NASA Technical Reports Server (NTRS)
Griffin, Michael
2008-01-01
Speech topics include: Leadership in Space; Space Exploration: Real and Acceptable Reasons; Why Explore Space?; Space Exploration: Filling up the Canvas; Continuing the Voyage: The Spirit of Endeavour; Incorporating Space into Our Economic Sphere of Influence; The Role of Space Exploration in the Global Economy; Partnership in Space Activities; International Space Cooperation; National Strategy and the Civil Space Program; What the Hubble Space Telescope Teaches Us about Ourselves; The Rocket Team; NASA's Direction; Science and NASA; Science Priorities and Program Management; NASA and the Commercial Space Industry; NASA and the Business of Space; American Competitiveness: NASA's Role & Everyone's Responsibility; Space Exploration: A Frontier for American Collaboration; The Next Generation of Engineers; System Engineering and the "Two Cultures" of Engineering; Generalship of Engineering; NASA and Engineering Integrity; The Constellation Architecture; Then and Now: Fifty Years in Space; The Reality of Tomorrow; and Human Space Exploration: The Next 50 Years.
2004-02-20
KENNEDY SPACE CENTER, FLA. - Garland V. Stewart Magnet Middle School, a NASA Explorer School (NES) in Tampa, Fla., is the site where Center Director Jim Kennedy and astronaut Kay Hire shared the agency’s new vision for space exploration with the next generation of explorers. Kennedy talked with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
Code of Federal Regulations, 2013 CFR
2013-10-01
... for science or space exploration activities unrelated to the International Space Station. 1852.228-78... Cross-waiver of liability for science or space exploration activities unrelated to the International... Liability for Science or Space Exploration Activities Unrelated to the International Space Station (OCT 2012...
Code of Federal Regulations, 2014 CFR
2014-10-01
... for science or space exploration activities unrelated to the International Space Station. 1852.228-78... Cross-waiver of liability for science or space exploration activities unrelated to the International... Liability for Science or Space Exploration Activities Unrelated to the International Space Station (OCT 2012...
2004-02-20
KENNEDY SPACE CENTER, FLA. - Center Director Jim Kennedy talks to students in Garland V. Stewart Magnet Middle School, a NASA Explorer School (NES) in Tampa, Fla. Kennedy made the trip with NASA astronaut Kay Hire to share the agency’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-02-20
KENNEDY SPACE CENTER, FLA. - Astronaut Kay Hire talks to students in Garland V. Stewart Magnet Middle School, a NASA Explorer School (NES) in Tampa, Fla. She joined Center Director Jim Kennedy in sharing the agency’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-02-20
KENNEDY SPACE CENTER, FLA. - Students at Garland V. Stewart Magnet Middle School, a NASA Explorer School (NES) in Tampa, Fla., listen attentively to astronaut Kay Hire. She and Center Director Jim Kennedy were at the school to share the agency’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
A timely rationale for space exploration
NASA Technical Reports Server (NTRS)
Peterson, Douglas D.; Walters, Larry D.
1992-01-01
Space exploration is shown to be useful for enhancing a country's education, technology, and economic competitiveness. Technologies required for the Space Exploration Initiative are compared to emerging technologies identified by the U.S. Department of Commerce. The impact of previous space ventures on specific technologies are illustrated with examples such as miniaturized electronics, computers and software, and high-strength materials. The case for educational advancement as a by-product of space exploration is made by discussing the high-level requirements of the programs and describing the inspirational effect of space exploration on young students. Invigorating space exploration is argued to generate near- and long-term economic opportunities for key sectors of the national economy by means of technology transfer, space-resource utilization, and the commercialization of space.
Code of Federal Regulations, 2011 CFR
2011-01-01
... agreements for science or space exploration activities unrelated to the International Space Station. 1266.104... LIABILITY § 1266.104 Cross-waiver of liability for launch agreements for science or space exploration... cross-waiver of liability between the parties to agreements for NASA's science or space exploration...
Code of Federal Regulations, 2012 CFR
2012-01-01
... agreements for science or space exploration activities unrelated to the International Space Station. 1266.104... LIABILITY § 1266.104 Cross-waiver of liability for launch agreements for science or space exploration... cross-waiver of liability between the parties to agreements for NASA's science or space exploration...
Code of Federal Regulations, 2013 CFR
2013-01-01
... agreements for science or space exploration activities unrelated to the International Space Station. 1266.104... LIABILITY § 1266.104 Cross-waiver of liability for launch agreements for science or space exploration... cross-waiver of liability between the parties to agreements for NASA's science or space exploration...
Code of Federal Regulations, 2013 CFR
2013-10-01
... cross-waivers of liability for International Space Station activities and Science or Space Exploration... Station activities and Science or Space Exploration activities unrelated to the International Space Station. (a) In contracts covering International Space Station activities, or Science or Space Exploration...
Code of Federal Regulations, 2014 CFR
2014-10-01
... cross-waivers of liability for International Space Station activities and Science or Space Exploration... Station activities and Science or Space Exploration activities unrelated to the International Space Station. (a) In contracts covering International Space Station activities, or Science or Space Exploration...
NASA Technical Reports Server (NTRS)
Mankins, John C.
2000-01-01
In FY 2001, NASA will undertake a new research and technology program supporting the goals of human exploration: the Human Exploration and Development of Space (HEDS) Exploration/Commercialization Technology Initiative (HTCI). The HTCI represents a new strategic approach to exploration technology, in which an emphasis will be placed on identifying and developing technologies for systems and infrastructures that may be common among exploration and commercial development of space objectives. A family of preliminary strategic research and technology (R&T) road maps have been formulated that address "technology for human exploration and development of space (THREADS). These road maps frame and bound the likely content of the HTCL Notional technology themes for the initiative include: (1) space resources development, (2) space utilities and power, (3) habitation and bioastronautics, (4) space assembly, inspection and maintenance, (5) exploration and expeditions, and (6) space transportation. This paper will summarize the results of the THREADS road mapping process and describe the current status and content of the HTCI within that framework. The paper will highlight the space resources development theme within the Initiative and will summarize plans for the coming year.
2004-02-20
KENNEDY SPACE CENTER, FLA. - Astronaut Kay Hire poses with 8th grader Kristy Wiggins at Garland V. Stewart Magnet Middle School, a NASA Explorer School (NES) in Tampa, Fla. Hire joined Center Director Jim Kennedy at the school in sharing the agency’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-02-20
KENNEDY SPACE CENTER, FLA. - Warren Elly (left), with WTVT-TV, Fox News, talks with Center Director Jim Kennedy at Garland V. Stewart Magnet Middle School, a NASA Explorer School (NES) in Tampa, Fla. Kennedy was joined by astronaut Kay Hire in sharing the agency’s new vision for space exploration with the next generation of explorers. Kennedy talked with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-02-20
KENNEDY SPACE CENTER, FLA. - Center Director Jim Kennedy talks to WTSP-ABC News about his trip to Garland V. Stewart Magnet Middle School, a NASA Explorer School (NES) in Tampa, Fla. Kennedy made the trip with NASA astronaut Kay Hire to share the agency’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
Marshall Space Flight Center - Launching the Future of Science and Exploration
NASA Technical Reports Server (NTRS)
Shivers, Alisa; Shivers, Herbert
2010-01-01
Topics include: NASA Centers around the country, launching a legacy (Explorer I), Marshall's continuing role in space exploration, MSFC history, lifting from Earth, our next mission STS 133, Space Shuttle propulsion systems, Space Shuttle facts, Space Shuttle and the International Space Station, technologies/materials originally developed for the space program, astronauts come from all over, potential future missions and example technologies, significant accomplishments, living and working in space, understanding our world, understanding worlds beyond, from exploration to innovation, inspiring the next generation, space economy, from exploration to opportunity, new program assignments, NASA's role in education, and images from deep space including a composite of a galaxy with a black hole, Sagittarius A, Pillars of Creation, and an ultra deep field
Toward an International Lunar Polar Volatiles Strategy
NASA Technical Reports Server (NTRS)
Gruener, J. E.; Suzuki, N. H.; Carpenter, J. D.
2015-01-01
Fourteen international space agencies are participating in the International Space Exploration Coordination Group (ISECG), working together to advance a long-range human space exploration strategy. The ISECG is a voluntary, non-binding international coordination mechanism through which individual agencies may exchange information regarding interests, objectives, and plans in space exploration with the goal of strengthening both individual exploration programs as well as the collective effort. The ISECG has developed a Global Exploration Roadmap (GER) that reflects the coordinated international dialog and continued preparation for exploration beyond low-Earth orbit - beginning with the Moon and cis-lunar space, and continuing to near-Earth asteroids, and Mars. Space agencies agree that human space exploration will be most successful as an international endeavor, given the challenges of these missions. The roadmap demonstrates how initial capabilities can enable a variety of missions in the lunar vicinity, responding to individual and common goals and objectives, while contributing to building partnerships required for sustainable human space exploration that delivers value to the public.
Rationalisation of the Solar System exploration
NASA Astrophysics Data System (ADS)
Czechowski, L.
2017-09-01
Present attitude to space exploration is often a result irrational political pressure. The better cooperation between space agencies could be beneficial for the space exploration and for national space programs.
The International Space Station in Space Exploration
NASA Technical Reports Server (NTRS)
Gerstenmaier, William H.; McKay, Meredith M.
2006-01-01
The International Space Station (ISS) Program has many lessons to offer for the future of space exploration. Among these lessons of the ISS Program, three stand out as instrumental for the next generation of explorers. These include: 1) resourcefulness and the value of a strong international partnership; 2) flexibility as illustrated by the evolution of the ISS Program and 3) designing with dissimilar redundancy and simplicity of sparing. These lessons graphically demonstrate that the ISS Program can serve as a test bed for future programs. As the ISS Program builds upon the strong foundation of previous space programs, it can provide insight into the prospects for continued growth and cooperation in space exploration. As the capacity for spacefaring increases worldwide and as more nations invest in space exploration and space sector development, the potential for advancement in space exploration is unlimited. By building on its engineering and research achievements and international cooperation, the ISS Program is inspiring tomorrow s explorers today.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Space Station activities and Science or Space Exploration activities unrelated to the International... Exploration activities unrelated to the International Space Station that involve a launch, NASA shall require... or Space Exploration Activities unrelated to the International Space Station, in solicitations and...
2004-02-20
KENNEDY SPACE CENTER, FLA. - Center Director Jim Kennedy talks to radio station WFLA-AM and Florida Radio Network about his trip to Garland V. Stewart Magnet Middle School, a NASA Explorer School (NES) in Tampa, Fla. Kennedy made the trip with NASA astronaut Kay Hire to share the agency’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
NOAA Photo Library - Voyage to Inner Space -- Exploring the Seas with NOAA
Inner Space - Exploring the Sea with NOAA NOAA and its ancestor agencies have been exploring the sea for Inner Space -- Exploring the Sea with NOAA fish Ocean Exploration Collection submersible National
Toward a global space exploration program: A stepping stone approach
NASA Astrophysics Data System (ADS)
Ehrenfreund, Pascale; McKay, Chris; Rummel, John D.; Foing, Bernard H.; Neal, Clive R.; Masson-Zwaan, Tanja; Ansdell, Megan; Peter, Nicolas; Zarnecki, John; Mackwell, Steve; Perino, Maria Antionetta; Billings, Linda; Mankins, John; Race, Margaret
2012-01-01
In response to the growing importance of space exploration in future planning, the Committee on Space Research (COSPAR) Panel on Exploration (PEX) was chartered to provide independent scientific advice to support the development of exploration programs and to safeguard the potential scientific assets of solar system objects. In this report, PEX elaborates a stepwise approach to achieve a new level of space cooperation that can help develop world-wide capabilities in space science and exploration and support a transition that will lead to a global space exploration program. The proposed stepping stones are intended to transcend cross-cultural barriers, leading to the development of technical interfaces and shared legal frameworks and fostering coordination and cooperation on a broad front. Input for this report was drawn from expertise provided by COSPAR Associates within the international community and via the contacts they maintain in various scientific entities. The report provides a summary and synthesis of science roadmaps and recommendations for planetary exploration produced by many national and international working groups, aiming to encourage and exploit synergies among similar programs. While science and technology represent the core and, often, the drivers for space exploration, several other disciplines and their stakeholders (Earth science, space law, and others) should be more robustly interlinked and involved than they have been to date. The report argues that a shared vision is crucial to this linkage, and to providing a direction that enables new countries and stakeholders to join and engage in the overall space exploration effort. Building a basic space technology capacity within a wider range of countries, ensuring new actors in space act responsibly, and increasing public awareness and engagement are concrete steps that can provide a broader interest in space exploration, worldwide, and build a solid basis for program sustainability. By engaging developing countries and emerging space nations in an international space exploration program, it will be possible to create a critical bottom-up support structure to support program continuity in the development and execution of future global space exploration frameworks. With a focus on stepping stones, COSPAR can support a global space exploration program that stimulates scientists in current and emerging spacefaring nations, and that will invite those in developing countries to participate—pursuing research aimed at answering outstanding questions about the origins and evolution of our solar system and life on Earth (and possibly elsewhere). COSPAR, in cooperation with national and international science foundations and space-related organizations, will advocate this stepping stone approach to enhance future cooperative space exploration efforts.
Alternative Fuels Data Center: Johnson Space Center Explores Alternative
Fuel Vehicles Johnson Space Center Explores Alternative Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: Johnson Space Center Explores Alternative Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: Johnson Space Center Explores Alternative Fuel Vehicles on
ERIC Educational Resources Information Center
Aviation/Space, 1982
1982-01-01
Highlights National Aeronautics and Space Administration's (NASA) space exploration studies, focusing on Voyager at Saturn, advanced Jupiter exploration, infrared observatory, space telescope, Dynamics Explorers (satellites designed to provide understanding of earth/sun energy relationship), and ozone studies. (JN)
PISCES: A "Stepping Stone" to International Space Exploration and Development
NASA Technical Reports Server (NTRS)
Howell, Joe T.; Henley, Mark W.; Schowengerdt, Frank
2007-01-01
The Pacific International Space Center for Exploration Systems (PISCES) was initiated by the Japan/US Science, Technology and Space Application Programs (JUSTSAP) to advance research and education in space exploration technology and systems working closely with the State of Hawaii. Hawaii has a heritage with space exploration including the training of Apollo astronauts and testing of lunar rover systems in some of the most realistic terrestrial sites available. The high altitude dry environment with greater solar insolation, and the dry lunar regolith-like volcanic ash and cratered terrain make Hawaiian sites ideal to support, international space exploration technology development, demonstration, education and training. This paper will summarize development and roles of PISCES in lunar surface analogs, simulations, technology demonstrations, research and training for space exploration technology and systems.
Human Exploration and Development of Space: Strategic Plan
NASA Technical Reports Server (NTRS)
Branscome, Darrell (Editor); Allen, Marc (Editor); Bihner, William (Editor); Craig, Mark (Editor); Crouch, Matthew (Editor); Crouch, Roger (Editor); Flaherty, Chris (Editor); Haynes, Norman (Editor); Horowitz, Steven (Editor)
2000-01-01
The five goals of the Human Exploration and Development of Space include: 1) Explore the Space Frontier; 2) Expand Scientific Knowledge; 3) Enable Humans to Live and Work Permanently in Space; 4) Enable the Commercial Development of Space; and 5) Share the Experience and Benefits of Discovery.
International Coordination of Exploring and Using Lunar Polar Volatiles
NASA Technical Reports Server (NTRS)
Gruener, J. E.; Suzuki, N. H.; Carpenter, J. D.
2016-01-01
Fourteen international space agencies are participating in the International Space Exploration Coordination Group (ISECG), working together to advance a long-range strategy for human and robotic space exploration beyond low earth orbit. The ISECG is a voluntary, non-binding international coordination mechanism through which individual agencies may exchange information regarding interests, objectives, and plans in space exploration with the goal of strengthening both individual exploration programs as well as the collective effort. The ISECG has developed a Global Exploration Roadmap (GER) that reflects the coordinated international dialog and continued preparation for exploration beyond low-Earth orbit, beginning with the Moon and cis-lunar space, and continuing to near-Earth asteroids, and Mars.
NASA Technical Reports Server (NTRS)
Mazlish, B.
1985-01-01
Public reactions to the space program, especially to the 1969 Moon landing are discussed. Space exploration is compared to explorations during the Age of Discovery. It is argued that space exploration has failed to capture the public's imagination, that it has had few economic or social consequences of any importance, and that it has had a minimum impact on national prestige.
2004-04-13
KENNEDY SPACE CENTER, FLA. - Astronaut Rick Linnehan shares his experiences in space with students and faculty at Ralph Bunche Middle School, a NASA Explorer School, in Atlanta, Ga. Linnehan accompanied Center Director Jim Kennedy, who is visiting NES sites to share America’s new vision for space exploration with the next generation of explorers. The purpose of the school visit is to talk with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-04-05
KENNEDY SPACE CENTER, FLA. -- Astronaut Sam Durrance shares stories of his experiences in space with the students at Oscar Patterson Elementary Magnet School in Panama City, Fla. Durrance joined Center Director Jim Kennedy as he shares America’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students in NASA Explorer Schools in Florida and Georgia about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
NASA Technical Reports Server (NTRS)
Volpe, Frank; Comberiate, Anthony B. (Technical Monitor)
2001-01-01
The mission of the Explorer Program is to provide frequent flight opportunities for world-class scientific investigations from space within the following space science themes: 1) Astronomical Search for Origins and Planetary Systems; 2) Structure and Evolution of the Universe; and 3) The Sun-Earth Connection. America's space exploration started with Explorer 1 which was launched February 1, 1958 and discovered the Van Allen Radiation Belts. Over 75 Explorer missions have flown. The program seeks to enhance public awareness of, and appreciation for, space science and to incorporate. educational and public outreach activities as integral parts of space science investigations.
NASA Astrophysics Data System (ADS)
Harvey, B.
1993-10-01
The Soviet Union used animals in the exploration of space from 1949 onwards. Russia has continued the use of animals in the exploration of space with the launch on 30 December 1992 of Bion-10 (Cosmos 2229). Animals in the space program is an important theme in the Soviet exploration of space. The use of animals in the exploration of space has four main phases: (1) Suborbital missions 1949-1959; (2) Preparation for man's first flight into space 1960-1; (3) Preparation for man's flight to the Moon 1968-1970; (4) The international biomedical program 1962- . Each is dealt with in turn. The use of animals or biological specimens on board manned orbital space stations is not discussed.
2004-05-14
KENNEDY SPACE CENTER, FLA. -- Astronaut David Wolf addresses students and faculty of Howard A. Doolin Middle School, Miami, Fla., about his experiences in space. Doolin Middle School is one of 100 to take part in the NASA Explorer Schools (NES) program. Wolf joins Center Director Jim Kennedy on his visit to share America’s new vision for space exploration with the next generation of explorers. He is talking with students in Florida and Georgia Explorer Schools about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-05-14
KENNEDY SPACE CENTER, FLA. -- Astronaut David Wolf addresses students and faculty of Howard A. Doolin Middle School, Miami, Fla., about his experiences in space. Doolin Middle School is one of 100 to take part in the NASA Explorer Schools (NES) program. Wolf joins Center Director Jim Kennedy on his visit to share America’s new vision for space exploration with the next generation of explorers. He is talking with students in Florida and Georgia Explorer Schools about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
With Eyes on the Future, Marshall Leads the Way to Deep Space in 2017
2017-12-27
NASA's Marshall Space Flight Center in Huntsville, Alabama, led the way in space exploration in 2017. Marshall's work is advancing how we explore space and preparing for deep-space missions to the Moon, Mars and beyond. Progress continued on NASA's Space Launch System that will enable missions beyond Earth's orbit, while flight controllers at "Science Central" for the International Space Station coordinated research and experiments with astronauts in orbit, learning how to live in space. At Marshall, 2017 was also marked with ground-breaking discoveries, innovations that will send us into deep space, and events that will inspire future generations of explorers. Follow along in 2018 as Marshall continues to advance space exploration: www.nasa.gov/marshall
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-13
... Operations Committee and Exploration Committee; Joint Meeting AGENCY: National Aeronautics and Space... the Space Operations Committee and Exploration Committee of the NASA Advisory Council. DATES: Tuesday.../Exploration Systems Mission Directorate Merger Update. [[Page 41308
77 FR 66082 - NASA Advisory Council; Human Exploration and Operations Committee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-01
... Exploration and Operations Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... Integration --International Space Station Status --Outreach --Human Exploration and Operations Status... Advisory Council Human Exploration and Operations Committee session in the Space Operations Center, Room...
76 FR 63663 - NASA Advisory Council; Human Exploration and Operations Committee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-13
... Exploration and Operations Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration announces a meeting of the Human Exploration... Exploration and Operations Mission Directorate, National Aeronautics and Space Administration Headquarters...
75 FR 4589 - NASA Advisory Council Exploration Committee Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-28
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-012)] NASA Advisory Council Exploration... Aeronautics and Space Administration announces a meeting of the NASA Advisory Council Exploration Committee... Parham, Exploration Committee Administrative Officer, Mail Stop 7C27, National Aeronautics and Space...
Strategies For Human Exploration Leading To Human Colonization of Space
NASA Technical Reports Server (NTRS)
Smitherman, David; Everett, Harmon
2009-01-01
Enabling the commercial development of space is key to the future colonization of space and key to a viable space exploration program. Without commercial development following in the footsteps of exploration it is difficult to justify and maintain public interest in the efforts. NASA's exploration program has suffered from the lack of a good commercial economic strategy for decades. Only small advances in commercial space have moved forward, and only up to Earth orbit with the commercial satellite industry. A way to move beyond this phase is to begin the establishment of human commercial activities in space in partnership with the human exploration program. In 2007 and 2008, the authors researched scenarios to make space exploration and commercial space development more feasible as part of their graduate work in the Space Architecture Program at the Sasakawa International Center for Space Architecture at the University of Houston, Houston, Texas. Through this research it became apparent that the problems facing future colonization are much larger than the technology being developed or the international missions that our space agencies are pursuing. These issues are addressed in this paper with recommendations for space exploration, commercial development, and space policy that are needed to form a strategic plan for human expansion into space. In conclusion, the authors found that the current direction in space as carried out by our space agencies around the world is definitely needed, but is inadequate and incapable of resolving all of the issues that inhibit commercial space development. A bolder vision with strategic planning designed to grow infrastructures and set up a legal framework for commercial markets will go a long way toward enabling the future colonization of space.
Using Internet, Television and Radio to Promote Public Participation in Space Exploration
NASA Astrophysics Data System (ADS)
Clipper, Milton C., Jr.; MacLeish, Marlene Y.
2008-06-01
The theme of the 59th International Astronautical Congress, From Imagination to Reality, reflects a global sentiment that future space exploration will require a scientifically literate public that is informed about the benefits of space exploration for life on Earth and is motivated to influence decision makers who provide resources to support space exploration. This paper reports on a successful twelve-year private-public partnership among Public Broadcasting Atlanta, (PBA) Morehouse School of Medicine (MSM), the National Space Biomedical Research Institute (NSBRI) and the National Aeronautics and Space Administration (NASA). The partnership has produced television-radio documentaries, transmitted space science knowledge to classrooms, designed electronic citizen participation platforms, spun off new programs and maintained a space film archive. This model provides a framework for analyzing determinants of innovative public-private partnerships, mobilization of scarce resources, and space exploration knowledge management.
77 FR 6825 - NASA Advisory Council; Human Exploration and Operations Committee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-09
... Exploration and Operations Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration announces a meeting of the Human Exploration... Roadmap Exploration Planning, Partnerships, and Prioritization Summary Status of Space Launch System...
2004-04-12
KENNEDY SPACE CENTER, FLA. - Center Director Jim Kennedy (right) is joined by two students at Carol City Elementary School, a NASA Explorer School, in Miami, Fla., which Kennedy visited to share America’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
A Mission Concept Based on the ISECG Human Lunar Surface Architecture
NASA Technical Reports Server (NTRS)
Gruener, J. E.; Lawrence, S. J.
2017-01-01
The National Aeronautics and Space Administration (NASA) is participating in the International Space Exploration Coordination Group (ISECG), working together with 13 other space agencies to advance a long-range human space exploration strategy. The ISECG has developed a Global Exploration Roadmap (GER) that reflects the coordinated international dialog and continued preparation for exploration beyond low-Earth orbit - beginning with the International Space Station (ISS) and continuing to the Moon, near-Earth asteroids, and Mars [1]. The roadmap demonstrates how initial capabilities can enable a variety of missions in the lunar vicinity, responding to individual and common goals and objectives, while contributing to building partnerships required for sustainable human space exploration that delivers value to the public. The current GER includes three different near-term themes: exploration of a near-Earth asteroid, extended duration crew missions in cis-lunar space, and humans to the lunar surface.
NASA Astrophysics Data System (ADS)
Ehrenfreund, P.; Peter, N.; Billings, L.
2010-08-01
Space exploration is a multifaceted endeavor and will be a "grand challenge" of the 21st century. It has already become an element of the political agenda of a growing number of countries worldwide. However, the public is largely unaware of space exploration activities and in particular does not perceive any personal benefit. In order to achieve highly ambitious space exploration goals to explore robotically and with humans the inner solar system, space agencies must improve and expand their efforts to inform and raise the awareness of the public about what they are doing, and why. Therefore adopting new techniques aiming at informing and engaging the public using participatory ways, new communication techniques to reach, in particular, the younger generation will be a prerequisite for a sustainable long-term exploration program: as they will enable it and carry most of the associated financial burden. This paper presents an environmental analysis of space exploration in the United States and Europe and investigates the current branding stature of the National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA). We discuss how improved market research and new branding methods can increase public space awareness and improve the image of NASA and ESA. We propose a new participatory approach to engage the public as major stakeholder (along governments, the industrial space sector and the science community) that may provide sufficient resources for and sustainability of a long-term space exploration program.
2004-04-05
KENNEDY SPACE CENTER, FLA. -- Astronaut Sam Durrance takes time for a group photo with students from Panama City, Fla., Oscar Patterson Elementary Magnet School. The students are wearing mock space suit helmets. Durrance joined Center Director Jim Kennedy, who is visiting Florida and Georgia NASA Explorer Schools to share America’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-05
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-042] NASA Advisory Council; Human Exploration and Operations Committee; Research Subcommittee; Meeting AGENCY: National Aeronautics and Space... topics: --Overview of Research in Space Life and Physical Sciences --Space Station and Future Exploration...
Marshall Space Flight Center Research and Technology Report 2016
NASA Technical Reports Server (NTRS)
Tinker, M. L.; Abney, M. B. (Compiler); Reynolds, D. W. (Compiler); Morris, H. C. (Compiler)
2017-01-01
Marshall Space Flight Center is essential to human space exploration and our work is a catalyst for ongoing technological development. As we address the challenges facing human deep space exploration, we advance new technologies and applications here on Earth, expand scientific knowledge and discovery, create new economic opportunities, and continue to lead global space exploration.
2004-05-14
KENNEDY SPACE CENTER, FLA. -- Astronaut David Wolf answers questions from a student on stage at Howard A. Doolin Middle School, Miami, Fla., during his talk about his experiences in space. Doolin Middle School is one of 100 to take part in the NASA Explorer Schools (NES) program. Wolf joins Center Director Jim Kennedy (seated at lower left) on his visit to share America’s new vision for space exploration with the next generation of explorers. He is talking with students in Florida and Georgia Explorer Schools about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-05-14
KENNEDY SPACE CENTER, FLA. -- Astronaut David Wolf answers questions from a student on stage at Howard A. Doolin Middle School, Miami, Fla., during his talk about his experiences in space. Doolin Middle School is one of 100 to take part in the NASA Explorer Schools (NES) program. Wolf joins Center Director Jim Kennedy (seated at lower left) on his visit to share America’s new vision for space exploration with the next generation of explorers. He is talking with students in Florida and Georgia Explorer Schools about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-05-14
KENNEDY SPACE CENTER, FLA. -- Astronaut David Wolf answers questions from a student on stage at Howard A. Doolin Middle School, Miami, Fla., during his talk about his experiences in space. Doolin Middle School is one of 100 to take part in the NASA Explorer Schools (NES) program. Wolf joins Center Director Jim Kennedy (seated at lower left) on his visit to share America’s new vision for space exploration with the next generation of explorers. He is talking with students in Florida and Georgia Explorer Schools about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-05-14
KENNEDY SPACE CENTER, FLA. -- Astronaut David Wolf answers questions from a student on stage at Howard A. Doolin Middle School, Miami, Fla., during his talk about his experiences in space. Doolin Middle School is one of 100 to take part in the NASA Explorer Schools (NES) program. Wolf joins Center Director Jim Kennedy (seated at lower left) on his visit to share America’s new vision for space exploration with the next generation of explorers. He is talking with students in Florida and Georgia Explorer Schools about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
Supervised space robots are needed in space exploration
NASA Technical Reports Server (NTRS)
Erickson, Jon D.
1994-01-01
High level systems engineering models were developed to simulate and analyze the types, numbers, and roles of intelligent systems, including supervised autonomous robots, which will be required to support human space exploration. Conventional and intelligent systems were compared for two missions: (1) a 20-year option 5A space exploration; and (2) the First Lunar Outpost (FLO). These studies indicate that use of supervised intelligent systems on planet surfaces will 'enable' human space exploration. The author points out that space robotics can be considered a form of the emerging technology of field robotics and solutions to many space applications will apply to problems relative to operating in Earth-based hazardous environments.
2004-04-05
KENNEDY SPACE CENTER, FLA. -- Center Director Jim Kennedy talks to students at Oscar Patterson Elementary Magnet School in Panama City, Fla. Kennedy is visiting NASA Explorer Schools in Florida and Georgia to share America’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-04-05
KENNEDY SPACE CENTER, FLA. -- Center Director Jim Kennedy shakes hands with students at Oscar Patterson Elementary Magnet School in Panama City, Fla. Kennedy is touring Florida and Georgia NASA Explorer Schools to share America’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-04-05
KENNEDY SPACE CENTER, FLA. -- Center Director Jim Kennedy talks to students at Oscar Patterson Elementary Magnet School in Panama City, Fla. Kennedy is visiting NASA Explorer Schools in Florida and Georgia to share America’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-04-05
KENNEDY SPACE CENTER, FLA. -- Center Director Jim Kennedy stands with Dr. Linward Barnes, principal of Oscar Patterson Elementary Magnet School in Panama City, Fla. Kennedy is touring Florida and Georgia NASA Explorer Schools to share America’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-04-05
KENNEDY SPACE CENTER, FLA. -- Center Director Jim Kennedy talks to students at Oscar Patterson Elementary Magnet School in Panama City, Fla. Kennedy is visiting NASA Explorer Schools in Florida and Georgia to share America’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-04-12
KENNEDY SPACE CENTER, FLA. - Center Director Jim Kennedy (right) talks to a reporter from the Miami Herald about his visit to Carol City Elementary School, a NASA Explorer School, in Miami, Fla. Kennedy is sharing America’s new vision for space exploration with the next generation of explorers. He is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-02-20
KENNEDY SPACE CENTER, FLA. - Astronaut Kay Hire talks to students in Garland V. Stewart Magnet Middle School, a NASA Explorer School (NES) in Tampa, Fla. She joined Center Director Jim Kennedy in sharing the agency’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-04-12
KENNEDY SPACE CENTER, FLA. - Astronaut Dr. David A. Wolf (right) talks to students during a visit to Carol City Elementary School, a NASA Explorer School, in Miami, Fla. Wolf accompanied Center Director Jim Kennedy, who is sharing America’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
NASA Astrophysics Data System (ADS)
Boese, Andrea
The German Aerospace Center and German Space Agency DLR has defined internationalisation one of the four pillars of its corporate strategy. Driven by global challenges, national space agencies like DLR are seeking partnerships to contribute to essential societal needs, such as human welfare, sustainability of life, economic development, security, culture and knowledge. All partnerships with both traditional and non-traditional partners must reflect a balanced approach between national requirements and needs of the international community. In view of the challenges emerging from this complexity, endeavours like space exploration must be built on mutual cooperation especially in a challenging political environment. Effective and efficient exploitation of existing expertise, human resources, facilities and infrastructures require consolidated actions of stakeholders, interest groups and authorities. This basic principle applies to any space exploration activity. DLR is among the agencies participating in the International Space Exploration Coordination Group (ISECG) from its beginning in 2007. The strategic goals of DLR regarding space exploration correspond to the purpose of ISECG as a forum to share objectives and plans to take concrete steps towards partnerships for a globally coordinated effort in space exploration. DLR contributes to ISECG publications especially the “Global Exploration Roadmap” and the “Benefits stemming from Space Exploration” to see those messages reflected that support cooperation with internal and external exploration stakeholders in science and technology and communication with those in politics and society. DLR provides input also to other groups engaging in space exploration. However, taking into account limited resources and expected results, the effectiveness of multiple coordination and planning mechanisms needs to be discussed.
Modeling of GCR Environment Variations and Interpretation for Human Explorations
NASA Astrophysics Data System (ADS)
Saganti, Premkumar
We currently have wealth of data with several short duration Space Shuttle (STS) flights to the low earth orbit (LEO) and long duration International Space Station (ISS) expeditions as well as Shuttle-Mir missions over the past few solar cycles. Assessment of such radiation risk is very important particularly for the anticipated long-term and deep-space human explorations. Recently, we have developed a database of first 500 + human explorers and their space travel logs from space exploration missions during the past four decades. Many have traveled into space for only few days while others have been in space for several months. We present the time-line distribution of the space travelers log along with the time correlated radiation en-vironment changes in to aid in the radiation risk assessment for human explorations. These model calculated results and assessment of radiation exposure helps in our understanding of radiation risk and biological consequences.
Space Resource Utilization: Near-Term Missions and Long-Term Plans for Human Exploration
NASA Technical Reports Server (NTRS)
Sanders, Gerald B.
2015-01-01
NASA's Human Exploration Plans: A primary goal of all major space faring nations is to explore space: from the Earth with telescopes, with robotic probes and space telescopes, and with humans. For the US National Aeronautics and Space Administration (NASA), this pursuit is captured in three important strategic goals: 1. Ascertain the content, origin, and evolution of the solar system and the potential for life elsewhere, 2. Extend and sustain human activities across the solar system (especially the surface of Mars), and 3. Create innovative new space technologies for exploration, science, and economic future. While specific missions and destinations are still being discussed as to what comes first, it is imperative for NASA that it foster the development and implementation of new technologies and approaches that make space exploration affordable and sustainable. Critical to achieving affordable and sustainable human exploration beyond low Earth orbit (LEO) is the development of technologies and systems to identify, extract, and use resources in space instead of bringing everything from Earth. To reduce the development and implementation costs for space resource utilization, often called In Situ Resource Utilization (ISRU), it is imperative to work with terrestrial mining companies to spin-in/spin-off technologies and capabilities, and space mining companies to expand our economy beyond Earth orbit. In the last two years, NASA has focused on developing and implementing a sustainable human space exploration program with the ultimate goal of exploring the surface of Mars with humans. The plan involves developing technology and capability building blocks critical for sustained exploration starting with the Space Launch System (SLS) and Orion crew spacecraft and utilizing the International Space Station as a springboard into the solar system. The evolvable plan develops and expands human exploration in phases starting with missions that are reliant on Earth, to performing ever more challenging and longer duration missions in cis-lunar space and beyond, to eventually being independent from Earth. The goal is no longer just to reach a destination, but to enable people to work, learn, operate, and live safely beyond the Earth for extended periods of time, ultimately in ways that are more sustainable and even indefinite.
2004-05-14
KENNEDY SPACE CENTER, FLA. -- After his presentation, Center Director Jim Kennedy signs a memento for a student at Howard A. Doolin Middle School, Miami, Fla. The school is one of 100 taking part in the NASA Explorer Schools (NES) program. Kennedy visited the school to share America’s new vision for space exploration with the next generation of explorers. He is talking with students in Florida and Georgia Explorer Schools about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-05-14
KENNEDY SPACE CENTER, FLA. -- Center Director Jim Kennedy (center) greets a student after his presentation at Howard A. Doolin Middle School, Miami, Fla. The school is one of 100 taking part in the NASA Explorer Schools (NES) program. The purpose of Kennedy’s visit is to share America’s new vision for space exploration with the next generation of explorers. He is talking with students in Florida and Georgia Explorer Schools about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-05-14
KENNEDY SPACE CENTER, FLA. -- Center Director Jim Kennedy addresses students and faculty of Howard A. Doolin Middle School, Miami, Fla. Doolin Middle School is one of 100 to take part in the NASA Explorer Schools (NES) program. Kennedy is visiting Explorer Schools in Florida and Georgia to share America’s new vision for space exploration with the next generation of explorers. He is talking with students, about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-05-14
KENNEDY SPACE CENTER, FLA. -- After his presentation, Center Director Jim Kennedy signs a memento for a student at Howard A. Doolin Middle School, Miami, Fla. The school is one of 100 taking part in the NASA Explorer Schools (NES) program. Kennedy visited the school to share America’s new vision for space exploration with the next generation of explorers. He is talking with students in Florida and Georgia Explorer Schools about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-05-14
KENNEDY SPACE CENTER, FLA. -- Center Director Jim Kennedy poses for a photo with students at Howard A. Doolin Middle School, Miami, Fla. The school is one of 100 taking part in the NASA Explorer Schools (NES) program. The purpose of Kennedy’s visit is to share America’s new vision for space exploration with the next generation of explorers. He is talking with students in Florida and Georgia Explorer Schools about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-04-12
KENNEDY SPACE CENTER, FLA. - Students at Carol City Elementary School, a NASA Explorer School, in Miami, Fla., take part in a presentation by Center Director Jim Kennedy about America’s new vision for space exploration Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
Tunable Optical Filters for Space Exploration
NASA Technical Reports Server (NTRS)
Crandall, Charles; Clark, Natalie; Davis, Patricia P.
2007-01-01
Spectrally tunable liquid crystal filters provide numerous advantages and several challenges in space applications. We discuss the tradeoffs in design elements for tunable liquid crystal birefringent filters with special consideration required for space exploration applications. In this paper we present a summary of our development of tunable filters for NASA space exploration. In particular we discuss the application of tunable liquid crystals in guidance navigation and control in space exploration programs. We present a summary of design considerations for improving speed, field of view, transmission of liquid crystal tunable filters for space exploration. In conclusion, the current state of the art of several NASA LaRC assembled filters is presented and their performance compared to the predicted spectra using our PolarTools modeling software.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Astronaut Dom Gorie shares his experiences in space with the students and faculty at Trojan Intermediate School in Potosi, Mo. Students from three area schools Potosi High School, John Evans Middle School and Trojan are on a team taking part in NASAs Explorer Schools program. Gorie is accompanying KSC Deputy Director Dr. Woodrow Whitlow on the visit to share Americas new vision for space exploration with the next generation of explorers. They are talking with students about our destiny as explorers, NASAs stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Astronaut Dom Gorie shares his experiences in space with the students and faculty at Trojan Intermediate School in Potosi, Mo. Students from three area schools Potosi High School, John Evans Middle School and Trojan are on a team taking part in NASAs Explorer Schools program. Gorie is accompanying KSC Deputy Director Dr. Woodrow Whitlow on the visit to share Americas new vision for space exploration with the next generation of explorers. They are talking with students about our destiny as explorers, NASAs stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
Paving the Path for Human Space Exploration: The Challenges and Opportunities
NASA Technical Reports Server (NTRS)
Hansen, Lauri
2016-01-01
Lauri Hansen, Director of Engineering at NASA Johnson Space Center will discuss the challenges of human space exploration. The future of human exploration begins with our current earth reliant missions in low earth orbit. These missions utilize the International Space Station to learn how to safely execute deep space missions. In addition to serving as an exploration test bed and enabling world class research, the International Space Station enables NASA to build international and commercial partnerships. NASA's next steps will be to enable the commercialization of low earth orbit while concentrating on developing the spacecraft and infrastructure necessary for deep space exploration and long duration missions. The Orion multi-purpose crew vehicle and the Space Launch System rocket are critical building blocks in this next phase of exploration. There are many challenges in designing spacecraft to perform these missions including safety, complex vehicle design, and mass challenges. Orion development is proceeding well, and includes a significant partnership with the European Space Agency (ESA) to develop and build the Service Module portion of the spacecraft. Together, NASA and ESA will provide the capability to take humans further than we have ever been before - 70,000 km past the moon. This will be the next big step in expanding the frontiers of human exploration, eventually leading to human footprints on Mars.
GSFC Information Systems Technology Developments Supporting the Vision for Space Exploration
NASA Technical Reports Server (NTRS)
Hughes, Peter; Dennehy, Cornelius; Mosier, Gary; Smith, Dan; Rykowski, Lisa
2004-01-01
The Vision for Space Exploration will guide NASA's future human and robotic space activities. The broad range of human and robotic missions now being planned will require the development of new system-level capabilities enabled by emerging new technologies. Goddard Space Flight Center is actively supporting the Vision for Space Exploration in a number of program management, engineering and technology areas. This paper provides a brief background on the Vision for Space Exploration and a general overview of potential key Goddard contributions. In particular, this paper focuses on describing relevant GSFC information systems capabilities in architecture development; interoperable command, control and communications; and other applied information systems technology/research activities that are applicable to support the Vision for Space Exploration goals. Current GSFC development efforts and task activities are presented together with future plans.
Preaching to the converted? An analysis of the UK public for space exploration.
Entradas, Marta; Miller, Steve; Peters, Hans Peter
2013-04-01
This article presents the results of a survey carried out at two space outreach events in the UK aimed at characterising "the public for space exploration" and measuring public support for space exploration. Attitude towards space exploration and policy preferences were used as measures of public support. The sample involved 744 respondents and was mainly composed of adults between 25 and 45 years old, with men slightly over-represented compared with women. Findings revealed that males appeared to be stronger supporters than females - men had a more positive attitude towards space exploration and stronger space policy preferences. Because mixed groups tend to come together to such events we argue that male respondents would be more likely to be part of the "attentive" and "interested" public who come to outreach activities and bring a less interested public with them.
The New National Vision for Space Exploration
NASA Technical Reports Server (NTRS)
Sackheim, Robert L.; Geveden, Rex; King, David A.
2004-01-01
From the Apollo landings on the Moon, to robotic surveys of the Sun and the planets, to the compelling images captured by advanced space telescopes, U.S. achievements in space have revolutionized humanity s view of the universe and have inspired Americans and people around the world. These achievements also have led to the development of technologies that have widespread applications to address problems on Earth. As the world enters the second century of powered flight, it is appropriate to articulate a new vision that will define and guide U.S. space exploration activities for the next several decades. Today, humanity has the potential to seek answers to the most fundamental questions posed about the existence of life beyond Earth. Telescopes have found planets around other stars. Robotic probes have identified potential resources on the Moon, and evidence of water - a key ingredient for life - has been found on Mars and the moons of Jupiter. Direct human experience in space has fundamentally altered our perspective of humanity and our place in the universe. Humans have the ability to respond to the unexpected developments inherent in space travel and possess unique skills that enhance discoveries. Just as Mercury, Gemini, and Apollo challenged a generation of Americans, a renewed U.S. space exploration program with a significant human component can inspire us - and our youth - to greater achievements on Earth and in space. The loss of Space Shuttles Challenger and Columbia and their crews are a stark reminder of the inherent risks of space flight and the severity of the challenges posed by space exploration. In preparation for future human exploration, we must advance our ability to live and work safely in space and, at the same time, develop the technologies to extend humanity s reach to the Moon, Mars, and beyond. The new technologies required for further space exploration also will improve the Nation s other space activities and may provide applications that could be used to address problems on Earth. Like the explorers of the past and the pioneers of flight in the last century, we cannot today identify all that we will gain from space exploration; we are confident, nonetheless, that the eventual return will be great. Like their efforts, the success of future U.S. space exploration will unfold over generations. The fundamental goal of this new national vision is to advance U.S. scientific, security, and economic interests through a robust space exploration program. In support of this goal, the United States will: 1) Implement a sustained and affordable human and robotic program to explore the solar system and beyond; 2) Extend human presence across the solar system, starting with a human return to the Moon by the year 2020, in preparation for human exploration of IMars and other destinations; 3) Develop the innovative technologies, knowledge, and infrastructures both to explore and to support decisions about the destinations for human exploration; and 4) Promote international and commercial participation in exploration to further U.S. scientific, security, and economic interests.
