more often than their Dutch colleagues. Simulation is a useful research methodology for studying activities difficult to assess in the actual clinical environment such as prenatal counseling at the limits of viability. Dutch subjects were more directive in their approach than their American counterparts, offering fewer options for care and advocating for less invasive interventions. American subjects were more likely to offer a wider range of therapeutic options without providing a recommendation for any specific option.
Emerging national space launch programs: Economics and safeguards
NASA Astrophysics Data System (ADS)
Chow, Brian G.
Most ballistic missile nonproliferation studies have focused on trends in the numbers and performance of missiles and the resulting security threats. This report concentrates on the economic viability of emerging national space launch programs and the prospects for imposing effective safeguards against the use of space launch technology for military missiles. For the convenience of discussion in this report, a reference to ballistic missiles hereafter means surface-to-surface guided ballistic missiles only. Space launch vehicles (SLV's) are surface-to-space ballistic missiles, and they will be referred to explicitly as 'space launch vehicles' or 'space launchers'. Surface-to-surface unguided ballistic missiles will be referred to as 'rockets.'
Mauro, Maria A; Dellarosa, Nicolò; Tylewicz, Urszula; Tappi, Silvia; Laghi, Luca; Rocculi, Pietro; Rosa, Marco Dalla
2016-03-15
The effects of the addition of calcium lactate and ascorbic acid to sucrose osmotic solutions on cell viability and microstructure of apple tissue were studied. In addition, water distribution and mobility modification of the different cellular compartments were observed. Fluorescence microscopy, light microscopy and time domain nuclear magnetic resonance (TD-NMR) were respectively used to evaluate cell viability and microstructural changes during osmotic dehydration. Tissues treated in a sucrose-calcium lactate-ascorbic acid solution did not show viability. Calcium lactate had some effects on cell walls and membranes. Sucrose solution visibly preserved the protoplast viability and slightly influenced the water distribution within the apple tissue, as highlighted by TD-NMR, which showed higher proton intensity in the vacuoles and lower intensity in cytoplasm-free spaces compared to other treatments. The presence of ascorbic acid enhanced calcium impregnation, which was associated with permeability changes of the cellular wall and membranes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Three-Dimensional Cell Printing of Large-Volume Tissues: Application to Ear Regeneration.
Lee, Jung-Seob; Kim, Byoung Soo; Seo, Donghwan; Park, Jeong Hun; Cho, Dong-Woo
2017-03-01
The three-dimensional (3D) printing of large-volume cells, printed in a clinically relevant size, is one of the most important challenges in the field of tissue engineering. However, few studies have reported the fabrication of large-volume cell-printed constructs (LCCs). To create LCCs, appropriate fabrication conditions should be established: Factors involved include fabrication time, residence time, and temperature control of the cell-laden hydrogel in the syringe to ensure high cell viability and functionality. The prolonged time required for 3D printing of LCCs can reduce cell viability and result in insufficient functionality of the construct, because the cells are exposed to a harsh environment during the printing process. In this regard, we present an advanced 3D cell-printing system composed of a clean air workstation, a humidifier, and a Peltier system, which provides a suitable printing environment for the production of LCCs with high cell viability. We confirmed that the advanced 3D cell-printing system was capable of providing enhanced printability of hydrogels and fabricating an ear-shaped LCC with high cell viability. In vivo results for the ear-shaped LCC also showed that printed chondrocytes proliferated sufficiently and differentiated into cartilage tissue. Thus, we conclude that the advanced 3D cell-printing system is a versatile tool to create cell-printed constructs for the generation of large-volume tissues.
Comparative studies of cellular viability levels on 2D and 3D in vitro culture matrices.
Gargotti, M; Lopez-Gonzalez, U; Byrne, H J; Casey, A
2018-02-01
In this study, the cellular viability and function of immortalized human cervical and dermal cells are monitored and compared in conventional 2D and two commercial 3D membranes, Collagen and Geltrex, of varying working concentration and volume. Viability was monitored with the aid of the Alamar Blue assay, cellular morphology was monitored with confocal microscopy, and cell cycle studies and cell death mechanism studies were performed with flow cytometry. The viability studies showed apparent differences between the 2D and 3D culture systems, the differences attributed in part to the physical transition from 2D to 3D environment causing alterations to effective resazurin concentration, uptake and conversion rates, which was dependent on exposure time, but also due to the effect of the membrane itself on cellular function. These effects were verified by flow cytometry, in which no significant differences in viable cell numbers between 2D and 3D systems were observed after 24 h culture. The results showed the observed effect was different after shorter exposure periods, was also dependent on working concentration of the 3D system and could be mediated by altering the culture vessel size. Cell cycle analysis revealed cellular function could be altered by growth on the 3D substrates and the alterations were noted to be dependent on 3D membrane concentration. The use of 3D culture matrices has been widely interpreted to result in "improved viability levels" or "reduced" toxicity or cellular "resistance" compared to cells cultured on traditional 2D systems. The results of this study show that cellular health and viability levels are not altered by culture in 3D environments, but their normal cycle can be altered as indicated in the cell cycle studies performed and such variations must be accounted for in studies employing 3D membranes for in vitro cellular screening.
Preparation of guinea pig macrophage for electrophoretic experiments in space
NASA Technical Reports Server (NTRS)
1979-01-01
Methods of storage and cultivation of macrophage cells in preparation for space experiments were investigated. Results show that freezing and thawing immediately after extraction did not cause any change in viability or electrophoretic mobility of the cells. A prolonged storage at -80 C did cause cell damage as indicated by a 95% reduction in variable cells. Cell damage was decreased when Glycerol or Dimethyl Sulfoxide (DMSO) was added as a cryogenic protective agent. A 100% viability was observed in cultivation experiments after two weeks due to the additional serum. Results from gamma-glutamyl transpeptidase study showed a zero activity rate. It is suggested that a flat stationary field be used for the collection and use of macrophage. It was found that a 24-hour delay in obtaining macrophage cells helps to maintain a pure culture.
Pietsch, Jessica; Gass, Samuel; Nebuloni, Stefano; Echegoyen, David; Riwaldt, Stefan; Baake, Christin; Bauer, Johann; Corydon, Thomas J; Egli, Marcel; Infanger, Manfred; Grimm, Daniela
2017-04-01
Human endothelial cells (ECs) were sent to the International Space Station (ISS) to determine the impact of microgravity on the formation of three-dimensional structures. For this project, an automatic experiment unit (EU) was designed allowing cell culture in space. In order to enable a safe cell culture, cell nourishment and fixation after a pre-programmed timeframe, the materials used for construction of the EUs were tested in regard to their biocompatibility. These tests revealed a high biocompatibility for all parts of the EUs, which were in contact with the cells or the medium used. Most importantly, we found polyether ether ketones for surrounding the incubation chamber, which kept cellular viability above 80% and allowed the cells to adhere as long as they were exposed to normal gravity. After assembling the EU the ECs were cultured therein, where they showed good cell viability at least for 14 days. In addition, the functionality of the automatic medium exchange, and fixation procedures were confirmed. Two days before launch, the ECs were cultured in the EUs, which were afterwards mounted on the SpaceX CRS-8 rocket. 5 and 12 days after launch the cells were fixed. Subsequent analyses revealed a scaffold-free formation of spheroids in space. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dual Liquid Flyback Booster for the Space Shuttle
NASA Technical Reports Server (NTRS)
Blum, C.; Jones, P.; Meinders, B.
1998-01-01
Liquid Flyback Boosters provide an opportunity to improve shuttle safety, increase performance, and reduce operating costs. The objective of the LFBB study is to establish the viability of a LFBB configuration to integrate into the shuffle vehicle and meet the goals of the Space Shuttle upgrades program. The design of a technically viable LFBB must integrate into the shuffle vehicle with acceptable impacts to the vehicle elements, i.e. orbiter and external tank and the shuttle operations infrastructure. The LFBB must also be capable of autonomous return to the launch site. The smooth integration of the LFBB into the space shuttle vehicle and the ability of the LFBB to fly back to the launch site are not mutually compatible capabilities. LFBB wing configurations optimized for ascent must also provide flight quality during the powered return back to the launch site. This paper will focus on the core booster design and ascent performance. A companion paper 'Conceptual Design for a Space Shuttle Liquid Flyback Booster' will focus on the flyback system design and performance. The LFBB study developed design and aerodynamic data to demonstrate the viability of a dual booster configuration to meet the shuttle upgrade goals, i.e. enhanced safety, improved performance and reduced operations costs.
Dual Liquid Flyback Booster for the Space Shuttle
NASA Technical Reports Server (NTRS)
Blum, C.; Jones, Patti; Meinders, B.
1998-01-01
Liquid Flyback Boosters provide an opportunity to improve shuttle safety, increase performance, and reduce operating costs. The objective of the LFBB study is to establish the viability of a LFBB configuration to integrate into the shuttle vehicle and meet the goals of the Space Shuttle upgrades program. The design of a technically viable LFBB must integrate into the shuttle vehicle with acceptable impacts to the vehicle elements, i.e. orbiter and external tank and the shuttle operations infrastructure. The LFBB must also be capable of autonomous return to the launch site. The smooth integration of the LFBB into the space shuttle vehicle and the ability of the LFBB to fly back to the launch site are not mutually compatible capabilities. LFBB wing configurations optimized for ascent must also provide flight quality during the powered return back to the launch site. This paper will focus on the core booster design and ascent performance. A companion paper, "Conceptual Design for a Space Shuttle Liquid Flyback Booster" will focus on the flyback system design and performance. The LFBB study developed design and aerodynamic data to demonstrate the viability of a dual booster configuration to meet the shuttle upgrade goals, i.e. enhanced safety, improved performance and reduced operations costs.
Specimen Sample Preservation for Cell and Tissue Cultures
NASA Technical Reports Server (NTRS)
Meeker, Gabrielle; Ronzana, Karolyn; Schibner, Karen; Evans, Robert
1996-01-01
The era of the International Space Station with its longer duration missions will pose unique challenges to microgravity life sciences research. The Space Station Biological Research Project (SSBRP) is responsible for addressing these challenges and defining the science requirements necessary to conduct life science research on-board the International Space Station. Space Station will support a wide range of cell and tissue culture experiments for durations of 1 to 30 days. Space Shuttle flights to bring experimental samples back to Earth for analyses will only occur every 90 days. Therefore, samples may have to be retained for periods up to 60 days. This presents a new challenge in fresh specimen sample storage for cell biology. Fresh specimen samples are defined as samples that are preserved by means other than fixation and cryopreservation. The challenge of long-term storage of fresh specimen samples includes the need to suspend or inhibit proliferation and metabolism pending return to Earth-based laboratories. With this challenge being unique to space research, there have not been any ground based studies performed to address this issue. It was decided hy SSBRP that experiment support studies to address the following issues were needed: Fixative Solution Management; Media Storage Conditions; Fresh Specimen Sample Storage of Mammalian Cell/Tissue Cultures; Fresh Specimen Sample Storage of Plant Cell/Tissue Cultures; Fresh Specimen Sample Storage of Aquatic Cell/Tissue Cultures; and Fresh Specimen Sample Storage of Microbial Cell/Tissue Cultures. The objective of these studies was to derive a set of conditions and recommendations that can be used in a long duration microgravity environment such as Space Station that will permit extended storage of cell and tissue culture specimens in a state consistent with zero or minimal growth, while at the same time maintaining their stability and viability.
NASA Astrophysics Data System (ADS)
Mancinelli, R. L.
2015-01-01
We have shown using ESA's Biopan facility flown in Earth orbit that when exposed to the space environment for 2 weeks the survival rate of Synechococcus (Nägeli), a halophilic cyanobacterium isolated from the evaporitic gypsum-halite crusts that form along the marine intertidal, and Halorubrum chaoviator a member of the Halobacteriaceae isolated from an evaporitic NaCl crystal obtained from a salt evaporation pond, were higher than all other test organisms except Bacillus spores. These results led to the EXPOSE-R mission to extend and refine these experiments as part of the experimental package for the external platform space exposure facility on the ISS. The experiment was flown in February 2009 and the organisms were exposed to low-Earth orbit for nearly 2 years. Samples were either exposed to solar ultraviolet (UV)-radiation (λ > 110 nm or λ > 200 nm, cosmic radiation (dosage range 225-320 mGy), or kept in darkness shielded from solar UV-radiation. Half of each of the UV-radiation exposed samples and dark samples were exposed to space vacuum and half kept at 105 pascals in argon. Duplicate samples were kept in the laboratory to serve as unexposed controls. Ground simulation control experiments were also performed. After retrieval, organism viability was tested using Molecular Probes Live-Dead Bac-Lite stain and by their reproduction capability. Samples kept in the dark, but exposed to space vacuum had a 90 +/- 5% survival rate compared to the ground controls. Samples exposed to full UV-radiation for over a year were bleached and although results from Molecular Probes Live-Dead stain suggested ~10% survival, the data indicate that no survival was detected using cell growth and division using the most probable number method. Those samples exposed to attenuated UV-radiation exhibited limited survival. Results from of this study are relevant to understanding adaptation and evolution of life, the future of life beyond earth, the potential for interplanetary transfer of viable microbes via meteorites and dust particles as well as spacecraft, and the physiology of halophiles.
NASA Technical Reports Server (NTRS)
Mancinelli, R. L.
2014-01-01
We have shown using ESA's Biopan facility flown in Earth orbit that when exposed to the space environment for 2 weeks the survival rate of Synechococcus (Nageli), a halophilic cyanobacterium isolated from the evaporitic gypsum-halite crusts that form along the marine intertidal, and Halorubrum chaoviator a member of the Halobacteriaceae isolated from an evaporitic NaCl crystal obtained from a salt evaporation pond, were higher than all other test organisms except Bacillus spores. These results led to the EXPOSE-R mission to extend and refine these experiments as part of the experimental package for the external platform space exposure facility on the ISS. The experiment was flown in February 2009 and the organisms were exposed to low-Earth orbit for nearly 2 years. Samples were either exposed to solar ultraviolet (UV)-radiation (lambda is greater than 110 nm or lambda is greater than 200 nm, cosmic radiation (dosage range 225-320 mGy), or kept in darkness shielded from solar UV-radiation. Half of each of the UV-radiation exposed samples and dark samples were exposed to space vacuum and half kept at 105 pascals in argon. Duplicate samples were kept in the laboratory to serve as unexposed controls. Ground simulation control experiments were also performed. After retrieval, organism viability was tested using Molecular Probes Live-Dead Bac-Lite stain and by their reproduction capability. Samples kept in the dark, but exposed to space vacuum had a 90 +/- 5% survival rate compared to the ground controls. Samples exposed to full UV-radiation for over a year were bleached and although results from Molecular Probes Live-Dead stain suggested approximately 10% survival, the data indicate that no survival was detected using cell growth and division using the most probable number method. Those samples exposed to attenuated UV-radiation exhibited limited survival. Results from of this study are relevant to understanding adaptation and evolution of life, the future of life beyond earth, the potential for interplanetary transfer of viable microbes via meteorites and dust particles as well as spacecraft, and the physiology of halophiles.
The ultraviolet radiation environment of pollen and its effect on pollen germination
NASA Technical Reports Server (NTRS)
1981-01-01
The damage to pollen caused by natural ultraviolet radiation was investigated. Experimental and literature research into the UV radiation environment is reported. Viability and germination of wind and insect pollinated species were determined. Physiological, developmental, and protective factors influencing UV sensitivity of binucleate, advanced binucleate, and trinucleate pollen grains are compared.
The Critical Success Factors Method: Its Application in a Special Library Environment.
ERIC Educational Resources Information Center
Borbely, Jack
1981-01-01
Discusses the background and theory of the Critical Success Factors (CSF) management method, as well as its application in an information center or other special library environment. CSF is viewed as a management tool that can enhance the viability of the special library within its parent organization. (FM)
The Personal Learning Environment and the Human Condition: From Theory to Teaching Practice
ERIC Educational Resources Information Center
Johnson, Mark; Liber, Oleg
2008-01-01
We present the Personal Learning Environment (PLE) as a practical intervention concerning the organization of technology in education. We explain this by proposing a cybernetic model of the "Personal Learner" using Beer's Viable System Model (VSM). Using the VSM, we identify different regulatory mechanisms that maintain viability for learners, and…
3. A Closed Aquatic System for Space and Earth Application
NASA Astrophysics Data System (ADS)
Slenzka, K.; Duenne, M.; Jastorff, B.; Ranke, J.; Schirmer, M.
Increased durations in space travel as well as living in extreme environments are requiring reliable life support systems in general and bioregenerative ones in detail. Waste water management, air revitalization and food production are obviously center goals in this research, however, in addition a potential influence by chemicals, drugs etc. released to the closed environment must be considered. On this basis ecotoxicological data become more and more important for CELSS (Closed Ecological Life Support System) development and performance. The experiences gained during the last years in our research group lead to the development of an aquatic habitat, called AquaHab (formerly CBRU), which is a closed, self-sustaining system with a total water volume of 9 liters. In the frame program of a R&D project funded by the state of Bremen and OHB System, AquaHab is under adaptation to become an ecotoxicological research unit containing for example Japanese Medaka or Zebra Fish, amphipods, water snails and water plants. Test runs were standardized and analytical methods were developed. Beside general biological and water chemical parameters, activity measurements of biotransforming enzymes (G6PDH, CytP450-Oxidase, Peroxidase) and cell viability tests as well as residual analysis of the applied substance and respective metabolites were selected as evaluation criteria. In a first series of tests low doses effects of TBT (Tributyltin, 0.1 to 20 μgTBT/l nominal concentration) were analyzed. The AquaHab and data obtained for applied environmental risk assessment will be presented at the assembly.
Heritage Systems Engineering Lessons from NASA Deep Space Missions
NASA Technical Reports Server (NTRS)
Barley, Bryan; Newhouse, Marilyn; Clardy, Dennon
2010-01-01
In the design and development of complex spacecraft missions, project teams frequently assume the use of advanced technology systems or heritage systems to enable a mission or reduce the overall mission risk and cost. As projects proceed through the development life cycle, increasingly detailed knowledge of the advanced and heritage systems within the spacecraft and mission environment identifies unanticipated technical issues. Resolving these issues often results in cost overruns and schedule impacts. The National Aeronautics and Space Administration (NASA) Discovery & New Frontiers (D&NF) Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for 5 missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that optimistic hardware/software inheritance and technology readiness assumptions caused cost and schedule growth for all five missions studied. The cost and schedule growth was not found to be the result of technical hurdles requiring significant technology development. The projects institutional inheritance and technology readiness processes appear to adequately assess technology viability and prevent technical issues from impacting the final mission success. However, the processes do not appear to identify critical issues early enough in the design cycle to ensure project schedules and estimated costs address the inherent risks. In general, the overruns were traceable to: an inadequate understanding of the heritage system s behavior within the proposed spacecraft design and mission environment; an insufficient level of development experience with the heritage system; or an inadequate scoping of the systemwide impacts necessary to implement an advanced technology for space flight applications. The paper summarizes the study s lessons learned in more detail and offers suggestions for improving the project s ability to identify and manage the technology and heritage risks inherent in the design solution.
Heritage and Advanced Technology Systems Engineering Lessons Learned from NASA Deep Space Missions
NASA Technical Reports Server (NTRS)
Barley, Bryan; Newhouse, Marilyn; Clardy, Dennon
2010-01-01
In the design and development of complex spacecraft missions, project teams frequently assume the use of advanced technology systems or heritage systems to enable a mission or reduce the overall mission risk and cost. As projects proceed through the development life cycle, increasingly detailed knowledge of the advanced and heritage systems within the spacecraft and mission environment identifies unanticipated technical issues. Resolving these issues often results in cost overruns and schedule impacts. The National Aeronautics and Space Administration (NASA) Discovery & New Frontiers (D&NF) Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for 5 missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that optimistic hardware/software inheritance and technology readiness assumptions caused cost and schedule growth for four of the five missions studied. The cost and schedule growth was not found to result from technical hurdles requiring significant technology development. The projects institutional inheritance and technology readiness processes appear to adequately assess technology viability and prevent technical issues from impacting the final mission success. However, the processes do not appear to identify critical issues early enough in the design cycle to ensure project schedules and estimated costs address the inherent risks. In general, the overruns were traceable to: an inadequate understanding of the heritage system s behavior within the proposed spacecraft design and mission environment; an insufficient level of development experience with the heritage system; or an inadequate scoping of the system-wide impacts necessary to implement an advanced technology for space flight applications. The paper summarizes the study's lessons learned in more detail and offers suggestions for improving the project's ability to identify and manage the technology and heritage risks inherent in the design solution.
Hubble Space Telescope Crew Rescue Analysis
NASA Technical Reports Server (NTRS)
Hamlin, Teri L.; Canga, Michael A.; Cates, Grant R.
2010-01-01
In the aftermath of the 2003 Columbia accident, NASA removed the Hubble Space Telescope (HST) Servicing Mission 4 (SM4) from the Space Shuttle manifest. Reasons cited included concerns that the risk of flying the mission would be too high. The HST SM4 was subsequently reinstated and flown as Space Transportation System (STS)-125 because of improvements in the ascent debris environment, the development of techniques for astronauts to perform on orbit repairs to damaged thermal protection, and the development of a strategy to provide a viable crew rescue capability. However, leading up to the launch of STS-125, the viability of the HST crew rescue capability was a recurring topic. For STS-125, there was a limited amount of time available to perform a crew rescue due to limited consumables (power, oxygen, etc.) available on the Orbiter. The success of crew rescue depended upon several factors, including when a problem was identified; when and what actions, such as powering down, were begun to conserve consumables; and where the Launch on Need (LON) vehicle was in its ground processing cycle. Crew rescue success also needed to be weighed against preserving the Orbiter s ability to have a landing option in case there was a problem with the LON vehicle. This paper focuses on quantifying the HST mission loss of crew rescue capability using Shuttle historical data and various power down strategies. Results from this effort supported NASA s decision to proceed with STS-125, which was successfully completed on May 24th 2009.
NASA Technical Reports Server (NTRS)
Stone, Noble H.
2007-01-01
The Tethered Satellite System Space Shuttle missions, TSS-1 in 1993 and TSS-1R in 1996, were the height of space tether technology development. Since NASA's investment of some $200M and two Shuttle missions in those two pioneering missions, there have been several smaller tether flight experiments, but interest in this promising technology has waned within NASA as well as the DOD agencies. This is curious in view of the unique capabilities of space tether systems and the fact that they have been flight validated and shown to perform as, or better than, expected in earth orbit. While it is true that the TSS-1, TSS-1R and SEDS-2 missions experienced technical difficulties, the causes of these early developmental problems are now known to be design or materials flaws that are (1) unrelated to the basic viability of space tether technology, and (2) they are readily corrected. The purpose of this paper is to review the dynamic and electrodynamic fundamentals of space tethers and the unique capabilities they afford (that are enabling to certain types of space missions); to elucidate the nature, cause, and solution of the early developmental problems; and to provide an update on progress made in development of the technology. Finally, it is shown that (1) all problems experienced during early development of the technology now have solutions; and (2) the technology has been matured by advances made in strength and robustness of tether materials, high voltage engineering in the space environment, tether health and status monitoring, and the elimination of the broken tether hazard. In view of this, it is inexplicable why this flight-validated technology has not been utilized in the past decade, considering the powerful and unique capabilities that space tethers can afford that are, not only required to carryout, otherwise, unobtainable missions, but can also greatly reduce the cost of certain on-going space operations.
2004-01-30
KENNEDY SPACE CENTER, FLA. - The red NASA engine hauls its cargo toward Titusville, Fla. The containers enclose segments of a solid rocket booster being returned to Utah for testing. The segments were part of the STS-114 stack. It is the first time actual flight segments that had been stacked for flight in the VAB are being returned for testing. They will undergo firing, which will enable inspectors to check the viability of the solid and verify the life expectancy for stacked segments.
12 CFR 705.6 - Application and award processes.
Code of Federal Regulations, 2012 CFR
2012-01-01
... necessary based on the type of funding initiative, economic environment, or other factors or conditions that... long-term financial viability, including absence of indicators suggesting the Qualifying Credit Union...
12 CFR 705.6 - Application and award processes.
Code of Federal Regulations, 2013 CFR
2013-01-01
... necessary based on the type of funding initiative, economic environment, or other factors or conditions that... long-term financial viability, including absence of indicators suggesting the Qualifying Credit Union...
12 CFR 705.6 - Application and award processes.
Code of Federal Regulations, 2014 CFR
2014-01-01
... necessary based on the type of funding initiative, economic environment, or other factors or conditions that... long-term financial viability, including absence of indicators suggesting the Qualifying Credit Union...
NASA Astrophysics Data System (ADS)
Race, Margaret
Over the past five decades, our understanding of space beyond Earth orbit has been shaped by a succession of mainly robotic missions whose technologies have enabled scientists to answer diverse science questions about celestial bodies across the solar system. For all that time, exploration has been guided by planetary protection policies and principles promulgated by COSPAR and based on provisions in Article IX of the Outer Space Treaty of 1967. Over time, implementation of the various COSPAR planetary protection policies have sought to avoid harmful forward and backward contamination in order to ensure the integrity of science findings, guide activities on different celestial bodies, and appropriately protect Earth whenever extraterrestrial materials have been returned. The recent increased interest in extending both human missions and commercial activities beyond Earth orbit have prompted discussions in various quarters about the need for updating policies and guidelines to ensure responsible, balanced space exploration and use by all parties, regardless whether activities are undertaken by governmental or non-governmental entities. Already, numerous researchers and workgroups have suggested a range of different ways to manage activities on celestial environments (e.g, wilderness parks, exclusion zones, special regions, claims, national research bases, environmental impact assessments, etc.). While the suggestions are useful in thinking about how to manage future space activities, they are not based on any systematically applied or commonly accepted criteria (scientific or otherwise). In addition, they are borrowed from terrestrial approaches for environmental protection, which may or may not have direct applications to space environments. As noted in a recent COSPAR-PEX workshop (GWU 2012), there are no clear definitions of issues such as harmful contamination, the environment to be protected, or what are considered reasonable activity or impacts for particular locations—and over what time frames. Likewise, there are no guidelines for how to deal with the potential conflict between economic viability for commercial space activity and the need for reasonable planetary protection measures and standards. Before creating guidelines for particular locations or developing a international environmental regime for blending space exploration and use, it is advisable to have at least have a cursory overview of what lies ahead in the technical, scientific, commercial, environmental and policy realms. To develop such an overview, I undertook a preliminary analysis of the proposed activities, stakeholders, timeframes, and potential environmental impacts anticipated in coming years for robotic and human missions, particularly for the Moon and Mars. Hopefully, this type of information will be useful as the international community works towards updating policies and guidelines for responsible, balanced space exploration and use by all parties.
Report of the NASA lunar energy enterprise case study task force
NASA Technical Reports Server (NTRS)
1989-01-01
The Lunar Energy Enterprise Cast Study Task Force was formed to determine the economic viability and commercial business potential of mining and extracting He-3 from the lunar soil for use in earth-based fusion reactors. In addition, the Solar Power Satellite (SPS) and the Lunar Power Station (LPS) were also evaluated because they involve the use of lunar materials and could provide energy for lunar-based activities. The Task Force considered: (1) the legal and liability aspects of the space energy projects; (2) the long-range terrestrial energy needs and options; (3) the technical maturity of the three space energy projects; and (4) their commercial potential. The use of electricity is expected to increase, but emerging environmental concerns and resource availability suggest changes for the national energy policy. All three options have the potential to provide a nearly inexhaustible, clean source of electricity for the U.S. and worldwide, without major adverse impacts on the Earth's environment. Assumption by industry of the total responsibility for these energy projects is not yet possible. Pursuit of these energy concepts requires the combined efforts of government and industry. The report identifies key steps necessary for the development of these concepts and an evolving industrial role.
NASA Technical Reports Server (NTRS)
Tang, Henry H.; Orndoff, Evelyne S.; Thomas, Gretchen A.
2009-01-01
This paper discusses the effort in evaluating and selecting a light weight impact protection material for the Constellation Space Suit Element (CSSE) Portable Life Support Subsystem (PLSS) conceptual packaging study. A light weight material capable of holding and protecting the components inside the PLSS is required to demonstrate the viability of the flexible PLSS packaging concept. The material needs to distribute, dissipate, and absorb the impact energy of the PLSS falling on the lunar surface. It must also be very robust and function in the extreme lunar thermal vacuum environment for up to one hundred Extravehicular Activity (EVA) missions. This paper documents the performance requirements for selecting a foam protection material, and the methodologies for evaluating commercial off-the-shelf (COTS) foam protection materials. It also presents the materials properties test results and impact drop test results of the various foam materials evaluated in the study. The findings from this study suggest that a foam based flexible protection system is a viable solution for PLSS packaging. However, additional works are needed to optimize COTS foam properties or to develop a composite foam system that will meet all the performance requirements for the CSSE PLSS flexible packaging.
Ohayon, Elan L; Kalitzin, Stiliyan; Suffczynski, Piotr; Jin, Frank Y; Tsang, Paul W; Borrett, Donald S; Burnham, W McIntyre; Kwan, Hon C
2004-01-01
The problem of demarcating neural network space is formidable. A simple fully connected recurrent network of five units (binary activations, synaptic weight resolution of 10) has 3.2 *10(26) possible initial states. The problem increases drastically with scaling. Here we consider three complementary approaches to help direct the exploration to distinguish epileptic from healthy networks. [1] First, we perform a gross mapping of the space of five-unit continuous recurrent networks using randomized weights and initial activations. The majority of weight patterns (>70%) were found to result in neural assemblies exhibiting periodic limit-cycle oscillatory behavior. [2] Next we examine the activation space of non-periodic networks demonstrating that the emergence of paroxysmal activity does not require changes in connectivity. [3] The next challenge is to focus the search of network space to identify networks with more complex dynamics. Here we rely on a major available indicator critical to clinical assessment but largely ignored by epilepsy modelers, namely: behavioral states. To this end, we connected the above network layout to an external robot in which interactive states were evolved. The first random generation showed a distribution in line with approach [1]. That is, the predominate phenotypes were fixed-point or oscillatory with seizure-like motor output. As evolution progressed the profile changed markedly. Within 20 generations the entire population was able to navigate a simple environment with all individuals exhibiting multiply-stable behaviors with no cases of default locked limit-cycle oscillatory motor behavior. The resultant population may thus afford us a view of the architectural principles demarcating healthy biological networks from the pathological. The approach has an advantage over other epilepsy modeling techniques in providing a way to clarify whether observed dynamics or suggested therapies are pointing to computational viability or dead space.
Improvement in the Viability of Cryopreserved Cells by Microencapsulation
NASA Astrophysics Data System (ADS)
Matsumoto, Yoshifumi; Morinaga, Yukihiro; Ujihira, Masanobu; Oka, Kotaro; Tanishita, Kazuo
The advantages of microencapsulated cells over those of suspended cells were evaluated for improving viability in cryopreservation. Rat pheochromocytoma (PC12) cells were selected as the test biological cells and then microencapsulated in alginate-polylysine-alginate membranes. These microencapsulated PC12 cells were frozen by differential scanning calorimetry (DSC) at various cooling rates, from 0.5 to 10°C/min. Their latent heat was measured during freezing from 4 to -80°C. The post-thaw viability was evaluated by dopamine-concentration measurement and by trypan blue exclusion assay. Results showed that at cooling rates of 0.5 and 1°C/min, the latent heat of microencapsulated PC12 cells was lower than that of suspended cells. This lower latent heat is caused by the fact that the extra-microcapsule froze and the intra-capsule remained unfrozen due to the formation of ice crystals in the extra-capsule space. The post-thaw viability of microencapsulated PC12 cells was improved when the cooling rate was 0.5 or 1°C/min, compared with that of suspended cells. Therefore, in microencapsulated PC12 cells, maintaining the intra-microcapsules in an unfrozen state during freezing reduces the solution effect and thus improves the post-thaw viability.
Sexual selection and conflict as engines of ecological diversification.
Bonduriansky, Russell
2011-12-01
Ecological diversification presents an enduring puzzle: how do novel ecological strategies evolve in organisms that are already adapted to their ecological niche? Most attempts to answer this question posit a primary role for genetic drift, which could carry populations through or around fitness "valleys" representing maladaptive intermediate phenotypes between alternative niches. Sexual selection and conflict are thought to play an ancillary role by initiating reproductive isolation and thereby facilitating divergence in ecological traits through genetic drift or local adaptation. Here, I synthesize theory and evidence suggesting that sexual selection and conflict could play a more central role in the evolution and diversification of ecological strategies through the co-optation of sexual traits for viability-related functions. This hypothesis rests on three main premises, all of which are supported by theory and consistent with the available evidence. First, sexual selection and conflict often act at cross-purposes to viability selection, thereby displacing populations from the local viability optimum. Second, sexual traits can serve as preadaptations for novel viability-related functions. Third, ancestrally sex-limited sexual traits can be transferred between sexes. Consequently, by allowing populations to explore a broad phenotypic space around the current viability optimum, sexual selection and conflict could act as powerful drivers of ecological adaptation and diversification.
Cost and Economics for Advanced Launch Vehicles
NASA Technical Reports Server (NTRS)
Whitfield, Jeff
1998-01-01
Market sensitivity and weight-based cost estimating relationships are key drivers in determining the financial viability of advanced space launch vehicle designs. Due to decreasing space transportation budgets and increasing foreign competition, it has become essential for financial assessments of prospective launch vehicles to be performed during the conceptual design phase. As part of this financial assessment, it is imperative to understand the relationship between market volatility, the uncertainty of weight estimates, and the economic viability of an advanced space launch vehicle program. This paper reports the results of a study that evaluated the economic risk inherent in market variability and the uncertainty of developing weight estimates for an advanced space launch vehicle program. The purpose of this study was to determine the sensitivity of a business case for advanced space flight design with respect to the changing nature of market conditions and the complexity of determining accurate weight estimations during the conceptual design phase. The expected uncertainty associated with these two factors drives the economic risk of the overall program. The study incorporates Monte Carlo simulation techniques to determine the probability of attaining specific levels of economic performance when the market and weight parameters are allowed to vary. This structured approach toward uncertainties allows for the assessment of risks associated with a launch vehicle program's economic performance. This results in the determination of the value of the additional risk placed on the project by these two factors.
Hosseini, Sayed-Rzgar; Barve, Aditya; Wagner, Andreas
2015-01-01
All biological evolution takes place in a space of possible genotypes and their phenotypes. The structure of this space defines the evolutionary potential and limitations of an evolving system. Metabolism is one of the most ancient and fundamental evolving systems, sustaining life by extracting energy from extracellular nutrients. Here we study metabolism’s potential for innovation by analyzing an exhaustive genotype-phenotype map for a space of 1015 metabolisms that encodes all possible subsets of 51 reactions in central carbon metabolism. Using flux balance analysis, we predict the viability of these metabolisms on 10 different carbon sources which give rise to 1024 potential metabolic phenotypes. Although viable metabolisms with any one phenotype comprise a tiny fraction of genotype space, their absolute numbers exceed 109 for some phenotypes. Metabolisms with any one phenotype typically form a single network of genotypes that extends far or all the way through metabolic genotype space, where any two genotypes can be reached from each other through a series of single reaction changes. The minimal distance of genotype networks associated with different phenotypes is small, such that one can reach metabolisms with novel phenotypes – viable on new carbon sources – through one or few genotypic changes. Exceptions to these principles exist for those metabolisms whose complexity (number of reactions) is close to the minimum needed for viability. Increasing metabolic complexity enhances the potential for both evolutionary conservation and evolutionary innovation. PMID:26252881
Application of Smart Solid State Sensor Technology in Aerospace Applications
NASA Technical Reports Server (NTRS)
Hunter, Gary W.; Xu, Jennifer C.; Dungan, L.K.; Makel, D.; Ward, B.; Androjna, D.
2008-01-01
Aerospace applications require a range of chemical sensing technologies to monitor conditions in both space vehicles and aircraft operations. One example is the monitoring of oxygen. For example, monitoring of ambient oxygen (O2) levels is critical to ensuring the health, safety, and performance of humans living and working in space. Oxygen sensors can also be incorporated in detection systems to determine if hazardous leaks are occurring in space propulsion systems and storage facilities. In aeronautic applications, O2 detection has been investigated for fuel tank monitoring. However, as noted elsewhere, O2 is not the only species of interest in aerospace applications with a wide range of species of interest being relevant to understand an environmental or vehicle condition. These include combustion products such as CO, HF, HCN, and HCl, which are related to both the presence of a fire and monitoring of post-fire clean-up operations. This paper discusses the development of an electrochemical cell platform based on a polymer electrolyte, NAFION, and a three-electrode configuration. The approach has been to mature this basic platform for a range of applications and to test this system, combined with "Lick and Stick" electronics, for its viability to monitor an environment related to astronaut crew health and safety applications with an understanding that a broad range of applications can be addressed with a core technology.
Lehtonen, Topi K; Kvarnemo, Charlotta
2015-07-01
In aquatic environments, externally developing eggs are in constant contact with the surrounding water, highlighting the significance of water parameters and pathogens for egg survival. In this study we tested the impact of water salinity, egg density and infection potential of the environment on egg viability in the sand goby (Pomatoschistus minutus), a small fish that exhibits paternal egg care and has a marine origin, but which in the Baltic Sea lives in brackish water. To manipulate the infection potential of the environment, we added either a Saprolegnia infection vector into UV-filtered water or a fungicide into natural Baltic Sea water. Saprolegnia are widely spread water moulds that are a key cause of egg mortality in aquatic organisms in fresh- and brackish water. We found that increased water salinity indeed decreased the egg infection rate and had a positive effect on egg viability, while high egg density tended to have the opposite effect. However, the different factors influenced egg viability interactively, with a higher egg density having negative effects at low, but not in high, salinity. Thus, the challenges facing marine organisms adapting to lower salinity levels can be amplified by Saprolegnia infections that reduce egg survival in interaction with other environmental factors. Our results support the hypothesis that suppressing egg infections is an important aspect of parental care that can select for filial cannibalism, a common but poorly understood behaviour, especially in fish with parental care.
Cosmological viability conditions for f(T) dark energy models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Setare, M.R.; Mohammadipour, N., E-mail: rezakord@ipm.ir, E-mail: N.Mohammadipour@uok.ac.ir
2012-11-01
Recently f(T) modified teleparallel gravity where T is the torsion scalar has been proposed as the natural gravitational alternative for dark energy. We perform a detailed dynamical analysis of these models and find conditions for the cosmological viability of f(T) dark energy models as geometrical constraints on the derivatives of these models. We show that in the phase space exists two cosmologically viable trajectory which (i) The universe would start from an unstable radiation point, then pass a saddle standard matter point which is followed by accelerated expansion de sitter point. (ii) The universe starts from a saddle radiation epoch,more » then falls onto the stable matter era and the system can not evolve to the dark energy dominated epoch. Finally, for a number of f(T) dark energy models were proposed in the more literature, the viability conditions are investigated.« less
ERIC Educational Resources Information Center
Aldridge, Jill; Fraser, Barry; Ntuli, Sipho
2009-01-01
We examined the viability of using feedback from a learning environment instrument to guide improvements in the teaching practices of in-service teachers undertaking a distance-education programme. The 31 teachers involved administered a primary school version of the What Is Happening In this Class? (WIHIC-Primary) questionnaire to their 1,077…
Huang, Ziyue; Footitt, Steven; Finch-Savage, William E.
2014-01-01
Background and Aims Seed yield and dormancy status are key components of species fitness that are influenced by the maternal environment, in particular temperature. Responses to environmental conditions can differ between ecotypes of the same species. Therefore, to investigate the effect of maternal environment on seed production, this study compared two contrasting Arabidopsis thaliana ecotypes, Cape Verdi Isle (Cvi) and Burren (Bur). Cvi is adapted to a hot dry climate and Bur to a cool damp climate, and they exhibit winter and summer annual phenotypes, respectively. Methods Bur and Cvi plants were grown in reciprocal controlled environments that simulated their native environments. Reproductive development, seed production and subsequent germination behaviour were investigated. Measurements included: pollen viability, the development of floral structure, and germination at 10 and 25 °C in the light to determine dormancy status. Floral development was further investigated by applying gibberellins (GAs) to alter the pistil:stamen ratio. Key Results Temperature during seed development determined seed dormancy status. In addition, seed yield was greatly reduced by higher temperature, especially in Bur (>90 %) compared with Cvi (approx. 50 %). The reproductive organs (i.e. stamens) of Bur plants were very sensitive to high temperature during early flowering. Viability of pollen was unaffected, but limited filament extension relative to that of the pistils resulted in failure to pollinate. Thus GA applied to flowers to enhance filament extension largely overcame the effect of high temperature on yield. Conclusions High temperature in the maternal environment reduced dormancy and negatively affected the final seed yield of both ecotypes; however, the extent of these responses differed, demonstrating natural variation. Reduced seed yield in Bur resulted from altered floral development not reduced pollen viability. Future higher temperatures will impact on seed performance, but the consequences may differ significantly between ecotypes of the same species. PMID:24573642
The role of coastal fog in increased viability of marine microbial aerosols
NASA Astrophysics Data System (ADS)
Dueker, M.; O'Mullan, G. D.; Weathers, K. C.; Juhl, A. R.; Uriarte, M.
2011-12-01
Microbes in the atmosphere (microbial aerosols) play an important role in climate and provide an ecological and biogeochemical connection between oceanic, atmospheric, and terrestrial environments. Despite the ubiquity of these bacteria (concentration estimates range from 1 x 10^4 to 6 x 10^5 cells m-3), much is still being learned about their source, viability, and interactions with climatic controls. They can be attached to ambient aerosol particles or exist singly in the air. They affect climate by serving as ice, cloud, and fog nucleators, and have the metabolic potential to alter atmospheric chemistry. Fog presence in particular has been shown to greatly increase the deposition of viable microbial aerosols in both urban and coastal environments, but the mechanisms behind this are not fully understood. To address this gap, we examined the diversity of culturable microbial aerosols from a relatively pristine coastal environment in Maine (USA) and determined the effect of fog presence on viability and community composition of microbial aerosols. 16S rRNA sequencing of culturable ocean surface bacteria and depositing microbial aerosols (under clear and foggy conditions) resulted in the detection of 31 bacterial genera, with 5 dominant genera (Vibrio, Bacillus, Pseudoalteromonas, Psychrobacter, Salinibacterium) making up 66% of all sequences. Seventy-five percent of the viable microbial aerosols falling out under foggy conditions were most similar to GenBank-published sequences detected in marine environments. The fog and ocean surface sequence libraries were significantly more similar in microbial community composition than clear (non-foggy) and ocean surface libraries. These findings support a dual role for fog in enhancing the fallout of viable marine microbial aerosols via increased gravitational settling rates and decreased aerosolization stress on the organisms. The dominant presence of marine bacteria in coastal microbial aerosols provides a strong case for an ecologically-relevant ocean to terrestrial transport of microbes, creating a potential connection between water and air quality in the coastal environment.
NASA Astrophysics Data System (ADS)
Frösler, Jan; Panitz, Corinna; Wingender, Jost; Flemming, Hans-Curt; Rettberg, Petra
2017-05-01
Biofilm formation represents a successful survival strategy for bacteria. In biofilms, cells are embedded in a matrix of extracellular polymeric substances (EPS). As they are often more stress-tolerant than single cells, biofilm cells might survive the conditions present in space and on Mars. To investigate this topic, the bacterium Deinococcus geothermalis was chosen as a model organism due to its tolerance toward desiccation and radiation. Biofilms cultivated on membranes and, for comparison, planktonically grown cells deposited on membranes were air-dried and exposed to individual stressors that included prolonged desiccation, extreme temperatures, vacuum, simulated martian atmosphere, and UV irradiation, and they were exposed to combinations of stressors that simulate space (desiccation + vacuum + UV) or martian (desiccation + Mars atmosphere + UV) conditions. The effect of sulfatic Mars regolith simulant on cell viability during stress was investigated separately. The EPS produced by the biofilm cells contained mainly polysaccharides and proteins. To detect viable but nonculturable (VBNC) cells, cultivation-independent viability indicators (membrane integrity, ATP, 16S rRNA) were determined in addition to colony counts. Desiccation for 2 months resulted in a decrease of culturability with minor changes of membrane integrity in biofilm cells and major loss of membrane integrity in planktonic bacteria. Temperatures between -25°C and +60°C, vacuum, and Mars atmosphere affected neither culturability nor membrane integrity in both phenotypes. Monochromatic (254 nm; ≥1 kJ m-2) and polychromatic (200-400 nm; >5.5 MJ m-2 for planktonic cells and >270 MJ m-2 for biofilms) UV irradiation significantly reduced the culturability of D. geothermalis but did not affect cultivation-independent viability markers, indicating the induction of a VBNC state in UV-irradiated cells. In conclusion, a substantial proportion of the D. geothermalis population remained viable under all stress conditions tested, and in most cases the biofilm form proved advantageous for surviving space and Mars-like conditions.
Impedance Flow Cytometry as a Tool to Analyze Microspore and Pollen Quality.
Heidmann, Iris; Di Berardino, Marco
2017-01-01
Analyzing pollen quality in an efficient and reliable manner is of great importance to the industries involved in seed and fruit production, plant breeding, and plant research. Pollen quality parameters, viability and germination capacity, are analyzed by various staining methods or by in vitro germination assays, respectively. These methods are time-consuming, species-dependent, and require a lab environment. Furthermore, the obtained viability data are often poorly related to in vivo pollen germination and seed set. Here, we describe a quick, label-free method to analyze pollen using microfluidic chips inserted into an impedance flow cytometer (IFC). Using this approach, pollen quality parameters are determined by a single measurement in a species-independent manner. The advantage of this protocol is that pollen viability and germination can be analyzed quickly by a reliable and standardized method.
The economic viability of pursuing a space power system concept
NASA Technical Reports Server (NTRS)
Hazelrigg, G. A., Jr.
1977-01-01
The development of a space power system requires no fundamental technological breakthroughs. There are, however, uncertainties regarding the degree to which necessary developments can be achieved or exceeded. An analysis is conducted concerning the implementation of a 5000 MW space-based solar power system based on photovoltaic conversion of solar energy to electrical energy. The solar array is about 13 km long and 5 km wide. Placed in geosynchronous orbit, it provides power to the earth for 30 years. Attention is given to the economic feasibility of a space power system, a risk analysis for space power systems, and the use of the presented methodology for comparing alternative technology development programs.
Satellite power system: Engineering and economic analysis summary
NASA Technical Reports Server (NTRS)
1976-01-01
A system engineering and economic analysis was conducted to establish typical reference baselines for the photovoltaic, solar thermal, and nuclear satellite power systems. Tentative conclusions indicate that feasibility and economic viability are characteristic of the Satellite Power System. Anticipated technology related to manufacturing, construction, and maintenance operations is described. Fuel consumption, environmental effects, and orbital transfer are investigated. Space shuttles, local space transportation, and the heavy lift launch vehicle required are also discussed.
A study of different buffers to maximize viability of an oral Shigella vaccine.
Chandrasekaran, Lakshmi; Lal, Manjari; Van De Verg, Lillian L; Venkatesan, Malabi M
2015-11-17
Live, whole cell killed and subunit vaccines are being developed for diarrheal diseases caused by V. cholerae, Shigella species, ETEC, and Campylobacter. Some of these vaccines can be administered orally since this route best mimics natural infection. Live vaccines administered orally have to be protected from the harsh acidic gastric environment. Milk and bicarbonate solutions have been administered to neutralize the stomach acid. For many Shigella vaccine trials, 100-120 ml of a bicarbonate solution is ingested followed by the live vaccine candidate, which is delivered in 30 ml of bicarbonate, water or saline. It is not clear if maximum bacterial viability is achieved under these conditions. Also, volumes of neutralizing buffer that are optimal for adults may be unsuitable for children and infants. To address these questions, we performed studies to determine the viability and stability of a Shigella sonnei vaccine candidate, WRSS1, in a mixture of different volumes of five different buffer solutions added to hydrochloric acid to simulate gastric acidity. Among the buffers tested, bicarbonate solution, rotavirus buffer and CeraVacx were better at neutralizing acid and maintaining the viability of WRSS1. Also, a much smaller volume of the neutralizing buffer was sufficient to counteract stomach acid while maintaining bacterial viability. Published by Elsevier Ltd.
NASA Technical Reports Server (NTRS)
Curreri, Peter A.; Detweiler, Michael
2010-01-01
Creating large space habitats by launching all materials from Earth is prohibitively expensive. Using space resources and space based labor to build space solar power satellites can yield extraordinary profits after a few decades. The economic viability of this program depends on the use of space resources and space labor. To maximize the return on the investment, the early use of high density bolo habitats is required. Other shapes do not allow for the small initial scale required for a quick population increase in space. This study found that 5 Man Year, or 384 person bolo high density habitats will be the most economically feasible for a program started at year 2010 and will cause a profit by year 24 of the program, put over 45,000 people into space, and create a large system of space infrastructure for the further exploration and development of space.