Preparing America for Deep Space Exploration Episode 16: Exploration On The Move
2018-02-22
Preparing America for Deep Space Exploration Episode 16: Exploration On The Move NASA is pressing full steam ahead toward sending humans farther than ever before. Take a look at the work being done by teams across the nation for NASA’s Deep Space Exploration System, including the Space Launch System, Orion, and Exploration Ground Systems programs, as they continue to propel human spaceflight into the next generation. Highlights from the fourth quarter of 2017 included Orion parachute drop tests at the Yuma Proving Ground in Arizona; the EM-1 Crew Module move from Cleanroom to Workstation at Kennedy Space Center; Crew Training, Launch Pad Evacuation Scenario, and Crew Module Vibration and Legibility Testing at NASA’s Johnson Space Center; RS-25 Rocket Engine Testing at Stennis Space Center; Core Stage Engine Section arrival, Core Stage Pathfinder; LH2 Qualification Tank; Core Stage Intertank Umbilical lift at Mobile Launcher; Crew Access Arm move to Mobile Launcher; Water Flow Test at Launch Complex 39-B.
Exploration Architecture Options - ECLSS, TCS, EVA Implications
NASA Technical Reports Server (NTRS)
Chambliss, Joe; Henninger, Don
2011-01-01
Many options for exploration of space have been identified and evaluated since the Vision for Space Exploration (VSE) was announced in 2004. The Augustine Commission evaluated human space flight for the Obama administration then the Human Exploration Framework Teams (HEFT and HEFT2) evaluated potential exploration missions and the infrastructure and technology needs for those missions. Lunar architectures have been identified and addressed by the Lunar Surface Systems team to establish options for how to get to, and then inhabit and explore, the moon. This paper will evaluate the options for exploration of space for the implications of architectures on the Environmental Control and Life Support (ECLSS), Thermal Control (TCS), and Extravehicular Activity (EVA) Systems.
NASA Technical Reports Server (NTRS)
Crouch, Roger
2004-01-01
Viewgraphs on NASA's transition to its vision for space exploration is presented. The topics include: 1) Strategic Directives Guiding the Human Support Technology Program; 2) Progressive Capabilities; 3) A Journey to Inspire, Innovate, and Discover; 4) Risk Mitigation Status Technology Readiness Level (TRL) and Countermeasures Readiness Level (CRL); 5) Biological And Physical Research Enterprise Aligning With The Vision For U.S. Space Exploration; 6) Critical Path Roadmap Reference Missions; 7) Rating Risks; 8) Current Critical Path Roadmap (Draft) Rating Risks: Human Health; 9) Current Critical Path Roadmap (Draft) Rating Risks: System Performance/Efficiency; 10) Biological And Physical Research Enterprise Efforts to Align With Vision For U.S. Space Exploration; 11) Aligning with the Vision: Exploration Research Areas of Emphasis; 12) Code U Efforts To Align With The Vision For U.S. Space Exploration; 13) Types of Critical Path Roadmap Risks; and 14) ISS Human Support Systems Research, Development, and Demonstration. A summary discussing the vision for U.S. space exploration is also provided.
2004-04-05
KENNEDY SPACE CENTER, FLA. -- Students at Oscar Patterson Elementary Magnet School in Panama City, Fla., listen to Center Director Jim Kennedy as he shares America’s new vision for space exploration. Kennedy is visiting NASA Explorer Schools in Florida and Georgia, talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-04-05
KENNEDY SPACE CENTER, FLA. -- Students at Oscar Patterson Elementary Magnet School in Panama City, Fla., listen intently to Center Director Jim Kennedy as he shares America’s new vision for space exploration. Kennedy is visiting NASA Explorer Schools in Florida and Georgia, talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Astronaut Dr. David A. Wolf looks at students science project creating tornados during a visit to Carol City Elementary School, a NASA Explorer School, in Miami, Fla. Wolf is accompanying Center Director Jim Kennedy on a visit to the school to share Americas new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASAs stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
Rationale and constituencies for the Space Exploration Initiative
NASA Technical Reports Server (NTRS)
Johnson, Kristine A.
1992-01-01
In order to maximize the benefits from prospective space-exploration endeavors, and to enlist the support of as many constituencies as possible, NASA is either conducting or developing programs which emphasize different aspects of the Space Exploration Initiative. Attention is presently given to the cases of education using space exploration themes as teaching tools and technology transfer from government to private industry. Only on the basis of the establishment of such constituencies, will it be possible to sustain funding over the three decades foreseen as required for a Mars exploration effort.
2004-04-12
KENNEDY SPACE CENTER, FLA. - Astronaut Dr. David A. Wolf looks at students’ science project creating tornados during a visit to Carol City Elementary School, a NASA Explorer School, in Miami, Fla. Wolf is accompanying Center Director Jim Kennedy on a visit to the school to share America’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-04-05
KENNEDY SPACE CENTER, FLA. -- Astronaut Sam Durrance and Center Director Jim Kennedy talk to students in a classroom at Oscar Patterson Elementary Magnet School in Panama City, Fla. Kennedy is visiting NASA Explorer Schools in Florida and Georgia to share America’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-04-13
KENNEDY SPACE CENTER, FLA. - Astronaut Rick Linnehan talks with a student at Ralph Bunche Middle School, a NASA Explorer School, in Atlanta, Ga. Linnehan joined Center Director Jim Kennedy at the school to share America’s new vision for space exploration with the next generation of explorers. The purpose of the school visit is to talk with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-09-21
KENNEDY SPACE CENTER, FLA. - KSC Deputy Director Dr. Woodrow Whitlow Jr. signs autographs for students at Gainesville Elementary School, a NASA Explorer School in Gainesville, Ga. Whitlow accompanied Jim Jennings, deputy associate administrator for Institutions and Asset Management at NASA Headquarters, who visited the school to share the new vision for space exploration with the next generation of explorers. Whitlow talked with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-04-12
KENNEDY SPACE CENTER, FLA. - - Center Director Jim Kennedy greets a mother and daughter while on a visit to Carol City Elementary School, a NASA Explorer School, in Miami, Fla. Kennedy made the tour to share America’s new vision for space exploration with the next generation of explorers. He was accompanied by astronaut Dr. David A. Wolf. Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. At University Community Academy in Atlanta, a NASA Explorer School, astronaut Leland Melvin talks to students. Melvin accompanied KSC Deputy Director Dr. Woodrow Whitlow Jr., who was visiting the school to share the vision for space exploration with the next generation of explorers. Whitlow talked with students about our destiny as explorers, NASAs stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space. Melvin talked about the importance of teamwork and what it takes for mission success.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. At University Community Academy in Atlanta, a NASA Explorer School, astronaut Leland Melvin talks to students. Melvin accompanied KSC Deputy Director Dr. Woodrow Whitlow Jr. (right), who was visiting the school to share the vision for space exploration with the next generation of explorers. Whitlow talked with students about our destiny as explorers, NASAs stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space. Melvin talked about the importance of teamwork and what it takes for mission success.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. KSC Deputy Director Dr. Woodrow Whitlow Jr. (left) is welcomed by Jim Harris, principal of University Community Academy in Atlanta, a NASA Explorer School. Dr. Whitlow is visiting the school to share the vision for space exploration with the next generation of explorers. Whitlow talked with students about our destiny as explorers, NASAs stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space. Melvin talked about the importance of teamwork and what it takes for mission success.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. At University Community Academy in Atlanta, a NASA Explorer School, astronaut Leland Melvin talks to students. Melvin accompanied KSC Deputy Director Dr. Woodrow Whitlow Jr., who was visiting the school to share the vision for space exploration with the next generation of explorers. Whitlow talked with students about our destiny as explorers, NASAs stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space. Melvin talked about the importance of teamwork and what it takes for mission success.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. At University Community Academy in Atlanta, a NASA Explorer School, KSC Deputy Director Dr. Woodrow Whitlow Jr. talks to students and staff. Dr. Whitlow was visiting the school to share the vision for space exploration with the next generation of explorers. Whitlow talked with students about our destiny as explorers, NASAs stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space. Melvin talked about the importance of teamwork and what it takes for mission success.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. At University Community Academy in Atlanta, a NASA Explorer School, astronaut Leland Melvin talks to students. Melvin accompanied KSC Deputy Director Dr. Woodrow Whitlow Jr., who was visiting the school to share the vision for space exploration with the next generation of explorers. Whitlow talked with students about our destiny as explorers, NASAs stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space. Melvin talked about the importance of teamwork and what it takes for mission success.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Center Director Jim Kennedy greets a mother and daughter while on a visit to Carol City Elementary School, a NASA Explorer School, in Miami, Fla. Kennedy made the tour to share Americas new vision for space exploration with the next generation of explorers. He was accompanied by astronaut Dr. David A. Wolf. Kennedy is talking with students about our destiny as explorers, NASAs stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-04-12
KENNEDY SPACE CENTER, FLA. - Astronaut Dr. David A. Wolf learns about a science project from students at Carol City Elementary School, a NASA Explorer School, in Miami, Fla. Wolf is accompanying Center Director Jim Kennedy on a visit to the school to share America’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
Enabling the space exploration initiative: NASA's exploration technology program in space power
NASA Technical Reports Server (NTRS)
Bennett, Gary L.; Cull, Ronald C.
1991-01-01
Space power requirements for Space Exploration Initiative (SEI) are reviewed, including the results of a NASA 90-day study and reports by the National Research Council, the American Institute of Aeronautics and Astronautics (AIAA), NASA, the Advisory Committee on the Future of the U.S. Space Program, and the Synthesis Group. The space power requirements for the SEI robotic missions, lunar spacecraft, Mars spacecraft, and human missions are summarized. Planning for exploration technology is addressed, including photovoltaic, chemical and thermal energy conversion; high-capacity power; power and thermal management for the surface, Earth-orbiting platform and spacecraft; laser power beaming; and mobile surface systems.
JAXA's Space Exploration Scenario
NASA Astrophysics Data System (ADS)
Sato, N. S.
2018-04-01
Japan Aerospace Exploration Agency (JAXA) has been studying space exploration scenario, including human exploration for Japan since 2015, which encompasses goals, knowledge gap assessment, and architecture. assessment, and technology roadmap.
NASA Astrophysics Data System (ADS)
Parker, L.; Minow, J.; Pulkkinen, A.; Fry, D.; Semones, E.; Allen, J.; St Cyr, C.; Mertens, C.; Jun, I.; Onsager, T.; Hock, R.
2018-02-01
NASA's Engineering and Space Center (NESC) is conducting an independent technical assessment of space environment monitoring and forecasting architecture options to support human and robotic deep space exploration.
2004-05-14
KENNEDY SPACE CENTER, FLA. -- After his presentation, students at Howard A. Doolin Middle School, Miami, Fla., gather around Center Director Jim Kennedy as he signs a memento for a student. The school is one of 100 taking part in the NASA Explorer Schools (NES) program. Kennedy visited the school to share America’s new vision for space exploration with the next generation of explorers. He is talking with students in Florida and Georgia Explorer Schools about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-05-14
KENNEDY SPACE CENTER, FLA. -- Center Director Jim Kennedy (left) is thanked by Principal Eduardo Tillet for his presentation to the faculty and students of Howard A. Doolin Middle School, Miami, Fla. The school is one of 100 taking part in the NASA Explorer Schools (NES) program. The purpose of Kennedy’s visit is to share America’s new vision for space exploration with the next generation of explorers. He is talking with students in Florida and Georgia Explorer Schools about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
NASA Technical Reports Server (NTRS)
Laurini, Kathleen C.; Hufenbach, Bernhard; Satoh, Maoki; Piedboeuf, Jean-Claude; Neumann, Benjamin
2010-01-01
Advancing critical and enhancing technologies is considered essential to enabling sustainable and affordable human space exploration. Critical technologies are those that enable a certain class of mission, such as technologies necessary for safe landing on the Martian surface, advanced propulsion, and closed loop life support. Others enhance the mission by leading to a greater satisfaction of mission objectives or increased probability of mission success. Advanced technologies are needed to reduce mass and cost. Many space agencies have studied exploration mission architectures and scenarios with the resulting lists of critical and enhancing technologies being very similar. With this in mind, and with the recognition that human space exploration will only be enabled by agencies working together to address these challenges, interested agencies participating in the International Space Exploration Coordination Group (ISECG) have agreed to perform a technology assessment as an important step in exploring cooperation opportunities for future exploration mission scenarios. "The Global Exploration Strategy: The Framework for Coordination" was developed by fourteen space agencies and released in May 2007. Since the fall of 2008, several International Space Exploration Coordination Group (ISECG) participating space agencies have been studying concepts for human exploration of the moon. They have identified technologies considered critical and enhancing of sustainable space exploration. Technologies such as in-situ resource utilization, advanced power generation/energy storage systems, reliable dust resistant mobility systems, and closed loop life support systems are important examples. Similarly, agencies such as NASA, ESA, and Russia have studied Mars exploration missions and identified critical technologies. They recognize that human and robotic precursor missions to destinations such as LEO, moon, and near earth objects provide opportunities to demonstrate the technologies needed for Mars mission. Agencies see the importance of assessing gaps and overlaps in their plans to advance technologies in order to leverage their investments and enable exciting missions as soon as practical. They see the importance of respecting the ability of any agency to invest in any technologies considered interesting or strategic. This paper will describe the importance of developing an appropriate international strategy for technology development and ideas for effective mechanisms for advancing an international strategy. This work will both inform and be informed by the development of an ISECG Global Exploration Roadmap and serve as a concrete step forward in advancing the Global Exploration Strategy.
NASA UTILIZATION OF THE INTERNATIONAL SPACE STATION AND THE VISION FOR SPACE EXPLORATION
NASA Technical Reports Server (NTRS)
Robinson, Julie A.; Thomas, Donald A.
2006-01-01
Under U.S. President Bush s Vision for Space Exploration (January 14, 2004), NASA has refocused its utilization plans for the International Space Station (ISS). This use will now focus on: (1) the development of countermeasures that will protect crews from the hazards of the space environment, (2) testing and validating technologies that will meet information and systems needs for future exploration missions.
Space Resource Utilization: Near-Term Missions and Long-Term Plans for Human Exploration
NASA Technical Reports Server (NTRS)
Sanders, Gerald B.
2015-01-01
A primary goal of all major space faring nations is to explore space: from the Earth with telescopes, with robotic probes and space telescopes, and with humans. For the US National Aeronautics and Space Administration (NASA), this pursuit is captured in three important strategic goals: 1. Ascertain the content, origin, and evolution of the solar system and the potential for life elsewhere, 2. Extend and sustain human activities across the solar system (especially the surface of Mars), and 3. Create innovative new space technologies for exploration, science, and economic future. While specific missions and destinations are still being discussed as to what comes first, it is imperative for NASA that it foster the development and implementation of new technologies and approaches that make space exploration affordable and sustainable. Critical to achieving affordable and sustainable human exploration beyond low Earth orbit (LEO) is the development of technologies and systems to identify, extract, and use resources in space instead of bringing everything from Earth. To reduce the development and implementation costs for space resource utilization, often called In Situ Resource Utilization (ISRU), it is imperative to work with terrestrial mining companies to spin-in/spin-off technologies and capabilities, and space mining companies to expand our economy beyond Earth orbit. In the last two years, NASA has focused on developing and implementing a sustainable human space exploration program with the ultimate goal of exploring the surface of Mars with humans. The plan involves developing technology and capability building blocks critical for sustained exploration starting with the Space Launch System (SLS) and Orion crew spacecraft and utilizing the International Space Station as a springboard into the solar system. The evolvable plan develops and expands human exploration in phases starting with missions that are reliant on Earth, to performing ever more challenging and longer duration missions in cis-lunar space and beyond, to eventually being independent from Earth. The goal is no longer just to reach a destination, but to enable people to work, learn, operate, and live safely beyond the Earth for extended periods of time, ultimately in ways that are more sustainable and even indefinite.
ERIC Educational Resources Information Center
Ricles, Shannon; Jaramillo, Becky; Fargo, Michelle
2004-01-01
In this companion to the "NASA SCI Files" episode "The Case of the Great Space Exploration," the tree house detectives learn about NASA's new vision for exploring space. In four segments aimed at grades 3-5, students learn about a variety of aspects of space exploration. Each segment of the guide includes an overview, a set of objectives,…
78 FR 20358 - NASA Advisory Council; Human Exploration and Operations Committee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-04
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-038] NASA Advisory Council; Human Exploration and Operations Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... Subcommittee --Status of Exploration Systems Development --Status of the International Space Station --Status...
Li, Zhifei; Qin, Dongliang
2014-01-01
In defense related programs, the use of capability-based analysis, design, and acquisition has been significant. In order to confront one of the most challenging features of a huge design space in capability based analysis (CBA), a literature review of design space exploration was first examined. Then, in the process of an aerospace system of systems design space exploration, a bilayer mapping method was put forward, based on the existing experimental and operating data. Finally, the feasibility of the foregoing approach was demonstrated with an illustrative example. With the data mining RST (rough sets theory) and SOM (self-organized mapping) techniques, the alternative to the aerospace system of systems architecture was mapping from P-space (performance space) to C-space (configuration space), and then from C-space to D-space (design space), respectively. Ultimately, the performance space was mapped to the design space, which completed the exploration and preliminary reduction of the entire design space. This method provides a computational analysis and implementation scheme for large-scale simulation. PMID:24790572
Li, Zhifei; Qin, Dongliang; Yang, Feng
2014-01-01
In defense related programs, the use of capability-based analysis, design, and acquisition has been significant. In order to confront one of the most challenging features of a huge design space in capability based analysis (CBA), a literature review of design space exploration was first examined. Then, in the process of an aerospace system of systems design space exploration, a bilayer mapping method was put forward, based on the existing experimental and operating data. Finally, the feasibility of the foregoing approach was demonstrated with an illustrative example. With the data mining RST (rough sets theory) and SOM (self-organized mapping) techniques, the alternative to the aerospace system of systems architecture was mapping from P-space (performance space) to C-space (configuration space), and then from C-space to D-space (design space), respectively. Ultimately, the performance space was mapped to the design space, which completed the exploration and preliminary reduction of the entire design space. This method provides a computational analysis and implementation scheme for large-scale simulation.
Engineering Ultimate Self-Protection in Autonomic Agents for Space Exploration Missions
NASA Technical Reports Server (NTRS)
Sterritt, Roy; Hinchey, Mike
2005-01-01
NASA's Exploration Initiative (EI) will push space exploration missions to the limit. Future missions will be required to be self-managing as well as self-directed, in order to meet the challenges of human and robotic space exploration. We discuss security and self protection in autonomic agent based-systems, and propose the ultimate self-protection mechanism for such systems-self-destruction. Like other metaphors in Autonomic Computing, this is inspired by biological systems, and is the analog of biological apoptosis. Finally, we discus the role it might play in future NASA space exploration missions.
2004-04-05
KENNEDY SPACE CENTER, FLA. -- Astronaut Sam Durrance points to a student with a question in a classroom at Oscar Patterson Elementary Magnet School in Panama City, Fla. Sharing stories of his experiences as an astronaut, Durrance joined Center Director Jim Kennedy, who is visiting Florida and Georgia NASA Explorer Schools to share America’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-04-13
KENNEDY SPACE CENTER, FLA. - Center Director Jim Kennedy (right) talks to Aaron Fernander, principal of Ralph Bunche Middle School, a NASA Explorer School, in Atlanta, Ga. Kennedy is visiting NES sites to share America’s new vision for space exploration with the next generation of explorers. He was accompanied by astronaut Rick Linnehan on the visit. The purpose of the school visit is to talk with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-09-21
KENNEDY SPACE CENTER, FLA. - Jim Jennings, deputy associate administrator for Institutions and Asset Management at NASA Headquarters, talks to students at Gainesville Elementary School, a NASA Explorer School in Gainesville, Ga. Jennings visited the school to share the new vision for space exploration with the next generation of explorers. Also visiting the school was astronaut Leland Melvin and KSC Deputy Director Dr. Woodrow Whitlow Jr., seated at right. Whitlow talked with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-09-21
KENNEDY SPACE CENTER, FLA. - Jim Jennings, deputy associate administrator for Institutions and Asset Management at NASA Headquarters, signs an autograph for a student at Gainesville Elementary School, a NASA Explorer School in Gainesville, Ga. Jennings visited to the school to share the new vision for space exploration with the next generation of explorers. Accompanying him was KSC Deputy Director Dr. Woodrow Whitlow Jr., who talked with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-05-18
KENNEDY SPACE CENTER, FLA. -- Dr. Woodrow Whitlow, KSC deputy director, greets teachers at Trojan Intermediate School in Potosi, Mo. Students from three area schools — Potosi High School, John Evans Middle School and Trojan — are on a team taking part in NASA’s Explorer Schools program. Whitlow visited the school to share America’s new vision for space exploration with the next generation of explorers. He is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-04-13
KENNEDY SPACE CENTER, FLA. - Center Director Jim Kennedy talks to students and faculty at Ralph Bunche Middle School, a NASA Explorer School, in Atlanta, Ga. Kennedy is visiting NES sites to share America’s new vision for space exploration with the next generation of explorers. He was accompanied by astronaut Rick Linnehan on the visit. The purpose of the school visit is to talk with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-04-05
KENNEDY SPACE CENTER, FLA. -- Center Director Jim Kennedy (center) is interviewed by a reporter from channel 7 ABC-TV after his visit to Oscar Patterson Elementary Magnet School in Panama City, Fla. He other NASA officials visited the school to share America’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students at NASA Explorer Schools in Florida and Georgia about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-04-13
KENNEDY SPACE CENTER, FLA. - Astronaut Rick Linnehan talks to a classroom teacher at Ralph Bunche Middle School, a NASA Explorer School, in Atlanta, Ga. Linnehan accompanied Center Director Jim Kennedy, who was visiting the school to share America’s new vision for space exploration with the next generation of explorers. The visit is one of many Kennedy has made to NES sites in Florida and Georgia to talk with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-04-05
KENNEDY SPACE CENTER, FLA. -- Sam Durrance (standing, in the background) shares stories of his experiences as an astronaut with the students in a classroom at Oscar Patterson Elementary Magnet School in Panama City, Fla. Durrance joined Center Director Jim Kennedy as he shares America’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students at NASA Explorer Schools in Florida and Georgia about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-04-05
KENNEDY SPACE CENTER, FLA. -- Astronaut Sam Durrance shares stories of his experiences as an astronaut with enthralled students in a classroom at Oscar Patterson Elementary Magnet School in Panama City, Fla. Durrance joined Center Director Jim Kennedy, who is visiting Florida and Georgia NASA Explorer Schools to share America’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-09-21
KENNEDY SPACE CENTER, FLA. - KSC Deputy Director Dr. Woodrow Whitlow Jr. (left) talks with staff members of Gainesville Elementary School, a NASA Explorer School in Gainesville, Ga. In the background are Bruce Buckingham (left) , NASA KSC News Chief, and Jim Jennings, deputy associate administrator for Institutions and Asset Management at NASA Headquarters. Jennings shared the new vision for space exploration with this next generation of explorers. Whitlow talked with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-05-14
KENNEDY SPACE CENTER, FLA. -- During lunch in the library at Howard A. Doolin Middle School, Miami, Fla., astronaut David Wolf pauses for a photo with a member of the school board. Doolin Middle School is one of 100 to take part in the NASA Explorer Schools program. Wolf joined Center Director Jim Kennedy to share America’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
Lunar base as a precursor to Mars exploration and settlement
NASA Technical Reports Server (NTRS)
Mendell, Wendell W.
1991-01-01
A well planned program of human exploration of the moon is suggested which would provide a base for increasing human capabilities and experience to levels required for Mars exploration. A strategy intended for immediate Mars exploration and settlement is considered to incur serious programmatic risks from current lack of knowledge on human performance on long-duration deep space missions and lack of experience in designing human space systems. The lunar program provides an opportunity to build up space capability in an evolutionary way and to broaden the participation of the educational system in the space exploration.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Astronaut Leland Melvin talks to students at Ronald E. McNair High School in Atlanta, a NASA Explorer School. He accompanied KSC Deputy Director Dr. Woodrow Whitlow Jr., who is visiting to the school to share the vision for space exploration with the next generation of explorers. He talked with students about our destiny as explorers, NASAs stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space. Melvin talked about the importance of teamwork and what it takes for mission success.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Astronaut Leland Melvin involves students at Ronald E. McNair High School in Atlanta, a NASA Explorer School, during a presentation. He accompanied KSC Deputy Director Dr. Woodrow Whitlow Jr., who is visiting to the school to share The vision for space exploration with the next generation of explorers. Whitlow talked with students about our destiny as explorers, NASAs stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space. Melvin talked about the importance of teamwork and what it takes for mission success.
2004-05-14
KENNEDY SPACE CENTER, FLA. -- Center Director Jim Kennedy addresses students and faculty of Howard A. Doolin Middle School, Miami, Fla. Doolin Middle School is one of 100 to take part in the NASA Explorer Schools (NES) program. Kennedy is visiting NES schools in Florida and Georgia to share America’s new vision for space exploration with the next generation of explorers. He is talking with students, about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-05-14
KENNEDY SPACE CENTER, FLA. -- After his presentation at Howard A. Doolin Middle School, Miami, Fla., astronaut David Wolf signs a memento for a student. The school is one of 100 taking part in the NASA Explorer Schools (NES) program. Center Director Jim Kennedy and Wolf visited the school to share America’s new vision for space exploration with the next generation of explorers. They talked with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-05-14
KENNEDY SPACE CENTER, FLA. -- After his presentation at Howard A. Doolin Middle School, Miami, Fla., astronaut David Wolf signs a memento for a student. The school is one of 100 taking part in the NASA Explorer Schools (NES) program. Center Director Jim Kennedy and Wolf visited the school to share America’s new vision for space exploration with the next generation of explorers. They talked with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-05-14
KENNEDY SPACE CENTER, FLA. -- After his presentation, astronaut David Wolf signs a memento for a student at Howard A. Doolin Middle School, Miami, Fla. The school is one of 100 taking part in the NASA Explorer Schools (NES) program. Center Director Jim Kennedy and Wolf visited the school to share America’s new vision for space exploration with the next generation of explorers. They talked with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-05-14
KENNEDY SPACE CENTER, FLA. -- After his presentation at Howard A. Doolin Middle School, Miami, Fla., astronaut David Wolf signs a memento for a student. The school is one of 100 taking part in the NASA Explorer Schools (NES) program. Center Director Jim Kennedy and Wolf visited the school to share America’s new vision for space exploration with the next generation of explorers. They talked with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- KSC Deputy Director Dr. Woodrow Whitlow signs autographs for students at Trojan Intermediate School in Potosi, Mo. Students from three area schools Potosi High School, John Evans Middle School and Trojan are on a team taking part in NASAs Explorer Schools program. Whitlow visited the school to share Americas new vision for space exploration with the next generation of explorers. He is talking with students about our destiny as explorers, NASAs stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Dr. Woodrow Whitlow, KSC deputy director, greets a student outside Trojan Intermediate School in Potosi, Mo. Students from three area schools Potosi High School, John Evans Middle School and Trojan are on a team taking part in NASAs Explorer Schools program. Whitlow visited the school to share Americas new vision for space exploration with the next generation of explorers. He is talking with students about our destiny as explorers, NASAs stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- A reporter from KREI radio interviews KSC Deputy Director Dr. Woodrow Whitlow after his presentation at Trojan Intermediate School in Potosi, Mo. Students from three area schools Potosi High School, John Evans Middle School and Trojan are on a team taking part in NASAs Explorer Schools program. Whitlow is sharing Americas new vision for space exploration with the next generation of explorers. They are talking with students about our destiny as explorers, NASAs stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Dr. Woodrow Whitlow, KSC deputy director, greets teachers at Trojan Intermediate School in Potosi, Mo. Students from three area schools Potosi High School, John Evans Middle School and Trojan are on a team taking part in NASAs Explorer Schools program. Whitlow visited the school to share Americas new vision for space exploration with the next generation of explorers. He is talking with students about our destiny as explorers, NASAs stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-04-12
KENNEDY SPACE CENTER, FLA. - Astronaut Dr. David A. Wolf (center) and External Relations Director Lisa Malone (right) learn about these students’ science project during a visit to Carol City Elementary School, a NASA Explorer School, in Miami, Fla. Wolf and Malone accompanied Center Director Jim Kennedy, who is sharing America’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
Innovative Technologies for Global Space Exploration
NASA Technical Reports Server (NTRS)
Hay, Jason; Gresham, Elaine; Mullins, Carie; Graham, Rachael; Williams-Byrd; Reeves, John D.
2012-01-01
Under the direction of NASA's Exploration Systems Mission Directorate (ESMD), Directorate Integration Office (DIO), The Tauri Group with NASA's Technology Assessment and Integration Team (TAIT) completed several studies and white papers that identify novel technologies for human exploration. These studies provide technical inputs to space exploration roadmaps, identify potential organizations for exploration partnerships, and detail crosscutting technologies that may meet some of NASA's critical needs. These studies are supported by a relational database of more than 400 externally funded technologies relevant to current exploration challenges. The identified technologies can be integrated into existing and developing roadmaps to leverage external resources, thereby reducing the cost of space exploration. This approach to identifying potential spin-in technologies and partnerships could apply to other national space programs, as well as international and multi-government activities. This paper highlights innovative technologies and potential partnerships from economic sectors that historically are less connected to space exploration. It includes breakthrough concepts that could have a significant impact on space exploration and discusses the role of breakthrough concepts in technology planning. Technologies and partnerships are from NASA's Technology Horizons and Technology Frontiers game-changing and breakthrough technology reports as well as the External Government Technology Dataset, briefly described in the paper. The paper highlights example novel technologies that could be spun-in from government and commercial sources, including virtual worlds, synthetic biology, and human augmentation. It will consider how these technologies can impact space exploration and will discuss ongoing activities for planning and preparing them.
JPL-20180131-EXPLORs-0001- 60th Anniversary Explorer 1 The Beginning of the US Space Program
2018-01-31
Flashback to Jan. 31, 1958, the day a rocket carrying a javelin-shaped satellite took flight into space. Explorer 1 was America's first satellite. Here's a look back at the beginning of the Space Age.
2004-05-14
KENNEDY SPACE CENTER, FLA. -- Center Director Jim Kennedy (left) talks to Eduardo Tillet (right), principal of Howard A. Doolin Middle School, Miami, Fla., on his visit to share America’s new vision for space exploration with the next generation of explorers. Kennedy, joined by astronaut David Wolf, is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
"Space, the Final Frontier"; Books on Space and Space Exploration.
ERIC Educational Resources Information Center
Jordan, Anne Devereaux
1997-01-01
Advocates play in a child's life. Describes how science fiction seizes the imaginations of young readers with its tales of the future and of outer space. Talks about various nonfiction books about space. Elaborates a workshop on books about space exploration. Gives 10 questions about stimulating student response. (PA)
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Astronaut David Wolf (left) and Center Director Jim Kennedy (right, with boy) pose for a photo with students and faculty in Howard A. Doolin Middle School, Miami, Fla., plus other NASA and KSC representatives (rear). The school is one of 100 taking part in the NASA Explorer Schools (NES) program. The purpose of Kennedys visit is to share Americas new vision for space exploration with the next generation of explorers. He is talking with students in Florida and Georgia Explorer Schools about our destiny as explorers, NASAs stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-05-14
KENNEDY SPACE CENTER, FLA. -- Astronaut David Wolf (left) and Center Director Jim Kennedy (right, with boy) pose for a photo with students and faculty in Howard A. Doolin Middle School, Miami, Fla., plus other NASA and KSC representatives (rear). The school is one of 100 taking part in the NASA Explorer Schools (NES) program. The purpose of Kennedy’s visit is to share America’s new vision for space exploration with the next generation of explorers. He is talking with students in Florida and Georgia Explorer Schools about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
Our Human Journey to Mars - The Next Steps
NASA Technical Reports Server (NTRS)
Singer, Jody
2016-01-01
The United States National Aeronautics and Space Administration (NASA) will be launching the super-heavy-lift Space Launch System (SLS) by the end of the decade. This launch marks the next steps of human exploration of Mars and continues the journey that began over 50 years ago with Mariner and most recently ExoMars. SLS is the only rocket with the power capable of sending humans to deep space and the large systems necessary for human exploration all the way to Mars. Exploration Mission (EM)-1 will be the first integrated flight of the SLS rocket and Orion spacecraft - journeying farther into space than Apollo. NASA will also expand the science and exploration capability of SLS by deploying thirteen small satellites into deep space for the first time. These small satellites, created through partnerships with small businesses, Universities and international partners, will carry out various scientific missions to better understand our universe and the challenges of living and working in deep space. SLS EM-1 will provide the framework and serve as a test flight, not only for vehicle systems, but also for payload accommodations, ground processing and on-orbit operations. The results of this mission will validate capabilities for sending explorers to Mars and create the opportunity to pioneer solutions to challenges to deep space exploration. SLS's versatile design will evolve for future exploration needs and accommodate bigger payloads, such as large aperture telescopes for scientific research or manned human deep space exploration missions to Mars. The achievement of EM-1 will demonstrate NASA's commitment and capability to extend human existence to deep space and inspire the world to pursue greatness in the exploration of our universe.
ERIC Educational Resources Information Center
Merrill, Barbara, Ed.
This document contains 51 papers from a conference devoted to the theme of exploring spaces in adult education. The following are among the papers included: "Exploring Everyday Spaces: Women's Transitions from Welfare to Paid Work and Education" (Cynthia Lee Andruske); "Lost in Space? Re-valuing the Impact of Education…
NASA Technical Reports Server (NTRS)
Sanders, Gerald B.
2000-01-01
In a letter to the NASA Administrator, Dan Goldin, in January of 1999, the Office of Management and Budget (OMB) stated the following . OMB recommends that NASA consider commercialization in a broader context than the more focused efforts to date on space station and space shuttle commercialization. We suggest that NASA examine architectures that take advantage of a potentially robust future commercial infrastructure that could dramatically lower the cost of future human exploration." In response to this letter, the NASA Human Exploration and Development of Space (HEDS) Enterprise launched the BEDS Technology & Commercialization Initiative (HTCI) to link technology and system development for human exploration with the commercial development of space to emphasize the "D" (Development) in BEDS. The development of technologies and capabilities to utilize space resources is the first of six primary focus areas in this program. It is clear that Space Resources Development (SRD) is key for both long-term human exploration of our solar system and to the long-term commercialization of space since: a) it provides the technologies, products, and raw materials to support efficient space transportation and in-space construction and manufacturing, and b) it provides the capabilities and infrastructure to allow outpost growth, self-sufficiency, and commercial space service and utility industry activities.
60 year anniversary of Explorer 1 launch
2018-01-31
The successful launch of Explorer 1 from Cape Canaveral Florida Jan. 31, 1958, marked the beginning of U.S. space exploration. NASA and the U.S. Air Force 45th Space Wing commemorated the historic launch on Wednesday, Jan. 31, at the Air Force Space and Missile Museum on CCAFS. The museum is located at the launch site where this pioneering mission began. The primary science instrument on board was a cosmic ray detector, which led to Explorer principal investigator James Van Allen's discovery of Earth’s radiation belts, later named the Van Allen belts in his honor. The event speakers included Brig. Gen. Wayne Monteith, commander, 45th Space Wing; Robert Cabana, director, NASA Kennedy Space Center; and John Meisenheimer, Explorer 1 launch weather officer.
Why We Explore: The Value of Space Exploration for Future Generations
NASA Technical Reports Server (NTRS)
Cook, Stephen A.; Armstrong, Robert C., Jr.
2007-01-01
The National Aeronautics and Space Administration (NASA) and its industry partners are making measurable progress toward delivering new human space transportation capabilities to serve as the catalyst for a new era of discovery, as directed by the U.S. Vision for Space Exploration. In the interest of ensuring prolonged support, the Agency encourages space advocates of all stripes to accurately portray both the tangible and intangible benefits of space exploration, especially its value for future generations. This may be done not only by emphasizing the nation's return on its aerospace investment, but also by highlighting enabling security features and by promoting the scientific and technological benefits that accrue from the human exploration of space. As America embarks on a new era of leadership and international partnership on the next frontier, we are poised to master space by living off-planet on the Moon to prepare astronauts for longer journeys to Mars. These and other relevant facts should be clearly in the view of influential decision-makers and the American taxpayers, and we must increasingly involve those on whom the long-term sustainability of space exploration ultimately depends: America's youth. This paper will examine three areas of concrete benefits for future generations: fundamental security, economic enterprise, and high-technology advancements spurred by the innovation that scientific discovery demands.
NASA Space Launch System: A Cornerstone Capability for Exploration
NASA Technical Reports Server (NTRS)
Creech, Stephen D.; Robinson, Kimberly F.
2014-01-01
Under construction today, the National Aeronautics and Space Administration's (NASA) Space Launch System (SLS), managed at the Marshall Space Flight Center, will provide a robust new capability for human and robotic exploration beyond Earth orbit. The vehicle's initial configuration, sched will enable human missions into lunar space and beyond, as well as provide game-changing benefits for space science missions, including offering substantially reduced transit times for conventionally designed spacecraft. From there, the vehicle will undergo a series of block upgrades via an evolutionary development process designed to expedite mission capture as capability increases. The Space Launch System offers multiple benefits for a variety of utilization areas. From a mass-lift perspective, the initial configuration of the vehicle, capable of delivering 70 metric tons (t) to low Earth orbit (LEO), will be the world's most powerful launch vehicle. Optimized for missions beyond Earth orbit, it will also be the world's only exploration-class launch vehicle capable of delivering 25 t to lunar orbit. The evolved configuration, with a capability of 130 t to LEO, will be the most powerful launch vehicle ever flown. From a volume perspective, SLS will be compatible with the payload envelopes of contemporary launch vehicles, but will also offer options for larger fairings with unprecedented volume-lift capability. The vehicle's mass-lift capability also means that it offers extremely high characteristic energy for missions into deep space. This paper will discuss the impacts that these factors - mass-lift, volume, and characteristic energy - have on a variety of mission classes, particularly human exploration and space science. It will address the vehicle's capability to enable existing architectures for deep-space exploration, such as those documented in the Global Exploration Roadmap, a capabilities-driven outline for future deep-space voyages created by the International Space Exploration Coordination Group, which represents 14 of the world's space agencies. In addition, this paper will detail this new rocket's capability to support missions beyond the human exploration roadmap, including robotic precursor missions to other worlds or uniquely high-mass space operation facilities in Earth orbit. As this paper will explain, the SLS Program is currently building a global infrastructure asset that will provide robust space launch capability to deliver sustainable solutions for exploration.
NASA's Space Launch System: A Cornerstone Capability for Exploration
NASA Technical Reports Server (NTRS)
Creech, Stephen D.
2014-01-01
Under construction today, the National Aeronautics and Space Administration's (NASA) Space Launch System (SLS), managed at the Marshall Space Flight Center, will provide a robust new capability for human and robotic exploration beyond Earth orbit. The vehicle's initial configuration, scheduled for first launch in 2017, will enable human missions into lunar space and beyond, as well as provide game-changing benefits for space science missions, including offering substantially reduced transit times for conventionally designed spacecraft. From there, the vehicle will undergo a series of block upgrades via an evolutionary development process designed to expedite mission capture as capability increases. The Space Launch System offers multiple benefits for a variety of utilization areas. From a mass-lift perspective, the initial configuration of the vehicle, capable of delivering 70 metric tons (t) to low Earth orbit (LEO), will be the world's most powerful launch vehicle. Optimized for missions beyond Earth orbit, it will also be the world's only exploration-class launch vehicle capable of delivering 25 t to lunar orbit. The evolved configuration, with a capability of 130 t to LEO, will be the most powerful launch vehicle ever flown. From a volume perspective, SLS will be compatible with the payload envelopes of contemporary launch vehicles, but will also offer options for larger fairings with unprecedented volume-lift capability. The vehicle's mass-lift capability also means that it offers extremely high characteristic energy for missions into deep space. This paper will discuss the impacts that these factors - mass-lift, volume, and characteristic energy - have on a variety of mission classes, particularly human exploration and space science. It will address the vehicle's capability to enable existing architectures for deep-space exploration, such as those documented in the Global Exploration Roadmap, a capabilities-driven outline for future deep-space voyages created by the International Space Exploration Coordination Group, which represents 12 of the world's space agencies. In addition, this paper will detail this new rocket's capability to support missions beyond the human exploration roadmap, including robotic precursor missions to other worlds or uniquely high-mass space operation facilities in Earth orbit. As this paper will explain, the SLS Program is currently building a global infrastructure asset that will provide robust space launch capability to deliver sustainable solutions for exploration.
Future Space Transportation Technology: Prospects and Priorities
NASA Technical Reports Server (NTRS)
Billie, Matt; Reed, Lisa; Harris, David
2003-01-01
The Transportation Working Group (TWG) was chartered by the NASA Exploration Team (NEXT) to conceptualize, define, and advocate within NASA the space transportation architectures and technologies required to enable the human and robotic exploration and development of space envisioned by the NEXT. In 2002, the NEXT tasked the TWG to assess exploration space transportation requirements versus current and prospective Earth-to-Orbit (ETO) and in-space transportation systems, technologies, and research, in order to identify investment gaps and recommend priorities. The result was a study now being incorporated into future planning by the NASA Space Architect and supporting organizations. This paper documents the process used to identify exploration space transportation investment gaps, as well as the group's recommendations for closing these gaps and prioritizing areas of future investment for NASA work on advanced propulsion systems.
"50 Cents, 50 Years": Finding the Value of the Space Program on the Back of a Quarter
NASA Technical Reports Server (NTRS)
Horack, John M.
2008-01-01
Brief presentation highlighting the accomplishments of NASA upon its 50th anniversary. NASA's first manned space flight, voyage to the moon, planetary exploration, space station construction, international cooperation, space habitat construction and the deployment of multiple satellites including the Hubble Space Telescope, Gamma Ray Observatory, Magellan and Galileo. More recent efforts include the construction of the Ares transportation system and a return to human exploration beyond low-Earth orbit. The author also urges for continued space exploration via the National Space Policy through the authorization of Congress.
The history of space exploration
NASA Technical Reports Server (NTRS)
Collins, Martin J.; Kraemer, Sylvia K.
1994-01-01
Presented are the acknowledgements and introduction sections of the book 'Space: Discovery and Exploration.' The goal of the book is to address some basic questions of American space history, including how this history compares with previous eras of exploration, why the space program was initiated when it was, and how the U.S. space program developed. In pursuing these questions, the intention is not to provide exhaustive answers, but to point the reader toward a more varied picture of how our venture in space has intersected with American government, politics, business, and science.
Towards the Establishment of a Strategic Framework for a Global Exploration Strategy.
NASA Technical Reports Server (NTRS)
Messina, Piero
2006-01-01
A viewgraph presentation on the development of space exploration through a framework of the European Space Policy is shown. The topics include: 1) Europe's Involvement in Space Exploration; 2) Different Programs-Similar Goals; 3) International Cooperation; and 4) Establishing an International Cooperation Framework.
Selected topics in robotics for space exploration
NASA Technical Reports Server (NTRS)
Montgomery, Raymond C. (Editor); Kaufman, Howard (Editor)
1993-01-01
Papers and abstracts included represent both formal presentations and experimental demonstrations at the Workshop on Selected Topics in Robotics for Space Exploration which took place at NASA Langley Research Center, 17-18 March 1993. The workshop was cosponsored by the Guidance, Navigation, and Control Technical Committee of the NASA Langley Research Center and the Center for Intelligent Robotic Systems for Space Exploration (CIRSSE) at RPI, Troy, NY. Participation was from industry, government, and other universities with close ties to either Langley Research Center or to CIRSSE. The presentations were very broad in scope with attention given to space assembly, space exploration, flexible structure control, and telerobotics.
Printed Electronic Devices in Human Spaceflight
NASA Technical Reports Server (NTRS)
Bacon, John B.
2004-01-01
The space environment requires robust sensing, control, and automation, whether in support of human spaceflight or of robotic exploration. Spaceflight embodies the known extremes of temperature, radiation, shock, vibration, and static loads, and demands high reliability at the lowest possible mass. Because printed electronic circuits fulfill all these requirements, printed circuit technology and the exploration of space have been closely coupled throughout their short histories. In this presentation, we will explore the space (and space launch) environments as drivers of printed circuit design, a brief history of NASA's use of printed electronic circuits, and we will examine future requirements for such circuits in our continued exploration of space.
2006-06-30
KENNEDY SPACE CENTER, FLA. - At a press conference at NASA's Kennedy Space Center, NASA officials announced the names of the next-generation of rockets for future space exploration. Seated (left to right) are Dolores Beasley, with NASA Public Affairs; Scott Horowitz, NASA associate administrator of the Exploration Systems Mission Directorate; Jeff Hanley, manager of the Constellation Program at Johnson Space Center; and Steve Cook, manager of the Exploration Launch Office at Marshall Space Flight Center. The crew launch vehicle will be called Ares I, and the cargo launch vehicle will be known as Ares V. The name Ares is a pseudonym for Mars and appropriate for NASA's exploration mission. Photo credit: NASA/George Shelton
2006-06-30
KENNEDY SPACE CENTER, FLA. - At a press conference in at NASA's Kennedy Space Center, NASA officials announced the names of the next-generation of rockets for future space exploration. Seated at the dais are (left to right) Scott Horowitz, NASA associate administrator of the Exploration Systems Mission Directorate; Jeff Hanley, manager of the Constellation Program at Johnson Space Center; and Steve Cook, manager of the Exploration Launch Office at Marshall Space Flight Center. The crew launch vehicle will be called Ares I, and the cargo launch vehicle will be known as Ares V. The name Ares is a pseudonym for Mars and appropriate for NASA's exploration mission. Photo credit: NASA/George Shelton
New NASA Technologies for Space Exploration
NASA Technical Reports Server (NTRS)
Calle, Carlos I.