Hershberger, P.K.; Pacheco, C.A.; Gregg, J.L.; Purcell, M.K.; LaPatra, S.E.
2008-01-01
In vitro viability of Ichthyophonus spp. spores in seawater and freshwater corresponded with the water type of the host from which the spores were isolated. Among Ichthyophonus spp. spores from both marine and freshwater fish hosts (Pacific herring, Clupea pallasii, and rainbow trout, Oncorhynchus mykiss, respectively), viability was significantly greater (P < 0.05) after incubation in seawater than in freshwater at all time points from 1 to 60 min after immersion; however, magnitude of the spore tolerances to water type differed with host origin. Ichthyophonus sp. adaptation to its host environment was indicated by greater seawater tolerance of spores from the marine host and greater freshwater tolerance of spores from the freshwater host. Prolonged aqueous survival of Ichthyophonus spp. spores in the absence of a host provides insight into routes of transmission, particularly among planktivorous fishes, and should be considered when designing strategies to dispose of infected fish carcasses and tissues.
Comparison of submerged and unsubmerged printing of ovarian cancer cells.
Davidoff, Sherry N; Au, David; Smith, Samuel; Brooks, Amanda E; Brooks, Benjamin D
2015-01-01
A high-throughput cell based assay would greatly aid in the development and screening of ovarian cancer drug candidates. Previously, a three-dimensional microfluidic printer that is not only capable of controlling the location of cell deposition, but also of maintaining a liquid, nutrient rich environment to preserve cellular phenotype has been developed (Wasatch Microfluidics). In this study, we investigated the impact (i.e., viability, density, and phenotype) of depositing cells on a surface submerged in cell culture media. It was determined that submersion of the microfluidic print head in cell media did not alter the cell density, viability, or phenotype.. This article describes an in depth study detailing the impact of one of the fundamental components of a 3D microfluidic cell printer designed to mimic the in vivo cell environment. Development of such a tool holds promise as a high-throughput drug-screening platform for new cancer therapeutics.
Genotoxic effects of occupational exposure to benzene in gasoline station workers
SALEM, Eman; EL-GARAWANI, Islam; ALLAM, Heba; EL-AAL, Bahiga Abd; HEGAZY, Mofrih
2017-01-01
Benzene, a hazardous component of gasoline, is a genotoxic class I human carcinogen. This study evaluated the genotoxic effects of occupational exposure to benzene in gasoline stations. Genotoxicity of exposure to benzene was assessed in peripheral blood leucocytes of 62 gasoline station workers and compared with an equal numbers of matched controls using total genomic DNA fragmentation, micronucleus test and cell viability test. An ambient air samples were collected and analyzed for Monitoring of benzene, toluene, ethyl benzene and xylene (BTEX) in work environment and control areas. DNA fragmentation, micronucleus and dead cells percent were significantly higher in exposed workers than controls. Level of benzene, Toluene, Ethyl benzene and xylene in the work environment were higher than the control areas and the permissible limits. Gasoline station workers occupationally exposed to benzene are susceptible to genotoxic effects indicated by increased DNA fragmentation, higher frequency of micronucleus and decreased leukocytes viability. PMID:29070767
Genotoxic effects of occupational exposure to benzene in gasoline station workers.
Salem, Eman; El-Garawani, Islam; Allam, Heba; El-Aal, Bahiga Abd; Hegazy, Mofrih
2018-04-07
Benzene, a hazardous component of gasoline, is a genotoxic class I human carcinogen. This study evaluated the genotoxic effects of occupational exposure to benzene in gasoline stations. Genotoxicity of exposure to benzene was assessed in peripheral blood leucocytes of 62 gasoline station workers and compared with an equal numbers of matched controls using total genomic DNA fragmentation, micronucleus test and cell viability test. An ambient air samples were collected and analyzed for Monitoring of benzene, toluene, ethyl benzene and xylene (BTEX) in work environment and control areas. DNA fragmentation, micronucleus and dead cells percent were significantly higher in exposed workers than controls. Level of benzene, Toluene, Ethyl benzene and xylene in the work environment were higher than the control areas and the permissible limits. Gasoline station workers occupationally exposed to benzene are susceptible to genotoxic effects indicated by increased DNA fragmentation, higher frequency of micronucleus and decreased leukocytes viability.
The Effect of High-Dose Ionizing Radiation on the Astrobiological Model Lichen Circinaria gyrosa
NASA Astrophysics Data System (ADS)
de la Torre, Rosa; Zélia Miller, Ana; Cubero, Beatriz; Martín-Cerezo, M. Luisa; Raguse, Marina; Meeßen, Joachim
2017-02-01
The lichen Circinaria gyrosa is an astrobiological model defined by its high capacity of resistance to space conditions and to a simulated martian environment. Therefore, it became part of the currently operated BIOMEX experiment on board the International Space Station and the recent STARLIFE campaign to study the effects of four types of space-relevant ionizing radiation. The samples were irradiated with helium and iron ions at doses up to 2 kGy, with X-rays at doses up to 5 kGy and with γ rays at doses from 6 to 113 kGy. Results on C. gyrosa's resistance to simulated space ionizing radiation and its post-irradiation viability were obtained by (i) chlorophyll a fluorescence of photosystem II (PSII), (ii) epifluorescence microscopy, (iii) confocal laser scanning microscopy (CLSM), and (iv) field emission scanning electron microscopy (FESEM). Results of photosynthetic activity and epifluorescence show no significant changes up to a dose of 1 kGy (helium ions), 2 kGy (iron ions), 5 kGy (X-rays) - the maximum doses applied for those radiation qualities - as well as a dose of 6 kGy of γ irradiation, which was the lowest dose applied for this low linear energy transfer (LET) radiation. Significant damage in a dose-related manner was observed only at much higher doses of γ irradiation (up to 113 kGy). These data corroborate the findings of the parallel STARLIFE studies on the effects of ionizing radiation on the lichen Circinaria gyrosa, its isolated photobiont, and the lichen Xanthoria elegans.
Olsson-Francis, Karen; de la Torre, Rosa; Towner, Martin C; Cockell, Charles S
2009-12-01
Cyanobacteria are photosynthetic organisms that have been considered for space applications, such as oxygen production in bioregenerative life support systems, and can be used as a model organism for understanding microbial survival in space. Akinetes are resting-state cells of cyanobacteria that are produced by certain genera of heterocystous cyanobacteria to survive extreme environmental conditions. Although they are similar in nature to endospores, there have been no investigations into the survival of akinetes in extraterrestrial environments. The aim of this work was to examine the survival of akinetes from Anabaena cylindrica in simulated extraterrestrial conditions and in Low Earth Orbit (LEO). Akinetes were dried onto limestone rocks and sent into LEO for 10 days on the ESA Biopan VI. In ground-based experiments, the rocks were exposed to periods of desiccation, vacuum (0.7×10(-3) kPa), temperature extremes (-80 to 80°C), Mars conditions (-27°C, 0.8 kPa, CO(2)) and UV radiation (325-400 nm). A proportion of the akinete population was able to survive a period of 10 days in LEO and 28 days in Mars simulated conditions, when the rocks were not subjected to UV radiation. Furthermore, the akinetes were able to survive 28 days of exposure to desiccation and low temperature with high viability remaining. Yet long periods of vacuum and high temperature were lethal to the akinetes. This work shows that akinetes are extreme-tolerating states of cyanobacteria that have a practical use in space applications and yield new insight into the survival of microbial resting-state cells in space conditions.
Size and competitive mating success in the yeast Saccharomyces cerevisiae.
Smith, Carl; Pomiankowski, Andrew; Greig, Duncan
2014-03-01
In unicellular organisms like yeast, mating with the right partner is critical to future fitness because each individual can only mate once. Because cell size is important for viability, mating with a partner of the right size could be a significant advantage. To investigate this idea, we manipulated the size of unmated yeast cells and showed that their viability depended on environmental conditions; large cells do better on rich medium and small cells do better on poor medium. We also found that the fitness of offspring is determined by the size of their parents. Finally, we demonstrated that when a focal cell of one mating type was placed with a large and a small cell of the opposite mating type, it was more likely to mate with the cell that was closer to the optimum size for growth in a given environment. This pattern was not generated by differences in passive mating efficiency of large and small cells across environments but by competitive mating behavior, mate preference, or both. We conclude that the most likely mechanism underlying this interesting behavior is that yeast cells compete for mates by producing pheromone signals advertising their viability, and cells with the opportunity to choose prefer to mate with stronger signalers because such matings produce more viable offspring.
Steiner, Christopher F.
2012-01-01
The ability of organisms to adapt and persist in the face of environmental change is accepted as a fundamental feature of natural systems. More contentious is whether the capacity of organisms to adapt (or “evolvability”) can itself evolve and the mechanisms underlying such responses. Using model gene networks, I provide evidence that evolvability emerges more readily when populations experience positively autocorrelated environmental noise (red noise) compared to populations in stable or randomly varying (white noise) environments. Evolvability was correlated with increasing genetic robustness to effects on network viability and decreasing robustness to effects on phenotypic expression; populations whose networks displayed greater viability robustness and lower phenotypic robustness produced more additive genetic variation and adapted more rapidly in novel environments. Patterns of selection for robustness varied antagonistically with epistatic effects of mutations on viability and phenotypic expression, suggesting that trade-offs between these properties may constrain their evolutionary responses. Evolution of evolvability and robustness was stronger in sexual populations compared to asexual populations indicating that enhanced genetic variation under fluctuating selection combined with recombination load is a primary driver of the emergence of evolvability. These results provide insight into the mechanisms potentially underlying rapid adaptation as well as the environmental conditions that drive the evolution of genetic interactions. PMID:23284934
Mass Vertical Envelopment (Airborne) Operations: A Critical Capability in the Army After Next?
2002-06-01
purpose of this thesis is to review the viability of mass airborne operations in the context of today’s modern war environment, specifically in a Major...context of today’s modern war environment, specifically in a Major Regional Contingency (MRC) scenario as outlined in the most current Quadrennial...8 1. World War II........................................................................................8 a. Invasion of Sicily (Operation Husky
Solar energy parking canopy demonstration project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cylwik, Joe; David, Lawrence
2015-09-24
The goal of this pilot/demonstration program is to measure the viability of using solar photovoltaic (PV) technology at three locations in a mountain community environment given the harsh weather conditions. An additional goal is to reduce long-term operational costs, minimize green house gas emissions, lower the dependency on energy produced from fossil fuels, and improve the working environment and health of city employees and residents.
2004-01-30
KENNEDY SPACE CENTER, FLA. - Workers ride the rails along with a container enclosing a segment of a solid rocket booster being moved to the main track. Several segments are being returned to Utah for testing. The segments were part of the STS-114 stack. It is the first time actual flight segments that had been stacked for flight in the VAB are being returned for testing. They will undergo firing, which will enable inspectors to check the viability of the solid and verify the life expectancy for stacked segments.
2004-01-30
KENNEDY SPACE CENTER, FLA. - The red NASA engine backs up with its cargo of containers in order to change tracks. The containers enclose segments of a solid rocket booster being returned to Utah for testing. The segments were part of the STS-114 stack. It is the first time actual flight segments that had been stacked for flight in the VAB are being returned for testing. They will undergo firing, which will enable inspectors to check the viability of the solid and verify the life expectancy for stacked segments.
2004-01-30
KENNEDY SPACE CENTER, FLA. - The red NASA engine moves forward past the Vehicle Assembly Building with its cargo of containers enclosing segments of a solid rocket booster being returned to Utah for testing. The segments were part of the STS-114 stack. It is the first time actual flight segments that had been stacked for flight in the VAB are being returned for testing. They will undergo firing, which will enable inspectors to check the viability of the solid and verify the life expectancy for stacked segments.
Accatino, F; Sabatier, R; De Michele, C; Ward, D; Wiegand, K; Meyer, K M
2014-08-01
Rangelands provide the main forage resource for livestock in many parts of the world, but maintaining long-term productivity and providing sufficient income for the rancher remains a challenge. One key issue is to maintain the rangeland in conditions where the rancher has the greatest possibility to adapt his/her management choices to a highly fluctuating and uncertain environment. In this study, we address management robustness and adaptability, which increase the resilience of a rangeland. After reviewing how the concept of resilience evolved in parallel to modelling views on rangelands, we present a dynamic model of rangelands to which we applied the mathematical framework of viability theory to quantify the management adaptability of the system in a stochastic environment. This quantification is based on an index that combines the robustness of the system to rainfall variability and the ability of the rancher to adjust his/her management through time. We evaluated the adaptability for four possible scenarios combining two rainfall regimes (high or low) with two herding strategies (grazers only or mixed herd). Results show that pure grazing is viable only for high-rainfall regimes, and that the use of mixed-feeder herds increases the adaptability of the management. The management is the most adaptive with mixed herds and in rangelands composed of an intermediate density of trees and grasses. In such situations, grass provides high quantities of biomass and woody plants ensure robustness to droughts. Beyond the implications for management, our results illustrate the relevance of viability theory for addressing the issue of robustness and adaptability in non-equilibrium environments.
Biofilms and planktonic cells of Deinococcus geothermalis in extreme environments
NASA Astrophysics Data System (ADS)
Panitz, Corinna; Reitz, Guenther; Rabbow, Elke; Rettberg, Petra; Flemming, Hans-Curt; Wingender, Jost; Froesler, Jan
In addition to the several extreme environments on Earth, Space can be considered as just another exceptional environment with a unique mixture of stress factors comprising UV radiation, vacuum, desiccation, temperature, ionizing radiation and microgravity. Life that processes in these environments can depend on the life forms and their state of living. The question is whether there are different strategies for individual microorganisms compared to communities of the same organisms to cope with the different factors of their surroundings. Comparative studies of the survi-val of these communities called biofilms and planktonic cell samples of Deinococcus geothermalis stand at the focal point of the presented investigations. A biofilm is a structured community of microorganisms that live encapsulated in a matrix of extracellular polymeric substances on a surface. Microorganisms living in a biofilm usually have significantly different properties to cooperate than individually living microorganisms of the same species. An advantage of the biofilm is increased resistance to various chemical and physical effects, while the dense extracellular matrix and the outer layer of the cells protect the interior of the microbial consortium. The space experiment BOSS (Biofilm organisms surfing Space) as part the ESA experimental unit EXPOSE R-2 with a planned launch date in July 2014 will be subsequently mounted on the Russian Svesda module outside the ISS. An international team of scientists coordinated by Dr. P. Rettberg will investigate the hypothesis whether microorganisms organized as biofilm outmatch the same microorganisms exposed individually in the long-term survival of the harsh environmental conditions as they occur in space and on Mars. Another protective function in the samples could be dust par-ticles for instance Mars regolith simulant contained inside the biofilms or mixed with the planktonic cells, as additional shelter especially against the extraterrestrial UV radiation. D. geothermalis besides others, like co-cultures of Halomonas muralis and Halococcus morrhuae, Bacillus horneckiae, Chroococcidiopsis CCMEE 029 and Streptomyces + Polaromonas and Arthrobacter strains from volcanic rocks, was involved in the several preparatory test runs at the Planetary and Space Simulation facilities at the German Aerospace Center in Cologne. Results of the already carried out EVTs (Experiment Verification Test) and the SVT (Science verification test) as EXPOSE-R2 mission pre-paration tests, where investigated parameters like dehydration, temperature extremes, extraterrestrial UV radiation, simulated Martian atmosphere, and a Mars-like UV climate were tested individually as well as in combination will be presented. Following exposure to the parameters listed above, the survival of both biofilms and planktonic cells of D. geothermalis was assessed in terms of (i) culturability by colony counts on R2A medium, (ii) membrane integrity by using the Live/Dead differential staining kit, (iii) ATP content by using a commercial luminometric assay, and (iv) the presence of 16S rRNA by fluorescence in situ hybridization. So far, the results suggest that Deinococcus geothermalis remains viable in the desiccated state over weeks to months, whereas culturability, intracellular ATP levels, and membrane integrity were preserved in biofilm cells at a significantly higher level than in planktonic cells. Furthermore, cells of both sample types were able to survive simulated space and Martian conditions and showed high resistance after irradiation with monochromatic and polychromatic UV. The results will contribute to the fundamental understanding of the opportunities and limitations of viability of microorganisms organized in biofilms or as planktonic cells under the extreme environ-mental conditions of space or other planets.
Biodigester Feasibility and Design for Space and Earth Project
NASA Technical Reports Server (NTRS)
Terrier, Douglas; Clayton, Ronald; Shutts, Stacy (Principal Investigator); Bacon, John; Ewert, Michael; Paul, Thomas
2016-01-01
Biodigesters harness and utilize byproducts, and are a valuable technology for waste conversion and advanced exploration closed loops targets (6.1.a-E), including that of human waste. On Mars and at JSC, this could lead to growing food and to more sustainable uses of waste. It is critical to understand biogas generation rates, odor management of the effluent, and nutrient viability. Improved efficiency and reliance on this renewable energy source can become feasible for deep space missions.
ALLIGATORS AND ENDOCRINE DISRUPTING CONTAMINANTS: A CURRENT PERSPECTIVE.AMERICAN ZOOLOGIST
Many xenobiotic compounds introduced into the environment by human activity have been shown to adversely affect wildlife. Reproductive disorders in wildlife include altered fertility, reduced viability of offspring, impaired hormone secretion or activity and modified reproductive...
Tiani, Kendra A; Yeung, Timothy W; McClements, D Julian; Sela, David A
2018-03-01
To investigate whether microencapsulation of Lactobacillus in alginate microbeads will lead to increased longevity during refrigerated storage or simulated digestion. Microscopy was used to confirm that Lactobacillus plantarum ATCC BAA-793 and Lactobacillus johnsonii ATCC 33200 were immobilised within the microbeads and laser scattering analysis was used to determine the mean diameter of the microbeads. The number of viable cells were enumerated throughout refrigerated storage and simulated digestion experiments. Microencapsulation was shown to have differing effects on viability depending on the species, but led to extended viability during refrigerated storage and simulated digestion in L. johnsonii and L. plantarum respectively. Fermented functional foods contain microbes beneficial to human health. However, extended shelf storage and the harsh environment of the GI tract significantly reduces the number of viable microbes reaching the consumer. Microencapsulation allows beneficial microbes to reach the gut of the consumer in higher numbers, and thus confer greater health benefits.
Solomon, Aharon; Bandhakavi, Sricharan; Jabbar, Sean; Shah, Rena; Beitel, Greg J; Morimoto, Richard I
2004-01-01
The molecular mechanisms that enable multicellular organisms to sense and modulate their responses to hyperosmotic environments are poorly understood. Here, we employ Caenorhabditis elegans to characterize the response of a multicellular organism to osmotic stress and establish a genetic screen to isolate mutants that are osmotic stress resistant (OSR). In this study, we describe the cloning of a novel gene, osr-1, and demonstrate that it regulates osmosensation, adaptation, and survival in hyperosmotic environments. Whereas wild-type animals exposed to hyperosmotic conditions rapidly lose body volume, motility, and viability, osr-1(rm1) mutant animals maintain normal body volume, motility, and viability even upon chronic exposures to high osmolarity environments. In addition, osr-1(rm1) animals are specifically resistant to osmotic stress and are distinct from previously characterized osmotic avoidance defective (OSM) and general stress resistance age-1(hx546) mutants. OSR-1 is expressed in the hypodermis and intestine, and expression of OSR-1 in hypodermal cells rescues the osr-1(rm1) phenotypes. Genetic epistasis analysis indicates that OSR-1 regulates survival under osmotic stress via CaMKII and a conserved p38 MAP kinase signaling cascade and regulates osmotic avoidance and resistance to acute dehydration likely by distinct mechanisms. We suggest that OSR-1 plays a central role in integrating stress detection and adaptation responses by invoking multiple signaling pathways to promote survival under hyperosmotic environments. PMID:15166144
Hondroulis, Evangelia; Movila, Alexandru; Sabhachandani, Pooja; Sarkar, Saheli; Cohen, Noa; Kawai, Toshihisa; Konry, Tania
2017-03-01
Microfluidic droplets are used to isolate cell pairs and prevent crosstalk with neighboring cells, while permitting free motility and interaction within the confined space. Dynamic analysis of cellular heterogeneity in droplets has provided insights in various biological processes. Droplet manipulation methods such as fusion and fission make it possible to precisely regulate the localized environment of a cell in a droplet and deliver reagents as required. Droplet fusion strategies achieved by passive mechanisms preserve cell viability and are easier to fabricate and operate. Here, we present a simple and effective method for the co-encapsulation of polarized M1 and M2 macrophages with Escherichia coli (E. coli) by passive merging in an integrated droplet generation, merging, and docking platform. This approach facilitated live cell profiling of effector immune functions in situ and quantitative functional analysis of macrophage heterogeneity. Biotechnol. Bioeng. 2017;114: 705-709. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
The Role of Earth Observations in "Valuing" Resources and the Environment
NASA Astrophysics Data System (ADS)
MacAuley, M.
2007-12-01
A wide range of decisionmakers and analysts, including government and industry resource managers, financial lenders and insurers, ecologists, conservationists, and economists have long struggled with how to ascribe "value" to environmental resources. Despite other differences among these experts, all agree that accurate measures of the physical status of resources are essential as a basis for valuation. Earth observations from space offer some of these measures and as a result, are becoming an essential component of valuation-oriented resource management. This paper illustrates the use of earth observations in two growing applications: payments for environmental services and index insurance for livestock and agriculture. These applications are taking place both in the United States and in an increasing number of other countries. The paper also highlights issues of concern about these uses of earth observations, including short- and long-term availability of data and quality of data. These concerns call into question the viability of building valuation approaches upon a mere assumption of data supply.
Pilot In-Trail Procedure Validation Simulation Study
NASA Technical Reports Server (NTRS)
Bussink, Frank J. L.; Murdoch, Jennifer L.; Chamberlain, James P.; Chartrand, Ryan; Jones, Kenneth M.
2008-01-01
A Human-In-The-Loop experiment was conducted at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) to investigate the viability of the In-Trail Procedure (ITP) concept from a flight crew perspective, by placing participating airline pilots in a simulated oceanic flight environment. The test subject pilots used new onboard avionics equipment that provided improved information about nearby traffic and enabled them, when specific criteria were met, to request an ITP flight level change referencing one or two nearby aircraft that might otherwise block the flight level change. The subject pilots subjective assessments of ITP validity and acceptability were measured via questionnaires and discussions, and their objective performance in appropriately selecting, requesting, and performing ITP flight level changes was evaluated for each simulated flight scenario. Objective performance and subjective workload assessment data from the experiment s test conditions were analyzed for statistical and operational significance and are reported in the paper. Based on these results, suggestions are made to further improve the ITP.
NASA Technical Reports Server (NTRS)
Minow, Josep I.; Edwards, David L.
2008-01-01
Qualifying materials for use in the space environment is typically accomplished with laboratory exposures to simulated UV/EUV, atomic oxygen, and charged particle radiation environments with in-situ or subsequent measurements of material properties of interest to the particular application. Choice of environment exposure levels are derived from static design environments intended to represent either mean or extreme conditions that are anticipated to be encountered during a mission. The real space environment however is quite variable. Predictions of the on orbit performance of a material qualified to laboratory environments can be done using information on 'space weather' variations in the real environment. This presentation will first review the variability of space environments of concern for material degradation and then demonstrate techniques for using test data to predict material performance in a variety of space environments from low Earth orbit to interplanetary space using historical measurements and space weather models.
RADECS Short Course Session I: The Space Radiation Environment
NASA Technical Reports Server (NTRS)
Xapsos, Michael; Bourdarie, Sebastien
2007-01-01
The presented slides and accompanying paper focus on radiation in the space environment. Since space exploration has begun it has become evident that the space environment is a highly aggressive medium. Beyond the natural protection provided by the Earth's atmosphere, various types of radiation can be encountered. Their characteristics (energy and nature), origins and distributions in space are extremely variable. This environment degrades electronic systems and on-board equipment in particular and creates radiobiological hazards during manned space flights. Based on several years of space exploration, a detailed analysis of the problems on satellites shows that the part due to the space environment is not negligible. It appears that the malfunctions are due to problems linked to the space environment, electronic problems, design problems, quality problems, other issues, and unexplained reasons. The space environment is largely responsible for about 20% of the anomalies occurring on satellites and a better knowledge of that environment could only increase the average lifetime of space vehicles. This naturally leads to a detailed study of the space environment and of the effects that it induces on space vehicles and astronauts. Sources of radiation in the space environment are discussed here and include the solar activity cycle, galactic cosmic rays, solar particle events, and Earth radiation belts. Future challenges for space radiation environment models are briefly addressed.
NASA Technical Reports Server (NTRS)
1992-01-01
The Space Station Furnace Facility (SSFF) is a modular facility for materials research in the microgravity environment of the Space Station Freedom (SSF). The SSFF is designed for crystal growth and solidification research in the fields of electronic and photonic materials, metals and alloys, and glasses and ceramics and will allow for experimental determination of the role of gravitational forces in the solidification process. The facility will provide a capability for basic scientific research and will evaluate the commercial viability of low-gravity processing of selected technologically important materials. The facility is designed to support a complement of furnace modules as outlined in the Science Capabilities Requirements Document (SCRD). The SSFF is a three rack facility that provides the functions, interfaces, and equipment necessary for the processing of the furnaces and consists of two main parts: the SSFF Core Rack and the two Experiment Racks. The facility is designed to accommodate two experimenter-provided furnace modules housed within the two experiment racks, and is designed to operate these two furnace modules simultaneously. The SCRD specifies a wide range of furnace requirements and serves as the basis for the SSFF conceptual design. SSFF will support automated processing during the man-tended operations and is also designed for crew interface during the permanently manned configuration. The facility is modular in design and facilitates changes as required, so the SSFF is adept to modifications, maintenance, reconfiguration, and technology evolution.
Landry, Bemmo Kamdem Ulrich; François, Zambou Ngoufack; Wang, Rui-Yan; Taicheng, Zhu; Li, Yin
2017-12-01
Due to problem of preservation of dairy products which serve as a matrix for probiotics, it is challenging to use these probiotics as food supplements in many developing countries. To determine the suitability of the Lactobacillus strains for exploitation as probiotics in honey, we investigated the effect of their storage on the viability, functionality, and the mechanism associated with their protective effect. Three isolates obtained from our laboratory collection were identified through amplification of the 16S rRNA gene. The viability of the strains in honey at different storage conditions was studied. Three genes (hdc, gtf, and clpL) responsible for the resistance of bacteria in acidic environments were screened. SDS-PAGE analysis of total protein was performed to observe protein profile changes of the strains after exposure to honey. All the three isolates, namely, GGU, GLA51, and GLP56, were identified as Lactobacillus plantarum strains. After 28 days of storage in honey at 4 °C, viable cell concentrations of the three strains were higher than 2.04 × 10 6 CFU/ml. During the same period at room temperature, only the Lactobacillus plantarum GLP56 strain remained viable with a cell concentration of 1.86 × 10 4 CFU/ml. The clpL gene coding for ATPase was detected in all the three strains. The protein of molecular weight ~ 50 kDa was absent in the protein profile of Lactobacillus plantarum GGU after 60 days of storage in honey at 4 °C. The Lactobacillus plantarum GLP56, Lactobacillus plantarum GLA51, and Lactobacillus plantarum GGU strains exposed to honey can withstand acidic environmental stress but their viability declines over time.
Perfusion flow bioreactor for 3D in situ imaging: investigating cell/biomaterials interactions.
Stephens, J S; Cooper, J A; Phelan, F R; Dunkers, J P
2007-07-01
The capability to image real time cell/material interactions in a three-dimensional (3D) culture environment will aid in the advancement of tissue engineering. This paper describes a perfusion flow bioreactor designed to hold tissue engineering scaffolds and allow for in situ imaging using an upright microscope. The bioreactor can hold a scaffold of desirable thickness for implantation (>2 mm). Coupling 3D culture and perfusion flow leads to the creation of a more biomimetic environment. We examined the ability of the bioreactor to maintain cell viability outside of an incubator environment (temperature and pH stability), investigated the flow features of the system (flow induced shear stress), and determined the image quality in order to perform time-lapsed imaging of two-dimensional (2D) and 3D cell culture. In situ imaging was performed on 2D and 3D, culture samples and cell viability was measured under perfusion flow (2.5 mL/min, 0.016 Pa). The visualization of cell response to their environment, in real time, will help to further elucidate the influences of biomaterial surface features, scaffold architectures, and the influence of flow induced shear on cell response and growth of new tissue. (c) 2006 Wiley Periodicals, Inc.
Cascio, Vincent; Gittings, Daniel; Merloni, Kristen; Hurton, Matthew; Laprade, David; Austriaco, Nicanor
2013-02-13
Saccharomyces boulardii is a probiotic yeast routinely used to prevent and to treat gastrointestinal disorders, including the antibiotic-associated diarrhea caused by Clostridium difficile infections. However, only 1-3% of the yeast administered orally is recovered alive in the feces suggesting that this yeast is unable to survive the acidic environment of the gastrointestinal tract. We provide evidence that suggests that S. boulardii undergoes programmed cell death (PCD) in acidic environments, which is accompanied by the generation of reactive oxygen species and the appearance of caspase-like activity. To better understand the mechanism of cell death at the molecular level, we generated microarray gene expression profiles of S. boulardii cells cultured in an acidic environment. Significantly, functional annotation revealed that the up-regulated genes were significantly over-represented in cell death pathways Finally, we show that S-adenosyl-L-methionine (AdoMet), a commercially available, FDA-approved dietary supplement, enhances the viability of S. boulardii in acidic environments, most likely by preventing programmed cell death. In toto, given the observation that many of the proven health benefits of S. boulardii are dependent on cell viability, our data suggests that taking S. boulardii and AdoMet together may be a more effective treatment for gastrointestinal disorders than taking the probiotic yeast alone.
2013-01-01
Background Saccharomyces boulardii is a probiotic yeast routinely used to prevent and to treat gastrointestinal disorders, including the antibiotic-associated diarrhea caused by Clostridium difficile infections. However, only 1-3% of the yeast administered orally is recovered alive in the feces suggesting that this yeast is unable to survive the acidic environment of the gastrointestinal tract. Results We provide evidence that suggests that S. boulardii undergoes programmed cell death (PCD) in acidic environments, which is accompanied by the generation of reactive oxygen species and the appearance of caspase-like activity. To better understand the mechanism of cell death at the molecular level, we generated microarray gene expression profiles of S. boulardii cells cultured in an acidic environment. Significantly, functional annotation revealed that the up-regulated genes were significantly over-represented in cell death pathways Finally, we show that S-adenosyl-L-methionine (AdoMet), a commercially available, FDA-approved dietary supplement, enhances the viability of S. boulardii in acidic environments, most likely by preventing programmed cell death. Conclusions In toto, given the observation that many of the proven health benefits of S. boulardii are dependent on cell viability, our data suggests that taking S. boulardii and AdoMet together may be a more effective treatment for gastrointestinal disorders than taking the probiotic yeast alone. PMID:23402325
NASA Technical Reports Server (NTRS)
Bywaters, K. F.; Mckay, C. P.; Quinn, R. C.
2017-01-01
Introduction: The identification of perchlorate (ClO4(-)) on Mars has led to the possibility that complete redox couples are available for microbial metabolism in contemporary surface environments. Perchlorate-reducing bacteria (PRB) utilize ClO4(-) and chlorate (ClO3(-)) as terminal electron acceptors due to the high reduction potential. Additionally, ClO4(-) salts have been suggested as a possible source of brines on Mars and spectral evidence indicates that the hydration of ClO4(-) salts in the regolith of Martian is linked to the surface recurring slope lineae (RSL). For these reasons PRB may serve as analog organisms for possible life on Mars. However, there is very little information on the viability of PRB in aqueous environments that contain high levels of perchlorate Microorganisms on or near the surface of Mars, such as in the RSL, would potentially be exposed to high-salinity and high ultraviolet radiation environments. Under these extreme conditions, microorganisms must possess mechanisms for maintaining continued high genome fidelity. To assess possible microbial viability in contemporary Mars analog environments we are investigating the tolerance of two PRB strains in aqueous conditions under high UV-C conditions and high ClO4(-) concentrations.
Population genetic diversity and fitness in multiple environments
When a large number of alleles are lost from a population, increases in homozygosity may reduce individual fitness through inbreeding depression. Modest losses of allelic diversity may also negatively impact long-term population viability by reducing the capacity of populations t...
NASA Technical Reports Server (NTRS)
Padgett, Niki; Smith, Trent
2018-01-01
A major factor in long-term human exploration of the solar system is crop growth in microgravity. Space crops can provide fresh, nutritious food to supplement diets for astronauts. Important factors impacting space plant growth and consumption are water delivery to root zone in microgravity, sanitation methods for microbiological safety, plant responses to light quality/spectrum, and identifying optimal edible plants suitable for growth on the International Space Station (ISS). Astronauts growing their own food on the ISS provides necessary data for crop production for long duration deep space missions. The seed film project can be used in Advanced Plant Habitat and Veggies that are currently being utilized on the ISS.
NASA Astrophysics Data System (ADS)
Fendrihan, Sergiu; Grosbacher, Michael; Stan-Lotter, Helga
2010-05-01
The international project ADAPT focuses on the response of different microorganisms to outer space conditions. In 2007, the European Space Agency (ESA) has installed the Columbus laboratory and the exposure facility EXPOSE-E on the International Space Station (ISS). One of the microorganisms that were exposed for 18 months on the ISS is Halococcus dombrowskii strain H4, an extremely halophilic archaeon which was isolated from about 250 million years old alpine salt deposits (1). Ground experiments with Hcc. dombrowskii included irradiation with different wavelengths and doses of UV, using a Hg low pressure lamp, a solar simulator SOL2 (both at the DLR, Cologne) and a Mars UV simulation lamp (2). Cells were embedded in halite crystals which were formed on quartz discs by evaporation of high salt buffers. Methods for analyzing the effects of exposure on Hcc. dombrowskii include the estimation of colony forming units (CFUs), staining for viability with the BacLight LIVE/DEAD kit (2), establishing long term liquid cultures and determination of the formation of cyclobutane pyrimidine dimers (CPDs) with specific antibodies (3). Counting of viable (green) and dead (red) cells showed an apparent preservation of viability following exposure to about 21 kJ/m2 in ground experiments, but the calculated D37 (dose of 37 % survival) for Hcc. dombrowskii was about 400 kJ/m2 in salt crystals (2). CPDs were detected in about 6-8% of cells of Hcc. dombrowskii following exposure to a dose of 3000 kJ/m2 (200-400 nm). Preliminary results with the samples of Hcc. dombrowskii from the ISS suggested preservation of cellular morphology and stainability with the fluorescent dyes of the LIVE/DEAD kit, as well as formation of CPDs in about 2-3 % of the cells. The determination of the survival of cells by measuring proliferation requires months of incubation; data can be expected in May or June 2010. (1) Stan-Lotter H, Pfaffenhuemer M, Legat A, Busse H-J, Radax C, Gruber C (2002) Halococcus dombrowskii sp. nov., an archaeal isolate from a Permian alpine salt deposit. Int J Syst Evol Microbiol 52, 1807-1814. (2) Fendrihan S, Bérces A, Lammer H, Musso M, Rontó G, Polacsek TK, Holzinger A, Kolb C, Stan-Lotter H (2009) Investigating the effects of simulated Martian ultraviolet radiation on Halococcus dombrowskii and other extremely halophilic archaebacteria. Astrobiology 9, 104-112. (3) Peccia J, Hernandez M (2002) Rapid immunoassays for detection of UV-induced cyclobutane pyrimidine dimers in whole bacterial cells. Appl Environ Microbiol 68, 2542-2549.
Ecology and Thermal Inactivation of Microbes in and on Interplanetary Space Vehicle Components
NASA Technical Reports Server (NTRS)
Reyes, A. L.; Campbell, J. E.
1975-01-01
Spores of Bacillus subtilis var. niger were heat treated in aqueous suspension at 90 C, and observed for morphological changes and loss of viability. The 5 logs reduction that occurred in broth at 90 min required 210 min in buffered water. Five characteristic changes observed after spores were exposed 120 min at 90 C in buffered water were: (1) 90% loss of spore viability, (2) 5% stainability, (3) 76% increase in spore size (as observed by scanning electron microscopy), (4) 21% of spore areas remaining refractile, and (5) an increase of 77% in packed cell volume (PCV). Stainability and PCV changes were recognized only after secondary exposure in broth. Extended heat exposure (3 h at 90 C) resulted in 99% loss of spore viability and 99% loss of stainability. After 4 hours of heat exposure, 90% of the cells disintegrated. These results suggest that early germinal changes occurr concurrently with the early changes in the heat susceptibility of dormant spores.
Chae, Yooeun; Kim, Dokyung; An, Youn-Joo
2016-12-01
Although fluoride occurs naturally in the environment, excessive amounts of fluoride in freshwater and terrestrial ecosystems can be harmful. We evaluated the toxicity of fluoride compounds on the growth, viability, and photosynthetic capacity of freshwater (Chlamydomonas reinhardtii and Pseudokirchneriella subcapitata) and terrestrial (Chlorococcum infusionum) algae. To measure algal growth inhibition, a flow cytometric method was adopted (i.e., cell size, granularity, and auto-fluorescence measurements), and algal yield was calculated to assess cell viability. Rhodamine123 and fluorescein diacetate were used to evaluate mitochondrial membrane potential (MMA, ΔΨ m ) and cell permeability. Nine parameters related to the photosynthetic capacity of algae were also evaluated. The results indicated that high concentrations of fluoride compounds affected cell viability, cell organelle potential, and photosynthetic functions. The cell viability measurements of the three algal species decreased, but apoptosis was only observed in C. infusionum. The MMA (ΔΨ m ) of cells exposed to fluoride varied among species, and the cell permeability of the three species generally decreased. The decrease in the photosynthetic activity of algae may be attributable to the combination of fluoride ions (F - ) with magnesium ions (Mg 2+ ) in chlorophyll. Our results therefore provide strong evidence for the potential risks of fluoride compounds to microflora and microfauna in freshwater and terrestrial ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sumarmin, R.; Huda, N. K.; Yuniarti, E.
2018-04-01
The uncontrol using of pesticides, harmful to the environment, health, and it would have impact to non-target animal as earthworm. This study describes the effect of the Dicofol to cocoon production and viability of earthworm Pontoscolex corethrurus Fr. Mull., has been done in-July - Augustus 2016 at the zoology laboratory of Biology Department of Universitas Negeri Padang. The experiment used the Completely Randomized Design (4 treatments 6 replications). The treatments are with 0 g / l (P1), 0.002 g / L (P2), 0.004 g / L (P3), and 0.006 g / L (P4) and 0.008 g / L of Dicofol that diluted to water. The Data of production and viability of earthworm cocoons Pontoscolex corethrurus Fr. Mull collected during 30 days in alternate day. Data analyzed by ANOVA and Duncan New Multiple Range Test at p <0.05. The results Showed that the average number of cocoons production at P1 30 cocoons (the highest), 16 cocoons P2, P3 7 cocoons, and the P4 and P5 0 cocoons (the Lowest). The average percentage of cocoons viability were highest in P1, and P2 (100%); P3 (10%) and the cancel at P4 and P5 (0%). It can conclude that the pesticide Dicofol decreased the production and viability of the earthworm cocoons Pontoscolex corethrurus Fr. Mull.
Yan, Wenjing; Kanno, Chihiro; Oshima, Eiki; Kuzuma, Yukiko; Kim, Sung Woo; Bai, Hanako; Takahashi, Masashi; Yanagawa, Yojiro; Nagano, Masashi; Wakamatsu, Jun-Ichi; Kawahara, Manabu
2017-10-01
Improving sperm motility and viability are major goals to improve efficiency in the poultry industry. In this study, the effects of supplemental dietary turmeric by-product (TBP) from commercial turmeric production on sperm motility, viability, and antioxidative status were examined in domestic fowl. Mature Rhode Island Red roosters were divided into two groups - controls (groupC) without TBP administration and test subjects (groupT) fed a basal diet supplemented with 0.8g of TBP/day in a temperature-controlled rearing facility (Experiment 1) and 1.6g/day under heat stress (Experiment 2) for 4 weeks. In Experiment 1, TBP dietary supplementation increased the sperm motility variables straight-line velocity, curvilinear velocity, and linearity based on a computer-assisted semen analysis, 2 weeks following TBP supplementation. In Experiment 2, using flow cytometry, sperm viability at 3 and 4 weeks following TBP supplementation was greater in Group T than C, and this increase was consistent with a reduction in reactive oxygen species (ROS) production at 2 and 4 weeks. The results of both experiments clearly demonstrate that dietary supplementation with TBP enhanced sperm motility in the controlled-temperature conditions as well as sperm viability, and reduced ROS generation when heat stress prevailed. Considering its potential application in a range of environments, TBP may serve as an economical and potent antioxidant to improve rooster fertility. Copyright © 2017 Elsevier B.V. All rights reserved.
Multiscale Monte Carlo equilibration: Pure Yang-Mills theory
Endres, Michael G.; Brower, Richard C.; Orginos, Kostas; ...
2015-12-29
In this study, we present a multiscale thermalization algorithm for lattice gauge theory, which enables efficient parallel generation of uncorrelated gauge field configurations. The algorithm combines standard Monte Carlo techniques with ideas drawn from real space renormalization group and multigrid methods. We demonstrate the viability of the algorithm for pure Yang-Mills gauge theory for both heat bath and hybrid Monte Carlo evolution, and show that it ameliorates the problem of topological freezing up to controllable lattice spacing artifacts.
Wu, Yang; Sriram, Gopu; Fawzy, Amr S; Fuh, Jerry Yh; Rosa, Vinicius; Cao, Tong; Wong, Yoke San
2016-08-01
Biological function of adherent cells depends on the cell-cell and cell-matrix interactions in three-dimensional space. To understand the behavior of cells in 3D environment and their interactions with neighboring cells and matrix requires 3D culture systems. Here, we present a novel 3D cell carrier scaffold that provides an environment for routine 3D cell growth in vitro We have developed thin, mechanically stable electrohydrodynamic jet (E-jet) 3D printed polycaprolactone and polycaprolactone/Chitosan macroporous scaffolds with precise fiber orientation for basic 3D cell culture application. We have evaluated the application of this technology by growing human embryonic stem cell-derived fibroblasts within these 3D scaffolds. Assessment of cell viability and proliferation of cells seeded on polycaprolactone and polycaprolactone/Chitosan 3D-scaffolds show that the human embryonic stem cell-derived fibroblasts could adhere and proliferate on the scaffolds over time. Further, using confocal microscopy we demonstrate the ability to use fluorescence-labelled cells that could be microscopically monitored in real-time. Hence, these 3D printed polycaprolactone and polycaprolactone/Chitosan scaffolds could be used as a cell carrier for in vitro 3D cell culture-, bioreactor- and tissue engineering-related applications in the future. © The Author(s) 2016.
CHARACTERIZATION OF FRACTURED BEDROCK FOR STEAM INJECTION
The most difficult setting in which to conduct groundwater remediation is that where chlorinated solvents have penetrated fractured bedrock. To demonstrate the potential viability of steam injection as a means of groundwater clean-up in this type of environment, steam will be in...
Population Genetic Diversity and Fitness in Multiple Environments(BMCEB)
When a large number of alleles are lost from a population, increases in individual homozygosity may reduce individual fitness through inbreeding depression. Modest losses of allelic diversity may also negatively impact long-term population viability by reducing the capacity of p...
CHLOROLYSIS APPLIED TO THE CONVERSION OF CHLOROCARBON RESIDUES
This program was initiated with the objective of determining the technical feasibility and economic viability of eliminating, within the United States, the discharge of large quantities of chlorocarbon residues which are harmful to the environment through the use of a German proc...
Atmospheric Habitable Zones in Y Dwarf Atmospheres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yates, Jack S.; Palmer, Paul I.; Biller, Beth
We use a simple organism lifecycle model to explore the viability of an atmospheric habitable zone (AHZ), with temperatures that could support Earth-centric life, which sits above an environment that does not support life. To illustrate our model, we use a cool Y dwarf atmosphere, such as WISE J085510.83–0714442.5, whose 4.5–5.2 μ m spectrum shows absorption features consistent with water vapor and clouds. We allow organisms to adapt to their atmospheric environment (described by temperature, convection, and gravity) by adopting different growth strategies that maximize their chance of survival and proliferation. We assume a constant upward vertical velocity through themore » AHZ. We found that the organism growth strategy is most sensitive to the magnitude of the atmospheric convection. Stronger convection supports the evolution of more massive organisms. For a purely radiative environment, we find that evolved organisms have a mass that is an order of magnitude smaller than terrestrial microbes, thereby defining a dynamical constraint on the dimensions of life that an AHZ can support. Based on a previously defined statistical approach, we infer that there are of the order of 10{sup 9} cool Y brown dwarfs in the Milky Way, and likely a few tens of these objects are within 10 pc from Earth. Our work also has implications for exploring life in the atmospheres of temperate gas giants. Consideration of the habitable volumes in planetary atmospheres significantly increases the volume of habitable space in the galaxy.« less
NASA Astrophysics Data System (ADS)
Brandt, Annette; Posthoff, Eva; de Vera, Jean-Pierre; Onofri, Silvano; Ott, Sieglinde
2016-06-01
The lichen Xanthoria elegans has been exposed to space and simulated Mars-analogue environment in the Lichen and Fungi Experiment (LIFE) on the EXPOSE-E facility at the International Space Station (ISS). This long-term exposure of 559 days tested the ability of various organisms to cope with either low earth orbit (LEO) or Mars-analogue conditions, such as vacuum, Mars-analogue atmosphere, rapid temperature cycling, cosmic radiation of up to 215 ± 16 mGy, and insolation of accumulated doses up to 4.87 GJm-2, including up to 0.314 GJm-2 of UV irradiation. In a previous study, X. elegans demonstrated considerable resistance towards these conditions by means of photosynthetic activity as well as by post-exposure metabolic activity of 50-80 % in the algal and 60-90 % in the fungal symbiont (Brandt et al. Int J Astrobiol 14(3):411-425, 2015). The two objectives of the present study were complementary: First, to verify the high post-exposure viability by using a qualitative cultivation assay. Second, to characterise the cellular damages by transmission electron microscopy (TEM) which were caused by the space and Mars-analogue exposure conditions of LIFE. Since the algal symbiont of lichens is considered as the more susceptible partner (de Vera and Ott 2010), the analyses focused on the photobiont. The study demonstrated growth and proliferation of the isolated photobiont after all exposure conditions of LIFE. The ultrastructural analysis of the algal cells provided an insight to cellular damages caused by long-term exposure and highlighted that desiccation-induced breakdown of cellular integrity is more pronounced under the more severe space vacuum than under Mars-analogue atmospheric conditions. In conclusion, desiccation-induced damages were identified as a major threat to the photobiont of X. elegans. Nonetheless, a fraction of the photobiont cells remained cultivable after all exposure conditions tested in LIFE.
Brandt, Annette; Posthoff, Eva; de Vera, Jean-Pierre; Onofri, Silvano; Ott, Sieglinde
2016-06-01
The lichen Xanthoria elegans has been exposed to space and simulated Mars-analogue environment in the Lichen and Fungi Experiment (LIFE) on the EXPOSE-E facility at the International Space Station (ISS). This long-term exposure of 559 days tested the ability of various organisms to cope with either low earth orbit (LEO) or Mars-analogue conditions, such as vacuum, Mars-analogue atmosphere, rapid temperature cycling, cosmic radiation of up to 215 ± 16 mGy, and insolation of accumulated doses up to 4.87 GJm(-2), including up to 0.314 GJm(-2) of UV irradiation. In a previous study, X. elegans demonstrated considerable resistance towards these conditions by means of photosynthetic activity as well as by post-exposure metabolic activity of 50-80% in the algal and 60-90% in the fungal symbiont (Brandt et al. Int J Astrobiol 14(3):411-425, 2015). The two objectives of the present study were complementary: First, to verify the high post-exposure viability by using a qualitative cultivation assay. Second, to characterise the cellular damages by transmission electron microscopy (TEM) which were caused by the space and Mars-analogue exposure conditions of LIFE. Since the algal symbiont of lichens is considered as the more susceptible partner (de Vera and Ott 2010), the analyses focused on the photobiont. The study demonstrated growth and proliferation of the isolated photobiont after all exposure conditions of LIFE. The ultrastructural analysis of the algal cells provided an insight to cellular damages caused by long-term exposure and highlighted that desiccation-induced breakdown of cellular integrity is more pronounced under the more severe space vacuum than under Mars-analogue atmospheric conditions. In conclusion, desiccation-induced damages were identified as a major threat to the photobiont of X. elegans. Nonetheless, a fraction of the photobiont cells remained cultivable after all exposure conditions tested in LIFE.