2015-01-01
NASA is developing new technologies to enable planetary exploration. NASA's Space Launch System is an advance vehicle for exploration beyond LEO. Robotic explorers like the Mars Science Laboratory are exploring Mars, making discoveries that will make possible the future human exploration of the planet. In this presentation, we report on technologies being developed at NASA KSC for planetary exploration.
2004-04-13
KENNEDY SPACE CENTER, FLA. - A teacher (right) at Ralph Bunche Middle School, a NASA Explorer School, in Atlanta, Ga., shows a science project to astronaut Rick Linnehan (left) and Center Director Jim Kennedy (center). Linnehan and Kennedy were at the school to share America’s new vision for space exploration with the next generation of explorers. The visit is one of many Kennedy has made to NES sites in Florida and Georgia to talk with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-05-18
KENNEDY SPACE CENTER, FLA. -- Astronaut Dom Gorie joins faculty members of Trojan Intermediate School in Potosi, Mo., for a photo. Students from three area schools — Potosi High School, John Evans Middle School and Trojan — are on a team taking part in NASA’s Explorer Schools program. KSC Deputy Director Dr. Woodrow Whitlow and Gore are sharing America’s new vision for space exploration with the next generation of explorers. They are talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-05-18
KENNEDY SPACE CENTER, FLA. -- A reporter from KJFF radio interviews astronaut Dom Gorie after his presentation at Trojan Intermediate School in Potosi, Mo. Students from three area schools — Potosi High School, John Evans Middle School and Trojan — are on a team taking part in NASA’s Explorer Schools program. KSC Deputy Director Dr. Woodrow Whitlow and Gore are sharing America’s new vision for space exploration with the next generation of explorers. They are talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-05-14
KENNEDY SPACE CENTER, FLA. -- Eduardo Tillet, principal of Howard A. Doolin Middle School, Miami, Fla., welcomes Center Director Jim Kennedy, plus NASA and KSC representatives, to the school. Doolin Middle School is one of 100 to take part in the NASA Explorer Schools (NES) program. Kennedy is talking with students, about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space. He is visiting NES schools in Florida and Georgia to share America’s new vision for space exploration with the next generation of explorers.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Astronaut Dom Gorie signs autographs for students at Trojan Intermediate School in Potosi, Mo. Gorie accompanied KSC Deputy Director Dr. Woodrow Whitlow on a visit to the school to share Americas new vision for space exploration with the next generation of explorers. They are talking with students about our destiny as explorers, NASAs stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space. Students from three area schools Potosi High School, John Evans Middle School and Trojan are on a team taking part in NASAs Explorer Schools program.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- At Trojan Intermediate School in Potosi, Mo., astronaut Dom Gorie poses with two members of the school district. Students from three area schools Potosi High School, John Evans Middle School and Trojan are on a team taking part in NASAs Explorer Schools program. Gorie accompanied KSC Deputy Director Dr. Woodrow Whitlow on a visit to the school to share Americas new vision for space exploration with the next generation of explorers. Whitlow and Gorie are talking with students about our destiny as explorers, NASAs stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Astronaut Dom Gorie presents a photo montage to Jo Peukert, principal of Trojan Intermediate School in Potosi, Mo. Gorie accompanied KSC Deputy Director Dr. Woodrow Whitlow on a visit to the school to share Americas new vision for space exploration with the next generation of explorers. They are talking with students about our destiny as explorers, NASAs stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space. Students from three area schools Potosi High School, John Evans Middle School and Trojan are on a team taking part in NASAs Explorer Schools program.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Astronaut Dom Gorie joins students at Trojan Intermediate School in Potosi, Mo., for a group photo. Students from three area schools Potosi High School, John Evans Middle School and Trojan are on a team taking part in NASAs Explorer Schools program. Gorie accompanied KSC Deputy Director Dr. Woodrow Whitlow on a visit to the school to share Americas new vision for space exploration with the next generation of explorers. They are talking with students about our destiny as explorers, NASAs stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Astronaut Dom Gorie signs autographs for students at Trojan Intermediate School in Potosi, Mo. Gorie accompanied KSC Deputy Director Dr. Woodrow Whitlow on a visit to the school to share Americas new vision for space exploration with the next generation of explorers. They are talking with students about our destiny as explorers, NASAs stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space. Students from three area schools Potosi High School, John Evans Middle School and Trojan are on a team taking part in NASAs Explorer Schools program.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Astronaut Dom Gorie (left) and KSC Deputy Director Dr. Woodrow Whitlow (right) join students in the gymnasium stands at Trojan Intermediate School in Potosi, Mo. Students from three area schools Potosi High School, John Evans Middle School and Trojan are on a team taking part in NASAs Explorer Schools program. Whitlow and astronaut Dom Gorie are sharing Americas new vision for space exploration with the next generation of explorers. They are talking with students about our destiny as explorers, NASAs stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Astronaut Dom Gorie (left) talks with KSC Deputy Director Dr. Woodrow Whitlow during a visit to Trojan Intermediate School in Potosi, Mo. Students from three area schools Potosi High School, John Evans Middle School and Trojan are on a team taking part in NASAs Explorer Schools program. Gorie accompanied Whitlow on a visit to the school to share Americas new vision for space exploration with the next generation of explorers. They are talking with students about our destiny as explorers, NASAs stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- A reporter from KJFF radio interviews astronaut Dom Gorie after his presentation at Trojan Intermediate School in Potosi, Mo. Students from three area schools Potosi High School, John Evans Middle School and Trojan are on a team taking part in NASAs Explorer Schools program. KSC Deputy Director Dr. Woodrow Whitlow and Gore are sharing Americas new vision for space exploration with the next generation of explorers. They are talking with students about our destiny as explorers, NASAs stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Mayor Wayne Malugen of Potosi, Mo., poses with astronaut Dom Gorie after a presentation by KSC Deputy Director Dr. Woodrow Whitlow and Gorie to students and faculty at Trojan Intermediate School. Whitlow and Gorie are sharing Americas new vision for space exploration with the next generation of explorers. They are talking with students about our destiny as explorers, NASAs stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space. Students from three area schools Potosi High School, John Evans Middle School and Trojan are on a team taking part in NASAs Explorer Schools program.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- At Trojan Intermediate School in Potosi, Mo., astronaut Dom Gorie talks to students and teachers. Students from three area schools Potosi High School, John Evans Middle School and Trojan are on a team taking part in NASAs Explorer Schools program. Gorie accompanied KSC Deputy Director Dr. Woodrow Whitlow on a visit to the school to share Americas new vision for space exploration with the next generation of explorers. Whitlow and Gorie are talking with students about our destiny as explorers, NASAs stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
NASA Strategic Roadmap Summary Report
NASA Technical Reports Server (NTRS)
Wilson, Scott; Bauer, Frank; Stetson, Doug; Robey, Judee; Smith, Eric P.; Capps, Rich; Gould, Dana; Tanner, Mike; Guerra, Lisa; Johnston, Gordon
2005-01-01
In response to the Vision, NASA commissioned strategic and capability roadmap teams to develop the pathways for turning the Vision into a reality. The strategic roadmaps were derived from the Vision for Space Exploration and the Aldrich Commission Report dated June 2004. NASA identified 12 strategic areas for roadmapping. The Agency added a thirteenth area on nuclear systems because the topic affects the entire program portfolio. To ensure long-term public visibility and engagement, NASA established a committee for each of the 13 areas. These committees - made up of prominent members of the scientific and aerospace industry communities and senior government personnel - worked under the Federal Advisory Committee Act. A committee was formed for each of the following program areas: 1) Robotic and Human Lunar Exploration; 2) Robotic and Human Exploration of Mars; 3) Solar System Exploration; 4) Search for Earth-Like Planets; 5) Exploration Transportation System; 6) International Space Station; 7) Space Shuttle; 8) Universe Exploration; 9) Earth Science and Applications from Space; 10) Sun-Solar System Connection; 11) Aeronautical Technologies; 12) Education; 13) Nuclear Systems. This document contains roadmap summaries for 10 of these 13 program areas; The International Space Station, Space Shuttle, and Education are excluded. The completed roadmaps for the following committees: Robotic and Human Exploration of Mars; Solar System Exploration; Search for Earth-Like Planets; Universe Exploration; Earth Science and Applications from Space; Sun-Solar System Connection are collected in a separate Strategic Roadmaps volume. This document contains memebership rosters and charters for all 13 committees.
Global partnerships: Expanding the frontiers of space exploration education
NASA Astrophysics Data System (ADS)
MacLeish, Marlene Y.; Akinyede, Joseph O.; Goswami, Nandu; Thomson, William A.
2012-11-01
Globalization is creating an interdependent space-faring world and new opportunities for international partnerships that strengthen space knowledge development and transfer. These opportunities have been codified in the Global Exploration Strategy, which endorses the "inspirational and educational value of space exploration" [1]. Also, during the 2010 Heads of Space Agencies Summit celebrating the International Academy of Astronautics' (IAA) 50th Anniversary, space-faring nations from across the globe issued a collective call in support of robust international partnerships to expand the frontiers of space exploration and generate knowledge for improving life on Earth [2]. Educators play a unique role in this mission, developing strategic partnerships and sharing best educational practices to (1) further global understanding of the benefits of space exploration for life on Earth and (2) prepare the next generation of scientists required for the 21st Century space workforce. Educational Outreach (EO) programs use evidence-based, measurable outcomes strategies and cutting edge information technologies to transfer space-based science, technology, engineering and mathematics (STEM) knowledge to new audiences; create indigenous materials with cultural resonance for emerging space societies; support teacher professional development; and contribute to workforce development initiatives that inspire and prepare new cohorts of students for space exploration careers. The National Space Biomedical Research Institute (NSBRI), the National Aeronautics and Space Administration (NASA) and Morehouse School of Medicine (MSM) have sustained a 13-year space science education partnership dedicated to these objectives. This paper briefly describes the design and achievements of NSBRI's educational programs, with special emphasis on those initiatives' involvement with IAA and the International Astronautical Congress (IAC). The IAA Commission 2 Draft Report, Space for Africa, is discussed as a model for developing sustainable partnerships and indigenous programs that support Africa's steady emergence as a global space-faring force. The IAC will provide timely: 2011 South Africa will provide timely feedback to refine that report's strategies for space life sciences education and public engagement in Africa and around the globe.
NASA Technical Reports Server (NTRS)
1999-01-01
The purpose of the Space 2000 Symposium is to present the creativity and achievements of key figures of the 20th century. It offers a retrospective discussion on space exploration. It considers the future of the enterprise, and the legacy that will be left for future generations. The symposium includes panel discussions, smaller session meetings with some panelists, exhibits, and displays. The first session entitled "From Science Fiction to Science Facts" commences after a brief overview of the symposium. The panel discussions include talks on space exploration over many decades, and the missions of the millennium to search for life on Mars. The second session, "Risks and Rewards of Human Space Exploration," focuses on the training and health risks that astronauts face on their exploratory mission to space. Session three, "Messages and Messengers Informing and Inspire Space Exploration and the Public," focuses on the use of TV medium by educators and actors to inform and inspire a wide variety of audiences with adventures of space exploration. Session four, "The Legacy of Carl Sagan," discusses the influences made by Sagan to scientific research and the general public. In session five, "Space Exploration for a new Generation," two student speakers and the NASA Administrator Daniel S. Goldin address the group. Session six, "Destiny or Delusion? -- Humankind's Place in the Cosmos," ends the symposium with issues of space exploration and some thought provoking questions. Some of these issues and questions are: what will be the societal implications if we discover the origin of the universe, stars, or life; what will be the impact if scientists find clear evidence of life outside the domains of the Earth; should there be limits to what humans can or should learn; and what visionary steps should space-faring people take now for future generations.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Students at Immokalee Middle School in Naples, Fla., walk to Immokalee High School for a special presentation in the auditorium by Center Director Jim Kennedy and astronaut Terry Virts. Immokalee is part of NASAs Explorer School (NES) Program and is teamed with Pine Ridge Middle School. Kennedy is visiting the school to share the vision for space exploration with the next generation of explorers. He is talking with students about our destiny as explorers, NASAs stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space. NES establishes a three-year partnership annually between NASA and 50 NASA Explorer Schools teams, consisting of teachers and education administrators from diverse communities nationwide.
Orders of magnitude: A history of NACA and NASA, 1915-1976
NASA Technical Reports Server (NTRS)
Anderson, F. W.
1976-01-01
A brief history of aeronautics and space exploration is presented. The Federal government's role in contributing, by research and development, to the advancement of aeronautics and space exploration is emphasized. The flight of man is traced from Kitty Hawk to walks and rides on the surface of the moon. Orbiting Solar Observatories, Orbiting Observatories, planetary exploration (Mariner Space Probes, Pioneer Space Probes) the Earth Resources Program, and Skylab are included. The development of the space shuttle is also discussed.
Life sciences interests in Mars missions
NASA Technical Reports Server (NTRS)
Rummel, John D.; Griffiths, Lynn D.
1989-01-01
NASA's Space Life Sciences research permeates plans for Mars missions and the rationale for the exploration of the planet. The Space Life Sciences program has three major roles in Mars mission studies: providing enabling technology for piloted missions, conducting scientific exploration related to the origin and evolution of life, and protecting space crews from the adverse physiological effects of space flight. This paper presents a rationale for exploration and some of the issues, tradeoffs, and visions being addressed in the Space Life Sciences program in preparation for Mars missions.
Space exploration: The interstellar goal and Titan demonstration
NASA Technical Reports Server (NTRS)
1982-01-01
Automated interstellar space exploration is reviewed. The Titan demonstration mission is discussed. Remote sensing and automated modeling are considered. Nuclear electric propulsion, main orbiting spacecraft, lander/rover, subsatellites, atmospheric probes, powered air vehicles, and a surface science network comprise mission component concepts. Machine, intelligence in space exploration is discussed.
2004-04-05
KENNEDY SPACE CENTER, FLA. -- Two student “astronauts” welcome special NASA guests to Oscar Patterson Elementary Magnet School in Panama City, Fla. Center Director Jim Kennedy made the trip with NASA astronaut Sam Durrance and other NASA-KSC representatives to share America’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-04-05
KENNEDY SPACE CENTER, FLA. -- Astronaut Sam Durrance (right) talks to a student and teacher at Oscar Patterson Elementary Magnet School in Panama City, Fla. He and Center Director Jim Kennedy, along with other NASA representatives, visited the school to share America’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-04-05
KENNEDY SPACE CENTER, FLA. -- Astronaut Sam Durrance signs the costume helmet of one of the students who welcomed NASA representatives to Oscar Patterson Elementary Magnet School in Panama City, Fla. He and Center Director Jim Kennedy, along with others, visited the school to share America’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. (From left) Dr. Julian Earls, director of NASA Glenn Research Center, astronaut Leland Melvin, Sara Thompson, team lead, and KSC Deputy Director Dr. Woodrow Whitlow Jr. pose for a photo at Ronald E. McNair High School in Atlanta, a NASA Explorer School, after a presentation. Dr. Whitlow visited the school to share The vision for space exploration with the next generation of explorers. Whitlow talked with students about our destiny as explorers, NASAs stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space. Dr. Earls discussed the future and the vision for space, plus the NASA careers needed to meet the vision. Melvin talked about the importance of teamwork and what it takes for mission success.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Dr. Julian Earls, director of the NASA Glenn Research Center, talks to students at Ronald E. McNair High School in Atlanta, a NASA Explorer School. He accompanied KSC Deputy Director Dr. Woodrow Whitlow Jr., who is visiting to the school to share the vision for space exploration with the next generation of explorers. Dr. Earls discussed the future and the vision for space, plus the NASA careers needed to meet the vision. Astronaut Leland Melvin (far right) accompanied Whitlow, talking with students about the importance of teamwork and what it takes for mission success. Whitlow talked with students about our destiny as explorers, NASAs stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
Space Science in Action: Space Exploration [Videotape].
ERIC Educational Resources Information Center
1999
In this videotape recording, students learn about the human quest to discover what is out in space. Students see the challenges and benefits of space exploration including the development of rocket science, a look back at the space race, and a history of manned space travel. A special section on the Saturn V rocket gives students insight into the…
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Astronaut Terry Virts questions students from Immokalee Middle School in Naples, Fla., which is part of NASAs Explorer School (NES) Program. Virts spoke about what it takes for mission success and the importance of teamwork. Virts accompanied Center Director Jim Kennedy on the visit to the school to share the vision for space exploration with the next generation of explorers. Immokalee is part of NASAs Explorer School (NES) Program and is teamed with Pine Ridge Middle School. Kennedy is talking with students about our destiny as explorers, NASAs stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space. NES establishes a three- year partnership annually between NASA and 50 NASA Explorer Schools teams, consisting of teachers and education administrators from diverse communities nationwide.
NASA Technical Reports Server (NTRS)
1975-01-01
Future plans and programs of the space agency are discussed. Topics discussed include solar energy, space stations, planetary exploration, interstellar exploration, the space shuttles, and satellites.
NASA Astrophysics Data System (ADS)
Johnson, Bradley; May, Gayle L.; Korn, Paula
The present conference discusses the currently envisioned goals of human-machine systems in spacecraft environments, prospects for human exploration of the solar system, and plausible methods for meeting human needs in space. Also discussed are the problems of human-machine interaction in long-duration space flights, remote medical systems for space exploration, the use of virtual reality for planetary exploration, the alliance between U.S. Antarctic and space programs, and the economic and educational impacts of the U.S. space program.
Atmosphere Revitalization Technology Development for Crewed Space Exploration
NASA Technical Reports Server (NTRS)
Perry, Jay L.; Carrasquillo, Robyn L.; Harris, Danny W.
2006-01-01
As space exploration objectives extend human presence beyond low Earth orbit, the solutions to technological challenges presented by supporting human life in the hostile space environment must build upon experience gained during past and present crewed space exploration programs. These programs and the cabin atmosphere revitalization process technologies and systems developed for them represent the National Aeronautics and Space Administration s (NASA) past and present operational knowledge base for maintaining a safe, comfortable environment for the crew. The contributions of these programs to the NASA s technological and operational working knowledge base as well as key strengths and weaknesses to be overcome are discussed. Areas for technological development to address challenges inherent with the Vision for Space Exploration (VSE) are presented and a plan for their development employing unit operations principles is summarized
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Adm. Craig Steidle, associate administrator for Exploration Systems, speaks to attendees of the One NASA Leader-Led Workshop about the Agency plan for achieving the Vision for Space Exploration. The workshop included senior leadership in the Agency who talked about ongoing Transformation activities and Kennedys role in the Vision for Space Exploration.
The political and legal aspects of space applications
NASA Technical Reports Server (NTRS)
Hanessian, J., Jr.
1972-01-01
The political and legal repercussions of space programs both domestic and foreign are explored. Emphasis are placed on earth resources exploration (exploration based on information rights), jurisdictional problems, problems of sharing space benefits with other countries, criminal launch and use of satellites, intrusion into territorial sovereignty, and problems of establishing data ownership.
Exploring Engaged Spaces in Community-University Partnership
ERIC Educational Resources Information Center
Davies, Ceri; Gant, Nick; Millican, Juliet; Wolff, David; Prosser, Bethan; Laing, Stuart; Hart, Angie
2016-01-01
The Community University Partnership Programme (CUPP) has been operating at the University of Brighton for the past 10 years. This article explores the different types of space we think need to exist to support a variety of partnership and engaged work. We therefore explore our understandings of shared or "engaged" spaces as a physical,…
Exploration Architecture Options - ECLSS, EVA, TCS Implications
NASA Technical Reports Server (NTRS)
Chambliss, Joe; Henninger, Don; Lawrence, Carl
2010-01-01
Many options for exploration of space have been identified and evaluated since the Vision for Space Exploration (VSE) was announced in 2004. Lunar architectures have been identified and addressed in the Lunar Surface Systems team to establish options for how to get to and then inhabit and explore the moon. The Augustine Commission evaluated human space flight for the Obama administration and identified many options for how to conduct human spaceflight in the future. This paper will evaluate the options for exploration of space for the implications of architectures on the Environmental Control and Life Support (ECLSS), ExtraVehicular Activity (EVA) and Thermal Control System (TCS) Systems. The advantages and disadvantages of each architecture and options are presented.
2004-04-05
KENNEDY SPACE CENTER, FLA. -- Pam Biegert (back to camera), chief of KSC’s Education Programs and University Research Office, praises the costumes of two students who welcomed NASA representatives to Oscar Patterson Elementary Magnet School in Panama City, Fla. At left is astronaut Sam Durrance, and at right is Center Director Jim Kennedy. NASA-KSC officials are visiting NASA Explorer Schools in Florida and Georgia to share America’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-05-18
KENNEDY SPACE CENTER, FLA. -- At Trojan Intermediate School in Potosi, Mo., astronaut Dom Gorie talks to students and teachers. Students from three area schools— Potosi High School, John Evans Middle School and Trojan — are on a team taking part in NASA’s Explorer Schools program. Gorie accompanied KSC Deputy Director Dr. Woodrow Whitlow on a visit to the school to share America’s new vision for space exploration with the next generation of explorers. Whitlow and Gorie are talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-04-13
KENNEDY SPACE CENTER, FLA. - Center Director Jim Kennedy (center) and Principal Aaron Fernander (right) visit a classroom in Ralph Bunche Middle School, a NASA Explorer School, in Atlanta, Ga. At left is Ralph Thomas, assistant administrator for Small and Disadvantaged Business Utilization at NASA. Kennedy is visiting NES sites to share America’s new vision for space exploration with the next generation of explorers. He was accompanied by astronaut Rick Linnehan on the visit. The purpose of the school visit is to talk with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Astronaut Leland Melvin signs autographs for students at Gainesville Elementary School, a NASA Explorer School in Gainesville, Ga. Melvin joined Jim Jennings, deputy associate administrator for Institutions and Asset Management at NASA Headquarters, on the visit to the school to share the new vision for space exploration with the next generation of explorers. Melvin talked about the importance of teamwork and what it takes for mission success. Also visiting was KSC Deputy Director Woodrow Whitlow Jr., who talked with students about our destiny as explorers, NASAs stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Astronaut Leland Melvin joins students in the cafeteria at Gainesville Elementary School, a NASA Explorer School in Gainesville, Ga. Melvin joined Jim Jennings, deputy associate administrator for Institutions and Asset Management at NASA Headquarters, on the visit to the school to share the new vision for space exploration with the next generation of explorers. Melvin talked about the importance of teamwork and what it takes for mission success. Also visiting was KSC Deputy Director Woodrow Whitlow Jr., who talked with students about our destiny as explorers, NASAs stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Astronaut Leland Melvin talks to students in the cafeteria at Gainesville Elementary School, a NASA Explorer School in Gainesville, Ga. Melvin joined Jim Jennings, deputy associate administrator for Institutions and Asset Management at NASA Headquarters, on the visit to the school to share the new vision for space exploration with the next generation of explorers. Melvin talked about the importance of teamwork and what it takes for mission success. Also visiting was KSC Deputy Director Woodrow Whitlow Jr., who talked with students about our destiny as explorers, NASAs stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Astronaut Leland Melvin talks and interacts with students at Gainesville Elementary School, a NASA Explorer School in Gainesville, Ga. Melvin joined Jim Jennings, deputy associate administrator for Institutions and Asset Management at NASA Headquarters, on the visit to the school to share the new vision for space exploration with the next generation of explorers. Also accompanying Jennings was KSC Deputy Director Dr. Woodrow Whitlow Jr., who talked with students about our destiny as explorers, NASAs stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space. Melvin talked about the importance of teamwork and what it takes for mission success.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Astronaut Leland Melvin talks and interacts with students at Gainesville Elementary School, a NASA Explorer School in Gainesville, Ga. Melvin joined Jim Jennings, deputy associate administrator for Institutions and Asset Management at NASA Headquarters, on the visit to the school to share the new vision for space exploration with the next generation of explorers. Also accompanying Jennings was KSC Deputy Director Dr. Woodrow Whitlow Jr., who talked with students about our destiny as explorers, NASAs stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space. Melvin talked about the importance of teamwork and what it takes for mission success.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. KSC Deputy Director Dr. Woodrow Whitlow Jr. (far right) asks students questions at Gainesville Elementary School, a NASA Explorer School in Gainesville, Ga. Whitlow and astronaut Leland Melvin (center) accompanied Jim Jennings (at left), deputy associate administrator for Institutions and Asset Management at NASA Headquarters, on the visit to the school to share the new vision for space exploration with the next generation of explorers. Whitlow talked with students about our destiny as explorers, NASAs stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space. Melvin talked about the importance of teamwork and what it takes for mission success.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Astronaut Dom Gorie (left) talks with a faculty member during a visit to Trojan Intermediate School in Potosi, Mo. Students from three area schools Potosi High School, John Evans Middle School and Trojan are on a team taking part in NASAs Explorer Schools program. Gorie accompanied KSC Deputy Director Dr. Woodrow Whitlow on a visit to the school to share Americas new vision for space exploration with the next generation of explorers. Whitlow and Gorie are talking with students about our destiny as explorers, NASAs stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Prior to a presentation at Trojan Intermediate School in Potosi, Mo., Amber Marek, KSC Deputy Director Dr. Woodrow Whitlow, astronaut Dom Gorie, Superintendent of Schools Randy Davis and Principal Jo Peukert salute the American flag. Students from three area schools Potosi High School, John Evans Middle School and Trojan are on a team taking part in NASAs Explorer Schools program. Whitlow and Gorie are visiting the school to share Americas new vision for space exploration with the next generation of explorers. They are talking with students about our destiny as explorers, NASAs stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-09-28
KENNEDY SPACE CENTER, FLA. - Les Gold, Aerospace Education specialist with KSC, speaks to students at Immokalee Middle School in Naples, Fla. At right is astronaut Terry Virts. Gold and Virts accompanied Center Director Jim Kennedy for a presentation at the school to share the vision for space exploration with the next generation of explorers. Immokalee is part of NASA’s Explorer School (NES) Program and is teamed with Pine Ridge Middle School. Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space. NES establishes a three-year partnership annually between NASA and 50 NASA Explorer Schools teams, consisting of teachers and education administrators from diverse communities nationwide.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Astronaut Terry Virts talks to students and staff of Immokalee Middle School in Naples, Fla., about what it takes for mission success and the importance of teamwork. Virts accompanied Center Director Jim Kennedy on the visit to the school to share the vision for space exploration with the next generation of explorers. Immokalee is part of NASAs Explorer School (NES) Program and is teamed with Pine Ridge Middle School. Kennedy is talking with students about our destiny as explorers, NASAs stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space. NES establishes a three-year partnership annually between NASA and 50 NASA Explorer Schools teams, consisting of teachers and education administrators from diverse communities nationwide.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Astronaut Terry Virts talks to students and staff of Immokalee Middle School in Naples, Fla., about what it takes for mission success and the importance of teamwork. Virts accompanied Center Director Jim Kennedy on the visit to the school to share the vision for space exploration with the next generation of explorers. Immokalee is part of NASAs Explorer School (NES) Program and is teamed with Pine Ridge Middle School. Kennedy is talking with students about our destiny as explorers, NASAs stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space. NES establishes a three-year partnership annually between NASA and 50 NASA Explorer Schools teams, consisting of teachers and education administrators from diverse communities nationwide.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Principal Albert Sye, astronaut Leland Melvin, Dr. Julian Earls and KSC Deputy Director Dr. Woodrow Whitlow Jr. share the stage at Ronald E. McNair High School in Atlanta, a NASA Explorer School. Dr. Earls is director of the NASA Glenn Research Center. He joined Dr. Whitlow on a visit to the school to share the vision for space exploration with the next generation of explorers. Whitlow talked with students about our destiny as explorers, NASAs stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space. Dr. Earls discussed the future and the vision for space, plus the NASA careers needed to meet the vision. Melvin talked about the importance of teamwork and what it takes for mission success.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. KSC Deputy Director Dr. Woodrow Whitlow Jr. talks to students at Ronald E. McNair High School in Atlanta, a NASA Explorer School. He is visiting to the school to share the vision for space exploration with the next generation of explorers. Astronaut Leland Melvin(second from right) accompanied Whitlow, talking with students about the importance of teamwork and what it takes for mission success. Also on the visit was Dr. Julian Earls (far right), director of NASA Glenn Research Center, who discussed the future and the vision for space, plus the NASA careers needed to meet the vision. Whitlow talked with students about our destiny as explorers, NASAs stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
Evolution of space drones for planetary exploration: A review
NASA Astrophysics Data System (ADS)
Hassanalian, M.; Rice, D.; Abdelkefi, A.
2018-02-01
In the past decade, there has been a tendency to design and fabricate drones which can perform planetary exploration. Generally, there are various ways to study space objects, such as the application of telescopes and satellites, launching robots and rovers, and sending astronauts to the targeted solar bodies. However, due to the advantages of drones compared to other approaches in planetary exploration, ample research has been carried out by different space agencies in the world, including NASA to apply drones in other solar bodies. In this review paper, several studies which have been performed on space drones for planetary exploration are consolidated and discussed. Design and fabrication challenges of space drones, existing methods for their flight tests, different methods for deployment and planet entry, and various navigation and control approaches are reviewed and discussed elaborately. Limitations of applying space drones, proposed solutions for future space drones, and recommendations are also presented and discussed.
Human space exploration the next fifty years.
Williams, David R; Turnock, Matthew
2011-06-01
Preparation for the fiftieth anniversary of human spaceflight in the spring of 2011 provides the space faring nations with an opportunity to reflect on past achievements as well as consider the next fifty years of human spaceflight. The International Space Station is a unique platform for long duration life science research that will play a critical role in preparing for future human space exploration beyond low earth orbit. Some feel the future path back to the Moon and on to Mars may be delayed with the current commitment of the United States to support the development of human-rated commercial spacecraft. Others see this as a unique opportunity to leverage the capability of the private sector in expanding access to space exploration. This article provides an overview of the past achievements in human spaceflight and discusses future missions over the next fifty years and the role space medicine will play in extending the time-distance constant of human space exploration.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Hampton, VA. Langley Research Center.
The National Aeronautics and Space Administration's (NASA) Space Launch Initiative (SLI) Program will ultimately move from the explorations of the Mercury, Gemini, Apollo, and Space Shuttle missions to a new period of pioneering in which people and businesses are more routinely traveling, working, and living in space. (Author/NB)
NASA Technical Reports Server (NTRS)
Sullivan, Thomas A.; Mckay, David S.
1991-01-01
The topics covered include the following: reducing the cost of space exploration; the high cost of shipping; lunar raw materials; some useful space products; energy from the moon; ceramic, glass, and concrete construction materials; mars atmosphere resources; relationship to the Space Exploration Initiative (SEI); an evolutionary approach to using space resources; technology development; and oxygen and metal coproduction.
NASA Exploration Team (NExT) In-Space Transportation Overview
NASA Technical Reports Server (NTRS)
Drake, Bret G.; Cooke, Douglas R.; Kos, Larry D.; Brady, Hugh J. (Technical Monitor)
2002-01-01
This presentation provides an overview of NASA Exploration Team's (NEXT) vision of in-space transportation in the future. Hurdles facing in-space transportation include affordable power sources, crew health and safety, optimized robotic and human operations and space systems performance. Topics covered include: exploration of Earth's neighborhood, Earth's neighborhood architecture and elements, Mars mission trajectory options, delta-v variations, Mars mission duration options, Mars mission architecture, nuclear electric propulsion advantages and miscellaneous technology needs.
The art and science of mission patches and their origins in society
NASA Astrophysics Data System (ADS)
Brumfitt, A.; Thompson, L. A.; Raitt, D.
2008-06-01
Space exploration utilizes some of the latest and highest technology available to human kind; synonymous with space exploration is the mission patch. This specialized art form popularizes the exploration of space with millions of mission patches sold around the world. Space tourism and education centres like the Kennedy Space Centre rely heavily on each space shuttle launch to support their merchandising of mission patches, from the traditional sew on badge to T shirts. Do mission patches tell a story? Are they Art? What is the origin and role of this art form in society? The art form of space mission patches combines the 21st century relevance with heraldic origins predating the ninth century. The space mission patch is designed by the astronauts themselves if it is a manned mission. As an education tool teachers and educators use the space mission patch to engage their students in the excitement of space exploration, the mission patch design is utilized as an education tool in literature, science and art. The space mission patch is a particularly powerful message medium. This paper looks at the origins of the space mission patch, its relevance to art and its impact on society.
Space Exploration Initiative set as a national priority - Responding to national policies and needs
NASA Technical Reports Server (NTRS)
Henn, Jay M.; Reeves, Richard A.
1992-01-01
NASA's Space Exploration Initiative (SEI), through its complementary robotic and human exploration activities, offers a unique opportunity for the establishment of American preeminence in scientific research and technology development, as well as in their educational and economic spinoffs. Attention is given to the preclusion of the problem encountered in space exploration activities in the past by leaving the discovery and development of their various 'spinoffs' to chance.
NASA's Exploration Architecture
NASA Technical Reports Server (NTRS)
Tyburski, Timothy
2006-01-01
A Bold Vision for Space Exploration includes: 1) Complete the International Space Station; 2) Safely fly the Space Shuttle until 2010; 3) Develop and fly the Crew Exploration Vehicle no later than 2012; 4) Return to the moon no later than 2020; 5) Extend human presence across the solar system and beyond; 6) Implement a sustained and affordable human and robotic program; 7) Develop supporting innovative technologies, knowledge, and infrastructures; and 8) Promote international and commercial participation in exploration.
Medical concerns for exploration-class missions
NASA Technical Reports Server (NTRS)
Stewart, Donald F.; Lujan, Barbara
1991-01-01
The Space Exploration initiative will challenge life scientists with a diverse set of crew medical risks. The varied sources of this cumulative risk are identified and briefly discussed in terms of risk assessment and preliminary plans for risk management. The roles of Space Station Freedom and other flight programs are discussed in the context of exploration medical objectives. The significant differences between Space Station era (second generation) and exploration medical support systems (third generation) are reviewed.
NASA Space Exploration Logistics Workshop Proceedings
NASA Technical Reports Server (NTRS)
deWeek, Oliver; Evans, William A.; Parrish, Joe; James, Sarah
2006-01-01
As NASA has embarked on a new Vision for Space Exploration, there is new energy and focus around the area of manned space exploration. These activities encompass the design of new vehicles such as the Crew Exploration Vehicle (CEV) and Crew Launch Vehicle (CLV) and the identification of commercial opportunities for space transportation services, as well as continued operations of the Space Shuttle and the International Space Station. Reaching the Moon and eventually Mars with a mix of both robotic and human explorers for short term missions is a formidable challenge in itself. How to achieve this in a safe, efficient and long-term sustainable way is yet another question. The challenge is not only one of vehicle design, launch, and operations but also one of space logistics. Oftentimes, logistical issues are not given enough consideration upfront, in relation to the large share of operating budgets they consume. In this context, a group of 54 experts in space logistics met for a two-day workshop to discuss the following key questions: 1. What is the current state-of the art in space logistics, in terms of architectures, concepts, technologies as well as enabling processes? 2. What are the main challenges for space logistics for future human exploration of the Moon and Mars, at the intersection of engineering and space operations? 3. What lessons can be drawn from past successes and failures in human space flight logistics? 4. What lessons and connections do we see from terrestrial analogies as well as activities in other areas, such as U.S. military logistics? 5. What key advances are required to enable long-term success in the context of a future interplanetary supply chain? These proceedings summarize the outcomes of the workshop, reference particular presentations, panels and breakout sessions, and record specific observations that should help guide future efforts.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- At Oscar Patterson Elementary Magnet School in Panama City, Fla., Center Director Jim Kennedy (far left) stands with (left to right) Bay County school board members Johnny Brock and Thelma Rohan, astronaut Sam Durrance and Panama City Commissioner Johnathon Wilson. Kennedy and Durrance and other NASA officials were at the school to share Americas new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASAs stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
Developing the "Lunar Vicinity" Scenario of the Global Exploration Roadmap
NASA Astrophysics Data System (ADS)
Schmidt, G.; Neal, C. R.; Crawford, I. A.; Ehrenfreund, P.
2014-04-01
The Global Exploration Roadmap (GER, [1]) has been developed by the International Space Exploration Coordination Group (ISECG - comprised of 14 space agencies) to define various pathways to getting humans beyond low Earth orbit and eventually to Mars. Such pathways include visiting asteroids or the Moon before going on to Mars. This document has been written at a very high level and many details are still to be determined. However, a number of important papers regarding international space exploration can form a basis for this document (e.g. [2,3]). In this presentation, we focus on developing the "Lunar Vicinity" scenario by adding detail via mapping a number of recent reports/documents into the GER. Precedence for this scenario is given by Szajnfarber et al. [4] who stated "We find that when international partners are considered endogenously, the argument for a "flexible path" approach is weakened substantially. This is because international contributions can make "Moon first" economically feasible". The documents highlighted here are in no way meant to be all encompassing and other documents can and should be added, (e.g., the JAXA Space Exploration Roadmap). This exercise is intended to demonstrate that existing documents can be mapped into the GER despite the major differences in granularity, and that this mapping is a way to promote broader national and international buy-in to the Lunar Vicinity scenario. The documents used here are: the Committee on Space Research (COSPAR) Panel on Exploration report on developing a global space exploration program [5], the Strategic Knowledge Gaps (SKGs) report from the Lunar Exploration Analysis Group (LEAG) [6], the Lunar Exploration Roadmap developed by LEAG [7], the National Research Council report Scientific Context for the Exploration of the Moon (SCEM) [8], the scientific rationale for resuming lunar surface exploration [9], the astrobiological benefits of human space exploration [9,10].
Materials Challenges in Space Exploration
NASA Technical Reports Server (NTRS)
Vickers, John; Shah, Sandeep
2005-01-01
The new vision of space exploration encompasses a broad range of human and robotic missions to the Moon, Mars and beyond. Extended human space travel requires high reliability and high performance systems for propulsion, vehicle structures, thermal and radiation protection, crew habitats and health monitoring. Advanced materials and processing technologies are necessary to meet the exploration mission requirements. Materials and processing technologies must be sufficiently mature before they can be inserted into a development program leading to an exploration mission. Exploration will be more affordable by in-situ utilization of materials on the Moon and Mars.
NASA Strategic Roadmap Committees Final Roadmaps. Volumes 1 and 2
NASA Technical Reports Server (NTRS)
2005-01-01
Volume 1 contains NASA strategic roadmaps for the following Advanced Planning and Integration Office (APIO) committees: Earth Science and Applications from Space; Sun - Solar System Connection. Volume 2 contains NASA strategic roadmaps for the following APIO committees: Robotic and Human Exploration of Mars; Solar System Exploration; Search for Earth-like Planets; Universe Exploration, as well as membership rosters and charters for all APIO committees, including those above and the following: Exploration Transportation System; Nuclear Systems; Robotic and Human Lunar Exploration; Aeronautical Technologies; Space Shuttle; International Space Station; Education.
MOM-E: Moon-Orbiting Mothership Explorer
NASA Technical Reports Server (NTRS)
Murphy, Gloria A.
2010-01-01
The National Aeronautics and Space Administration proposed that a new class of robotic space missions and spacecrafts be introduced to "ensure that future missions are safe, sustainable and affordable". Indeed, the United States space program aims for a return to manned space missions beyond Earth orbit, and robotic explorers are intended to pave the way. This vision requires that all future missions become less costly, provide a sustainable business plan, and increase in safety. Over the course of several fast feasibility studies that considered the 3 drivers above, the small-scale, consumer-driven Moon-Orbiting Mothership Explorer (MOM-E) mission was born. MOM-E's goals are to enable space exploration by offering a scaled down platform which carries multiple small space explorers to the Moon. Each payload will be dropped at their desired destination, offering a competitive price to customers. MOM-E's current scope of operations is limited to the Moon and will be used as a proof of concept mission. However, MOM-E is specifically designed with the idea that the platform is scalable.
Visions for Space Exploration: ILS Issues and Approaches
NASA Technical Reports Server (NTRS)
Watson, Kevin
2005-01-01
This viewgraph presentation reviews some of the logistic issues that the Vision for Space Exploration will entail. There is a review of the vision and the timeline for the return to the moon that will lead to the first human exploration of Mars. The lessons learned from the International Space Station (ISS) and other such missions are also reviewed.
STS Derived Exploration Launch Operations
NASA Technical Reports Server (NTRS)
Best, Joel; Sorge, L.; Siders, J.; Sias, Dave
2004-01-01
A key aspect of the new space exploration programs will be the approach to optimize launch operations. A STS Derived Launch Vehicle (SDLV) Program can provide a cost effective, low risk, and logical step to launch all of the elements of the exploration program. Many benefits can be gained by utilizing the synergy of a common launch site as an exploration spaceport as well as evolving the resources of the current Space Shuttle Program (SSP) to meet the challenges of the Vision for Space Exploration. In particular, the launch operation resources of the SSP can be transitioned to the exploration program and combined with the operations efficiencies of unmanned EELVs to obtain the best of both worlds, resulting in lean launch operations for crew and cargo missions of the exploration program. The SDLV Program would then not only capture the extensive human space flight launch operations knowledge, but also provide for the safe fly-out of the SSP through continuity of system critical skills, manufacturing infrastructure, and ability to maintain and attract critical skill personnel. Thus, a SDLV Program can smoothly transition resources from the SSP and meet the transportation needs to continue the voyage of discovery of the space exploration program.
Towards AN Integrated Scientific and Social Case for Human Space Exploration
NASA Astrophysics Data System (ADS)
Crawford, I. A.
2004-06-01
I will argue that an ambitious programme of human space exploration, involving a return to the Moon, and eventually human missions to Mars, will add greatly to human knowledge. Gathering such knowledge is the primary aim of science, but science’s compartmentalisation into isolated academic disciplines tends to obscure the overall strength of the scientific case. Any consideration of the scientific arguments for human space exploration must therefore take a holistic view, and integrate the potential benefits over the entire spectrum of human knowledge. Moreover, science is only one thread in a much larger overall case for human space exploration. Other threads include economic, industrial, educational, geopolitical and cultural benefits. Any responsibly formulated public space policy must weigh all of these factors before deciding whether or not an investment in human space activities is scientifically and socially desirable.
Space Medicine Issues and Healthcare Systems for Space Exploration Medicine
NASA Technical Reports Server (NTRS)
Scheuring, Richard A.; Jones, Jeff
2007-01-01
This viewgraph presentation reviews issues of health care in space. Some of the issues reviewed are: (1) Physiological adaptation to microgravity, partial gravity, (2) Medical events during spaceflight, (3) Space Vehicle and Environmental and Surface Health Risks, (4) Medical Concept of Operations (CONOPS), (4a) Current CONOPS & Medical Hardware for Shuttle (STS) and ISS, (4b) Planned Exploration Medical CONOPS & Hardware needs, (5) Exploration Plans for Lunar Return Mission & Mars, and (6) Developing Medical Support Systems.
NASA/ASEE Summer Faculty Fellowship Program, 1990, volume 2
NASA Technical Reports Server (NTRS)
Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)
1990-01-01
The 1990 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston-University Park and Johnson Space Centers (JSC). A compilation of the final reports on the research projects is presented. The following topics are covered: the Space Shuttle; the Space Station; lunar exploration; mars exploration; spacecraft power supplies; mars rover vehicle; mission planning for the Space Exploration Initiative; instrument calibration standards; a lunar oxygen production plant; optical filters for a hybrid vision system; dynamic structural analysis; lunar bases; pharmacodynamics of scopolamine; planetary spacecraft cost modeling; and others.
Economics of Lunar Mineral Exploration
NASA Astrophysics Data System (ADS)
Blair, Brad R.
1999-01-01
Exploration of space is increasingly being rationalized by the potential for long-term commercial payoffs. The commercial use of lunar resources is gaining relevance as technology and infrastructure increase, and will depend on an adequate foundation of geological information. While past lunar exploration has provided detailed knowledge about the composition, geologic history and structural characteristics of the lunar surface at six locations, the rest of the Moon remains largely unexplored. The purpose of this paper is to describe traditional methods and decision criteria used in the mineral exploration business. Rationale for terrestrial mineral exploration is firmly entrenched within the context of economic gain, with asset valuation forming the primary feedback to decision making. The paper presents a summary of relevant knowledge from the field of exploration economics, applying it to the case of space mineral development. It includes a description of the current paradigm of both space exploration and terrestrial mineral exploration, as each pertains to setting priorities and decision making. It briefly examines issues related to space resource demand, extraction and transportation to establish its relevance.
Accelerating Exploration Through the Sharing of Best Practices in Research Partnerships
NASA Technical Reports Server (NTRS)
Nall, Mark; Casas, Joseph
2004-01-01
This paper proposes the formation of an international panel of space related public/private partnerships for the purposes of sharing best practices among members. The exploration and development of space is too costly to be conducted by governments alone. Private industry has a significant role in creating needed technologies, and developing commercial space infrastructure, thereby allowing sustainable exploration to take place. Public/private partnerships between government and industry are key to fostering industrial participation in space. The spacefaring nations have, or are developing these partnerships. Those organizations forming these partnerships can benefit from sharing among each other best practices and lessons learned. In this way the common goal of space exploration and development can be more effectively pursued.
NASA Technical Reports Server (NTRS)
Johnson, R. D.
1977-01-01
Organic cosmochemistry, organic materials in space exploration, and biochemistry of man in space are briefly surveyed. A model of Jupiter's atmosphere is considered, and the search for organic molecules in the solar system and in interstellar space is discussed. Materials and analytical techniques relevant to space exploration are indicated, and the blood and urine analyses performed on Skylab are described.
What's Next for NASA? Life After the Shuttle Program
NASA Technical Reports Server (NTRS)
MacLaughlin, Mary; Petro, Janet E.
2012-01-01
KSC is the world's preeminent launch complex for government and commercial space access, enabling the world to explore and work in space. KSC safely manages, develops, integrates, and sustains space systems through partnerships that enable innovative, diverse access to space and inspires the Nation's future explorers capabilities to make accessing space less costly and more routine.
Hao, Xiaohu; Zhang, Guijun; Zhou, Xiaogen
2018-04-01
Computing conformations which are essential to associate structural and functional information with gene sequences, is challenging due to the high dimensionality and rugged energy surface of the protein conformational space. Consequently, the dimension of the protein conformational space should be reduced to a proper level, and an effective exploring algorithm should be proposed. In this paper, a plug-in method for guiding exploration in conformational feature space with Lipschitz underestimation (LUE) for ab-initio protein structure prediction is proposed. The conformational space is converted into ultrafast shape recognition (USR) feature space firstly. Based on the USR feature space, the conformational space can be further converted into Underestimation space according to Lipschitz estimation theory for guiding exploration. As a consequence of the use of underestimation model, the tight lower bound estimate information can be used for exploration guidance, the invalid sampling areas can be eliminated in advance, and the number of energy function evaluations can be reduced. The proposed method provides a novel technique to solve the exploring problem of protein conformational space. LUE is applied to differential evolution (DE) algorithm, and metropolis Monte Carlo(MMC) algorithm which is available in the Rosetta; When LUE is applied to DE and MMC, it will be screened by the underestimation method prior to energy calculation and selection. Further, LUE is compared with DE and MMC by testing on 15 small-to-medium structurally diverse proteins. Test results show that near-native protein structures with higher accuracy can be obtained more rapidly and efficiently with the use of LUE. Copyright © 2018 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-01-01
... exploration of space. The term aeronautical and space vehicles means aircraft, missiles, satellites, and other... required for the exploration of space with manned and unmanned vehicles and arranges for the most effective... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Functions. 1201.102 Section 1201.102...
Code of Federal Regulations, 2011 CFR
2011-01-01
... exploration of space. The term aeronautical and space vehicles means aircraft, missiles, satellites, and other... required for the exploration of space with manned and unmanned vehicles and arranges for the most effective... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Functions. 1201.102 Section 1201.102...
Code of Federal Regulations, 2013 CFR
2013-01-01
... exploration of space. The term aeronautical and space vehicles means aircraft, missiles, satellites, and other... required for the exploration of space with manned and unmanned vehicles and arranges for the most effective... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Functions. 1201.102 Section 1201.102...
Code of Federal Regulations, 2012 CFR
2012-01-01
... exploration of space. The term aeronautical and space vehicles means aircraft, missiles, satellites, and other... required for the exploration of space with manned and unmanned vehicles and arranges for the most effective... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Functions. 1201.102 Section 1201.102...
NASA Technical Reports Server (NTRS)
Rhatigan, Jennifer L.; Robinson, Julie A.; Sawin, Charles F.; Ahlf, Peter R.
2005-01-01
In January, 2004, the US President announced a vision for space exploration, and charged NASA with utilizing the International Space Station (ISS) for research and technology targeted at supporting the US space exploration goals. This paper describes: 1) what we have learned from the first four years of research on ISS relative to the exploration mission, 2) the on-going research being conducted in this regard, 3) our current understanding of the major exploration mission risks that the ISS can be used to address, and 4) current progress in realigning NASA s research portfolio for ISS to support exploration missions. Specifically, we discuss the focus of research on solving the perplexing problems of maintaining human health on long-duration missions, and the development of countermeasures to protect humans from the space environment, enabling long duration exploration missions. The interchange between mission design and research needs is dynamic, where design decisions influence the type of research needed, and results of research influence design decisions. The fundamental challenge to science on ISS is completing experiments that answer key questions in time to shape design decisions for future exploration. In this context, exploration-relevant research must do more than be conceptually connected to design decisions-it must become a part of the mission design process.
2006-01-23
KENNEDY SPACE CENTER, FLA. — At Warrington Middle School in Pensacola, Fla., astronaut Alan Poindexter explains a science principal to students. Poindexter joined Center Director Jim Kennedy and others on a visit to the school, which has been named one of NASA’s Explorer Schools (NES). Kennedy is visiting the school to share the vision for space exploration with the next generation. He is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space. NES establishes a three-year partnership annually between NASA and 50 NASA Explorer School teams, consisting of teachers and education administrators from diverse communities nationwide. Photo credit: NASA/Cory Huston
2006-01-23
KENNEDY SPACE CENTER, FLA. — During kickoff of the NASA Explorer School program at Warrington Middle School in Pensacola, Fla., NASA aerospace specialist Les Gold involves a student in a demonstration on stage. Gold, Center Director Jim Kennedy, astronaut Alan Poindexter and others are visiting the school to share the vision for space exploration with the next generation. He is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space. NES establishes a three-year partnership annually between NASA and 50 NASA Explorer School teams, consisting of teachers and education administrators from diverse communities nationwide. Photo credit: NASA/Cory Huston
2006-01-23
KENNEDY SPACE CENTER, FLA. — During kickoff of the NASA Explorer School program at Warrington Middle School in Pensacola, Fla., NASA aerospace specialist Les Gold involves a student in a demonstration on stage. Gold, Center Director Jim Kennedy, astronaut Alan Poindexter and others are visiting the school to share the vision for space exploration with the next generation. He is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space. NES establishes a three-year partnership annually between NASA and 50 NASA Explorer School teams, consisting of teachers and education administrators from diverse communities nationwide. Photo credit: NASA/Cory Huston
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- NASA-KSC representatives pose with two students in front of Oscar Patterson Elementary Magnet School in Panama City, Fla. From left are Pam Biegert (chief of KSCs Education Programs and University Research Office), astronaut Sam Durrance, Center Director Jim Kennedy, John Halsema (chief, Government Relations Office), Steve Lewis (assistant to Kennedy), and Mike Rein (division chief, Communications). NASA-KSC officials are visiting NASA Explorer Schools in Florida and Georgia to share Americas new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASAs stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Almost hidden in the center amid the sea of students at Gainesville Elementary School, a NASA Explorer School in Gainesville, Ga., are Jim Jennings, deputy associate administrator for Institutions and Asset Management at NASA Headquarters; Dr. Woodrow Whitlow Jr., KSC deputy director; and astronaut Leland Melvin. Whitlow and Melvin accompanied Jennings on the visit to the school to share the new vision for space exploration with the next generation of explorers. Whitlow talked about our destiny as explorers, NASAs stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space. Melvin talked about the importance of teamwork and what it takes for mission success.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. At University Community Academy in Atlanta, a NASA Explorer School, KSC Deputy Director Dr. Woodrow Whitlow Jr. (fourth from right) and astronaut Leland Melvin (fifth from right) stand for a group photo with students and staff members. At far left is Jim Harris, principal of the school. Dr. Whitlow was visiting the school to share the vision for space exploration with the next generation of explorers. Whitlow talked with students about our destiny as explorers, NASAs stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space. Also on the tour, Melvin talked about the importance of teamwork and what it takes for mission success.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- At the podium, KSC Deputy Director Dr. Woodrow Whitlow talks to students in the gymnasium at Trojan Intermediate School in Potosi, Mo. At left is Amber Marek, with the NASA News Center; at right is astronaut Dom Gorie. Students from three area schools Potosi High School, John Evans Middle School and Trojan are on a team taking part in NASAs Explorer Schools program. Whitlow and Gorie are visiting the school to share Americas new vision for space exploration with the next generation of explorers. They are talking with students about our destiny as explorers, NASAs stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
Interaction Challenges in Human-Robot Space Exploration
NASA Technical Reports Server (NTRS)
Fong, Terrence; Nourbakhsh, Illah
2005-01-01
In January 2004, NASA established a new, long-term exploration program to fulfill the President's Vision for U.S. Space Exploration. The primary goal of this program is to establish a sustained human presence in space, beginning with robotic missions to the Moon in 2008, followed by extended human expeditions to the Moon as early as 2015. In addition, the program places significant emphasis on the development of joint human-robot systems. A key difference from previous exploration efforts is that future space exploration activities must be sustainable over the long-term. Experience with the space station has shown that cost pressures will keep astronaut teams small. Consequently, care must be taken to extend the effectiveness of these astronauts well beyond their individual human capacity. Thus, in order to reduce human workload, costs, and fatigue-driven error and risk, intelligent robots will have to be an integral part of mission design.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Julian Earls (left), a school board member of Ronald E. McNair High School in Atlanta, and Sarah Copelin-Wood (far left), chair of the Board of Education, sign a Memorandum of Understanding after a presentation by KSC Deputy Director Dr. Woodrow Whitlow Jr., astronaut Leland Melvin and Dr. Julian Earls, director of NASA Glenn Research Center. McNair is a NASA Explorer School (NES). Whitlow visited the school to share the vision for space exploration with the next generation of explorers. He talked with students about our destiny as explorers, NASAs stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space. Dr. Earls discussed the future and the vision for space, plus the NASA careers needed to meet the vision. Melvin talked about the importance of teamwork and what it takes for mission success.
NASA Technical Reports Server (NTRS)
Stambaugh, Imelda; Baccus, Shelley; Buffington, Jessie; Hood, Andrew; Naids, Adam; Borrego, Melissa; Hanford, Anthony J.; Eckhardt, Brad; Allada, Rama Kumar; Yagoda, Evan
2013-01-01
Engineers at Johnson Space Center (JSC) are developing an Environmental Control and Life Support System (ECLSS) design for the Multi-Mission Space Exploration Vehicle (MMSEV). The purpose of the MMSEV is to extend the human exploration envelope for Lunar, Near Earth Object (NEO), or Deep Space missions by using pressurized exploration vehicles. The MMSEV, formerly known as the Space Exploration Vehicle (SEV), employs ground prototype hardware for various systems and tests it in manned and unmanned configurations. Eventually, the system hardware will evolve and become part of a flight vehicle capable of supporting different design reference missions. This paper will discuss the latest MMSEV ECLSS architectures developed for a variety of design reference missions, any work contributed toward the development of the ECLSS design, lessons learned from testing prototype hardware, and the plan to advance the ECLSS toward a flight design.
NASA Technical Reports Server (NTRS)
Stambaugh, Imelda; Baccus, Shelley; Naids, Adam; Hanford, Anthony
2012-01-01
Engineers at Johnson Space Center (JSC) are developing an Environmental Control and Life Support System (ECLSS) design for the Multi-Mission Space Exploration Vehicle (MMSEV). The purpose of the MMSEV is to extend the human exploration envelope for Lunar, Near Earth Object (NEO), or Deep Space missions by using pressurized exploration vehicles. The MMSEV, formerly known as the Space Exploration Vehicle (SEV), employs ground prototype hardware for various systems and tests it in manned and unmanned configurations. Eventually, the system hardware will evolve and become part of a flight vehicle capable of supporting different design reference missions. This paper will discuss the latest MMSEV ECLSS architectures developed for a variety of design reference missions, any work contributed toward the development of the ECLSS design, lessons learned from testing prototype hardware, and the plan to advance the ECLSS toward a flight design.
Artificial Gravity as a Multi-System Countermeasure for Exploration Class Space Flight Missions
NASA Technical Reports Server (NTRS)
Paloski, William H.; Dawson, David L. (Technical Monitor)
2000-01-01
NASA's vision for space exploration includes missions of unprecedented distance and duration. However, during 30 years of human space flight experience, including numerous long-duration missions, research has not produced any single countermeasure or combination of countermeasures that is completely effective. Current countermeasures do not fully protect crews in low-Earth orbit, and certainly will not be appropriate for crews journeying to Mars and back over a three-year period. The urgency for exploration-class countermeasures is compounded by continued technical and scientific successes that make exploration class missions increasingly attractive. The critical and possibly fatal problems of bone loss, cardiovascular deconditioning, muscle weakening, neurovestibular disturbance, space anemia, and immune compromise may be alleviated by the appropriate application of artificial gravity (AG). However, despite a manifest need for new countermeasure approaches, concepts for applying AG as a countermeasure have not developed apace. To explore the utility of AG as a multi-system countermeasure during long-duration, exploration-class space flight, eighty-three members of the international space life science and space flight community met earlier this year. They concluded unanimously that the potential of AG as a multi-system countermeasure is indeed worth pursuing, and that the requisite AG research needs to be supported more systematically by NASA. This presentation will review the issues discussed and recommendations made.
Mars: On the Path Or In The Way?
NASA Technical Reports Server (NTRS)
Sherwood, Brent
2012-01-01
Explore Mars may not be the highest and best use of government-? funded human space flight. However, Explore Mars is pervasively accepted as the ultimate goal for human space flight. This meme has become refractory within the human space flight community despite dramatic contextual changes since Apollo: human space flight is no longer central to commonly-?held national priorities, NASA's fraction of the federal budget has diminished 8 fold, over 60 enabling technology challenges have been identified, and the stunning achievements of robotic Mars exploration have accelerated. The Explore Mars vision has not kept pace with these changes.An unprecedented budgetary commitment would have to be sustained for an unprecedented number of decades to achieve the Explore Mars goal. Further, the goal's justification as uniquely able to definitively determine Mars habitability is brittle, and not driving current planning in any case; yet NASA owns the choice of this goal and has authority to change it. Three alternative goals for government investment in human space flight meet NASA's own expressed rationale at least as well as Explore Mars, some with far greater capacity to regain the cultural centrality of human space flight and to grow by attracting private capital. At a minimum the human space flight advocacy community should address the pragmatics of choosing such a vulnerable goal.
Managing Space Radiation Risk in the New Era of Space Exploration
NASA Technical Reports Server (NTRS)
2008-01-01
Space exploration is a risky enterprise. Rockets launch astronauts at enormous speeds into a harsh, unforgiving environment. Spacecraft must withstand the bitter cold of space and the blistering heat of reentry. Their skin must be strong enough to keep the inside comfortably pressurized and tough enough to resist damage from micrometeoroids. Spacecraft meant for lunar or planetary landings must survive the jar of landing, tolerate dust, and be able to take off again. For astronauts, however, there is one danger in space that does not end when they step out of their spacecraft. The radiation that permeates space -- unattenuated by Earth s atmosphere and magnetosphere -- may damage or kill cells within astronauts bodies, resulting in cancer or other health consequences years after a mission ends. The National Aeronautics and Space Administration (NASA) has recently embarked on Project Constellation to implement the Vision for Space Exploration -- a program announced by President George W. Bush in 2004 with the goal of returning humans to the Moon and eventually transporting them to Mars. To adequately prepare for the safety of these future space explorers, NASA s Exploration Systems Mission Directorate requested that the Aeronautics and Space Engineering Board of the National Research Council establish a committee to evaluate the radiation shielding requirements for lunar missions and to recommend a strategic plan for developing the radiation mitigation capabilities needed to enable the planned lunar mission architecture
Deep space communication - A one billion mile noisy channel
NASA Technical Reports Server (NTRS)
Smith, J. G.
1982-01-01
Deep space exploration is concerned with the study of natural phenomena in the solar system with the aid of measurements made at spacecraft on deep space missions. Deep space communication refers to communication between earth and spacecraft in deep space. The Deep Space Network is an earth-based facility employed for deep space communication. It includes a network of large tracking antennas located at various positions around the earth. The goals and achievements of deep space exploration over the past 20 years are discussed along with the broad functional requirements of deep space missions. Attention is given to the differences in space loss between communication satellites and deep space vehicles, effects of the long round-trip light time on spacecraft autonomy, requirements for the use of massive nuclear power plants on spacecraft at large distances from the sun, and the kinds of scientific return provided by a deep space mission. Problems concerning a deep space link of one billion miles are also explored.
Space radiation protection: Human support thrust exploration technology program
NASA Technical Reports Server (NTRS)
Conway, Edmund J.
1991-01-01
Viewgraphs on space radiation protection are presented. For crew and practical missions, exploration requires effective, low-mass shielding and accurate estimates of space radiation exposure for lunar and Mars habitat shielding, manned space transfer vehicle, and strategies for minimizing exposure during extravehicular activity (EVA) and rover operations.
Issues Affecting the Future of the U.S. Space Science and Engineering Workforce: Interim Report
ERIC Educational Resources Information Center
National Academies Press, 2006
2006-01-01
In January 2006, the President announced a new civilian space policy focusing on exploration. As part of its preparations to implement that policy, NASA asked the NRC to explore long-range science and technology workforce needs to achieve the space exploration vision, identify obstacles to filling those needs, and put forward solutions to those…
2018-01-31
Michael Moloney, Director for Space and Aeronautics at the Space Studies Board and the Aeronautics and Space Engineering Board of the U.S. National Academies of Sciences, Engineering, and Medicine, delivers opening remarks during an event celebrating the 60th Anniversary of the Explorer 1 mission and the discovery of Earth's radiation belts, Wednesday, Jan. 31, 2018, at the National Academy of Sciences in Washington. The first U.S. satellite, Explorer 1, was launched from Cape Canaveral on January 31, 1958. The 30-pound satellite would yield a major scientific discovery, the Van Allen radiation belts circling our planet, and begin six decades of groundbreaking space science and human exploration. (NASA/Joel Kowsky)
2004-04-05
KENNEDY SPACE CENTER, FLA. -- At Oscar Patterson Elementary Magnet School in Panama City, Fla., Center Director Jim Kennedy (far left) stands with (left to right) Bay County school board members Johnny Brock and Thelma Rohan, astronaut Sam Durrance and Panama City Commissioner Johnathon Wilson. Kennedy and Durrance and other NASA officials were at the school to share America’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
NASA Technical Reports Server (NTRS)
Garner, Lesley
2008-01-01
In 2006, NASA's Exploration Systems Mission Directorate (ESMD) launched two new Educational Projects: (1) The ESMID Space Grant Student Project ; and (2) The ESM1D Space Grant Faculty Project. The Student Project consists of three student opportunities: exploration-related internships at NASA Centers or with space-related industry, senior design projects, and system engineering paper competitions. The ESMID Space Grant Faculty Project consists of two faculty opportunities: (1) a summer faculty fellowship; and (2) funding to develop a senior design course.
Role of Fundamental Physics in Human Space Exploration
NASA Technical Reports Server (NTRS)
Turyshev, Slava
2004-01-01
This talk will discuss the critical role that fundamental physics research plays for the human space exploration. In particular, the currently available technologies can already provide significant radiation reduction, minimize bone loss, increase crew productivity and, thus, uniquely contribute to overall mission success. I will discuss how fundamental physics research and emerging technologies may not only further reduce the risks of space travel, but also increase the crew mobility, enhance safety and increase the value of space exploration in the near future.
The future of space - Space tomorrow: The Antarctica model
NASA Technical Reports Server (NTRS)
Beggs, J.
1983-01-01
The exploration and settling of Antarctica with permanent bases are used as illustrative points for establishing a permanent human presence in near-earth space. NASA activities since 1958 have spawned the computer science, solid-state electronics, medical electronics, and communications satellites industries, which are also rapidly expanding in other countries, as are space-faring capabilities. Antarctica is a paradigm for space exploration in that it is hard to reach, hostile to human life, and a great amount of planning is necessary to arrive at the destination and survive. Aircraft made permanent settlements possible on Antarctica, just as the Shuttle does for space. A space station would provide the remote base from which exploration of other planets and settling on the moon could proceed.
Model-Based Trade Space Exploration for Near-Earth Space Missions
NASA Technical Reports Server (NTRS)
Cohen, Ronald H.; Boncyk, Wayne; Brutocao, James; Beveridge, Iain
2005-01-01
We developed a capability for model-based trade space exploration to be used in the conceptual design of Earth-orbiting space missions. We have created a set of reusable software components to model various subsystems and aspects of space missions. Several example mission models were created to test the tools and process. This technique and toolset has demonstrated itself to be valuable for space mission architectural design.
Lahav, Orly; Gedalevitz, Hadas; Battersby, Steven; Brown, David; Evett, Lindsay; Merritt, Patrick
2018-05-01
This paper examines the ability of people who are blind to construct a mental map and perform orientation tasks in real space by using Nintendo Wii technologies to explore virtual environments. The participant explores new spaces through haptic and auditory feedback triggered by pointing or walking in the virtual environments and later constructs a mental map, which can be used to navigate in real space. The study included 10 participants who were congenitally or adventitiously blind, divided into experimental and control groups. The research was implemented by using virtual environments exploration and orientation tasks in real spaces, using both qualitative and quantitative methods in its methodology. The results show that the mode of exploration afforded to the experimental group is radically new in orientation and mobility training; as a result 60% of the experimental participants constructed mental maps that were based on map model, compared with only 30% of the control group participants. Using technology that enabled them to explore and to collect spatial information in a way that does not exist in real space influenced the ability of the experimental group to construct a mental map based on the map model. Implications for rehabilitation The virtual cane system for the first time enables people who are blind to explore and collect spatial information via the look-around mode in addition to the walk-around mode. People who are blind prefer to use look-around mode to explore new spaces, as opposed to the walking mode. Although the look-around mode requires users to establish a complex collecting and processing procedure for the spatial data, people who are blind using this mode are able to construct a mental map as a map model. For people who are blind (as for the sighted) construction of a mental map based on map model offers more flexibility in choosing a walking path in a real space, accounting for changes that occur in the space.
ERIC Educational Resources Information Center
Monreal, Timothy
2016-01-01
Henri Lefebvre (1991) wrote, "[representational] space is alive: it speaks" (p. 42). This article explores how we might "listen" to space in education by examining the role of space in one school's decision to adopt the International Baccalaureate's Middle Years Programme [IB MYP]. It builds upon recent scholarship that applies…
Code of Federal Regulations, 2014 CFR
2014-01-01
... agreements for science or space exploration activities unrelated to the International Space Station. § 1266...-WAIVER OF LIABILITY § 1266.104 Cross-waiver of liability for launch agreements for science or space... implement a cross-waiver of liability between the parties to agreements for NASA's science or space...
Manned Mission Space Exploration Utilizing a Flexible Universal Module
NASA Astrophysics Data System (ADS)
Humphries, P.; Barez, F.; Gowda, A.
2018-02-01
The proposed ASMS, Inc. "Flexible Universal Module" is in support of NASA's Deep Space Gateway project. The Flexible Universal Module provides a possible habitation or manufacturing environment in support of Manned Mission for Space Exploration.
Space Nuclear Program INL's role in energizing exploration
Idaho National Laboratory
2017-12-09
Idaho National Laboratory is helping make space exploration possible with the development of radioisotope power systems, which can work in areas too harsh and too isolated in space where the suns rays cannot be used for energy.
Impact of the Columbia Supercomputer on NASA Space and Exploration Mission
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Kwak, Dochan; Kiris, Cetin; Lawrence, Scott
2006-01-01
NASA's 10,240-processor Columbia supercomputer gained worldwide recognition in 2004 for increasing the space agency's computing capability ten-fold, and enabling U.S. scientists and engineers to perform significant, breakthrough simulations. Columbia has amply demonstrated its capability to accelerate NASA's key missions, including space operations, exploration systems, science, and aeronautics. Columbia is part of an integrated high-end computing (HEC) environment comprised of massive storage and archive systems, high-speed networking, high-fidelity modeling and simulation tools, application performance optimization, and advanced data analysis and visualization. In this paper, we illustrate the impact Columbia is having on NASA's numerous space and exploration applications, such as the development of the Crew Exploration and Launch Vehicles (CEV/CLV), effects of long-duration human presence in space, and damage assessment and repair recommendations for remaining shuttle flights. We conclude by discussing HEC challenges that must be overcome to solve space-related science problems in the future.
Space and Ground Trades for Human Exploration and Wearable Computing
NASA Technical Reports Server (NTRS)
Lupisella, Mark; Donohue, John; Mandl, Dan; Ly, Vuong; Graves, Corey; Heimerdinger, Dan; Studor, George; Saiz, John; DeLaune, Paul; Clancey, William
2006-01-01
Human exploration of the Moon and Mars will present unique trade study challenges as ground system elements shift to planetary bodies and perhaps eventually to the bodies of human explorers in the form of wearable computing technologies. This presentation will highlight some of the key space and ground trade issues that will face the Exploration Initiative as NASA begins designing systems for the sustained human exploration of the Moon and Mars, with an emphasis on wearable computing. We will present some preliminary test results and scenarios that demonstrate how wearable computing might affect the trade space noted below. We will first present some background on wearable computing and its utility to NASA's Exploration Initiative. Next, we will discuss three broad architectural themes, some key ground and space trade issues within those themes and how they relate to wearable computing. Lastly, we will present some preliminary test results and suggest guidance for proceeding in the assessment and creation of a value-added role for wearable computing in the Exploration Initiative. The three broad ground-space architectural trade themes we will discuss are: 1. Functional Shift and Distribution: To what extent, if any, should traditional ground system functionality be shifted to, and distributed among, the Earth, Moon/Mars, and the human. explorer? 2. Situational Awareness and Autonomy: How much situational awareness (e.g. environmental conditions, biometrics, etc.) and autonomy is required and desired, and where should these capabilities reside? 3. Functional Redundancy: What functions (e.g. command, control, analysis) should exist simultaneously on Earth, the Moon/Mars, and the human explorer? These three themes can serve as the axes of a three-dimensional trade space, within which architectural solutions reside. We will show how wearable computers can fit into this trade space and what the possible implications could be for the rest of the ground and space architecture(s). We intend this to be an example of explorer-centric thinking in a fully integrated explorer paradigm, where integrated explorer refers to a human explorer having instant access to all relevant data, knowledge of the environment, science models, health and safety-related events, and other tools and information via wearable computing technologies. The trade study approach will include involvement from the relevant stakeholders (Constellation Systems, CCCI, EVA Project Office, Astronaut office, Mission Operations, Space Life Sciences, etc.) to develop operations concepts (and/or operations scenarios) from which a basic high-level set of requirements could be extracted. This set of requirements could serve as a foundation (along with stakeholder buy-in) that would help define the trade space and assist in identifying candidate technologies for further study and evolution to higher-level technology readiness levels.
Challenges for Electronics in the Vision for Space Exploration
NASA Technical Reports Server (NTRS)
LaBel, Kenneth A.
2005-01-01
This presentation has been a brief snapshot discussing electronics and Exploration-related challenges. The vision for Space Exploration creates a new paradigm for NASA missions. This includes transport (Crew Exploration Vehicle-CEV), and lunar and Mars Exploration and human presence. If one considers the additional hazards faced by these concepts versus more traditional NASA missions, multiple challenges surface for reliable utilization of electronic parts. The true challenge is to provide a risk as low as reasonably achievable (ALARA-a traditional biological radiation exposure term), while still providing cost effective solutions. This presentation also discusses the hazard for electronic parts and exploration, the types of electronic parts for exploration, and the critical juncture for space usage of commercial changes in the electronics world.
Approach and Issues Relating to Shield Material Design to Protect Astronauts from Space Radiation
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Cucinotta, F. A.; Miller, J.; Shinn, J. L.; Thibeault, S. A.; Singleterry, R. C.; Simonsen, L. C.; Kim, M. H.
2001-01-01
One major obstacle to human space exploration is the possible limitations imposed by the adverse effects of long-term exposure to the space environment. Even before human spaceflight began, the potentially brief exposure of astronauts to the very intense random solar energetic particle (SEP) events was of great concern. A new challenge appears in deep space exploration from exposure to the low-intensity heavy-ion flux of the galactic cosmic rays (GCR) since the missions are of long duration and the accumulated exposures can be high. Since aluminum (traditionally used in spacecraft to avoid potential radiation risks) leads to prohibitively expensive mission launch costs, alternative materials need to be explored. An overview of the materials related issues and their impact on human space exploration will be given.
Dawn of a New Space Age: Developing a Global Exploration Strategy.
NASA Technical Reports Server (NTRS)
Volosin, Jeff
2006-01-01
Jeff Volosin is an aerospace engineer with over 20 years of experience in the design, development, and operations of both robotic and crewed spacecraft. Mr. Volosin is currently leading the NASA effort to develop and integrate a global exploration strategy which reflects the lunar exploration interests of international space agencies, academia and commercial stakeholders. Prior to joining NASA as a member of the Exploration Systems Mission Directorate in 2004, Jeff was an aerospace contractor, serving in a number of leadership positions including: Operations Manager for the NASA Communications Network and Flight Operations Manager for the Advanced Composition Explorer, Tropical Rainfall Measuring Mission, and the NOAA Polar and Geostationary satellite constellations. Earlier in his career, Jeff spent 4 years as a system engineer supporting the Space Exploration Initiative studies on human voyages to the Moon and Mars and also supported the Space Station program as an advanced life support engineer.
NASA Technical Reports Server (NTRS)
Morring, Frank, Jr.
2004-01-01
Robotic technology being developed out of necessity to keep the Hubble Space Telescope operating could also lead to new levels of man-machine team-work in deep-space exploration down the road-if it survives the near-term scramble for funding. Engineers here who have devoted their NASA careers to the concept of humans servicing the telescope in orbit are planning modifications to International Space Station (ISS) robots that would leave the humans on the ground. The work. forced by post-Columbia flight rules that killed a planned shuttle-servicing mission to Hubble, marks another step in the evolution of robot-partners for human space explorers. "Hubble has always been a pathfider for this agency," says Mike Weiss. Hubble deputy program manager technical. "When the space station was flown and assembled, Hubble was the pathfinder. not just for modularity, but for operations, for assembly techniques. Exploration is the next step. Things we're going to do on Hubble are going to be applied to exploration. It's not just putting a robot in space. It's operating a robot in space. It's adapting that robot to what needs to be done the next time you're up there."
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. At Gainesville Elementary School, a NASA Explorer School in Gainesville, Ga., astronaut Leland Melvin hands a patch to a student for answering a question. Melvin joined Jim Jennings, deputy associate administrator for Institutions and Asset Management at NASA Headquarters, on the visit to the school to share the new vision for space exploration with the next generation of explorers. Melvin talked about the importance of teamwork and what it takes for mission success. Also visiting was KSC Deputy Director Woodrow Whitlow Jr., who talked with students about our destiny as explorers, NASAs stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space. Melvin talked about the importance of teamwork and what it takes for mission success.
Class Explorations in Space: From the Blackboard and History to the Outdoors and Future
NASA Astrophysics Data System (ADS)
Cavicchi, Elizabeth
2011-11-01
Our everyday activities occur so seamlessly in the space around us as to leave us unawares of space, its properties, and our use of it. What might we notice, wonder about and learn through interacting with space exploratively? My seminar class took on that question as an opening for personal and group experiences during this semester. In the process, they observe space locally and in the sky, read historical works of science involving space, and invent and construct forms in space. All these actions arise responsively, as we respond to: physical materials and space; historical resources; our seminar participants, and future learners. Checks, revisions and further developments -- on our findings, geometrical constructions, shared or personal inferences---come about observationally and collaboratively. I teach this seminar as an expression of the research pedagogy of critical exploration, developed by Eleanor Duckworth from the work of Jean Piaget, B"arbel Inhelder and the Elementary Science Study. This practice applies the quest for understanding of a researcher to spontaneous interactions evolving within a classroom. The teacher supports students in satisfying and developing their curiosities, which often results in exploring the subject matter by routes that are novel to both teacher and student. As my students ``mess about'' with geometry, string and chalk at the blackboard, in their notebooks, and in response to propositions in Euclid's Elements, they continually imagine further novel venues for using geometry to explore space. Where might their explorations go in the future? I invite you to hear from them directly!
A Flexible Path for Human and Robotic Space Exploration
NASA Technical Reports Server (NTRS)
Korsmeyer, David J.; Landis, Robert; Merrill, Raymond Gabriel; Mazanek, Daniel D.; Falck, Robert D.; Adams, Robert B.
2010-01-01
During the summer of 2009, a flexible path scenario for human and robotic space exploration was developed that enables frequent, measured, and publicly notable human exploration of space beyond low-Earth orbit (LEO). The formulation of this scenario was in support of the Exploration Beyond LEO subcommittee of the Review of U.S. Human Space Flight Plans Committee that was commissioned by President Obama. Exploration mission sequences that allow humans to visit a wide number of inner solar system destinations were investigated. The scope of destinations included the Earth-Moon and Earth-Sun Lagrange points, near-Earth objects (NEOs), the Moon, and Mars and its moons. The missions examined assumed the use of Constellation Program elements along with existing launch vehicles and proposed augmentations. Additionally, robotic missions were envisioned as complements to human exploration through precursor missions, as crew emplaced scientific investigations, and as sample gathering assistants to the human crews. The focus of the flexible path approach was to gain ever-increasing operational experience through human exploration missions ranging from a few weeks to several years in duration, beginning in deep space beyond LEO and evolving to landings on the Moon and eventually Mars.
An ESA roadmap for geobiology in space exploration
NASA Astrophysics Data System (ADS)
Cousins, Claire R.; Cockell, Charles S.
2016-01-01
Geobiology, and in particular mineral-microbe interactions, has a significant role to play in current and future space exploration. This includes the search for biosignatures in extraterrestrial environments, and the human exploration of space. Microorganisms can be exploited to advance such exploration, such as through biomining, maintenance of life-support systems, and testing of life-detection instrumentation. In view of these potential applications, a European Space Agency (ESA) Topical Team "Geobiology in Space Exploration" was developed to explore these applications, and identify research avenues to be investigated to support this endeavour. Through community workshops, a roadmap was produced, with which to define future research directions via a set of 15 recommendations spanning three key areas: Science, Technology, and Community. These roadmap recommendations identify the need for research into: (1) new terrestrial space-analogue environments; (2) community level microbial-mineral interactions; (3) response of biofilms to the space environment; (4) enzymatic and biochemical mineral interaction; (5) technical refinement of instrumentation for space-based microbiology experiments, including precursor flight tests; (6) integration of existing ground-based planetary simulation facilities; (7) integration of fieldsite biogeography with laboratory- and field-based research; (8) modification of existing planetary instruments for new geobiological investigations; (9) development of in situ sample preparation techniques; (10) miniaturisation of existing analytical methods, such as DNA sequencing technology; (11) new sensor technology to analyse chemical interaction in small volume samples; (12) development of reusable Lunar and Near Earth Object experimental platforms; (13) utility of Earth-based research to enable the realistic pursuit of extraterrestrial biosignatures; (14) terrestrial benefits and technological spin-off from existing and future space-based geobiology investigations; and (15) new communication avenues between space agencies and terrestrial research organisations to enable this impact to be developed.
Refining the Ares V Design to Carry Out NASA's Exploration Initiative
NASA Technical Reports Server (NTRS)
Creech, Steve
2008-01-01
NASA's Ares V cargo launch vehicle is part of an overall architecture for u.S. space exploration that will span decades. The Ares V, together with the Ares I crew launch vehicle, Orion crew exploration vehicle and Altair lunar lander, will carry out the national policy goals of retiring the Space Shuttle, completing the International Space Station program, and expanding exploration of the Moon as a steps toward eventual human exploration of Mars. The Ares fleet (Figure 1) is the product of the Exploration Systems Architecture study which, in the wake of the Columbia accident, recommended separating crew from cargo transportation. Both vehicles are undergoing rigorous systems design to maximize safety, reliability, and operability. They take advantage of the best technical and operational lessons learned from the Apollo, Space Shuttle and more recent programs. NASA also seeks to maximize commonality between the crew and cargo vehicles in an effort to simplify and reduce operational costs for sustainable, long-term exploration.
NASA Technical Reports Server (NTRS)
Drake, Bret G.; Josten, B. Kent; Monell, Donald W.
2004-01-01
The Vision for Space Exploration provides direction for the National Aeronautics and Space Administration to embark on a robust space exploration program that will advance the Nation s scientific, security, and economic interests. This plan calls for a progressive expansion of human capabilities beyond low earth orbit seeking to answer profound scientific and philosophical questions while responding to discoveries along the way. In addition, the Vision articulates the strategy for developing the revolutionary new technologies and capabilities required for the future exploration of the solar system. The National Aeronautics and Space Administration faces new challenges in successfully implementing the Vision. In order to implement a sustained and affordable exploration endeavor it is vital for NASA to do business differently. This paper provides an overview of the strategy-to-task-to-technology process being used by NASA s Exploration Systems Mission Directorate to develop the requirements and system acquisition details necessary for implementing a sustainable exploration vision.
Myth-free space advocacy part I-The myth of innate exploratory and migratory urges
NASA Astrophysics Data System (ADS)
Schwartz, James S. J.
2017-08-01
This paper discusses the ;myth; that we have an innate drive to explore or to migrate into space. Three interpretations of the claim are considered. According to the ;mystical interpretation,; it is part of our ;destiny; as humans to explore and migrate into space. Such a claim has no rational basis and should play no role in rationally- or evidence-based space advocacy. According to the ;cultural interpretation,; exploration and migration are essential features of human culture and society. These are not universal features because there are cultures and societies that have not encouraged exploration and migration. Moreover, the cultures that have explored have seldom conducted exploration for its own sake. According to the ;biological interpretation; there is a psychological or genetic basis for exploration or migration. While there is limited genetic evidence for such a claim, that evidence suggests that genes associated with exploratory behavior were selected for subsequent to migration, making it unlikely that these genes played a role in causing migration. In none of these senses is it clearly true that we have an innate drive to explore or migrate into space; and even if we did it would be fallacious to argue that the existence of such a drive justified spaceflight activities.
Researching Children's Understanding of Safety: An Auto-Driven Visual Approach
ERIC Educational Resources Information Center
Agbenyega, Joseph S.
2011-01-01
Safe learning spaces allow children to explore their environment in an open and inquiring way, whereas unsafe spaces constrain, frustrate and disengage children from experiencing the fullness of their learning spaces. This study explores how children make sense of safe and unsafe learning spaces, and how this understanding affects the ways they…
14 CFR § 1201.102 - Functions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... exploration of space. The term aeronautical and space vehicles means aircraft, missiles, satellites, and other... required for the exploration of space with manned and unmanned vehicles and arranges for the most effective... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Functions. § 1201.102 Section § 1201.102...
In-Space Manufacturing: Pioneering a Sustainable Path to Mars
NASA Technical Reports Server (NTRS)
Werkheiser, Niki
2015-01-01
In order to provide meaningful impacts to exploration technology needs, the In-Space Manufacturing (ISM) Initiative must influence exploration systems design now. In-space manufacturing offers: dramatic paradigm shift in the development and creation of space architectures; efficiency gain and risk reduction for low Earth orbit and deep space exploration; and "pioneering" approach to maintenance, repair, and logistics leading to sustainable, affordable supply chain model. In order to develop application-based capabilities in time to support NASA budget and schedule, ISM must be able to leverage the significant commercial developments, which requires innovative, agile collaborative mechanisms (contracts, challenges, SBIR's, etc.); and NASA-unique investments to focus primarily on adapting the technologies and processes to the microgravity environment. We must do the foundational work - it is the critical path for taking these technologies from lab curiosities to institutionalized capabilities: characterize, certify, institutionalize, design for Additive Manufacturing (AM). Ideally, International Space Station (ISS) U.S. lab rack or partial rack space should be identified for in-space manufacturing utilization in order to continue technology development of a suite of capabilities required for exploration missions, as well as commercialization on ISS.
Market Driven Space Exploration
NASA Astrophysics Data System (ADS)
Gavert, Raymond B.
2004-02-01
Market driven space exploration will have the opportunity to develop to new levels with the coming of space nuclear power and propulsion. NASA's recently established Prometheus program is expected to receive several billion dollars over the next five years for developing nuclear power and propulsion systems for future spacecraft. Not only is nuclear power and propulsion essential for long distance Jupiter type missions, but it also important for providing greater access to planets and bodies nearer to the Earth. NASA has been working with industrial partners since 1987 through its Research Partnerships Centers (RPCs) to utilize the attributes of space in Low Earth Orbit (LEO). Plans are now being made to utilize the RPCs and industrial partners in extending the duration and boundaries of human space flight to create new opportunities for exploration and discovery. Private investors are considering setting up shops in LEO for commercial purposes. The trend is for more industrial involvement in space. Nuclear power and propulsion will hasten the progress. The objective of this paper is to show the progression of space market driven research and its potential for supporting space exploration given nuclear power and propulsion capabilities.
Exploring interspace: open space opportunities in dense urban areas
Paul H. Gobster; Kathleen E. Dickhut
1995-01-01
Using ideas from landscape ecology, this paper explores how small open spaces can aid urban forestry efforts in dense urban areas. A case study in Chicago illustrates the physical and social lessons learned in dealing with these spaces.
Product Lifecycle Management and Sustainable Space Exploration
NASA Technical Reports Server (NTRS)
Caruso, Pamela W.; Dumbacher, Daniel L.; Grieves, Michael
2011-01-01
This slide presentation reviews the use of product lifecycle management (PLM) in the general aerospace industry, its use and development at NASA and at Marshall Space Flight Center, and how the use of PLM can lead to sustainable space exploration.
Explaining public support for space exploration funding in America: A multivariate analysis
NASA Astrophysics Data System (ADS)
Nadeau, François
2013-05-01
Recent studies have identified the need to understand what shapes public attitudes toward space policy. I address this gap in the literature by developing a multivariate regression model explaining why many Americans support government spending on space exploration. Using pooled data from the 2006 and 2008 General Social Surveys, the study reveals that spending preferences on space exploration are largely apolitical and associated instead with knowledge and opinions about science. In particular, the odds of wanting to increase funding for space exploration are significantly higher for white, male Babyboomers with a higher socio-economic status, a fondness for organized science, and a post-secondary science education. As such, I argue that public support for NASA's spending epitomizes what Launius termed "Apollo Nostalgia" in American culture. That is, Americans benefitting most from the old social order of the 1960s developed a greater fondness for science that makes them more likely to lament the glory days of space exploration. The article concludes with suggestions for how to elaborate on these findings in future studies.
Commercialization is Required for Sustainable Space Exploration and Development
NASA Technical Reports Server (NTRS)
Martin, Gary L.; Olson, John M.
2009-01-01
The U.S. Space Exploration policy outlines an exciting new direction in space for human and robotic exploration and development beyond low Earth orbit. Pressed by this new visionary guidance, human civilization will be able to methodically build capabilities to move off Earth and into the solar system in a step-by-step manner, gradually increasing the capability for humans to stay longer in space and move further away from Earth. The new plans call for an implementation that would create an affordable and sustainable program in order to span over generations of explorers, each new generation pushing back the boundaries and building on the foundations laid by the earlier. To create a sustainable program it is important to enable and encourage the development of a selfsupporting commercial space industry leveraging both traditional and non-traditional segments of the industrial base. Governments will not be able to open the space frontier on their own because their goals change over relatively short timescales and because the large costs associated with human spaceflight cannot be sustained. A strong space development industrial sector is needed that can one day support the needs of commercial space enterprises as well as provide capabilities that the National Aeronautics and Space Administration (NASA) and other national space agencies can buy to achieve their exploration goals. This new industrial space sector will someday provide fundamental capabilities like communications, power, logistics, and even cargo and human space transportation, just as commercial companies are able to provide these services on Earth today. To help develop and bolster this new space industrial sector, NASA and other national space agencies can enable and facilitate it in many ways, including reducing risk by developing important technologies necessary for commercialization of space, and as a paying customer, partner, or anchor tenant. This transition from all or mostly government developed and operated facilities and services to commercial supplied facilities and services should be considered from the very earliest stages of planning. This paper will first discuss the importance of space commercialization to fulfilling national goals and the associated policy and strategic objectives that will enable space exploration and development. Then the paper will offer insights into how government can provide leadership to promote the nascent commercial space industry. In addition, the paper describes programs and policies already in place at NASA and offers five important principles government can use to strengthen space industry.