The Influence of Free Space Environment in the Mission Life Cycle: Material Selection
NASA Technical Reports Server (NTRS)
Edwards, David L.; Burns, Howard D.; de Groh, Kim K.
2014-01-01
The natural space environment has a great influence on the ability of space systems to perform according to mission design specification. Understanding the natural space environment and its influence on space system performance is critical to the concept formulation, design, development, and operation of space systems. Compatibility with the natural space environment is a primary factor in determining the functional lifetime of the space system. Space systems being designed and developed today are growing in complexity. In many instances, the increased complexity also increases its sensitivity to space environmental effects. Sensitivities to the natural space environment can be tempered through appropriate design measures, material selection, ground processing, mitigation strategies, and/or the acceptance of known risks. The design engineer must understand the effects of the natural space environment on the space system and its components. This paper will discuss the influence of the natural space environment in the mission life cycle with a specific focus on the role of material selection.
Dianawati, Dianawati; Mishra, Vijay; Shah, Nagendra P
2016-06-01
Production of probiotic food supplements that are shelf-stable at room temperature has been developed for consumer's convenience, but information on the stability in acid and bile environment is still scarce. Viability and acid and bile tolerance of microencapsulated Bifidobacterium spp. and Lactobacillus acidophilus and 4 commercial probiotic supplements were evaluated. Bifidobacterium and L. acidophilus were encapsulated with casein-based emulsion using spray drying. Water activity (aw ) of the microspheres containing Bifidobacterium or L. acidophilus (SD GM product) was adjusted to 0.07 followed by storage at 25 °C for 10 wk. Encapsulated Bifidobacterium spp. and Lactobacillus acidophilus and 4 commercial probiotic supplement products (AL, GH, RE, and BM) were tested. Since commercial probiotic products contained mixed bacteria, selective media MRS-LP (containing L-cysteine and Na-propionate) and MRS-clindamycin agar were used to grow Bifidobacterium spp. or L. acidophilus, respectively, and to inhibit the growth of other strains. The results showed that aw had a strong negative correlation with the viability of dehydrated probiotics of the 6 products. Viable counts of Bifidobacterium spp. and L. acidophilus of SD GM, AL, and GH were between 8.3 and 9.2 log CFU/g, whereas that of BM and RE were between 6.7 and 7.3 log CFU/g. Bifidobacterium in SD GM, in AL, and in GH products and L. acidophilus in SD GM, in AL, and in BM products demonstrated high tolerance to acid. Most of dehydrated probiotic bacteria were able to survive in bile environment except L. acidophilus in RE product. Exposure to gastric juice influenced bacterial survivability in subsequent bile environment. © 2016 Institute of Food Technologists®
Women's health in spaceflight.
Drudi, Laura; Grenon, S Marlene
2014-06-01
To review the current state of knowledge with regards to clinical challenges related to women's health during spaceflight. Articles were reviewed relevant to "women", "sex," and "gender" in "microgravity," "weightlessness," and "spaceflight" in the English and Russian languages. There were 50 papers identified. Studies have shown that crewmembers suffer from space motion sickness, but gender discrepancies have not been explored. Nearly all women experience orthostatic intolerance in space, which may be due to differences in female cardiovascular response. Immunosuppression in spaceflight results in susceptibility to opportunistic infections, but no studies have investigated gender differences. Finally, radiation exposure and germ cell viability influence the reproductive health of astronauts. With changes in space access offered by commercial space activities, research areas devoted to women's health in microgravity should become one of the priorities for safe space exploratory efforts.
Growth of cyanobacteria on Martian Regolith Simulant after exposure to vacuum
NASA Astrophysics Data System (ADS)
Arai, Mayumi; Sato, Seigo; Ohmori, Masayuki; Tomita-Yokotani, Kaori; Hashimoto, Hirofumi; Yamashita, Masamichi
Habitation on Mars is one of our challenges in this century. The growth of cyanobacteria on Martian Regolith Simulant (MRS) was studied with two species of terrestrial cyanobacteria, Nostoc, and one species of other cyanobacterium, Synechosystis. Their vacuum tolerances was examined in order to judge feasibility of the use of cyanobacteria to creat habitable environment on a distant planet. The viability of cyanobacteria tested was evaluated by the microscopic observation after staining by FDA (fluorescein diacetate). A part of them were also re-incubated again in a liquid culture medium, and viability and the chlorophyll production were examined in detail. Nostoc was found to grow for over 140 days with their having normal function of chlorophyll synthesis on the MRS. After the exposure to high vacuum environment (10-5 Pa) for a year, Nostoc sp. started growth. Chlorophyll was produced after this vacuum exposure as well. The A'MED (Arai's Mars Ecosystem Dome, A'MED) is designed to install on Mars for conducting agricultural production in it. We performed the fundamental experiment with MRS. These results show a possibility that cyanobacteria could adapt to MRS, and grow under the low pressure environment expected on Mars.
[Exploratory study on the micro-remodeling of dermal tissue].
Jiang, Yu-zhi; Ding, Gui-fu; Lu, Shu-liang
2009-10-01
To explore the effect of three-dimensional structure of dermal matrix on biological behavior of fibroblasts (Fb) in the microcosmic perspective. The three-dimensional structure of dermal tissue was analyzed by plane geometric and trigonometric function. Microdots structure array with cell adhesion effect was designed by computer-assisted design software according to the adhesive and non-adhesive components of dermal tissue. Four sizes (8 microm x 3 microm, space 6 microm; 16 microm x 3 microm, space 6 microm; 16 microm x 5 microm, space 8 microm; 20 microm x 3 microm, space 2 microm) of micropier grid used for cell culture (MPGCC) with cell-adhesive microdots, built up with micro-pattern printing and molecule self-assembly method were used to culture dermal Fb. Fb cultured with cell culture matrix without micropier grid was set up as control. The expression of skeleton protein (alpha-SMA) of Fb, cell viability and cell secretion were detected with immunohistochemistry, fluorescent immunohistochemistry, MTT test and the hydroxyproline content assay. The three-dimensional structure of dermal tissue could be simulated by MPGCC as shown in arithmetic analysis. Compared with those of control group [(12 +/- 3)% and (0.53 +/- 0.03) microg/mg, (0.35 +/- 0.04)], the expression of alpha-SMA [(49 +/- 3)%, (61 +/- 3)%, (47 +/- 4)%, (51 +/- 3)%] and the content of hydroxyproline [(0.95 +/- 0.04), (0.87 +/- 0.03), (0.81 +/- 0.03), (0.77 +/- 0.03) microg/mg] were increased significantly (P < 0.05), the cell viability of Fb (0.12 +/- 0.03, 0.13 +/- 0.04, 0.14 +/- 0.03, 0.19 +/- 0.03) cultured in MPGCC was decreased significantly (P < 0.05). When the parameters of micropier grid were changed, the expression of alpha-SMA, the cell viability and the content of hydroxyproline of Fb cultured in four sizes of MPGCC were also significantly changed as compared with one another (P < 0.05). MPGCC may be the basic functional unit of dermal template, or unit of dermal template to call. Different three-dimensional circumstances for dermal tissue can result in different template effect and wound healing condition.
GeneLab: Multi-Omics Investigation of Rodent Research-1 Bio-Banked Tissues
NASA Technical Reports Server (NTRS)
Lai, San-Huei; Boyko, Valery; Chakravarty, Kaushik; Chen, Rick; Dueck, Sandra; Berrios, Daniel C.; Fogle, Homer; Marcu, Oana; Timucin, Linda; Reinsch, Sigrid;
2016-01-01
NASAs Rodent Research (RR) project is playing a critical role in advancing biomedical research on the physiological effects of space environments. Due to the limited resources for conducting biological experiments aboard the International Space Station (ISS), it is imperative to use crew time efficiently while maximizing high-quality science return. NASAs GeneLab project has as its primary objectives to 1) further increase the value of these experiments using a multi-omics, systems biology-based approach, and 2) disseminate these data without restrictions to the scientific community. The current investigation assessed viability of RNA, DNA, and protein extracted from archived RR-1 tissue samples for epigenomic, transcriptomic, and proteomic assays. During the first RR spaceflight experiment, a variety of tissue types were harvested from subjects, snap-frozen or RNAlater-preserved, and then stored at least a year at -80OC after return to Earth. They were then prioritized for this investigation based on likelihood of significant scientific value for spaceflight research. All tissues were made available to GeneLab through the bio-specimen sharing program managed by the Ames Life Science Data Archive and included mouse adrenal glands, quadriceps, gastrocnemius, tibialis anterior, extensor digitorum longus, soleus, eye, and kidney. We report here protocols for and results of these tissue extractions, and thus, the feasibility and value of these kinds of omics analyses. In addition to providing additional opportunities for investigation of spaceflight effects on the mouse transcriptome and proteome in new kinds of tissues, our results may also be of value to program managers for the prioritization of ISS crew time for rodent research activities. Support from the NASA Space Life and Physical Sciences Division and the International Space Station Program is gratefully acknowledged.
The field-space metric in spiral inflation and related models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erlich, Joshua; Olsen, Jackson; Wang, Zhen
2016-09-22
Multi-field inflation models include a variety of scenarios for how inflation proceeds and ends. Models with the same potential but different kinetic terms are common in the literature. We compare spiral inflation and Dante’s inferno-type models, which differ only in their field-space metric. We justify a single-field effective description in these models and relate the single-field description to a mass-matrix formalism. We note the effects of the nontrivial field-space metric on inflationary observables, and consequently on the viability of these models. We also note a duality between spiral inflation and Dante’s inferno models with different potentials.
Perfluorooctanoic acid (PFOA) is a compound which persists and is found ubiquitously in the environment, wildlife and humans. PFOA affects growth, development and viability of offspring of mice exposed during pregnancy. This study segregates the contributions of gestational and...
Do School Markets Serve the Public Interest? More Lessons from England.
ERIC Educational Resources Information Center
Bauch, Patricia A.
2000-01-01
Philip Woods and Carl Bagley's "School Choice and Competition" (Routledge 1998) evaluates the viability of allowing parents to choose the school their children attend within a decentralized, market environment. Despite methodological shortcomings, the authors argue effectively for schools' resistance to "competitive" social…
Sustainability initiatives in agriculture: The role of science
USDA-ARS?s Scientific Manuscript database
A sustainable society is one that can meet its needs while preserving natural resources for future generations. Key components of this goal are production of a robust food supply while protecting human health and the environment, conserving precious resources, and balancing economic viability. Rapid...
The Viability of Online Education for Professional Development
ERIC Educational Resources Information Center
Carr, Vivienne B.
2010-01-01
Information technology is influencing continuing education for K-12 administrators and in-service teachers, especially with regard to asynchronous education for professional development. Implementation of instructional technology applications has required a major restructuring of the learning environment. The restructuring has included the use of…
A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars
NASA Technical Reports Server (NTRS)
Grotzinger, J. P.; Sumner, D. Y.; Kah, L. C.; Stack, K.; Gupta, S.; Edgar, L.; Rubin, D.; Lewis, K.; Schieber, J.; Mangold, N.;
2013-01-01
The Curiosity rover discovered fine-grained sedimentary rocks, which are inferred to represent an ancient lake and preserve evidence of an environment that would have been suited to support a martian biosphere founded on chemolithoautotrophy. This aqueous environment was characterized by neutral pH, low salinity, and variable redox states of both iron and sulfur species. Carbon, hydrogen, oxygen, sulfur, nitrogen, and phosphorus were measured directly as key biogenic elements; by inference, phosphorus is assumed to have been available. The environment probably had a minimum duration of hundreds to tens of thousands of years. These results highlight the biological viability of fluvial-lacustrine environments in the post-Noachian history of Mars.
A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale crater, Mars.
Grotzinger, J P; Sumner, D Y; Kah, L C; Stack, K; Gupta, S; Edgar, L; Rubin, D; Lewis, K; Schieber, J; Mangold, N; Milliken, R; Conrad, P G; DesMarais, D; Farmer, J; Siebach, K; Calef, F; Hurowitz, J; McLennan, S M; Ming, D; Vaniman, D; Crisp, J; Vasavada, A; Edgett, K S; Malin, M; Blake, D; Gellert, R; Mahaffy, P; Wiens, R C; Maurice, S; Grant, J A; Wilson, S; Anderson, R C; Beegle, L; Arvidson, R; Hallet, B; Sletten, R S; Rice, M; Bell, J; Griffes, J; Ehlmann, B; Anderson, R B; Bristow, T F; Dietrich, W E; Dromart, G; Eigenbrode, J; Fraeman, A; Hardgrove, C; Herkenhoff, K; Jandura, L; Kocurek, G; Lee, S; Leshin, L A; Leveille, R; Limonadi, D; Maki, J; McCloskey, S; Meyer, M; Minitti, M; Newsom, H; Oehler, D; Okon, A; Palucis, M; Parker, T; Rowland, S; Schmidt, M; Squyres, S; Steele, A; Stolper, E; Summons, R; Treiman, A; Williams, R; Yingst, A
2014-01-24
The Curiosity rover discovered fine-grained sedimentary rocks, which are inferred to represent an ancient lake and preserve evidence of an environment that would have been suited to support a martian biosphere founded on chemolithoautotrophy. This aqueous environment was characterized by neutral pH, low salinity, and variable redox states of both iron and sulfur species. Carbon, hydrogen, oxygen, sulfur, nitrogen, and phosphorus were measured directly as key biogenic elements; by inference, phosphorus is assumed to have been available. The environment probably had a minimum duration of hundreds to tens of thousands of years. These results highlight the biological viability of fluvial-lacustrine environments in the post-Noachian history of Mars.
2004-01-30
KENNEDY SPACE CENTER, FLA. - An engine pulls the container enclosing a segment of a solid rocket booster from the Rotation Processing and Surge Facility. The container will join others on the main track for a trip to Utah where the segments will undergo firing. The segments were part of the STS-114 stack. It is the first time actual flight segments that had been stacked for flight in the VAB are being returned for testing. They will undergo firing, which will enable inspectors to check the viability of the solid and verify the life expectancy for stacked segments.
Entrepreneurship management in health services: an integrative model.
Guo, Kristina L
2006-01-01
This research develops an integrated systems model of entrepreneurship management as a method for achieving health care organizational survival and growth. Specifically, it analyzes current health care environment challenges, identifies roles of managers and discusses organizational theories that are relevant to the health care environment, outlines the role of entrepreneurship in health care, and describes the entrepreneurial manager in the entrepreneurial management process to produce desirable organizational outcomes. The study concludes that as current health care environment continues to show intense competition, entrepreneurial managers are responsible for creating innovations, managing change, investing in resources, and recognizing opportunities in the environment to increase organizational viability.
Non-destructive monitoring of viability in an ex vivo organ culture model of osteochondral tissue.
Elson, K M; Fox, N; Tipper, J L; Kirkham, J; Hall, R M; Fisher, J; Ingham, E
2015-06-30
Organ culture is an increasingly important tool in research, with advantages over monolayer cell culture due to the inherent natural environment of tissues. Successful organ cultures must retain cell viability. The aim of this study was to produce viable and non-viable osteochondral organ cultures, to assess the accumulation of soluble markers in the conditioned medium for predicting tissue viability. Porcine femoral osteochondral plugs were cultured for 20 days, with the addition of Triton X-100 on day 6 (to induce necrosis), camptothecin (to induce apoptosis) or no toxic additives. Tissue viability was assessed by the tissue destructive XTT (2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxyanilide tetrazolium salt) assay method and LIVE/DEAD® staining of the cartilage at days 0, 6 and 20. Tissue structure was assessed by histological evaluation using haematoxylin & eosin and safranin O. Conditioned medium was assessed every 3-4 days for glucose depletion, and levels of lactate dehydrogenase (LDH), alkaline phosphatase (AP), glycosaminoglycans (GAGs), and matrix metalloproteinase (MMP)-2 and MMP-9. Necrotic cultures immediately showed a reduction in glucose consumption, and an immediate increase in LDH, GAG, MMP-2 and MMP-9 levels. Apoptotic cultures showed a delayed reduction in glucose consumption and delayed increase in LDH, a small rise in MMP-2 and MMP-9, but no significant effect on GAGs released into the conditioned medium. The data showed that tissue viability could be monitored by assessing the conditioned medium for the aforementioned markers, negating the need for tissue destructive assays. Physiologically relevant whole- or part-joint organ culture models, necessary for research and pre-clinical assessment of therapies, could be monitored this way, reducing the need to sacrifice tissues to determine viability, and hence reducing the sample numbers necessary.
NASA Astrophysics Data System (ADS)
Feizi, Alborz; Zhang, Yibo; Greenbaum, Alon; Guziak, Alex; Luong, Michelle; Chan, Raymond Yan Lok; Berg, Brandon; Ozkan, Haydar; Luo, Wei; Wu, Michael; Wu, Yichen; Ozcan, Aydogan
2017-03-01
Research laboratories and the industry rely on yeast viability and concentration measurements to adjust fermentation parameters such as pH, temperature, and pressure. Beer-brewing processes as well as biofuel production can especially utilize a cost-effective and portable way of obtaining data on cell viability and concentration. However, current methods of analysis are relatively costly and tedious. Here, we demonstrate a rapid, portable, and cost-effective platform for imaging and measuring viability and concentration of yeast cells. Our platform features a lens-free microscope that weighs 70 g and has dimensions of 12 × 4 × 4 cm. A partially-coherent illumination source (a light-emitting-diode), a band-pass optical filter, and a multimode optical fiber are used to illuminate the sample. The yeast sample is directly placed on a complementary metal-oxide semiconductor (CMOS) image sensor chip, which captures an in-line hologram of the sample over a large field-of-view of >20 mm2. The hologram is transferred to a touch-screen interface, where a trained Support Vector Machine model classifies yeast cells stained with methylene blue as live or dead and measures cell viability as well as concentration. We tested the accuracy of our platform against manual counting of live and dead cells using fluorescent exclusion staining and a bench-top fluorescence microscope. Our regression analysis showed no significant difference between the two methods within a concentration range of 1.4 × 105 to 1.4 × 106 cells/mL. This compact and cost-effective yeast analysis platform will enable automatic quantification of yeast viability and concentration in field settings and resource-limited environments.
Halonen, Niina; Kilpijärvi, Joni; Sobocinski, Maciej; Datta-Chaudhuri, Timir; Hassinen, Antti; Prakash, Someshekar B; Möller, Peter; Abshire, Pamela; Kellokumpu, Sakari; Lloyd Spetz, Anita
2016-01-01
Cell viability monitoring is an important part of biosafety evaluation for the detection of toxic effects on cells caused by nanomaterials, preferably by label-free, noninvasive, fast, and cost effective methods. These requirements can be met by monitoring cell viability with a capacitance-sensing integrated circuit (IC) microchip. The capacitance provides a measurement of the surface attachment of adherent cells as an indication of their health status. However, the moist, warm, and corrosive biological environment requires reliable packaging of the sensor chip. In this work, a second generation of low temperature co-fired ceramic (LTCC) technology was combined with flip-chip bonding to provide a durable package compatible with cell culture. The LTCC-packaged sensor chip was integrated with a printed circuit board, data acquisition device, and measurement-controlling software. The packaged sensor chip functioned well in the presence of cell medium and cells, with output voltages depending on the medium above the capacitors. Moreover, the manufacturing of microfluidic channels in the LTCC package was demonstrated.
NASA Technical Reports Server (NTRS)
Ball, Natalie; Kagawa, Hiromi; Hindupur, Aditya; Hogan, John
2017-01-01
Long-duration space missions will benefit from closed-loop life support technologies that minimize mass, volume, and power as well as decrease reliance on Earth-based resupply. A system for In situ production of essential vitamins and nutrients can address the documented problem of degradation of stored food and supplements. Research has shown that the edible yeast Saccharomyces cerevisiae can be used as an on-demand system for the production of various compounds that are beneficial to human health. A critical objective in the development of this approach for long-duration space missions is the effective storage of the selected microorganisms. This research investigates the effects of different storage methods on survival rates of the non-sporulating probiotic S. boulardii, and S. cerevisiae spores and vegetative cells. Dehydration has been shown to increase long-term yeast viability, which also allows increased shelf-life and reduction in mass and volume. The process of dehydration causes detrimental effects on vegetative cells, including oxidative damage and membrane disruption. To maximize cell viability, various dehydration methods are tested here, including lyophilization (freeze-drying), air drying, and dehydration by vacuum. As a potential solution to damage caused by lyophilization, the efficacy of various cryoprotectants was tested. Furthermore, in an attempt to maintain higher survival rates, the effect of temperature during long-term storage was investigated. Data show spores of the wild-type strain to be more resilient to dehydration-related stressors than vegetative cells of either strain, and maintain high viability rates even after one year at room temperature. In the event that engineering the organism to produce targeted nutrient compounds interferes with effective sporulation of S. cerevisiae, a more robust method for improving vegetative cell storage is being sought. Therefore, anhydrobiotic engineering of S. cerevisiae and S. boulardii is being conducted
Records Management with Optical Disk Technology: Now Is the Time.
ERIC Educational Resources Information Center
Retherford, April; Williams, W. Wes
1991-01-01
The University of Kansas record management system using optical disk storage in a network environment and the selection process used to meet existing hardware and budgeting requirements are described. Viability of the technology, document legality, and difficulties encountered during implementation are discussed. (Author/MSE)
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-22
... its continued economic viability. Additionally, as explained above, TASCO did not provide or... economic and political realities. Specifically the comment states that the appropriate focus for visibility..., and our environment while promoting economic growth, innovation, competitiveness, and job creation...
ERIC Educational Resources Information Center
Padron, Eduardo J.
2009-01-01
Today, America faces a shifting and demanding economic and workforce environment. Americans know that the workplace is changing but not where it's heading. Each demonstration of the latest breakthrough technology can have enormous impact on the society, opening up entire new industries and markets and instantly limiting the viability of others. Of…
Allaman, Igor; Gavillet, Mathilde; Bélanger, Mireille; Laroche, Thierry; Viertl, David; Lashuel, Hilal A; Magistretti, Pierre J
2010-03-03
Amyloid-beta (Abeta) peptides play a key role in the pathogenesis of Alzheimer's disease and exert various toxic effects on neurons; however, relatively little is known about their influence on glial cells. Astrocytes play a pivotal role in brain homeostasis, contributing to the regulation of local energy metabolism and oxidative stress defense, two aspects of importance for neuronal viability and function. In the present study, we explored the effects of Abeta peptides on glucose metabolism in cultured astrocytes. Following Abeta(25-35) exposure, we observed an increase in glucose uptake and its various metabolic fates, i.e., glycolysis (coupled to lactate release), tricarboxylic acid cycle, pentose phosphate pathway, and incorporation into glycogen. Abeta increased hydrogen peroxide production as well as glutathione release into the extracellular space without affecting intracellular glutathione content. A causal link between the effects of Abeta on glucose metabolism and its aggregation and internalization into astrocytes through binding to members of the class A scavenger receptor family could be demonstrated. Using astrocyte-neuron cocultures, we observed that the overall modifications of astrocyte metabolism induced by Abeta impair neuronal viability. The effects of the Abeta(25-35) fragment were reproduced by Abeta(1-42) but not by Abeta(1-40). Finally, the phosphoinositide 3-kinase (PI3-kinase) pathway appears to be crucial in these events since both the changes in glucose utilization and the decrease in neuronal viability are prevented by LY294002, a PI3-kinase inhibitor. This set of observations indicates that Abeta aggregation and internalization into astrocytes profoundly alter their metabolic phenotype with deleterious consequences for neuronal viability.
Report of NASA Lunar Energy Enterprise Case Study Task Force
NASA Technical Reports Server (NTRS)
Kearney, John J.
1989-01-01
The Lunar Energy Enterprise Case Study Task Force was asked to determine the economic viability and commercial potential of mining and extracting He-3 from the lunar soil, and transporting the material to Earth for use in a power-generating fusion reactor. Two other space energy projects, the Space Power Station (SPS) and the Lunar Power Station (LPS), were also reviewed because of several interrelated aspects of these projects. The specific findings of the Task Force are presented. Appendices contain related papers generated by individual Task Force Members.
The effect of radiation on the long term productivity of a plant based CELSS
NASA Technical Reports Server (NTRS)
Thompson, B. G.; Lake, B. H.
1987-01-01
Mutations occur at a higher rate in space than under terrestrial conditions, primarily due to an increase in radiation levels. These mutations may effect the productivity of plants found in a controlled ecological life support system (CELSS). Computer simulations of plants with different ploidies, modes of reproduction, lethality thresholds, viability thresholds and susceptibilities to radiation induced mutations were performed under space normal and solar flare conditions. These simulations identified plant characteristics that would enable plants to retain high productivities over time in a CELSS.
Spacecraft System Failures and Anomalies Attributed to the Natural Space Environment
NASA Technical Reports Server (NTRS)
Bedingfield, Keith, L.; Leach, Richard D.; Alexander, Margaret B. (Editor)
1996-01-01
The natural space environment is characterized by many complex and subtle phenomena hostile to spacecraft. The effects of these phenomena impact spacecraft design, development, and operations. Space systems become increasingly susceptible to the space environment as use of composite materials and smaller, faster electronics increases. This trend makes an understanding of the natural space environment essential to accomplish overall mission objectives, especially in the current climate of better/cheaper/faster. This primer provides a brief overview of the natural space environment - definition, related programmatic issues, and effects on various spacecraft subsystems. The primary focus, however, is to catalog, through representative case histories, spacecraft failures and anomalies attributed to the natural space environment. This primer is one in a series of NASA Reference Publications currently being developed by the Electromagnetics and Aerospace Environments Branch, Systems Analysis and Integration Laboratory, Marshall Space Flight Center (MSFC), National Aeronautics and Space Administration (NASA).
Space and Atmospheric Environments: From Low Earth Orbits to Deep Space
NASA Technical Reports Server (NTRS)
Barth, Janet L.
2003-01-01
Natural space and atmospheric environments pose a difficult challenge for designers of technological systems in space. The deleterious effects of environment interactions with the systems include degradation of materials, thermal changes, contamination, excitation, spacecraft glow, charging, radiation damage, and induced background interference. Design accommodations must be realistic with minimum impact on performance while maintaining a balance between cost and risk. The goal of applied research in space environments and effects is to limit environmental impacts at low cost relative to spacecraft cost and to infuse enabling and commercial off-the-shelf technologies into space programs. The need to perform applied research to understand the space environment in a practical sense and to develop methods to mitigate these environment effects is frequently underestimated by space agencies and industry. Applied science research in this area is critical because the complexity of spacecraft systems is increasing, and they are exposed simultaneously to a multitude of space environments.
Astrobiological studies with extremely halophilic Archaea
NASA Astrophysics Data System (ADS)
Fendrihan, S.; Lotter, H. Stan
2007-08-01
Extremely halophilic Archaea were isolated and characterized by both classical and modern molecular biological methods from hypersaline and haloalkaline lakes, salted soils, solar salterns and rock salt deposits (1). The survival of these micro-organisms after embedding in laboratory-made halite was investigated. Their presence in fluid inclusions was demonstrated by staining with the BacLight LIVE/DEAD kit and observation of their fluorescence by microscopy. Following resuspension of cells from halite crystals, a survival of about 0.5 - 4% according to colony forming units was obtained. In previous studies which focussed on the resistance of halophilic archaea to UV radiation or the space environment, survival of a dose of 110 J/m2 (using liquid cultures) and up to 10 000 J/m2 at a range of 200 - 400 nm was reported, when dried Haloarcula sp. in a single layer were exposed on the Biopan facility (2). We exposed a few haloarchaeal strains to a Martian UV simulator lamp with a range of 200 - 400 nm and an intensity of 41.2 W/m2, obtaining a viability of about 51- 67% of cells following different exposure times. Other studies focus on the detection of haloarchaea in halite by Raman microspectroscopy and by NIR-FT-Raman spectroscopy, which are considered to be important future tools for Mars exploration (3). Using the Dilor XY Raman spectrometer with laser excitation at 514.5 nm, equipped with a confocal microscope BX40 (Olympus Corp., Japan) and a Bruker IFS 66 + FRA106 with laser excitation at 1064 nm (Bruker, Germany), instruments, we obtained characteristic carotenoid peaks contained by these microorganisms. 1. Fendrihan S., Legat A., Pfaffenhuemer M., Gruber C., Weidler G., Gerbl F. Stan Lotter H. (2006) Extremely halophilic archaea and the issue of long-term microbial survival. Review. Environ. Sci. Biotechnol. 5: 203-218. 2. Mancinelli R. L., White M. R., Rothschild L. J. (1998) Biopan survival I : exposure of the osmophiles Synechococcus sp. (Nägeli) and Haloarcula sp. to the space environment. Adv Space Res. 22: 327-334. 3. Ellery A., Wynn-Williams D., Parnell J., Edwards H.G.M., Dickensheets D. (2004) The role of Raman spectroscopy as an astrobiological tool in the exploration of Mars, J. Raman Spectrosc. 35: 441-457.
Aciduricity and acid tolerance mechanisms of Streptococcus anginosus.
Sasaki, Minoru; Kodama, Yoshitoyo; Shimoyama, Yu; Ishikawa, Taichi; Kimura, Shigenobu
2018-04-17
Although Streptococcus anginosus constitutes a proportion of the normal flora of the gastrointestinal and genital tracts, and the oral cavity, it has been reported that S. anginosus infection could be closely associated with abscesses at various body sites, infective endocarditis, and upper gastrointestinal cancers. The colonization in an acidic environment due to the aciduricity of S. anginosus could be the etiology of the systemic infection of the bacteria. To elucidate the aciduricity and acid tolerance mechanisms of the microbe, we examined the viability and growth of S. anginosus under acidic conditions. The viabilities of S. anginosus NCTC 10713 and Streptococcus mutans ATCC 25175 at pH 4.0 showed as being markedly higher than those of Streptococcus sanguinis ATCC 10556, Streptococcus gordonii ATCC 10558, and Streptococcus mitis ATCC 49456; however, the viability was partially inhibited by dicyclohexylcarbodiimide, an H + -ATPase inhibitor, suggesting that H + -ATPase could play a role in the viability of S. anginosus under acidic conditions. In addition, S. anginosus NCTC 10713 could grow at pH 5.0 and showed a marked arginine deiminase (ADI) activity, unlike its ΔarcA mutant, deficient in the gene encoding ADI, and other streptococcal species, which indicated that ADI could also be associated with aciduricity. These results suggest that S. anginosus has significant aciduric properties, which can be attributed to these enzyme activities.
Problems of Achieving Rehabilitation and Punishment in Special School Environments
ERIC Educational Resources Information Center
Wiles, David K.; Rockoff, Edward
1978-01-01
Explores the legal implications of inschool suspension practices through consideration of individual versus institutional rights within a punitive-rehabilitative setting. Discusses the applicability of the prison hospital model to schools and argues that future legal action may challenge the viability of inschool suspension practices. (Author/JG)
The impact of the postharvest environment on the viability and virulence of decay fungi
USDA-ARS?s Scientific Manuscript database
Postharvest decay of fruits, vegetables, and grains by fungal pathogens causes significant economic losses. Infected produce presents a potential health risk since some decay fungi produce mycotoxins that are hazardous to human health. Infections are the result of the interplay between host resist...
43 CFR 10005.19 - Decision factors.
Code of Federal Regulations, 2012 CFR
2012-10-01
... value over the long term, and/or (iv) Encourage and facilitate economic efficiency among agencies. (2... impacts to other aspects of the environment, and/or (iv) Contribute to the social and/or economic well... serve to demonstrate the viability of a certain type of protection and restoration project, or to...
43 CFR 10005.19 - Decision factors.
Code of Federal Regulations, 2011 CFR
2011-10-01
... value over the long term, and/or (iv) Encourage and facilitate economic efficiency among agencies. (2... impacts to other aspects of the environment, and/or (iv) Contribute to the social and/or economic well... serve to demonstrate the viability of a certain type of protection and restoration project, or to...
43 CFR 10005.19 - Decision factors.
Code of Federal Regulations, 2013 CFR
2013-10-01
... value over the long term, and/or (iv) Encourage and facilitate economic efficiency among agencies. (2... impacts to other aspects of the environment, and/or (iv) Contribute to the social and/or economic well... serve to demonstrate the viability of a certain type of protection and restoration project, or to...
43 CFR 10005.19 - Decision factors.
Code of Federal Regulations, 2014 CFR
2014-10-01
... value over the long term, and/or (iv) Encourage and facilitate economic efficiency among agencies. (2... impacts to other aspects of the environment, and/or (iv) Contribute to the social and/or economic well... serve to demonstrate the viability of a certain type of protection and restoration project, or to...
Effect of stressors on the viability of Listeria during an in vitro cold-smoking process
USDA-ARS?s Scientific Manuscript database
Listeria monocytogenes is a dangerous food-borne pathogen and is a frequent contaminant of the cold-smoked fish industry. Elimination of this bacterium from the cold-smoking processing environment requires an understanding of how this microbe tolerates the stressful conditions encountered. Therefo...
Differentiation of Dictyostelium discoideum vegetative cells into spores during earth orbit in space
NASA Astrophysics Data System (ADS)
Takahashi, A.; Ohnishi, K.; Takahashi, S.; Masukawa, M.; Sekikawa, K.; Amano, T.; Nakano, T.; Nagaoka, S.; Ohnishi, T.
2001-01-01
We reported previously that emerged amoebae of Dictyosterium ( D.) discoideum grew, aggregated and differentiated to fruiting bodies with normal morphology in space. Here, we investigated the effects of space radiation and/or microgravity on the number, viability, kinetics of germination, growth rate and mutation frequency of spores formed in space in a radiation-sensitive strain, γs13, and the parental strain, NC4. In γs13, there were hardly spores in the fruiting bodies formed in space. In NC4, we found a decrease in the number of spores, a delay in germination of the spores and delayed start of cell growth of the spores formed in space when compared to the ground control. However, the mutation frequency of the NC4 spores formed in space was similar to that of the ground control. We conclude that the depression of spore formation might be induced by microgravity and/or space radiation through the depression of some stage(s) of DNA repair during cell differentiation in the slime mold.
Time, space, and redwood trees
Leslie M. Reid
1996-01-01
Abstract - Our past concern with details gave us the type of information we needed to manage blocks of redwoods to produce the values we decided were important. But the values that have more recently been recognized as important--species viability, genetic diversity, and so on--cannot be managed on the scale of forest patches, and we must come to understand how...
NASA Technical Reports Server (NTRS)
Zachariah, Malcolm M.; Vaishampayan, Parag
2011-01-01
Spore-forming microbes are highly resistant to various physical and chemical conditions, which include ionizing and UV radiation, desiccation and oxidative stress, and the harsh environment of outer space or planetary surfaces. The spore's resistance might be due to their metabolically dormant state, and/or by the presence of a series of protective structures that encase the interior-most compartment, the core, which houses the spore chromosome. These spores have multiple layers surrounding the cell that are not found in vegetative cells, and some species have an outer layer of proteins and glycoproteins termed the "exosporium" or a fibrous "extraneous layer" (EL). Bacillus horneckiae is an EL-producing novel sporeformer isolated from a Phoenix spacecraft assembly clean room, and it has previously demonstrated resistance to UV radiation up to 1000 J/m(sup 2). The EL appears to bind B. horneckiae spores into large aggregations, or biofilms, and may confer some UV resistance to the spores. Multiple culturing and purification schemes were tried to achieve high purity spores because vegetative cells would skew UV resistance results. An ethanol-based purification scheme produced high purity spores. Selective removal of the EL from spores was attempted with two schemes: a chemical extraction method and physical extraction (sonication). Results from survival rates in the presence and absence of the external layer will provide a new understanding of the role of biofilms and passive resistance that may favor survival of biological systems in aggressive extra-terrestrial environments. The chemical extraction method decreased viable counts of spores and lead to an inconclusive change UV resistance relative to non-extracted spores. The physical extraction method lead to non-aggregated spores and did not alter viability; however, it produced UV resistance profiles similar to non-extracted spores. In addition to the EL-removal study, samples of B. horneckiae spores dried on aluminum coupons and exposed to increasing UV (200-400 nm range) levels (0 to 8.0 x 105 kJ/m(sup 2)) were tested for viability, which indicated that the maximum UV exposure level that still resulted in viable spores was 5.0 x 10? kJ/m(sup 2).
NASA Technical Reports Server (NTRS)
Barnes, Marvin W.; Tucker, Dennis S.; Benensky, Kelsa M.
2018-01-01
Nuclear thermal propulsion (NTP) has the potential to expand the limits of human space exploration by enabling crewed missions to Mars and beyond. The viability of NTP hinges on the development of a robust nuclear fuel material that can perform in the harsh operating environment (> or = 2500K, reactive hydrogen) of a nuclear thermal rocket (NTR) engine. Efforts are ongoing to develop fuel material and to assemble fuel elements that will be stable during the service life of an NTR. Ceramic-metal (cermet) fuels are being actively pursued by NASA Marshall Space Flight Center (MSFC) due to their demonstrated high-temperature stability and hydrogen compatibility. Building on past cermet fuel development research, experiments were conducted to investigate a modern fabrication approach for cermet fuel elements. The experiments used consolidated tungsten (W)-60vol%zirconia (ZrO2) compacts that were formed via spark plasma sintering (SPS). The consolidated compacts were stacked and diffusion bonded to assess the integrity of the bond lines and internal cooling channel cladding. The assessment included hot hydrogen testing of the manufactured surrogate fuel and pure W for 45 minutes at 2500 K in the compact fuel element environmental test (CFEET) system. Performance of bonded W-ZrO2 rods was compared to bonded pure W rods to access bond line integrity and composite stability. Bonded surrogate fuels retained structural integrity throughout testing and incurred minimal mass loss.
Schrödinger's microbes: Tools for distinguishing the living from the dead in microbial ecosystems.
Emerson, Joanne B; Adams, Rachel I; Román, Clarisse M Betancourt; Brooks, Brandon; Coil, David A; Dahlhausen, Katherine; Ganz, Holly H; Hartmann, Erica M; Hsu, Tiffany; Justice, Nicholas B; Paulino-Lima, Ivan G; Luongo, Julia C; Lymperopoulou, Despoina S; Gomez-Silvan, Cinta; Rothschild-Mancinelli, Brooke; Balk, Melike; Huttenhower, Curtis; Nocker, Andreas; Vaishampayan, Parag; Rothschild, Lynn J
2017-08-16
While often obvious for macroscopic organisms, determining whether a microbe is dead or alive is fraught with complications. Fields such as microbial ecology, environmental health, and medical microbiology each determine how best to assess which members of the microbial community are alive, according to their respective scientific and/or regulatory needs. Many of these fields have gone from studying communities on a bulk level to the fine-scale resolution of microbial populations within consortia. For example, advances in nucleic acid sequencing technologies and downstream bioinformatic analyses have allowed for high-resolution insight into microbial community composition and metabolic potential, yet we know very little about whether such community DNA sequences represent viable microorganisms. In this review, we describe a number of techniques, from microscopy- to molecular-based, that have been used to test for viability (live/dead determination) and/or activity in various contexts, including newer techniques that are compatible with or complementary to downstream nucleic acid sequencing. We describe the compatibility of these viability assessments with high-throughput quantification techniques, including flow cytometry and quantitative PCR (qPCR). Although bacterial viability-linked community characterizations are now feasible in many environments and thus are the focus of this critical review, further methods development is needed for complex environmental samples and to more fully capture the diversity of microbes (e.g., eukaryotic microbes and viruses) and metabolic states (e.g., spores) of microbes in natural environments.
Leadership for long-duration space missions: A shift toward a collective approach
NASA Astrophysics Data System (ADS)
Mulhearn, Tyler; McIntosh, Tristan; Gibson, Carter; Mumford, Michael D.; Yammarino, Francis J.; Connelly, Shane; Day, Eric Anthony; Vessey, Brandon
2016-12-01
For many years, leadership operations within the National Aeronautics and Space Administration (NASA) have utilized a primarily hierarchical approach. In the present effort, we investigated the leadership needs and considerations given the increased interest in and potential for long-duration space exploration. Specifically, it is argued that a collective leadership approach in which leadership is shared and distributed based on expertise would be beneficial for these types of missions. Interviews were conducted with eleven subject matter experts with wide-ranging experience in NASA and its missions. A mixed-methods analytic approach applied to these interviews provided support for the viability of a collective leadership framework. Implications for NASA and other similar organizational contexts are discussed.
NASA Technical Reports Server (NTRS)
Kuan, Gary M.; Dekens, Frank G.
2006-01-01
The Space Interferometry Mission (SIM) is a microarcsecond interferometric space telescope that requires picometer level precision measurements of its truss and interferometer baselines. Single-gauge metrology errors due to non-ideal physical characteristics of corner cubes reduce the angular measurement capability of the science instrument. Specifically, the non-common vertex error (NCVE) of a shared vertex, double corner cube introduces micrometer level single-gauge errors in addition to errors due to dihedral angles and reflection phase shifts. A modified SIM Kite Testbed containing an articulating double corner cube is modeled and the results are compared to the experimental testbed data. The results confirm modeling capability and viability of calibration techniques.
Characterizing Space Environments with Long-Term Space Plasma Archive Resources
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Miller, J. Scott; Diekmann, Anne M.; Parker, Linda N.
2009-01-01
A significant scientific benefit of establishing and maintaining long-term space plasma data archives is the ready access the archives afford to resources required for characterizing spacecraft design environments. Space systems must be capable of operating in the mean environments driven by climatology as well as the extremes that occur during individual space weather events. Long- term time series are necessary to obtain quantitative information on environment variability and extremes that characterize the mean and worst case environments that may be encountered during a mission. In addition, analysis of large data sets are important to scientific studies of flux limiting processes that provide a basis for establishing upper limits to environment specifications used in radiation or charging analyses. We present applications using data from existing archives and highlight their contributions to space environment models developed at Marshall Space Flight Center including the Chandra Radiation Model, ionospheric plasma variability models, and plasma models of the L2 space environment.
NASA Technical Reports Server (NTRS)
Pearson, Steven D.; Clifton, K. Stuart
1999-01-01
ABSTRACT The return of the Long Duration Exposure Facility (LDEF) in 1990 brought a wealth of space exposure data on materials, paints, solar cells, etc. and data on the many space environments. The effects of the harsh space environments can provide damaging or even disabling effects on spacecraft, its materials, and its instruments. In partnership with industry, academia, and other government agencies, National Aeronautics & Space Administration's (NASA's) Space Environments & Effects (SEE) Program defines the space environments and provides technology development to accommodate or mitigate these harmful environments on the spacecraft. This program provides a very comprehensive and focused approach to understanding the space environment, to define the best techniques for both flight and ground-based experimentation, to update the models which predict both the environments and the environmental effects on spacecraft, and finally to ensure that this information is properly maintained and inserted into spacecraft design programs. This paper will describe the current SEE Program and will present SEE contamination engineering technology development and risk mitigation for future spacecraft design.
NASA Astrophysics Data System (ADS)
Pearson, Steven D.; Clifton, K. Stuart
1999-10-01
The return of the Long Duration Exposure Facility (LDEF) in 1990 brought a wealth of space exposure data on materials, paints, solar cells, etc. and data on the many space environments. The effects of the harsh space environments can provide damaging or even disabling effects on spacecraft, its materials, and its instruments. In partnership with industry, academia, and other government agencies, National Aeronautics & Space Administration's (NASA's) Space Environments & Effects (SEE) Program defines the space environments and provides technology development to accommodate or mitigate these harmful environments on the spacecraft. This program provides a very comprehensive and focused approach to understanding the space environment, to define the best techniques for both flight and ground-based experimentation, to update the models which predict both the environments and the environmental effects on spacecraft, and finally to ensure that this information is properly maintained and inserted into spacecraft design programs. This paper will describe the current SEE Program and will present SEE contamination engineering technology development and risk mitigation for future spacecraft design.
2009-10-01
Field-of-View, Mobile PET/SPECT System for Bedside Environments: A Dynamic Cardiac Phantom Study using 99mTc and 18F- FDG . Presented at the American...using Tc-99m tracers and viability imaging using F- 18 tracers [3]-[7]. For cardiac F-18 imaging in a bedside environment, the 511 keV SPECT approach...SPECT system may have difficulty imaging subtle myocardial defects with F-18 tracers , but it may effectively image moderate to severe defects. The
Neural Network Prototyping Package Within IRAF
NASA Technical Reports Server (NTRS)
Bazell, David
1997-01-01
The purpose of this contract was to develop a neural network package within the IRAF environment to allow users to easily understand and use different neural network algorithms the analysis of astronomical data. The package was developed for use within IRAF to allow portability to different computing environments and to provide a familiar and easy to use interface with the routines. In addition to developing the software and supporting documentation, we planned to use the system for the analysis of several sample problems to prove its viability and usefulness.
I Can, But I Won’t: An Exploratory Study on People and New Information Technologies in the Military
2011-03-01
in a revised web site. In another study, Viability of TAM in Multimedia Learning Environments: A Comparative Study (Saade, Nebebe, and Tan, 2007...multimedia- learning environment. These examples show the utility of TAM in predicting users acceptance of a variety of technologies. As applied to...committee, I have learned so much from our discussions on the numerous topics that gave me the direction I needed to complete the thesis. I would like
NASA Space Environments Technical Discipline Team Space Weather Activities
NASA Astrophysics Data System (ADS)
Minow, J. I.; Nicholas, A. C.; Parker, L. N.; Xapsos, M.; Walker, P. W.; Stauffer, C.
2017-12-01
The Space Environment Technical Discipline Team (TDT) is a technical organization led by NASA's Technical Fellow for Space Environments that supports NASA's Office of the Chief Engineer through the NASA Engineering and Safety Center. The Space Environments TDT conducts independent technical assessments related to the space environment and space weather impacts on spacecraft for NASA programs and provides technical expertise to NASA management and programs where required. This presentation will highlight the status of applied space weather activities within the Space Environment TDT that support development of operational space weather applications and a better understanding of the impacts of space weather on space systems. We will first discuss a tool that has been developed for evaluating space weather launch constraints that are used to protect launch vehicles from hazardous space weather. We then describe an effort to better characterize three-dimensional radiation transport for CubeSat spacecraft and processing of micro-dosimeter data from the International Space Station which the team plans to make available to the space science community. Finally, we will conclude with a quick description of an effort to maintain access to the real-time solar wind data provided by the Advanced Composition Explorer satellite at the Sun-Earth L1 point.
NASA's Space Environments and Effects (SEE) Program
NASA Technical Reports Server (NTRS)
Minor, Jody
2001-01-01
The return of the Long Duration Exposure Facility (LDEF) in 1990 brought a wealth of space exposure data on materials, paints, solar cells, adhesives and other data on the many space environments. The effects of the harsh space environments can provide damaging or even disabling effects on a spacecraft, its sub-systems, materials and instruments. In partnership with industry, academia, and other US and international government agencies, the National Aeronautics & Space Administration's (NASA's) Space Environments & Effects (SEE) Program defines the space environments and provides technology development to accommodate or mitigate these harmful environments on the spacecraft. This program (agency-wide in scope but managed at the Marshall Space Flight Center) provides a very comprehensive and focused approach to understanding the space environment. It does this by defining the best techniques for both flight- and groundbased experimentation, updating models which predict both the environments and the environmental effects on spacecraft and ensuring that this information is properly maintained and inserted into spacecraft design programs. This paper will describe the current SEE Program and discuss several current technology development activities associated with the spacecraft charging phenomenon.
Space Flight Ionizing Radiation Environments
NASA Technical Reports Server (NTRS)
Koontz, Steve
2017-01-01
The space-flight ionizing radiation (IR) environment is dominated by very high-kinetic energy-charged particles with relatively smaller contributions from X-rays and gamma rays. The Earth's surface IR environment is not dominated by the natural radioisotope decay processes. Dr. Steven Koontz's lecture will provide a solid foundation in the basic engineering physics of space radiation environments, beginning with the space radiation environment on the International Space Station and moving outward through the Van Allen belts to cislunar space. The benefits and limitations of radiation shielding materials will also be summarized.