NASA Astrophysics Data System (ADS)
Tachibana, Koji; Tachibana, Shoichi; Inoue, Natsuhiko
2017-11-01
Human space exploration requires massive budgets every fiscal year. Especially under severe financial constraint conditions, governments are forced to justify to society why spending so much tax revenue for human space exploration is worth the cost. The value of human space exploration might be estimated in many ways, but its social significance and cost-effectiveness are two key ways to gauge that worth. Since these measures should be applied country by country because sociopolitical conditions differ in each country and must be taken into consideration, the study on the social significance of human space exploration must take the coloration of a case-study. This paper, focusing on the case of Japan with surveying Japanese literary and national documents as well as taking its sociopolitical conditions into account, examines the social significance of human space exploration. First, we give an overview of the circumstances surrounding Japan's human space exploration program. Derived from the statements of such relevant parties as scholars, journalists, policy makers, and astronauts, this overview indicates that the main concerns about human space exploration in Japan are its social significance and cost-effectiveness (Section 1). Next, an overview of behavioral science-an essential field for human space exploration (referred to in this paper as space behavioral science) that provides support for astronauts-is presented from the perspective of stress research in isolated and confined environments (Section 2). We then give two examples of where such knowledge from space behavioral science research has been applied to terrestrial isolated and confined environments. One is JAXA's support in 2009 for people who were vulnerable to infection by a new strain of flu and accordingly placed in an isolated and confined facility under the Infectious Disease Law and the Quarantine Law. The other is NASA's support in 2010 for Chilean mine workers who were trapped 700 m underground after a mining accident (Section 3). Based on these case studies, we illustrate the further social utility of such knowledge through a discussion of potential applications in other situations in Japan. Focusing on Japan for its geographical and social features in being an earthquake-prone archipelago and having the world's preeminent aging society, we show that refugees living in evacuation centers and people in an elderly-elderly homecare situation pose socially problematic situations specific to Japan. We then argue that space behavioral scientific knowledge can be applied to support people under these and other isolated and confined environments in various ways (Section 4). Finally, we demonstrate that such an application can be understood as an ethical contribution to Japanese society and that this contribution can be embedded in Japan's space policy (Section 5). We conclude that human space exploration can be a socially significant and cost-effective endeavor that is worthy of tax revenue expenditures because space behavioral science is highly likely to provide unique and useful knowledge to help address various social problems concerning terrestrial isolated and confined environments and support people in sufferings there.
Conversations with Rep. Ken Calvert. Interview by Frank Sietzen Jr.
Calvert, Ken
2005-07-01
Rep. Calvert, chair of the House aeronautics and space subcommittee of the Science Committee, answers questions related to priorities for space in the current congressional session: the Vision for Space Exploration, development of the Crew Exploration Vehicle (CEV) and other heavy-lift launch vehicles, entrepreneurial alliances in the space transportation industry, the U.S. aerospace industry, space tourism, entrepreneurs and NASA, U.S. aeronautics research, a service mission to the Hubble Space Telescope, and priority military space programs.
47 CFR 97.303 - Frequency sharing requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... harmful interference to stations in the Earth exploration-satellite service (passive) or the space...; and (3) Other nations in the Earth exploration-satellite (active), radionavigation-satellite (space-to...: (1) The United States Government in the aeronautical radionavigation, Earth exploration-satellite...
47 CFR 97.303 - Frequency sharing requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... harmful interference to stations in the Earth exploration-satellite service (passive) or the space...; and (3) Other nations in the Earth exploration-satellite (active), radionavigation-satellite (space-to...: (1) The United States Government in the aeronautical radionavigation, Earth exploration-satellite...
47 CFR 97.303 - Frequency sharing requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... harmful interference to stations in the Earth exploration-satellite service (passive) or the space...; and (3) Other nations in the Earth exploration-satellite (active), radionavigation-satellite (space-to...: (1) The United States Government in the aeronautical radionavigation, Earth exploration-satellite...
47 CFR 97.303 - Frequency sharing requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... harmful interference to stations in the Earth exploration-satellite service (passive) or the space...; and (3) Other nations in the Earth exploration-satellite (active), radionavigation-satellite (space-to...: (1) The United States Government in the aeronautical radionavigation, Earth exploration-satellite...
White, R J; Averner, M
2001-02-22
Many successful space missions over the past 40 years have highlighted the advantages and necessity of humans in the exploration of space. But as space travel becomes ever more feasible in the twenty-first century, the health and safety of future space explorers will be paramount. In particular, understanding the risks posed by exposure to radiation and extended weightlessness will be crucial if humans are to travel far from Earth.
Exploration Medical Capability (ExMC) Program
NASA Technical Reports Server (NTRS)
Kalla, Elizabeth
2006-01-01
This document reviews NASA's Exploration Medical Capability (ExMC) program. The new space exploration program, outlined by the President will present new challenges to the crew's health. The project goals are to develop and validate requirements for reliable, efficient, and robust medical systems and treatments for space exploration to maximize crew performance for mission objectives.
Flexible-Path Human Exploration
NASA Technical Reports Server (NTRS)
Sherwood, B.; Adler, M.; Alkalai, L.; Burdick, G.; Coulter, D.; Jordan, F.; Naderi, F.; Graham, L.; Landis, R.; Drake, B.;
2010-01-01
In the fourth quarter of 2009 an in-house, multi-center NASA study team briefly examined "Flexible Path" concepts to begin understanding characteristics, content, and roles of potential missions consistent with the strategy proposed by the Augustine Committee. We present an overview of the study findings. Three illustrative human/robotic mission concepts not requiring planet surface operations are described: assembly of very large in-space telescopes in cis-lunar space; exploration of near Earth objects (NEOs); exploration of Mars' moon Phobos. For each, a representative mission is described, technology and science objectives are outlined, and a basic mission operations concept is quantified. A fourth type of mission, using the lunar surface as preparation for Mars, is also described. Each mission's "capability legacy" is summarized. All four illustrative missions could achieve NASA's stated human space exploration objectives and advance human space flight toward Mars surface exploration. Telescope assembly missions would require the fewest new system developments. NEO missions would offer a wide range of deep-space trip times between several months and two years. Phobos exploration would retire several Marsclass risks, leaving another large remainder set (associated with entry, descent, surface operations, and ascent) for retirement by subsequent missions. And extended lunar surface operations would build confidence for Mars surface missions by addressing a complementary set of risks. Six enabling developments (robotic precursors, ISS exploration testbed, heavy-lift launch, deep-space-capable crew capsule, deep-space habitat, and reusable in-space propulsion stage) would apply across multiple program sequence options, and thus could be started even without committing to a specific mission sequence now. Flexible Path appears to be a viable strategy, with meaningful and worthy mission content.
Trade studies for nuclear space power systems
NASA Technical Reports Server (NTRS)
Smith, John M.; Bents, David J.; Bloomfield, Harvey S.
1991-01-01
As human visions of space applications expand and as we probe further out into the universe, our needs for power will also expand, and missions will evolve which are enabled by nuclear power. A broad spectrum of missions which are enhanced or enabled by nuclear power sources have been defined. These include Earth orbital platforms, deep space platforms, planetary exploration, and terrestrial resource exploration. The recently proposed Space Exploration Initiative (SEI) to the Moon and Mars has more clearly defined these missions and their power requirements. Presented here are results of recent studies of radioisotope and nuclear reactor energy sources, combined with various energy conversion devices for Earth orbital applications, SEI lunar/Mars rovers, surface power, and planetary exploration.
NASA Technical Reports Server (NTRS)
Woodfill, Jerry
1992-01-01
The Space Educators' Handbook is a collection of space exploration information available on Hypercard as a space education reference book. Ranging from early dreams of space ships to current manned missions, the more than four thousand cards include entries of statistics, historical facts and anecdotes, technical articles, accounts of NASA missions from Mercury through the space shuttle, biographical information on women and men who have contributed to space exploration, scientific facts, and various other space-related data. The means of presenting the data range from cartoons and drawings to lists and narratives, some briefly quoted and some reproduced in full.
Evolution of Government and Industrial Partnerships to Open the Space Frontier
NASA Technical Reports Server (NTRS)
Martin, Gary L.
2008-01-01
If the logical extension of the current exploration program is to develop self-sustaining settlements on the Moon and Mars over the next few centuries, then there is a path that takes civilization from its current one planet existence to a multi-world future. By considering the far term goal of space settlements as a desired endpoint and using the current state as a starting point, the policy drivers and potential pathways to the goal of sustainable space settlements can be explored. This paper describes a three-phased evolution of government and industrial partnerships from current day relationships to a time when there are sustainable settlements in space. Phase I details the current state government-led exploration while Phase III describes a desired endpoint of self-sufficient settlements in space. Phase II is an important transition phase, which acts as a bridge between now and the future. This paper discusses the critical evolution that must take place in two key areas to ensure a thriving future in space; space transportation and the right to use space property and resources. This paper focuses on the enabling role of government necessary to achieve United States (U.S.) goals for space exploration and open the frontier.
Space 2100: A Shared Visioning Exercise for the Future Space Economy
NASA Astrophysics Data System (ADS)
Ferguson, C. K.; Nall, M. E.; Scott, D. W.; Tinker, M. L.; Oneil, D.; Sivak, A. D.; Wright, G. M.; Eberly, E. A.; Ramdall, C.
In 2013, NASA's Marshall Space Flight Center chartered a diverse team for a six-week "sprint" to envision how Earth, space, and public/private entities might be operating in the year 2100. This sprint intended to inspire innovation, creativity and improved teamwork between all levels of employees, in addition to pulling diverse ideas about exploration from organizations that are not traditionally included in technology development at NASA. The team was named Space 2100. In 2014, the team ran a sprint based on the previous outcomes to a) develop detailed estimates of operations and challenges of space activities in the vicinity of the Earth and Moon in the year 2050, b) identify evolutionary steps to make this vision a reality, and c) recommend actions to enable those steps. In 2015, the team continued building on previous years by identifying technologies and approaches to reduce and ultimately eliminate the need for resupply from Earth, enabling self-sufficient exploration throughout the solar system. This exercise identified 30 technologies as potential critical paths to Earth independency. Space 2100's conclusions and recommendations are not part of NASA's strategic planning or policy. This paper explores the three Space 2100 sprints and their implications for the future of space exploration.
Advantages of Science Cubesat and Microsat Deployment Using DSG Deep Space Exploration Robotics
NASA Astrophysics Data System (ADS)
Shaw, A.; Rembala, R.; Fulford, P.
2018-02-01
Important scientific missions can be accomplished with cubesats/microsats. These missions would benefit from advantages offered by having an independent cubesat/microsat deployment capability as part of Deep Space Gateway's Deep Space Exploration Robotics system.
Explorations in Space and Time: Computer-Generated Astronomy Films
ERIC Educational Resources Information Center
Meeks, M. L.
1973-01-01
Discusses the use of the computer animation technique to travel through space and time and watch models of astronomical systems in motion. Included is a list of eight computer-generated demonstration films entitled Explorations in Space and Time.'' (CC)
2018-01-11
Josie Burnett, director or Exploration Research and Technology Programs, speaks to Kennedy Space Center employees about plans for the coming year. The event took place in the Lunar Theater at the Kennedy Space Center Visitor Complex’s Apollo Saturn V Center. The year will be highlighted with NASA's partners preparing test flights for crewed missions to the International Space Station as part of the agency's Commercial Crew Program and six launches by the Launch Services Program. Exploration Ground Systems will be completing facilities to support the Space Launch System rocket and Orion spacecraft. Exploration Research and Technology Programs will continue to provide supplies to the space station launched as part of the Commercial Resupply Services effort.
NASA Technical Reports Server (NTRS)
Ignatiev, A.
2000-01-01
Contents include following: Developing Technologies for Space Resource Utilization - Concept for a Planetary Engineering Research Institute. Results of a Conceptual Systems Analysis of Systems for 200 m Deep Sampling of the Martian Subsurface. The Role of Near-Earth Asteroids in Long-Term Platinum Supply. Core Drilling for Extra-Terrestrial Mining. Recommendations by the "LSP and Manufacturing" Group to the NSF-NASA Workshop on Autonomous Construction and Manufacturing for Space Electrical Power Systems. Plasma Processing of Lunar and Planetary Materials. Percussive Force Magnitude in Permafrost. Summary of the Issues Regarding the Martian Subsurface Explorer. A Costing Strategy for Manufacturing in Orbit Using Extraterrestrial Resources. Mine Planning for Asteroid Orebodies. Organic-based Dissolution of Silicates: A New Approach to Element Extraction from LunarRegohth. Historic Frontier Processes Active in Future Space-based Mineral Extraction. The Near-Earth Space Surveillance (NIESS) Mission: Discovery, Tracking, and Characterization of Asteroids, Comets, and Artificial Satellites with a microsatellite. Privatized Space Resource Property Ownership. The Fabrication of Silicon Solar Cells on the Moon Using In-Situ Resources. A New Strategy for Exploration Technology Development: The Human Exploration and Development of Space (HEDS) Exploratiori/Commercialization Technology Initiative. Space Resources for Space Tourism. Recovery of Volatiles from the Moon and Associated Issues. Preliminary Analysis of a Small Robot for Martian Regolith Excavation. The Registration of Space-based Property. Continuous Processing with Mars Gases. Drilling and Logging in Space; An Oil-Well Perspective. LORPEX for Power Surges: Drilling, Rock Crushing. An End-To-End Near-Earth Asteroid Resource Exploitation Plan. An Engineering and Cost Model for Human Space Settlement Architectures: Focus on Space Hotels and Moon/Mars Exploration. The Development and Realization of a Silicon-60-based Economy in CisLunar Space. Our Lunar Destiny: Creating a Lunar Economy. Cost-Effective Approaches to Lunar Passenger Transportation. Lunar Mineral Resources: Extraction and Application. Space Resources Development - The Link Between Human Exploration and the Long-term Commercialization of Space. Toward a More Comprehensive Evaluation of Space Information. Development of Metal Casting Molds by Sol-Gel Technology Using Planetary Resources. A New Concept in Planetary Exploration: ISRU with Power Bursts. Bold Space Ventures Require Fervent Public Support. Hot-pressed Iron from Lunar Soil. The Lunar Dust Problem: A Possible Remedy. Considerations on Use of Lunar Regolith in Lunar Constructions. Experimental Study on Water Production by Hydrogen Reduction of Lunar Soil Simulant in a Fixed Bed Reactor.
Space Launch System—New Exterior Markings (2017 Animation)
2017-06-13
Animation depicting NASA’s Space Launch System, the world's most powerful rocket for a new era of human exploration in deep space. Black-and-white checkerboard targets on the exterior of the SLS heavy-lift rocket will enable photogrammetrists to measure critical distances during spaceflight, including booster separation from the core stage. With its unprecedented capabilities, SLS will launch astronauts in the agency’s Orion spacecraft on missions to explore multiple, deep-space destinations, including Mars. For more information on SLS, visit https://www.nasa.gov/exploration/systems/sls
NASA Technical Reports Server (NTRS)
Bennett, Gary L.; Brandhorst, Henry W., Jr.; Atkins, Kenneth L.
1991-01-01
In July 1989, President Bush announced his space exploration initiative of going back to the Moon to stay and then going to Mars. Building upon its ongoing research and technology base, NASA has established an exploration technology program to develop the technologies needed for piloted missions to the Moon and Mars. A key element for the flights and for the planned bases is power. The NASA research and technology program on space power encompasses power sources, energy storage, and power management.
Intelligent Systems: Shaping the Future of Aeronautics and Space Exploration
NASA Technical Reports Server (NTRS)
Krishnakumar, Kalmanje; Lohn, Jason; Kaneshige, John
2004-01-01
Intelligent systems are nature-inspired, mathematically sound, computationally intensive problem solving tools and methodologies that have become important for NASA's future roles in Aeronautics and Space Exploration. Intelligent systems will enable safe, cost and mission-effective approaches to air& control, system design, spacecraft autonomy, robotic space exploration and human exploration of Moon, Mars, and beyond. In this talk, we will discuss intelligent system technologies and expand on the role of intelligent systems in NASA's missions. We will also present several examples of which some are highlighted m this extended abstract.
White, Olivier; Clément, Gilles; Fortrat, Jacques-Olivier; Pavy-LeTraon, Anne; Thonnard, Jean-Louis; Blanc, Stéphane; Wuyts, Floris L; Paloski, William H
2016-01-01
The THESEUS project (Towards Human Exploration of Space: a European Strategy), initiated within the seventh Framework Programme by the European Commission, aimed at providing a cross-cutting, life-science-based roadmap for Europe's strategy towards human exploration of long space missions, and its relevance to applications on Earth. This topic was investigated by experts in the field, in the framework of the THESEUS project whose aim was to develop an integrated life sciences research roadmap regarding human space exploration. In particular, decades of research have shown that altered gravity impairs neurological responses at large, such as perception, sleep, motor control, and cognitive factors. International experts established a list of key issues that should be addressed in that context and provided several recommendations such as a maximal exploitation of currently available resources on Earth and in space.
The space exploration initiative
NASA Technical Reports Server (NTRS)
Priest, Pete
1991-01-01
A number of view graph charts are presented which outline the presentation. Outlined are reasons for going to Mars, why it is necessary to go to the Moon first, and the presidential decision on the space exploration initiative. Other representative charts are entitled: Lunar transportation system requirement drivers; Mars transportation system requirement drivers; National space policy goals; Exploration hardware needed; Mars mission profile; Science on the Moon and Mars; and Two independent reviews.
NASA Technical Reports Server (NTRS)
Hamilton, George S.; Adams, Christopher W.
2005-01-01
As long duration space exploration and habitation becomes more commonplace, a number of Human Engineering factors (Gravitational Adaptation, 2-D to 3-D Movement Adaptation, Design Form/Function, and Space Ergonomics to name a few) will become more pronounced. More research and development is needed in these areas or the explorers may find themselves in painful or dangerous situations.
Accelerating Cogent Confabulation: An Exploration in the Architecture Design Space
2008-06-01
DATES COVERED (From - To) 1-8 June 2008 4. TITLE AND SUBTITLE ACCELERATING COGENT CONFABULATION: AN EXPLORATION IN THE ARCHITECTURE DESIGN SPACE 5a...spiking neural networks is proposed in reference [8]. Reference [9] investigates the architecture design of a Brain-state-in-a-box model. The...Richard Linderman2, Thomas Renz2, Qing Wu1 Accelerating Cogent Confabulation: an Exploration in the Architecture Design Space POSTPRINT complexity
NASA Technical Reports Server (NTRS)
Perry, Jay L.; Abney, Morgan B.; Knox, James C.; Parrish, Keith J.; Roman, Monserrate C.; Jan, Darrell L.
2012-01-01
Exploring the frontiers of deep space continues to be defined by the technological challenges presented by safely transporting a crew to and from destinations of scientific interest. Living and working on that frontier requires highly reliable and efficient life support systems that employ robust, proven process technologies. The International Space Station (ISS), including its environmental control and life support (ECLS) system, is the platform from which humanity's deep space exploration missions begin. The ISS ECLS system Atmosphere Revitalization (AR) subsystem and environmental monitoring (EM) technical architecture aboard the ISS is evaluated as the starting basis for a developmental effort being conducted by the National Aeronautics and Space Administration (NASA) via the Advanced Exploration Systems (AES) Atmosphere Resource Recovery and Environmental Monitoring (ARREM) Project.. An evolutionary approach is employed by the ARREM project to address the strengths and weaknesses of the ISS AR subsystem and EM equipment, core technologies, and operational approaches to reduce developmental risk, improve functional reliability, and lower lifecycle costs of an ISS-derived subsystem architecture suitable for use for crewed deep space exploration missions. The most promising technical approaches to an ISS-derived subsystem design architecture that incorporates promising core process technology upgrades will be matured through a series of integrated tests and architectural trade studies encompassing expected exploration mission requirements and constraints.
The Deep Space Network: A Radio Communications Instrument for Deep Space Exploration
NASA Technical Reports Server (NTRS)
Renzetti, N. A.; Stelzried, C. T.; Noreen, G. K.; Slobin, S. D.; Petty, S. M.; Trowbridge, D. L.; Donnelly, H.; Kinman, P. W.; Armstrong, J. W.; Burow, N. A.
1983-01-01
The primary purpose of the Deep Space Network (DSN) is to serve as a communications instrument for deep space exploration, providing communications between the spacecraft and the ground facilities. The uplink communications channel provides instructions or commands to the spacecraft. The downlink communications channel provides command verification and spacecraft engineering and science instrument payload data.
2016-07-22
Launch Services (ILS) of a Proton M launch vehicle and one provided by Space Exploration Technologies ( SpaceX ) of a Falcon 9 launch vehicle — and...U.S. based providers are United Launch Alliance (ULA), Space Exploration Technologies Corporation ( SpaceX ), and Orbital ATK. Countries we reviewed
NASA Technical Reports Server (NTRS)
Miller, Thomas
2007-01-01
The NASA Glenn Research Center (GRC), along with the Goddard Space Flight Center (GSFC), Jet Propulsion Laboratory (JPL), Johnson Space Center (JSC), Marshall Space Flight Center (MSFC), and industry partners, is leading a space-rated lithium-ion advanced development battery effort to support the vision for Exploration. This effort addresses the lithium-ion battery portion of the Energy Storage Project under the Exploration Technology Development Program. Key discussions focus on the lithium-ion cell component development activities, a common lithium-ion battery module, test and demonstration of charge/discharge cycle life performance and safety characterization. A review of the space-rated lithium-ion battery project will be presented highlighting the technical accomplishments during the past year.
2013-06-29
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, the "rocket garden" includes many of the historic launch vehicles of the United States' efforts to explore space. The new $100 million facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit formally opened to the public on June 29, 2013.Photo credit: NASA/Jim Grossmann
NASA Technical Reports Server (NTRS)
LaRocco, Mark T.; Pierson, Duane L.
1999-01-01
In contemplating space travel beyond earth orbits, we humans face significant barriers and major challenges. Although researchers involved in several scientific subdisciplines, including space medicine and space life sciences, may provide insights to help overcome those barriers, their efforts are at an early stage of development, leaving open many questions of potentially major consequence.
78 FR 42110 - NASA Advisory Council; Human Exploration and Operations Committee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-15
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (13-078)] NASA Advisory Council; Human Exploration and Operations Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Human...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-17
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (13-082)] NASA Advisory Council; Human Exploration Operations Committee; Research Subcommittee; Meeting AGENCY: National Aeronautics and Space... Law 92-462, as amended, the National Aeronautics and Space Administration (NASA) announces a meeting...
United States Civil Space Policy: Summary of a Workshop
NASA Technical Reports Server (NTRS)
2008-01-01
What are the principal purposes, goals, and priorities of the U.S. civil space program? This question was the focus of the workshop on civil space policy held November 29-30, 2007, by the Space Studies Board (SSB) and the Aeronautics and Space Engineering Board (ASEB) of the National Research Council (NRC). In addressing this question, invited speakers and panelists and the general discussion from this public workshop explored a series of topics, including the following: (1) Key changes and developments in the U.S. civil space program since the new national Vision for Space Exploration2 (the Vision) was articulated by the executive branch in 2004; (2) The fit of space exploration within a broader national and international context; (3) Affordability, public interest, and political will to sustain the civil space program; (4) Definitions, metrics, and decision criteria for the mix and balance of activities within the program portfolio; (5) Roles of government in Earth observations from space; and (6) Gaps in capabilities and infrastructure to support the program.
Enabling Sustainable Exploration through the Commercial Development of Space
NASA Technical Reports Server (NTRS)
Nall, Mark; Casas, Joseph
2003-01-01
The commercial development of space offers enabling benefits to space exploration. This paper examines how those benefits can be realized, and how the Space Product Development Office of the National Aeronautics and Space Administration is taking the first steps towards opening the space frontier through vital and sustainable industrial development. The Space Product Development Office manages 15 Commercial Space Centers that partner with US industry to develop opportunities for commerce in space. This partnership directly benefits NASA exploration in four primary ways. First, by actively involving traditional and non-traditional companies in commercial space activities, it seeks and encourages to the maximum extent possible the fullest commercial use of space, as directed by NASA's charter. Second, the commercial research and technologies pursued and developed in the program often have direct applicability to NASA priority mission areas. This dual use strategy for research and technology has the potential to greatly expand what the NASA scientific community can do. Third, the commercial experiment hardware developed by the Commercial Space Centers and their industrial partners is available for use by NASA researchers in support of priority NASA research. By utilizing low cost and existing commercial hardware, essential NASA research can be more readily accomplished. Fourth, by assisting industry in understanding the use of the environment of space and in helping industry enhance the tools and technologies for NASA and commercial space systems, the market for commercial space utilization and the capability for meeting the future growing market needs is being developed. These two activities taken together form the beginning of a new space economy that will enable sustainable NASA exploration of the universe.
Human Space Exploration and Radiation Exposure from EVA: 1981-2011
NASA Astrophysics Data System (ADS)
Way, A. R.; Saganti, S. P.; Erickson, G. M.; Saganti, P. B.
2011-12-01
There are several risks for any human space exploration endeavor. One such inevitable risk is exposure to the space radiation environment of which extra vehicular activity (EVA) demands more challenges due to limited amount of protection from space suit shielding. We recently compiled all EVA data comprising low-earth orbit (LEO) from Space Shuttle (STS) flights, International Space Station (ISS) expeditions, and Shuttle-Mir missions. Assessment of such radiation risk is very important, particularly for the anticipated long-term, deep-space human explorations in the near future. We present our assessment of anticipated radiation exposure and space radiation dose contribution to each crew member from a listing of 350 different EVA events resulting in more than 1000+ hrs of total EVA time. As of July 12, 2011, 197 astronauts have made spacewalks (out of 520 people who have gone into Earth orbit). Only 11 women have been on spacewalks.
Overview of the NASA Advanced In-Space Propulsion Project
NASA Technical Reports Server (NTRS)
LaPointe, Michael
2011-01-01
In FY11, NASA established the Enabling Technologies Development and Demonstration (ETDD) Program, a follow on to the earlier Exploration Technology Development Program (ETDP) within the NASA Exploration Systems Mission Directorate. Objective: Develop, mature and test enabling technologies for human space exploration.
NASA Technical Reports Server (NTRS)
Johnson, Les
2009-01-01
Solar sailing is a topic of growing technical and popular interest. Solar sail propulsion will make space exploration more affordable and offer access to destinations within (and beyond) the solar system that are currently beyond our technical reach. The lecture will describe solar sails, how they work, and what they will be used for in the exploration of space. It will include a discussion of current plans for solar sails and how advanced technology, such as nanotechnology, might enhance their performance. Much has been accomplished recently to make solar sail technology very close to becoming an engineering reality and it will soon be used by the world s space agencies in the exploration of the solar system and beyond. The first part of the lecture will summarize state-of-the-art space propulsion systems and technologies. Though these other technologies are the key to any deep space exploration by humans, robots, or both, solar-sail propulsion will make space exploration more affordable and offer access to distant and difficult destinations. The second part of the lecture will describe the fundamentals of space solar sail propulsion and will describe the near-, mid- and far-term missions that might use solar sails as a propulsion system. The third part of the lecture will describe solar sail technology and the construction of current and future sailcraft, including the work of both government and private space organizations.
NASA's In-Space Propulsion Technology Program: A Step Toward Interstellar Exploration
NASA Technical Reports Server (NTRS)
Johnson, Les; James, Bonnie; Baggett, Randy; Montgomery, Sandy
2005-01-01
NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space. The maximum theoretical efficiencies have almost been reached and are insufficient to meet needs for many ambitious science missions currently being considered. By developing the capability to support mid-term robotic mission needs, the program is laying the technological foundation for travel to nearby interstellar space. The In-Space Propulsion Technology Program s technology portfolio includes many advanced propulsion systems. From the next-generation ion propulsion systems operating in the 5-10 kW range, to solar sail propulsion, substantial advances in spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called "propellantless" because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations, such as solar sails, electrodynamic and momentum transfer tethers, and aerocapture. This paper will provide an overview of those propellantless and propellant-based advanced propulsion technologies that will most significantly advance our exploration of deep space.
NASA Astrophysics Data System (ADS)
Silin, D. V.
Manned interstellar spaceflight is facing multiple challenges of great magnitude; among them are extremely large distances and the lack of known habitable planets other than Earth. Many of these challenges are applicable to manned space exploration within the Solar System to the same or lesser degree. If these issues are resolved on an interplanetary scale, better position to pursue interstellar exploration can be reached. However, very little progress (if any) was achieved in manned space exploration since the end of Space Race. There is no lack of proposed missions, but all of them require considerable technological and financial efforts to implement while yielding no tangible benefits that would justify their costs. To overcome this obstacle highest priority in future space exploration plans should be assigned to the creation of added value in outer space. This goal can be reached if reductions in space transportation, construction and maintenance of space-based structures costs are achieved. In order to achieve these requirements several key technologies have to be mastered, such as near-Earth object mining, space- based manufacturing, agriculture and structure assembly. To keep cost and difficulty under control next exploration steps can be limited to nearby destinations such as geostationary orbit, low lunar orbit, Moon surface and Sun-Earth L1 vicinity. Completion of such a program will create a solid foundation for further exploration and colonization of the Solar System, solve common challenges of interplanetary and interstellar spaceflight and create useful results for the majority of human population. Another important result is that perception of suitable destinations for interstellar missions will change significantly. If it becomes possible to create habitable and self-sufficient artificial environments in the nearby interplanetary space, Earth-like habitable planets will be no longer required to expand beyond our Solar System. Large fraction of the stars in the observable Universe will become valid targets for interstellar missions.
NASA's Space Launch System: One Vehicle, Many Destinations
NASA Technical Reports Server (NTRS)
May, Todd A.; Creech, Stephen D.
2013-01-01
The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for exploration beyond Earth orbit. Developed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will start its missions in 2017 with 10 percent more thrust than the Saturn V rocket that launched astronauts to the Moon 40 years ago. From there it will evolve into the most powerful launch vehicle ever flown, via an upgrade approach that will provide building blocks for future space exploration and development. The International Space Exploration Coordination Group, representing 12 of the world's space agencies, has created the Global Exploration Roadmap, which outlines paths toward a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for all three destinations. This paper will explore the capability of SLS to meet those requirements and enable those missions. It will explain how the SLS Program is executing this development within flat budgetary guidelines by using existing engines assets and developing advanced technology based on heritage systems, from the initial 70 metric ton (t) lift capability through a block upgrade approach to an evolved 130-t capability. It will also detail the significant progress that has already been made toward its first launch in 2017. The SLS will offer a robust way to transport international crews and the air, water, food, and equipment they will need for extended trips to explore new frontiers. In addition, this paper will summarize the SLS rocket's capability to support science and robotic precursor missions to other worlds, or uniquely high-mass space facilities in Earth orbit. As this paper will explain, the SLS is making measurable progress toward becoming a global infrastructure asset for robotic and human scouts of all nations by providing the robust launch capability to deliver sustainable solutions for space exploration.
NASA Astrophysics Data System (ADS)
Race, Margaret
2012-07-01
As COSPAR scientists deliberate what types of frameworks and policy approaches may be applicable to future activities by various sectors in space exploration, it also needs to consider the challenging question of what ethical values and foundations should be used in dealing with life, objects and activities in outer space. A 2010 COSPAR Workshop Report on Ethical Considerations for Planetary Protection in Space Exploration recommended that it is appropriate to maintain the existing PP policy aimed at scientific concerns even as we begin to explore various practical approaches to future contamination avoidance policies. It is also appropriate to examine in parallel the ethical considerations applicable to potential indigenous extraterrestrial life, non-living extraterrestrial features and environments, and planned uses and activities involving diverse life from Earth. Since numerous sectors have begun to propose activities raising varied ethical concerns (e.g., protection and management on the moon, strip mining, space synthetic biology, space code of conduct, and commercial space transport), it is timely to initiate serious international discussions about the appropriate ethical foundations and questions applicable to future space exploration. Plans are underway for convening interdisciplinary work groups to explore and deliberate on the values (e.g., intrinsic and instrumental) and ethical foundations that are appropriate for use in deliberations involving potential indigenous extraterrestrial life and the different classes of target objects and environments in our solar system. More than ever, information on bioethics, environmental ethics and geoethics will provide helpful guidance and foundational approaches of relevance to future policy deliberations that seek to go beyond science protection per se.
NASA Technical Reports Server (NTRS)
Lupisella, Mark L.; Mueller, Thomas
2016-01-01
This paper will provide a summary and analysis of the SpaceOps 2015 Workshop all-day session on "Advanced Technologies for Robotic Exploration, Leading to Human Exploration", held at Fucino Space Center, Italy on June 12th, 2015. The session was primarily intended to explore how robotic missions and robotics technologies more generally can help lead to human exploration missions. The session included a wide range of presentations that were roughly grouped into (1) broader background, conceptual, and high-level operations concepts presentations such as the International Space Exploration Coordination Group Roadmap, followed by (2) more detailed narrower presentations such as rover autonomy and communications. The broader presentations helped to provide context and specific technical hooks, and helped lay a foundation for the narrower presentations on more specific challenges and technologies, as well as for the discussion that followed. The discussion that followed the presentations touched on key questions, themes, actions and potential international collaboration opportunities. Some of the themes that were touched on were (1) multi-agent systems, (2) decentralized command and control, (3) autonomy, (4) low-latency teleoperations, (5) science operations, (6) communications, (7) technology pull vs. technology push, and (8) the roles and challenges of operations in early human architecture and mission concept formulation. A number of potential action items resulted from the workshop session, including: (1) using CCSDS as a further collaboration mechanism for human mission operations, (2) making further contact with subject matter experts, (3) initiating informal collaborative efforts to allow for rapid and efficient implementation, and (4) exploring how SpaceOps can support collaboration and information exchange with human exploration efforts. This paper will summarize the session and provide an overview of the above subjects as they emerged from the SpaceOps 2015 Workshop session.
Powering the Future of Science and Exploration
NASA Technical Reports Server (NTRS)
Miley, Steven C.
2009-01-01
This viewgraph presentation reviews NASA's future of science and space exploration. The topics include: 1) NASA's strategic goals; 2) NASA around the Country; 3) Marshall's History; 4) Marshall's Missions; 5) Marshall Statistics: From Exploration to Opportunity; 6) Propulsion and Transportation Systems; 7) Life Support systems; 8) Earth Science; 9) Space Science; 10) NASA Innovation Creates New Jobs, Markets, and Technologies; 11) NASA Inspires Future Generations of Explorers; and 12) Why Explore?
2016 Summer Series - Jason Dunn - The Future of Making Things in Space
2016-08-04
Manufacturing of tools is why humans survive. Inkjet printer technology has revolutionized the world of printing anything and led to 3D printers that allow rapid prototyping and manufacturing of tools. Getting materials to space is costly and the ability to manufacture on demand will make space exploration and space utilization more robust and affordable. Jason Dunn will discuss Made In Space’s achievements in bringing 3D printers to the International Space Station and their future role in space exploration.
Science on the International Space Station: Stepping Stones for Exploration
NASA Technical Reports Server (NTRS)
Robinson, Julie A.
2007-01-01
This viewgraph presentation reviews the state of science research on the International Space Station (ISS). The shuttle and other missions that have delivered science research facilities to the ISS are shown. The different research facilities provided by both NASA and partner organizations available for use and future facilities are reviewed. The science that has been already completed is discussed. The research facilitates the Vision for Space Exploration, in Human Life Sciences, Biological Sciences, Materials Science, Fluids Science, Combustion Science, and all other sciences. The ISS Focus for NASA involves: Astronaut health and countermeasure, development to protect crews from the space environment during long duration voyages, Testing research and technology developments for future exploration missions, Developing and validating operational procedures for long-duration space missions. The ISS Medical Project (ISSMP) address both space systems and human systems. ISSMP has been developed to maximize the utilization of ISS to obtain solutions to the human health and performance problems and the associated mission risks of exploration class missions. Including complete programmatic review with medical operations (space medicine/flight surgeons) to identify: (1) evidence base on risks (2) gap analysis.
The Biology and Space Exploration Video Series
NASA Technical Reports Server (NTRS)
William, Jacqueline M.; Murthy, Gita; Rapa, Steve; Hargens, Alan R.
1995-01-01
The Biology and Space Exploration video series illustrates NASA's commitment to increasing the public awareness and understanding of life sciences in space. The video series collection, which was initiated by Dr. Joan Vernikos at NASA headquarters and Dr. Alan Hargens at NASA Ames Research Center, will be distributed to universities and other institutions around the United States. The video series parallels the "Biology and Space Exploration" course taught by NASA Ames scientists at Stanford University, Palo Alto, California. In the past, students have shown considerable enthusiasm for this course and have gained a much better appreciation and understanding of space life sciences and exploration. However, due to the unique nature of the topics and the scarcity of available educational materials, most students in other universities around the country are unable to benefit from this educational experience. Therefore, with the assistance of Ames experts, we are producing a video series on selected aspects of life sciences in space to expose undergraduate students to the effects of gravity on living systems. Additionally, the video series collection contains space flight footage, graphics, charts, pictures, and interviews to make the materials interesting and intelligible to viewers.
NASA Technical Reports Server (NTRS)
Singer, Christopher E.; Dumbacher, Daniel L.; Lyles, Gary M.; Onken, Jay F.
2008-01-01
The United States (U.S.) is charting a renewed course for lunar exploration, with the fielding of a new human-rated space transportation system to replace the venerable Space Shuttle, which will be retired after it completes its missions of building the International Space Station (ISS) and servicing the Hubble Space Telescope. Powering the future of space-based scientific exploration will be the Ares I Crew Launch Vehicle, which will transport the Orion Crew Exploration Vehicle to orbit where it will rendezvous with the Altair Lunar Lander, which will be delivered by the Ares V Cargo Launch Vehicle (fig. 1). This configuration will empower rekindled investigation of Earth's natural satellite in the not too distant future. This new exploration infrastructure, developed by the National Aeronautics and Space Administration (NASA), will allow astronauts to leave low-Earth orbit (LEO) for extended lunar missions and preparation for the first long-distance journeys to Mars. All space-based operations - to LEO and beyond - are controlled from Earth. NASA's philosophy is to deliver safe, reliable, and cost-effective architecture solutions to sustain this multi-billion-dollar program across several decades. Leveraging SO years of lessons learned, NASA is partnering with private industry and academia, while building on proven hardware experience. This paper outlines a few ways that the Engineering Directorate at NASA's Marshall Space Flight Center is working with the Constellation Program and its project offices to streamline ground operations concepts by designing for operability, which reduces lifecycle costs and promotes sustainable space exploration.
Applied Nanotechnology for Human Space Exploration
NASA Technical Reports Server (NTRS)
Yowell, Leonard L.
2007-01-01
A viewgraph presentation describing nanotechnology for human space exploration is shown. The topics include: 1) NASA's Strategic Vision; 2) Exploration Architecture; 3) Future Exploration Mission Requirements Cannot be met with Conventional Materials; 4) Nanomaterials: Single Wall Carbon Nanotubes; 5) Applied Nanotechnology at JSC: Fundamentals to Applications; 6) Technology Readiness Levels (TRL); 7) Growth, Modeling, Diagnostics and Production; 8) Characterization: Purity, Dispersion and Consistency; 9) Processing; 10) Nanoelectronics: Enabling Technologies; 11) Applications for Human Space Exploration; 12) Exploration Life Support: Atmosphere Revitalization System; 13) Advanced and Exploration Life Support: Regenerable CO2 Removal; 14) Exploration Life Support: Water Recovery; 15) Advanced Life Support: Water Disinfection/Recovery; 16) Power and Energy: Supercapacitors and Fuel Cells; 17) Nanomaterials for EMI Shielding; 18) Active Radiation Dosimeter; 19) Advanced Thermal Protection System (TPS) Repair; 20) Thermal Radiation and Impact Protection (TRIPS); 21) Nanotechnology: Astronaut Health Management; 22) JSC Nanomaterials Group Collaborations.
The contributions of occupational science to the readiness of long duration deep space exploration.
Davis, Janis; Burr, Macy; Absi, Maria; Telles, Rochelle; Koh, Howard
2017-01-01
This study introduces the contributions of occupational science (OS) to the preparation and support of astronauts during long duration space exploration. Given the hostile environment of space, it is not surprising that there is grave deterioration of both physical and mental health when off Earth. However, OS, through occupational therapy (OT), can identify strategies that maintain health and minimize disruptions in task performance for mission success. To determine the gaps in NASA's preparation of astronauts for long duration space exploration and the viable contributions of OT. Because occupational therapists are trained to address deficits and modify environments to support meaningful engagement in occupations, the OT practitioner is well suited to address the disabling conditions astronauts experience in space. A literature review revealing the challenges of deep space travel on humans was completed. A survey was also sent to (N = 170) occupational therapists worldwide to identify opinions about the profession's involvement in deep space exploration. Ninety-seven percent (N = 163) of the participants believed that OS can inform long duration space travel. Approximately ninety-eight percent (N = 166) of respondents believed that OT interventions can be used on space travelers during long duration space flights. OT interventions can be implemented in any phase of space flight to increase the likelihood of mission success and astronaut safety and well-being.
Urban Space Explorer: A Visual Analytics System for Urban Planning.
Karduni, Alireza; Cho, Isaac; Wessel, Ginette; Ribarsky, William; Sauda, Eric; Dou, Wenwen
2017-01-01
Understanding people's behavior is fundamental to many planning professions (including transportation, community development, economic development, and urban design) that rely on data about frequently traveled routes, places, and social and cultural practices. Based on the results of a practitioner survey, the authors designed Urban Space Explorer, a visual analytics system that utilizes mobile social media to enable interactive exploration of public-space-related activity along spatial, temporal, and semantic dimensions.
What is the Value of Space Exploration? - A Prairie Perspective
NASA Technical Reports Server (NTRS)
1995-01-01
The symposium addresses different topics within Space Exploration. The symposium was fed, using satellite downlinks, to several communities in North Dakota, the first such symposium of its type ever held. The specific topics presented by different community members within the state of North Dakota were: the economic, cultural, scientific and technical, political, educational and social value of Space Exploration. Included is a 22 minute VHS video cassette highlighting the symposium.
Development and Testing of Mechanism Technology for Space Exploration in Extreme Environments
NASA Technical Reports Server (NTRS)
Tyler, Tony R.; Levanas, Greg; Mojarradi, Mohammad M.; Abel, Phillip B.
2011-01-01
The NASA Jet Propulsion Lab (JPL), Glenn Research Center (GRC), Langley Research Center (LaRC), and Aeroflex, Inc. have partnered to develop and test actuator hardware that will survive the stringent environment of the moon, and which can also be leveraged for other challenging space exploration missions. Prototype actuators have been built and tested in a unique low temperature test bed with motor interface temperatures as low as 14 degrees Kelvin. Several years of work have resulted in specialized electro-mechanical hardware to survive extreme space exploration environments, a test program that verifies and finds limitations of the designs at extreme temperatures, and a growing knowledge base that can be leveraged by future space exploration missions.
75 FR 15743 - NASA Advisory Council; Exploration Committee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-30
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-034)] NASA Advisory Council; Exploration... Aeronautics and Space Administration announces a meeting of the Exploration Committee of the NASA Advisory...-358-1715; [email protected]nasa.gov . SUPPLEMENTARY INFORMATION: The agenda topics for the meeting will...
Rendezvous and Docking for Space Exploration
NASA Technical Reports Server (NTRS)
Machula, M. F.; Crain, T.; Sandhoo, G. S.
2005-01-01
To achieve the exploration goals, new approaches to exploration are being envisioned that include robotic networks, modular systems, pre-positioned propellants and in-space assembly in Earth orbit, Lunar orbit and other locations around the cosmos. A fundamental requirement for rendezvous and docking to accomplish in-space assembly exists in each of these locations. While existing systems and technologies can accomplish rendezvous and docking in low earth orbit, and rendezvous and docking with crewed systems has been successfully accomplished in low lunar orbit, our capability must extend toward autonomous rendezvous and docking. To meet the needs of the exploration vision in-space assembly requiring both crewed and uncrewed vehicles will be an integral part of the exploration architecture. This paper focuses on the intelligent application of autonomous rendezvous and docking technologies to meet the needs of that architecture. It also describes key technology investments that will increase the exploration program's ability to ensure mission success, regardless of whether the rendezvous are fully automated or have humans in the loop.