Blackwood, Kym S; Burdz, Tamara V; Turenne, Christine Y; Sharma, Meenu K; Kabani, Amin M; Wolfe, Joyce N
2005-01-24
In the field of clinical mycobacteriology, Mycobacterium tuberculosis (MTB) can be a difficult organism to manipulate due to the restrictive environment of a containment level 3 (CL3) laboratory. Tests for rapid diagnostic work involving smears and molecular methods do not require CL3 practices after the organism has been rendered non-viable. While it has been assumed that after organism deactivation these techniques can be performed outside of a CL3, no conclusive study has consistently confirmed that the organisms are noninfectious after the theoretical 'deactivation' steps. Previous studies have shown that initial steps (such as heating/chemical fixation) may not consistently kill MTB organisms. An inclusive viability study (n = 226) was undertaken to determine at which point handling of culture extraction materials does not necessitate a CL3 environment. Four different laboratory protocols tested for viability included: standard DNA extractions for IS6110 fingerprinting, crude DNA preparations for PCR by boiling and mechanical lysis, protein extractions, and smear preparations. For each protocol, laboratory staff planted a proportion of the resulting material to Bactec 12B medium that was observed for growth for 8 weeks. Of the 208 isolates initially tested, 21 samples grew within the 8-week period. Sixteen (7.7%) of these yielded positive results for MTB that included samples of: deactivated culture resuspensions exposed to 80 degrees C for 20 minutes, smear preparations and protein extractions. Test procedures were consequently modified and tested again (n = 18), resulting in 0% viability. This study demonstrates that it cannot be assumed that conventional practices (i.e. smear preparation) or extraction techniques render the organism non-viable. All methodologies, new and existing, should be examined by individual laboratories to validate the safe removal of material derived from MTB to the outside of a CL3 laboratory. This process is vital to establish in house biosafety-validated practices with the aim of protecting laboratory workers conducting these procedures.
NASA Astrophysics Data System (ADS)
Fotiou, Christina; Damialis, Athanasios; Krigas, Nikolaos; Halley, John M.; Vokou, Despoina
2011-01-01
Parietaria judaica (Urticaceae) grows abundantly in urban areas of the Mediterranean region. Its pollen is a major allergy source. We studied the species' distribution and abundance in and around Thessaloniki (Greece), pollen production and pollen season. We also examined how urban pollution affects pollen viability. Our ultimate goal was to obtain an estimate of the species' performance and ability to expand under different environmental conditions related to climate change. We mapped P. judaica and the other Urticaceae species. In a north- and a south-facing population, we recorded the progress of P. judaica flowering and estimated the pollen content per flower, shoot and surface unit. We concurrently assessed atmospheric circulation of Urticaceae pollen. We estimated P. judaica pollen viability and Cu, Pb and Zn concentrations in plants collected from sites differing in traffic intensity. P. judaica is the most abundant Urticaceae species in the area; its occurrence has increased dramatically over the last 100 years. Production of flowers is intense in spring and autumn. Flowering started 12 days earlier in the south-facing population in spring, and 3 days later in autumn. Pollen production was higher in spring and in the south-facing population. Flower and pollen production were positively correlated with the size of the plant and the flower, respectively. Copper and lead concentrations in plants were positively correlated with pollen viability, which was higher for plants collected from high-traffic sites. P. judaica has a high phenotypic plasticity; this is a feature that promotes success of expansive and invasive species. It is also well adapted to warm and polluted urban environments. The climatic change forecast for the Mediterranean region could provoke earlier, longer, and more pronounced flowering and, consequently, more P. judaica pollen in the air. In return, this would result in increased severity of Parietaria pollinosis.
The natural space environment: Effects on spacecraft
NASA Technical Reports Server (NTRS)
James, Bonnie F.; Norton, O. W. (Compiler); Alexander, Margaret B. (Editor)
1994-01-01
The effects of the natural space environments on spacecraft design, development, and operation are the topic of a series of NASA Reference Publications currently being developed by the Electromagnetics and Environments Branch, Systems Analysis and Integration Laboratory, Marshall Space Flight Center. This primer provides an overview of the natural space environments and their effect on spacecraft design, development, and operations, and also highlights some of the new developments in science and technology for each space environment. It is hoped that a better understanding of the space environment and its effect on spacecraft will enable program management to more effectively minimize program risks and costs, optimize design quality, and successfully achieve mission objectives.
NASA Technical Reports Server (NTRS)
Mavris, Dimitri N.
1998-01-01
Over the past few years, modem aircraft design has experienced a paradigm shift from designing for performance to designing for affordability. This report contains a probabilistic approach that will allow traditional deterministic design methods to be extended to account for disciplinary, economic, and technological uncertainty. The probabilistic approach was facilitated by the Fast Probability Integration (FPI) technique; a technique which allows the designer to gather valuable information about the vehicle's behavior in the design space. This technique is efficient for assessing multi-attribute, multi-constraint problems in a more realistic fashion. For implementation purposes, this technique is applied to illustrate how both economic and technological uncertainty associated with a Very Large Transport aircraft concept may be assessed. The assessment is evaluated with the FPI technique to determine the cumulative probability distributions of the design space, as bound by economic objectives and performance constraints. These distributions were compared to established targets for a comparable large capacity aircraft, similar in size to the Boeing 747-400. The conventional baseline configuration design space was determined to be unfeasible and marginally viable, motivating the infusion of advanced technologies, including reductions in drag, specific fuel consumption, wing weight, and Research, Development, Testing, and Evaluation costs. The resulting system design space was qualitatively assessed with technology metric "k" factors. The infusion of technologies shifted the VLT design into regions of feasibility and greater viability. The study also demonstrated a method and relationship by which the impact of new technologies may be assessed in a more system focused approach.
Anti-inflammatory and anti-bacterial activity, and cytotoxicity of halloysite surfaces.
Cervini-Silva, Javiera; Nieto-Camacho, Antonio; Palacios, Eduardo; Montoya, José Ascención; Gómez-Vidales, Virginia; Ramírez-Apán, María Teresa
2013-11-01
Halloysite is a naturally-occurring nanomaterial occurring in the thousands of tons and that serves as biomaterial, with applications in the areas of biotechnology, pharmaceutical, and medical research. This study reports on the anti-inflammatory, cytotoxic, and anti-oxidant activity of halloysite Jarrahdale (collected at ∼ 45 km SE of Perth, Western Australia; JA), Dragon Mine (provided by Natural Nano Inc., Rochester, New York; NA), and Kalgoorie Archean (collected at Siberia, ∼ 85km NW of Kalgoorlie, West Australia; PA). Prior to biological testing, halloysites were characterized by 27Al and 29Si Nuclear Magnetic Resonance Spectroscopy, the anti-inflammatory activity was determined by (a) the mouse ear edema method, using 12-o-tetradecanoylphorbol-13-acetate (TPA) as anti-inflammatory agent; and (b) the myeloperoxidase enzymatic activity method (MPO). Cell viability was determined using the MTT method. Sample characterization by NMR method showed similar symmetry and atomic environments, with no evidence of distortion(s) due to shiftings in atomic ordering or electron density. The anti-inflammatory activity followed the order: PA>JA>NA, and remained invariant with time. Prolonged anti-inflammatory activity related inversely to surface area and lumen space. The low extent of infiltration at shorter reaction times confirmed a limiting number of active surface sites. EPR intensity signals followed the order: JA>NA>PA. The poor stabilization of RO species in PA suspensions was explained by tube alignment provoking occlusion, thus limiting transfer of H(+) or e(-) from-and-to the surface, and decreases in acidity associated to Al(oct). Cell viability (%) varied from one surface to the other, PA(92.3 ± 6.0), JA(84.9 ± 7.8), and NA(78.0 ± 5.6), but related directly to SBET values. Copyright © 2013 Elsevier B.V. All rights reserved.
Potential risk of acute toxicity induced by AgI cloud seeding on soil and freshwater biota.
Fajardo, C; Costa, G; Ortiz, L T; Nande, M; Rodríguez-Membibre, M L; Martín, M; Sánchez-Fortún, S
2016-11-01
Silver iodide is one of the most common nucleating materials used in cloud seeding. Previous cloud seeding studies have concluded that AgI is not practically bioavailable in the environment but instead remains in soils and sediments such that the free Ag amounts are likely too low to induce a toxicological effect. However, none of these studies has considered the continued use of this practice on the same geographical areas and thus the potential cumulative effect of environmental AgI. The aim of this study is to assess the risk of acute toxicity caused by AgI exposure under laboratory conditions at the concentration expected in the environment after repeated treatments on selected soil and aquatic biota. To achieve the aims, the viability of soil bacteria Bacillus cereus and Pseudomonas stutzeri and the survival of the nematode Caenorhabditis elegans exposed to different silver iodide concentrations have been evaluated. Freshwater green algae Dictyosphaerium chlorelloides and cyanobacteria Microcystis aeruginosa were exposed to silver iodide in culture medium, and their cell viability and photosynthetic activity were evaluated. Additionally, BOD5 exertion and the Microtox® toxicity test were included in the battery of toxicological assays. Both tests exhibited a moderate AgI adverse effect at the highest concentration (12.5µM) tested. However, AgI concentrations below 2.5µM increased BOD5. Although no impact on the growth and survival endpoints in the soil worm C. elegans was recorded after AgI exposures, a moderate decrease in cell viability was found for both of the assessed soil bacterial strains at the studied concentrations. Comparison between the studied species showed that the cyanobacteria were more sensitive than green algae. Exposure to AgI at 0.43μM, the reference value used in monitoring environmental impact, induced a significant decrease in photosynthetic activity that is primarily associated with the respiration (80% inhibition) and, to a lesser extent, the net photosynthesis (40% inhibition) in both strains of phytoplankton and a moderate decrease in soil bacteria viability. These results suggest that AgI from cloud seeding may moderately affect biota living in both terrestrial and aquatic ecosystems if cloud seeding is repeatedly applied in a specific area and large amounts of seeding materials accumulate in the environment. Copyright © 2016 Elsevier Inc. All rights reserved.
Space Weather Effects on Spacecraft Systems
NASA Technical Reports Server (NTRS)
Barth, Janet L.
2003-01-01
Space-based systems are developing into critical infrastructure required to support the quality of life on Earth. Hence, spacecraft reliability is a serious issue that is complicated by exposure to the space environment. Complex mission designs along with rapidly evolving technologies have outpaced efforts to accommodate detrimental space environment impacts on systems. Hazardous space environments, the effects on systems, and the accommodation of the effects are described with a focus on the need to predict space environments.
Roberts, Stephen A; Hann, Mark; Brison, Daniel R
2016-02-01
Many studies have identified prognostic factors for IVF treatment outcome; however, little information is available on the mechanism of their action. Embryo-uterus models have the potential to distinguish between factors acting on the embryo directly and those acting through the uterine environment. Here we apply embryo-uterus models to comprehensive UK registry data from two periods, 2000-2005 and 2007-2011, containing 139,444 and 226,542 embryo transfer cycles, respectively. Given this large dataset, the embryo-uterus model is capable of distinguishing between uterine and embryo effects. Maternal age is the predominant predictor of live birth and acts on both the embryo and uterine components, but with larger effects on the embryo. Prolonged embryo culture is associated with greater embryo viability, reflecting the greater degree of selection, but is also associated with greater uterine receptivity. Cryopreserved embryos are less viable and were associated with poorer uterine receptivity. This work suggests that, in addition to the direct effects of in-vitro culture on the embryonic environment during the first few days of the embryo's life, the delay in transfer after extended culture or cryopreservation can lead to an altered uterine environment for the embryo after transfer. Copyright © 2015 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Ricco, Antonio J.; Parra, Macarena P.; Niesel, David; McGinnis, Michael; Ehrenfreund, Pascale; Nicholson, Wayne; Mancinelli, Rocco; Piccini, Matthew E.; Beasley, Christopher C.; Timucin, Linda R.;
2009-01-01
We develop integrated instruments and platforms suitable for economical, frequent space access for autonomous life science experiments and processes in outer space. The technologies represented by three of our recent free-flyer small-satellite missions are the basis of a rapidly growing toolbox of miniaturized biologically/biochemically-oriented instrumentation now enabling a new generation of in-situ space experiments. Autonomous small satellites ( 1 50 kg) are less expensive to develop and build than fullsize spacecraft and not subject to the comparatively high costs and scheduling challenges of human-tended experimentation on the International Space Station, Space Shuttle, and comparable platforms. A growing number of commercial, government, military, and civilian space launches now carry small secondary science payloads at far lower cost than dedicated missions; the number of opportunities is particularly large for so-called cube-sat and multicube satellites in the 1 10 kg range. The recent explosion in nano-, micro-, and miniature technologies, spanning fields from telecommunications to materials to bio/chemical analysis, enables development of remarkably capable autonomous miniaturized instruments to accomplish remote biological experimentation. High-throughput drug discovery, point-of-care medical diagnostics, and genetic analysis are applications driving rapid progress in autonomous bioanalytical technology. Three of our recent missions exemplify the development of miniaturized analytical payload instrumentation: GeneSat-1 (launched: December 2006), PharmaSat (launched: May 2009), and O/OREOS (organism/organics exposure to orbital stresses; scheduled launch: May 2010). We will highlight the overall architecture and integration of fluidic, optical, sensor, thermal, and electronic technologies and subsystems to support and monitor the growth of microorganisms in culture in these small autonomous space satellites, including real-time tracking of their culture density, gene expression, and metabolic activity while in the space environment. Flight data and results will be presented from GeneSat-1, which tracked gene expression levels of GFP-labeled E. coli and from PharmaSat, which monitored the dose dependency of an antifungal agent against S. cerevisiae. The O/OREOS SESLO instrument, which will study the effects of radiation and microgravity upon the viability and growth characteristics of B. subtilis and the halophile Halorubrum chaoviatoris for periods of 0 - 6 months in space, will be described as well. The ongoing expansion of the small satellite toolbox of biological technologies will be summarized.
Walsworth, Timothy E.; Schindler, Daniel E.; Griffiths, Jennifer R.; Zimmerman, Christian E.
2015-01-01
Habitat quality often varies substantially across space and time, producing a shifting mosaic of growth and mortality trade-offs across watersheds. Traditional studies of juvenile habitat use have emphasised the evolution of single optimal strategies that maximise recruitment to adulthood and eventual fitness. However, linking the distribution of individual behaviours that contribute to recruitment at the population level has been elusive, particularly for highly fecund aquatic organisms. We examined juvenile habitat use within a population of sockeye salmon (Oncorhynchus nerka) that spawn in a watershed consisting of two interconnected lakes and a marine lagoon. Otolith microchemical analysis revealed that the productive headwater lake accounted for about half of juvenile growth for those individuals surviving to spawn in a single river in the upper watershed. However, 47% of adults had achieved more than half of their juvenile growth in the downstream less productive lake, and 3% of individuals migrated to the estuarine environment during their first summer and returned to freshwater to overwinter before migrating back to sea. These results describe a diversity of viable habitat-use strategies by juvenile sockeye salmon that may buffer the population against poor conditions in any single rearing environment, reduce density-dependent mortality and have implications for the designation of critical habitat for conservation purposes. A network of accessible alternative habitats providing trade-offs in growth and survival may be important for long-term viability of populations.
NASA Technical Reports Server (NTRS)
Carter, Donald Layne
2017-01-01
The ISS WRS produces potable water from crew urine, crew latent, and Sabatier product water. This system has been operational on ISS since November 2008, producing over 30,000 L of water during that time. The WRS includes a Urine Processor Assembly (UPA) to produce a distillate from the crew urine. This distillate is combined with the crew latent and Sabatier product water and further processed by the Water Processor Assembly (WPA) to the potable water. The UPA and WPA use technologies commonly used on ISS for water purification, including filtration, distillation, adsorption, ion exchange, and catalytic oxidation. The primary challenge with the design and operation of the WRS has been with implementing these technologies in microgravity. The absence of gravity has created unique issues that impact the constituency of the waste streams, alter two-phase fluid dynamics, and increases the impact of particulates on system performance. NASA personnel continue to pursue upgrades to the existing design to improve reliability while also addressing their viability for missions beyond ISS.
Effect of Oenothera odorata Root Extract on Microgravity and Disuse-Induced Muscle Atrophy
Lee, Yong-Hyeon; Seo, Dong-Hyun; Park, Ji-Hyung; Kabayama, Kazuya; Opitz, Joerg; Lee, Kwang Ho; Kim, Han-Sung; Kim, Tack-Joong
2015-01-01
Muscle atrophy, a reduction of muscle mass, strength, and volume, results from reduced muscle use and plays a key role in various muscular diseases. In the microgravity environment of space especially, muscle atrophy is induced by muscle inactivity. Exposure to microgravity induces muscle atrophy through several biological effects, including associations with reactive oxygen species (ROS). This study used 3D-clinostat to investigate muscle atrophy caused by oxidative stress in vitro, and sciatic denervation was used to investigate muscle atrophy in vivo. We assessed the effect of Oenothera odorata root extract (EVP) on muscle atrophy. EVP helped recover cell viability in C2C12 myoblasts exposed to microgravity for 24 h and delayed muscle atrophy in sciatic denervated mice. However, the expressions of HSP70, SOD1, and ceramide in microgravity-exposed C2C12 myoblasts and in sciatic denervated mice were either decreased or completely inhibited. These results suggested that EVP can be expected to have a positive effect on muscle atrophy by disuse and microgravity. In addition, EVP helped characterize the antioxidant function in muscle atrophy. PMID:25945103
Effect of Oenothera odorata Root Extract on Microgravity and Disuse-Induced Muscle Atrophy.
Lee, Yong-Hyeon; Seo, Dong-Hyun; Park, Ji-Hyung; Kabayama, Kazuya; Opitz, Joerg; Lee, Kwang Ho; Kim, Han-Sung; Kim, Tack-Joong
2015-01-01
Muscle atrophy, a reduction of muscle mass, strength, and volume, results from reduced muscle use and plays a key role in various muscular diseases. In the microgravity environment of space especially, muscle atrophy is induced by muscle inactivity. Exposure to microgravity induces muscle atrophy through several biological effects, including associations with reactive oxygen species (ROS). This study used 3D-clinostat to investigate muscle atrophy caused by oxidative stress in vitro, and sciatic denervation was used to investigate muscle atrophy in vivo. We assessed the effect of Oenothera odorata root extract (EVP) on muscle atrophy. EVP helped recover cell viability in C2C12 myoblasts exposed to microgravity for 24 h and delayed muscle atrophy in sciatic denervated mice. However, the expressions of HSP70, SOD1, and ceramide in microgravity-exposed C2C12 myoblasts and in sciatic denervated mice were either decreased or completely inhibited. These results suggested that EVP can be expected to have a positive effect on muscle atrophy by disuse and microgravity. In addition, EVP helped characterize the antioxidant function in muscle atrophy.
Substrate channel in nitrogenase revealed by a molecular dynamics approach.
Smith, Dayle; Danyal, Karamatullah; Raugei, Simone; Seefeldt, Lance C
2014-04-15
Mo-dependent nitrogenase catalyzes the biological reduction of N2 to two NH3 molecules at FeMo-cofactor buried deep inside the MoFe protein. Access of substrates, such as N2, to the active site is likely restricted by the surrounding protein, requiring substrate channels that lead from the surface to the active site. Earlier studies on crystallographic structures of the MoFe protein have suggested three putative substrate channels. Here, we have utilized submicrosecond atomistic molecular dynamics simulations to allow the nitrogenase MoFe protein to explore its conformational space in an aqueous solution at physiological ionic strength, revealing a putative substrate channel. The viability of this observed channel was tested by examining the free energy of passage of N2 from the surface through the channel to FeMo-cofactor, resulting in the discovery of a very low energy barrier. These studies point to a viable substrate channel in nitrogenase that appears during thermal motions of the protein in an aqueous environment and that approaches a face of FeMo-cofactor earlier implicated in substrate binding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Dayle; Danyal, Karamatullah; Raugei, Simone
Mo-dependent nitrogenase catalyzes the biological reduction of N 2 to 2NH 3 at the FeMo-cofactor buried deep inside the MoFe protein. Access of substrates, such as N 2, to the active site is likely restricted by the surrounding protein, requiring substrate channels that lead from the surface to the active site. Earlier studies on crystallographic structures of the MoFe protein have suggested three putative substrate channels. Here, we have utilized sub-microsecond atomistic molecular dynamics simulations to allow the nitrogenase MoFe protein to explore its conformational space in an aqueous solution at physiological ionic strength, revealing a putative substrate channel notmore » previously reported. The viability of the proposed channel was tested by examining the free energy of passage of N 2 from the surface through the channel to FeMo-cofactor, with discovery of a very low energy barrier. These studies point to a viable substrate channel in nitrogenase that appears during thermal motions of the protein in an aqueous environment that approaches a face of FeMo-cofactor earlier implicated in substrate binding.« less
Gas-Grain Simulation Facility (GGSF). Volume 2: Conceptual design definition
NASA Technical Reports Server (NTRS)
Zamel, James M.
1993-01-01
This document is Volume 2 of the Final Report for the Phase A Study of the Gas-Grain Simulation Facility (GGSF), and presents the GGSF Conceptual Design. It is a follow-on to the Volume 1 Facility Definition Study, NASA report CR 177606. The development of a conceptual design for a Space Station Freedom (SSF) facility that will be used for investigating particle interactions in varying environments, including various gas mixtures, pressures, and temperatures is delineated. It's not possible to study these experiments on earth due to the long reaction times associated with this type of phenomena, hence the need for extended periods of microgravity. The particle types will vary in composition (solids and liquids), sizes (from submicrons to centimeters), and concentrations (from single particles to 10(exp 10) per cubic centimeter). The results of the experiments pursued in the GGSF will benefit a variety of scientific inquiries. These investigations span such diverse topics as the formation of planets and planetary rings, cloud and haze processes in planetary atmospheres, the composition and structure of astrophysical objects, and the viability of airborne microbes (e.g., in a manned spacecraft).
Cook, Gregory M; Hards, Kiel; Dunn, Elyse; Heikal, Adam; Nakatani, Yoshio; Greening, Chris; Crick, Dean C; Fontes, Fabio L; Pethe, Kevin; Hasenoehrl, Erik; Berney, Michael
2017-06-01
The emergence and spread of drug-resistant pathogens, and our inability to develop new antimicrobials to combat resistance, have inspired scientists to seek out new targets for drug development. The Mycobacterium tuberculosis complex is a group of obligately aerobic bacteria that have specialized for inhabiting a wide range of intracellular and extracellular environments. Two fundamental features in this adaptation are the flexible utilization of energy sources and continued metabolism in the absence of growth. M. tuberculosis is an obligately aerobic heterotroph that depends on oxidative phosphorylation for growth and survival. However, several studies are redefining the metabolic breadth of the genus. Alternative electron donors and acceptors may provide the maintenance energy for the pathogen to maintain viability in hypoxic, nonreplicating states relevant to latent infection. This hidden metabolic flexibility may ultimately decrease the efficacy of drugs targeted against primary dehydrogenases and terminal oxidases. However, it may also open up opportunities to develop novel antimycobacterials targeting persister cells. In this review, we discuss the progress in understanding the role of energetic targets in mycobacterial physiology and pathogenesis and the opportunities for drug discovery.
Waterhouse, Matthew D; Erb, Liesl P; Beever, Erik A; Russello, Michael A
2018-06-01
The ecological effects of climate change have been shown in most major taxonomic groups; however, the evolutionary consequences are less well-documented. Adaptation to new climatic conditions offers a potential long-term mechanism for species to maintain viability in rapidly changing environments, but mammalian examples remain scarce. The American pika (Ochotona princeps) has been impacted by recent climate-associated extirpations and range-wide reductions in population sizes, establishing it as a sentinel mammalian species for climate change. To investigate evidence for local adaptation and reconstruct patterns of genomic diversity and gene flow across rapidly changing environments, we used a space-for-time design and restriction site-associated DNA sequencing to genotype American pikas along two steep elevational gradients at 30,966 SNPs and employed independent outlier detection methods that scanned for genotype-environment associations. We identified 338 outlier SNPs detected by two separate analyses and/or replicated in both transects, several of which were annotated to genes involved in metabolic function and oxygen transport. Additionally, we found evidence of directional gene flow primarily downslope from high-elevation populations, along with reduced gene flow at outlier loci. If this trend continues, elevational range contractions in American pikas will likely be from local extirpation rather than upward movement of low-elevation individuals; this, in turn, could limit the potential for adaptation within this landscape. These findings are of particular relevance for future conservation and management of American pikas and other elevationally restricted, thermally sensitive species. © 2018 John Wiley & Sons Ltd.
Investigation of viability of plant tissue in the environmental scanning electron microscopy.
Zheng, Tao; Waldron, K W; Donald, Athene M
2009-11-01
The advantages of environmental scanning electron microscopy (ESEM) make it a suitable technique for studying plant tissue in its native state. There have been few studies on the effects of ESEM environment and beam damage on the viability of plant tissue. A simple plant tissue, Allium cepa (onion) upper epidermal tissue was taken as the model for study. The change of moisture content of samples was studied at different relative humidities. Working with the electron beam on, viability tests were conducted for samples after exposure in the ESEM under different operating conditions to investigate the effect of electron beam dose on the viability of samples. The results suggested that without the electron beam, the ESEM chamber itself can prevent the loss of initial moisture if its relative humidity is maintained above 90%. With the electron beam on, the viability of Allium cepa (onion) cells depends both on the beam accelerating voltage and the electron dose/unit area hitting the sample. The dose can be controlled by several of the ESEM instrumental parameters. The detailed process of beam damage on cuticle-down and cuticle-up samples was investigated and compared. The results indicate that cuticular adhesion to the cell wall is relatively weak, but highly resistant to electron beam damage. Systematic study on the effect of ESEM operation parameters has been done. Results qualitatively support the intuitive expectations, but demonstrate quantitatively that Allium cepa epidermal cells are able to be kept in a hydrated and viable state under relevant operation condition inside ESEM, providing a basis for further in situ experiments on plant tissues.
Karthikeyan, Aparna; Gupta, Neelima; Tang, Carol; Mallilankaraman, Karthik; Silambarasan, Maskomani; Shi, Meng; Lu, Lei; Ang, Beng Ti; Ling, Eng-Ang; Dheen, S. Thameem
2018-01-01
Glioma tumors constitute a significant portion of microglial cells, which are known to support tumor progression. The present study demonstrates that transforming growth factor-β (TGFβ) signaling pathway in microglia in a glioma environment is involved in tumor progression and pathogenesis. It has been shown that the TGFβ level is elevated in higher grades of gliomas and its signaling pathway regulates tumor progression through phosphorylation of SMAD2 and SMAD3, which form a complex with SMAD4 to regulate target gene transcription. In an in vitro cell line-based model increased protein levels of pSMAD2/3, total SMAD2/3 and SMAD4 were observed in murine BV2 microglia cultured in glioma conditioned medium (GCM), indicative of the activated TGFβ signaling pathway in microglia associated with glioma environment. Immunofluorescence labeling further revealed the expression of SMAD4 in microglial and non-microglial cells of human glioblastomas tissue in vivo. Functional analysis through shRNA-mediated stable knockdown of SMAD4 in microglia revealed the downregulation of the expression of matrix metalloproteinase 9 (MMP9), which has been shown to be involved in tumor progression and cell migration. Further, knockdown of SMAD4 in microglia decreased the migration of microglial cells towards GCM, indicating that SMAD4 promotes microglial migration in glioma environment. In addition, SMAD4 has been shown to be post-transcriptionally regulated by microRNA-146a, which was downregulated in microglia treated with GCM. Overexpression of miR-146a resulted in decreased expression of SMAD4 together with tumor supportive gene MMP9 in microglia, and subsequently suppressed microglial migration towards GCM, possibly through regulation of SMAD4. On the other hand, the cell viability assay revealed decreased viability of glioma cells when they were treated with conditioned medium derived from SMAD4 knockdown microglia or miR-146a overexpressed microglia as compared to glioma cells treated with the medium from control microglial cells. Taken together, the present study suggests that microglial SMAD4 which is epigenetically regulated by miR-146a promotes microglial migration in gliomas and glioma cell viability.
Models Required to Mitigate Impacts of Space Weather on Space Systems
NASA Technical Reports Server (NTRS)
Barth, Janet L.
2003-01-01
This viewgraph presentation attempts to develop a model of factors which need to be considered in the design and construction of spacecraft to lessen the effects of space weather on these vehicles. Topics considered include: space environments and effects, radiation environments and effects, space weather drivers, space weather models, climate models, solar proton activity and mission design for the GOES mission. The authors conclude that space environment models need to address issues from mission planning through operations and a program to develop and validate authoritative space environment models for application to spacecraft design does not exist at this time.
Space Environment Effects on Materials : An Overview
NASA Technical Reports Server (NTRS)
Garrett, Henry B.
2006-01-01
A general overview on the space environment and its effects on materials is presented. The topics include: 1) Impact of Space Effects on Spacecraft Costs; 2) Space Environment Effects on Spacecraft by Source; 3) Primary Source of Space Effects: The Sun; 4) The Earth's Environment; 5) Trapped Radiation Belts; 6) Aurora Are Everywhere; 7) Spacecraft Interactions; 8) Atmospheric Effects; 9) Contaminant Effects on Materials; 10) Meteoroid/Debris Effects on Materials; 11) Spacecraft Surface Charging; 12) Surface Discharge Effects; 13) Internal Electrostatic Discharge--Satellite Killer; 14) Plasma Interactions DS-1 Ion Engines; 15) Radiation Effects on Spacecraft Systems and Materials; 16) Total Ionizing Dose Effects Total Ionizing Dose Effects; 17) Man-Made Sources of Space Effects Man-Made Sources of Space Effects; and 18) Space Environments Versus Interactions.
Space processing of crystals for opto-electronic devices: The case for solution growth
NASA Technical Reports Server (NTRS)
Hayden, S. C.; Cross, L. E.
1975-01-01
The results obtained during a six month program aimed at determining the viability of space processing in the 1980's of dielectric-elastic-magnetic single crystals were described. The results of this program included: identification of some important emerging technologies dependent on dielectric-elastic-magnetic crystals, identification of the impact of intrinsic properties and defects in the single crystals on system performance, determination of a sensible common basis for the many crystals of this class, and identification of the benefits of micro-gravity and some initial experimental evidence that these benefits can be realized in space. It is concluded that advanced computers and optical communications are at a development stage for high demand of dielectric-elastic-magnetic single crystals in the mid-1980's. Their high unit cost and promise for significantly increased perfection by growth in space justified pursuit of space processing.
Space Station Induced Monitoring
NASA Technical Reports Server (NTRS)
Spann, James F. (Editor); Torr, Marsha R. (Editor)
1988-01-01
This report contains the results of a conference convened May 10-11, 1988, to review plans for monitoring the Space Station induced environment, to recommend primary components of an induced environment monitoring package, and to make recommendations pertaining to suggested modifications of the Space Station External Contamination Control Requirements Document JSC 30426. The contents of this report are divided as Follows: Monitoring Induced Environment - Space Station Work Packages Requirements, Neutral Environment, Photon Emission Environment, Particulate Environment, Surface Deposition/Contamination; and Contamination Control Requirements.
The concept of "green chemistry" is widely adopted to meet the fundamental scientific challenges of protecting the human health and environment while simultaneously achieving commercial viability. One of the thrust areas for achieving this target is to explore alternative reactio...
USDA-ARS?s Scientific Manuscript database
Effective Salmonella control in broilers is important from the standpoint of both consumer protection and industry viability. We investigated associations between Salmonella recovery from different sample types collected at sequential stages of one grow-out from the broiler flock and production env...
An Empirical Study of Earth Covered Schools in Oklahoma. Final Report.
ERIC Educational Resources Information Center
Zaccor, James V.
A study of earth-covered schools in Oklahoma was conducted for the Federal Emergency Management Agency (FEMA) to assess the viability of these structures as learning and teaching environments, as cost beneficial investments, and as potential shelters from natural and man-made disasters. The study was aimed at identifying what information is…
Online Collaboration and Cooperation: The Recurring Importance of Evidence, Rationale and Viability
ERIC Educational Resources Information Center
Hammond, Michael
2017-01-01
This paper investigates collaboration in teaching and learning and draws out implications for the promotion of collaboration within online environments. It is divided into four sections. First the case for collaboration, including specifically cooperative approaches, is explored. This case revolves around the impact of collaboration on the quality…
Land and resource use decisions are typically made by individuals, towns, counties, tribes, states and sometimes multiple states (regions) to increase economic viability of an area with little attention to the long term effects on human health and the environment. Individuals an...
Variability in nitrogen uptake and utilization among accessions of annual ryegrass and tall fescue
USDA-ARS?s Scientific Manuscript database
Efficient use of nitrogen (N) applied to grassland is important, both for ensuring economic viability of N use and to minimize the amount of unrecovered N that is susceptible to loss from the agricultural system to the broader environment. Comparison was made of N uptake efficiency and of utilizatio...
Land and resource use decisions are typically made to increase the economic viability of an area with little attention to the long term effects on human health and the environment from the resulting environmental condition after an action is taken. Currently, ecosystem services ...
Land and resource use decisions are typically made by individuals, towns, counties, tribes, states and sometimes multiple states (regions) to increase economic viability of an area with little attention to the long term effects on human health and the environment. Individuals an...
Workshop on Viability of Halophilic Bacteria in Salt Deposits
NASA Technical Reports Server (NTRS)
1997-01-01
The significance of finding viable extreme halophiles in halites associated with Permian-aged sedimentary deposits is considered. Issues related to the microbiology and geochemistry of the halite environment are addressed. Recommendations that related the significance of this phenomenon to NASA's interest in planetary exploration and the early evolution of life are provided.
Psychological Unsafety in Schools: The Development and Validation of a Scale
ERIC Educational Resources Information Center
Yildirim, Kamil; Yenipinar, Senyurt
2017-01-01
Work related psychological unsafety defined as the degree to which employee perceive the risky work environment that hinder them to behave comfortably or to speak up what they think without fear of its possible negative consequences. The importance of psychological unsafety has already been laid down for organizational viability and development,…
Planning in Reverse: A Viable Approach to Organizational Leadership
ERIC Educational Resources Information Center
Ballantyne, Scott; Berret, Beth; Wells, Mary Ellen
2011-01-01
Planning in Reverse is an innovative concept designed to make organizations more successful by altering the perspective utilized in the strategy process. What is needed for organizations to thrive in this new environment of change and uncertainty is a short-term approach for long-term viability. In this book, tools and concepts regarding Planning…
USDA-ARS?s Scientific Manuscript database
This study investigated the abiotic stress tolerance of mature cotton [Gossypium hirsutum (L.)] pollen and identified genetic variability among the six cotton lines studied. Genetic diversity in pollen viability was observed following a 6.5 h exposure to 25% relative humidity (RH). NM67, DP565, and...
USDA-ARS?s Scientific Manuscript database
The microenvironment of follicular fluid is thought to provide a rich source of nutrients and other factors that promotes oocyte growth and viability; however, it is not known if obesity or related sequelae impacts this environment. To address this research gap, we designed a clinical study to asses...
Collender, Philip A.; Kirby, Amy E.; Addiss, David G.; Freeman, Matthew C.; Remais, Justin V.
2015-01-01
Limiting the environmental transmission of soil-transmitted helminths (STH), which infect 1.5 billion people worldwide, will require sensitive, reliable, and cost effective methods to detect and quantify STH in the environment. We review the state of the art of STH quantification in soil, biosolids, water, produce, and vegetation with respect to four major methodological issues: environmental sampling; recovery of STH from environmental matrices; quantification of recovered STH; and viability assessment of STH ova. We conclude that methods for sampling and recovering STH require substantial advances to provide reliable measurements for STH control. Recent innovations in the use of automated image identification and developments in molecular genetic assays offer considerable promise for improving quantification and viability assessment. PMID:26440788
Fate of Earth Microbes on Mars: UV Radiation Effects
NASA Technical Reports Server (NTRS)
Cockell, Charles
2000-01-01
A radiative transfer model is used to quantitatively investigate aspects of the martian ultraviolet radiation environment. Biological action spectra for DNA inactivation are used to estimate biologically effective irradiances for the martian surface under cloudless skies. Although the present-day martian UV flux is similar to early earth and thus may not be a limitation to life in the evolutionary context, it is a constraint to an unadapted biota and will rapidly kill spacecraft-borne microbes not covered by a martian dust layer. Here calculations for loss of microbial viability on the Pathfinder and Polar lander spacecraft are presented and the effects of martian dust on loss of viability are discussed. Details of the radiative transfer model are presented.
Fate of Earth Microbes on Mars -- UV Radiation Effects
NASA Technical Reports Server (NTRS)
Cockell, Charles
2000-01-01
A radiative transfer model is used to quantitatively investigate aspects of the martian ultraviolet radiation environment. Biological action spectra for DNA inactivation are used to estimate biologically effective irradiances for the martian surface under cloudless skies. Although the present-day martian UV flux is similar to early earth and thus may not be a limitation to life in the evolutionary context, it is a constraint to an unadapted biota and will rapidly kill spacecraft-borne microbes not covered by a martian dust layer. Here calculations for loss of microbial viability on the Pathfinder and Polar lander spacecraft are presented and the effects of martian dust on loss of viability are discussed. Details of the radiative transfer model are presented.
NASA Technical Reports Server (NTRS)
Todd, P. W.
1985-01-01
The objectives of the red blood cell experiments were to provide a visual check on the electrophoretic process and especially electroosmotic flow in space as well as to provide test separations of non-degradable standard particles for comparison with the separations of the three viable cell types studied on the Apollo-Soyuz Test Project. Determination of the maximum concentrations of cells that can be separated in column electrophore was a significant goal. Two of the eight columns were available for red cell experiments, so two concentrations of human and rabbit RBC mixtures were used. The objectives of another experiment were to evaluate the reproducibility of microgravity electrophoretic separation of living kidney cells, to separate cells with highly viability despite two freeze-thaw cycles, and to optimize the physical conditions of cell separation. Owing to the uncertain heterogeneity of the starting material, the experimental design does not assess resolution in microgravity, but improved separability was sought in comparison to density-gradient electrophoresis or continuous-flow electrophoresis. Efforts were made to increase cell yield and cell viability and to assess reproducibility directly.
Radiobiological experiments with plant seeds aboard the biosatellite Cosmos 1887
NASA Technical Reports Server (NTRS)
Benton, E. V.; Anikeeva, I. D.; Akatov, Yu. A.; Vaulina, E. N.; Kostina, L. N.; Marenny, A.; Portman, A. I.; Rusin, S. V.
1995-01-01
The effects of spaceflight factors on the seeds of Arabidopsis thaliana and Crepis capillaris were studied. The seeds were located inside the satellite in an open space, protected with aluminum foil and also exposed without the foil cover. When the seeds were in open space without any protection, their viability was found to be suppressed; the survival rate and fertility of plants grown from these seeds were also diminished. An increase in the frequency of chromosome aberrations (CA) and in the number of multiple injuries was registered in this case. Experiments with the aluminum foil shielding showed a decrease in the suppression of the seeds' viability, but mutational changes were found to be even more increased, while the survival rate and fertility of the plants decreased. An increase in the thickness of shielding resulted in a decrease in the effects up to the level of the control, except for the effects connected with CA and fertility of the plants. Analysis of the results shows that these impairments can be ascribed to the action of single heavy charged particles (HCP). The seeds can thus be regarded as an integral biological 'dosimeter' which allows estimation of the total effects of radiation, ecological and biological factors.
Inertial energy storage for advanced space station applications
NASA Technical Reports Server (NTRS)
Van Tassel, K. E.; Simon, W. E.
1985-01-01
Because the NASA Space Station will spend approximately one-third of its orbital time in the earth's shadow, depriving it of solar energy and requiring an energy storage system to meet system demands, attention has been given to flywheel energy storage systems. These systems promise high mechanical efficiency, long life, light weight, flexible design, and easily monitored depth of discharge. An assessment is presently made of three critical technology areas: rotor materials, magnetic suspension bearings, and motor-generators for energy conversion. Conclusions are presented regarding the viability of inertial energy storage systems and of problem areas requiring further technology development efforts.
Meteoroids and Orbital Debris: Effects on Spacecraft
NASA Technical Reports Server (NTRS)
Belk, Cynthia A.; Robinson, Jennifer H.; Alexander, Margaret B.; Cooke, William J.; Pavelitz, Steven D.
1997-01-01
The natural space environment is characterized by many complex and subtle phenomena hostile to spacecraft. The effects of these phenomena impact spacecraft design, development, and operations. Space systems become increasingly susceptible to the space environment as use of composite materials and smaller, faster electronics increases. This trend makes an understanding of the natural space environment essential to accomplish overall mission objectives, especially in the current climate of better/cheaper/faster. Meteoroids are naturally occurring phenomena in the natural space environment. Orbital debris is manmade space litter accumulated in Earth orbit from the exploration of space. Descriptions are presented of orbital debris source, distribution, size, lifetime, and mitigation measures. This primer is one in a series of NASA Reference Publications currently being developed by the Electromagnetics and Aerospace Environments Branch, Systems Analysis and Integration Laboratory, Marshall Space Flight Center, National Aeronautics and Space Administration.
The influence of micronutrients in cell culture: a reflection on viability and genomic stability.
Arigony, Ana Lúcia Vargas; de Oliveira, Iuri Marques; Machado, Miriana; Bordin, Diana Lilian; Bergter, Lothar; Prá, Daniel; Henriques, João Antonio Pêgas
2013-01-01
Micronutrients, including minerals and vitamins, are indispensable to DNA metabolic pathways and thus are as important for life as macronutrients. Without the proper nutrients, genomic instability compromises homeostasis, leading to chronic diseases and certain types of cancer. Cell-culture media try to mimic the in vivo environment, providing in vitro models used to infer cells' responses to different stimuli. This review summarizes and discusses studies of cell-culture supplementation with micronutrients that can increase cell viability and genomic stability, with a particular focus on previous in vitro experiments. In these studies, the cell-culture media include certain vitamins and minerals at concentrations not equal to the physiological levels. In many common culture media, the sole source of micronutrients is fetal bovine serum (FBS), which contributes to only 5-10% of the media composition. Minimal attention has been dedicated to FBS composition, micronutrients in cell cultures as a whole, or the influence of micronutrients on the viability and genetics of cultured cells. Further studies better evaluating micronutrients' roles at a molecular level and influence on the genomic stability of cells are still needed.
The evolutionary dynamics of haplodiploidy: Genome architecture and haploid viability
Blackmon, Heath; Hardy, Nate B.; Ross, Laura
2015-01-01
Haplodiploid reproduction, in which males are haploid and females are diploid, is widespread among animals, yet we understand little about the forces responsible for its evolution. The current theory is that haplodiploidy has evolved through genetic conflicts, as it provides a transmission advantage to mothers. Male viability is thought to be a major limiting factor; diploid individuals tend to harbor many recessive lethal mutations. This theory predicts that the evolution of haplodiploidy is more likely in male heterogametic lineages with few chromosomes, as genes on the X chromosome are often expressed in a haploid environment, and the fewer the chromosome number, the greater the proportion of the total genome that is X‐linked. We test this prediction with comparative phylogenetic analyses of mites, among which haplodiploidy has evolved repeatedly. We recover a negative correlation between chromosome number and haplodiploidy, find evidence that low chromosome number evolved prior to haplodiploidy, and that it is unlikely that diplodiploidy has reevolved from haplodiploid lineages of mites. These results are consistent with the predicted importance of haploid male viability. PMID:26462452
The Influence of Micronutrients in Cell Culture: A Reflection on Viability and Genomic Stability
Arigony, Ana Lúcia Vargas; de Oliveira, Iuri Marques; Bordin, Diana Lilian; Prá, Daniel; Pêgas Henriques, João Antonio
2013-01-01
Micronutrients, including minerals and vitamins, are indispensable to DNA metabolic pathways and thus are as important for life as macronutrients. Without the proper nutrients, genomic instability compromises homeostasis, leading to chronic diseases and certain types of cancer. Cell-culture media try to mimic the in vivo environment, providing in vitro models used to infer cells' responses to different stimuli. This review summarizes and discusses studies of cell-culture supplementation with micronutrients that can increase cell viability and genomic stability, with a particular focus on previous in vitro experiments. In these studies, the cell-culture media include certain vitamins and minerals at concentrations not equal to the physiological levels. In many common culture media, the sole source of micronutrients is fetal bovine serum (FBS), which contributes to only 5–10% of the media composition. Minimal attention has been dedicated to FBS composition, micronutrients in cell cultures as a whole, or the influence of micronutrients on the viability and genetics of cultured cells. Further studies better evaluating micronutrients' roles at a molecular level and influence on the genomic stability of cells are still needed. PMID:23781504
Brain Tumor Genetic Modification Yields Increased Resistance to Paclitaxel in Physical Confinement
Bui, Loan; Hendricks, Alissa; Wright, Jamie; Chuong, Cheng-Jen; Davé, Digant; Bachoo, Robert; Kim, Young-tae
2016-01-01
Brain tumor cells remain highly resistant to radiation and chemotherapy, particularly malignant and secondary cancers. In this study, we utilized microchannel devices to examine the effect of a confined environment on the viability and drug resistance of the following brain cancer cell lines: primary cancers (glioblastoma multiforme and neuroblastoma), human brain cancer cell lines (D54 and D54-EGFRvIII), and genetically modified mouse astrocytes (wild type, p53−/−, p53−/− PTEN−/−, p53−/− Braf, and p53−/− PTEN−/− Braf). We found that loss of PTEN combined with Braf activation resulted in higher viability in narrow microchannels. In addition, Braf conferred increased resistance to the microtubule-stabilizing drug Taxol in narrow confinement. Similarly, survival of D54-EGFRvIII cells was unaffected following treatment with Taxol, whereas the viability of D54 cells was reduced by 75% under these conditions. Taken together, our data suggests key targets for anticancer drugs based on cellular genotypes and their specific survival phenotypes during confined migration. PMID:27184621
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Fralick, Gustave C.; Hunter, Gary W.
2006-01-01
The need to consider ceramic sensing elements is brought about by the temperature limits of metal thin film sensors in propulsion system applications. In order to have a more passive method of negating changes of resistance due to temperature, an effort is underway at NASA Glenn to develop high temperature thin film ceramic static strain gauges for application in turbine engines, specifically in the fan and compressor modules on blades. Other applications can be on aircraft hot section structures and on thermal protection systems. The near-term interim goal of the research effort was to identify candidate thin film ceramic sensor materials to test for viability and provide a list of possible thin film ceramic sensor materials and corresponding properties to test for viability. This goal was achieved by a thorough literature search for ceramics that have the potential for application as high temperature thin film strain gauges, reviewing potential candidate materials for chemical and physical compatibility with our microfabrication procedures and substrates.
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Fralick, Gustave C.; Hunter, Gary W.
2006-01-01
The need to consider ceramic sensing elements is brought about by the temperature limits of metal thin film sensors in propulsion system applications. In order to have a more passive method of negating changes of resistance due to temperature, an effort is underway at NASA GRC to develop high temperature thin film ceramic static strain gauges for application in turbine engines, specifically in the fan and compressor modules on blades. Other applications include on aircraft hot section structures and on thermal protection systems. The near-term interim goal of this research effort was to identify candidate thin film ceramic sensor materials to test for viability and provide a list of possible thin film ceramic sensor materials and corresponding properties to test for viability. This goal was achieved by a thorough literature search for ceramics that have the potential for application as high temperature thin film strain gauges, reviewing potential candidate materials for chemical & physical compatibility with NASA GRC's microfabrication procedures and substrates.
Vilchez, S; Manzanera, Maximino
2011-09-01
Plant growth-promoting rhizobacteria (PGPR) increase the viability and health of host plants when they colonize roots and engage in associative symbiosis (Bashan et al. 2004). In return, PGPR viability is increased by host plant roots by the provision of nutrients and a more protective environment (Richardson et al. in Plant Soil 321:305-339, 2009). The PGPR have great potential in agriculture since the combination of certain microorganisms and plants can increase crop production and increase protection against frost, salinity, drought and other environmental stresses such as the presence of xenobiotic pollutants. But there is a great challenge in combining plants and microorganisms without compromising the viability of either microorganisms or seeds. In this paper, we review how anhydrobiotic engineering can be used for the formulation of biotechnological tools that guarantee the supply of both plants and microorganisms in the dry state. We also describe the application of this technology for the selection of desiccation-tolerant PGPR for polycyclic aromatic hydrocarbons bioremediation, in soils subjected to seasonal drought, by the rhizoremediation process.
Low-level lasers affect Escherichia coli cultures in hyperosmotic stress
NASA Astrophysics Data System (ADS)
Pinheiro, C. C.; Barboza, L. L.; Paoli, F.; Fonseca, A. S.
2015-08-01
Physical characteristics and practical properties have made lasers of interest for biomedical applications. Effects of low-level lasers on biological tissues could occur or be measurable depending on cell type, presence of a pathologic process or whether the cells are in an adverse environment. The objective of this work was to evaluate the survival, morphology and filamentation of E. coli cells proficient and deficient in the repair of oxidative DNA lesions exposed low-level red and infrared lasers submitted to hyperosmotic stress. Wild type and endonuclease VIII deficient E. coli cells in exponential and stationary growth phase were exposed to red and infrared lasers and submitted to hyperosmotic stress. Cell viability, filamentation phenotype and cell morphology were evaluated. Cell viability was not significantly altered but previous laser exposure induced filamentation and an altered area of stressed cells depending on physiologic condition and presence of the DNA repair. Results suggest that previous exposure to low-level red and infrared lasers could not affect viability but induced morphologic changes in cells submitted to hyperosmotic stress depending on physiologic conditions and repair of oxidative DNA lesions.