NASA Technical Reports Server (NTRS)
1992-01-01
During the next several decades, our nation will embark on human exploration in space. In the microgravity environment we will learn how human physiology responds to the absence of gravity and what procedures and systems are required to maintain health and performance. As the human experience is extended for longer periods in low Earth orbit, we will also be exploring space robotically. Robotic precursor missions, to learn more about the lunar and Martian environments will be conducted so that we can send crews to these planetary surfaces to further explore and conduct scientific investigations that include examining the very processes of life itself. Human exploration in space requires the ability to maintain crew health and performance in spacecraft, during extravehicular activities, on planetary surfaces, and upon return to Earth. This goal can only be achieved through focused research and technological developments. This report provides the basis for setting research priorities and making decisions to enable human exploration missions.
In-Space Propulsion Technologies for Robotic Exploration of the Solar System
NASA Technical Reports Server (NTRS)
Johnson, Les; Meyer, Rae Ann; Frame, Kyle
2006-01-01
Supporting NASA's Science Mission Directorate, the In-Space Propulsion Technology Program is developing the next generation of space propulsion technologies for robotic, deep-space exploration. Recent technological advancements and demonstrations of key, high-payoff propulsion technologies have been achieved and will be described. Technologies under development and test include aerocapture, solar electric propulsion, solar sail propulsion, and advanced chemical propulsion.
ERIC Educational Resources Information Center
Horne, Christopher R.
2011-01-01
This study explores the experiences of 4th grade students in an inquiry-based space science classroom. At the heart of the study lies the essential question: What is the lived experience of children engaged in the process of space science inquiry? Through the methodology of phenomenological inquiry, the author investigates the essence of the lived…
Space Mechanisms Technology Workshop
NASA Technical Reports Server (NTRS)
Oswald, Fred B. (Editor)
2001-01-01
The Mechanical Components Branch at NASA Glenn Research Center hosted a workshop to discuss the state of drive systems technology needed for space exploration. The Workshop was held Thursday, November 2, 2000. About 70 space mechanisms experts shared their experiences from working in this field and considered technology development that will be needed to support future space exploration in the next 10 to 30 years.
Qualitative GIS and the Visualization of Narrative Activity Space Data
Mennis, Jeremy; Mason, Michael J.; Cao, Yinghui
2012-01-01
Qualitative activity space data, i.e. qualitative data associated with the routine locations and activities of individuals, are recognized as increasingly useful by researchers in the social and health sciences for investigating the influence of environment on human behavior. However, there has been little research on techniques for exploring qualitative activity space data. This research illustrates the theoretical principles of combining qualitative and quantitative data and methodologies within the context of GIS, using visualization as the means of inquiry. Through the use of a prototype implementation of a visualization system for qualitative activity space data, and its application in a case study of urban youth, we show how these theoretical methodological principles are realized in applied research. The visualization system uses a variety of visual variables to simultaneously depict multiple qualitative and quantitative attributes of individuals’ activity spaces. The visualization is applied to explore the activity spaces of a sample of urban youth participating in a study on the geographic and social contexts of adolescent substance use. Examples demonstrate how the visualization may be used to explore individual activity spaces to generate hypotheses, investigate statistical outliers, and explore activity space patterns among subject subgroups. PMID:26190932
Qualitative GIS and the Visualization of Narrative Activity Space Data.
Mennis, Jeremy; Mason, Michael J; Cao, Yinghui
Qualitative activity space data, i.e. qualitative data associated with the routine locations and activities of individuals, are recognized as increasingly useful by researchers in the social and health sciences for investigating the influence of environment on human behavior. However, there has been little research on techniques for exploring qualitative activity space data. This research illustrates the theoretical principles of combining qualitative and quantitative data and methodologies within the context of GIS, using visualization as the means of inquiry. Through the use of a prototype implementation of a visualization system for qualitative activity space data, and its application in a case study of urban youth, we show how these theoretical methodological principles are realized in applied research. The visualization system uses a variety of visual variables to simultaneously depict multiple qualitative and quantitative attributes of individuals' activity spaces. The visualization is applied to explore the activity spaces of a sample of urban youth participating in a study on the geographic and social contexts of adolescent substance use. Examples demonstrate how the visualization may be used to explore individual activity spaces to generate hypotheses, investigate statistical outliers, and explore activity space patterns among subject subgroups.
NASA Technical Reports Server (NTRS)
Freitag, R. F.
1975-01-01
Studies evaluating potential operational and commercial uses of space are being conducted, taking into account astronomy, astrophysics, manned bases and laboratories in earth orbit, space colonization, terrestrial communications, space processing and manufacturing, interstellar probes, planetary exploration, and the use of space for terrestrial energy supply. The present status in the exploration of the solar system is examined, giving attention to Jupiter, Venus, Mars, and Mercury. A brief outline of the development of human colonies on Mars is presented.
The Global Exploration Roadmap and its significance for NASA
NASA Astrophysics Data System (ADS)
Laurini, K. C.; Gerstenmaier, W. H.
2014-08-01
The Global Exploration Roadmap reflects the collaborative effort of twelve space agencies to define a long-term human space exploration strategy which provides substantial benefits for improving the quality of life on Earth and is implementable and sustainable. Such a strategy is a necessary precondition to the government investments required to enable the challenging and rewarding missions that extend human presence into the solar system. The article introduces the international strategy and elaborates on NASA's leadership role in shaping that strategy. The publication of the roadmap, a reflection of the space landscape and multilateral agency-level dialog over the last four years, allows NASA to demonstrate its commitment to leading a long-term space exploration endeavor that delivers benefits, maintains strategic human spaceflight capabilities and expands human presence in space, with human missions to the surface of Mars as a driving goal. The road mapping process has clearly demonstrated the complementary interests of the participants and the potential benefits that can be gained through cooperation among nations to achieve a common goal. The present US human spaceflight policy is examined and it is shown that the establishment of a sustainable global space exploration strategy is fully consistent with that policy.
Cancer Risk from Exposure to Galactic Cosmic Rays - Implications for Human Space Exploration
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Durant, marco
2006-01-01
Current space programs are shifting toward planetary exploration, and in particular towards human missions to the moon and Mars. However, space radiation is a major barrier to human exploration of the solar system because the biological effects of high-energy and charge (HZE) ions, which are the main contributors to radiation risks in deep space, are poorly understood. Predictions of the nature and magnitude of the risks posed by space radiation are subject to very large uncertainties. Great efforts have been dedicated worldwide in recent years toward a better understanding of the oncogenic potential of galactic cosmic rays. A review of the new results in this field will be presented here.
2018-01-11
Darrell Foster, chief of Project Management in Exploration Ground Systems, speaks to Kennedy Space Center employees about plans for the coming year. The event took place in the Lunar Theater at the Kennedy Space Center Visitor Complex’s Apollo Saturn V Center. The year will be highlighted with NASA's partners preparing test flights for crewed missions to the International Space Station as part of the agency's Commercial Crew Program and six launches by the Launch Services Program. Exploration Ground Systems will be completing facilities to support the Space Launch System rocket and Orion spacecraft. Exploration Research and Technology Programs will continue to provide supplies to the space station launched as part of the Commercial Resupply Services effort.
A space exploration strategy that promotes international and commercial participation
NASA Astrophysics Data System (ADS)
Arney, Dale C.; Wilhite, Alan W.; Chai, Patrick R.; Jones, Christopher A.
2014-01-01
NASA has created a plan to implement the Flexible Path strategy, which utilizes a heavy lift launch vehicle to deliver crew and cargo to orbit. In this plan, NASA would develop much of the transportation architecture (launch vehicle, crew capsule, and in-space propulsion), leaving the other in-space elements open to commercial and international partnerships. This paper presents a space exploration strategy that reverses that philosophy, where commercial and international launch vehicles provide launch services. Utilizing a propellant depot to aggregate propellant on orbit, smaller launch vehicles are capable of delivering all of the mass necessary for space exploration. This strategy has benefits to the architecture in terms of cost, schedule, and reliability.
NASA Technical Reports Server (NTRS)
Lin, Zi-wei
2004-01-01
Space radiation from cosmic ray particles is one of the main challenges for long-term human space explorations such as a permanent moon base or a trip to Mars. Material shielding may provide significant radiation protection to astronauts, and models have been developed in order to evaluate the effectiveness of different shielding materials and to predict radiation environment inside the spacecraft. In this study we determine the nuclear fragmentation cross sections which will most effect the radiation risk behind typical radiation shielding materials. These cross sections thus need more theoretical studies and accurate experimental measurements in order for us to more precisely predict the radiation risk in human space explorations.
NASA Technical Reports Server (NTRS)
Lin, Zi-Wei
2004-01-01
Space radiation from cosmic ray particles is one of the main challenges for long-term human space explorations such as a permanent moon base or a trip to Mars. Material shielding may provide significant radiation protection to astronauts, and models have been developed in order to evaluate the effectiveness of different shielding materials and to predict radiation environment inside the spacecraft. In this study we determine the nuclear fragmentation cross sections which will most affect the radiation risk behind typical radiation shielding materials. These cross sections thus need more theoretical studies and accurate experimental measurements in order for us to more precisely predict the radiation risk in human space exploration.
NASA Technical Reports Server (NTRS)
Lin, Zi-Wei
2004-01-01
Space radiation from cosmic ray particles is one of the main challenges for long-term human space explorations such as a permanent moon base or a trip to Mars. Material shielding may provide significant radiation protection to astronauts, and models have been developed in order to evaluate the effectiveness of different shielding materials and to predict radiation environment inside the spacecraft. In this study we determine the nuclear fragmentation cross sections which will most affect the radiation risk behind typical radiation shielding materials. These cross sections thus need more theoretical studies and accurate experimental measurements in order for us to more precisely predict the radiation risk in human space explorations.
NASA Technical Reports Server (NTRS)
Sadin, Stanley R.; Rosen, Robert
1987-01-01
Project Pathfinder is a proposed U.S. Space Research and Technology program intended to enable bold new missions of space exploration. Pathfinder continues the advancement of technological capabilities and extends the foundation established under the Civil Space Technology Initiative, CSTI. By filling critical technological gaps, CSTI enhances access to Earth orbit and supports effective operations and science missions therein. Pathfinder, with a longer-term horizon, looks to a future that builds on Shuttle and Space Station and addresses technologies that support a range of exploration missions including: a return to the Moon to build an outpost; piloted missions to Mars; and continued scientific exploration of Earth and the other planets. The program's objective is to develop, within reasonable time frames, those emerging and innovative technologies that will make possible both new and enhanced missions and system concepts.
Towards human exploration of space: the THESEUS review series on neurophysiology research priorities
White, Olivier; Clément, Gilles; Fortrat, Jacques-Olivier; Pavy-LeTraon, Anne; Thonnard, Jean-Louis; Blanc, Stéphane; Wuyts, Floris L; Paloski, William H
2016-01-01
The THESEUS project (Towards Human Exploration of Space: a European Strategy), initiated within the seventh Framework Programme by the European Commission, aimed at providing a cross-cutting, life-science-based roadmap for Europe’s strategy towards human exploration of long space missions, and its relevance to applications on Earth. This topic was investigated by experts in the field, in the framework of the THESEUS project whose aim was to develop an integrated life sciences research roadmap regarding human space exploration. In particular, decades of research have shown that altered gravity impairs neurological responses at large, such as perception, sleep, motor control, and cognitive factors. International experts established a list of key issues that should be addressed in that context and provided several recommendations such as a maximal exploitation of currently available resources on Earth and in space. PMID:28725734
Microscopic Phase-Space Exploration Modeling of ^{258}Fm Spontaneous Fission.
Tanimura, Yusuke; Lacroix, Denis; Ayik, Sakir
2017-04-14
We show that the total kinetic energy (TKE) of nuclei after the spontaneous fission of ^{258}Fm can be well reproduced using simple assumptions on the quantum collective phase space explored by the nucleus after passing the fission barrier. Assuming energy conservation and phase-space exploration according to the stochastic mean-field approach, a set of initial densities is generated. Each density is then evolved in time using the nuclear time-dependent density-functional theory with pairing. This approach goes beyond the mean-field theory by allowing spontaneous symmetry breaking as well as a wider dynamical phase-space exploration leading to larger fluctuations in collective space. The total kinetic energy and mass distributions are calculated. New information on the fission process: fluctuations in scission time, strong correlation between TKE and collective deformation, as well as prescission particle emission, are obtained. We conclude that fluctuations of the TKE and mass are triggered by quantum fluctuations.
Implications of Outside-the-Box Technologies on Future Space Exploration and Colonization
NASA Astrophysics Data System (ADS)
Loder, Theodore C.
2003-01-01
In general, planning for future manned space exploration either to the moon, Mars, or an asteroid has depended on a somewhat linear extrapolation of our present technologies. Two major prohibitive cost issues regarding such planning are payload lift and in-flight energy generation. The costs of these in both engineering and actual flight costs, coupled with the planning necessary to carry out such exploration have prevented us from actively moving forward. Although, it will be worthwhile to continue to plan for such exploration using ``present'' technologies, I recommend that planning be concerned mainly with mission strategies and goals utilizing both present technology and totally new energy breakthroughs. There are presently in research and development an entire suite of relevant outside-the-box technologies which will include both zero point energy generation and antigravity technologies that will replace our present solar/nuclear/fuel cell energy technologies and liquid/solid fuel rockets. This paper describes some of these technologies, the physics behind them and their potential use for manned space exploration. The companies and countries that first incorporate these technologies into their space programs will lead the way in exploring and colonizing space.
Automated Design Space Exploration with Aspen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spafford, Kyle L.; Vetter, Jeffrey S.
Architects and applications scientists often use performance models to explore a multidimensional design space of architectural characteristics, algorithm designs, and application parameters. With traditional performance modeling tools, these explorations forced users to first develop a performance model and then repeatedly evaluate and analyze the model manually. These manual investigations proved laborious and error prone. More importantly, the complexity of this traditional process often forced users to simplify their investigations. To address this challenge of design space exploration, we extend our Aspen (Abstract Scalable Performance Engineering Notation) language with three new language constructs: user-defined resources, parameter ranges, and a collection ofmore » costs in the abstract machine model. Then, we use these constructs to enable automated design space exploration via a nonlinear optimization solver. We show how four interesting classes of design space exploration scenarios can be derived from Aspen models and formulated as pure nonlinear programs. The analysis tools are demonstrated using examples based on Aspen models for a three-dimensional Fast Fourier Transform, the CoMD molecular dynamics proxy application, and the DARPA Streaming Sensor Challenge Problem. Our results show that this approach can compose and solve arbitrary performance modeling questions quickly and rigorously when compared to the traditional manual approach.« less
Automated Design Space Exploration with Aspen
Spafford, Kyle L.; Vetter, Jeffrey S.
2015-01-01
Architects and applications scientists often use performance models to explore a multidimensional design space of architectural characteristics, algorithm designs, and application parameters. With traditional performance modeling tools, these explorations forced users to first develop a performance model and then repeatedly evaluate and analyze the model manually. These manual investigations proved laborious and error prone. More importantly, the complexity of this traditional process often forced users to simplify their investigations. To address this challenge of design space exploration, we extend our Aspen (Abstract Scalable Performance Engineering Notation) language with three new language constructs: user-defined resources, parameter ranges, and a collection ofmore » costs in the abstract machine model. Then, we use these constructs to enable automated design space exploration via a nonlinear optimization solver. We show how four interesting classes of design space exploration scenarios can be derived from Aspen models and formulated as pure nonlinear programs. The analysis tools are demonstrated using examples based on Aspen models for a three-dimensional Fast Fourier Transform, the CoMD molecular dynamics proxy application, and the DARPA Streaming Sensor Challenge Problem. Our results show that this approach can compose and solve arbitrary performance modeling questions quickly and rigorously when compared to the traditional manual approach.« less
Architecting the Communication and Navigation Networks for NASA's Space Exploration Systems
NASA Technical Reports Server (NTRS)
Bhassin, Kul B.; Putt, Chuck; Hayden, Jeffrey; Tseng, Shirley; Biswas, Abi; Kennedy, Brian; Jennings, Esther H.; Miller, Ron A.; Hudiburg, John; Miller, Dave;
2007-01-01
NASA is planning a series of short and long duration human and robotic missions to explore the Moon and then Mars. A key objective of the missions is to grow, through a series of launches, a system of systems communication, navigation, and timing infrastructure at minimum cost while providing a network-centric infrastructure that maximizes the exploration capabilities and science return. There is a strong need to use architecting processes in the mission pre-formulation stage to describe the systems, interfaces, and interoperability needed to implement multiple space communication systems that are deployed over time, yet support interoperability with each deployment phase and with 20 years of legacy systems. In this paper we present a process for defining the architecture of the communications, navigation, and networks needed to support future space explorers with the best adaptable and evolable network-centric space exploration infrastructure. The process steps presented are: 1) Architecture decomposition, 2) Defining mission systems and their interfaces, 3) Developing the communication, navigation, networking architecture, and 4) Integrating systems, operational and technical views and viewpoints. We demonstrate the process through the architecture development of the communication network for upcoming NASA space exploration missions.
Exploration-Related Research on ISS: Connecting Science Results to Future Missions
NASA Technical Reports Server (NTRS)
Rhatigan, Jennifer L.; Robinson, Julie A.; Sawin, Charles F.
2005-01-01
In January, 2004, the U.S. President announced The Vision for Space Exploration, and charged the National Aeronautics and Space Administration (NASA) with using the International Space Station (ISS) for research and technology targeted at supporting U.S. space exploration goals. This paper describes: What we have learned from the first four years of research on ISS relative to the exploration mission; The on-going research being conducted in this regard; and Our current understanding of the major exploration mission risks that the ISS can be used to address. Specifically, we discuss research carried out on the ISS to determine the mechanisms by which human health is affected on long-duration missions, and to develop countermeasures to protect humans from the space environment. These bioastronautics experiments are key enablers of future long duration human exploration missions. We also discuss how targeted technological developments can enable mission design trade studies. We discuss the relationship between the ultimate number of human test subjects available on the ISS to the quality and quantity of scientific insight that can be used to reduce health risks to future explorers. We discuss the results of NASA's efforts over the past year to realign the ISS research programs to support a product-driven portfolio that is directed towards reducing the major risks of exploration missions. The fundamental challenge to science on ISS is completing experiments that answer key questions in time to shape design decisions for future exploration. In this context, exploration relevant research must do more than be conceptually connected to design decisions - it must become a part of the mission design process.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. At the 1st Space Exploration Conference: Continuing the Voyage of Discovery, being held at Disneys Contemporary Resort in Orlando, the NASA Explorer School team from McNair High School in Dekalb County, Ga., receives the Space Exploration Video Festival award sponsored by Lockheed Martin. Standing with the awards are Trenten Nash, Theo Maxie and Daniel Jackson. Presenting the awards were John Karas (left), with Lockheed, and Adm. Craig Steidle (right), associate administrator, Office of Exploration Systems at NASA. The three- day conference drew attendees from around the world. It presented topics on new missions, technologies and infrastructure needed to turn the vision for space exploration into reality. Keynote speakers at the three-day conference include NASA Administrator Sean O'Keefe, Congressman Dave Weldon, film director James Cameron and NASAs senior Mars scientist James Garvin. The conference has drawn attendees from around the world.
Advanced space storable propellants for outer planet exploration
NASA Technical Reports Server (NTRS)
Thunnissen, Daniel P.; Guernsey, Carl S.; Baker, Raymond S.; Miyake, Robert N.
2004-01-01
An evaluation of the feasibility and mission performance benefits of using advanced space storable propellants for outer planet exploration was performed. For the purpose of this study, space storable propellants are defined to be propellants which can be passively stored without the need for active cooling.
14 CFR 1259.102 - General policy.
Code of Federal Regulations, 2012 CFR
2012-01-01
... the exploration and development of the resources and opportunities afforded by the space environment..., composed of university and industry members, to advance the exploration and development of space resources... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false General policy. 1259.102 Section 1259.102...
14 CFR 1259.102 - General policy.
Code of Federal Regulations, 2013 CFR
2013-01-01
... the exploration and development of the resources and opportunities afforded by the space environment..., composed of university and industry members, to advance the exploration and development of space resources... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false General policy. 1259.102 Section 1259.102...
Materials Challenges in Space Exploration
NASA Technical Reports Server (NTRS)
Bhat, Biliyar N.
2005-01-01
United States civil space program administered by National Aeronautics and Space Administration has a new strategic direction to explore the solar system. This new 'vision for space exploration' encompasses a broad range of human and robotic missions, including the Moon. Mars and destinations beyond. These missions require advanced systems and capabilities that will accelerate the development of many critical technologies, including advanced materials and structural concepts. Specifically, it is planned to develop high-performance materials for vehicle structures, propulsion systems, and space suits; structural concepts for modular assembly for space infrastructure: lightweight deployable and inflatable structures for large space systems and crew habitats; and highly integrated structural systems and advanced thermal management systems for reducing launch mass and volume. This paper will present several materials challenges in advanced space systems-high performance structural and thermal materials, space durable materials, radiation protection materials, and nano-structural materials. Finally, the paper will take a look at the possibility of utilizing materials in situ, i.e., processing materials on the surface of the Moon and Mars.
Materials and design concepts for space-resilient structures
NASA Astrophysics Data System (ADS)
Naser, Mohannad Z.; Chehab, Alaa I.
2018-04-01
Space exploration and terraforming nearby planets have been fascinating concepts for the longest time. Nowadays, that technological advancements with regard to space exploration are thriving, it is only a matter of time before humans can start colonizing nearby moons and planets. This paper presents a state-of-the-art literature review on recent developments of "space-native" construction materials, and highlights evolutionary design concepts for "space-resilient" structures (i.e., colonies and habitats). This paper also details effects of harsh (and unique) space environments on various terrestrial and extraterrestrial construction materials, as well as on space infrastructure and structural systems. The feasibility of exploiting available space resources in terms of "in-situ resource utilization" and "harvesting of elements and compounds", as well as emergence of enabling technologies such as "cultured (lab-grown)" space construction materials are discussed. Towards the end of the present review, number of limitations and challenges facing Lunar and Martian exploration, and venues in-need for urgent research are identified and examined.
NASA Technical Reports Server (NTRS)
Short, N. M.
1974-01-01
Results from the ERTS program pertinent to exploration for oil, gas, and uranium are discussed. A review of achievements in relevant geological studies from ERTS, and a survey of accomplishments oriented towards exploration for energy sources are presented along with an evaluation of the prospects and limitations of the space platform approach to fuel exploration, and an examination of continuing programs designed to prove out the use of ERTS and other space system in exploring for fuel resources.
2009 ESMD Space Grant Faculty Project Final Report
NASA Technical Reports Server (NTRS)
Murphy, Gloria; Ghanashyam, Joshi; Guo, Jiang; Conrad, James; Bandyopadhyay, Alak; Cross, William
2009-01-01
The Constellation Program is the medium by which we will maintain a presence in low Earth orbit, return to the moon for further exploration and develop procedures for Mars exploration. The foundation for its presence and success is built by the many individuals that have given of their time, talent and even lives to help propel the mission and objectives of NASA. The Exploration Systems Mission Directorate (ESMD) Faculty Fellows Program is a direct contributor to the success of directorate and Constellation Program objectives. It is through programs such as the ESMD Space Grant program that students are inspired and challenged to achieve the technological heights that will propel us to meet the goals and objectives of ESMD and the Constellation Program. It is through ESMD Space Grant programs that future NASA scientists, engineers, and mathematicians begin to dream of taking America to newer heights of space exploration. The ESMD Space Grant program is to be commended for taking the initiative to develop and implement programs that help solidify the mission of NASA. With the concerted efforts of the Kennedy Space Center educational staff, the 2009 ESMD Space Grant Summer Faculty Fellows Program allowed faculty to become more involved with NASA personnel relating to exploration topics for the senior design projects. The 2009 Project was specifically directed towards NASA's Strategic Educational Outcome 1. In-situ placement of Faculty Fellows at the NASA field Centers was essential; this allowed personal interactions with NASA scientists and engineers. In particular, this was critical to better understanding the NASA problems and begin developing a senior design effort to solve the problems. The Faculty Fellows are pleased that the ESMD Space Grant program is taking interest in developing the Senior Design courses at the university level. These courses are needed to help develop the NASA engineers and scientists of the very near future. It has been a pleasure to be part of the evaluation process to help ensure that these courses are developed in such a way that the students' educational objectives are maximized. Ultimately, with NASA-related content used as projects in the course, students will be exposed to space exploration concepts and issues while still in college. This will help to produce NASA engineers and scientists that are knowledgeable of space exploration. By the concerted efforts of these five senior design projects, NASA's ESMD Space Grant Project is making great strides at helping to develop talented engineers and scientists that will continue our exploration into space.
Lost in space: design of experiments and scientific exploration in a Hogarth Universe.
Lendrem, Dennis W; Lendrem, B Clare; Woods, David; Rowland-Jones, Ruth; Burke, Matthew; Chatfield, Marion; Isaacs, John D; Owen, Martin R
2015-11-01
A Hogarth, or 'wicked', universe is an irregular environment generating data to support erroneous beliefs. Here, we argue that development scientists often work in such a universe. We demonstrate that exploring these multidimensional spaces using small experiments guided by scientific intuition alone, gives rise to an illusion of validity and a misplaced confidence in that scientific intuition. By contrast, design of experiments (DOE) permits the efficient mapping of such complex, multidimensional spaces. We describe simulation tools that enable research scientists to explore these spaces in relative safety. Copyright © 2015 Elsevier Ltd. All rights reserved.
Space Exploration: Oh, the Materials You'll Need!
NASA Technical Reports Server (NTRS)
Johnson, Sylvia M.
2016-01-01
Space exploration has many challenges and materials are critical for many of the systems required to enable robotic or human space exploration. This talk will highlight challenges for materials with an emphasis on thermal protection materials and systems. Solving the materials issues will require thinking about materials in the systems and environments where are they to be used. In many cases the materials must be designed for the application, and the system needs to be designed with the materials in mind. The talk will conclude with some thoughts on the skills needed for materials scientists and engineers working on materials for space.
The exploration about the means of lunar-landing based on space-launch
NASA Astrophysics Data System (ADS)
Yi, Jiang; Zheming, Zhang; Debin, Fu
The lunar exploration and lunar-landing is the first step of china s deep space exploration On the basement of our country s achievements and the experiences of the foreign countries the paper brings forward the idea that use the existing transportation technology to sent the Launch vehicles and cosmonauts to the near-earth orbit in batches assemble the components together on the Space-launch Platform and then launch them to the Moon to fulfill our dream of manned landing on the moon The paper also discusses the Space-launch Platform and the launching way
NASA Astrophysics Data System (ADS)
Taylor, G. J.; Martel, L. M. V.
2018-04-01
Lunar-focused research and plans to return to the lunar surface for science and exploration have reemerged since the Space Policy Directive-1 of December 11, 2017 amended the National Space Policy to include the following, "Lead an innovative and sustainable program of exploration with commercial and international partners to enable human expansion across the solar system and to bring back to Earth new knowledge and opportunities. Beginning with missions beyond low-Earth orbit, the United States will lead the return of humans to the Moon for long-term exploration and utilization, followed by human missions to Mars and other destinations." In response to this revision, NASA proposes a Lunar Exploration and Discovery Program in the U.S. fiscal year 2019 Budget Request. It supports NASA's interests in commercial and international partnerships in Low-Earth Orbit (LEO), long-term exploration in Cislunar space beyond LEO, and research and exploration conducted on the Moon to inform future crewed missions, even to destinations beyond the Moon. (Cislunar refers to the volume of space between LEO and the Moon's orbital distance.) The lunar campaign strengthens the integration of human and robotic activities on the lunar surface with NASA's science, technology, and exploration goals.
76 FR 18800 - NASA Advisory Council; Exploration Committee; Meeting.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-05
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-028)] NASA Advisory Council; Exploration... National Aeronautics and Space Administration announces a meeting of the Exploration Committee of the NASA Advisory Council. DATES: Tuesday, April 26, 2011, 1 p.m.-6 p.m., Local Time ADDRESSES: NASA Headquarters...
The Opportunity in Commercial Approaches for Future NASA Deep Space Exploration Elements
NASA Technical Reports Server (NTRS)
Zapata, Edgar
2017-01-01
In 2011, NASA released a report assessing the market for commercial crew and cargo services to low Earth orbit (LEO). The report stated that NASA had spent a few hundred million dollars in the Commercial Orbital Transportation Services (COTS) program on the portion related to the development of the Falcon 9 launch vehicle. Yet a NASA cost model predicted the cost would have been significantly more with a non-commercial cost-plus contracting approach. By 2016 a NASA request for information stated it must "maximize the efficiency and sustainability of the Exploration Systems development programs", as "critical to free resources for reinvestment...such as other required deep space exploration capabilities." This work joins the previous two events, showing the potential for commercial, public private partnerships, modeled on programs like COTS, to reduce the cost to NASA significantly for "...other required deep space exploration capabilities." These other capabilities include landers, stages and more. We mature the concept of "costed baseball cards", adding cost estimates to NASA's space systems "baseball cards." We show some potential costs, including analysis, the basis of estimates, data sources and caveats to address a critical question - based on initial assessment, are significant agency resources justified for more detailed analysis and due diligence to understand and invest in public private partnerships for human deep space exploration systems? The cost analysis spans commercial to cost-plus contracting approaches, for smaller elements vs. larger, with some variation for lunar or Mars. By extension, we delve briefly into the potentially much broader significance of the individual cost estimates if taken together as a NASA investment portfolio where public private partnership are stitched together for deep space exploration. How might multiple improvements in individual systems add up to NASA human deep space exploration achievements, realistically, affordably, sustainably, in a relevant timeframe?
Active Control of Cryogenic Propellants in Space
NASA Technical Reports Server (NTRS)
Notardonato, William
2011-01-01
A new era of space exploration is being planned. Exploration architectures under consideration require the long term storage of cryogenic propellants in space. This requires development of active control systems to mitigate the effect of heat leak. This work summarizes current state of the art, proposes operational design strategies and presents options for future architectures. Scaling and integration of active systems will be estimated. Ideal long range spacecraft systems will be proposed with Exploration architecture benefits considered.
Connecting Robots and Humans in Mars Exploration
NASA Astrophysics Data System (ADS)
Friedman, Louis
2000-07-01
Mars exploration is a very special public interest. It's preeminence in the national space policy calling for "sustained robotic presence on the surface," international space policy (witness the now aborted international plan for sample return, and also aborted Russian "national Mars program") and the media attention to Mars exploration are two manifestations of that interest. Among a large segment of the public there is an implicit (mis)understanding that we are sending humans to Mars. Even among those who know that isn't already a national or international policy, many think it is the next human exploration goal. At the same time the resources for Mars exploration in the U.S. and other country's space programs are a very small part of space budgets. Very little is being applied to direct preparations for human flight. This was true before the 1999 mission losses in the United States, and it is more true today. The author's thesis is that the public interest and the space program response to Mars exploration are inconsistent. This inconsistency probably results from an explicit space policy contradiction: Mars exploration is popular because of the implicit pull of Mars as the target for human exploration, but no synergy is permitted between the human and robotic programs to carry out the program. It is not permitted because of narrow, political thinking. In this paper we try to lay out the case for overcoming that thinking, even while not committing to any premature political initiative. This paper sets out a rationale for Mars exploration and uses it to then define recommended elements of the programs: missions, science objectives, technology. That consideration is broader than the immediate issue of recovering from the failures of Mars Climate OrbIter, Mars Polar Lander and the Deep Space 2 microprobes in late 1999. But we cannot ignore those failures. They are causing a slow down Mars exploration. Not only were the three missions lost, with their planned science and technology investigations, but the 2001 Mars Surveyor lander; and an international cooperative effort for robotic Mars sample return were also lost.
Self-Presentation and Gender on MySpace
ERIC Educational Resources Information Center
Manago, Adriana M.; Graham, Michael B.; Greenfield, Patricia M.; Salimkhan, Goldie
2008-01-01
Within the cultural context of MySpace, this study explores the ways emerging adults experience social networking. Through focus group methodology, the role of virtual peer interaction in the development of personal, social, and gender identities was investigated. Findings suggest that college students utilize MySpace for identity exploration,…
Exploring the notion of space coupling propulsion
NASA Technical Reports Server (NTRS)
Millis, Marc G.
1990-01-01
All existing methods of space propulsion are based on expelling a reaction mass (propellant) to induce motion. Alternatively, 'space coupling propulsion' refers to speculations about reacting with space-time itself to generate propulsive forces. Conceivably, the resulting increases in payload, range, and velocity would constitute a breakthrough in space propulsion. Such speculations are still considered science fiction for a number of reasons: (1) it appears to violate conservation of momentum; (2) no reactive media appear to exist in space; (3) no 'Grand Uniform Theories' exist to link gravity, an acceleration field, to other phenomena of nature such as electrodynamics. The rationale behind these objectives is the focus of interest. Various methods to either satisfy or explore these issues are presented along with secondary considerations. It is found that it may be useful to consider alternative conventions of science to further explore speculations of space coupling propulsion.
Workshop on Research for Space Exploration: Physical Sciences and Process Technology
NASA Technical Reports Server (NTRS)
Singh, Bhim S.
1998-01-01
This report summarizes the results of a workshop sponsored by the Microgravity Research Division of NASA to define contributions the microgravity research community can provide to advance the human exploration of space. Invited speakers and attendees participated in an exchange of ideas to identify issues of interest in physical sciences and process technologies. This workshop was part of a continuing effort to broaden the contribution of the microgravity research community toward achieving the goals of the space agency in human exploration, as identified in the NASA Human Exploration and Development of Space (HEDS) strategic plan. The Microgravity program is one of NASA'a major links to academic and industrial basic research in the physical and engineering sciences. At present, it supports close to 400 principal investigators, who represent many of the nation's leading researchers in the physical and engineering sciences and biotechnology. The intent of the workshop provided a dialogue between NASA and this large, influential research community, mission planners and industry technical experts with the goal of defining enabling research for the Human Exploration and Development of Space activities to which the microgravity research community can contribute.
Space Weather Status for Exploration Radiation Protection
NASA Technical Reports Server (NTRS)
Fry, Dan J.; Lee, Kerry; Zapp, Neal; Barzilla, Janet; Dunegan, Audrey; Johnson, Steve; Stoffle, Nicholas
2011-01-01
Management of crew exposure to radiation is a major concern for manned spaceflight and will be even more important for the modern concept of longer-duration exploration. The inherent protection afforded to astronauts by the magnetic field of the Earth in Low Earth Orbit (LEO) makes operations on the space shuttle or space station very different from operations during an exploration mission. In order to experience significant radiation-derived Loss of Mission (LOM) or Loss of Crew (LOC) risk for LEO operations, one is almost driven to dictate extreme duration or to dictate an extreme sequence of solar activity. Outside of the geo-magnetosphere, however, this scenario changes dramatically. Exposures to the same event on the ISS and in free space, for example, may differ by orders of magnitude. This change in magnitude, coupled with the logistical constraints present in implementing any practical operational mitigation make situational awareness with regard to space weather a limiting factor for the ability to conduct exploration operations. We present a current status of developing operational concepts for manned exploration and expectations for asset viability and available predictive and characterization toolsets.
Human Research Program Opportunities
NASA Technical Reports Server (NTRS)
Kundrot, Craig E.
2014-01-01
The goal of HRP is to provide human health and performance countermeasures, knowledge, technologies, and tools to enable safe, reliable, and productive human space exploration. The Human Research Program was designed to meet the needs of human space exploration, and understand and reduce the risk to crew health and performance in exploration missions.
Agency, Language Learning, and Multilingual Spaces
ERIC Educational Resources Information Center
Miller, Elizabeth R.
2012-01-01
This article explores the notion of agency in language learning and use as discursively, historically, and socially mediated. It further explores how agency can be understood as variously enabled and constrained as individuals move from one cultural, linguistic, and/or geographical space to another. These explorations focus on how agency is…
Human Challenges in Exploration Missions
NASA Technical Reports Server (NTRS)
Lloyd, Charles W.
2007-01-01
This viewgraph presents an overview using pictures some of the history of human exploration of the new frontiers of Earth and then examines some of the challenges to human exploration of space. Particular attention is given to the environmental factors and to the social and human factors that effect humans in space environments.
Essential elements of a framework for future space exploration and use: the role of science
NASA Astrophysics Data System (ADS)
Rummel, John; Ehrenfreund, Pascale
The objective of the COSPAR Panel on Exploration (PEX) is to provide independent scientific advice to support the development of exploration programs and to safeguard the potential scientific assets of solar system objects. The Outer Space Treaty (OST) of 1967 provides (Article I) for “exploration and use of outer space” as well as an obligation for States to authorize and supervise space activities (Article VI) so “that national activities are carried out in conformity with the provisions set forth in the. . Treaty,” while the provisions of Article IX of the Treaty include pursuing “studies of outer space, including the Moon and other celestial bodies, and conduct[ing] exploration of them so as to avoid their harmful contamination." In short, the Treaty provides for many activities to take place in outer space, but it also leaves to the future the definitions of “harmful contamination,” “adverse changes,” and even “use.” In order to provide for both protection and use in outer space, and therefore to provide for both scientific and economic exploration, an extension of the OST (or its replacement) will be required. Whatever policy choices are made in constructing such a framework, it is clear that scientific understanding of the solar system, and each of its individual planetary bodies, will be required to determine the balance—and it may be a dynamic balance—between protection and use of outer space environments. This paper will consider the role of scientific advice and continuing research and education within such a framework, and as an essential complement to the necessary regulation distinguishing between protection and use of different locations in outer space.
Air and Water System (AWS) Design and Technology Selection for the Vision for Space Exploration
NASA Technical Reports Server (NTRS)
Jones, Harry; Kliss, Mark
2005-01-01
This paper considers technology selection for the crew air and water recycling systems to be used in long duration human space exploration. The specific objectives are to identify the most probable air and water technologies for the vision for space exploration and to identify the alternate technologies that might be developed. The approach is to conduct a preliminary first cut systems engineering analysis, beginning with the Air and Water System (AWS) requirements and the system mass balance, and then define the functional architecture, review the International Space Station (ISS) technologies, and discuss alternate technologies. The life support requirements for air and water are well known. The results of the mass flow and mass balance analysis help define the system architectural concept. The AWS includes five subsystems: Oxygen Supply, Condensate Purification, Urine Purification, Hygiene Water Purification, and Clothes Wash Purification. AWS technologies have been evaluated in the life support design for ISS node 3, and in earlier space station design studies, in proposals for the upgrade or evolution of the space station, and in studies of potential lunar or Mars missions. The leading candidate technologies for the vision for space exploration are those planned for Node 3 of the ISS. The ISS life support was designed to utilize Space Station Freedom (SSF) hardware to the maximum extent possible. The SSF final technology selection process, criteria, and results are discussed. Would it be cost-effective for the vision for space exploration to develop alternate technology? This paper will examine this and other questions associated with AWS design and technology selection.
Komorowski, Matthieu; Fleming, Sarah; Mawkin, Mala; Hinkelbein, Jochen
2018-01-01
Future space exploration missions will take humans far beyond low Earth orbit and require complete crew autonomy. The ability to provide anaesthesia will be important given the expected risk of severe medical events requiring surgery. Knowledge and experience of such procedures during space missions is currently extremely limited. Austere and isolated environments (such as polar bases or submarines) have been used extensively as test beds for spaceflight to probe hazards, train crews, develop clinical protocols and countermeasures for prospective space missions. We have conducted a literature review on anaesthesia in austere environments relevant to distant space missions. In each setting, we assessed how the problems related to the provision of anaesthesia (e.g., medical kit and skills) are dealt with or prepared for. We analysed how these factors could be applied to the unique environment of a space exploration mission. The delivery of anaesthesia will be complicated by many factors including space-induced physiological changes and limitations in skills and equipment. The basic principles of a safe anaesthesia in an austere environment (appropriate training, presence of minimal safety and monitoring equipment, etc.) can be extended to the context of a space exploration mission. Skills redundancy is an important safety factor, and basic competency in anaesthesia should be part of the skillset of several crewmembers. The literature suggests that safe and effective anaesthesia could be achieved by a physician during future space exploration missions. In a life-or-limb situation, non-physicians may be able to conduct anaesthetic procedures, including simplified general anaesthesia.
Building on 50 Years of Mission Operations Experience for a New Era of Space Exploration
NASA Technical Reports Server (NTRS)
Onken, Jay F.; Singer, Christopher E.
2008-01-01
The U.S. National Space Policy, I the 14-nation Global Exploration Strategy,2 and the National Aeronautics and Space Administration's (NASA) 2006 Strategic Plan3 provide foundational direction for far-ranging missions, from safely flying the Space Shuttle and completing construction of the International Space Station by 2010, to fielding a next generation space transportation system consisting of the Ares I Crew Launch Vehicle!Orion Crew Exploration Vehicle and the Ares V Cargo Launch Vehicle!Altair Lunar Lander (fig. 1). Transportation beyond low-Earth orbit will open the frontier for a lunar outpost, where astronauts will harness in-situ resources while exploring this 4 billion-year-old archaeological site, which may hold answers to how the Earth and its satellite were formed. Ultimately, this experience will pave the way for the first human footprint on Mars. In October 2007, NASA" announced assignments for this lunar exploration work.4 The Marshall Space Flight Center is responsible for designing, developing, testing, and evaluating the Ares I and Ares V, which are Space Shuttle derived launch vehicles, along with a number of lunar tasks. The Marshall Center's Engineering Directorate provides the skilled workforce and unique manufacturing, testing, and operational infrastructure needed to deliver space transportation solutions that meet the requirements stated in the Constellation Architecture Requirements Document (CARD). While defining design reference missions to the Station and the Moon, the CARD includes goals that include reducing recurring and nonrecurring costs, while increasing safety and reliability. For this reason, future systems are being designed with operability considerations and lifecycle expenses as independent variables in engineering trade studies.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. At the 1st Space Exploration Conference: Continuing the Voyage of Discovery, held at Disneys Contemporary Resort in Orlando, film director James Cameron (right) talks to Daniel Stearns, a 13-year-old student from Longmeadow, Mass., who won the Space Exploration Video Festival award sponsored by Lockheed Martin. Stearns shared first place with a team from McNair High School in Dekalb County, Ga. The Georgia school participates in NASAs Explorer School program. Cameron is one of the keynote speakers at the conference. Topics being presented focus on new missions, technologies and infrastructure needed to turn the vision for space exploration into reality. Other keynote speakers at the three-day conference are Congressman Dave Weldon, film director James Cameron and NASAs senior Mars scientist James Garvin. The conference has drawn attendees from around the world.
United Nations Human Space Technology Initiative (HSTI)
NASA Astrophysics Data System (ADS)
Ochiai, Mika; Niu, Aimin; Steffens, Heike; Balogh, Werner; Haubold, Hans; Othman, Mazlan; Doi, Takao
2014-11-01
The Human Space Technology Initiative was launched in 2010 within the framework of the United Nations Programme on Space Applications implemented by the Office for Outer Space Affairs of the United Nations. It aims to involve more countries in activities related to human spaceflight and space exploration and to increase the benefits from the outcome of such activities through international cooperation, to make space exploration a truly international effort. The role of the Initiative in these efforts is to provide a platform to exchange information, foster collaboration between partners from spacefaring and non-spacefaring countries, and encourage emerging and developing countries to take part in space research and benefit from space applications. The Initiative organizes expert meetings and workshops annually to raise awareness of the current status of space exploration activities as well as of the benefits of utilizing human space technology and its applications. The Initiative is also carrying out primary science activities including the Zero-Gravity Instrument Project and the Drop Tower Experiment Series aimed at promoting capacity-building activities in microgravity science and education, particularly in developing countries.
2013-01-12
CAPE CANAVERAL, Fla. – A truck arrives at the processing hangar used by Space Exploration Technologies, or SpaceX, at Cape Canaveral Air Force Station, Fla. The truck is carrying solar array fairings to be installed on the Dragon spacecraft undergoing launch preparations inside the hangar. The spacecraft will launch on the upcoming SpaceX CRS-2 mission. The flight will be the second commercial resupply mission to the International Space Station by Space Exploration Technologies, or SpaceX. NASA has contracted for a total of 12 commercial resupply flights from SpaceX and eight from the Orbital Sciences Corp. Photo credit: NASA/Kim Shiflett
2012-02-17
Orion / Space Launch System: NASA has selected the design of a new Space Launch System SLS that will take the agency's astronauts farther into space than ever before and provide the cornerstone for America's future human space exploration efforts. The SLS will launch human crews beyond low Earth orbit in the Orion Multi-Purpose Crew Vehicle. Orion is America’s next generation spacecraft. It will serve as the exploration vehicle that will provide emergency abort capability, sustain the crew during space travel, carry the crew to distant planetary bodies, and provide safe return from deep space. Poster designed by Kennedy Space Center Graphics Department/Greg Lee. Credit: NASA
NASA Technical Reports Server (NTRS)
Logsdon, John M. (Editor); Day, Dwayne A. (Editor); Launius, Roger D. (Editor)
1996-01-01
The documents selected for inclusion in this volume are presented in three chapters, each covering a particular aspect of the evolution of U.S. space exploration. These chapters address (1) the relations between the civilian space program of the United States and the space activities of other countries, (2) the relations between the U.S. civilian space program and the space efforts of national security organizations and the military, and (3) NASA's relations with industry and academic institutions.
World Space Congress: a vision quest.
Iannotta, Ben
2003-01-01
The World Space Congress (WSC) in October, 2002, brought together luminaries, aerospace engineers, students, and scientists to discuss strategies for reviving the world's space agency. WSC lectures and plenary sessions focused on future research in space. Among topics discussed are the use of the Hubble Space Telescope to scan for habitable planets and obtain data about the beginning of the universe, new weather satellites, planetary protection from comets or asteroids, exploration and establishment of colonies on the Moon and Mars, medical advances, the role of space exploration in the world economy.
Human Space Exploration: The Moon, Mars, and Beyond
NASA Technical Reports Server (NTRS)
Sexton, Jeffrey D.
2007-01-01
America is returning to the Moon in preparation for the first human footprint on Mars, guided by the U.S. Vision for Space Exploration. This presentation will discuss NASA's mission, the reasons for returning to the Moon and going to Mars, and how NASA will accomplish that mission in ways that promote leadership in space and economic expansion on the new frontier. The primary goals of the Vision for Space Exploration are to finish the International Space Station, retire the Space Shuttle, and build the new spacecraft needed, to return people to the Moon and go to Mars. The Vision commits NASA and the nation to an agenda of exploration that also includes robotic exploration and technology development, while building on lessons learned over 50 years of hard-won experience. Why the Moon? Many questions about the Moon's potential resources and how its history is linked to that of Earth were spurred by the brief Apollo explorations of the 1960s and 1970s. This new venture will carry more explorers to more diverse landing sites with more capable tools and equipment for extended expeditions. The Moon also will serve as a training ground before embarking on the longer, more difficult trip to Mars. NASA plans to build a lunar outpost at one of the lunar poles, learn to live off the land, and reduce dePendence on Earth for longer missions. America needs to extend its ability to survive in hostile environments close to our home planet before astronauts will reach Mars, a planet very much like Earth. NASA has worked with scientists to define lunar exploration goals and is addressing the opportunities for a range of scientific study on Mars. In order to reach the Moon and Mars within a lifetime and within budget, NASA is building on common hardware, shared knowledge, and unique experience derived from the Apollo Saturn, Space Shuttle and contemporary commercial launch vehicle programs. The journeys to the Moon and Mars will require a variety of vehicles, including the Ares I Crew Launch Vehicle, which transports the Orion Crew Exploration Vehicle, and the Ares V Cargo Launch Vehicle, which transports the Lunar Surface Access Module. The architecture for the lunar missions will use one launch to ferry the crew into orbit, where it will rendezvous with the Lunar Module in the Earth Departure Stage, which will then propel the combination into lunar orbit. The imperative to explore space with the combination of astronauts and robots will be the impetus for inventions such as solar power and water and waste recycling. This next chapter in NASA's history promises to write the next chapter in American history, as well. It will require this nation to provide the talent to develop tools, machines, materials, processes, technologies, and capabilities that can benefit nearly all aspects of life on Earth. Roles and responsibilities are shared between a nationwide Government and industry team. The Exploration Launch Projects Office at the Marshall Space Flight Center manages the design, development, testing, and evaluation of both vehicles and serves as lead systems integrator. A little over a year after it was chartered, the Exploration Launch Projects team is testing engine components, refining vehicle designs, performing wind tunnel tests, and building hardware for the first flight test of Ares I-l, scheduled for spring 2009. The U.S. Vision for Space Exploration lays out a roadmap for a long-term venture of discovery. This endeavor will inspire and attract the best and brightest students to power this nation successfully to the Moon, Mars, and beyond. If one equates the value proposition for space with simple dollars and cents, the potential of the new space economy is tremendous, from orbital space delivery services for the International Space Station to mining and solar energy collection on the Moon and asteroids. The Vision for Space Exploration is fundamentally about bringing the resources of the solar system within the economic sphere of humaind. Given the immense size of our solar system, the amount of available material and energy within it present an enormous economic opportunity.
A New Heavy-Lift Capability for Space Exploration: NASA's Ares V Cargo Launch Vehicle
NASA Technical Reports Server (NTRS)
Sumrall, John P.; McArthur, J. Craig
2007-01-01
The National Aeronautics and Space Administration (NASA) is developing new launch systems and preparing to retire the Space Shuttle by 2010, as directed in the United States (U.S.) Vision for Space Exploration. The Ares I Crew Launch Vehicle (CLV) and the Ares V heavy-lift Cargo Launch Vehicle (CaLV) systems will build upon proven, reliable hardware derived from the Apollo-Saturn and Space Shuttle programs to deliver safe, reliable, affordable space transportation solutions. This approach leverages existing aerospace talent and a unique infrastructure, as well as legacy knowledge gained from nearly 50 years' experience developing space hardware. Early next decade, the Ares I will launch the new Orion Crew Exploration Vehicle (CEV) to the International Space Station (ISS) or to low-Earth orbit for trips to the Moon and, ultimately, Mars. Late next decade, the Ares V's Earth Departure Stage will carry larger payloads such as the lunar lander into orbit, and the Crew Exploration Vehicle will dock with it for missions to the Moon, where astronauts will explore new territories and conduct science and technology experiments. Both Ares I and Ares V are being designed to support longer future trips to Mars. The Exploration Launch Projects Office is designing, developing, testing, and evaluating both launch vehicle systems in partnership with other NASA Centers, Government agencies, and industry contractors. This paper provides top-level information regarding the genesis and evolution of the baseline configuration for the Ares V heavy-lift system. It also discusses riskbased, management strategies, such as building on powerful hardware and promoting common features between the Ares I and Ares V systems to reduce technical, schedule, and cost risks, as well as development and operations costs. Finally, it summarizes several notable accomplishments since October 2005, when the Exploration Launch Projects effort officially kicked off, and looks ahead at work planned for 2007 and beyond.
Science at the Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
White, Nicholas E.
2012-01-01
The Sciences and Exploration Directorate of the NASA Goddard Space Flight Center (GSFC) is the largest Earth and space science research organization in the world. Its scientists advance understanding of the Earth and its life-sustaining environment, the Sun, the solar system, and the wider universe beyond. Researchers in the Sciences and Exploration Directorate work with engineers, computer programmers, technologists, and other team members to develop the cutting-edge technology needed for space-based research. Instruments are also deployed on aircraft, balloons, and Earth's surface. I will give an overview of the current research activities and programs at GSFC including the James Web Space Telescope (JWST), future Earth Observing programs, experiments that are exploring our solar system and studying the interaction of the Sun with the Earth's magnetosphere.
Space Shuttle Strategic Planning Status
NASA Technical Reports Server (NTRS)
Henderson, Edward M.; Norbraten, Gordon L.
2006-01-01
The Space Shuttle Program is aggressively planning the Space Shuttle manifest for assembling the International Space Station and servicing the Hubble Space Telescope. Implementing this flight manifest while concurrently transitioning to the Exploration architecture creates formidable challenges; the most notable of which is retaining critical skills within the Shuttle Program workforce. The Program must define a strategy that will allow safe and efficient fly-out of the Shuttle, while smoothly transitioning Shuttle assets (both human and facility) to support early flight demonstrations required in the development of NASA s Crew Exploration Vehicle (CEV) and Crew and Cargo Launch Vehicles (CLV). The Program must accomplish all of this while maintaining the current level of resources. Therefore, it will be necessary to initiate major changes in operations and contracting. Overcoming these challenges will be essential for NASA to fly the Shuttle safely, accomplish the President s "Vision for Space Exploration," and ultimately meet the national goal of maintaining a robust space program. This paper will address the Space Shuttle Program s strategy and its current status in meeting these challenges.
Space Shuttle Strategic Planning Status
NASA Technical Reports Server (NTRS)
Norbraten, Gordon L.; Henderson, Edward M.
2007-01-01
The Space Shuttle Program is aggressively flying the Space Shuttle manifest for assembling the International Space Station and servicing the Hubble Space Telescope. Completing this flight manifest while concurrently transitioning to the Exploration architecture creates formidable challenges; the most notable of which is retaining critical skills within the Shuttle Program workforce. The Program must define a strategy that will allow safe and efficient fly-out of the Shuttle, while smoothly transitioning Shuttle assets (both human and facility) to support early flight demonstrations required in the development of NASA's Crew Exploration Vehicle (Orion) and Crew and Cargo Launch Vehicles (Ares I). The Program must accomplish all of this while maintaining the current level of resources. Therefore, it will be necessary to initiate major changes in operations and contracting. Overcoming these challenges will be essential for NASA to fly the Shuttle safely, accomplish the Vision for Space Exploration, and ultimately meet the national goal of maintaining a robust space program. This paper will address the Space Shuttle Program s strategy and its current status in meeting these challenges.
Space exploration and colonization - Towards a space faring society
NASA Technical Reports Server (NTRS)
Hammond, Walter E.
1990-01-01
Development trends of space exploration and colonization since 1957 are reviewed, and a five-phase evolutionary program planned for the long-term future is described. The International Geosphere-Biosphere program which is intended to provide the database on enviromental changes of the earth as a global system is considered. Evolution encompasses the anticipated advantages of such NASA observation projects as the Hubble Space Telescope, the Gamma Ray Observatory, the Advanced X-Ray Astrophysics Facility, and the Cosmic Background Explorer. Attention is given to requirements for space colonization, including development of artificial gravity and countermeasures to mitigate zero gravity problems; robotics and systems aimed to minimize human exposure to the space environment; the use of nuclear propulsion; and international collaboration on lunar-Mars projects. It is recommended that nuclear energy sources be developed for both propulsion and as extraterrestrial power plants.
A Consideration of HALO Type Orbit Designation and Maintaining for KUAFU-A and WSO/UV Missions
NASA Astrophysics Data System (ADS)
Nianchuan, J.; Xian, S.; Jianguo, Y.; Guangli, W.; Jingsong, P.
In the new era of deep space exploration more and more explorations at special places or points in solar system are carried out and planned There are five equilibrium points in the Sun-Earth system and the orbits around these points have good dynamic attribute Due to this reason The areas vicinity equilibrium points have many advantages for space exploration In recent 20 years the NASA and ESA have successfully launched several spacecrafts orbiting the Sun-Earth collinear equilibrium points Following the developing steps of space and deep space exploration in China Chinese scientists and engineers are considering and suggesting two equilibrium points explorations One is named KUAFU-A mission whose craft will orbit L1 point and the scientific target is studying the evolution of space weather of solar-terrestrial area The other is WSO UV mission whose craft will orbit L2 point and the scientific target is studying the structure and evolution of galaxies This report is mainly about HALO type orbit designation and maintaining for these two missions Following points are included 1 Briefly reviewing the explorations at the equilibrium points launched by NASA and ESA 2 Simply introducing the exploration KUAFU-A and WSO UV 3 Discussing the designation and maintaining of HALO type orbits in some detail for KUAFU-A and WSO UV
2017-10-31
Animation depicting NASA’s Space Launch System, the world's most powerful rocket for a new era of human exploration beyond Earth’s orbit. With its unprecedented capabilities, SLS will launch astronauts in the agency’s Orion spacecraft on missions to explore multiple, deep-space destinations, including Mars. Traveling to deep space requires a large vehicle that can carry huge payloads, and future evolutions of SLS with the exploration upper stage and advanced boosters will increase the rocket’s lift capability and flexibility for multiple types of mission needs.
NASA Technical Reports Server (NTRS)
Mendell, W. W.
1991-01-01
President Bush has enunciated an unparalleled, open-ended commitment to human exploration of space called the Space Exploration Initiative (SEI). At the heart of the SEI is permanent human presence beyond Earth orbit, which implies a new emphasis on life science research and life support system technology. Proposed bioregenerative systems for planetary surface bases will require carefully designed waste processing elements whose development will lead to streamlined and efficient and efficient systems for applications on Earth.
NASA Advanced Computing Environment for Science and Engineering
NASA Technical Reports Server (NTRS)
Biswas, Rupak
2017-01-01
Vision: To reach for new heights and reveal the unknown so that what we do and learn will benefit all humankind. Mission: To pioneer the future in space exploration, scientific discovery, and aeronautics research. Aeronautics Research (ARMD): Pioneer and prove new flight technologies for safer, more secure, efficient, and environmental friendly air transportation. Human Exploration and Operations (HEOMD): Focus on ISS operations; and develop new spacecraft and other capabilities for affordable, sustainable exploration beyond low Earth orbit. Science (SCMD): Explore the Earth, solar system, and universe beyond; chart best route for discovery; and reap the benefits of Earth and space exploration for society. Space Technology (STMD): Rapidly develop, demonstrate, and infuse revolutionary, high-payoff technologies through collaborative partnerships, expanding the boundaries of aerospace enterprise.
In-Space Cryogenic Propellant Depot (ISCPD) Architecture Definitions and Systems Studies
NASA Technical Reports Server (NTRS)
Fikes, John C.; Howell, Joe T.; Henley, Mark
2006-01-01
The objectives of the ISCPD Architecture Definitions and Systems Studies were to determine high leverage propellant depot architecture concepts, system configuration trades, and related technologies to enable more ambitious and affordable human and robotic exploration of the Earth Neighborhood and beyond. This activity identified architectures and concepts that preposition and store propellants in space for exploration and commercial space activities, consistent with Exploration Systems Research and Technology (ESR&T) objectives. Commonalities across mission scenarios for these architecture definitions, depot concepts, technologies, and operations were identified that also best satisfy the Vision of Space Exploration. Trade studies were conducted, technology development needs identified and assessments performed to drive out the roadmap for obtaining an in-space cryogenic propellant depot capability. The Boeing Company supported the NASA Marshall Space Flight Center (MSFC) by conducting this Depot System Architecture Development Study. The primary objectives of this depot architecture study were: (1) determine high leverage propellant depot concepts and related technologies; (2) identify commonalities across mission scenarios of depot concepts, technologies, and operations; (3) determine the best depot concepts and key technology requirements and (4) identify technology development needs including definition of ground and space test article requirements.
NASA Astrophysics Data System (ADS)
Evetts, S. N.
2014-08-01
The human exploration of space is pushing the boundaries of what is technically feasible. The space industry is preparing for the New Space era, the momentum for which will emanate from the commercial human spaceflight sector, and will be buttressed by international solar system exploration endeavours. With many distinctive technical challenges to be overcome, human spaceflight requires that numerous biological and physical systems be examined under exceptional circumstances for progress to be made. To effectively tackle such an undertaking significant intra- and international coordination and collaboration is required. Space life and biomedical science research and development (R & D) will support the Global Exploration Roadmap (GER) by enabling humans to 'endure' the extreme activity that is long duration human spaceflight. In so doing the field will discover solutions to some of our most difficult human health issues, and as a consequence benefit society as a whole. This space-specific R&D will drive a significant amount of terrestrial biomedical research and as a result the international community will not only gain benefits in the form of improved healthcare in space and on Earth, but also through the growth of its science base and industry.
A crisis in the NASA space and earth sciences programme
NASA Technical Reports Server (NTRS)
Lanzerotti, Louis, J.; Rosendhal, Jeffrey D.; Black, David C.; Baker, D. James; Banks, Peter M.; Bretherton, Francis; Brown, Robert A.; Burke, Kevin C.; Burns, Joseph A.; Canizares, Claude R.
1987-01-01
Problems in the space and earth science programs are examined. Changes in the research environment and requirements for the space and earth sciences, for example from small Explorer missions to multispacecraft missions, have been observed. The need to expand the computational capabilities for space and earth sciences is discussed. The effects of fluctuations in funding, program delays, the limited number of space flights, and the development of the Space Station on research in the areas of astronomy and astrophysics, planetary exploration, solar and space physics, and earth science are analyzed. The recommendations of the Space and Earth Science Advisory Committee on the development and maintenance of effective space and earth sciences programs are described.
Space Exploration Initiative: Chronology
NASA Technical Reports Server (NTRS)
McCurdy, Howard E.
1992-01-01
This chronology gives an overview of the human space exploration initiative from 1956 through 1989. Details are given for the political milestones of the initiative, including information on presidential mandates and NASA Administrator appointments.
The case for Mars III: Strategies for exploration - General interest and overview
NASA Technical Reports Server (NTRS)
Stoker, Carol R. (Editor)
1989-01-01
Papers on the possibilities for manned Mars missions are presented, covering topics such as space policy, space education and Mars exploration, economic issues, international cooperation, life support, biomedical factors, human factors, the Mars Rover Sample Return Mission, and possible unmanned precursor missions to Mars. Other topics include the scientific objectives for human exploration of Mars, mission strategies, possible transportation systems for manned Mars flight, advanced propulsion techniques, and the utilization of Mars resources. Additional subjects include the construction and maintenance of a Martian base, possible systems for mobility on the Martian surface, space power systems, and the use of the Space Station for a Mars mission.
Toward an electrical power utility for space exploration
NASA Technical Reports Server (NTRS)
Bercaw, Robert W.
1989-01-01
Future electrical power requirements for space exploration are discussed. Megawatts of power with enough reliability for multi-year missions and with enough flexibility to adapt to needs unanticipated at design time are some of the criteria which space power systems must be able to meet. The reasons for considering the power management and distribution in the various systems, from a total mission perspective rather than simply extrapolating current spacecraft design practice, are discussed. A utility approach to electric power integrating requirements from a broad selection of current development programs, with studies in which both space and terrestrial technologies are conceptually applied to exploration mission scenarios, is described.
The role of Space Station Freedom in the Human Exploration Initiative
NASA Technical Reports Server (NTRS)
Ahlf, P. R.; Saucillo, R. J.; Meredith, B. D.; Peach, L. L.
1990-01-01
Exploration accommodation requirements for Space Station Freedom (SSF) and mission-supporting capabilities have been studied. For supporting the Human Exploration Initiative (HEI), SSF will accommodate two functions with augmentations to the baseline Assembly Complete configuration. First, it will be an earth-orbiting transportation node providing facilities and resources (crew, power, communications) for space vehicle assembly, testing, processing and postflight servicing. Second, it will be an in-space laboratory for science research and technology development. The evolutionary design of SSF will allow the on-orbit addition of pressurized laboratory and habitation modules, power generation equipment, truss structure, and unpressurized vehicle processing platforms.
Preparing America for Deep Space Exploration Episode 10: Constructing the Future
2015-08-13
Published on Aug 13, 2015 Between April and June 2015, NASA’s Explorations Systems Development programs continued to make progress developing and building the Space Launch System rocket, Orion spacecraft and the ground systems needed to launch them on deep space missions to new destinations in the solar system.
Water: A Critical Material Enabling Space Exploration
NASA Technical Reports Server (NTRS)
Pickering, Karen D.
2014-01-01
Water is one of the most critical materials in human spaceflight. The availability of water defines the duration of a space mission; the volume of water required for a long-duration space mission becomes too large, heavy, and expensive for launch vehicles to carry. Since the mission duration is limited by the amount of water a space vehicle can carry, the capability to recycle water enables space exploration. In addition, water management in microgravity impacts spaceflight in other respects, such as the recent emergency termination of a spacewalk caused by free water in an astronaut's spacesuit helmet. A variety of separation technologies are used onboard spacecraft to ensure that water is always available for use, and meets the stringent water quality required for human space exploration. These separation technologies are often adapted for use in a microgravity environment, where water behaves in unique ways. The use of distillation, membrane processes, ion exchange and granular activated carbon will be reviewed. Examples of microgravity effects on operations will also be presented. A roadmap for future technologies, needed to supply water resources for the exploration of Mars, will also be reviewed.
NASA Astrophysics Data System (ADS)
Cutler, J.
2015-12-01
CubeSats sprung from a formative picosatellite effort at a university in the heart of Silicon Valley, took root in a university-led university environment, and have grown into complex-shaped explorers in both near and soon-to-be deep space. Private citizens, businesses, government are building and launching a variety of science, technology demonstration, and service missions. A new generation of space explorers is gaining first hand experience in space missions at all educational levels. There is new life and new energy in the space program. However, space is still difficult. The environment is harsh. Funding is sparse. This talk explores this history and the future of CubeSats from the context of a university-centric laboratory that emphasizes teaching, research, and entrepreneurial impact. It will explore the following questions: What sparked the CubeSat innovation? What are longer lasting lessons of this community? Where are places we can go next? What does it take to get there? The talk will draw on lessons learned from building over six on-orbit CubeSat missions and training hundreds of space engineers.
The First Year in Review: NASA's Ares I Crew Launch Vehicle and Ares V Cargo Launch Vehicle
NASA Technical Reports Server (NTRS)
Dumbacher, Daniel L.; Reuter, James L.
2007-01-01
The U.S. Vision for Space Exploration guides NASA's challenging missions of scientific discovery.' Developing safe, reliable, and affordable space transportation systems for the human and robotic exploration of space is a key component of fulfilling the strategic goals outlined in the Vision, as well as in the U.S. Space Policy. In October 2005, the Exploration Systems Mission Directorate and its Constellation Program chartered the Exploration Launch Projects Office, located at the Marshall Space Flight Center, to design, develop, test, and field a new generation of launch vehicles that would fulfill customer and stakeholder requirements for trips to the Moon, Mars, and beyond. The Ares I crew launch vehicle is slated to loft the Orion crew exploration vehicle to orbit by 2014, while the heavy-lift Ares V cargo launch vehicle will deliver the lunar lander to orbit by 2020 (Fig. 1). These systems are being designed to empower America's return to the Moon to prepare for the first astronaut on Mars. The new launch vehicle designs now under study reflect almost 50 years of hard-won experience gained from the Saturn's missions to the Moon in the late 1960s and early 1970s, and from the venerable Space Shuttle, which is due to be retired by 2010.
Modular Power Standard for Space Explorations Missions
NASA Technical Reports Server (NTRS)
Oeftering, Richard C.; Gardner, Brent G.
2016-01-01
Future human space exploration will most likely be composed of assemblies of multiple modular spacecraft elements with interconnected electrical power systems. An electrical system composed of a standardized set modular building blocks provides significant development, integration, and operational cost advantages. The modular approach can also provide the flexibility to configure power systems to meet the mission needs. A primary goal of the Advanced Exploration Systems (AES) Modular Power System (AMPS) project is to establish a Modular Power Standard that is needed to realize these benefits. This paper is intended to give the space exploration community a "first look" at the evolving Modular Power Standard and invite their comments and technical contributions.
ERIC Educational Resources Information Center
Armson, Genevieve
2009-01-01
This research set out to explore perceptions about the concept of an emergent learning space within private organisations, as the current literature on learning does not adequately differentiate between organised learning and emergent learning. The research objectives explored the existence of, and perceived level of organisational encouragement…
In-space assembly and servicing infrastructures for the Evolvable Space Telescope (EST)
NASA Astrophysics Data System (ADS)
Lillie, Charles F.; MacEwen, Howard A.
2016-07-01
The concept for EST presented in past SPIE forums will benefit significantly from the current efforts of DARPA, NASA and several commercial organizations to develop an in-space infrastructure that will enable on-orbit assembly, servicing, repair and repurposing of space vehicles. Two documents provide particularly relevant discussions: "NASA's Journey to Mars: Pioneering Next Steps in Space Exploration" provides a recent (2015) outline of NASA's thoughts on human deep space exploration and the tools that will enable it, while the "On-Orbit Satellite Servicing Study: Project Report" details a number of the concepts and technologies that must be developed. In this paper we examine the concepts in these and related documents to explore how systems such as EST will shape and support the infrastructure needed by future space vehicles. In so doing, we address previous examples of on-orbit assembly and servicing of space vehicles; the lessons learned from these efforts and the existing systems and facilities available to execute servicing missions; the EST concept for an LUVOIR telescope designed for in-orbit assembly and servicing and the resulting requirements for a servicing vehicle; the use of heavy lift launch vehicles, including the SLS and Exploration Upper Stage to co-manifest other large payloads along with a crewed Orion mission; Deep Space Habitats (DSHs) in cislunar space as a site for assembly and servicing spacecraft vehicles, and a base for Maneuverable Servicing Vehicles; and how space vehicles need to be designed for in-space assembly and servicing (i.e., commonality of parts, systems, modularity, accessibility, and stable maneuverability).
Messina, Piero; Vennemann, Dietrich
2005-01-01
After a large consultation with the scientific and industrial communities in Europe, the Aurora Space Exploration Programme was unanimously approved at the European Space Agency (ESA) Council at ministerial level in Edinburgh in 2001. This marked the start of the programme's preparation phase that was due to finish by the end of 2004. Aurora features technology development robotic and crewed rehearsal missions aimed at preparing a human mission to Mars by 2033. Due to the evolving context, both international and European, ESA has undertaken a review of the goals and approach of its exploration programme. While maintaining the main robotic missions that had been conceived during Aurora, the European Space Exploration Programme that is currently being proposed to the Aurora participating states and other ESA Member States has a reviewed approach and will feature a greater synergy with other ESA programmes. The paper will present the process that led to the revision of ESA's plans in the field of exploration and will give the current status of the programme. c2005 Published by Elsevier Ltd.
IT Middleware Services for an 'Exploration Web'
NASA Technical Reports Server (NTRS)
Lamarra, Norm
2003-01-01
This slide presentation reviews the application of middleware in space exploration, and satellite communications. The aim of the use of Space middleware is ot use remote sensors and other resources more efficiently.
A New Heavy-Lift Capability for Space Exploration: NASA's Ares V Cargo Launch Vehicle
NASA Technical Reports Server (NTRS)
Sumrall, John P.
2006-01-01
The National Aeronautics and Space Administration (NASA) is developing new launch systems in preparation for the retirement of the Space Shuttle by 2010, as directed in the United States (U.S.) Vision for Space Exploration. The Ares I Crew Launch Vehicle (CLV) and the Ares V heavy-lift Cargo Launch Vehicle (CaLV) systems will build upon proven, reliable hardware derived from the Apollo Saturn (1961 to 1975) and Space Shuttle (1972 to 2010) programs to deliver safe, reliable, affordable space transportation solutions. This approach leverages existing aerospace talent and a unique infrastructure, as well as the vast amount of legacy knowledge gained from almost a half-century of hard-won experience in the space enterprise. Beginning early next decade, the Ares I will launch the new Crew Exploration Vehicle (CEV) to the International Space Station (ISS) or to low-Earth orbit for trips to the Moon and, ultimately, Mars. Late next decade, the Ares V's Earth Departure Stage will carry larger payloads such as the lunar lander into orbit, and the Crew Exploration Vehicle will dock with it for missions to the Moon, where astronauts will explore new territories and conduct science and technology experiments. Both the Ares I and Ares V systems are being designed to support longer future trips to Mars. The Exploration Launch Projects Office, located at NASA's Marshall Space Flight Center, is designing, developing, testing, and evaluating both launch vehicle systems in partnership with other NASA Centers, Government agencies, and industry contractors. This paper provides top-level information regarding the genesis and evolution of the baseline configuration for the Ares V heavy-lift system. It also touches on risk-based management strategies, such as building on powerful hardware and promoting common features between the Ares I and Ares V systems to reduce technical, schedule, and cost risks, as well as development and operations costs. Finally, it gives a summary of several notable accomplishments over the past year, since the Exploration Launch Projects effort officially kicked off in October 2005, and looks ahead at work planned for 2007 and beyond.
Protecting the Moon for research: ILEWG report
NASA Astrophysics Data System (ADS)
Foing, Bernard H.
We give a report on recommendations with emphasis on environment protection, and since last COSPAR from ILEWG International conferences Exploration and Utilisation of the Moon on held at Cape Canaveral in 2008 (ICEUM10), and in Beijing in May 2010 with IAF (GLUC -ICEUM11). We discuss the different rationale for Moon exploration, as debated at ILEWG. ILEWG Science task group has listed priorities for scientific investigations: clues on the formation and evolution of rocky planets, accretion and bombardment in the inner solar system, comparative planetology processes (tectonic, volcanic, impact cratering, volatile delivery), records astrobiology, survival of organics; past, present and future life; sciences from a biology lunar laboratory. We discuss how to preserve Moon research potential in these areas while operating with instruments, landers, rover during a cooperative robotic village, and during the transition form lunar human outpost to permanent sustainable human base. We discuss how Moon-Mars Exploration can inspire solutions to global Earth sustained development with the trade-off of In-Situ Utilisation of resources; Establishment of permanent robotic infrastructures, Environmental and planetary protection aspects and lessons for Mars; Life sciences laboratories, and support to human exploration. Co-authors: ILEWG Task Groups on Science, Technology and Human Lunar Bases ILEWG Reference documents: http://sci.esa.int/ilewg -10th ILEWG Conference on Exploration and Utilisation of the Moon, NASA Lunar Ex-ploration Analysis Group-PSace Resources Roundtable, Cape Canaveral October 2008, pro-gramme online at http://sci.esa.int/ilewg/ -9th ILEWG Conference on Exploration and Utilisation of the Moon, ICEUM9 Sorrento 2007, programme online at http://sci.esa.int/ilewg/ -8th ILEWG Conference on Exploration and Utilisation of the Moon, Beijing July 2006, programme online at http://sci.esa.int/ilewg/ -The Moon and Near Earth Objects (P. Ehrenfreund , B.H. Foing, A. Cellino Editors), Ad-vances in Space Research, Volume 37, Issue 1, pp 1-192, 2006 -7th ILEWG Conference on Exploration and Utilisation of the Moon, Toronto Sept 2005, Programme and Proceedings on line at www.ilewg.org, R. Richards et al Editors -6th ILEWG Conference on Exploration and Utilisation of the Moon, Udaipur Nov. 2004, Proceedings ( N. Bhandari Editor), Journal Earth System Science, India, 114, No6, Dec 2005, pp. 573-841 -5th ILEWG Conference on Exploration and Utilisation of the Moon, Hawaii Nov 2003, Pro-ceedings ILC2005/ICEUM5 (S.M. Durst et al Editors), Vol 108, 1-576 pp, Science and Tech-nology Series, American Astronautical Society, 2004 -'The next steps in exploring deep space -A cosmic study by the IAA', W. Huntress, D. Stetson, R. Farquhar, J. Zimmerman, B. Clark, W. O'Neil, R. Bourke and B. Foing, Acta Astronautica, Vol 58, Issues 6-7, March-April 2006, p302-377 -IAA/ESA workshop on "Next Steps in Exploring Deep Space", ESTEC 22-23 sept. 2003 (B.H. Foing W. Huntress, conveners) Lunar Exploration, Planetary and Space Science, Vol 50, issue 14-15, Dec 2002 (B.H. Foing al) -ESLAB36 symposium on "Earth-like Planets and Moons", 2002, ESA-SP514, pp. 1-356, (B.H.Foing B. Battrick, editors) -'Lunar Exploration 2000', (B.H. Foing, D. Heather, Editors), Adv. Space Research Vol 30, Nr 8, 2002 -'Earth-Moon Relationships', Proceedings of the Conference held in Padova, Italy at the Ac-cademia Galileiana di Scienze Lettere ed Arti, Nov. 2000, (C. Barbieri and F. Rampazzi, Editors), in Earth, Moon , Planets Vol. 85-86, Nos 1-3, pp 1-575, 2001 -4th International Conference on Exploration and Utilisation of the Moon, ESTEC, 2000, ESA SP-462 (B.H. Foing M. Perry, editors) -Investing in Space: The Challenge for Europe. Long-Term Space Policy Committee, Second Report, May 1999. ESA-SP-2000 -2nd International Lunar Workshop, held at Kyoto in October 1996, Proceedings, H. Mizutani, editor, Japan Space Forum Publisher, 1997 International Lunar Workshop, 1994 May 31-June 3, Beatenberg, Switzerland. Proceedings. Ed. Balsiger, H. et al. European Space Agency, 1994. ESA-SP-1170 -Astronomy and Space Science from the Moon', Proceedings of COSPAR/IAF session at World Congress, Washington, (B.H. Foing et al editors), Advances in Space Research, Volume 14, Issue 6, 1994 -Mission to the Moon, Europe's Priorities for Scientific Exploration and Utilisation of the Moon', R.M. Bonnet et al, European Space Agency, ESA SP-1150, June 1992
Space Exploration: Challenges in Medicine, Research, and Ethics
NASA Technical Reports Server (NTRS)
Davis, Jeffrey R.
2007-01-01
This viewgraph presentation describes the challenges that space exploration faces in terms of medicine, research and ethics. The topics include: 1) Effects of Microgravity on Human Physiology; 2) Radiation; 3) Bone; 4) Behavior and Performance; 5) Muscle; 6) Cardiovascular; 7) Neurovestibular; 8) Food and Nutrition; 9) Immunology and Hematology; 10) Environment; 11) Exploration; 12) Building Block Approach; 13) Exploration Issues; 14) Life Sciences Contributions; 15) Health Care; and 17) Habitability.
Exploring the Possibilities: Earth and Space Science Missions in the Context of Exploration
NASA Technical Reports Server (NTRS)
Pfarr, Barbara; Calabrese, Michael; Kirkpatrick, James; Malay, Jonathan T.
2006-01-01
According to Dr. Edward J. Weiler, Director of the Goddard Space Flight Center, "Exploration without science is tourism". At the American Astronautical Society's 43rd Annual Robert H. Goddard Memorial Symposium it was quite apparent to all that NASA's current Exploration Initiative is tightly coupled to multiple scientific initiatives: exploration will enable new science and science will enable exploration. NASA's Science Mission Directorate plans to develop priority science missions that deliver science that is vital, compelling and urgent. This paper will discuss the theme of the Goddard Memorial Symposium that science plays a key role in exploration. It will summarize the key scientific questions and some of the space and Earth science missions proposed to answer them, including the Mars and Lunar Exploration Programs, the Beyond Einstein and Navigator Programs, and the Earth-Sun System missions. It will also discuss some of the key technologies that will enable these missions, including the latest in instruments and sensors, large space optical system technologies and optical communications, and briefly discuss developments and achievements since the Symposium. Throughout history, humans have made the biggest scientific discoveries by visiting unknown territories; by going to the Moon and other planets and by seeking out habitable words, NASA is continuing humanity's quest for scientific knowledge.
New technology innovations with potential for space applications
NASA Astrophysics Data System (ADS)
Krishen, Kumar
2008-07-01
Human exploration and development of space is being pursued by spacefaring nations to explore, use, and enable the development of space and expand the human experience there. The goals include: increasing human knowledge of nature's processes using the space environment; exploring and settling the solar system; achieving routine space travel; and enriching life on Earth through living and working in space. A crucial aspect of future space missions is the development of infrastructure to optimize safety, productivity, and costs. A major component of mission execution is operations management. NASA's International Space Station is providing extensive experience in both infrastructure and operations. In view of this, a vigorously organized approach is needed to implement successful space-, planet-, and ground-based research and operations that entails wise and efficient use of technical and human resources. Many revolutionary technologies being pursued by researchers and technologists may be vital in making space missions safe, reliable, cost-effective, and productive. These include: ionic polymer-metal composite technology; solid-state lasers; time-domain sensors and communication systems; high-temperature superconductivity; nanotechnology; variable specific impulse magneto plasma rocket; fuzzy logic; wavelet technology; and neural networks. An overview of some of these will be presented, along with their application to space missions.
Protection of the Space Environment: The First Small Steps
NASA Astrophysics Data System (ADS)
Williamson, M.
The exploration of the space environment - by robotic and manned missions - is a natural extension of mankind's desire to explore his own planet. Likewise, the development of the space environment - for industry, commerce and tourism - is a natural extension of our current business and domestic environment. Unfortunately, it appears that our ability to pollute, degrade and even destroy aspects of the space environment is also an extension of an ability we have developed and practised here on Earth. This paper reviews the evidence of mankind's pollution of the space environment - which includes the planetary bodies - in the first 45 years of the Space Age, and extrapolates the potential for further degradation into its second half-century. It considers the future development of both scientific exploration and commercial exploitation - in orbit and on the surface of the planetary bodies - and the possible detrimental effects. In presenting the case for protection of the space environment, the paper makes recommendations concerning the first steps towards a solution to the problem. Among other things, it calls for the formation of an international consultative body, to consider the issues relevant to `Protection of the Space Environment' and to raise awareness of the subject among the growing body of space professionals and practitioners. It also recommends consideration of a `set of guidelines' or `code of practice' as a precursor to more formal policies or legislation. In doing so, however, it is careful to recognise the need to strike a balance between unbridled exploration and development, and a stifling regime of rules and regulations. The discussion of this subject requires a good deal more collective knowledge, understanding and maturity than has been evident in similar discussions regarding the Earth's environment. At present, that knowledge resides largely within the professional space community. Thus there is also a need for promulgation, both within and beyond that community. As the space frontier becomes accessible to a wider variety of individuals, corporations and other bodies, the requirement for protection of the space environment grows. If the space environment is to remain available for the study of and use by successive generations of explorers and developers, we must make the first steps towards protection now. In another twenty years or so - when the second generation of lunar explorers is making footprints on the surface - it may be too late.
Space Exploration: Where We Have Been, Where We Are and Where We Are Going: A Human Perspective
NASA Technical Reports Server (NTRS)
Tripathi, R. K.
2005-01-01
NASA is moving forward towards the agency's new vision for space exploration in the 21st Century encompassing a broad range of human and robotic missions including missions to Moon, Mars and beyond. Exposure from the hazards of severe space radiation in deep space long duration missions is the show stopper. Langley has developed state-of-the-art radiation protection and shielding technology for space missions. The payload penalty demands a very stringent requirement on the design of the spacecrafts for human deep space missions. The exploration beyond low Earth orbit (LEO) to enable routine access to more interesting regions of space will require protection from the hazards of the accumulated exposures of space radiation, Galactic Cosmic Rays (GCR) and Solar Particle Events (SPE), and minimizing the production of secondary radiation is a great advantage. The better understanding of radiation environment (GCR & SPE) and their interaction is a key to the success of the program due to the vital role and importance of cosmic rays for space missions.
Heliospheric Physics and NASA's Vision for Space Exploration
NASA Technical Reports Server (NTRS)
Minow, Joseph I.
2007-01-01
The Vision for Space Exploration outlines NASA's development of a new generation of human-rated launch vehicles to replace the Space Shuttle and an architecture for exploring the Moon and Mars. The system--developed by the Constellation Program--includes a near term (approx. 2014) capability to provide crew and cargo service to the International Space Station after the Shuttle is retired in 2010 and a human return to the Moon no later than 2020. Constellation vehicles and systems will necessarily be required to operate efficiently, safely, and reliably in the space plasma and radiation environments of low Earth orbit, the Earth's magnetosphere, interplanetary space, and on the lunar surface. This presentation will provide an overview of the characteristics of space radiation and plasma environments relevant to lunar programs including the trans-lunar injection and trans-Earth injection trajectories through the Earth's radiation belts, solar wind surface dose and plasma wake charging environments in near lunar space, energetic solar particle events, and galactic cosmic rays and discusses the design and operational environments being developed for lunar program requirements to assure that systems operate successfully in the space environment.
Fary, Raymond W.
1967-01-01
The statement that a new era in exploration is opening will almost surely bring to mind the venturing of man into space and the ever more imminent exploration of the moon. The reference here, however, is to exploration of earth itself and to the unique capabilities for study of the earth that space technology will provide. Demands for water, minerals, energy, food, and for working, living and recreational space are outrunning our ability to meet them by traditional methods. In order to satisfy these demands, it is necessary now, just as it has been in the past, to look to the activities, the instruments, and the technologies that in part create the pressures for aid in meeting them. Studies being made at the U.S. Geological Survey and elsewhere of the potential applications of remote sensors in space to earth resources research indicate that now, at last, it will be possible to approach solutions on a regional or global basis. This paper discusses the plans for an Earth Resources Observational Satellites Program which will be designed for that purpose.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. At the 1st Space Exploration Conference: Continuing the Voyage of Discovery, held at Disneys Contemporary Resort in Orlando, the winners of the Space Exploration Video Festival award sponsored by Lockheed Martin get together. Second from left is Daniel Stearns, from East Longmeadow, Mass. The others are the winning team from NASA Explorer School McNair High School in Dekalb County, Ga. At left is Theo Maxie; at right are Daniel Jackson and Trenten Nash. The three-day conference drew attendees from around the world. It presented topics on new missions, technologies and infrastructure needed to turn the vision for space exploration into reality. Keynote speakers at the three-day conference include NASA Administrator Sean O'Keefe, Congressman Dave Weldon, film director James Cameron and NASAs senior Mars scientist James Garvin. The conference has drawn attendees from around the world.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. At the 1st Space Exploration Conference: Continuing the Voyage of Discovery, held at Disneys Contemporary Resort in Orlando, film director James Cameron (right) talks to the winning students of the Space Exploration Video Festival award sponsored by Lockheed Martin. At left is Daniel Stearns, from East Longmeadow, Mass. The others are Daniel Jackson, Trenten Nash and Theo Maxie, from the NASA Explorer School McNair High School in Dekalb County, Ga.. Cameron is one of the keynote speakers at the conference. Topics being presented focus on new missions, technologies and infrastructure needed to turn the vision for space exploration into reality. Keynote speakers at the three-day conference include NASA Administrator Sean O'Keefe, Congressman Dave Weldon, film director James Cameron and NASAs senior Mars scientist James Garvin. The conference has drawn attendees from around the world.
NASA Technical Reports Server (NTRS)
Griffin, Amanda
2012-01-01
Among 2011's many accomplishments, we safely retired the Space Shuttle Program after 30 incredible years; completed the International Space Station and are taking steps to enable it to reach its full potential as a multi-purpose laboratory; and helped to expand scientific knowledge with missions like Aquarius, GRAIL, and the Mars Science Laboratory. Responding to national budget challenges, we are prioritizing critical capabilities and divesting ourselves of assets no longer needed for NASA's future exploration programs. Since these facilities do not have to be maintained or demolished, the government saves money. At the same time, our commercial partners save money because they do not have to build new facilities. It is a win-win for everyone. Moving forward, 2012 will be even more historically significant as we celebrate the 50th Anniversary of Kennedy Space Center. In the coming year, KSC will facilitate commercial transportation to low-Earth orbit and support the evolution of the Space Launch System and Orion crew vehicle as they ready for exploration missions, which will shape how human beings view the universe. While NASA's Vision is to lead scientific and technological advances in aeronautics and space for a Nation on the frontier of discovery KSC's vision is to be the world's preeminent launch complex for government and commercial space access, enabling the world to explore and work in space. KSC's Mission is to safely manage, develop, integrate, and sustain space systems through partnerships that enable innovative, diverse access to space and inspires the Nation's future explorers.
The Space Medicine Exploration Medical Condition List
NASA Technical Reports Server (NTRS)
Watkins, Sharmi; Barr, Yael; Kerstman, Eric
2011-01-01
Exploration Medical Capability (ExMC) is an element of NASA s Human Research Program (HRP). ExMC's goal is to address the risk of the "Inability to Adequately Recognize or Treat an Ill or Injured Crewmember." This poster highlights the approach ExMC has taken to address this risk. The Space Medicine Exploration Medical Condition List (SMEMCL) was created to define the set of medical conditions that are most likely to occur during exploration space flight missions. The list was derived from the International Space Station Medical Checklist, the Shuttle Medical Checklist, in-flight occurrence data from the Lifetime Surveillance of Astronaut Health, and NASA subject matter experts. The list of conditions was further prioritized for eight specific design reference missions with the assistance of the ExMC Advisory Group. The purpose of the SMEMCL is to serve as an evidence-based foundation for the conditions that could affect a crewmember during flight. This information is used to ensure that the appropriate medical capabilities are available for exploration missions.
NASA Technical Reports Server (NTRS)
Dumbacher, Daniel L.
2006-01-01
The U.S. Vision for Space Exploration directs NASA to design and develop a new generation of safe, reliable, and cost-effective transportation systems to hlfill the Nation s strategic goals and objectives. These launch vehicles will provide the capability for astronauts to conduct scientific exploration that yields new knowledge from the unique vantage point of space. American leadership in opening new fi-ontiers will improve the quality of life on Earth for generations to come. The Exploration Launch Projects office is responsible for delivering the Crew Launch Vehicle (CLV) that will loft the Crew Exploration Vehicle (CEV) into low-Earth orbit (LEO) early next decade, and for the heavy lift Cargo Launch Vehicle (CaLV) that will deliver the Lunar Surface Access Module (LSAM) to LEO for astronaut return trips to the Moon by 2020 in preparation for the eventual first human footprint on Mars. Crew travel to the International Space Station will be made available as soon possible after the Space Shuttle retires in 2010.
Astrobiological benefits of human space exploration.