Genomic and Phenotypic Characterization of Yeast Biosensor for Deep-space Radiation
NASA Technical Reports Server (NTRS)
Marina, Diana B.; Santa Maria, Sergio; Bhattacharya, Sharmila
2016-01-01
The BioSentinel mission was selected to launch as a secondary payload onboard NASA Exploration Mission 1 (EM-1) in 2018. In BioSentinel, the budding yeast Saccharomyces cerevisiae will be used as a biosensor to measure the long-term impact of deep-space radiation to living organisms. In the 4U-payload, desiccated yeast cells from different strains will be stored inside microfluidic cards equipped with 3-color LED optical detection system to monitor cell growth and metabolic activity. At different times throughout the 12-month mission, these cards will be filled with liquid yeast growth media to rehydrate and grow the desiccated cells. The growth and metabolic rates of wild-type and radiation-sensitive strains in deep-space radiation environment will be compared to the rates measured in the ground- and microgravity-control units. These rates will also be correlated with measurements obtained from onboard physical dosimeters. In our preliminary long-term desiccation study, we found that air-drying yeast cells in 10% trehalose is the best method of cell preservation in order to survive the entire 18-month mission duration (6-month pre-launch plus 12-month full-mission periods). However, our study also revealed that desiccated yeast cells have decreasing viability over time when stored in payload-like environment. This suggests that the yeast biosensor will have different population of cells at different time points during the long-term mission. In this study, we are characterizing genomic and phenotypic changes in our yeast biosensor due to long-term storage and desiccation. For each yeast strain that will be part of the biosensor, several clones were reisolated after long-term storage by desiccation. These clones were compared to their respective original isolate in terms of genomic composition, desiccation tolerance and radiation sensitivity. Interestingly, clones from a radiation-sensitive mutant have better desiccation tolerance compared to their original isolate without losing radiation sensitivity. We employed Next-Generation Sequencing technology to better understand this phenotypic variation. Current effort is focusing on the analysis of high-throughput sequencing data to look for genomic changes in these reisolated clones compared to their original isolate.
Natural environment design requirements for the space tug
NASA Technical Reports Server (NTRS)
West, G. S., Jr.
1973-01-01
The natural environment design requirements for the space tug are presented. Since the Space Tug is carried as cargo to orbital altitudes in the space shuttle bay, orbital environmental impacts and short-period atmospheric density variations are the main concerns. The subjects discussed are: (1) natural environment, (2) neutral environment, (3) charged particles, (4) radiation, and (5) meteoroid hazards.
NASA Technical Reports Server (NTRS)
Roberts, Barry C.; Batts, Wade
1997-01-01
The National Aeronautics and Space Administration (NASA) designated Marshall Space Flight Center (MSFC) the center of excellence for space transportation. The Aerospace Environments and Effects (AEE) team of the Electromagnetics and Aerospace Environments Branch (EL23) in the Systems Analysis and Integration Laboratory at MSFC, supports the center of excellence designation by providing near-Earth space, deep space, planetary, and terrestrial environments expertise to projects as required. The Terrestrial Environment (TE) group within the AEE team maintains an extensive TE data base. Statistics and models derived from this data are applied to the design and development of new aerospace vehicles, as well as performance enhancement of operational vehicles such as the Space Shuttle. The TE is defined as the Earth's atmospheric environment extending from the surface to orbital insertion altitudes (approximately 90 km).
Design method of combined protective against space environmental effects on spacecraft
NASA Astrophysics Data System (ADS)
Shen, Zicai; Gong, Zizheng; Ding, Yigang; Liu, Yuming; Liu, Yenan
2016-01-01
During its projected extended stay in LEO, spacecraft will encounter many environmental factors including energetic particles, ultraviolet radiation, atomic oxygen, and space debris and meteoroids, together with some induced environments such as contamination and discharging. These space environments and their effects have threat to the reliability and lifetime of spacecraft. So, it is important to give a combined design against the threat from space environments and their effects. The space environments and effects are reviewed in this paper firstly. Secondly, the design process and method against space environments are discussed. At last, some advices about protective structure and materials are proposed.
MSFC/EV44 Natural Environment Capabilities
NASA Technical Reports Server (NTRS)
NeergaardParker, Linda; Willis, Emily M.; Minnow, Joseph I.; Coffey, Vic N.
2014-01-01
The Natural Environments Branch at Marshall Space Flight Center is an integral part of many NASA satellite and launch vehicle programs, providing analyses of the space and terrestrial environments that are used for program development efforts, operational support, and anomaly investigations. These capabilities include model development, instrument build and testing, analysis of space and terrestrial related data, spacecraft charging anomaly investigations, surface and internal charging modeling, space environment definition, and radiation assessments for electronic parts. All aspects of space and terrestrial design are implemented with the goal of devising missions that are successful from launch to operations in the space environment of LEO, polar, GEO, and interplanetary orbits.
NASA Technical Reports Server (NTRS)
Garrison, Matthew; Rashford, Robert; Switzer, Timothy; Shaw, David; White, Bryant; Lynch, Michael; Huber, Frank; Bachtell, Neal
2009-01-01
The thermal performance of NASA s planned James Webb Space Telescope is highly reliant on a collection of directional baffles that are part of the Integrated Science Instrument Module Electronics Compartment. In order to verify the performance of the baffle concept, two test assemblies were recently fabricated and tested at the Goddard Space Flight Center. The centerpiece of the testing was a fixture that used bolometers to measure the emission field through the baffles while the radiator panels and baffles ran a flight-like temperature. Although not all test goals were able to be met due to facility malfunctions, the test was able to prove the design viability enough to gain approval to begin manufacturing the flight article.
NASA Technical Reports Server (NTRS)
1976-01-01
The SPS concepts which appear to be technically feasible are discussed in terms of the economic viability and competitive costs with other energy sources. The concepts discussed include: power station, microwave reception and conversion, space construction and maintenance, space transportation, and program costs and analysis. The conclusions presented include: (1) The maximum output of an individual microwave transmission link to earth is about 5 GW. (2) The mass of 10 GW SPS is between 47,000,000 and 124,000,00 kg. (3) The silicon solar cell arrays make up well over half the weight and cost of the satellite. (4) The SPS in equatorial orbit will be eclipsed by the earth and by other satellites.
NASA Astrophysics Data System (ADS)
Nolan, Jacqueline; Cai, Chenzhoung; Nedosekin, Dmitry A.; Zharov, Vladimir P.
2017-02-01
Approximately 8 million people lose their lives due to cancer each year. Metastatic disease is responsible for 90% of those cancer-related deaths. Only viable circulating tumor cells (CTCs) that can survive in the blood circulation can create secondary tumors. Thus, real-time enumeration of CTCs and assessment of their viability in vivo has great biological significance. However, little progress has been made in this field. Conventional flow cytometry is the current technique being used for the assessment of cell viability, but there are many limitations to this technique: 1) cell properties may be altered during the extraction and processing method; 2) collection of cells from blood prevents the long-term study of individual cells in their natural biological environment; and 3) there are time-consuming preparation procedures. Whether it be for the assessment of antitumor drugs, where induction of apoptosis or necrosis is the preferred event, or the identification of nanoparticle-induced toxicity during nanotherapeutic treatment, it is clear that new approaches for assessment of the viability circulating blood cells and CTCs are urgently needed. We have developed a novel high speed, multicolor in vivo flow cytometry (FC) platform that integrates photoacoustic (PA) and fluorescence FC (PAFFC) and demonstrate its ability to enumerate rare circulating normal and abnormal (e.g. tumor) cells and assess their viability (e.g. apoptotic and necrotic) in a mouse model.
Kiefer, Kristina M; O'Brien, Timothy D; Pluhar, Elizabeth G; Conzemius, Michael
2015-01-01
Stem cell therapy used in clinical application of osteoarthritis in veterinary medicine typically involves intra-articular injection of the cells, however the effect of an osteoarthritic environment on the fate of the cells has not been investigated. Assess the viability of adipose derived stromal cells following exposure to osteoarthritic joint fluid. Adipose derived stromal cells (ASCs) were derived from falciform adipose tissue of five adult dogs, and osteoarthritic synovial fluid (SF) was obtained from ten patients undergoing surgical intervention on orthopedic diseases with secondary osteoarthritis. Normal synovial fluid was obtained from seven adult dogs from an unrelated study. ASCs were exposed to the following treatment conditions: culture medium, normal SF, osteoarthritic SF, or serial dilutions of 1:1 to 1:10 of osteoarthritic SF with media. Cells were then harvested and assessed for viability using trypan blue dye exclusion. There was no significant difference in the viability of cells in culture medium or normal SF. Significant differences were found between cells exposed to any concentration of osteoarthritic SF and normal SF and between cells exposed to undiluted osteoarthritic SF and all serial dilutions. Subsequent dilutions reduced cytotoxicity. Osteoarthritic synovial fluid in this ex vivo experiment is cytotoxic to ASCs, when compared with normal synovial fluid. Current practice of direct injection of ASCs into osteoarthritic joints should be re-evaluated to determine if alternative means of administration may be more effective.
International Space Station environmental microbiome - microbial inventories of ISS filter debris.
Venkateswaran, Kasthuri; Vaishampayan, Parag; Cisneros, Jessica; Pierson, Duane L; Rogers, Scott O; Perry, Jay
2014-01-01
Despite an expanding array of molecular approaches for detecting microorganisms in a given sample, rapid and robust means of assessing the differential viability of the microbial cells, as a function of phylogenetic lineage, remain elusive. A propidium monoazide (PMA) treatment coupled with downstream quantitative polymerase chain reaction (qPCR) and pyrosequencing analyses was carried out to better understand the frequency, diversity, and distribution of viable microorganisms associated with debris collected from the crew quarters of the International Space Station (ISS). The cultured bacterial counts were more in the ISS samples than cultured fungal population. The rapid molecular analyses targeted to estimate viable population exhibited 5-fold increase in bacterial (qPCR-PMA assay) and 25-fold increase in microbial (adenosine triphosphate assay) burden than the cultured bacterial population. The ribosomal nucleic acid-based identification of cultivated strains revealed the presence of only four to eight bacterial species in the ISS samples, however, the viable bacterial diversity detected by the PMA-pyrosequencing method was far more diverse (12 to 23 bacterial taxa) with the majority consisting of members of actinobacterial genera (Propionibacterium, Corynebacterium) and Staphylococcus. Sample fractions not treated with PMA (inclusive of both live and dead cells) yielded a great abundance of highly diverse bacterial (94 to 118 taxa) and fungal lineages (41 taxa). Even though deep sequencing capability of the molecular analysis widened the understanding about the microbial diversity, the cultivation assay also proved to be essential since some of the spore-forming microorganisms were detected only by the culture-based method. Presented here are the findings of the first comprehensive effort to assess the viability of microbial cells associated with ISS surfaces, and correlate differential viability with phylogenetic affiliation.
NASA Technical Reports Server (NTRS)
1989-01-01
The success of space endeavors depends upon a space environment sufficiently free of debris to enable the safe and dependable operation of spacecraft. An environment overly cluttered with debris would threaten the ability to utilize space for a wide variety of scientific, technological, military, and commercial purposes. Man made space debris (orbital debris) differs from natural meteoroids because it remains in earth orbit during its lifetime and is not transient through the space around the Earth. The orbital debris environment is considered. The space environment is described along with sources of orbital debris. The current national space policy is examined, along with ways to minimize debris generation and ways to survive the debris environment. International efforts, legal issues and commercial regulations are also examined.
Smolarska, Anna; Ozymko, Zofia
2017-01-01
Dickeya solani is one of the most important pectinolytic phytopathogens responsible for high losses in potato, especially in seed potato production in Europe. Lytic bacteriophages can affect the structure of the host population and may influence spread, survival and virulence of the pathogen and in consequence, infection of the plant. In this study, we aimed to acquire information on the viability of the broad host lytic bacteriophage ΦD5 on potato, as well as to apprehend the specific effect of this bacteriophage on its host D. solani type-strain in different settings, as a preliminary step to target co-adaptation of phages and host bacteria in plant environment. Viability of the ΦD5 phage in tuber extract, on tuber surface, in potting compost, in rainwater and on the leaf surface, as well as the effect of copper sulfate, were examined under laboratory conditions. Also, the interaction of ΦD5 with the target host D. solani in vitro and in compost-grown potato plants was evaluated. ΦD5 remained infectious in potato tuber extract and rain water for up to 72 h but was inactivated in solutions containing 50 mM of copper. The phage population was stable for up to 28 days on potato tuber surface and in potting compost. In both, tissue culture and compost-grown potato plants, ΦD5 reduced infection by D. solani by more than 50%. The implications of these findings are discussed. PMID:28800363
Czajkowski, Robert; Smolarska, Anna; Ozymko, Zofia
2017-01-01
Dickeya solani is one of the most important pectinolytic phytopathogens responsible for high losses in potato, especially in seed potato production in Europe. Lytic bacteriophages can affect the structure of the host population and may influence spread, survival and virulence of the pathogen and in consequence, infection of the plant. In this study, we aimed to acquire information on the viability of the broad host lytic bacteriophage ΦD5 on potato, as well as to apprehend the specific effect of this bacteriophage on its host D. solani type-strain in different settings, as a preliminary step to target co-adaptation of phages and host bacteria in plant environment. Viability of the ΦD5 phage in tuber extract, on tuber surface, in potting compost, in rainwater and on the leaf surface, as well as the effect of copper sulfate, were examined under laboratory conditions. Also, the interaction of ΦD5 with the target host D. solani in vitro and in compost-grown potato plants was evaluated. ΦD5 remained infectious in potato tuber extract and rain water for up to 72 h but was inactivated in solutions containing 50 mM of copper. The phage population was stable for up to 28 days on potato tuber surface and in potting compost. In both, tissue culture and compost-grown potato plants, ΦD5 reduced infection by D. solani by more than 50%. The implications of these findings are discussed.
Lactobacillus acidophilus contributes to a healthy environment for vaginal epithelial cells.
Pi, Woojin; Ryu, Jae-Sook; Roh, Jaesook
2011-09-01
Lactobacillus species in the female genital tract are thought to act as a barrier to infection. Several studies have demonstrated that lactobacilli can adhere to vaginal epithelial cells. However, little is known about how the adherence of lactobacilli to vaginal epithelial cells affects the acidity, cell viability, or proliferation of the lactobacilli themselves or those of vaginal epithelial cells. Lactobacillus acidophilus was co-cultured with immortalized human vaginal epithelial cells (MS74 cell line), and the growth of L. acidophilus and the acidity of the culture medium were measured. MS74 cell density and viability were also assessed by counting cell numbers and observing the cell attachment state. L. acidophilus showed exponential growth for the first 6 hr until 9 hr, and the pH was maintained close to 4.0-5.0 at 24 hr after culture, consistent with previous studies. The growth curve of L. acidophilus or the pH values were relatively unaffected by co-culture with MS74 cells, confirming that L. acidophilus maintains a low pH in the presence of MS74 cells. This co-culture model could therefore potentially be used to mimic vaginal conditions for future in vitro studies. On the other hand, MS74 cells co-cultured with L. acidophilus more firmly attached to the culture plate, and a higher number of cells were present compared to cells cultured in the absence of L. acidophilus. These results indicate that L. acidophilus increases MS74 cell proliferation and viability, suggesting that lactobacilli may contribute to the healthy environment for vaginal epithelial cells.
Space Environments and Effects Concept: Transitioning Research to Operations and Applications
NASA Technical Reports Server (NTRS)
Edwards, David L.; Spann, James; Burns, Howard D.; Schumacher, Dan
2012-01-01
The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. NASA has established numerous offices specializing in specific space environments disciplines that will serve to enable these missions. To complement these existing discipline offices, a concept focusing on the development of space environment and effects application is presented. This includes space climate, space weather, and natural and induced space environments. This space environment and effects application is composed of 4 topic areas; characterization and modeling, engineering effects, prediction and operation, and mitigation and avoidance. These topic areas are briefly described below. Characterization and modeling of space environments will primarily focus on utilization during Program mission concept, planning, and design phases. Engineering effects includes materials testing and flight experiments producing data to be used in mission planning and design phases. Prediction and operation pulls data from existing sources into decision-making tools and empirical data sets to be used during the operational phase of a mission. Mitigation and avoidance will develop techniques and strategies used in the design and operations phases of the mission. The goal of this space environment and effects application is to develop decision-making tools and engineering products to support the mission phases of mission concept through operations by focusing on transitioning research to operations. Products generated by this space environments and effects application are suitable for use in anomaly investigations. This paper will outline the four topic areas, describe the need, and discuss an organizational structure for this space environments and effects application.
NASA Technical Reports Server (NTRS)
Hirsch, David B.
2010-01-01
This slide presentation discusses the application of testing aerospace materials to the environment of space for flammability. Test environments include use of drop towers, and the parabolic flight to simulate the low gravity environment of space.
Mitchell, Peter D; Ratcliffe, Elizabeth; Hourd, Paul; Williams, David J; Thomas, Robert J
2014-12-01
It is well documented that cryopreservation and resuscitation of human embryonic stem cells (hESCs) is complex and ill-defined, and often suffers poor cell recovery and increased levels of undesirable cell differentiation. In this study we have applied Quality-by-Design (QbD) concepts to the critical processes of slow-freeze cryopreservation and resuscitation of hESC colony cultures. Optimized subprocesses were linked together to deliver a controlled complete process. We have demonstrated a rapid, high-throughput, and stable system for measurement of cell adherence and viability as robust markers of in-process and postrecovery cell state. We observed that measurement of adherence and viability of adhered cells at 1 h postseeding was predictive of cell proliferative ability up to 96 h in this system. Application of factorial design defined the operating spaces for cryopreservation and resuscitation, critically linking the performance of these two processes. Optimization of both processes resulted in enhanced reattachment and post-thaw viability, resulting in substantially greater recovery of cryopreserved, pluripotent cell colonies. This study demonstrates the importance of QbD concepts and tools for rapid, robust, and low-risk process design that can inform manufacturing controls and logistics.
Research on the Design of Public Space Environment for Aging Society
NASA Astrophysics Data System (ADS)
Fang, Gu; Soo, Kim Chul
2018-03-01
This paper studies the living space environment suitable for the elderly, because the elderly and the disabled have become increasingly prominent social problems. Through the discussion of the humanistic environment design method of the elderly and the disabled, the paper puts forward a new environment design which has the traditional characteristics and adapts to the new society to care for the elderly (the disabled).By studying and analyzing the background of social aging, the theory of public space environment design and the needs of the elderly, it is pointed out that the design of public space environment in the aged society needs to be implemented in detail design. The number of elderly people in public space will increase, give full attention to the public space outdoor environment quality, for the elderly to provide a variety of environmental facilities have long-term significance.
Digital Pen and Paper Technology as a Means of Classroom Administration Relief
NASA Astrophysics Data System (ADS)
Broer, Jan; Wendisch, Tim; Willms, Nina
This paper contains the results of the Mobile Tools for Teachers project concerning the viability of digital pen and paper technology (DPPT) for administration in a K-12 classroom environment. Filled out forms were evaluated and interviews as well as user tests with teachers were done to show the advantages and disadvantages of DPPT compared to regular methods for attendance tracking and grading. Additionally, the paper addresses the problems that arise with DPPT in a classroom environment and includes suggestions how to deal with those.
NASA Astrophysics Data System (ADS)
Dong, J. Y.; Cheng, W.; Ma, C. P.; Tan, Y. T.; Xin, L. S.
2017-04-01
The residential public space is an important part in designing the ecological residence, and a proper physics environment of public space is of greater significance to urban residence in China. Actually, the measure to apply computer aided design software into residential design can effectively avoid an inconformity of design intent with actual using condition, and a negative impact on users due to bad architectural physics environment of buildings, etc. The paper largely adopts a design method of analyzing architectural physics environment of residential public space. By analyzing and evaluating various physics environments, a suitability assessment is obtained for residential public space, thereby guiding the space design.
Development of a Sodium Resonance Lidar for Spaceborne Missions
NASA Astrophysics Data System (ADS)
Janches, D.; Krainak, M. A.; Yu, A. W.; Oleg, K. A.; Jones, S.; Huang, R.
2016-12-01
Layers of neutral metal atoms (i.e. Fe, Mg, Ca, K, Na), which peak between 85 and 95 km and are 20 km in width, are produced by the daily ablation of billions of Interplanetary Dust Particles (IDPs). As these metallic species are ionized during ablation, by sunlights ultraviolet photons, or by charge exchange with existing atmospheric ions, meteoroids affect the structure, chemistry, dynamics, and energetics of the Mesosphere and Lower Thermosphere (MLT). In particular, the strong optical signals produced by the Na layer, makes it an optimal tracer of atmospheric dynamics and circulation and enabling the measurement of quantities, such as composition, temperature and winds, that are critical to address several compelling scientific questions related to the Earth's Upper Atmosphere and the Geospace Environment. In particular, there is a pressing need in the Ionosphere-Thermosphere-Mesosphere (ITM) community to be able to perform high resolution measurements that can be used to characterize the small-scale variability in the MLT on a global basis. Such measurements must include highly resolved, in space and time, global temperatures profiles, which will add to the understanding of key indicators of radiative cooling in the mesosphere. We present in this paper a status update of the efforts carried out at NASA/GSFC to develop and demonstrate an integrated ground-based operational sodium lidar science instrument. The instrument, which uses key space-flight-precursor components, has currently a Technology Readiness Level (TRL) 4. Efforts to raise its TRL to 6 will be presented to demonstrate the spaceflight instrument viability in a cost-efficient approach and serve as the core for the future planning of a Heliophysics space mission.
Stirling Space Engine Program. Volume 1; Final Report
NASA Technical Reports Server (NTRS)
Dhar, Manmohan
1999-01-01
The objective of this program was to develop the technology necessary for operating Stirling power converters in a space environment and to demonstrate this technology in full-scale engine tests. Hardware development focused on the Component Test Power Converter (CTPC), a single cylinder, 12.5-kWe engine. Design parameters for the CTPC were 150 bar operating pressure, 70 Hz frequency, and hot-and cold-end temperatures of 1050 K and 525 K, respectively. The CTPC was also designed for integration with an annular sodium heat pipe at the hot end, which incorporated a unique "Starfish" heater head that eliminated highly stressed brazed or weld joints exposed to liquid metal and used a shaped-tubed electrochemical milling process to achieve precise positional tolerances. Selection of materials that could withstand high operating temperatures with long life were another focus. Significant progress was made in the heater head (Udimet 700 and Inconel 718 and a sodium-filled heat pipe); the alternator (polyimide-coated wire with polyimide adhesive between turns and a polyimide-impregnated fiberglass overwrap and samarium cobalt magnets); and the hydrostatic gas bearings (carbon graphite and aluminum oxide for wear couple surfaces). Tests on the CTPC were performed in three phases: cold end testing (525 K), engine testing with slot radiant heaters, and integrated heat pipe engine system testing. Each test phase was successful, with the integrated engine system demonstrating a power level of 12.5 kWe and an overall efficiency of 22 percent in its maiden test. A 1500-hour endurance test was then successfully completed. These results indicate the significant achievements made by this program that demonstrate the viability of Stirling engine technology for space applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, William; Xiong, Chi; Khater, Marwan
Due to the high radiative forcing of methane, fugitive natural gas leaks pose a significant challenge to the near-term environmental viability of oil and gas extraction. Reducing the subsequent environmental impact requires cost-effective sensor nodes for reliable, rapid, and continuous identification of extraneous methane emissions. The efficacy of laser spectroscopy has been widely demonstrated in both environmental and medical applications due to its sensitivity and specificity to the target analyte. However, the present cost and the lack of manufacturing scalability of free-space optical systems can limit their viability for economical wide-area sensor networks in localized leak detection applications. In thismore » paper, we will review the development and performance of a cost-effective silicon photonic sensing platform. This platform uses silicon photonic waveguide and packaging integration technologies to enable on-chip evanescent field spectroscopy of methane.« less
Recent Applications of Space Weather Research to NASA Space Missions
NASA Technical Reports Server (NTRS)
Willis, Emily M.; Howard, James W., Jr.; Miller, J. Scott; Minow, Joseph I.; NeergardParker, L.; Suggs, Robert M.
2013-01-01
Marshall Space Flight Center s Space Environments Team is committed to applying the latest research in space weather to NASA programs. We analyze data from an extensive set of space weather satellites in order to define the space environments for some of NASA s highest profile programs. Our goal is to ensure that spacecraft are designed to be successful in all environments encountered during their missions. We also collaborate with universities, industry, and other federal agencies to provide analysis of anomalies and operational impacts to current missions. This presentation is a summary of some of our most recent applications of space weather data, including the definition of the space environments for the initial phases of the Space Launch System (SLS), acquisition of International Space Station (ISS) frame potential variations during geomagnetic storms, and Nascap-2K charging analyses.
Preservation of Near-Earth Space for Future Generations
NASA Astrophysics Data System (ADS)
Simpson, John A.
2007-05-01
List of contributors; Preface; Part I. Introduction: 1. Introduction J. A. Simpson; Part II. Defining the Problem: 2. The Earth satellite population: official growth and constituents Nicholas L. Johnson; 3. The current and future environment: an overall assessment Donald J. Kessler; 4. The current and future space debris environment as assessed in Europe Dietrich Rex; 5. Human survivability issues in the low Earth orbit space debris environment Bernard Bloom; 6. Protecting the space environment for astronomy Joel R. Primack; 7. Effects of space debris on commercial spacecraft - the RADARSAT example H. Robert Warren and M. J. Yelle; 8. Potential effects of the space debris environment on military space systems Albert E. Reinhardt; Part III. Mitigation of and Adaptation to the Space Environment: Techniques and Practices: 9. Precluding post-launch fragmentation of delta stages Irvin J. Webster and T. Y. Kawamura; 10. US international and interagency cooperation in orbital debris Daniel V. Jacobs; 11. ESA concepts for space debris mitigation and risk reduction Heiner Klinkrad; 12. Space debris: how France handles mitigation and adaptation Jean-Louis Marcé; 13. Facing seriously the issue of protection of the outer space environment Qi Yong Liang; 14. Space debris - mitigation and adaptation U. R. Rao; 15. Near Earth space contamination and counteractions Vladimir F. Utkin and S. V. Chekalin; 16. The current and future space debris environment as assessed in Japan Susumu Toda; 17. Orbital debris minimization and mitigation techniques Joseph P. Loftus Jr, Philip D. Anz-Meador and Robert Reynolds; Part IV. Economic Issues: 18. In pursuit of a sustainable space environment: economic issues in regulating space debris Molly K. Macauley; 19. The economics of space operations: insurance aspects Christopher T. W. Kunstadter; Part V. Legal Issues: 20. Environmental treatymaking: lessons learned for controlling pollution of outer space Winfried Lang; 21. Regulation of orbital debris - current status Howard A. Baker; 22. Who should regulate the space environment: the laissez-faire, national and multinational options Diane P. Wood; Part VI. A Multilateral Treaty: 23. Orbital debris: prospects for international cooperation Jeffrey Maclure and William C. Bartley; 24. Preservation of near Earth space for future generations: current initiatives on space debris in the United Nations Stephen Gorove; 25. A legal regime for orbital debris: elements of a multilateral treaty Pamela L. Meredith; Part VII. Panel Discussions: 26. Panel discussion led by Diane Wood; 27. Panel discussion led by Paul Uhlir; 28. Suggested further reading on orbital debris.
NASA Technical Reports Server (NTRS)
Edwards, D. L.; Burns, H. D.; Clinton, R. G.; Schumacher, D.; Spann, J. F.
2012-01-01
The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. NASA has established numerous organizations specializing in specific space environments disciplines that will serve to enable these missions. To complement these existing discipline organizations, a concept is presented focusing on the development of a space environment and spacecraft effects organization. This includes space climate, space weather, natural and induced space environments, and effects on spacecraft materials and systems. This space environment and spacecraft effects organization would be comprised of Technical Working Groups (TWG) focusing on, for example: a) Charged Particles (CP), b) Space Environmental Effects (SEE), and c) Interplanetary and Extraterrestrial Environments (IEE). These technical working groups will generate products and provide knowledge supporting four functional areas: design environments, environment effects, operational support, and programmatic support. The four functional areas align with phases in the program mission lifecycle and are briefly described below. Design environments are used primarily in the mission concept and design phases of a program. Environment effects focuses on the material, component, sub-system and system-level selection and the testing to verify design and operational performance. Operational support provides products based on real time or near real time space weather observations to mission operators to aid in real time and near-term decision-making. The programmatic support function maintains an interface with the numerous programs within NASA and other federal agencies to ensure that communications are well established and the needs of the programs are being met. The programmatic support function also includes working in coordination with the program in anomaly resolution and generation of lesson learned documentation. The goal of this space environment and spacecraft effects organization is to develop decision-making tools and engineering products to support the mission phases of mission concept through operations by focusing on transitioning research to application. Products generated by this space environments and spacecraft effects organization are suitable for use in anomaly investigations. This paper will describe the organizational structure for this space environments and spacecraft effects organization, and outline the scope of conceptual TWG's and their relationship to the functional areas.
Zhu, Xiang; Mose, Eucabeth; Hogan, Simon P.
2014-01-01
Extracellular acidification has been observed in allergic inflammatory diseases. Recently, we demonstrated that the proton-sensing receptor G protein-coupled receptor 65 (GPR65) regulates eosinophil survival in an acidic environment in vitro and eosinophil accumulation in an allergic lung inflammation model. For mast cells, another inflammatory cell type critical for allergic responses, it remains unknown whether GPR65 is expressed and/or regulates mast cell viability. Thus, in the present study, we employed in vitro experiments and an intestinal anaphylaxis model in which both mastocytosis and eosinophilia can be observed, particularly in the gastrointestinal tract, to enable us to directly compare the effect of GPR65 expression on these two cell types. We identified GPR65 expression on mast cells; however, unlike eosinophil viability, mast cell viability in vitro is not affected by acidification or GPR65 expression. Mechanistically, we determined that mast cells do not respond to extracellular acidification with increased cAMP levels. Furthermore, in the intestinal anaphylaxis model, we observed a significant reduction of eosinophils (59.1 ± 9.2% decrease) in the jejunum of allergen-challenged GPR65-deficient mice compared with allergen-challenged wild-type mice, despite the degree of antigen sensitization and the expression levels of Th2 cytokines (Il4, Il13) and eosinophil chemokines (Ccl11, Ccl24) in the jejunum being comparable. In contrast, the accumulation of mast cells in allergen-challenged mice was not affected by GPR65 deficiency. In conclusion, our study demonstrates differential regulation of eosinophils and mast cells in inflammatory tissue, with mast cell viability and accumulation being independent of GPR65. PMID:24742990
West, Camilla; Kenway, Steven; Hassall, Maureen; Yuan, Zhiguo
2017-09-01
The water sector needs to make efficient and prudent investment decisions by carefully considering the long-term viability of water infrastructure projects. To support the assessment and planning of residential recycled water schemes in Australia, we have sought to clarify scheme objectives and to further define the array of critical risks that can impact the long-term viability of schemes. Building on historical information, we conducted a national survey which elicited responses from 88 Australian expert practitioners, of which 64% have over 10 years of industry experience and 42% have experience with more than five residential recycled water schemes. On the basis of expert opinion, residential recycled water schemes are considered to be highly relevant for diversifying and improving water supply security, reducing wastewater effluent discharge and pollutant load to waterways and contributing to sustainable urban development. At present however, the inability to demonstrate an incontestable business case is posing a significant risk to the long-term viability of residential recycled water schemes. Political, regulatory, organisational and financial factors were also rated as critical risks, in addition to community risk perception and fall in demand. The survey results shed further light on the regulatory environment of residential recycled water schemes, with regulatory participants rating the level and impact of risk factors higher than other survey participants in most cases. The research outcomes provide a comprehensive understanding of the critical risks to the long-term viability of residential recycled water schemes, thereby enabling the specification of targeted risk management measures at the assessment and planning stage of a scheme. Copyright © 2017 Elsevier Ltd. All rights reserved.
Influence of boundary-layer dynamics on pollen dispersion and viability
NASA Astrophysics Data System (ADS)
Arritt, Raymond W.; Viner, Brian J.; Westgate, Mark E.
2013-04-01
Adoption of genetically modified (GM) crops has raised concerns that GM traits can accidentally cross into conventional crops or wild relatives through the transport of wind-borne pollen. In order to evaluate this risk it is necessary to account both for dispersion of the pollen grains and environmental influences on pollen viability. The Lagrangian approach is suited to this problem because it allows tracking the environmental temperature and moisture that pollen grains experience as they travel. Taking advantage of this capability we have combined a high-resolution version of the WRF meteorological model with a Lagrangian particle dispersion model to predict maize pollen dispersion and viability. WRF is used to obtain fields of wind, turbulence kinetic energy, temperature, and humidity which are then used as input to the Lagrangian dispersion model. The dispersion model in turn predicts transport of a statistical sample of a pollen cloud from source plants to receptors. We also use the three-dimensional temperature and moisture fields from WRF to diagnose changes in moisture content of the pollen grains and consequent loss of viability. Results show that turbulent motions in the convective boundary layer counteract the large terminal velocity of maize pollen grains and lift them to heights of several hundred meters, so that they can be transported long distances before settling to the ground. We also found that pollen lifted into the upper part of the boundary layer remains more viable than has been inferred using surface observations of temperature and humidity. This is attributed to the thermal and moisture structure that typifies the daytime atmospheric boundary layer, producing an environment of low vapor pressure deficit in the upper boundary layer which helps maintain pollen viability.
Land and resource use decisions are typically made by individuals, towns, counties, tribes, states and sometimes multiple states (regions) to increase economic viability of an area with little attention to the long term effects on human health and the environment. Individuals an...
Managing the U.S. Economy in a Post-Attack Environment. A System Dynamics Model of Viability.
1979-11-01
RATE (NET SUPPLIES - PIPELINE) IPPPW - PRODUCTIVITY PER INTERMEDIATE PRODUCTS W 0 Rl R*E I PPPW. K=. ’PWN* PPM, K 14, A IPPPW - PRODUCTIVITY PER...Drive, S.E. University Research Park Mr. Bjorn Pederson Albuquerque, New Mexico 87106 International Association of Chiefs of Police Dr. William W
Creating the Future: Essays on Librarianship in an Age of Great Change.
ERIC Educational Resources Information Center
Reed, Sally Gardner, Ed.
Librarianship is in a period of great transition. Expanding uses of information technology and a dramatically changing demographic and economic environment are forcing librarians to re-examine their profession and to ask questions about their future relevance and viability. Change is and should be viewed as an ongoing and critical component of…
Centrifuge Testing of a Partially-Confined FC-72 Spray
2006-11-01
induced body forces. Heat transfer associated with closed - loop spray cooling will be affected by acceleration body forces, the extent of which is not...impingement cooling, spray cooling, heat pipes , loop heat pipes , carbon foam impregnated with phase-change materials, and combinations of the above...reduced gravity and elevated gravity experiments to help prove viability of pulsating heat pipes (PHPs) for space applications. The PHPs, filled
A facility for training Space Station astronauts
NASA Technical Reports Server (NTRS)
Hajare, Ankur R.; Schmidt, James R.
1992-01-01
The Space Station Training Facility (SSTF) will be the primary facility for training the Space Station Freedom astronauts and the Space Station Control Center ground support personnel. Conceptually, the SSTF will consist of two parts: a Student Environment and an Author Environment. The Student Environment will contain trainers, instructor stations, computers and other equipment necessary for training. The Author Environment will contain the systems that will be used to manage, develop, integrate, test and verify, operate and maintain the equipment and software in the Student Environment.
NASA Advanced Explorations Systems: Advancements in Life Support Systems
NASA Technical Reports Server (NTRS)
Shull, Sarah A.; Schneider, Walter F.
2016-01-01
The NASA Advanced Exploration Systems (AES) Life Support Systems (LSS) project strives to develop reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support systems (ECLSS) critical to enabling long duration human missions beyond low Earth orbit (LEO). Highly reliable, closed-loop life support systems are among the capabilities required for the longer duration human space exploration missions assessed by NASA's Habitability Architecture Team (HAT). The LSS project is focused on four areas: architecture and systems engineering for life support systems, environmental monitoring, air revitalization, and wastewater processing and water management. Starting with the international space station (ISS) LSS systems as a point of departure (where applicable), the mission of the LSS project is three-fold: 1. Address discrete LSS technology gaps 2. Improve the reliability of LSS systems 3. Advance LSS systems towards integrated testing on the ISS. This paper summarized the work being done in the four areas listed above to meet these objectives. Details will be given on the following focus areas: Systems Engineering and Architecture- With so many complex systems comprising life support in space, it is important to understand the overall system requirements to define life support system architectures for different space mission classes, ensure that all the components integrate well together and verify that testing is as representative of destination environments as possible. Environmental Monitoring- In an enclosed spacecraft that is constantly operating complex machinery for its own basic functionality as well as science experiments and technology demonstrations, it's possible for the environment to become compromised. While current environmental monitors aboard the ISS will alert crew members and mission control if there is an emergency, long-duration environmental monitoring cannot be done in-orbit as current methodologies rely largely on sending environmental samples back to Earth. The LSS project is developing onboard analysis capabilities that will replace the need to return air and water samples from space for ground analysis. Air Revitalization- The air revitalization task is comprised of work in carbon dioxide removal, oxygen generation and recovery and trace contamination and particulate control. The CO2 Removal and associated air drying development efforts under the LSS project are focused both on improving the current SOA technology on the ISS and assessing and examining the viability of other sorbents and technologies available in academia and industry. The Oxygen Generation and Recovery technology development area encompasses several sub-tasks in an effort to supply O2 to the crew at the required conditions, to recover O2 from metabolic CO2, and to recycle recovered O2 back to the cabin environment. Current state-of-the-art oxygen generation systems aboard space station are capable of generating or recovering approximately 40% of required oxygen; for exploration missions this percentage needs to be greatly increased. A spacecraft cabin trace contaminant and particulate control system serves to keep the environment below the spacecraft maximum allowable concentration (SMAC) for chemicals and particulates. Both passive (filters) and active (scrubbers) methods contribute to the overall TC & PC design. Work in the area of trace contamination and particulate control under the LSS project is focused on making improvements to the SOA TC & PC systems on ISS to improve performance and reduce consumables. Wastewater Processing and Water Management- A major goal of the LSS project is the development of water recovery systems to support long duration human exploration beyond LEO. Current space station wastewater processing and water management systems distill urine and wastewater to recover water from urine and humidity condensate in the spacecraft at a approximately 74% recovery rate. For longer, farther missions into deep space, that recovery rate must be greatly increased so that astronauts can journey for months without resupply cargo ships from Earth.
Evaluation of the effects of solar radiation on glass. [space environment simulation
NASA Technical Reports Server (NTRS)
Firestone, R. F.; Harada, Y.
1979-01-01
The degradation of glass used on space structures due to electromagnetic and particulate radiation in a space environment was evaluated. The space environment was defined and a simulated space exposure apparatus was constructed. Four optical materials were exposed to simulated solar and particulate radiation in a space environment. Sapphire and fused silica experienced little change in transmittance, while optical crown glass and ultra low expansion glass darkened appreciably. Specimen selection and preparation, exposure conditions, and the effect of simulated exposure are discussed. A selective bibliography of the effect of radiation on glass is included.
Commercial opportunities utilizing the International Space Station
NASA Astrophysics Data System (ADS)
Kearney, Michael E.; Mongan, Phil; Overmyer, Carolyn M.; Jackson, Kenneth
1998-01-01
The International Space Station (ISS) has the unique capability of providing a low-g environment for both short- and long-duration experimentation. This environment can provide a unique and competitive research capability to industry; but until recently, utilization of this environment by the private sector has been limited if not totally unavailable. NASA has recently expressed an interest in the commercial development of space and this is now an integral part of the Agency's enabling legislation through the Space Act. NASA's objective is to foster the use of the space environment for the development of commercial products and processes. Through alliances and agreements with several commercial companies and universities, SPACEHAB, Inc., has built a comprehensive package of services designed to provide low-cost reliable access to space for experimenters. These services provide opportunities to support engineering test beds for materials exposure analysis, to mitigate structural failures as observed on the Hubble Space Telescope; materials processing, remote sensing; space environment definition; and electronic experiments. The intent of this paper is to identify commercial opportunities for utilizing the International Space Station and provide examples of several facilities currently being designed and manufactured by commercial companies with the purpose of providing access to the space environment for commercial users.
Survival and death of the haloarchaeon Natronorubrum strain HG-1 in a simulated martian environment
NASA Astrophysics Data System (ADS)
Peeters, Z.; Vos, D.; ten Kate, I. L.; Selch, F.; van Sluis, C. A.; Sorokin, D. Yu.; Muijzer, G.; Stan-Lotter, H.; van Loosdrecht, M. C. M.; Ehrenfreund, P.
2010-11-01
Halophilic archaea are of interest to astrobiology due to their survival capabilities in desiccated and high salt environments. The detection of remnants of salty pools on Mars stimulated investigations into the response of haloarchaea to martian conditions. Natronorubrum sp. strain HG-1 is an extremely halophilic archaeon with unusual metabolic pathways, growing on acetate and stimulated by tetrathionate. We exposed Natronorubrum strain HG-1 to ultraviolet (UV) radiation, similar to levels currently prevalent on Mars. In addition, the effects of low temperature (4, -20, and -80 °C), desiccation, and exposure to a Mars soil analogue from the Atacama desert on the viability of Natronorubrum strain HG-1 cultures were investigated. The results show that Natronorubrum strain HG-1 cannot survive for more than several hours when exposed to UV radiation equivalent to that at the martian equator. Even when protected from UV radiation, viability is impaired by a combination of desiccation and low temperature. Desiccating Natronorubrum strain HG-1 cells when mixed with a Mars soil analogue impaired growth of the culture to below the detection limit. Overall, we conclude that Natronorubrum strain HG-1 cannot survive the environment currently present on Mars. Since other halophilic microorganisms were reported to survive simulated martian conditions, our results imply that survival capabilities are not necessarily shared between phylogenetically related species.
Space Environment Testing of Photovoltaic Array Systems
NASA Technical Reports Server (NTRS)
Phillips, Brandon; Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H.
2015-01-01
To successfully operate a photovoltaic (PV) array system in space requires planning and testing to account for the effects of the space environment. It is critical to understand space environment interactions not only on the PV components, but also the array substrate materials, wiring harnesses, connectors, and protection circuitry.
A new dimension in space experimentation
NASA Technical Reports Server (NTRS)
1983-01-01
Space experimentation, cosmic origins, the long-term effects of the space environment on living things, the long-term effects of space environment on materials and hardware, seeds in space, power generation in space, experimentation with crystals, and thermal control are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welch, B.L.; Briggs, S.F.; Johansen, J.H.
Big sagebrush (Artemisia tridentata Nutt.) seeds were stored in three different environments; cool, constant temperature (refrigerator 10 degs. C); room temperature (14 to 24 degs. C); and a nonheated warehouse (-28 to +44 degs. C). In all three cases, humidity was held constant and equal. Significant drop in seed viability occurred first in the seed stored in the nonheated warehouse, followed by seed stored at room temperatures, and then seed stored at cool temperatures. It appeared from this study and studies by others that humidity control is more important to maintaining seed viability than temperature control. The old adage simplymore » states `store seeds in a cool and dry place` - but first make sure the seeds have been properly dried. Drying sagebrush seed during the cool, wet weather of the harvesting period creates special challenges to the producer.« less
Financial viability, benefits and challenges of employing a nurse practitioner in general practice.
Helms, Christopher; Crookes, Jo; Bailey, David
2015-04-01
This case study examines the financial viability, benefits and challenges of employing a primary healthcare (PHC) nurse practitioner (NP) in a bulk-billing healthcare cooperative in the Australian Capital Territory. There are few empirical case reports in the Australian literature that demonstrate financial sustainability of this type of healthcare professional in primary healthcare. This case study demonstrates that the costs of employing a PHC-NP in general practice are offset by direct and indirect Medicare billings generated by the PHC-NP, resulting in a cost-neutral healthcare practitioner. The success of this model relies on bidirectional collaborative working relationships amongst general practitioners and NPs. PHC-NPs should have a generalist scope of practice and specialist expertise in order to maximise their utility within the general practice environment.
Collender, Philip A; Kirby, Amy E; Addiss, David G; Freeman, Matthew C; Remais, Justin V
2015-12-01
Limiting the environmental transmission of soil-transmitted helminths (STHs), which infect 1.5 billion people worldwide, will require sensitive, reliable, and cost-effective methods to detect and quantify STHs in the environment. We review the state-of-the-art of STH quantification in soil, biosolids, water, produce, and vegetation with regard to four major methodological issues: environmental sampling; recovery of STHs from environmental matrices; quantification of recovered STHs; and viability assessment of STH ova. We conclude that methods for sampling and recovering STHs require substantial advances to provide reliable measurements for STH control. Recent innovations in the use of automated image identification and developments in molecular genetic assays offer considerable promise for improving quantification and viability assessment. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Smith, R. E. (Editor)
1971-01-01
A consolidation of natural environment data is presented for use as design criteria guidelines in space and planetary exploration vehicle development programs. In addition to information in the disciplinary areas of aeronomy, radiation, geomagnetism, astrodynamic constants, and meteoroids for the earth's environment above 90 kilometers, interplanetary space, and the planetary environments, the upper atmosphere model currently recommended for use at MSFC is discussed in detail.
Three-dimensional transgenic cell model to quantify genotoxic effects of space environment
NASA Astrophysics Data System (ADS)
Gonda, S. R.; Wu, H.; Pingerelli, P. L.; Glickman, B. W.
In this paper we describe a three-dimensional, multicellular tissue-equivalent model, produced in NASA-designed, rotating wall bioreactors using mammalian cells engineered for genomic containment of multiple copies of defined target genes for genotoxic assessment. Rat 2λ fibroblasts, genetically engineered to contain high-density target genes for mutagenesis (Stratagene, Inc., Austin, TX), were cocultured with human epithelial cells on Cytodex beads in the High Aspect Ratio Bioreactor (Synthecon, Inc, Houston, TX). Multi-bead aggregates were formed by day 5 following the complete covering of the beads by fibroblasts. Cellular retraction occurred 8-14 days after coculture initiation culminating in spheroids retaining few or no beads. Analysis of the resulting tissue assemblies revealed: multicellular spheroids, fibroblasts synthesized collagen, and cell viability was retained for the 30-day test period after removal from the bioreactor. Quantification of mutation at the LacI gene in Rat 2λ fibroblasts in spheroids exposed to 0-2 Gy neon using the Big Blue color assay (Stratagene, Inc.), revealed a linear dose-response for mutation induction. Limited sequencing analysis of mutant clones from 0.25 or 1 Gy exposures revealed a higher frequency of deletions and multiple base sequencing changes with increasing dose. These results suggest that the three-dimensional, multicellular tissue assembly model produced in NASA bioreactors are applicable to a wide variety of studies involving the quantification and identification of genotocity including measurement of the inherent damage incurred in Space.
Responses of Haloarchaea to Simulated Microgravity
NASA Astrophysics Data System (ADS)
Dornmayr-Pfaffenhuemer, Marion; Legat, Andrea; Schwimbersky, Karin; Fendrihan, Sergiu; Stan-Lotter, Helga
2011-04-01
Various effects of microgravity on prokaryotes have been recognized in recent years, with the focus on studies of pathogenic bacteria. No archaea have been investigated yet with respect to their responses to microgravity. For exposure experiments on spacecrafts or on the International Space Station, halophilic archaea (haloarchaea) are usually embedded in halite, where they accumulate in fluid inclusions. In a liquid environment, these cells will experience microgravity in space, which might influence their viability and survival. Two haloarchaeal strains, Haloferax mediterranei and Halococcus dombrowskii, were grown in simulated microgravity (SMG) with the rotary cell culture system (RCCS, Synthecon). Initially, salt precipitation and detachment of the porous aeration membranes in the RCCS were observed, but they were avoided in the remainder of the experiment by using disposable instead of reusable vessels. Several effects were detected, which were ascribed to growth in SMG: Hfx. mediterranei's resistance to the antibiotics bacitracin, erythromycin, and rifampicin increased markedly; differences in pigmentation and whole cell protein composition (proteome) of both strains were noted; cell aggregation of Hcc. dombrowskii was notably reduced. The results suggest profound effects of SMG on haloarchaeal physiology and cellular processes, some of which were easily observable and measurable. This is the first report of archaeal responses to SMG. The molecular mechanisms of the effects induced by SMG on prokaryotes are largely unknown; haloarchaea could be used as nonpathogenic model systems for their elucidation and in addition could provide information about survival during lithopanspermia (interplanetary transport of microbes inside meteorites).
NASA's Space Environments and Effects Program: Technology for the New Millennium
NASA Technical Reports Server (NTRS)
Hardage, Donna M.; Pearson, Steven D.
2000-01-01
Current trends in spacecraft development include the use of advanced technologies while maintaining the "faster, better, cheaper" philosophy. Spacecraft designers are continually designing with smaller and faster electronics as well as lighter and thinner materials providing better performance, lower weight, and ultimately lower costs. Given this technology trend, spacecraft will become increasingly susceptible to the harsh space environments, causing damaging or even disabling effects on space systems. NASA's Space Environments and Effects (SEE) Program defines the space environments and provides advanced technology development to support the design, development, and operation of spacecraft systems that will accommodate or mitigate effects due to the harsh space environments. This Program provides a comprehensive and focused approach to understanding the space environment, to define the best techniques for both flight and ground-based experimentation, to update the models which predict both the environments and the environmental effects on spacecraft, and finally to ensure that this multitudinous information is properly maintained and inserted into spacecraft design programs. A description of the SEE Program, its accomplishments, and future activities is provided.
Results of the Trace Contaminant Control Trade Study for Space Suit Life Support Development
NASA Technical Reports Server (NTRS)
Jennings, Mallory A.; Paul, Heather L.
2008-01-01
As the United States plans to return astronauts to the moon, designing the most effective and efficient life support systems is of extreme importance. The trace contaminant control system (TCCS) will be located within the Portable Life Support System (PLSS) of the Constellation Space Suit Element (CSSE), and is responsible for removing contaminants, which at increased levels can be hazardous to a crewmember s health. These contaminants come from several sources including metabolic production of the crewmember (breathing, sweating, etc.) and offgassing of the space suit material layers. This paper summarizes the results of a trade study that investigated TCC technologies used in NASA space suits and vehicles as well as commercial and academic applications, to identify the best technology options for the CSSE PLSS. The trade study also looked at the feasibility of regeneration of TCC technologies, specifically to determine the viability of vacuum regeneration for on-back, realtime EVA.
Results of the Trace Contaminant Control Trade Study for Space Suit Life Support Development
NASA Technical Reports Server (NTRS)
Paul, Heather L.; Jennings, Mallory A.
2009-01-01
As the United States plans to return astronauts to the moon, designing the most effective and efficient life support systems is of extreme importance. The trace contaminant control system (TCCS) will be located within the Portable Life Support System (PLSS) of the Constellation Space Suit Element (CSSE), and is responsible for removing contaminants, which at increased levels can be hazardous to a crewmember's health. These contaminants come from several sources including metabolic production of the crewmember (breathing, sweating, etc.) and offgassing of the space suit material layers. This paper summarizes the results of a trade study that investigated TCC technologies used in NASA space suits and vehicles as well as commercial and academic applications, to identify the best technology options for the CSSE PLSS. The trade study also looked at the feasibility of regeneration of TCC technologies, specifically to determine the viability of vacuum regeneration for on-back, real-time EVA.
Space environment effects on polymers in low earth orbit
NASA Astrophysics Data System (ADS)
Grossman, E.; Gouzman, I.
2003-08-01
Polymers are widely used in space vehicles and systems as structural materials, thermal blankets, thermal control coatings, conformal coatings, adhesives, lubricants, etc. The low earth orbit (LEO) space environment includes hazards such as atomic oxygen, UV radiation, ionizing radiation (electrons, protons), high vacuum, plasma, micrometeoroids and debris, as well as severe temperature cycles. Exposure of polymers and composites to the space environment may result in different detrimental effects via modification of their chemical, electrical, thermal, optical and mechanical properties as well as surface erosion. The high vacuum induces material outgassing (e.g. low-molecular weight residues, plasticizers and additives) and consequent contamination of nearby surfaces. The present work reviews the LEO space environment constituents and their interactions with polymers. Examples of degradation of materials exposed in ground simulation facilities are presented. The issues discussed include the erosion mechanisms of polymers, formation of contaminants and their interaction with the space environment, and protection of materials from the harsh space environment.
Onofri, S.; Barreca, D.; Selbmann, L.; Isola, D.; Rabbow, E.; Horneck, G.; de Vera, J.P.P.; Hatton, J.; Zucconi, L.
2008-01-01
Dried colonies of the Antarctic rock-inhabiting meristematic fungi Cryomyces antarcticus CCFEE 515, CCFEE 534 and C. minteri CCFEE 5187, as well as fragments of rocks colonized by the Antarctic cryptoendolithic community, were exposed to a set of ground-based experiment verification tests (EVTs) at the German Aerospace Center (DLR, Köln, Germany). These were carried out to test the tolerance of these organisms in view of their possible exposure to space conditions outside of the International Space Station (ISS). Tests included single or combined simulated space and Martian conditions. Responses were analysed both by cultural and microscopic methods. Thereby, colony formation capacities were measured and the cellular viability was assessed using live/dead dyes FUN 1 and SYTOX Green. The results clearly suggest a general good resistance of all the samples investigated. C. minteri CCFEE 5187, C. antarcticus CCFEE 515 and colonized rocks were selected as suitable candidates to withstand space flight and long-term permanence in space on the ISS in the framework of the LIchens and Fungi Experiments (LIFE programme, European Space Agency). PMID:19287532
Aerospace applications of virtual environment technology.
Loftin, R B
1996-11-01
The uses of virtual environment technology in the space program are examined with emphasis on training for the Hubble Space Telescope Repair and Maintenance Mission in 1993. Project ScienceSpace at the Virtual Environment Technology Lab is discussed.
Moreno-Valenzuela, Javier; González-Hernández, Luis
2011-01-01
In this paper, a new control algorithm for operational space trajectory tracking control of robot arms is introduced. The new algorithm does not require velocity measurement and is based on (1) a primary controller which incorporates an algorithm to obtain synthesized velocity from joint position measurements and (2) a secondary controller which computes the desired joint acceleration and velocity required to achieve operational space motion control. The theory of singularly perturbed systems is crucial for the analysis of the closed-loop system trajectories. In addition, the practical viability of the proposed algorithm is explored through real-time experiments in a two degrees-of-freedom horizontal planar direct-drive arm. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.
TDEM survey in urban environmental for hydrogeological study at USP campus in São Paulo city, Brazil
NASA Astrophysics Data System (ADS)
Porsani, Jorge Luís; Bortolozo, Cassiano Antonio; Almeida, Emerson Rodrigo; Sobrinho, Esther Novais Santos; Santos, Thiago Gomes dos
2012-01-01
In this work, some TDEM (Time Domain Electromagnetic) results at USP ( University of São Paulo) campus in São Paulo city, Brazil, are presented. The data were acquired focusing on two mains objectives: (i) to map geoelectrical stratigraphy of São Paulo sedimentary basin, emphasizing on hydrogeological studies about sedimentary and crystalline aquifers, and (ii) to analyze the viability of TDEM data acquisition use in urban environment. The study area is located in São Paulo basin border, characterized by Resende and São Paulo formations, which are constituted by sand-clays sediments over a granite-gneissic basement. Two equipments were used in order to acquire database: Protem47 (low power), and Protem57-MK2 (high power). Capacitive noise affect obtained data with Protem47 due to the presence of metal pipes buried at IAG/USP (Institute of Astronomy, Geophysics, and Atmospheric Science) test site at USP. On the other hand, capacitive noise did not affect acquired data with Protem57-MK2, and the data present high signal to noise ratio. Surveys helped in determining sedimentary and crystalline aquifers, characterized by a fracture zone with water inside basin basement (conductive zone). Results show good agreement with local geology obtained from lithological boreholes located in the study areas. Moreover, it shows that TDEM method can be used in urban environments with a countless potential in hydrogeological studies, offering great reliability. Studies showed that main TDEM-method limitation at USP was the lack of space for opening the transmitter loop. Results are very promising and open new perspectives for TDEM-method use in urban environments as this area remains unexplored.
An Overview of the Space Environments and Spacecraft Effects Organization Concept
NASA Technical Reports Server (NTRS)
Edwards, David L.; Burns, Howard D.; Garrett, Henry B.; Miller, Sharon K.; Peddie, Darilyn; Porter Ron; Spann, James F.; Xapsos, Michael A.
2012-01-01
The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while also expanding its mission to explore our Earth, and the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. Each new destination presents an opportunity to increase our knowledge on the solar system and the unique environments for each mission target. NASA has multiple technical and science discipline areas specializing in specific space environments fields that will serve to enable these missions. To complement these existing discipline areas, a concept is presented focusing on the development of a space environment and spacecraft effects (SESE) organization. This SESE organization includes disciplines such as space climate, space weather, natural and induced space environments, effects on spacecraft materials and systems, and the transition of research information into application. This space environment and spacecraft effects organization will be composed of Technical Working Groups (TWG). These technical working groups will survey customers and users, generate products, and provide knowledge supporting four functional areas: design environments, engineering effects, operational support, and programmatic support. The four functional areas align with phases in the program mission lifecycle and are briefly described below. Design environments are used primarily in the mission concept and design phases of a program. Environment effects focuses on the material, component, sub-system, and system-level response to the space environment and include the selection and testing to verify design and operational performance. Operational support provides products based on real time or near real time space weather to mission operators to aid in real time and near-term decision-making. The programmatic support function maintains an interface with the numerous programs within NASA, other federal government agencies, and the commercial sector to ensure that communications are well established and the needs of the programs are being met. The programmatic support function also includes working in coordination with the program in anomaly resolution and generation of lessons learned documentation. The goal of this space environment and spacecraft effects organization is to develop decision-making tools and engineering products to support all mission phases from mission concept through operations by focusing on transitioning research to application. Products generated by this space environments and effects application are suitable for use in anomaly investigations. This paper will describe the scope and purpose of the space environments and spacecraft effects organization and describe the TWG's and their relationship to the functional areas.
Space Environment and Effects System (SEES)
NASA Astrophysics Data System (ADS)
Higashio, Nana; Obara, Takahiro; Matsumoto, Haruhisa; Koga, Kiyokazu; Koshiishi, Hideki
Space environment group in JAXA has installed insturments to measure space environment on eleven satellites. In the last year, the biggest instrument called SEDA-AP (Space Environment Data Acquision equipment -Attached Paylod) was atteched to the palette of JEM (ISS). On the other hand, we have a web site, "Space Environment and Effects System(SEES)". This system consisits of four parts. First part is to provide data that were obtained from these insturments. There are 18 kinds of mesurments, for example, radiation, magnetic field and so on. In 1994, Anik E-1 and Anik E-2 were broken by solar storm and we could catch the abnormal data from our instrument. Second part is a warning system. Many Japanese satellites are working around the earth and they are always exposed to radioactivity in space. So we predict the the radiation data in two days and if the expected value is over the threshold of safety, we inform a warning massage to users who want to keep their satellites safe. And we also provide the warning massage for Japanese astronauts who stay at ISS. Third part is the tool of the space environment /satellite environment models. There are 12 kinds of environment models which are constructed from 90 space environment models, for example, radiation model, solar activity model and so on. If you register your infomation in the SEES web site, you can simulate space environment by using them. Fourth part is providing the 2D and 3D infomations of satellite's orvits. This show the satelllite's position on the world map at a paticular time. If you want to use this system, please visit our SEES page at (http://seesproxy.tksc.jaxa.jp/fw/dfw/SEES/index.html ).
Spacecraft Environments Interactive: Space Radiation and Its Effects on Electronic System
NASA Technical Reports Server (NTRS)
Howard, J. W., Jr.; Hardage, D. M.
1999-01-01
The natural space environment is characterized by complex and subtle phenomena hostile to spacecraft. Effects of these phenomena impact spacecraft design, development, and operation. Space systems become increasingly susceptible to the space environment as use of composite materials and smaller, faster electronics increases. This trend makes an understanding of space radiation and its effects on electronic systems essential to accomplish overall mission objectives, especially in the current climate of smaller/better/cheaper faster. This primer outlines the radiation environments encountered in space, discusses regions and types of radiation, applies the information to effects that these environments have on electronic systems, addresses design guidelines and system reliability, and stresses the importance of early involvement of radiation specialists in mission planning, system design, and design review (part-by-part verification).
Blackwood, Kym S; Burdz, Tamara V; Turenne, Christine Y; Sharma, Meenu K; Kabani, Amin M; Wolfe, Joyce N
2005-01-01
Background In the field of clinical mycobacteriology, Mycobacterium tuberculosis (MTB) can be a difficult organism to manipulate due to the restrictive environment of a containment level 3 (CL3) laboratory. Tests for rapid diagnostic work involving smears and molecular methods do not require CL3 practices after the organism has been rendered non-viable. While it has been assumed that after organism deactivation these techniques can be performed outside of a CL3, no conclusive study has consistently confirmed that the organisms are noninfectious after the theoretical 'deactivation' steps. Previous studies have shown that initial steps (such as heating /chemical fixation) may not consistently kill MTB organisms. Methods An inclusive viability study (n = 226) was undertaken to determine at which point handling of culture extraction materials does not necessitate a CL3 environment. Four different laboratory protocols tested for viability included: standard DNA extractions for IS6110 fingerprinting, crude DNA preparations for PCR by boiling and mechanical lysis, protein extractions, and smear preparations. For each protocol, laboratory staff planted a proportion of the resulting material to Bactec 12B medium that was observed for growth for 8 weeks. Results Of the 208 isolates initially tested, 21 samples grew within the 8-week period. Sixteen (7.7%) of these yielded positive results for MTB that included samples of: deactivated culture resuspensions exposed to 80°C for 20 minutes, smear preparations and protein extractions. Test procedures were consequently modified and tested again (n = 18), resulting in 0% viability. Conclusions This study demonstrates that it cannot be assumed that conventional practices (i.e. smear preparation) or extraction techniques render the organism non-viable. All methodologies, new and existing, should be examined by individual laboratories to validate the safe removal of material derived from MTB to the outside of a CL3 laboratory. This process is vital to establish in house biosafety-validated practices with the aim of protecting laboratory workers conducting these procedures. PMID:15667662
Protection of the Space Environment: The First Small Steps
NASA Astrophysics Data System (ADS)
Williamson, M.
The exploration of the space environment - by robotic and manned missions - is a natural extension of mankind's desire to explore his own planet. Likewise, the development of the space environment - for industry, commerce and tourism - is a natural extension of our current business and domestic environment. Unfortunately, it appears that our ability to pollute, degrade and even destroy aspects of the space environment is also an extension of an ability we have developed and practised here on Earth. This paper reviews the evidence of mankind's pollution of the space environment - which includes the planetary bodies - in the first 45 years of the Space Age, and extrapolates the potential for further degradation into its second half-century. It considers the future development of both scientific exploration and commercial exploitation - in orbit and on the surface of the planetary bodies - and the possible detrimental effects. In presenting the case for protection of the space environment, the paper makes recommendations concerning the first steps towards a solution to the problem. Among other things, it calls for the formation of an international consultative body, to consider the issues relevant to `Protection of the Space Environment' and to raise awareness of the subject among the growing body of space professionals and practitioners. It also recommends consideration of a `set of guidelines' or `code of practice' as a precursor to more formal policies or legislation. In doing so, however, it is careful to recognise the need to strike a balance between unbridled exploration and development, and a stifling regime of rules and regulations. The discussion of this subject requires a good deal more collective knowledge, understanding and maturity than has been evident in similar discussions regarding the Earth's environment. At present, that knowledge resides largely within the professional space community. Thus there is also a need for promulgation, both within and beyond that community. As the space frontier becomes accessible to a wider variety of individuals, corporations and other bodies, the requirement for protection of the space environment grows. If the space environment is to remain available for the study of and use by successive generations of explorers and developers, we must make the first steps towards protection now. In another twenty years or so - when the second generation of lunar explorers is making footprints on the surface - it may be too late.
Aquatic fate of aerially applied hexazinone and terbuthylazine in a New Zealand planted forest
Brenda R. Baillie; Daniel G. Neary; Stefan Gous; Carol A. Rolando
2015-01-01
Herbicides are used to control competing vegetation during tree establishment, and are often critical to the productivity and economic viability of a planted forest crop. Despite increasing public concern over herbicide use in planted forests and potential impact on the environment, there is limited information on the aquatic fate of many of these herbicides when...
Do forest community types provide a sufficient basis to evaluate biological diversity?
Samuel A. Cushman; Kevin S. McKelvey; Curtis H. Flather; Kevin McGarigal
2008-01-01
Forest communities, defined by the size and configuration of cover types and stand ages, have commonly been used as proxies for the abundance or viability of wildlife populations. However, for community types to succeed as proxies for species abundance, several assumptions must be met. We tested these assumptions for birds in an Oregon forest environment. Measured...
Encapsulation method for maintaining biodecontamination activity
Rogers, Robert D.; Hamilton, Melinda A.; Nelson, Lee O.; Benson, Jennifer; Green, Martin J.; Milner, Timothy N.
2002-01-01
A method for maintaining the viability and subsequent activity of microorganisms utilized in a variety of environments to promote biodecontamination of surfaces. One application involves the decontamination of concrete surfaces. Encapsulation of microbial influenced degradation (MID) microorganisms has shown that MID activity is effectively maintained under passive conditions, that is, without manual addition of moisture or nutrients, for an extended period of time.
Encapsulation method for maintaining biodecontamination activity
Rogers, Robert D.; Hamilton, Melinda A.; Nelson, Lee O.; Benson, Jennifer; Green, Martin J.; Milner, Timothy N.
2006-04-11
A method for maintaining the viability and subsequent activity of microorganisms utilized in a variety of environments to promote biodecontamination of surfaces. One application involves the decontamination of concrete surfaces. Encapsulation of microbial influenced degradation (MID) microorganisms has shown that MID activity is effectively maintained under passive conditions, that is, without manual addition of moisture or nutrients, for an extended period of time.
Pakkasmaa, S; Merilä, J; O'Hara, R B
2003-08-01
The influence of environmental stress on the expression of genetic and maternal effects on the viability traits has seldom been assessed in wild vertebrates. We have estimated genetic and maternal effects on the viability (viz probability of survival, probability of being deformed, and body size and shape) of common frog, Rana temporaria, tadpoles under stressful (low pH) and nonstressful (neutral pH) environmental conditions. A Bayesian analysis using generalized linear mixed models was applied to data from a factorial laboratory experiment. The expression of additive genetic variance was independent of pH treatments, and all traits were significantly heritable (survival: h2 approximately 0.08; deformities: h2 approximately 0.26; body size: h2 approximately 0.12; body shape: h2 approximately 0.14). Likewise, nonadditive genetic contributions to variation in all traits were significant, independent of pH treatments and typically of magnitude similar to the additive genetic effects. Maternal effects were large for all traits, especially for viability itself, and their expression was partly dependent on the environment. In the case of body size, the maternal effects were mediated largely through egg size. In general, the results give little evidence for the conjecture that environmental stress created by low pH would impact strongly on the genetic architecture of fitness-related traits in frogs, and hamper adaptation to stress caused by acidification. The low heritabilities and high dominance contributions conform to the pattern typical for traits subject to relatively strong directional selection.
Salinas, Chelsea N; Cole, Brook B; Kasko, Andrea M; Anseth, Kristi S
2007-05-01
Chondrogenesis of human mesenchymal stem cells (hMSCs) encapsulated in poly(ethylene glycol) (PEG)-based hydrogels was studied in the presence and absence of 5 ng/mL transforming growth factor beta and chondrogenic medium to better understand the role of the gel environment on this process. The lack of any cell-polymer interactions led to decreasing cell viability, as measured using adenosine triphosphate, over a 14-day period. The extent of chondrogenic differentiation was evaluated by immunostaining, and although viability dramatically decreased, cells cultured in chondrogenic differentiation medium expressed higher levels of collagen type II. Cells cultured in hMSC control medium remained undifferentiated and continued to express CD105, a MSC marker. To increase cell survival, arginine-glycine-aspartic acid-serine (RGDS) was incorporated into gels using a novel mixed-mode thiol-ene reaction by synthesizing a cysteine-cysteine-arginine-glycine-aspartic acid-serine-cysteine-cysteine-glycine, N-terminus to C-terminus peptide sequence with pendant cysteine residues. A concentration of 5 mM RGDS incorporated into the network maintained 75% viability in control cultures. Further studies demonstrated that 5-mM RGDS chondrogenic cultures had greater gene expression for aggrecan and collagen II in conjunction with producing twice as much glycosaminoglycan as 0-mM chondrogenic cultures and 7 times that of control cultures. Incorporation of this peptide sequence not only allows for sustained viability, but also contributes to initiating chondrogenesis.
Characterization of printable cellular micro-fluidic channels for tissue engineering.
Zhang, Yahui; Yu, Yin; Chen, Howard; Ozbolat, Ibrahim T
2013-06-01
Tissue engineering has been a promising field of research, offering hope of bridging the gap between organ shortage and transplantation needs. However, building three-dimensional (3D) vascularized organs remains the main technological barrier to be overcome. One of the major challenges is the inclusion of a vascular network to support cell viability in terms of nutrients and oxygen perfusion. This paper introduces a new approach to the fabrication of vessel-like microfluidic channels that has the potential to be used in thick tissue or organ fabrication in the future. In this research, we investigate the manufacturability of printable micro-fluidic channels, where micro-fluidic channels support mechanical integrity as well as enable fluid transport in 3D. A pressure-assisted solid freeform fabrication platform is developed with a coaxial needle dispenser unit to print hollow hydrogel filaments. The dispensing rheology is studied, and effects of material properties on structural formation of hollow filaments are analyzed. Sample structures are printed through the developed computer-controlled system. In addition, cell viability and gene expression studies are presented in this paper. Cell viability shows that cartilage progenitor cells (CPCs) maintained their viability right after bioprinting and during prolonged in vitro culture. Real-time PCR analysis yielded a relatively higher expression of cartilage-specific genes in alginate hollow filament encapsulating CPCs, compared with monolayer cultured CPCs, which revealed that printable semi-permeable micro-fluidic channels provided an ideal environment for cell growth and function.
Characterization of Printable Cellular Micro-fluidic Channels for Tissue Engineering
Zhang, Yahui; Yu, Yin; Chen, Howard; Ozbolat, Ibrahim T.
2014-01-01
Tissue engineering has been a promising field of research, offering hope of bridging the gap between organ shortage and transplantation needs. However, building three-dimensional (3D) vascularized organs remains the main technological barrier to be overcome. One of the major challenges is the inclusion of a vascular network to support cell viability in terms of nutrients and oxygen perfusion. This paper introduces a new approach to fabrication of vessel-like microfluidic channels that has the potential to be used in thick tissue or organ fabrication in the future. In this research, we investigate the manufacturability of printable micro-fluidic channels, where micro-fluidic channels support mechanical integrity as well as enable fluid transport in 3D. A pressure-assisted solid freeform fabrication platform is developed with a coaxial needle dispenser unit to print hollow hydrogel filaments. The dispensing rheology is studied, and effects of material properties on structural formation of hollow filaments are analyzed. Sample structures are printed through the developed computer-controlled system. In addition, cell viability and gene expression studies are presented in this paper. Cell viability shows that cartilage progenitor cells (CPCs) maintained their viability right after bioprinting and during prolonged in vitro culture. Real-time PCR analysis yielded relatively higher expression of cartilage-specific genes in alginate hollow filament encapsulating CPCs, compared with monolayer cultured CPCs, which revealed that printable semi-permeable micro-fluidic channels provided an ideal environment for cell growth and function. PMID:23458889
DPSC colonization of functionalized 3D textiles.
Ortiz, Marine; Rosales-Ibáñez, Raúl; Pozos-Guillén, Amaury; De Bien, Charlotte; Toye, Dominique; Flores, Héctor; Grandfils, Christian
2017-05-01
Fiber scaffolds are attractive materials for mimicking, within a 3D in vitro system, any living environment in which animal cells can adhere and proliferate. In three dimensions, cells have the ability to communicate and organize into complex architectures similar to those found in their natural environments. The aim of this study was to evaluate, in terms of cell reactivity, a new in vitro cell model: dental pulp stem cells (DPSCs) in a 3D polymeric textile. Scaffolds were knitted from polyglycolic acid (PGA) or polydioxanone (PDO) fibers differing in surface roughness. To promote cell adhesion, these hydrophobic fabrics were also functionalized with either chitosan or the peptide arginine-glycine-aspartic acid (RGD). Cell behavior was examined 1, 10, and 21 days post-seeding with a LIVE/DEAD ® Kit. Confocal laser scanning microscopy (CLSM) highlighted the biocompatibility of these materials (cell survival rate: 94% to 100%). Fiber roughness was found to influence cell adhesion and viability significantly and favorably. A clear benefit of polymeric textile functionalization with chitosan or RGD was demonstrated in terms of cell adhesion and viability. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 785-794, 2017. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Mulyukin, Andrei L.; Soina, Vera S.; Demkina, Elena V.; Kozlova, Alla N.; Suzina, Natalia E.; Dmitriev, Vladimir V.; Duda, Vitalii I.; El'-Registan, Galina I.
2003-01-01
Non-spore-forming bacteria of the genera Micrococcus and Arthrobacter, including the isolates from permafrost sediments, were found to be able to form cystlike cells under special conditions. Cystlike cells maintained the viability during long-term storage (for up to several years), had undetectable respiratory activity and the elevated resistance to heating and other unfavorable conditions, possessed the specific fine structure and morphology, and were formed in the life cycles of the microorganism. These properties allow cystlike cells to be attributed to a new type of resting microbial forms. Furthermore, the distinctive feature of resting cystlike cells was their low P/S ratios and high Ca/K ratios in comparison to vegetative cells as shown by X-ray microanalysis. The experimentally obtained bacterial cystlike cells with thickened and laminated cell walls and altered texture of the cytoplasm were similar to the cells abundant in native microbial populations isolated from permafrost sediments and ancient soils of the Kolyma lowland (Siberia, Russia). Due to the inherent elevated resistance to adverse conditions and maintenance of viability for prolonged periods, resting cystlike cells are likely to ensure long-term survival of non-spore-forming bacteria in cold environments.
Radiation Assurance for the Space Environment
NASA Technical Reports Server (NTRS)
Barth, Janet L.; LaBel, Kenneth A.; Poivey, Christian
2004-01-01
The space radiation environment can lead to extremely harsh operating conditions for spacecraft electronic systems. A hardness assurance methodology must be followed to assure that the space radiation environment does not compromise the functionality and performance of space-based systems during the mission lifetime. The methodology includes a definition of the radiation environment, assessment of the radiation sensitivity of parts, worst-case analysis of the impact of radiation effects, and part acceptance decisions which are likely to include mitigation measures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medeiros, Michael
Pacific Gas & Electric Company (PG&E) conducted a project to explore the viability of underground compressed air energy storage (CAES) technology. CAES uses low-cost, off-peak electricity to compress air into a storage system in an underground space such as a rock formation or salt cavern. When electricity is needed, the air is withdrawn and used to drive a generator for electricity production.
2015-09-03
THE GAS GENERATOR TO AN F-1 ENGINE, THE MOST POWERFUL ROCKET ENGINE EVER BUILT, IS TEST-FIRED AT NASA'S MARSHALL SPACE FLIGHT CENTER IN HUNTSVILLE, ALABAMA, ON SEPT. 3. ALTHOUGH THE ENGINE WAS ORIGINALLY BUILT TO POWER THE SATURN V ROCKETS DURING AMERICA'S MISSIONS TO THE MOON, THIS TEST ARTICLE HAD NEW PARTS CREATED USING ADDITIVE MANUFACTURING, OR 3-D PRINTING, TO TEST THE VIABILITY OF THE TECHNOLOGY FOR BUILDING NEW ENGINE DESIGNS.
Technical Feasibility of Compressed Air Energy Storage (CAES) Utilizing a Porous Rock Reservoir
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medeiros, Michael; Booth, Robert; Fairchild, James
Pacific Gas & Electric Company (PG&E) conducted a project to explore the viability of underground compressed air energy storage (CAES) technology. CAES uses low-cost, off-peak electricity to compress air into a storage system in an underground space such as a rock formation or salt cavern. When electricity is needed, the air is withdrawn and used to drive a generator for electricity production.
Radiobiological experiments with plant seeds aboard the biosatellite Kosmos 1887
NASA Technical Reports Server (NTRS)
Anikeeva, I. D.; Vaulina, E. N.; Kostina, L. N.; Marenny, A. M.; Portman, A. I.; Rusin, S. V.; Benton, E. V.
1990-01-01
The effects of spaceflight factors on the seeds of Arabidopsis thaliana and Crepis capillaris were studied provided with various protective measures: the seeds were located inside the satellite and in open space, protected with aluminium foil and also exposed without the foil cover. When the seeds were in open space without any protection, their viability was found to be suppressed; the survival rate and fertility of plants grown from these seeds were also diminished. An increase in the frequency of chromosome aberrations (CA) and in the number of multiple injuries was registered in this case. Experiments with the aluminium foil shielding showed a decrease in the suppression of the seeds' viability, but mutational changes were found to be even more increased, while the survival and fertility of the plants decreased. An increase in the thickness of shielding resulted in a decrease in the effects up to the level of the control, except for the effects connected with CA and fertility of the plants. Analysis of the results shows that these impairments can be ascribed to the action of single heavy charged particles (HCP). The seeds can be thus regarded as an integral biological 'dosimeter' which allows estimation of the total effects of radiation, ecological and biological factors.
Radiobiological experiments with plant seeds aboard the biosatellite Kosmos 1887.
Anikeeva, I D; Akatov YuA; Vaulina, E N; Kostina, L N; Marenny, A M; Portman, A I; Rusin, S V; Benton, E V
1990-01-01
The effects of spaceflight factors on the seeds of Arabidopsis thaliana and Crepis capillaris were studied provided with various protective measures: the seeds were located inside the satellite and in open space, protected with aluminium foil and also exposed without the foil cover. When the seeds were in open space without any protection, their viability was found to be suppressed; the survival rate and fertility of plants grown from these seeds were also diminished. An increase in the frequency of chromosome aberrations (CA) and in the number of multiple injuries was registered in this case. Experiments with the aluminium foil shielding showed a decrease in the suppression of the seeds' viability, but mutational changes were found to be even more increased, while the survival and fertility of the plants decreased. An increase in the thickness of shielding resulted in a decrease in the effects up to the level of the control, except for the effects connected with CA and fertility of the plants. Analysis of the results shows that these impairments can be ascribed to the action of single heavy charged particles (HCP). The seeds can be thus regarded as an integral biological 'dosimeter' which allows estimation of the total effects of radiation, ecological and biological factors.
Quantitative Estimation of the Viability of Toxoplasma gondii Oocysts in Soil
Villena, Isabelle; Dardé, Marie-Laure; Aubert, Dominique; Geers, Régine; Dupuis, Emilie; Marnef, Francine; Poulle, Marie-Lazarine; Gotteland, Cécile; Dumètre, Aurélien
2012-01-01
Toxoplasma gondii oocysts spread in the environment are an important source of toxoplasmosis for humans and animal species. Although the life expectancy of oocysts has been studied through the infectivity of inoculated soil samples, the survival dynamics of oocysts in the environment are poorly documented. The aim of this study was to quantify oocyst viability in soil over time under two rain conditions. Oocysts were placed in 54 sentinel chambers containing soil and 18 sealed water tubes, all settled in two containers filled with soil. Containers were watered to simulate rain levels of arid and wet climates and kept at stable temperature for 21.5 months. At nine sampling dates during this period, we sampled six chambers and two water tubes. Three methods were used to measure oocyst viability: microscopic counting, quantitative PCR (qPCR), and mouse inoculation. In parallel, oocysts were kept refrigerated during the same period to analyze their detectability over time. Microscopic counting, qPCR, and mouse inoculation all showed decreasing values over time and highly significant differences between the decreases under dry and damp conditions. The proportion of oocysts surviving after 100 days was estimated to be 7.4% (95% confidence interval [95% CI] = 5.1, 10.8) under dry conditions and 43.7% (5% CI = 35.6, 53.5) under damp conditions. The detectability of oocysts by qPCR over time decreased by 0.5 cycle threshold per 100 days. Finally, a strong correlation between qPCR results and the dose infecting 50% of mice was found; thus, qPCR results may be used as an estimate of the infectivity of soil samples. PMID:22582074
Munshi, Soumyabrata; Twining, Robert C; Dahl, Russell
2014-01-01
The cell viability assay by alamar blue is based on the principle of reduction of the non-fluorescent reagent (resazurin) to a fluorescent compound (resarufin) by the intracellular reducing environment of living cells over time. In the present study, we have for the first time shown that even in the absence of cells, there occurs significant interaction between alamar blue and cell-culture media causing an increase in fluorescence. We have used Opti-MEM, DMEM and 1:1 DMEM:Opti-MEM as three different media and determined the changes in their relative fluorescence units (RFUs) over time after the addition of 10% (v/v) alamar blue using two-way repeated measures analysis of variance (RM-ANOVA) followed by Tukey's post-hoc test. Our results show that upon the addition of alamar blue, there occurs a significant increase in RFUs in all the three media over time along with a significantly higher RFU for the Opti-MEM overall (p<0.05). We also show that the time-dependent change in RFU of 1:1 DMEM:Opti-MEM was more gradual compared to that of the other two media. These findings indicate that the reagent can itself interact with the media causing significantly different fluorescence over time in a manner independent from the effect of intracellular reducing environment of living cells on alamar blue. In addition our results indicate that fluorescence varies as a function of incubation time with the reagent. These findings signify the need for routine subtraction of the background fluorescence of media-only with alamar blue reagent during measurement of cell viability by this method in order to determine an accurate measurement of cell viability. Copyright © 2014 Elsevier Inc. All rights reserved.
Hickey, C D; Fallico, V; Wilkinson, M G; Sheehan, J J
2018-02-01
This study investigated the differential effect of salt concentration in the outside and inside layers of brine salted cheeses on viability, culturability and enzyme activity of starter bacteria. The high-salt environment of the outside layer caused a sharp decrease in L. helveticus viability as measured by traditional plate counts. Remarkably, this was associated with lower release of intracellular enzymes (LDH), reduced levels of proteolysis and larger membrane integrity as measured by flow cytometry (FC) following classical Live/Dead staining. FC analysis of light scattering properties highlighted a significant reduction in size and granularity of the microbiota located in the cheese surface, suggestive of cell shrinkage and condensation of internal macromolecules probably due to hyperosmotic stress. The microbiota of the cheese surface were found to experience greater oxidative stress, as measured by FC analysis of the total levels of reactive oxygen species, compared to that of the interior layer. These results lead us to postulate that the physiology and health status of the microbiota were significantly different in the outer and inner layers of the cheese. The hyperosmotic environment of the outer layer resulted in reduced cell lysis, as measurable by assays based upon membrane integrity, but rather triggered cell death via mechanisms involving cell shrinkage and ROS-mediated damage of vital intracellular components. This study challenges the current thinking on how salt controls microbial activity in ripening cheese, especially in cheeses which are brine salted as local variations in biochemical ripening indices can differ significantly from the outside to the inside of a ripening cheese. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cook, Mark I; Beissinger, Steven R; Toranzos, Gary A; Rodriguez, Roberto A; Arendt, Wayne J
2003-11-07
Many birds initiate incubation before clutch completion, which results in asynchronous hatching. The ensuing within-brood size disparity often places later-hatched nestlings at a developmental disadvantage, but the functional significance of the timing of the onset of incubation is poorly understood. Early incubation may serve to maintain the viability of early-laid eggs, which declines over time owing to the putative effects of ambient temperature. An unexplored risk to egg viability is trans-shell infection by micro-organisms. We experimentally investigated the rate and magnitude of microbial trans-shell infection of the egg, and the relative effects of ambient temperature and micro-organisms on hatching success. We show that infection of egg contents is prevalent and occurs within the time required to lay a clutch. The probability of infection depends on the climatic conditions, the exposure period and the phylogenetic composition of the eggshell microbiota. We also demonstrate that microbial infection and ambient temperature act independently to reduce egg viability considerably. Our results suggest that these two factors could affect the onset of avian incubation in a wide range of environments.
Cook, Mark I; Beissinger, Steven R; Toranzos, Gary A; Rodriguez, Roberto A; Arendt, Wayne J
2003-01-01
Many birds initiate incubation before clutch completion, which results in asynchronous hatching. The ensuing within-brood size disparity often places later-hatched nestlings at a developmental disadvantage, but the functional significance of the timing of the onset of incubation is poorly understood. Early incubation may serve to maintain the viability of early-laid eggs, which declines over time owing to the putative effects of ambient temperature. An unexplored risk to egg viability is trans-shell infection by micro-organisms. We experimentally investigated the rate and magnitude of microbial trans-shell infection of the egg, and the relative effects of ambient temperature and micro-organisms on hatching success. We show that infection of egg contents is prevalent and occurs within the time required to lay a clutch. The probability of infection depends on the climatic conditions, the exposure period and the phylogenetic composition of the eggshell microbiota. We also demonstrate that microbial infection and ambient temperature act independently to reduce egg viability considerably. Our results suggest that these two factors could affect the onset of avian incubation in a wide range of environments. PMID:14613609
Effect of chitosan and SO2 on viability of Acetobacter strains in wine.
Valera, Maria José; Sainz, Florencia; Mas, Albert; Torija, María Jesús
2017-04-04
Wine spoilage is an important concern for winemakers to preserve the quality of their final product and avoid contamination throughout the production process. The use of sulphur dioxide (SO 2 ) is highly recommended to prevent wine spoilage due to its antimicrobial activity. However, SO 2 has a limited effect on the viability of acetic acid bacteria (AAB). Currently, the use of SO 2 alternatives is favoured in order to reduce the use of chemicals and improve stabilization in winemaking. Chitosan is a biopolymer that is approved by the European authorities and the International Organization of Vine and Wine to be used as a fining agent and antimicrobial in wines. However, its effectiveness in AAB prevention has not been studied. Two strains of Acetobacter, adapted to high ethanol environments, were analysed in this study. Both chitosan and SO 2 effects were compared in artificially contaminated wines. Both molecules reduced the metabolic activity of both AAB strains. Although AAB populations were detected by culture independent techniques, their numbers were reduced with time, and their viability decreased following the application of both products, especially with chitosan. Copyright © 2017 Elsevier B.V. All rights reserved.
The evolutionary dynamics of haplodiploidy: Genome architecture and haploid viability.
Blackmon, Heath; Hardy, Nate B; Ross, Laura
2015-11-01
Haplodiploid reproduction, in which males are haploid and females are diploid, is widespread among animals, yet we understand little about the forces responsible for its evolution. The current theory is that haplodiploidy has evolved through genetic conflicts, as it provides a transmission advantage to mothers. Male viability is thought to be a major limiting factor; diploid individuals tend to harbor many recessive lethal mutations. This theory predicts that the evolution of haplodiploidy is more likely in male heterogametic lineages with few chromosomes, as genes on the X chromosome are often expressed in a haploid environment, and the fewer the chromosome number, the greater the proportion of the total genome that is X-linked. We test this prediction with comparative phylogenetic analyses of mites, among which haplodiploidy has evolved repeatedly. We recover a negative correlation between chromosome number and haplodiploidy, find evidence that low chromosome number evolved prior to haplodiploidy, and that it is unlikely that diplodiploidy has reevolved from haplodiploid lineages of mites. These results are consistent with the predicted importance of haploid male viability. © 2015 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.
Environmental Persistence of Bacillus anthracis and Bacillus subtilis Spores
Wood, Joseph P.; Meyer, Kathryn M.; Kelly, Thomas J.; Choi, Young W.; Rogers, James V.; Riggs, Karen B.; Willenberg, Zachary J.
2015-01-01
There is a lack of data for how the viability of biological agents may degrade over time in different environments. In this study, experiments were conducted to determine the persistence of Bacillus anthracis and Bacillus subtilis spores on outdoor materials with and without exposure to simulated sunlight, using ultraviolet (UV)-A/B radiation. Spores were inoculated onto glass, wood, concrete, and topsoil and recovered after periods of 2, 14, 28, and 56 days. Recovery and inactivation kinetics for the two species were assessed for each surface material and UV exposure condition. Results suggest that with exposure to UV, decay of spore viability for both Bacillus species occurs in two phases, with an initial rapid decay, followed by a slower inactivation period. The exception was with topsoil, in which there was minimal loss of spore viability in soil over 56 days, with or without UV exposure. The greatest loss in viable spore recovery occurred on glass with UV exposure, with nearly a four log10 reduction after just two days. In most cases, B. subtilis had a slower rate of decay than B. anthracis, although less B. subtilis was recovered initially. PMID:26372011
Chan, Kin; Goldmark, Jesse P; Roth, Mark B
2010-07-01
The orderly progression through the cell division cycle is of paramount importance to all organisms, as improper progression through the cycle could result in defects with grave consequences. Previously, our lab has shown that model eukaryotes such as Saccharomyces cerevisiae, Caenorhabditis elegans, and Danio rerio all retain high viability after prolonged arrest in a state of anoxia-induced suspended animation, implying that in such a state, progression through the cell division cycle is reversibly arrested in an orderly manner. Here, we show that S. cerevisiae (both wild-type and several cold-sensitive strains) and C. elegans embryos exhibit a dramatic decrease in viability that is associated with dysregulation of the cell cycle when exposed to low temperatures. Further, we find that when the yeast or worms are first transitioned into a state of anoxia-induced suspended animation before cold exposure, the associated cold-induced viability defects are largely abrogated. We present evidence that by imposing an anoxia-induced reversible arrest of the cell cycle, the cells are prevented from engaging in aberrant cell cycle events in the cold, thus allowing the organisms to avoid the lethality that would have occurred in a cold, oxygenated environment.
Chan, Kin; Goldmark, Jesse P.
2010-01-01
The orderly progression through the cell division cycle is of paramount importance to all organisms, as improper progression through the cycle could result in defects with grave consequences. Previously, our lab has shown that model eukaryotes such as Saccharomyces cerevisiae, Caenorhabditis elegans, and Danio rerio all retain high viability after prolonged arrest in a state of anoxia-induced suspended animation, implying that in such a state, progression through the cell division cycle is reversibly arrested in an orderly manner. Here, we show that S. cerevisiae (both wild-type and several cold-sensitive strains) and C. elegans embryos exhibit a dramatic decrease in viability that is associated with dysregulation of the cell cycle when exposed to low temperatures. Further, we find that when the yeast or worms are first transitioned into a state of anoxia-induced suspended animation before cold exposure, the associated cold-induced viability defects are largely abrogated. We present evidence that by imposing an anoxia-induced reversible arrest of the cell cycle, the cells are prevented from engaging in aberrant cell cycle events in the cold, thus allowing the organisms to avoid the lethality that would have occurred in a cold, oxygenated environment. PMID:20462960
Heidarkhan Tehrani, Ashkan; Zadhoush, Ali; Karbasi, Saeed; Sadeghi-Aliabadi, Hojjat
2010-11-01
Fibrous scaffolds of engineered structures can be chosen as promising porous environments when an approved criterion validates their applicability for a specific medical purpose. For such biomaterials, this paper sought to investigate various structural characteristics in order to determine whether they are appropriate descriptors. A number of poly(3-hydroxybutyrate) scaffolds were electrospun; each of which possessed a distinguished architecture when their material and processing conditions were altered. Subsequent culture of mouse fibroblast cells (L929) was carried out to evaluate the cells viability on each scaffold after their attachment for 24 h and proliferation for 48 and 72 h. The scaffolds' porosity, pores number, pores size and distribution were quantified and none could establish a relationship with the viability results. Virtual reconstruction of the mats introduced an authentic criterion, "Scaffold Percolative Efficiency" (SPE), with which the above descriptors were addressed collectively. It was hypothesized to be able to quantify the efficacy of fibrous scaffolds by considering the integration of porosity and interconnectivity of the pores. There was a correlation of 80% as a good agreement between the SPE values and the spectrophotometer absorbance of viable cells; a viability of more than 350% in comparison to that of the controls.
Oxygen Delivery from Hyperbarically Loaded Microtanks Extends Cell Viability in Anoxic Environments
Cook, Colin A.; Hahn, Kathryn C.; Morrissette-McAlmon, Justin B.F.; Grayson, Warren L.
2016-01-01
Oxygen diffusion limitations within nascent tissue engineered (TE) grafts lead to the development of hypoxic regions, cell death, and graft failure. Previous efforts have been made to deliver oxygen within TE scaffolds, including peroxide-doping, perfluorocarbons, and hyperbaric oxygen therapy, to mitigate these effects and help maintain post transplantation cell viability, but these have suffered from significant drawbacks. Here we present a novel approach utilizing polymeric hollow-core microspheres that can be hyperbarically loaded with oxygen and subsequently provide prolonged oxygen delivery. These oxygen carriers are termed, microtanks. With an interest in orthopedic applications, we combined microtanks within polycaprolactone to form solid phase constructs with oxygen delivery capabilities. The mathematical laws governing oxygen delivery from microtank-loaded constructs are developed along with empirical validation. Constructs achieved periods of oxygen delivery out to 6 days, which was shown to prolong the survival of human adipose derived stem cells (hASCs) and human umbilical vein endothelial cells (HUVECs) as well as to enhance their cellular morphology under anoxic conditions. The results of this study suggest the microtank approach may be a feasible means of maintaining cell viability in TE scaffolds during the critical period of vascularization in vivo. PMID:25818444
Tamura, Masato; Yanagawa, Fumiki; Sugiura, Shinji; Takagi, Toshiyuki; Sumaru, Kimio; Kanamori, Toshiyuki
2015-01-01
This paper describes the generation of “click-crosslinkable“ and “photodegaradable“ gelatin hydrogels from the reaction between dibenzocycloctyl-terminated photoclevable tetra-arm polyethylene glycol and azide-modified gelatin. The hydrogels were formed in 30 min through the click-crosslinking reaction. The micropatterned features in the hydrogels were created by micropatterned light irradiation; the minimum resolution of micropatterning was 10-μm widths for line patterns and 20-μm diameters for circle patterns. Cells were successfully encapsulated in the hydrogels without any loss of viability across a wide concentration range of crosslinker. In contrast, an activated-ester-type photocleavable crosslinker, which we previously used to prepare photodegradable gelatin hydrogels, induced a decrease in cell viability at crosslinker concentrations greater than 1.8 mM. We also observed morphology alteration and better growth of cancer cells in the click-crosslinked photodegradable gelatin hydrogels that included matrigel than in the absence of matrigel. We also demonstrated micropatterning of the hydrogels encapsulating cells and optical cell separation. Both of the cells that remained in the non-irradiated area and the cells collected from the irradiated area maintained their viability. PMID:26450015
Protective effect of vitamin E in an animal model of LPS-induced inflammation.
Mayorga, M; Iborra, A; Estany, S; Martínez, P
2004-12-01
Many sterility outcomes may be associated to the presence of an inflammatory response that would lead to an inability of the endometrium to support implantation and maintain viable embryos. We have established an animal model of inflammation in which the systemic administration of lipopolysaccharyde (LPS) results in a low embryo implantation rate. The purpose of this work was to investigate the effect of the inflammatory agent LPS on embryo viability and to verify the ability of vitamin E to modulate the inflammatory effect of LPS on embryo viability. For pre-implantation studies B6CBAF1 mice, which were intraperitoneally inoculated with LPS (4-10 mg/kg), were used. Mice were also treated with vitamin E (4-10 mg/kg) before or after LPS injection. Embryos were obtained from the oviduct after each treatment. The LPS produces a decrease in the number of pre-implantational embryos in a concentration dependent manner. The LPS effect can be partially reversed or prevented by vitamin E. Preliminary results show that inflammatory cytokines are secreted by intraperitoneal macrophages in LPS treated mice. Our results demonstrate the ability of vitamin E to avoid an inflammatory environment and to allow viability of embryos. (c) Blackwell Munksgaard, 2004
Space Environment Effects on Materials at Different Positions and Operational Periods of ISS
NASA Astrophysics Data System (ADS)
Kimoto, Yugo; Ichikawa, Shoichi; Miyazaki, Eiji; Matsumoto, Koji; Ishizawa, Junichiro; Shimamura, Hiroyuki; Yamanaka, Riyo; Suzuki, Mineo
2009-01-01
A space materials exposure experiment was condcuted on the exterior of the Russian Service Module (SM) of the International Space Station (ISS) using the Micro-Particles Capturer and Space Environment Exposure Device (MPAC&SEED) of the Japan Aerospace Exploration Agency (JAXA). Results reveal artificial environment effects such as sample contamination, attitude change effects on AO fluence, and shading effects of UV on ISS. The sample contamination was coming from ISS components. The particles attributed to micrometeoroids and/or debris captured by MPAC might originate from the ISS solar array. Another MPAC&SEED will be aboard the Exposure Facility of the Japanese Experiment Module, KIBO Exposure Facility (EF) on ISS. The JEM/MPAC&SEED is attached to the Space Environment Data Acquisition Equipment-Attached Payload (SEDA-AP) and is exposed to space. Actually, SEDA-AP is a payload on EF to be launched by Space Shuttle flight 2J/A. In fact, SEDA-AP has space environment monitors such as a high-energy particle monitor, atomic oxygen monitor, and plasma monitor to measure in-situ natural space environment data during JEM/MPAC&SEED exposure. Some exposure samples for JEM/MPAC&SEED are identical to SM/MPAC&SEED samples. Consequently, effects on identical materials at different positions and operation periods of ISS will be evaluated. This report summarizes results from space environment monitoring samples for atomic oxygen analysis on SM/MPAC&SEED, along with experimental plans for JEM/MPAC&SEED.
Tello, Javier; Montemayor, María Ignacia; Forneck, Astrid; Ibáñez, Javier
2018-01-01
Low pollen viability may limit grapevine yield under certain conditions, causing relevant economic losses to grape-growers. It is usually evaluated by the quantification of the number of viable and non-viable pollen grains that are present in a sample after an adequate pollen grain staining procedure. Although the manual counting of both types of grains is the simplest and most sensitive approach, it is a laborious and time-demanding process. In this regard, novel image-based approaches can assist in the objective, accurate and cost-effective phenotyping of this trait. Here, we introduce PollenCounter, an open-source macro implemented as a customizable Fiji tool for the high-throughput phenotyping of pollen viability. This tool splits RGB images of stained pollen grains into its primary channels, retaining red and green color fractionated images (which contain information on total and only viable pollen grains, respectively) for the subsequent isolation and counting of the regions of interest (pollen grains). This framework was successfully used for the analysis of pollen viability of a high number of samples collected in a large collection of grapevine cultivars. Results revealed a great genetic variability, from cultivars having very low pollen viability (like Corinto Bianco; viability: 14.1 ± 1.3%) to others with a very low presence of sterile pollen grains (Cuelga; viability: 98.2 ± 0.5%). A wide range of variability was also observed among several clones of cv. Tempranillo Tinto (from 97.9 ± 0.9 to 60.6 ± 5.9%, in the first season). Interestingly, the evaluation of this trait in a second season revealed differential genotype-specific sensitivity to environment. The use of PollenCounter is expected to aid in different areas, including genetics research studies, crop improvement and breeding strategies that need of fast, precise and accurate results. Considering its flexibility, it can be used not only in grapevine, but also in other species showing a differential staining of viable and non-viable pollen grains. The wide phenotypic diversity observed at a species level, together with the identification of specific cultivars and clones largely differing in this trait, pave the way of further analyses aimed to understand the physiological and genetic causes driving to male sterility in grapevine.
Stability of silk and collagen protein materials in space.
Hu, Xiao; Raja, Waseem K; An, Bo; Tokareva, Olena; Cebe, Peggy; Kaplan, David L
2013-12-05
Collagen and silk materials, in neat forms and as silica composites, were flown for 18 months on the International Space Station [Materials International Space Station Experiment (MISSE)-6] to assess the impact of space radiation on structure and function. As natural biomaterials, the impact of the space environment on films of these proteins was investigated to understand fundamental changes in structure and function related to the future utility in materials and medicine in space environments. About 15% of the film surfaces were etched by heavy ionizing particles such as atomic oxygen, the major component of the low-Earth orbit space environment. Unexpectedly, more than 80% of the silk and collagen materials were chemically crosslinked by space radiation. These findings are critical for designing next-generation biocompatible materials for contact with living systems in space environments, where the effects of heavy ionizing particles and other cosmic radiation need to be considered.
Stability of Silk and Collagen Protein Materials in Space
Hu, Xiao; Raja, Waseem K.; An, Bo; Tokareva, Olena; Cebe, Peggy; Kaplan, David L.
2013-01-01
Collagen and silk materials, in neat forms and as silica composites, were flown for 18 months on the International Space Station [Materials International Space Station Experiment (MISSE)-6] to assess the impact of space radiation on structure and function. As natural biomaterials, the impact of the space environment on films of these proteins was investigated to understand fundamental changes in structure and function related to the future utility in materials and medicine in space environments. About 15% of the film surfaces were etched by heavy ionizing particles such as atomic oxygen, the major component of the low-Earth orbit space environment. Unexpectedly, more than 80% of the silk and collagen materials were chemically crosslinked by space radiation. These findings are critical for designing next-generation biocompatible materials for contact with living systems in space environments, where the effects of heavy ionizing particles and other cosmic radiation need to be considered. PMID:24305951
Heliospheric Physics and NASA's Vision for Space Exploration
NASA Technical Reports Server (NTRS)
Minow, Joseph I.
2007-01-01
The Vision for Space Exploration outlines NASA's development of a new generation of human-rated launch vehicles to replace the Space Shuttle and an architecture for exploring the Moon and Mars. The system--developed by the Constellation Program--includes a near term (approx. 2014) capability to provide crew and cargo service to the International Space Station after the Shuttle is retired in 2010 and a human return to the Moon no later than 2020. Constellation vehicles and systems will necessarily be required to operate efficiently, safely, and reliably in the space plasma and radiation environments of low Earth orbit, the Earth's magnetosphere, interplanetary space, and on the lunar surface. This presentation will provide an overview of the characteristics of space radiation and plasma environments relevant to lunar programs including the trans-lunar injection and trans-Earth injection trajectories through the Earth's radiation belts, solar wind surface dose and plasma wake charging environments in near lunar space, energetic solar particle events, and galactic cosmic rays and discusses the design and operational environments being developed for lunar program requirements to assure that systems operate successfully in the space environment.
Laboratory Investigation of Space and Planetary Dust Grains
NASA Technical Reports Server (NTRS)
Spann, James
2005-01-01
Dust in space is ubiquitous and impacts diverse observed phenomena in various ways. Understanding the dominant mechanisms that control dust grain properties and its impact on surrounding environments is basic to improving our understanding observed processes at work in space. There is a substantial body of work on the theory and modeling of dust in space and dusty plasmas. To substantiate and validate theory and models, laboratory investigations and space borne observations have been conducted. Laboratory investigations are largely confined to an assembly of dust grains immersed in a plasma environment. Frequently the behaviors of these complex dusty plasmas in the laboratory have raised more questions than verified theories. Space borne observations have helped us characterize planetary environments. The complex behavior of dust grains in space indicates the need to understand the microphysics of individual grains immersed in a plasma or space environment.
NASA Technical Reports Server (NTRS)
Johnson, M.; Label, K.; McCabe, J.; Powell, W.; Bolotin, G.; Kolawa, E.; Ng, T.; Hyde, D.
2007-01-01
Implementation of challenging Exploration Systems Missions Directorate objectives and strategies can be constrained by onboard computing capabilities and power efficiencies. The Radiation Hardened Electronics for Space Environments (RHESE) High Performance Processors for Space Environments project will address this challenge by significantly advancing the sustained throughput and processing efficiency of high-per$ormance radiation-hardened processors, targeting delivery of products by the end of FY12.
Biological research on a Space Station
NASA Technical Reports Server (NTRS)
Krikorian, A. D.; Johnson, Catherine C.
1990-01-01
A Space Station can provide reliable, long duration access to ug environments for basic and applied biological research. The uniqueness of access to near-weightless environments to probe fundamental questions of significance to gravitational and Space biologists can be exploited from many vantage points. Access to centrifuge facilities that can provide 1 g and hypo-g controls will permit identification of gravity-dependent or primary effects. Understanding secondary effects of the ug environment as well will allow a fuller exploitation of the Space environment.
NASA Technical Reports Server (NTRS)
Keckler, C. R.
1980-01-01
A high fidelity digital computer simulation was used to establish the viability of the Annular Suspension and Pointing System (ASPS) for satisfying the pointing and stability requirements of facility class payloads, such as the Solar Optical Telescope, when subjected to the Orbiter disturbance environment. The ASPS and its payload were subjected to disturbances resulting from crew motions in the Orbiter aft flight deck and VRCS thruster firings. Worst case pointing errors of 0.005 arc seconds were experienced under the disturbance environment simulated; this is well within the 0.08 arc seconds requirement specified by the payload.
Radiation Environment Modeling for Spacecraft Design: New Model Developments
NASA Technical Reports Server (NTRS)
Barth, Janet; Xapsos, Mike; Lauenstein, Jean-Marie; Ladbury, Ray
2006-01-01
A viewgraph presentation on various new space radiation environment models for spacecraft design is described. The topics include: 1) The Space Radiatio Environment; 2) Effects of Space Environments on Systems; 3) Space Radiatio Environment Model Use During Space Mission Development and Operations; 4) Space Radiation Hazards for Humans; 5) "Standard" Space Radiation Environment Models; 6) Concerns about Standard Models; 7) Inadequacies of Current Models; 8) Development of New Models; 9) New Model Developments: Proton Belt Models; 10) Coverage of New Proton Models; 11) Comparison of TPM-1, PSB97, AP-8; 12) New Model Developments: Electron Belt Models; 13) Coverage of New Electron Models; 14) Comparison of "Worst Case" POLE, CRESELE, and FLUMIC Models with the AE-8 Model; 15) New Model Developments: Galactic Cosmic Ray Model; 16) Comparison of NASA, MSU, CIT Models with ACE Instrument Data; 17) New Model Developmemts: Solar Proton Model; 18) Comparison of ESP, JPL91, KIng/Stassinopoulos, and PSYCHIC Models; 19) New Model Developments: Solar Heavy Ion Model; 20) Comparison of CREME96 to CREDO Measurements During 2000 and 2002; 21) PSYCHIC Heavy ion Model; 22) Model Standardization; 23) Working Group Meeting on New Standard Radiation Belt and Space Plasma Models; and 24) Summary.
Høybye, Mette Terp
2013-02-01
Given the growing attention to the importance of design in shaping healing hospital environments this study extends the understanding of healing environments, beyond causal links between environmental exposure and health outcome by elucidating how environments and practices interrelate. The study was conducted as an ethnographic fieldwork from March 2011 to September 2011 at the Department of Haematology at Odense University Hospital, Denmark, systematically using participant observation and interviews as research strategies. It included 20 patients, four of who were followed closely over an extended time period. Through thematic analysis five key concepts emerged about the social dynamics of hospital environments: practices of self; creating personal space; social recognition; negotiating space; and ambiguity of space and care. Through these concepts, the study demonstrates how the hospital environment is a flow of relations between space and practice that changes and challenges a structural idea of design and healing. Patients' sense of healing changes with the experience of progression in treatment and the capacity of the hospital space to incite an experience of homeliness and care. Furthermore, cancer patients continuously challenge the use and limits of space by individual objects and practices of privacy and home. Healing environments are complex relations between practices, space and care, where recognition of the individual patient's needs, values and experiences is key to developing the environment to support the patient quality of life. The present study holds implications for practice to inform design of future hospital environments for cancer treatment. The study points to the importance for being attentive to the need for flexible spaces in hospitals that recognize the dynamics of healing, by providing individualized care, relating to the particular and changing needs of patients supporting their potential and their challenged condition with the best care possible.
Combined space environment on spacecraft engineering materials
NASA Technical Reports Server (NTRS)
Workman, Gary L.; Smith, Guy A.; Kosten, Susan
1993-01-01
Spacecraft structures and surface materials exposed to the space environment for extended periods, up to thirty years, have increased potential for damage from long term exposure to the combined space environment including solar ultraviolet radiation, electrons, and protons and orbiting space debris. The space environment in which the Space Station Freedom and other space platforms will orbit is truly a hostile environment. For example, the currently estimated integral fluence for electrons above 1 Mev at 2000 nautical miles is above 2 x 10(exp 10) electrons/cm(sup 2)/day and the proton integral fluence is above 1 x 10(exp 9) protons/cm(sup 2)/day. At the 200 - 400 nautical miles, which is more representative of the altitude which will provide the environment for the Space Station, each of these fluences will be proportionately less; however, the data indicates that the radiation environment will obviously have an effect on structural materials exposed to the environment for long durations. The effects of ultraviolet radiation, particularly in the vacuum ultraviolet (less than 200 nm wavelength) is more difficult to characterize at this time. Very little data is available in the literature which can be used for determining the life cycle of a material placed in space for extended durations of time. In order to obtain critical data for planning and designing of spacecraft systems, use of a small vacuum system at the Environmental Effects Facility at MSFC, which can be used for these purposes was used. A special effort was made to build up this capability during the course of this research effort and perform a variety of experiments on materials proposed for the Space Station. A description of the apparatus and the procedure devised to process potential spacecraft materials is included.
Space Ethics and Protection of the Space Environment
NASA Astrophysics Data System (ADS)
Williamson, Mark
2002-01-01
The construction of the International Space Station in low Earth orbit and the formulation of plans to search for life on Mars - one day by means of manned missions - indicate that mankind is intent on making the space environment part of its domain. Publicity surrounding space tourism, in-space `burials' and the sale of lunar `real estate' suggests that, some time in the 21st century, the space environment will become an extraterrestrial extension of our current business and domestic environment. This prompts the question of our collective attitude towards the space environment and the degree to which we should regulate its use and protect it for future generations. What, indeed, are the ethical considerations of space exploration and development? Ethics can be defined as "the philosophical study of the moral value of human conduct, and of the rules or principles that ought to govern it". More practically, it represents "an approved code of behaviour" adopted, for example, by a group or profession. If a set of ethics is to be developed for space, it is important that what we refer to as the `space community', or `space profession', is intimately involved. Indeed, if it is not, the profession risks having the job done for it, for example by politicians and members of the general public, who for their own reasons may wish to place restrictions on space development, or ban it altogether. The terrestrial nuclear power industry, for example, has already suffered this fate, while widespread ignorance of the subject has led to a moratorium on the use of RTGs in spacecraft. However, there is a danger in the discussion of ethics that consideration is confined to the philosophical aspects, thus excusing those involved from providing practical solutions to the problems that emerge. The fact that mankind has already affected, and arguably damaged, the space environment transports the discussion beyond the philosophical realm. This paper offers a pragmatic analysis of one aspect of the ethical code for space exploration and development, as far as it relates to the protection of the space environment. The key assumption of this thesis is that the space environment is a unique and important environment, and is therefore worthy of protection. While recognising the difficulties associated with achieving a balance between exploitation and protection, the design of and agreement on a code of space ethics is considered sufficiently important to pursue. In practice, agreement on an ethical code for space is perhaps even more difficult than agreement in space law, a topic that has been under serious discussion since the beginning of the Space Age. Nevertheless, an effort must be made now, before more serious and irreparable damage is done. This paper outlines the first, practical steps towards that goal.
NASA Astrophysics Data System (ADS)
Datta, Abheek; Dutta, Priyanka; Sadhu, Anustup; Maiti, Sankar; Bhattacharyya, Sayan
2013-07-01
Waste cooking oil has daily deliberate hazardous effects on human health due to consumption of re-cooked oil and on the environment from disposal of the waste oil. These hazards can be controlled if there are ways to economically convert the waste oils into industrially relevant materials. Large-scale controlled catalytic conversion of the waste natural oils to carbon nanowhiskers (CNWs; diameter: 98-191 nm, length: ≤2 μm) was achieved by a one-pot, environmentally friendly process. The no-cost CNWs consist of carbon spirals with spacing between two adjacent layers at 3.1 ± 0.2 nm and arranged perpendicular to the whisker axis. The reactions were performed inside a sealed container at 500-850 °C and autogenic pressure for 4-10 h. It was demonstrated that the gaseous pressure from the decomposition of the fatty acids was crucial for formation of the semi-graphitic filamentous structures. The dilute acid-washed catalyst free CNWs were found to be negligibly toxic to the mammalian cells and can be localized inside the cell nucleus. The cellular internalization studies of the fluorescent CNWs demonstrated their viability as potential delivery vehicles into the mammalian cells.
Flexible Foam Protection Materials for Portable Life Support System Packaging Study
NASA Technical Reports Server (NTRS)
Tang,Henry H.; Dillon, Paul A.; Thomas, Gretchen A.
2009-01-01
This paper discusses the phase I effort in evaluating and selecting a light weight impact protection material for the Constellation Space Suit Element (CSSE) Portable Life Support System (PLSS) conceptual packaging study. A light weight material capable of holding and protecting the components inside the PLSS is required to demonstrate the viability of the flexible PLSS packaging concept. The material needs to distribute, dissipate, and absorb the impact energy of the PLSS falling on the lunar surface. It must also be robust to consistently perform over several Extravehicular Activity (EVA) missions in the extreme lunar thermal vacuum environment. This paper documents the performance requirements for selecting a foam protection material, and the methodologies for evaluating some commercial off-the-shelf (COTS) foam material candidates. It also presents the mechanical properties and impact drop tests results of the foam material candidates. The results of this study suggest that a foam based flexible protection system is a viable solution for PLSS packaging. However, additional works are needed to optimize COTS foam or to develop a composite foam system that will meet all the performance requirements for the CSSE PLSS flexible packaging.
Scher, S; Packer, E; Sagan, C
1964-01-01
It has been postulated that the accidental introduction of terrestrial microorganisms to other planets during the course of space exploration might impede or bias the detection of organic matter and possible indigenous organisms, and thereby confuse subsequent studies of extraterrestrial life. To assess the likelihood of biological contamination of Mars, we have applied the principle of natural selection on a laboratory scale. Terrestrial microorganisms were collected from a variety of environments, including regions of high alkalinity, low mean daily temperature, and low annual rainfall. The air-dried soils were then subjected to a simulated Martian environment involving 12-hour freeze-thaw cycles from about -60 degrees C to about +20 degrees C; atmospheres of 95 per cent nitrogen, 5 percent carbon dioxide and low moisture content: < or = 0.1 atm pressure; and a total ultraviolet dose at 2537 angstrom of 10(9) erg cm-2. In some experiments, organic supplements were provided. Survivors were scored on supplemented agar. Preliminary results indicate a wide variety of survivors, even when no organic supplements were introduced. Survivors included obligate and facultative anaerobic spore-formers and non-spore-forming facultative anaerobic bacteria. Diurnal freezing and thawing was continued for six months. There was no significant loss of viability after the first freeze-thaw cycle. An extensive literature survey shows that survival of terrestrial microorganisms under individual simulated Martian conditions has been known for decades. The present investigation shows the absence of pronounced synergistic effects inhibiting survival. The probable existence of organic matter and moisture on Mars, at least in restricted locales and times, makes it especially likely that terrestrial microorganisms can also reproduce on Mars. The demonstration that all samples of terrestrial soil tested contain a population of microorganisms which survive in simulated Martian environments strongly underscores the need for scrupulous sterilization of all spacecraft intended for Mars landing.
Space Environment Testing of Photovoltaic Array Systems at NASA's Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H., Jr.; Phillips, Brandon S.
2015-01-01
CubeSats, Communication Satellites, and Outer Planet Science Satellites all share one thing in common: Mission success depends on maintaining power in the harsh space environment. For a vast majority of satellites, spacecraft power is sourced by a photovoltaic (PV) array system. Built around PV cells, the array systems also include wiring, substrates, connectors, and protection diodes. Each of these components must function properly throughout the mission in order for power production to remain at nominal levels. Failure of even one component can lead to a crippling loss of power. To help ensure PV array systems do not suffer failures on-orbit due to the space environment, NASA's Marshall Space Flight Center (MSFC) has developed a wide ranging test and evaluation capability. Key elements of this capability include: Testing: a. Ultraviolet (UV) Exposure b. Charged Particle Radiation (Electron and Proton) c. Thermal Cycling d. Plasma and Beam Environments Evaluation: a. Electrostatic Discharge (ESD) Screening b. Optical Inspection and easurement c. PV Power Output including Large Area Pulsed Solar Simulator (LAPSS) measurements This paper will describe the elements of the space environment which particularly impact PV array systems. MSFC test capabilities will be described to show how the relevant space environments can be applied to PV array systems in the laboratory. A discussion of MSFC evaluation capabilities will also be provided. The sample evaluation capabilities offer test engineers a means to quantify the effects of the space environment on their PV array system or component. Finally, examples will be shown of the effects of the space environment on actual PV array materials tested at MSFC.
NASA Technical Reports Server (NTRS)
Cooper, John F.
2006-01-01
Accessible surfaces of the most likely astrobiological habitats (Mars, Europa, Titan) in the solar system beyond Earth are exposed to various chemical and hydrologic weathering processes directly or indirectly induced by interaction with the overlying space environment. These processes can be both beneficial, through provision of chemical compounds and energy, and destructive, through chemical dissociation or burial, to detectable presence of biosignatures. Orbital, suborbital, and surface platforms carrying astrobiological instrumentation must survive, and preferably exploit, space environment interactions to reach these habitats and search for evidence of life or its precursors. Experience from Mars suggests that any detection of biosignatures must be accompanied by characterization of the local chemical environment and energy sources including irradiation by solar ultraviolet photons and energetic particles from the space environment. Orbital and suborbital surveys of surface chemistry and astrobiological potential in the context of the space environment should precede targeted in-situ measurements to maximize probability of biosignature detection through site selection. The Space Physics of Life (SPOL) investigation has recently been proposed to the NASA Astrobiology Institute and is briefly described in this presentation. SPOL is the astrobiologically relevant study of the interactions and relationships of potentially? or previously inhabited, bodies of the solar system with the surrounding environments. This requires an interdisciplinary effort in space physics, planetary science, and radiation biology. The proposed investigation addresses the search for habitable environments, chemical resources to support life, and techniques for detection of organic and inorganic signs of life in the context of the space environment.
Space and Atmospheric Environments
NASA Technical Reports Server (NTRS)
Barth, Janet L.; Day, John H. (Technical Monitor)
2002-01-01
This viewgraph presentation provides information on space environments and the protection of materials and structures from their harsh conditions. Space environments are complex, and the complexity of spacecraft systems is increasing. Design accommodation must be realistic. Environmental problems can be limited at low cost relative to spacecraft cost.
Microgravity strategic plan, 1990
NASA Technical Reports Server (NTRS)
1990-01-01
The mission of the NASA Microgravity program is to utilize the unique characteristics of the space environment, primarily the near absence of gravity, to understand the role of gravity in materials processing, and to demonstrate the feasibility of space production of improved materials that have high technological, and possible commercial, utility. The following five goals for the Microgravity Program are discussed: (1) Develop a comprehensive research program in fundamental sciences, materials science, and biotechnology for the purpose of attaining a structured understanding of gravity dependent physical phenomena in both Earth and non-Earth environments; (2) Foster the growth of interdisciplinary research community to conduct research in the space environment; (3) Encourage international cooperation for the purpose of conducting research in the space environment; (4) Utilize a permanently manned, multi-facility national microgravity laboratory in low-Earth orbit to provide a long-duration, stable microgravity environment; (5) Promote industrial applications of space research for the development of new, commercially viable products, services, and markets resulting from research in the space environment.
MEMS micromirror characterization in space environments.
Yoo, Byung-Wook; Park, Jae-Hyoung; Park, I H; Lee, Jik; Kim, Minsoo; Jin, Joo-Young; Jeon, Jin-A; Kim, Sug-Whan; Kim, Yong-Kweon
2009-03-02
This paper describes MEMS micromirror characterization in space environments associated with our space applications in earth observation from the International Space Station and earth's orbit satellite. The performance of the micromirror was tested for shock and vibration, stiction, outgassing from depressurization and heating, and electrostatic charging effects. We demonstrated that there is no degradation of the micromirror performance after the space environment tests. A test bed instrument equipped with the micromirrors was delivered and tested in the ISS. The results demonstrate that the proposed micromirrors are suitable for optical space systems.
Resilience and vulnerability to a natural hazard: A mathematical framework based on viability theory
NASA Astrophysics Data System (ADS)
Rougé, Charles; Mathias, Jean-Denis; Deffuant, Guillaume
2013-04-01
This deals with the response of a coupled human and natural system (CHANS) to a natural hazard by using the concepts of resilience and vulnerability within the mathematical framework of viability theory. This theory applies to time-evolving systems such as CHANS and assumes that their desirable properties can be defined as a subset of their state space. Policies can also apply to influence the dynamics of such systems: viability theory aims at finding the policies which keep the properties of a controlled dynamical system for so long as no disturbance hits it. The states of the system such that the properties are guaranteed constitute what is called the viability kernel. This viability framework has been extended to describe the response to a perturbation such as a natural hazard. Resilience describes the capacity of the CHANS to recover by getting back in the viability kernel, where its properties are guaranteed until the onset of the next major event. Defined for a given controlled trajectory that the system may take after the event ends, resilience is (a) whether the system comes back to the viability kernel within a given budget such as a time constraint, but also (b) a decreasing function of vulnerability. Computed for a given trajectory as well, vulnerability is a measure of the consequence of violating a property. We propose a family of functions from which cost functions and other vulnerability indicators can be derived for a certain trajectory. There can be several vulnerability functions, representing for instance social, economic or ecological vulnerability, and each representing the violation of an associated property, but these functions need to be ultimately aggregated as a single indicator. Computing the resilience and vulnerability of a trajectory enables the viability framework to describe the response of both deterministic and stochastic systems to hazards. In the deterministic case, there is only one response trajectory for a given action policy, and methods exist to find the actions which yield the most resilient trajectory, namely the least vulnerable trajectory for which recovery is complete. In the stochastic case however, there is a range of possible trajectories. Statistics can be derived from the probability distribution of the resilience and vulnerability of the trajectories. Dynamic programming methods can then yield either the policies that maximize the probability of being resilient by achieving recovery within a given time horizon, or these which minimize a given vulnerability statistic. These objectives are different and can be in contradiction, so that trade-offs may have to be considered between them. The approach is illustrated in both the deterministic and stochastic cases through a simple model of lake eutrophication, for which the desirable ecological properties of the lake conflict with the economic interest of neighboring farmers.
SigmaCLIPSE = presentation management + NASA CLI PS + SQL
NASA Technical Reports Server (NTRS)
Weiss, Bernard P., Jr.
1990-01-01
SigmaCLIPSE provides an expert systems and 'intelligent' data base development program for diverse systems integration environments that require support for automated reasoning and expert systems technology, presentation management, and access to 'intelligent' SQL data bases. The SigmaCLIPSE technology and and its integrated ability to access 4th generation application development and decision support tools through a portable SQL interface, comprises a sophisticated software development environment for solving knowledge engineering and expert systems development problems in information intensive commercial environments -- financial services, health care, and distributed process control -- where the expert system must be extendable -- a major architectural advantage of NASA CLIPS. SigmaCLIPSE is a research effort intended to test the viability of merging SQL data bases with expert systems technology.
NASA Technical Reports Server (NTRS)
Reddell, Brandon
2015-01-01
Designing hardware to operate in the space radiation environment is a very difficult and costly activity. Ground based particle accelerators can be used to test for exposure to the radiation environment, one species at a time, however, the actual space environment cannot be duplicated because of the range of energies and isotropic nature of space radiation. The FLUKA Monte Carlo code is an integrated physics package based at CERN that has been under development for the last 40+ years and includes the most up-to-date fundamental physics theory and particle physics data. This work presents an overview of FLUKA and how it has been used in conjunction with ground based radiation testing for NASA and improve our understanding of secondary particle environments resulting from the interaction of space radiation with matter.
Natural orbital environment definition guidelines for use in aerospace vehicle development
NASA Technical Reports Server (NTRS)
Anderson, B. Jeffrey (Editor); Smith, Robert E. (Compiler)
1994-01-01
This document provides definitions of the natural near-Earth space environment suitable for use in the initial development/design phase of any space vehicle. The natural environment includes the neutral atmosphere, plasma, charged particle radiation, electromagnetic radiation (EMR), meteoroids, orbital debris, magnetic field, physical and thermal constants, and gravitational field. Communications and other unmanned satellites operate in geosynchronous-Earth orbit (GEO); therefore, some data are given for GEO, but emphasis is on altitudes from 200 km to 1000 km (low-Earth orbit (LEO)). This document does not cover the induced environment of other effects resulting from presence of the space vehicle. Manmade factors are included as part of the ambient natural environment; i.e., orbital debris and radio frequency (RF) noise generated on Earth, because they are not caused by the presence of the space vehicle but form part of the ambient environment that the space vehicle experiences.
Bacterial DNA of Ocean and Land on the Surface of the International Space Station.
NASA Astrophysics Data System (ADS)
Grebennikova, Tatiana
A.V. Syroeshkin2, T.V. Grebennikova1, E.V. Shubralova3, V.A. Shuvalov3, O.S. Tsygankov4, V.B. Lapshin2 1D. I. Ivanovsky Virology Institute, Moscow, Russia 2 Academician E. K. Fedorov Institute of Applied Geophysics, Moscow, Russia 3S.P. Korolev Rocket and Space Corporation «Energia» Korolev, Russia 4Central Research Institute of Machine Building, Korolev, Russia Existence of biological molecules as markers of microorganisms in the space environment has always attracted attention of researchers. There is great attention to the search for extraterrestrial life forms [Nicholson W.L. 2009, Kawaguchi Y. et al 2013], and as well as the coping mechanisms of living organisms in the interplanetary space [Hotchin J. et al 1965, Baranov V.M. 2009, Horneck G. et al 2010]. Experiments on American and Japanese segments of the International Space Station (ISS) over the different nature of resistance during prolonged stay in space were conducted [Scalzi G et al 2012, Wassmann M. et al 2012]. As a result of these experiments confirmed the possibility of preserving the viability of organisms in an open space for a long time. Consequence, became interested in the transfer of living matter from the stratosphere to near-Earth space [Smith D.J. 2013]. We hypothesized that viable forms, or at least, intact DNA can be transferred to the orbit of the ISS with the ascending branch of the global electric circuit. Samples of cosmic dust collected from the surface of the window of the ISS during the exit of an astronaut in space. Samples (washes with material of tampons and tampons) which were in vacuo, were analyzed for the presence of bacterial DNA by nested PCR using primers specific DNA genus Mycobacterium, the DNA of the strain of the genus Bacillus anthracis and DNA encoding the bacterial 16S ribosomal RNA after transportation of the samples to Earth. The results of amplification, followed by sequencing and phylogenetic analysis showed the presence in samples of cosmic dust DNA representatives bacteria of the genus Mycobacteria and extreme bacteria of the genus Delftia family Comamonadaceae order Burkholderiales. It is shown that the DNA sequence of one of the bacteria of the genus Mycobacteria genetically similar to that previously DNA sequence of bacteria observed in sea surface microlayer Barents Sea coast. The presence of representatives of the DNA of wild terrestrial and marine genera of bacteria on the surface of the ISS indicates their possible transfer from the stratosphere into the ionosphere with the ascending branch of the global electric circuit.
The contribution of woody plant materials on the several conditions in a space environment
NASA Astrophysics Data System (ADS)
Tomita-Yokotani, Kaori; Baba, Keiichi; Suzuki, Toshisada; Kimura, Shunta; Sato, Seigo; Katoh, Hiroshi; Abe, Yusuke; Katayama, Takeshi
Woody plant materials have several utilization elements in our habitation environment on earth. The studies of woody plants under a space-environment in the vegetable kingdom have a high contribution to the study of various and exotic environmental responses, too. Woody plants can produce an excess oxygen, woody materials for the living cabin, and provide a biomass by cultivating crops and other species of creatures. Tree material would become to be a tool in closed bio-ecosystems such as an environment in a space. We named the trees used as material for the experiment related to space environments “CosmoBon”, small tree bonsai. Japanese cherry tree, “Sakura”, is famous and lovely tree in Japan. One species of “Sakura”, “Mamezakura, Prunus incisa”, is not only lovely tree species, but also suitable tree for the model tree of our purpose. The species of Prunus incisa is originally grown in volcano environment. That species of Sakura is originally grown on Mt. Fuji aria, oligotrophic place. We will try to build the best utilization usage of woody plant under the space environment by “Mamezakura” as a model tree. Here, we will show the importance of uniformity of materials when we will use the tree materials in a space environment. We will also discuss that tree has a high possibility of utilization under the space environments by using our several results related to this research.
NASA Technical Reports Server (NTRS)
Barth, Janet L.; Xapsos, Michael A.; LaBel, Kenneth A.; Polvey, Christian
2005-01-01
This viewgraph presentation offers an overview of the space radiation environment, primarily in near-Earth environments such as Low Earth Orbit (LEO). The presentation describes the Halloween solar event of 2003 as an example of how solar activity can affect spacecraft electronic systems. The lunar radiation environment is also briefly summarized.
NASA's Space Environments and Effects (SEE) Program: The Pursuit of Tomorrow's Space Technology
NASA Technical Reports Server (NTRS)
Pearson, Steven D.; Hardage, Donna M.
1998-01-01
A hazard to all spacecraft orbiting the earth and exploring the unknown in deep space is the existence of a harsh and ever changing environment with its subsequent effects. Some of these environmental hazards, such as plasma, extreme thermal excursions, meteoroids, and ionizing radiation result from natural sources, whereas others, such as orbital debris and neutral contamination are induced by the presence of spacecraft themselves. The subsequent effects can provide damaging or even disabling effects on spacecraft, its materials, and its instruments. In partnership with industry, academia, and other government agencies, National Aeronautics & Space Administration's (NASA's) Space Environments & Effects (SEE) Program defines the space environments and advocates technology development to accommodate or mitigate these harmful environments on the spacecraft. This program provides a very comprehensive and focused approach to understanding the space environment, to define the best techniques for both flight and ground-based experimentation, to update the models which predict both the environments and the environmental effects on spacecraft, and finally to ensure that this information is properly maintained and inserted into spacecraft design programs. This paper will provide an overview of the Program's purpose, goals, database management and technical activities. In particular, the SEE Program has been very active in developing improved ionizing radiation models and developing related flight experiments which should aid in determining the effect of the radiation environment on modern electronics.
Transmission and Reproduction of Force Sensation by Bilateral Control
NASA Astrophysics Data System (ADS)
Katsura, Seiichiro; Ohnishi, Kouhei
Minimally invasive surgery (MIS) which thinks a great deal of patient’s quality of life (QOL) has attracted attention during about ten years. In this paper, it aims at development of the technology for transmitting force sensation required in medical treatment especially through surgical instruments, such as forceps. In bilateral control, it is a problem how master and slave robots realize the law of action and reaction to the environment. Mechanism of contact with environment and bilateral controller based on stiffness are shown. Master arm in contact with human and slave arm in contact with environment are given compliance, and stable contact with environment can be realized. The proposed method is applied to 3-link master-slave manipulators. As a result, transmission and reproduction of force sensation can be realized. The experimental results show viability of the proposed method.
Marine Special Operations Helicopter Unit: Viability in the Joint Force of 2020
2012-04-18
competitive globalized environment will increase the requirements for aviation support. With a dedicated Marine Special Operations Helicopter Squadron...efficiency in planning, training, and execution will provide for precise timely and accurate organic fires, direct mobility support, and reduce the...Fulfilling the gap in Marine Special Operations Command with a dedicated Marine special operations helicopter unit is necessary. Concisely, this will
ERIC Educational Resources Information Center
Tayan, Bilal M.
2017-01-01
Advancements in technology have enabled us to learn, adapt and exploit our skills and knowledge in new ways. Appreciating the potential of technology may yet give growth and enrich the process of language education, particularly through a student-centred mobile learning environment. Consequently, a constructivist approach to learning can create…
Jim McKean; Daniele Tonina
2013-01-01
Incubating eggs of autumn-spawning Chinook salmon (Oncorhynchus tshawytscha) could be at risk of midwinter high flows and substrate scour in a changing climate. A high-spatial-resolution multidimensional hydrodynamics model was used to assess the degree of scour risk in low-gradient unconfined gravel bed channels that are the favored environment for autumn-spawning...
ERIC Educational Resources Information Center
Dejean, Jacqueline Sylvia
2015-01-01
Conflicting regulatory demands on higher education institutions (HEIs) contribute to an environment of increasing legal risk for HEIs. In addition, the increasing cost of non-compliance jeopardizes institutional viability as HEIs struggle to adjust to the pressure created by these legally-mandated changes. The legal risk to HEIs can be attributed…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medeiros, Michael
Pacific Gas & Electric Company (PG&E) conducted a project to explore the viability of underground compressed air energy storage (CAES) technology. CAES uses low-cost, off-peak electricity to compress air into a storage system in an underground space such as a rock formation or salt cavern. When electricity is needed, the air is withdrawn and used to drive a generator for electricity production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medeiros, Michael
Pacific Gas & Electric Company (PG&E) conducted a project to explore the viability of underground compressed air energy storage (CAES) technology. CAES uses low-cost, off-peak electricity to compress air into a storage system in an underground space such as a rock formation or salt cavern. When electricity is needed, the air is withdrawn and used to drive a generator for electricity production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medeiros, Michael
Pacific Gas & Electric Company (PG&E) conducted a project to explore the viability of underground compressed air energy storage (CAES) technology. CAES uses low-cost, off-peak electricity to compress air into a storage system in an underground space such as a rock formation or salt cavern. When electricity is needed, the air is withdrawn and used to drive a generator for electricity production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medeiros, Michael
Pacific Gas & Electric Company (PG&E) conducted a project to explore the viability of underground compressed air energy storage (CAES) technology. CAES uses low-cost, off-peak electricity to compress air into a storage system in an underground space such as a rock formation or salt cavern. When electricity is needed, the air is withdrawn and used to drive a generator for electricity production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medeiros, Michael
Pacific Gas & Electric Company (PG&E) conducted a project to explore the viability of underground compressed air energy storage (CAES) technology. CAES uses low-cost, off-peak electricity to compress air into a storage system in an underground space such as a rock formation or salt cavern. When electricity is needed, the air is withdrawn and used to drive a generator for electricity production.
Terrestrial Planet Finder Interferometer: 2007-2008 Progress and Plans
NASA Technical Reports Server (NTRS)
Lawson, P. R.; Lay, O. P.; Martin, S. R.; Peters, R. D.; Gappinger, R. O.; Ksendzov, A.; Scharf, D. P.; Booth, A. J.; Beichman, C. A.; Serabyn, E.;
2008-01-01
This paper provides an overview of technology development for the Terrestrial Planet Finder Interferometer (TPF-I). TPF-I is a mid-infrared space interferometer being designed with the capability of detecting Earth-like planets in the habitable zones around nearby stars. The overall technology roadmap is presented and progress with each of the testbeds is summarized. The current interferometer architecture, design trades, and the viability of possible reduced-scope mission concepts are also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medeiros, Michael
Pacific Gas & Electric Company (PG&E) conducted a project to explore the viability of underground compressed air energy storage (CAES) technology. CAES uses low-cost, off-peak electricity to compress air into a storage system in an underground space such as a rock formation or salt cavern. When electricity is needed, the air is withdrawn and used to drive a generator for electricity production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medeiros, Michael
Pacific Gas & Electric Company (PG&E) conducted a project to explore the viability of underground compressed air energy storage (CAES) technology. CAES uses low-cost, off-peak electricity to compress air into a storage system in an underground space such as a rock formation or salt cavern. When electricity is needed, the air is withdrawn and used to drive a generator for electricity production.
Disequilibrium condensation environments in space - A frontier in thermodynamics
NASA Technical Reports Server (NTRS)
De, B. R.
1979-01-01
The thermal-disequilibrium aspect of the problem of dust-particle formation from a gas phase in an open space environment is discussed in an effort to draw attention to the space condensation environment as an interesting arena for application and extension of the ideas and formalisms of nonequilibrium thermodynamics. It is shown that quasi-steady states with a disequilibrium between the gas-phase kinetic temperature and the condensed-phase internal temperature appear to be the norm of condensation environments in space. Consideration of the case of condensation onto a bulk condensed phase indicates that these quasi-steady states may constitute Prigogine dissipative structures. It is suggested that a proper study of the process of condensation in a space environment should include any effects arising from thermal disequilibrium.
A NASA Applied Spaceflight Environments Office Concept
NASA Technical Reports Server (NTRS)
Spann, James F.; Edwards, David L.; Burns, Howard D.; Xapsos, Mike
2011-01-01
The National Aeronautics and Space Administration (NASA) is launching a bold and ambitious new space initiative. A significant part of this new initiative includes exploration of new worlds, the development of more innovative technologies, and expansion our presence in the solar system. A common theme to this initiative is the exploration of space beyond Low Earth Orbit (LEO). As currently organized, NASA does not have an Agency-level office that provides coordination of space environment research and development. This has contributed to the formation of a gap between spaceflight environments knowledge and the application of this knowledge for multi-program use and for use outside NASA. This paper outlines a concept to establish a NASA-level Applied Spaceflight Environments (ASE) office that will provide coordination and funding for sustained multi-program support in three technical areas that have demonstrated these needs through customer requests. These technical areas are natural environments characterization and modeling, materials and systems analysis and test, and operational space environments modeling. Additionally the ASE office will serve as an entry point of contact for external users who wish to take advantage of data and assets associated with space environments, including space weather. This paper will establish the need for the ASE, discuss a concept for organizational structure and outline the scope in the three technical areas.
Low-gravity Orbiting Research Laboratory Environment Potential Impact on Space Biology Research
NASA Technical Reports Server (NTRS)
Jules, Kenol
2006-01-01
One of the major objectives of any orbital space research platform is to provide a quiescent low gravity, preferably a zero gravity environment, to perform fundamental as well as applied research. However, small disturbances exist onboard any low earth orbital research platform. The impact of these disturbances must be taken into account by space research scientists during their research planning, design and data analysis in order to avoid confounding factors in their science results. The reduced gravity environment of an orbiting research platform in low earth orbit is a complex phenomenon. Many factors, among others, such as experiment operations, equipment operation, life support systems and crew activity (if it is a crewed platform), aerodynamic drag, gravity gradient, rotational effects as well as the vehicle structural resonance frequencies (structural modes) contribute to form the overall reduced gravity environment in which space research is performed. The contribution of these small disturbances or accelerations is precisely why the environment is NOT a zero gravity environment, but a reduced acceleration environment. This paper does not discuss other factors such as radiation, electromagnetic interference, thermal and pressure gradient changes, acoustic and CO2 build-up to name a few that affect the space research environment as well, but it focuses solely on the magnitude of the acceleration level found on orbiting research laboratory used by research scientists to conduct space research. For ease of analysis this paper divides the frequency spectrum relevant to most of the space research disciplines into three regimes: a) quasi-steady, b) vibratory and c) transient. The International Space Station is used as an example to illustrate the point. The paper discusses the impact of these three regimes on space biology research and results from space flown experiments are used to illustrate the potential negative impact of these disturbances (accelerations) on space biology research.
Space Weather Monitoring for ISS Space Environments Engineering and Crew Auroral Observations
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Pettit, Donald R.; Hartman, William A.
2012-01-01
The awareness of potentially significant impacts of space weather on spaceand ground ]based technological systems has generated a strong desire in many sectors of government and industry to effectively transform knowledge and understanding of the variable space environment into useful tools and applications for use by those entities responsible for systems that may be vulnerable to space weather impacts. Essentially, effectively transitioning science knowledge to useful applications relevant to space weather has become important. This talk will present proven methodologies that have been demonstrated to be effective, and how in the current environment those can be applied to space weather transition efforts.
Fiber glass pulling. [in space
NASA Technical Reports Server (NTRS)
Workman, Gary L.
1987-01-01
Experiments were conducted to determine the viability of performing containerless glass fiber pulling in space. The optical transmission properties and glass-forming capabilities of the heavy metal fluorides are reviewed and the acoustic characteristics required for a molten glass levitation system are examined. The design limitations of, and necessary modifications to the acoustic levitation furnace used in the experiments are discussed in detail. Acoustic levitator force measurements were performed and a thermal map of the furnace was generated from thermocouple data. It was determined that the thermal capability of the furnace was inadequate to melt a glass sample in the center. The substitution of a 10 KW carbon monoxide laser for the original furnace heating elements resulted in improved melt heating.
Johnson, Tylor J; Zahler, Jacob D; Baldwin, Emily L; Zhou, Ruanbao; Gibbons, William R
2016-07-01
Cyanobacteria are currently being engineered to photosynthetically produce next-generation biofuels and high-value chemicals. Many of these chemicals are highly toxic to cyanobacteria, thus strains with increased tolerance need to be developed. The volatility of these chemicals may necessitate that experiments be conducted in a sealed environment to maintain chemical concentrations. Therefore, carbon sources such as NaHCO3 must be used for supporting cyanobacterial growth instead of CO2 sparging. The primary goal of this study was to determine the optimal initial concentration of NaHCO3 for use in growth trials, as well as if daily supplementation of NaHCO3 would allow for increased growth. The secondary goal was to determine the most accurate method to assess growth of Anabaena sp. PCC 7120 in a sealed environment with low biomass titers and small sample volumes. An initial concentration of 0.5g/L NaHCO3 was found to be optimal for cyanobacteria growth, and fed-batch additions of NaHCO3 marginally improved growth. A separate study determined that a sealed test tube environment is necessary to maintain stable titers of volatile chemicals in solution. This study also showed that a SYTO® 9 fluorescence-based assay for cell viability was superior for monitoring filamentous cyanobacterial growth compared to absorbance, chlorophyll α (chl a) content, and biomass content due to its accuracy, small sampling size (100μL), and high throughput capabilities. Therefore, in future chemical inhibition trials, it is recommended that 0.5g/L NaHCO3 is used as the carbon source, and that culture viability is monitored via the SYTO® 9 fluorescence-based assay that requires minimum sample size. Copyright © 2016 Elsevier B.V. All rights reserved.
Electrodynamic Dust Shields on the International Space Station: Exposure to the Space Environment
NASA Technical Reports Server (NTRS)
Calle, C. I.; Hogue, M. D.; Johansen, M. R.; Yim, H.; Delaune, P. B.; Clements, J. S.
2012-01-01
Electrodynamic Dust Shields (EDS) have been in development at NASA as a dust mitigation method for lunar and Martian missions. An active dust mitigation strategy. such as that provided by the EDS, that can remove dust from surfaces, is of crucial importance to the planetary exploration program. We report on the development of a night experiment to fully ex pose four EDS panels to the space environment. This flight experiment is part of the Materials International Space Station experiment X(MISSE-X). an external platform on the International Space Station that will expose materials to the space environment.
Space Environmental Effects on Colored Coatings and Anodizes
NASA Technical Reports Server (NTRS)
Kamenetzky, Rachel R.; Finckenor, Miria M.; Vaughn, Jason A.
1999-01-01
Colored coatings and anodizes are used on spacecraft as markers and astronaut visual aids. These materials must be stable in the space environment and withstand atomic oxygen, ultraviolet radiation, particulate radiation, thermal cycling, and high vacuum without significant change in optical and mechanical properties. A variety of colored coatings and anodizes have been exposed to simulated space environments at Marshall Space Flight Center and also actual space environment as part of the Passive Optical Sample Assembly (POSA) - I flight experiment. Colored coatings were developed by AZ Technology, Huntsville, AL, under a NASA contract for International Space Station (ISS). These include yellow, red, blue, and black paints suitable for Extra-Vehicular Activity (EVA) visual aids and ISS emblems. AaChron, Inc., Minneapolis, MN, developed stable colored anodizes, also in yellow, red, blue, and black, for astronaut visual aids. These coatings were exposed in the laboratory to approximately 550 equivalent sun-hours of solar ultraviolet radiation and approximately 1 x 10(exp 21) atoms/sq cm of atomic oxygen in vacuum. The AZ Technology yellow colored coating, designated TMS800IY, and all four AaChron colored anodizes were flown on POSA-I. POSA-I was a Risk Mitigation Experiment for ISS. It was attached to the exterior of the Mir space station docking module by EVA and was exposed for 18 months. The laboratory-simulated space environment, the natural space environment and the unique environment of an orbiting, active space station and their effects on these developmental materials are discussed.
A Neuro-Fuzzy System for Extracting Environment Features Based on Ultrasonic Sensors
Marichal, Graciliano Nicolás; Hernández, Angela; Acosta, Leopoldo; González, Evelio José
2009-01-01
In this paper, a method to extract features of the environment based on ultrasonic sensors is presented. A 3D model of a set of sonar systems and a workplace has been developed. The target of this approach is to extract in a short time, while the vehicle is moving, features of the environment. Particularly, the approach shown in this paper has been focused on determining walls and corners, which are very common environment features. In order to prove the viability of the devised approach, a 3D simulated environment has been built. A Neuro-Fuzzy strategy has been used in order to extract environment features from this simulated model. Several trials have been carried out, obtaining satisfactory results in this context. After that, some experimental tests have been conducted using a real vehicle with a set of sonar systems. The obtained results reveal the satisfactory generalization properties of the approach in this case. PMID:22303160
Phenotypic constraints promote latent versatility and carbon efficiency in metabolic networks.
Bardoscia, Marco; Marsili, Matteo; Samal, Areejit
2015-07-01
System-level properties of metabolic networks may be the direct product of natural selection or arise as a by-product of selection on other properties. Here we study the effect of direct selective pressure for growth or viability in particular environments on two properties of metabolic networks: latent versatility to function in additional environments and carbon usage efficiency. Using a Markov chain Monte Carlo (MCMC) sampling based on flux balance analysis (FBA), we sample from a known biochemical universe random viable metabolic networks that differ in the number of directly constrained environments. We find that the latent versatility of sampled metabolic networks increases with the number of directly constrained environments and with the size of the networks. We then show that the average carbon wastage of sampled metabolic networks across the constrained environments decreases with the number of directly constrained environments and with the size of the networks. Our work expands the growing body of evidence about nonadaptive origins of key functional properties of biological networks.
NASA Astrophysics Data System (ADS)
Ross, M. N.; Toohey, D.
2008-12-01
Emissions from solid and liquid propellant rocket engines reduce global stratospheric ozone levels. Currently ~ one kiloton of payloads are launched into earth orbit annually by the global space industry. Stratospheric ozone depletion from present day launches is a small fraction of the ~ 4% globally averaged ozone loss caused by halogen gases. Thus rocket engine emissions are currently considered a minor, if poorly understood, contributor to ozone depletion. Proposed space-based geoengineering projects designed to mitigate climate change would require order of magnitude increases in the amount of material launched into earth orbit. The increased launches would result in comparable increases in the global ozone depletion caused by rocket emissions. We estimate global ozone loss caused by three space-based geoengineering proposals to mitigate climate change: (1) mirrors, (2) sunshade, and (3) space-based solar power (SSP). The SSP concept does not directly engineer climate, but is touted as a mitigation strategy in that SSP would reduce CO2 emissions. We show that launching the mirrors or sunshade would cause global ozone loss between 2% and 20%. Ozone loss associated with an economically viable SSP system would be at least 0.4% and possibly as large as 3%. It is not clear which, if any, of these levels of ozone loss would be acceptable under the Montreal Protocol. The large uncertainties are mainly caused by a lack of data or validated models regarding liquid propellant rocket engine emissions. Our results offer four main conclusions. (1) The viability of space-based geoengineering schemes could well be undermined by the relatively large ozone depletion that would be caused by the required rocket launches. (2) Analysis of space- based geoengineering schemes should include the difficult tradeoff between the gain of long-term (~ decades) climate control and the loss of short-term (~ years) deep ozone loss. (3) The trade can be properly evaluated only if our understanding of the stratospheric impact of rocket emissions is significantly improved. (4) Such an improved understanding requires a concerted effort of research including new in situ measurements in a variety of rocket plumes and a multi-scale modeling program similar in scope to the effort required to address the climate and ozone impacts of aircraft emissions.
Architecture and life support systems for a rotating space habitat
NASA Astrophysics Data System (ADS)
Misra, Gaurav
Life Support Systems are critical to sustain human habitation of space over long time periods. As orbiting space habitats become operational in the future, support systems such as atmo-sphere, food, water etc. will play a very pivotal role in sustaining life. To design a long-duration space habitat, it's important to consider the full gamut of human experience of the environment. Long-term viability depends on much more than just the structural or life support efficiency. A space habitat isn't just a machine; it's a life experience. To be viable, it needs to keep the inhabitants satisfied with their condition. This paper provides conceptual research on several key factors that influence the growth and sustainability of humans in a space habitat. Apart from the main life support system parameters, the architecture (both interior and exterior) of the habitat will play a crucial role in influencing the liveability in the space habitat. In order to ensure the best possible liveability for the inhabitants, a truncated (half cut) torus is proposed as the shape of the habitat. This structure rotating at an optimum rpm will en-sure 1g pseudo gravity to the inhabitants. The truncated torus design has several advantages over other proposed shapes such as a cylinder or a sphere. The design provides minimal grav-ity variation (delta g) in the living area, since its flat outer pole ensures a constant gravity. The design is superior in economy of structural and atmospheric mass. Interior architecture of the habitat addresses the total built environment, drawing from diverse disciplines includ-ing physiology, psychology, and sociology. Furthermore, factors such as line of sight, natural sunlight and overhead clearance have been discussed in the interior architecture. Substantial radiation shielding is also required in order to prevent harmful cosmic radiations and solar flares from causing damage to inhabitants. Regolith shielding of 10 tons per meter square is proposed for the habitat. In order to ensure Thermal control of the habitat, multiple radiators on the exterior and a thermal shield on the inner circumference of the habitat are proposed. Food production on-board the habitat is proposed to be facilitated through vertical farming systems. These multi-storey farming systems are known to be more efficient in terms of area and sustainable than conventional farms. Agriculture on-board these farms are proposed to be facilitated through hydroponics and enriched regolith. Apart from food production, these farms can cater to fish farming as means of food, animal and insect breeding. In order to ensure waste treatment of organic matter, a biogas plant is proposed in the habitat which can be used to generate electrical or mechanical power .An optimum atmospheric pressure of 51.1Kpa is proposed for the habitat comprising of Oxygen and Helium. Recreational facilities although not directly related to life support systems, play a very important role in optimum liveability of inhabitants. Open spaces, sports facilities, micro gravity swimming pools, orbital hotels are proposed as modes of recreation to ensure long term sustainability for the inhabitants.
Space Environments and Spacecraft Effects Organization Concept
NASA Technical Reports Server (NTRS)
Edwards, David L.; Burns, Howard D.; Miller, Sharon K.; Porter, Ron; Schneider, Todd A.; Spann, James F.; Xapsos, Michael
2012-01-01
The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while also expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. Each new destination presents an opportunity to increase our knowledge of the solar system and the unique environments for each mission target. NASA has multiple technical and science discipline areas specializing in specific space environments disciplines that will help serve to enable these missions. To complement these existing discipline areas, a concept is presented focusing on the development of a space environments and spacecraft effects (SENSE) organization. This SENSE organization includes disciplines such as space climate, space weather, natural and induced space environments, effects on spacecraft materials and systems and the transition of research information into application. This space environment and spacecraft effects organization will be composed of Technical Working Groups (TWG). These technical working groups will survey customers and users, generate products, and provide knowledge supporting four functional areas: design environments, engineering effects, operational support, and programmatic support. The four functional areas align with phases in the program mission lifecycle and are briefly described below. Design environments are used primarily in the mission concept and design phases of a program. Engineering effects focuses on the material, component, sub-system and system-level selection and the testing to verify design and operational performance. Operational support provides products based on real time or near real time space weather to mission operators to aid in real time and near-term decision-making. The programmatic support function maintains an interface with the numerous programs within NASA, other federal government agencies, and the commercial sector to ensure that communications are well established and the needs of the programs are being met. The programmatic support function also includes working in coordination with the program in anomaly resolution and generation of lessons learned documentation. The goal of this space environment and spacecraft effects organization is to develop decision-making tools and engineering products to support all mission phases from mission concept through operations by focusing on transitioning research to application. Products generated by this space environments and effects application are suitable for use in anomaly investigations. This paper will describe the scope of the TWGs and their relationship to the functional areas, and discuss an organizational structure for this space environments and spacecraft effects organization.
A Note on the Problem of Proper Time in Weyl Space-Time
NASA Astrophysics Data System (ADS)
Avalos, R.; Dahia, F.; Romero, C.
2018-02-01
We discuss the question of whether or not a general Weyl structure is a suitable mathematical model of space-time. This is an issue that has been in debate since Weyl formulated his unified field theory for the first time. We do not present the discussion from the point of view of a particular unification theory, but instead from a more general standpoint, in which the viability of such a structure as a model of space-time is investigated. Our starting point is the well known axiomatic approach to space-time given by Elhers, Pirani and Schild (EPS). In this framework, we carry out an exhaustive analysis of what is required for a consistent definition for proper time and show that such a definition leads to the prediction of the so-called "second clock effect". We take the view that if, based on experience, we were to reject space-time models predicting this effect, this could be incorporated as the last axiom in the EPS approach. Finally, we provide a proof that, in this case, we are led to a Weyl integrable space-time as the most general structure that would be suitable to model space-time.
A summary of the OV1-19 satellite dose, depth dose, and linear energy transfer spectral measurements
NASA Technical Reports Server (NTRS)
Cervini, J. T.
1972-01-01
Measurements of the biophysical and physical parameters in the near earth space environment, specifically, the Inner Van Allen Belt are discussed. This region of space is of great interest to planners of the Skylab and the Space Station programs because of the high energy proton environment, especially during periods of increased solar activity. Many physical measurements of charged particle flux, spectra, and pitch angle distribution have been conducted and are programmed in the space radiation environment. Such predictions are not sufficient to accurately predict the effects of space radiations on critical biological and electronic systems operating in these environments. Some of the difficulties encountered in transferring from physical data to a prediction of the effects of space radiation on operational systems are discussed.
NASA Technical Reports Server (NTRS)
Rask, Jon C.; Chakravarty, Kaushik; French, Alison; Choi, Sungshin; Stewart, Helen
2017-01-01
The NASA Ames Life Sciences Institutional Scientific Collection (ISC), which is composed of the Ames Life Sciences Data Archive (ALSDA) and the Biospecimen Storage Facility (BSF), is managed by the Space Biosciences Division and has been operational since 1993. The ALSDA is responsible for archiving information and animal biospecimens collected from life science spaceflight experiments and matching ground control experiments. Both fixed and frozen spaceflight and ground tissues are stored in the BSF within the ISC. The ALSDA also manages a Biospecimen Sharing Program, performs curation and long-term storage operations, and makes biospecimens available to the scientific community for research purposes via the Life Science Data Archive public website (https:lsda.jsc.nasa.gov). As part of our best practices, a viability testing plan has been developed for the ISC, which will assess the quality of archived samples. We expect that results from the viability testing will catalyze sample use, enable broader science community interest, and improve operational efficiency of the ISC. The current viability test plan focuses on generating disposition recommendations and is based on using ribonucleic acid (RNA) integrity number (RIN) scores as a criteria for measurement of biospecimen viablity for downstream functional analysis. The plan includes (1) sorting and identification of candidate samples, (2) conducting a statiscally-based power analysis to generate representaive cohorts from the population of stored biospecimens, (3) completion of RIN analysis on select samples, and (4) development of disposition recommendations based on the RIN scores. Results of this work will also support NASA open science initiatives and guides development of the NASA Scientific Collections Directive (a policy on best practices for curation of biological collections). Our RIN-based methodology for characterizing the quality of tissues stored in the ISC since the 1980s also creates unique scientific opportunities for temporal assessment across historical missions. Support from the NASA Space Biology Program and the NASA Human Research Program is gratefully acknowledged.
NASA Astrophysics Data System (ADS)
Kuznetsova, Maria
The Community Coordinated Modeling Center (CCMC, http://ccmc.gsfc.nasa.gov) was established at the dawn of the new millennium as a long-term flexible solution to the problem of transition of progress in space environment modeling to operational space weather forecasting. CCMC hosts an expanding collection of state-of-the-art space weather models developed by the international space science community. Over the years the CCMC acquired the unique experience in preparing complex models and model chains for operational environment and developing and maintaining custom displays and powerful web-based systems and tools ready to be used by researchers, space weather service providers and decision makers. In support of space weather needs of NASA users CCMC is developing highly-tailored applications and services that target specific orbits or locations in space and partnering with NASA mission specialists on linking CCMC space environment modeling with impacts on biological and technological systems in space. Confidence assessment of model predictions is an essential element of space environment modeling. CCMC facilitates interaction between model owners and users in defining physical parameters and metrics formats relevant to specific applications and leads community efforts to quantify models ability to simulate and predict space environment events. Interactive on-line model validation systems developed at CCMC make validation a seamless part of model development circle. The talk will showcase innovative solutions for space weather research, validation, anomaly analysis and forecasting and review on-going community-wide model validation initiatives enabled by CCMC applications.
FPGAs in Space Environment and Design Techniques
NASA Technical Reports Server (NTRS)
Katz, Richard B.; Day, John H. (Technical Monitor)
2001-01-01
This viewgraph presentation gives an overview of Field Programmable Gate Arrays (FPGA) in the space environment and design techniques. Details are given on the effects of the space radiation environment, total radiation dose, single event upset, single event latchup, single event transient, antifuse technology and gate rupture, proton upsets and sensitivity, and loss of functionality.
Cellular interaction of different forms of aluminum nanoparticles in rat alveolar macrophages.
Wagner, Andrew J; Bleckmann, Charles A; Murdock, Richard C; Schrand, Amanda M; Schlager, John J; Hussain, Saber M
2007-06-28
Nanomaterials, with dimensions in the 1-100 nm range, possess numerous potential benefits to society. However, there is little characterization of their effects on biological systems, either within the environment or on human health. The present study examines cellular interaction of aluminum oxide and aluminum nanomaterials, including their effect on cell viability and cell phagocytosis, with reference to particle size and the particle's chemical composition. Experiments were performed to characterize initial in vitro cellular effects of rat alveolar macrophages (NR8383) after exposure to aluminum oxide nanoparticles (Al2O3-NP at 30 and 40 nm) and aluminum metal nanoparticles containing a 2-3 nm oxide coat (Al-NP at 50, 80, and 120 nm). Characterization of the nanomaterials, both as received and in situ, was performed using transmission electron microscopy (TEM), dynamic light scattering (DLS), laser Doppler velocimetry (LDV), and/or CytoViva150 Ultra Resolution Imaging (URI)). Particles showed significant agglomeration in cell exposure media using DLS and the URI as compared to primary particle size in TEM. Cell viability assay results indicate a marginal effect on macrophage viability after exposure to Al2O3-NP at doses of 100 microg/mL for 24 h continuous exposure. Al-NP produced significantly reduced viability after 24 h of continuous exposure with doses from 100 to 250 microg/mL. Cell phagocytotic ability was significantly hindered by exposure to 50, 80, or 120 nm Al-NP at 25 microg/mL for 24 h, but the same concentration (25 microg/mL) had no significant effect on the cellular viability. However, no significant effect on phagocytosis was observed with Al2O3-NP. In summary, these results show that Al-NP exhibit greater toxicity and more significantly diminish the phagocytotic ability of macrophages after 24 h of exposure when compared to Al2O3-NP.
First LDEF Post-Retrieval Symposium abstracts
NASA Technical Reports Server (NTRS)
Levine, Arlene S. (Compiler)
1991-01-01
The LDE facility was designed to better understand the environments of space and the effects of prolonged exposure in these environments on future spacecraft. The symposium abstracts presented here are organized according to the symposium agenda into five sessions. The first session provides an overview of the LDEF, the experiments, the mission, and the natural and induced environments the spacecraft and experiments encountered during the mission. The second session presents results to date from studies to better define the environments of near-Earth space. The third session addresses studies of the effects of the space environments on spacecraft materials. The fourth session addresses studies of the effects of the space environments on spacecraft systems. And the fifth session addresses other subjects such as results of the LDEF life science and crystal growth experiments.
Landing in the future: Biological experiments on Earth and in space orbit
NASA Astrophysics Data System (ADS)
Pokrovskiy, A.
1980-09-01
The development of an Earth biosatellite to duplicate the parameters of pressure, temperature, humidity and others in a space environment onboard Cosmos-1129 is discussed. Effects of a space environment on fruit flies, dogs, laboratory rats in procreation, behavior, stress, biorhythm, body composition, gravitation preference, and cell cultures are examined. The space environment for agricultural products is also studied. The effects of heavy nuclei of galactic space radiation on biological objects inside and outside the satellite is studied, and methods of electrostatic protection are developed.
Characterization of a space orbited incoherent fiber optic bundle
NASA Technical Reports Server (NTRS)
Dewalt, Stephen A.; Taylor, Edward W.
1993-01-01
The results of a study performed to determine the effects of adverse space environments on a bundle of over 1800 optical fibers orbited for 69 months are reported. Experimental results are presented on an incoherent fiber optic bundle oriented in low Earth orbit aboard the Long Duration Exposure Facility (LDEF) satellite as part of the Space Environment Effects Experiment (M0006). Measurements were performed to determine if space induced radiation effects changed the fiber bundle characteristics. Data demonstrating the success of light transmitting fibers to withstand the adverse space environment are presented.
Landing in the future: Biological experiments on Earth and in space orbit
NASA Technical Reports Server (NTRS)
Pokrovskiy, A.
1980-01-01
The development of an Earth biosatellite to duplicate the parameters of pressure, temperature, humidity and others in a space environment onboard Cosmos-1129 is discussed. Effects of a space environment on fruit flies, dogs, laboratory rats in procreation, behavior, stress, biorhythm, body composition, gravitation preference, and cell cultures are examined. The space environment for agricultural products is also studied. The effects of heavy nuclei of galactic space radiation on biological objects inside and outside the satellite is studied, and methods of electrostatic protection are developed.
Diversity of culturable filamentous Ascomycetes in the eastern South Pacific Ocean off Chile.
Vera, Jeanett; Gutiérrez, Marcelo H; Palfner, Götz; Pantoja, Silvio
2017-08-01
Our study reports the diversity of culturable mycoplankton in the eastern South Pacific Ocean off Chile to contribute with novel knowledge on taxonomy of filamentous fungi isolated from distinct physicochemical and biological marine environments. We characterized spatial distribution of isolates, evaluated their viability and assessed the influence of organic substrate availability on fungal development. Thirty-nine Operational Taxonomic Units were identified from 99 fungal strains isolated from coastal and oceanic waters by using Automatic Barcode Gap Discovery. All Operational Taxonomic Units belonged to phylum Ascomycota and orders Eurotiales, Dothideales, Sordariales and Hypocreales, mainly Penicillium sp. (82%); 11 sequences did not match existing species in GenBank, suggesting occurrence of novel fungal taxa. Our results suggest that fungal communities in the South Pacific Ocean off Chile appear to thrive in a wide range of environmental conditions in the ocean and that substrate availability may be a factor influencing fungal viability in the ocean.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sepulveda-Medina, Paola; Katsenovich, Yelena; Musaramthota, Vishal
Nuclear production facilities during the Cold War have caused liquid waste to leak and soak into the ground creating multiple radionuclide plumes. The Arthrobacter bacteria are one of the most common groups in soils and are found in large numbers in subsurface environments contaminated with radionuclides. This study experimentally analyzed changes on the bacteria surface after uranium exposure and evaluated the effect of bicarbonate ions on U(VI) toxicity of a less uranium tolerant Arthrobacter strain, G968, by investigating changes in adhesion forces and cells dimensions via atomic force microscopy (AFM). AFM and viability studies showed that samples containing bicarbonate aremore » able to acclimate and withstand uranium toxicity. Samples containing no bicarbonate exhibited deformed surfaces and a low height profile, which might be an indication that the cells are not alive.« less
Pinho, Antonio Ivanildo; Oliveira, Cláudia Sirlene; Lovato, Fabricio Luís; Waczuk, Emily Pansera; Piccoli, Bruna Candia; Boligon, Aline Augusti; Leite, Nadghia Figueredo; Coutinho, Henrique Douglas Melo; Posser, Thais; Da Rocha, João Batista Teixeira; Franco, Jeferson Luis
2017-01-01
Mercury (Hg) is widely distributed in the environment and is known to produce several adverse effects in organisms. The aim of the present study was to examine the in vitro antioxidant activity and Hg chelating ability of the hydroalcoholic extract of Psidium guajava leaves (HEPG). In addition, the potential protective effects of HEPG against Hg(II) were evaluated using a yeast model (Saccharomyces cerevisiae). HEPG was found to exert significant antioxidant activity in 2,2-diphenyl-1-picrylhydrazyl scavenger and inhibition of lipid peroxidation induced by Fe(II) assays in a concentration-dependent manner. The extract also exhibited significant Hg(II) chelating activity. In yeast, Hg(II) induced a significant decrease in cell viability. In contrast, HEPG partially prevented the fall in cell viability induced by Hg(II). In conclusion, HEPG exhibited protective effects against Hg(II)-mediated toxicity, which may be related to both antioxidant and Hg(II)-chelating activities.
Living bacteria in silica gels
NASA Astrophysics Data System (ADS)
Nassif, Nadine; Bouvet, Odile; Noelle Rager, Marie; Roux, Cécile; Coradin, Thibaud; Livage, Jacques
2002-09-01
The encapsulation of enzymes within silica gels has been extensively studied during the past decade for the design of biosensors and bioreactors. Yeast spores and bacteria have also been recently immobilized within silica gels where they retain their enzymatic activity, but the problem of the long-term viability of whole cells in an inorganic matrix has never been fully addressed. It is a real challenge for the development of sol-gel processes. Generic tests have been performed to check the viability of Escherichia coli bacteria in silica gels. Surprisingly, more bacteria remain culturable in the gel than in an aqueous suspension. The metabolic activity of the bacteria towards glycolysis decreases slowly, but half of the bacteria are still viable after one month. When confined within a mineral environment, bacteria do not form colonies. The exchange of chemical signals between isolated bacteria rather than aggregates can then be studied, a point that could be very important for 'quorum sensing'.
Why Space is Unique? The Basic Environment Challenges for EEE Parts
NASA Technical Reports Server (NTRS)
LaBel, Kenneth A.; Sampson, Michael J.
2014-01-01
This presentation includes an introduction the space radiation environment, the effects on electronics, the environment in action, flight projects, mission needs, and radiation hardness assurance (RHA).
Conceptual Design of Tail-Research EXperiment (T-REX) on Space Plasma Environment Research Facility
NASA Astrophysics Data System (ADS)
Xiao, Qingmei; Wang, Xiaogang; E, Peng; Shen, Chao; Wang, Zhibin; Mao, Aohua; Xiao, Chijie; Ding, Weixing; Ji, Hantao; Ren, Yang
2016-10-01
Space Environment Simulation Research Infrastructure (SESRI), a scientific project for a major national facility of fundamental researches, has recently been launched at Harbin Institute of Technology (HIT). The Space Plasma Environment Research Facility (SPERF) for simulation of space plasma environment is one of the components of SESRI. It is designed to investigate fundamental issues in space plasma environment, such as energetic particles transportation and the interaction with waves in magnetosphere, magnetic reconnection at magnetopause and magnetotail, etc. Tail-Research Experiment (T-REX) is part of the SPERF for laboratory studies of space physics relevant to tail reconnection and dipolarization process. T-REX is designed to carry out two kinds of experiments: the tail plasmamoid for magnetic reconnection and magnetohydrodynamic waves excited by high speed plasma jet. In this presentation, the scientific goals and experimental plans for T-REX together with the means applied to generate the plasma with desired parameters are reviewed. Two typical scenarios of T-REX with operations of plasma sources and various magnetic configurations to study specific physical processes in space plasmas will also be presented.
Solar array flight dynamic experiment
NASA Technical Reports Server (NTRS)
Schock, R. W.
1986-01-01
The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on space shuttle flight STS-31D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.
Solar array flight dynamic experiment
NASA Technical Reports Server (NTRS)
Schock, Richard W.
1986-01-01
The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on Space Shuttle flight STS-31D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.
Solar array flight dynamic experiment
NASA Technical Reports Server (NTRS)
Schock, Richard W.
1987-01-01
The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures' dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on space shuttle flight STS-41D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.
Space Tourism in the Context of a Diverse Market
NASA Astrophysics Data System (ADS)
Hempsell, M.
Most discussion of the potential space tourism business considers it as an isolated activity. In the case of sub-orbital tourism this is probably the case and this means any business has to pay to develop its infrastructure before it can start any revenue earning. This can lead to an investment trap were the upfront investment costs can never be recovered if commercially attractive rates of return are assumed. By contrast orbital tourism would be undertaken in the context of other space activity and these can have a significant impact on its commercial viability, particularly as a means to overcome the investment trap. A strategy is outlined showing that a mixed market approach to passenger transport to orbit can both provide savings for government activity and tourist costs around half a million dollars per person. However to take advantage of this market synergy the orbital personnel transport system must have the requirements of space tourism operations incorporated into the system during its initial development.
Primary and secondary electrical space power based on advanced PEM systems
NASA Technical Reports Server (NTRS)
Vanderborgh, N. E.; Hedstrom, J. C.; Stroh, K. R.; Huff, J. R.
1993-01-01
For new space ventures, power continues to be a pacing function for mission planning and experiment endurance. Although electrochemical power is a well demonstrated space power technology, current hardware limitations impact future mission viability. In order to document and augment electrochemical technology, a series of experiments for the National Aeronautics and Space Administration Lewis Research Center (NASA LeRC) are underway at the Los Alamos National Laboratory that define operational parameters on contemporary proton exchange membrane (PEM) hardware operating with hydrogen and oxygen reactants. Because of the high efficiency possible for water electrolysis, this hardware is also thought part of a secondary battery design built around stored reactants - the so-called regenerative fuel cell. An overview of stack testing at Los Alamos and of analyses related to regenerative fuel cell systems are provided in this paper. Finally, this paper describes work looking at innovative concepts that remove complexity from stack hardware with the specific intent of higher system reliability. This new concept offers the potential for unprecedented electrochemical power system energy densities.
Optical properties monitor: Experiment definition phase
NASA Technical Reports Server (NTRS)
Wilkes, Donald R.; Bennett, Jean M.; Hummer, Leigh L.; Chipman, Russell A.; Hadaway, James B.; Pezzaniti, Larry
1990-01-01
The stability of materials used in the space environment will continue to be a limiting technology for space missions. The Optical Properties Monitor (OPM) Experiment provides a comprehensive space research program to study the effects of the space environment (both natural and induced) on optical, thermal and space power materials. The OPM Experiment was selected for definition under the NASA/OAST In-Space Technology Experiment Program. The results of the OPM Definition Phase are presented. The OPM experiment will expose selected materials to the space environment and measure the effects with in-space optical measurements. In-space measurements include total hemispherical reflectance total integrated scatter and VUV reflectance/transmittance. The in-space measurements will be augmented with extensive pre- and post-flight sample measurements to determine other optical, mechanical, electrical, chemical or surface effects of space exposure. Environmental monitors will provide the amount and time history of the sample exposure to solar irradiation, atomic oxygen and molecular contamination.
Optical properties monitor: Experiment definition phase
NASA Technical Reports Server (NTRS)
Wilkes, Donald R.; Bennett, Jean M.; Hummer, Leigh L.; Chipman, Russell A.; Hadaway, James B.; Pezzaniti, Larry
1989-01-01
The stability of materials used in the space environment will continue to be a limiting technology for space missions. The Optical Properties Monitor (OPM) Experiment provides a comprehensive space research program to study the effects of the space environment-both natural and induced-on optical, thermal and space power materials. The OPM Experiment was selected for definition under the NASA/OAST In-Space Technology Experiment Program. The results of the OPM Definition Phase are presented. The OPM Experiment will expose selected materials to the space environment and measure the effects with in-space optical measurements. In-space measurements include total hemispherical reflectance total integrated scatter and VUV reflectance/transmittance. The in-space measurements will be augmented with extensive pre- and post-flight sample measurements to determine other optical, mechanical, electrical, chemical or surface effects of space exposure. Environmental monitors will provide the amount and time history of the sample exposure to solar irradiation, atomic oxygen and molecular contamination.
Kruse, Carla R; Singh, Mansher; Targosinski, Stefan; Sinha, Indranil; Sørensen, Jens A; Eriksson, Elof; Nuutila, Kristo
2017-04-01
Wound microenvironment plays a major role in the process of wound healing. It contains various external and internal factors that participate in wound pathophysiology. The pH is an important factor that influences wound healing by changing throughout the healing process. Several previous studies have investigated the role of pH in relation to pathogens but studies concentrating on the effects of pH on wound healing itself are inconclusive. The purpose of this study was to comprehensively and in a controlled fashion investigate the effect of pH on wound healing by studying its effect on human primary keratinocyte and fibroblast function in vitro and on wound healing in vivo. In vitro, primary human keratinocytes and fibroblasts were cultured in different levels of pH (5.5-12.5) and the effect on cell viability, proliferation, and migration was studied. A rat full-thickness wound model was used to investigate the effect of pH (5.5-9.5) on wound healing in vivo. The effect of pH on inflammation was monitored by measuring IL-1 α concentrations from wounds and cell cultures exposed to different pH environments. Our results showed that both skin cell types tolerated wide range of pH very well. They further demonstrated that both acidic and alkaline environments decelerated cell migration in comparison to neutral environments and interestingly alkaline conditions significantly enhanced cell proliferation. Results from the in vivo experiments indicated that a prolonged, strongly acidic wound environment prevents both wound closure and reepithelialization while a prolonged alkaline environment did not have any negative impact on wound closure or reepithelialization. Separately, both in vitro and in vivo studies showed that prolonged acidic conditions significantly increased the expression of IL-1 α in fibroblast cultures and in wound fluid, whereas prolonged alkaline conditions did not result in elevated amounts of IL-1 α. © 2017 by the Wound Healing Society.
NASA Technical Reports Server (NTRS)
Matin, A. C.; Benoit, M.; Chin. M.; Chinn, T. N.; Cohen, A.; Friedericks, C.; Henschke, M. B.; Keyhan, M.; Lera, M. P.; Padgen, M. R.;
2015-01-01
Human immune response is compromised in space and incidence of urinary tract infections (UTI) in astronauts has been reported. We have found that the causative agent of UTI, the uropathogenic Escherichia coli, becomes more resistant to gentamicin (Gm), which is commonly used to treat this disease, under modeled microgravity conditions (MMG), the increase being controlled by the stress response master regulator, ss. While the wild type bacterium becomes virtually invincible under MMG, the strain missing this sigma factor barely survives. We report here preparatory ground work for testing this finding in space flight on a nanosatellite. We have shown that the effect of Gm treatment on culture viability is directly correlated to increased Alamar Blue (AB) reduction; we have identified conditions to keep the experimental elements - the bacterial cultures, Gm, and AB - in a state of viability and potency to permit successful spaceflight experimentation given the necessary constraints. Spaceflight kinetics of AB reduction will be transmitted from the satellite via telemetry. The PharmaSat hardware previously used for space experimentation with yeast was modified to permit studies with bacteria by reducing the filter pore size and increasing fluidics volume to enable more fluid exchanges. Several verification tests have been run using the nanosatellite's flight software and prototype hardware. Cells were grown to stationary phase to induce the ss-controlled stress resistance and treated with Gm. Without Gm, the mutant took longer than the wild type to reduce the AB; this time difference increased almost 8 fold at 55 µg/mL Gm concentration. Thus, using flight hardware the mutant shows similarly increased sensitivity to Gm compared to the wild type to that found in our pilot microtiter plate experiments. Previous inflight experiments have given contradictory results concerning bacterial antibiotic resistance; none has yet explored the involvement of specific genes in this phenomenon. With our system ready to fly in late 2015/early 2016, these questions can be approached
Carhart-Harris, Robin L; Williams, Tim M; Sessa, Ben; Tyacke, Robin J; Rich, Ann S; Feilding, Amanda; Nutt, David J
2011-11-01
This study sought to assess the tolerability of intravenously administered psilocybin in healthy, hallucinogen-experienced volunteers in a mock-magnetic resonance imaging environment as a preliminary stage to a controlled investigation using functional magnetic resonance imaging to explore the effects of psilocybin on cerebral blood flow and activity. The present pilot study demonstrated that up to 2 mg of psilocybin delivered as a slow intravenous injection produces short-lived but typical drug effects that are psychologically and physiologically well tolerated. With appropriate care, this study supports the viability of functional magnetic resonance imaging work with psilocybin.
Description and performance of a digital mobile satellite terminal
NASA Technical Reports Server (NTRS)
Lay, N.; Jedrey, T.; Parkyn, J.; Divsalar, D.
1990-01-01
A major goal of the Mobile Satellite Experiment (MSAT-X) program at the Jet Propulsion Lab (JPL) is the development of an advanced digital terminal for use in land mobile satellite communication. The terminal has been developed to minimize the risk of applying advanced technologies to future commercial mobile satellite systems (MSS). Testing with existing L band satellites was performed in fixed, land mobile and aeronautical mobile environments. JPL's development and tests of its mobile terminal have demonstrated the viability of narrowband digital voice communications in a land mobile environment through geostationary satellites. This paper provides a consolidated description of the terminal architecture and the performance of its individual elements.
Predicting climate change extirpation risk for central and southern Appalachian forest tree species
Kevin M. Potter; William W. Hargrove; Frank H. Koch
2010-01-01
Climate change will likely pose a severe threat to the viability of certain forest tree species, which will be forced either to adapt to new conditions or to shift to more favorable environments if they are to survive. Several forest tree species of the central and southern Appalachians may be at particular risk, since they occur in limited high-elevation ranges and/or...
NASA's Space Environments and Effects (SEE) Program: Meteoroid and Orbital Debris Lesson Plan.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Washington, DC.
The study of the natural space environment and its effects on spacecraft is one of the most important and least understood aspects of spacecraft design. The Space Environments and Effects (SEE) Program prepared the Meteoroids and Orbital Debris Lesson Plan, a SEE-focused high school curriculum to engage students in creative activities that will…
Highlights of Transient Plume Impingement Model Validation and Applications
NASA Technical Reports Server (NTRS)
Woronowicz, Michael
2011-01-01
This paper describes highlights of an ongoing validation effort conducted to assess the viability of applying a set of analytic point source transient free molecule equations to model behavior ranging from molecular effusion to rocket plumes. The validation effort includes encouraging comparisons to both steady and transient studies involving experimental data and direct simulation Monte Carlo results. Finally, this model is applied to describe features of two exotic transient scenarios involving NASA Goddard Space Flight Center satellite programs.
Lunar Commercialization Workshop
NASA Technical Reports Server (NTRS)
Martin, Gary L.
2008-01-01
This slide presentation describes the goals and rules of the workshop on Lunar Commercialization. The goal of the workshop is to explore the viability of using public-private partnerships to open the new space frontier. The bulk of the workshop was a team competition to create a innovative business plan for the commercialization of the moon. The public private partnership concept is reviewed, and the open architecture as an infrastructure for potential external cooperation. Some possible lunar commercialization elements are reviewed.
Towards viable drinking water services.
Hukka, J J; Katko, T S
1997-01-01
This article offers a framework for developing viable drinking water services and institutional development in developing countries. The framework evolved from the authors' research and field experience in transition and developing economies. Viability is related to operative technology, appropriate organizations, and adequate cost recovery within the context of water resources, human and economic resources, sociocultural conditions, and other constraints. The ability of institutions to solve the problems of coordination and production depends upon player motivation, the complexity of the environment, and the ability of the players to control the environment. Third party enforcement of agreements are essential to reduce gains from opportunism, cheating, and shirking. Empirical research finds that per capita water production costs are 4 times higher in centralized systems and lowest in decentralized systems with coordination from a central party. Three-tiered systems of governments, regulators, and service providers are recommended. Management options must be consumer driven. The worst case scenario is consumer's reliance on vending and reselling with no alternative source of supply. Policies should have a strong focus on institutional reforms in the water sector, the development of a consumer driven water sector, facilitation of appropriate private-public partnerships, sound management of existing capital assets, a system for building viability into national strategies for the water sector, and financially self-sufficient and consumer responsible water supply organizations.
2016-01-01
Continued alterations to the Australian environment compromise the long-term viability of many plant species. We investigate the population genetics of Ptilotus macrocephalus, a perennial herb that occurs in 2 nationally endangered communities on the Victorian Volcanic Plain Bioregion (VVP), Australia, to answer key questions regarding regional differentiation and to guide conservation strategies. We evaluate genetic structure and diversity within and among 17 P. macrocephalus populations from 3 regions of southeastern Australia using 17 microsatellite markers developed de novo. Genetic structure was present in P. macrocephalus between the 3 regions but not at the population level. Environmental factors, namely temperature and precipitation, significantly explained differentiation between the North region and the other 2 regions indicating isolation by environment. Within regions, genetic structure currently shows a high level of gene flow and genetic variation. Our results suggest that within-region gene flow does not reflect current habitat fragmentation in southeastern Australia whereas temperature and precipitation are likely to be responsible for the differentiation detected among regions. Climate change may severely impact P. macrocephalus on the VVP and test its evolutionary resilience. We suggest taking a proactive conservation approach to improve long-term viability by sourcing material for restoration to assist gene flow to the VVP region to promote an increased adaptive capacity. PMID:26865733
Isolated human islets require hyperoxia to maintain islet mass, metabolism, and function.
Komatsu, Hirotake; Kang, Dongyang; Medrano, Leonard; Barriga, Alyssa; Mendez, Daniel; Rawson, Jeffrey; Omori, Keiko; Ferreri, Kevin; Tai, Yu-Chong; Kandeel, Fouad; Mullen, Yoko
2016-02-12
Pancreatic islet transplantation has been recognized as an effective treatment for Type 1 diabetes; however, there is still plenty of room to improve transplantation efficiency. Because islets are metabolically active they require high oxygen to survive; thus hypoxia after transplant is one of the major causes of graft failure. Knowing the optimal oxygen tension for isolated islets would allow a transplant team to provide the best oxygen environment during pre- and post-transplant periods. To address this issue and begin to establish empirically determined guidelines for islet maintenance, we exposed in vitro cultured islets to different partial oxygen pressures (pO2) and assessed changes in islet volume, viability, metabolism, and function. Human islets were cultured for 7 days in different pO2 media corresponding to hypoxia (90 mmHg), normoxia (160 mmHg), and hyerpoxia (270 or 350 mmHg). Compared to normoxia and hypoxia, hyperoxia alleviated the loss of islet volume, maintaining higher islet viability and metabolism as measured by oxygen consumption and glucose-stimulated insulin secretion responses. We predict that maintaining pre- and post-transplanted islets in a hyperoxic environment will alleviate islet volume loss and maintain islet quality thereby improving transplant outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.
Activities of the Japanese space weather forecast center at Communications Research Laboratory.
Watari, Shinichi; Tomita, Fumihiko
2002-12-01
The International Space Environment Service (ISES) is an international organization for space weather forecasts and belongs to the International Union of Radio Science (URSI). There are eleven ISES forecast centers in the world, and Communications Research Laboratory (CRL) runs the Japanese one. We make forecasts on the space environment and deliver them over the phones and through the Internet. Our forecasts could be useful for human activities in space. Currently solar activity is near maximum phase of the solar cycle 23. We report the several large disturbances of space environment occurred in 2001, during which low-latitude auroras were observed several times in Japan.
Space station needs, attributes and architectural options study. Volume 2: Mission analysis
NASA Technical Reports Server (NTRS)
1983-01-01
Space environment studies, astrophysics, Earth environment, life sciences, and material sciences are discussed. Commercial communication, materials processing, and Earth observation missions are addressed. Technology development, space operations, scenarios of operational capability, mission requirements, and benefits analysis results for space-produced gallium arsenide crystals, direct broadcasting satellite systems, and a high inclination space station are covered.
Evolution of crop production under a pseudo-space environment using model plants, Lotus japonicus
NASA Astrophysics Data System (ADS)
Tomita-Yokotani, Kaori; Motohashi, Kyohei; Omi, Naomi; Sato, Seigo; Aoki, Toshio; Hashimoto, Hirofumi; Yamashita, Masamichi
Habitation in outer space is one of our challenges. We have been studying space agriculture and/or spacecraft agriculture to provide food and oxygen for the habitation area in the space environment. However, careful investigation should be made concerning the results of exotic environmental effects on the endogenous production of biologically active substances in indi-vidual cultivated plants in a space environment. We have already reported that the production of functional substances in cultivated plants as crops are affected by gravity. The amounts of the main physiological substances in these plants grown under terrestrial control were different from that grown in a pseudo-microgravity. These results suggested that the nutrition would be changed in the plants/crops grown in the space environment when human beings eat in space. This estimation required us to investigate each of the useful components produced by each plant grown in the space environment. These estimations involved several study fields, includ-ing nutrition, plant physiology, etc. On the other hand, the analysis of model plant genomes has recently been remarkably advanced. Lotus japonicus, a leguminous plant, is also one of the model plant. The leguminosae is a large family in the plant vegetable kingdom and almost the entire genome sequence of Lotus japonicus has been determined. Nitrogen fixation would be possible even in a space environment. We are trying to determine the best conditions and evolution for crop production using the model plants.
NASA Technical Reports Server (NTRS)
Altino, Karen M.; Burns, K. Lee; Barbre, Robert E.; Leahy, Frank B.
2014-01-01
NASA is developing new capabilities for human and scientific exploration beyond Earth orbit. Natural environments information is an important asset for NASA's development of the next generation space transportation system as part of the Exploration Systems Development Program, which includes the Space Launch System (SLS) and MultiPurpose Crew Vehicle (MPCV) Programs. Natural terrestrial environment conditions - such as wind, lightning and sea states - can affect vehicle safety and performance during multiple mission phases ranging from prelaunch ground processing to landing and recovery operations, including all potential abort scenarios. Space vehicles are particularly sensitive to these environments during the launch/ascent and the entry/landing phases of mission operations. The Marshall Space Flight Center (MSFC) Natural Environments Branch provides engineering design support for NASA space vehicle projects and programs by providing design engineers and mission planners with natural environments definitions as well as performing custom analyses to help characterize the impacts the natural environment may have on vehicle performance. One such analysis involves assessing the impact of natural environments to operational availability. Climatological time series of operational surface weather observations are used to calculate probabilities of meeting or exceeding various sets of hypothetical vehicle-specific parametric constraint thresholds.
Space Environment Information System (SPENVIS)
NASA Astrophysics Data System (ADS)
Kruglanski, Michel; de Donder, Erwin; Messios, Neophytos; Hetey, Laszlo; Calders, Stijn; Evans, Hugh; Daly, Eamonn
SPENVIS is an ESA operational software developed and maintained at BIRA-IASB since 1996. It provides standardized access to most of the recent models of the hazardous space environment, through a user-friendly Web interface (http://www.spenvis.oma.be/). The system allows spacecraft engineers to perform a rapid analysis of environmental problems related to natural radiation belts, solar energetic particles, cosmic rays, plasmas, gases, magnetic fields and micro-particles. Various reporting and graphical utilities and extensive help facilities are included to allow engineers with relatively little familiarity to produce reliable results. SPENVIS also contains an active, integrated version of the ECSS Space Environment Standard and access to in-flight data on the space environment. Although SPENVIS in the first place is designed to help spacecraft designers, it is also used by technical universities in their educational programs. In the framework of the ESA Space Situational Awareness Preparatory Programme, SPENVIS will be part of the initial set of precursor services of the Space Weather segment. SPENVIS includes several engineering models to assess to effects of the space environment on spacecrafts such as surface and internal charging, energy deposition, solar cell damage and SEU rates. The presentation will review how such models could be connected to in situ measurements or forecasting models of the space environment in order to produce post event analysis or in orbit effects alert. The last developments and models implemented in SPENVIS will also be presented.
NASA Astrophysics Data System (ADS)
Jamilah, It; Priyani, Nunuk; Lusia Natalia, Santa
2018-03-01
Lactic acid bacteria (LAB) has been added to various food products as a probiotic agent because it has been known to provide beneficial health effects in humans. In the application of LAB, cell viability often decreased as influenced by environment stresses. Encapsulation technique is one of the cell protection techniques using a coating material. Effective coating material is required to produce maximum protection of LAB cells. In this study, candidate of probiotic LAB (isolate US7) was encapsulated with alginate-mung bean flour and alginate-gram flour with inulin prebiotic by extrusion technique. Viability of encapsulated LAB cells were able to survive by up to 108CFU g‑1 after 4 weeks of storage at 4 °C. Beads were incubated in simulated liquid gastric acid (pH=2) for 2 hrs and simulated intestinal fluid (pH=6) for 3 hrs at 37 °C. The results showed that encapsulated LAB cells maintained the survival rate of 97% with the number of cells at 9.07 Log CFU g‑1in the simulated liquid gastric acid and then followed by releasing cells in simulated intestinal fluid. In general, this study indicates that encapsulation with alginate-mung bean flour and alginategram flour with inulin successfullyprotect probiotic bacteria against simulated human gastrointestinal conditions.
Johnson, Ryan C; Hu, Heidi Q; Merrell, D Scott; Maroney, Michael J
2015-04-01
Helicobacter pylori requires urease activity in order to survive in the acid environment of the human stomach. Urease is regulated in part by nickelation, a process that requires the HypA protein, which is a putative nickel metallochaperone that is generally associated with hydrogenase maturation. However, in H. pylori, HypA plays a dual role. In addition to an N-terminal nickel binding site, HypA proteins also contain a structural zinc site that is coordinated by two rigorously conserved CXXC sequences, which in H. pylori are flanked by His residues. These structural Zn sites are known to be dynamic, converting from Zn(Cys)4 centers at pH 7.2 to Zn(Cys)2(His)2 centers at pH 6.3 in the presence of Ni(ii) ions. In this study, mutant strains of H. pylori that express zinc site variants of the HypA protein are used to show that the structural changes in the zinc site are important for the acid viability of the bacterium, and that a reduction in acid viability in these variants can be traced in large measure to deficient urease activity. This in turn leads to a model that connects the Zn(Cys)4 coordination to urease maturation.
Current density reversibly alters metabolic spatial structure of exoelectrogenic anode biofilms
NASA Astrophysics Data System (ADS)
Sun, Dan; Cheng, Shaoan; Zhang, Fang; Logan, Bruce E.
2017-07-01
Understanding how current densities affect electrogenic biofilm activity is important for wastewater treatment as current densities can substantially decrease at COD concentrations greater than those suitable for discharge to the environment. We examined the biofilm's response, in terms of viability and enzymatic activity, to different current densities using microbial electrolysis cells with a lower (0.7 V) or higher (0.9 V) added voltage to alter current production. Viability was assessed using florescent dyes, with dead cells identified on the basis of dye penetration due to a compromised cell outer-membrane (red), and live cells (intact membrane) fluorescing green. Biofilms operated with 0.7 V produced 2.4 ± 0.2 A m-2, and had an inactive layer near the electrode and a viable layer at the biofilm-solution interface. The lack of cell activity near the electrode surface was confirmed by using an additional dye that fluoresces only with enzymatic activity. Adding 0.9 V increased the current by 61%, and resulted in a single, more homogeneous and active biofilm layer. Switching biofilms between these two voltages produced outcomes associated with the new current rather than the previous biofilm conditions. These findings suggest that maintaining higher current densities will be needed to ensure long-term viability electrogenic biofilms.
Biparentally deserted offspring are viable in a species with intense sexual conflict over care.
Pogány, Ákos; Kosztolányi, András; Miklósi, Ádám; Komdeur, Jan; Székely, Tamás
2015-07-01
Desertion of clutch (or brood) by both parents often leads to breeding failure, since in vast majority of birds care by at least one parent is required for any young to fledge. Recent works in a highly polygamous passerine bird, the Eurasian penduline tit (Remiz pendulinus), suggest that biparental clutch desertion is due to intense sexual conflict over care. However, an alternative yet untested hypothesis for biparental desertion is low offspring viability so that the parents abandon the offspring that have poor prospect for survival. Here we test the latter hypothesis in a common garden experiment by comparing the viability of deserted and cared for eggs. We show that embryonic development does not differ between deserted and cared for eggs. Therefore, sexual conflict over care remains the best supported hypothesis for biparental clutch desertion in penduline tits. Our work points out that conflict over care is a potential - yet rarely considered - cause of biparental nest desertion, and a strong alternative for the traditional explanations of low offspring viability, human disturbance or deteriorating ambient environment. Apart from a handful of species, the intensity of sexual conflict has not been quantified, and we call for further studies to consider sexual conflict as a cause of nest desertion. Copyright © 2015 Elsevier B.V. All rights reserved.
Šantl-Temkiv, Tina; Amato, Pierre; Gosewinkel, Ulrich; Thyrhaug, Runar; Charton, Anaïs; Chicot, Benjamin; Finster, Kai; Bratbak, Gunnar; Löndahl, Jakob
2017-10-03
The study of airborne bacteria relies on a sampling strategy that preserves their integrity and in situ physiological state, e.g. viability, cultivability, metabolic activity, and ice-nucleation activity. Because ambient air harbors low concentrations of bacteria, an effective bioaerosol sampler should have a high sampling efficiency and a high airflow. We characterize a high-flow-rate impinger with respect to particle collection and retention efficiencies in the range 0.5-3.0 μm, and we investigated its ability to preserve the physiological state of selected bacterial species and seawater bacterial community in comparison with four commercial bioaerosol samplers. The collection efficiency increased with particle size and the cutoff diameter was between 0.5 and 1 μm. During sampling periods of 120-300 min, the impinger retained the cultivability, metabolic activity, viability, and ice-nucleation activity of investigated bacteria. Field studies in semiurban, high-altitude, and polar environments included periods of low bacterial air concentrations, thus demonstrating the benefits of the impinger's high flow rate. In conclusion, the impinger described here has many advantages compared with other bioaerosol samplers currently on the market: a potential for long sampling time, a high flow rate, a high sampling and retention efficiency, low costs, and applicability for diverse downstream microbiological and molecular analyses.