Crawford, Ian A
2010-01-01
An ambitious program of human space exploration, such as that envisaged in the Global Exploration Strategy and considered in the Augustine Commission report, will help advance the core aims of astrobiology in multiple ways. In particular, a human exploration program will confer significant benefits in the following areas: (i) the exploitation of the lunar geological record to elucidate conditions on early Earth; (ii) the detailed study of near-Earth objects for clues relating to the formation of the Solar System; (iii) the search for evidence of past or present life on Mars; (iv) the provision of a heavy-lift launch capacity that will facilitate exploration of the outer Solar System; and (v) the construction and maintenance of sophisticated space-based astronomical tools for the study of extrasolar planetary systems. In all these areas a human presence in space, and especially on planetary surfaces, will yield a net scientific benefit over what can plausibly be achieved by autonomous robotic systems. A number of policy implications follow from these conclusions, which are also briefly considered.
NASA Technical Reports Server (NTRS)
Aaron, John; Gabris, Edward A.; Sulzman, Frank M.; Connors, Mary M.; Pilcher, Carl
1989-01-01
NASA's Office of Aeronautics and Space Technology has undertaken a series of manned space presence-development efforts under the aegis of the Civil Space Technology Initiative (CSTI) and Project Pathfinder. Typical of these CSTI efforts is the Aeroassist Flight Experiment, which will demonstrate techniques suitable in aerobrake design for slow trajectories to Mars and for lunar mission return. Long-duration human operations in space are a major element of Pathfinder, giving attention to such problems as space radiation exposure effects that could be several orders of magnitude greater on interplanetary exploration missions than on typical Space Shuttle flights. Mars Observer and Lunar Observer orbital missions are planned as a steppingstone to manned planetary exploration.
Remotely Powered Reconfigurable Receiver for Extreme Sensing Platforms
NASA Technical Reports Server (NTRS)
Sheldon, Douglas J. (Inventor)
2017-01-01
Unmanned space programs are currently used to enable scientists to explore and research the furthest reaches of outer space. Systems and methods for low power communication devices in accordance with embodiments of the invention are disclosed, describing a wide variety of low power communication devices capable of remotely collecting, processing, and transmitting data from outer space in order to further mankind's goal of exploring the cosmos. Many embodiments of the invention include a Flash-based FPGA, an energy-harvesting power supply module, a sensor module, and a radio module. By utilizing technologies that withstand the harsh environment of outer space, more reliable low power communication devices can be deployed, enhancing the quality and longevity of the low power communication devices, enabling more data to be gathered and aiding in the exploration of outer space.
Future of robotic space exploration: visions and prospects
NASA Astrophysics Data System (ADS)
Haidegger, Tamas
Autonomous and remote controlled mobile robots and manipulators have already proved their utility throughout several successful national and international space missions. NASA and ESA both sent robots and probes to Mars and beyond in the past years, and the Space Shuttle and Space Station Remote Manipulator Systems brought recognition to CSA. These achievements gained public attention and acknowledgement; however, all are based on technologies developed decades ago. Even the Canadian Dexter robotic arm-to be delivered to the International Space Station this year-had been completed many years ago. In the past decade robotics has become ubiquitous, and the speed of development has increased significantly, opening space for grandiose future plans of autonomous exploration missions. In the mean time, space agencies throughout the world insist on running their own costly human space flight programs. A recent workshop at NASA dealing with the issue stated that the primary reason behind US human space exploration is not science; rather the USA wants to maintain its international leadership in this field. A second space-race may fall upon us, fueled by the desire of the developing space powers to prove their capabilities, mainly driven by national pride. The aim of the paper is to introduce the upcoming unmanned space exploration scenarios that are already feasible with present day robotic technology and to show their humandriven alternatives. Astronauts are to conquer Mars in the foreseeable future, in but robots could go a lot further already. Serious engineering constraints and possibilities are to be discussed, along with issues beyond research and development. Future mission design planning must deal with both the technological and political aspects of space. Compromising on the scientific outcome may pay well by taking advantage of public awareness and nation and international interests.
Materials in NASA's Space Launch System: The Stuff Dreams are Made of
NASA Technical Reports Server (NTRS)
May, Todd A.
2012-01-01
Mr. Todd May, Program Manager for NASA's Space Launch System, will showcase plans and progress the nation s new super-heavy-lift launch vehicle, which is on track for a first flight to launch an Orion Multi-Purpose Crew Vehicle around the Moon in 2017. Mr. May s keynote address will share NASA's vision for future human and scientific space exploration and how SLS will advance those plans. Using new, in-development, and existing assets from the Space Shuttle and other programs, SLS will provide safe, affordable, and sustainable space launch capabilities for exploration payloads starting at 70 metric tons (t) and evolving through 130 t for entirely new deep-space missions. Mr. May will also highlight the impact of material selection, development, and manufacturing as they contribute to reducing risk and cost while simultaneously supporting the nation s exploration goals.
STS-114: Crew Interviews: 1. Jim Kelly 2. Charlie Camarda
NASA Technical Reports Server (NTRS)
2005-01-01
1) STS-114 Pilot James Kelly mentions his primary job as the Pilot is to back up Commander Eileen Collins all through the flight. James discusses in detail his robotics operations for all of the extravehicular activities and spacewalk work, as well as moving the logistics module back and forth, onto the station and back in the payload bay. He shares his thoughts on the Columbia, the STS-114 mission as a new chapter in space exploration, and the International Space Station. 2) STS-114 Mission Specialist Charlie Camarda discusses his major role in the mission, his feelings for this being his first Space Shuttle flight; shares his thoughts on the Columbia; mentioned that STS-114 is a baby step to what is needed to do for the next step in space exploration, and gave some examples on how the International Space Station can help pave the path to future space exploration.
Teaching, Learning, and Planetary Exploration
NASA Technical Reports Server (NTRS)
Brown, Robert A.
2002-01-01
This is the final report of a program that examined the fundamentals of education associated with space activities, promoted educational policy development in appropriate forums, and developed pathfinder products and services to demonstrate the utility of advanced communication technologies for space-based education. Our focus was on space astrophysics and planetary exploration, with a special emphasis on the themes of the Origins Program, with which the Principal Investigator (PI) had been involved from the outset. Teaching, Learning, and Planetary Exploration was also the core funding of the Space Telescope Science Institute's (ST ScI) Special Studies Office (SSO), and as such had provided basic support for such important NASA studies as the fix for Hubble Space Telescope (HST) spherical aberration, scientific conception of the HST Advanced Camera, specification of the Next-Generation Space Telescope (NGST), and the strategic plan for the second decade of the HST science program.
Achieving Supportability on Exploration Missions with In-Space Servicing
NASA Technical Reports Server (NTRS)
Bacon, Charles; Pellegrino, Joseph F.; McGuire, Jill; Henry, Ross; DeWeese, Keith; Reed, Benjamin; Aranyos, Thomas
2015-01-01
One of the long-term exploration goals of NASA is manned missions to Mars and other deep space robotic exploration. These missions would include sending astronauts along with scientific equipment to the surface of Mars for extended stay and returning the crew, science data and surface sample to Earth. In order to achieve this goal, multiple precursor missions are required that would launch the crew, crew habitats, return vehicles and destination systems into space. Some of these payloads would then rendezvous in space for the trip to Mars, while others would be sent directly to the Martian surface. To support such an ambitious mission architecture, NASA must reduce cost, simplify logistics, reuse and/or repurpose flight hardware, and minimize resources needed for refurbishment. In-space servicing is a means to achieving these goals. By designing a mission architecture that utilizes the concept of in-space servicing (robotic and manned), maximum supportability can be achieved.
Advanced optical technologies for space exploration
NASA Astrophysics Data System (ADS)
Clark, Natalie
2007-09-01
NASA Langley Research Center is involved in the development of photonic devices and systems for space exploration missions. Photonic technologies of particular interest are those that can be utilized for in-space communication, remote sensing, guidance navigation and control, lunar descent and landing, and rendezvous and docking. NASA Langley has recently established a class-100 clean-room which serves as a Photonics Fabrication Facility for development of prototype optoelectronic devices for aerospace applications. In this paper we discuss our design, fabrication, and testing of novel active pixels, deformable mirrors, and liquid crystal spatial light modulators. Successful implementation of these intelligent optical devices and systems in space, requires careful consideration of temperature and space radiation effects in inorganic and electronic materials. Applications including high bandwidth inertial reference units, lightweight, high precision star trackers for guidance, navigation, and control, deformable mirrors, wavefront sensing, and beam steering technologies are discussed. In addition, experimental results are presented which characterize their performance in space exploration systems
Advanced Optical Technologies for Space Exploration
NASA Technical Reports Server (NTRS)
Clark, Natalie
2007-01-01
NASA Langley Research Center is involved in the development of photonic devices and systems for space exploration missions. Photonic technologies of particular interest are those that can be utilized for in-space communication, remote sensing, guidance navigation and control, lunar descent and landing, and rendezvous and docking. NASA Langley has recently established a class-100 clean-room which serves as a Photonics Fabrication Facility for development of prototype optoelectronic devices for aerospace applications. In this paper we discuss our design, fabrication, and testing of novel active pixels, deformable mirrors, and liquid crystal spatial light modulators. Successful implementation of these intelligent optical devices and systems in space, requires careful consideration of temperature and space radiation effects in inorganic and electronic materials. Applications including high bandwidth inertial reference units, lightweight, high precision star trackers for guidance, navigation, and control, deformable mirrors, wavefront sensing, and beam steering technologies are discussed. In addition, experimental results are presented which characterize their performance in space exploration systems.
Space and the American imagination
NASA Technical Reports Server (NTRS)
Mccurdy, Howard E.
1994-01-01
The introduction will set out the principal theme of the book: that the rise of the U.S. space program was due to a concerted effort by science writers, engineers, industrialists, and civic and political leaders to create a popular culture of space exploration based on important elements of American social life (such as frontier mythology, fears about the cold war, and the rise of the consumer culture). Much of the disillusionment with the NASA space program which set in during the third decade of space flight can be traced to a widening gap between popular expectations and the reality of space exploration.
Space Exploration: Manned and Unmanned Flight. Aerospace Education III.
ERIC Educational Resources Information Center
Coard, E. A.
This book, for use only in the Air Force ROTC training program, deals with the idea of space exploration. The possibility of going into space and subsequent moon landings have encouraged the government and scientists to formulate future plans in this field. Brief descriptions (mostly informative in nature) of these plans provide an account of…
The Space Launch System: NASA's Exploration Rocket
NASA Technical Reports Server (NTRS)
Blackerby, Christopher; Cate, Hugh C., III
2013-01-01
Powerful, versatile, and capable vehicle for entirely new missions to deep space. Vital to NASA's exploration strategy and the Nation's space agenda. Safe, affordable, and sustainable. Engaging the U.S. aerospace workforce and infrastructure. Competitive opportunities for innovations that affordably upgrade performance. Successfully meeting milestones in preparation for Preliminary Design Review in 2013. On course for first flight in 2017.
ERIC Educational Resources Information Center
What Works Clearinghouse, 2012
2012-01-01
"Great Explorations in Math and Science[R] (GEMS[R]) Space Science" is an instructional sequence for grades 3-5 that covers fundamental concepts, including planetary sizes and distance, the Earth's shape and movement, gravity, and moon phases and eclipses. Part of the "GEMS"[R] core curriculum, "GEMS[R] Space Science"…
2006-09-26
KENNEDY SPACE CENTER, FLA. - Workers mingle around the west door entry to the crew exploration vehicle (CEV) environment in the Operations and Checkout Building. A ribbon-cutting officially reactivated the entry. During the rest of the decade, KSC will transition from launching space shuttles to launching new vehicles in NASA’s Vision For Space Exploration. Photo credit: NASA/Kim Shiflett
2006-09-26
KENNEDY SPACE CENTER, FLA. - Following ribbon-cutting ceremony, workers and officials wait outside the west door to the Operations and Checkout Building for its reactivation as the entry into the crew exploration vehicle environment. During the rest of the decade, KSC will transition from launching space shuttles to launching new vehicles in NASA’s Vision For Space Exploration. Photo credit: NASA/Kim Shiflett
The challenges and benefits of lunar exploration
NASA Technical Reports Server (NTRS)
Cohen, Aaron
1992-01-01
Three decades into the Space Age, the United States is experiencing a fundamental shift in space policy with the adoption of a broad national goal to expand human presence and activity beyond Earth orbit and out into the Solar System. These plans mark a turning point in American space exploration, for they entail a shift away from singular forays to a long-term, evolutionary program of exploration and utilization of space. No longer limited to the technical and operational specifics of any one vehicle or any one mission plan, this new approach will involve a fleet of spacecraft and a stable of off-planet research laboratories, industrial facilities, and exploration programs. The challenges inherent in this program are immense, but so too are the benefits. Central to this new space architecture is the concept of using a lunar base for in-situ resource utilization, and for the development of planetary surface exploration systems, applicable to the Moon, Mars, and other planetary bodies in the Solar System. This paper discusses the technical, economic, and political challenges involved in this new approach, and details the latest thinking on the benefits that could come from bold new endeavors on the final frontier.
Neutron star Interior Composition Explorer (NICER)
2017-12-08
The NICER payload, blanketed and waiting for launch in the Space Station Processing Facility at NASA’s Kennedy Space Center in Cape Canaveral, Florida. The instrument is in its stowed configuration for launch. The Neutron star Interior Composition Explorer (NICER) is a NASA Explorer Mission of Opportunity dedicated to studying the extraordinary environments — strong gravity, ultra-dense matter, and the most powerful magnetic fields in the universe — embodied by neutron stars. An attached payload aboard the International Space Station, NICER will deploy an instrument with unique capabilities for timing and spectroscopy of fast X-ray brightness fluctuations. The embedded Station Explorer for X-ray Timing and Navigation Technology demonstration (SEXTANT) will use NICER data to validate, for the first time in space, technology that exploits pulsars as natural navigation beacons. Credit: NASA/Goddard/ Keith Gendreau NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Robotic lunar exploration: Architectures, issues and options
NASA Astrophysics Data System (ADS)
Mankins, John C.; Valerani, Ernesto; Della Torre, Alberto
2007-06-01
The US ‘vision for space exploration’ articulated at the beginning of 2004 encompasses a broad range of human and robotic space missions, including missions to the Moon, Mars and destinations beyond. It establishes clear goals and objectives, yet sets equally clear budgetary ‘boundaries’ by stating firm priorities, including ‘tough choices’ regarding current major NASA programs. The new vision establishes as policy the goals of pursuing commercial and international collaboration in realizing future space exploration missions. Also, the policy envisions that advances in human and robotic mission technologies will play a key role—both as enabling and as a major public benefit that will result from implementing that vision. In pursuing future international space exploration goals, the exploration of the Moon during the coming decades represents a particularly appealing objective. The Moon provides a unique venue for exploration and discovery—including the science of the Moon (e.g., geological studies), science from the Moon (e.g., astronomical observatories), and science on the Moon (including both basic research, such as biological laboratory science, and applied research and development, such as the use of the Moon as a test bed for later exploration). The Moon may also offer long-term opportunties for utilization—including Earth observing applications and commercial developments. During the coming decade, robotic lunar exploration missions will play a particularly important role, both in their own right and as precursors to later, more ambitious human and robotic exploration and development efforts. The following paper discusses some of the issues and opportunities that may arise in establishing plans for future robotic lunar exploration. Particular emphasis is placed on four specific elements of future robotic infrastructure: Earth Moon in-space transportation systems; lunar orbiters; lunar descent and landing systems; and systems for long-range transport on the Moon.
Activities of the Space Studies Board of the National Research Council
NASA Technical Reports Server (NTRS)
1993-01-01
This 1993 annual report of the Space Studies Board of the National Research Council chronicles the activities of the board during a year filled with questioning and change in the country's civil space program. The brief accounts contained herein of the activities of the board and of its committees, together with summaries of two major reports and the complete texts of three letter reports, sketch out major space research issues that faced the nation's space scientists and engineers during the year, including scientific prerequisites for the human exploration of space, improving NASA's technology for space science, the space station and prerequisites for the human exploration program, several issues in the space life sciences, and the Advanced X-ray Astrophysics Facility.
Robots Explore the Farthest Reaches of Earth and Space
NASA Technical Reports Server (NTRS)
2008-01-01
"We were the first that ever burst/Into that silent sea," the title character recounts in Samuel Taylor Coleridge s opus Rime of the Ancient Mariner. This famous couplet is equally applicable to undersea exploration today as surface voyages then, and has recently been applied to space travel in the title of a chronicle of the early years of human space flight ("Into That Silent Sea: Trailblazers of the Space Era, 1961-1965"), companion to the +n the Shadow of the Moon book and movie. The parallel is certainly fitting, considering both fields explore unknown, harsh, and tantalizingly inhospitable environments. For starters, exploring the Briny Deep and the Final Frontier requires special vehicles, and the most economical and safest means for each employ remotely operated vehicles (ROVs). ROVs have proven the tool of choice for exploring remote locations, allowing scientists to explore the deepest part of the sea and the furthest reaches of the solar system with the least weight penalty, the most flexibility and specialization of design, and without the need to provide for sustaining human life, or the risk of jeopardizing that life. Most NASA probes, including the historic Voyager I and II spacecraft and especially the Mars rovers, Spirit and Opportunity, feature remote operation, but new missions and new planetary environments will demand new capabilities from the robotic explorers of the future. NASA has an acute interest in the development of specialized ROVs, as new lessons learned on Earth can be applied to new environments and increasingly complex missions in the future of space exploration.
The Role of Cis-Lunar Space in Future Global Space Exploration
NASA Technical Reports Server (NTRS)
Bobskill, Marianne R.; Lupisella, Mark L.
2012-01-01
Cis-lunar space offers affordable near-term opportunities to help pave the way for future global human exploration of deep space, acting as a bridge between present missions and future deep space missions. While missions in cis-lunar space have value unto themselves, they can also play an important role in enabling and reducing risk for future human missions to the Moon, Near-Earth Asteroids (NEAs), Mars, and other deep space destinations. The Cis-Lunar Destination Team of NASA's Human Spaceflight Architecture Team (HAT) has been analyzing cis-lunar destination activities and developing notional missions (or "destination Design Reference Missions" [DRMs]) for cis-lunar locations to inform roadmap and architecture development, transportation and destination elements definition, operations, and strategic knowledge gaps. The cis-lunar domain is defined as that area of deep space under the gravitational influence of the earth-moon system. This includes a set of earth-centered orbital locations in low earth orbit (LEO), geosynchronous earth orbit (GEO), highly elliptical and high earth orbits (HEO), earth-moon libration or "Lagrange" points (E-ML1 through E-ML5, and in particular, E-ML1 and E-ML2), and low lunar orbit (LLO). To help explore this large possibility space, we developed a set of high level cis-lunar mission concepts in the form of a large mission tree, defined primarily by mission duration, pre-deployment, type of mission, and location. The mission tree has provided an overall analytical context and has helped in developing more detailed design reference missions that are then intended to inform capabilities, operations, and architectures. With the mission tree as context, we will describe two destination DRMs to LEO and GEO, based on present human space exploration architectural considerations, as well as our recent work on defining mission activities that could be conducted with an EML1 or EML2 facility, the latter of which will be an emphasis of this paper, motivated in part by recent interest expressed at the Global Exploration Roadmap Stakeholder meeting. This paper will also explore the links between this HAT Cis-Lunar Destination Team analysis and the recently released ISECG Global Exploration Roadmap and other potential international considerations, such as preventing harmful interference to radio astronomy observations in the shielded zone of the moon.
NASA Astrophysics Data System (ADS)
Speyerer, E. J.; Ferrari, K. A.; Lowes, L. L.; Raad, P. E.; Cuevas, T.; Purdy, J. A.
2006-03-01
With advances in computers, graphics, and especially video games, manned space exploration can become real, by creating a safe, fun learning environment that allows players to explore the solar system from the comfort of their personal computers.
Space Exploration as a Human Enterprise: The Scientific Interest
ERIC Educational Resources Information Center
Sagan, Carl
1973-01-01
Presents examples which illustrate the importance of space exploration in diverse aspects of scientific knowledge. Indicates that human beings are today not wise enough to anticipate the practical benefits of planetary studies. (CC)
NASA Astrophysics Data System (ADS)
Ehrenfreund, Pascale; Foing, Bernard
2014-05-01
In response to the growing importance of space exploration, the objectives of the COSPAR Panel on Exploration (PEX) are to provide high quality, independent science input to support the development of a global space exploration program while working to safeguard the scientific assets of solar system bodies. PEX engages with COSPAR Commissions and Panels, science foundations, IAA, IAF, UN bodies, and IISL to support in particular national and international space exploration working groups and the new era of planetary exploration. COSPAR's input, as gathered by PEX, is intended to express the consensus view of the international scientific community and should ultimately provide a series of guidelines to support future space exploration activities and cooperative efforts, leading to outstanding scientific discoveries, opportunities for innovation, strategic partnerships, technology progression, and inspiration for people of all ages and cultures worldwide. We shall focus on the lunar exploration aspects, where the COSPAR PEX is building on previous COSPAR, ILEWG and community conferences. An updated COSPAR PEX report is published and available online (Ehrenfreund P. et al, COSPAR planetary exploration panel report, http://www.gwu.edu/~spi/assets/COSPAR_PEX2012.pdf). We celebrate 20 years after the 1st International Conference on Exploration and Utilisation of the Moon at Beatenberg in June 1994. The International Lunar Exploration Working Group (ILEWG) was established the year after in April 1995 at an EGS meeting in Hamburg, Germany. As established in its charter, this working group reports to COSPAR and is charged with developing an international strategy for the exploration of the Moon (http://sci.esa.int/ilewg/ ). It discusses coordination between missions, and a road map for future international lunar exploration and utilisation. It fosters information exchange or potential and real future lunar robotic and human missions, as well as for new scientific and exploration information about the Moon. We present the GLUC/ICEUM11 declaration (with emphasis on Science and exploration; Technologies and resources, Infrastructures and human aspects; Moon, Space, Society and Young Explorers) (http://sci.esa.int/iceum11). We give a report on ongoing relevant ILEWG community activities. We discuss how lunar missions SMART-1, Kaguya, Chang'E1&2, Chandrayaan-1, LCROSS, LRO, GRAIL, LADEE, Chang'E3 and upcoming missions contribute to lunar exploration objectives & roadmap.
Overview of Energy Storage Technologies for Space Applications
NASA Technical Reports Server (NTRS)
Surampudi, Subbarao
2006-01-01
This presentations gives an overview of the energy storage technologies that are being used in space applications. Energy storage systems have been used in 99% of the robotic and human space missions launched since 1960. Energy storage is used in space missions to provide primary electrical power to launch vehicles, crew exploration vehicles, planetary probes, and astronaut equipment; store electrical energy in solar powered orbital and surface missions and provide electrical energy during eclipse periods; and, to meet peak power demands in nuclear powered rovers, landers, and planetary orbiters. The power source service life (discharge hours) dictates the choice of energy storage technology (capacitors, primary batteries, rechargeable batteries, fuel cells, regenerative fuel cells, flywheels). NASA is planning a number of robotic and human space exploration missions for the exploration of space. These missions will require energy storage devices with mass and volume efficiency, long life capability, an the ability to operate safely in extreme environments. Advanced energy storage technologies continue to be developed to meet future space mission needs.
Nuclear Thermal Rocket - Arc Jet Integrated System Model
NASA Technical Reports Server (NTRS)
Taylor, Brian D.; Emrich, William
2016-01-01
In the post-shuttle era, space exploration is moving into a new regime. Commercial space flight is in development and is planned to take on much of the low earth orbit space flight missions. With the development of a heavy lift launch vehicle, the Space Launch, System, NASA has become focused on deep space exploration. Exploration into deep space has traditionally been done with robotic probes. More ambitious missions such as manned missions to asteroids and Mars will require significant technology development. Propulsion system performance is tied to the achievability of these missions and the requirements of other developing technologies that will be required. Nuclear thermal propulsion offers a significant improvement over chemical propulsion while still achieving high levels of thrust. Opportunities exist; however, to build upon what would be considered a standard nuclear thermal engine to attain improved performance, thus further enabling deep space missions. This paper discuss the modeling of a nuclear thermal system integrated with an arc jet to further augment performance. The performance predictions and systems impacts are discussed.
NASA's In Space Manufacturing Initiatives: Conquering the Challenges of In-Space Manufacturing
NASA Technical Reports Server (NTRS)
Clinton, R. G., Jr.
2017-01-01
Current maintenance logistics strategy will not be effective for deep space exploration missions. ISM (In Space Manufacturing) offers the potential to: Significantly reduce maintenance logistics mass requirements; Enable the use of recycled materials and in-situ resources for more dramatic reductions in mass requirements; Enable flexibility, giving systems a broad capability to adapt to unanticipated circumstances; Mitigate risks that are not covered by current approaches to maintainability. Multiple projects are underway currently to develop and validate these capabilities for infusion into ISM exploration systems. ISS is a critical testbed for demonstrating ISM technologies, proving out these capabilities, and performing operational validation of deep space ISM applications. Developing and testing FabLab is a major milestone for springboard to DSG/Cis-lunar Space applications. ISM is a necessary paradigm shift in space operations – design for repair culture must be embraced. ISM team needs to be working with exploration system designers now to identify high-value application areas and influence design.
National Aeronautics and Space Administration Exploration Systems Interim Strategy
NASA Technical Reports Server (NTRS)
2004-01-01
Contents include the following: 1. The Exploration Systems Mission Directorate within NASA. Enabling the Vision for Space Exploration. The Role of the Directorate. 2. Strategic Context and Approach. Corporate Focus. Focused, Prioritized Requirements. Spiral Transformation. Management Rigor. 3. Achieving Directorate Objectives. Strategy to Task Process. Capability Development. Research and Technology Development. 4. Beyond the Horizon. Appendices.
Low Gravity Materials Science Research for Space Exploration
NASA Technical Reports Server (NTRS)
Clinton, R. G., Jr.; Semmes, Edmund B.; Schlagheck, Ronald A.; Bassler, Julie A.; Cook, Mary Beth; Wargo, Michael J.; Sanders, Gerald B.; Marzwell, Neville I.
2004-01-01
On January 14, 2004, the President of the United States announced a new vision for the United States civil space program. The Administrator of the National Aeronautics and Space Administration (NASA) has the responsibility to implement this new vision. The President also created a Presidential Commission 'to obtain recommendations concerning implementation of the new vision for space exploration.' The President's Commission recognized that achieving the exploration objectives would require significant technical innovation, research, and development in focal areas defined as 'enabling technologies.' Among the 17 enabling technologies identified for initial focus were advanced structures; advanced power and propulsion; closed-loop life support and habitability; extravehicular activity system; autonomous systems and robotics; scientific data collection and analysis; biomedical risk mitigation; and planetary in situ resource utilization. The Commission also recommended realignment of NASA Headquarters organizations to support the vision for space exploration. NASA has aggressively responded in its planning to support the vision for space exploration and with the current considerations of the findings and recommendations from the Presidential Commission. This presentation will examine the transformation and realignment activities to support the vision for space exploration that are underway in the microgravity materials science program. The heritage of the microgravity materials science program, in the context of residence within the organizational structure of the Office of Biological and Physical Research, and thematic and sub-discipline based research content areas, will be briefly examined as the starting point for the ongoing transformation. Overviews of future research directions will be presented and the status of organizational restructuring at NASA Headquarters, with respect to influences on the microgravity materials science program, will be discussed. Additional information is included in the original extended abstract.
Toward an electrical power utility for space exploration
NASA Technical Reports Server (NTRS)
Bercaw, Robert W.
1989-01-01
Plans for space exploration depend on today's technology programs addressing the novel requirements of space-based enterprise. The requirements for electrical power will be formidable: megawatts in magnitude, reliability for multi-year missions and the flexibility to adapt to needs unanticipated at design time. The reasons for considering the power management and distribution in the various systems from a total mission perspective, rather than simply extrapolating current spacecraft design practice, are discussed. A utility approach to electric power being developed at the Lewis Research Center is described. It integrates requirements from a broad selection of current development programs with studies in which both space and terrestrial technologies are conceptually applied to exploration mission scenarios.
NASA Technical Reports Server (NTRS)
Von Puttkamer, J.
1985-01-01
Space exploration goals for NASA in the year 2000 time frame are examined. A lunar base would offer the opportunity for continuous earth viewing, further cosmogeochemical exploration and rudimentary steps at self-sufficiency in space. The latter two factors are also compelling reasons to plan a manned Mars base. Furthermore, competition and cooperation in a Mars mission and further interplanetary exploration is an attractive substitute for war. The hardware requirements for various configurations of Mars missions are briefly addressed, along with other, unmanned missions to the asteroid belt, Mercury, Venus, Jupiter and the moons of Jupiter and Saturn. Finally, long-range technological requirements for providing adequate living/working facilities for larger human populations in Space Station environments are summarized.
Food Production for Space Exploration
NASA Technical Reports Server (NTRS)
Massa, Gioia
2017-01-01
The desire for exploration is deeply ingrained in the human psyche. However, as we push the frontiers of discovery, the challenges we face become equally daunting. The overall goal of this section is to address one of the most critical concerns, How do we reliably feed those humans we send into space? Currently, all supplies consumed by space missions must be sent via exorbitantly expensive rockets that necessarily prevent us from venturing too far from Earth. Astro-agriculture aims to address this problem in several ways. This talk will describe future food production systems for space and focus on the Veggie system on ISS as a way to answer the many questions that remain to enable exploration to Mars and beyond.
Orion Flight Test Preview Briefing
2014-11-06
In the Kennedy Space Center’s Press Site auditorium, members of the news media are briefed on the upcoming Orion flight test by Bill Hill, NASA deputy associate administrator for Exploration Systems Development. Mark Geyer, NASA Orion Program manager, is on the right. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
Nanomaterials for Space Exploration Applications
NASA Technical Reports Server (NTRS)
Moloney, Padraig G.
2006-01-01
Nano-engineered materials are multi-functional materials with superior mechanical, thermal and electrical properties. Nanomaterials may be used for a variety of space exploration applications, including ultracapacitors, active/passive thermal management materials, and nanofiltration for water recovery. Additional applications include electrical power/energy storage systems, hybrid systems power generation, advanced proton exchange membrane fuel cells, and air revitalization. The need for nanomaterials and their growth, characterization, processing and space exploration applications is discussed. Data is presented for developing solid-supported amine adsorbents based on carbon nanotube materials and functionalization of nanomaterials is examined.
Bounding the Spacecraft Atmosphere Design Space for Future Exploration Missions
NASA Technical Reports Server (NTRS)
Lange, Kevin E.; Perka, Alan T.; Duffield, Bruce E.; Jeng, Frank F.
2005-01-01
The selection of spacecraft and space suit atmospheres for future human space exploration missions will play an important, if not critical, role in the ultimate safety, productivity, and cost of such missions. Internal atmosphere pressure and composition (particularly oxygen concentration) influence many aspects of spacecraft and space suit design, operation, and technology development. Optimal atmosphere solutions must be determined by iterative process involving research, design, development, testing, and systems analysis. A necessary first step in this process is the establishment of working bounds on the atmosphere design space.
2018-03-20
NASA Kennedy Space Center Director Bob Cabana speaks to National Space Club-Florida Chapter (NSCFC) members and guests at the Radisson Resort at the Port in Cape Canaveral, Florida. Cabana's presentation was titled, "KSC - Space Exploration Begins Here." He included an update on the multi-user spaceport and several programs, including Exploration Ground Systems, Launch Services Program and Commercial Crew Program. The NSCFC is a non-profit organization composed of representatives from the space industry, government, educational institutions, and private individuals who share a commitment to increasing public awareness of America's aerospace programs.
The Hematopoietic Stem Cell Therapy for Exploration of Deep Space
NASA Technical Reports Server (NTRS)
Ohi, Seigo; Roach, Allana-Nicole; Fitzgerald, Wendy; Riley, Danny A.; Gonda, Steven R.
2003-01-01
It is hypothesized that the hematopoietic stem cell therapy (HSCT) might countermeasure various space-caused disorders so as to maintain astronauts' homeostasis. If this were achievable, the HSCT could promote human exploration of deep space. Using animal models of disorders (hindlimb suspension unloading system and beta-thalassemia), the HSCT was tested for muscle loss, immunodeficiency and space anemia. The results indicate feasibility of HSCT for these disorders. To facilitate the HSCT in space, growth of HSCs were optimized in the NASA Rotating Wall Vessel (RWV) culture systems, including Hydrodynamic Focusing Bioreactor (HFB).
JAXA PAO VIP Event 3318_624493_hires
2018-03-05
SPACE STATION CREW DISCUSSES LIFE IN SPACE WITH JAPANESE OFFICIALS --------------------------------------------------------- Aboard the International Space Station, Expedition 55 Commander Anton Shkaplerov of Roscosmos and Flight Engineers Scott Tingle of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed life and research on the orbital laboratory during an in-flight question and answer session March 3 with Japanese space officials and policy ministers attending the International Space Explorers Forum (ISEF-2) in Tokyo. The trio is in the midst of a five-and-a-half-month mission on the station.
2008-03-08
KENNEDY SPACE CENTER, FLA. -- The crew of space shuttle Endeavour's STS-123 mission arrive at NASA Kennedy Space Center's Shuttle Landing Facility for launch at 2:28 a.m. EDT on March 11. Exiting the plane are Pilot Gregory H. Johnson, followed by Mission Specialists Rick Linnehan and Takao Doi of the Japan Aerospace Exploration Agency. On this mission to the International Space Station, Endeavour and its crew will deliver the first section of the Japan Aerospace Exploration Agency's Kibo laboratory and the Canadian Space Agency's two-armed robotic system, Dextre. Photo credit: NASA/Kim Shiflett
NASA Laboratory Analysis for Manned Exploration Missions
NASA Technical Reports Server (NTRS)
Krihak, Michael (Editor); Shaw, Tianna
2014-01-01
The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability Element under the NASA Human Research Program. ELA instrumentation is identified as an essential capability for future exploration missions to diagnose and treat evidence-based medical conditions. However, mission architecture limits the medical equipment, consumables, and procedures that will be available to treat medical conditions during human exploration missions. Allocated resources such as mass, power, volume, and crew time must be used efficiently to optimize the delivery of in-flight medical care. Although commercial instruments can provide the blood and urine based measurements required for exploration missions, these commercial-off-the-shelf devices are prohibitive for deployment in the space environment. The objective of the ELA project is to close the technology gap of current minimally invasive laboratory capabilities and analytical measurements in a manner that the mission architecture constraints impose on exploration missions. Besides micro gravity and radiation tolerances, other principal issues that generally fail to meet NASA requirements include excessive mass, volume, power and consumables, and nominal reagent shelf-life. Though manned exploration missions will not occur for nearly a decade, NASA has already taken strides towards meeting the development of ELA medical diagnostics by developing mission requirements and concepts of operations that are coupled with strategic investments and partnerships towards meeting these challenges. This paper focuses on the remote environment, its challenges, biomedical diagnostics requirements and candidate technologies that may lead to successful blood/urine chemistry and biomolecular measurements in future space exploration missions. SUMMARY The NASA Exploration Laboratory Analysis project seeks to develop capability to diagnose anticipated space exploration medical conditions on future manned missions. To achieve this goal, NASA will leverage existing point-of-care technology to provide clinical laboratory measurements in space. This approach will place the project on a path to minimize sample, reagent consumption, mass, volume and power. For successful use in the space environment, NASA specific conditions such as micro gravity and radiation, for example, will also need to be addressed.
2006-07-14
A model of the new Aries I crew launch vehicle, for which NASA is designing, testing and evaluating hardware and related systems, is seen here on display at the Marshall Space Fight Center (MSFC), in Huntsville, Alabama. The Ares I crew launch vehicle is the rocket that will carry a new generation of space explorers into orbit. Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA’s Constellation Program. These transportation systems will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is led by the Exploration Launch Projects Office at NASA’s MFSC. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module and a launch abort system. The launch vehicle’s first stage is a single, five-segment reusable solid rocket booster derived from the Space Shuttle Program’s reusable solid rocket motor that burns a specially formulated and shaped solid propellant called polybutadiene acrylonitrile (PBAN). The second or upper stage will be propelled by a J-2X main engine fueled with liquid oxygen and liquid hydrogen. In addition to its primary mission of carrying crews of four to six astronauts to Earth orbit, the launch vehicle’s 25-ton payload capacity might be used for delivering cargo to space, bringing resources and supplies to the International Space Station or dropping payloads off in orbit for retrieval and transport to exploration teams on the moon. Crew transportation to the space station is planned to begin no later than 2014. The first lunar excursion is scheduled for the 2020 timeframe.
A Situation Awareness Assistant for Human Deep Space Exploration
NASA Technical Reports Server (NTRS)
Boy, Guy A.; Platt, Donald
2013-01-01
This paper presents the development and testing of a Virtual Camera (VC) system to improve astronaut and mission operations situation awareness while exploring other planetary bodies. In this embodiment, the VC is implemented using a tablet-based computer system to navigate through inter active database application. It is claimed that the advanced interaction media capability of the VC can improve situation awareness as the distribution of hu man space exploration roles change in deep space exploration. The VC is being developed and tested for usability and capability to improve situation awareness. Work completed thus far as well as what is needed to complete the project will be described. Planned testing will also be described.
NASA Technical Reports Server (NTRS)
Chung, Victoria I.; Crues, Edwin Z.; Blum, Mike G.; Alofs, Cathy; Busto, Juan
2007-01-01
This paper describes the architecture and implementation of a distributed launch and ascent simulation of NASA's Orion spacecraft and Ares I launch vehicle. This simulation is one segment of the Distributed Space Exploration Simulation (DSES) Project. The DSES project is a research and development collaboration between NASA centers which investigates technologies and processes for distributed simulation of complex space systems in support of NASA's Exploration Initiative. DSES is developing an integrated end-to-end simulation capability to support NASA development and deployment of new exploration spacecraft and missions. This paper describes the first in a collection of simulation capabilities that DSES will support.
2018-04-20
NASA's Space Launch System, the world's most powerful rocket, will enable a new era of exploration. With NASA's Orion spacecraft, SLS will launch astronauts on missions to the Moon, Mars and beyond. Exploration Mission-1, the first integrated flight of SLS and an uncrewed Orion, will be the first in a series of increasingly complex missions that will provide the foundation for human deep-space exploration and demonstrate NASA's commitment and capability to extend human existence beyond low-Earth orbit. Launching from NASA's Kennedy Space Center in Florida, the nation's premier multi-user spaceport, SLS will be the only rocket capable of sending crew and large cargo to the Moon in a single launch. (NASA/MSFC)
NASA Technology Area 07: Human Exploration Destination Systems Roadmap
NASA Technical Reports Server (NTRS)
Kennedy, Kriss J.; Alexander, Leslie; Landis, Rob; Linne, Diane; Mclemore, Carole; Santiago-Maldonado, Edgardo; Brown, David L.
2011-01-01
This paper gives an overview of the National Aeronautics and Space Administration (NASA) Office of Chief Technologist (OCT) led Space Technology Roadmap definition efforts. This paper will given an executive summary of the technology area 07 (TA07) Human Exploration Destination Systems (HEDS). These are draft roadmaps being reviewed and updated by the National Research Council. Deep-space human exploration missions will require many game changing technologies to enable safe missions, become more independent, and enable intelligent autonomous operations and take advantage of the local resources to become self-sufficient thereby meeting the goal of sustained human presence in space. Taking advantage of in-situ resources enhances and enables revolutionary robotic and human missions beyond the traditional mission architectures and launch vehicle capabilities. Mobility systems will include in-space flying, surface roving, and Extra-vehicular Activity/Extravehicular Robotics (EVA/EVR) mobility. These push missions will take advantage of sustainability and supportability technologies that will allow mission independence to conduct human mission operations either on or near the Earth, in deep space, in the vicinity of Mars, or on the Martian surface while opening up commercialization opportunities in low Earth orbit (LEO) for research, industrial development, academia, and entertainment space industries. The Human Exploration Destination Systems (HEDS) Technology Area (TA) 7 Team has been chartered by the Office of the Chief Technologist (OCT) to strategically roadmap technology investments that will enable sustained human exploration and support NASA s missions and goals for at least the next 25 years. HEDS technologies will enable a sustained human presence for exploring destinations such as remote sites on Earth and beyond including, but not limited to, LaGrange points, low Earth orbit (LEO), high Earth orbit (HEO), geosynchronous orbit (GEO), the Moon, near-Earth objects (NEOs), which > 95% are asteroidal bodies, Phobos, Deimos, Mars, and beyond. The HEDS technology roadmap will strategically guide NASA and other U.S. Government agency technology investments that will result in capabilities enabling human exploration missions to diverse destinations generating high returns on investments.
Beyond the Blue Marble: Artistic research on space and ecology
NASA Astrophysics Data System (ADS)
Mayer, Ralo
2016-11-01
This paper discusses the relation of space and ecology through examples of artistic research on the closed ecological system experiment Biosphere 2 and the history of space settlements. While the idea of artificial ecological systems in space dates back to the first visions of space exploration, the best known link between ecology and space is probably the Whole Earth photos of the Apollo program. Following recent reconceptualizations of Ecology beyond the nature-culture divide I argue that this popular icon of ecology and space by now has become a limitation to both space exploration and a new ecological understanding in the Anthropocene. By interpreting Biosphere 2 as a model of our world that is not limited to biological relations but also includes socio-political aspects, culture, economy and technology, my performative research supports the idea of "Ecology without Nature" as proposed by Timothy Morton and others. Furthermore, through an artistic exploration of the local history and legacy of 1970s' space settlement enthusiasm in the San Francisco Bay Area and its ties to the later digital frontier and Green Capitalism, the paper discusses the 1990s as a pivotal transformational period for space and ecology. While so-called "globalizations" have often been illustrated by the Whole Earth image, associated developments have essentially revealed vast dimensions of space and time that have unsettled our very concept of world and are characteristic issues of the Anthropocene. At the same time, this "end of the world" could be employed to relate the Anthropocene to space exploration and rethink ecology as a theoretical framework transcending planet Earth.
In-Space Propulsion for Science and Exploration
NASA Technical Reports Server (NTRS)
Bishop-Behel, Karen; Johnson, Les
2004-01-01
This paper presents viewgraphs on the development of In-Space Propulsion Technologies for Science and Exploration. The topics include: 1) In-Space Propulsion Technology Program Overview; 2) In-Space Propulsion Technology Project Status; 3) Solar Electric Propulsion; 4) Next Generation Electric Propulsion; 5) Aerocapture Technology Alternatives; 6) Aerocapture; 7) Advanced Thermal Protection Systems Developed and Being Tested; 8) Solar Sails; 9) Advanced Chemical Propulsion; 10) Momentum Exchange Tethers; and 11) Momentum-exchange/electrodynamic reboost (MXER) Tether Basic Operation.
2016-11-08
Launch vehicles used by NASA in its history of exploring space are displayed in the "Rocket Garden" adjacent to the new Heroes and Legends attraction at the Kennedy Space Center Visitor Complex. The new facility includes the U.S. Astronaut Hall of Fame and looks back to the pioneering efforts of Mercury, Gemini and Apollo. It sets the stage by providing the background and context for space exploration and the legendary men and women who pioneered the nation's journey into space.
2006-09-26
KENNEDY SPACE CENTER, FLA. - A ribbon-cutting at NASA's Kennedy Space Center officially reactivated the Operations and Checkout Building's west door as entry to the crew exploration vehicle (CEV) environment. At the podium is Center Director Jim Kennedy, who is discussing KSC's transition from shuttle to CEV in the rest of the decade. During the rest of the decade, KSC will transition from launching space shuttles to launching new vehicles in NASA’s Vision For Space Exploration. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Cohen, Jacob
2013-01-01
This presentation will discuss recent space exploration results (LCROSS, KEPLER, etc.), increase access to space and the small and cube satellites platform as it relates to the future of space exploration. It will highlight the concept of modularization and the use of biology, and specifically synthetic biology in the future. The presentation will be a general public presentation. When speaking to a younger audience, I will discuss my background. All slides contain only public information. No technical ITAR/Export controlled material will be discussed.
2016-11-07
The Heroes and Legends attraction at the Kennedy Space Center Visitor Complex honors what it takes to be a hero. In the center of this display are models of rockets that played key roles in the history of NASA's efforts to explore space. The new facility looks back to the pioneering efforts of Mercury, Gemini and Apollo. It sets the stage by providing the background and context for space exploration and the legendary men and women who pioneered the nation's journey into space.
Exploring the Feasibility of Electrostatic Shielding for Spacecrafts
NASA Technical Reports Server (NTRS)
Tripathi, R. K.; Wilson, J. W.; Youngquist, R. C.
2005-01-01
NASA is moving forward towards the agency's new vision for space exploration in the 21st Century encompassing a broad range of human and robotic missions including missions to Moon, Mars and beyond. Exposure from the hazards of severe space radiation in deep space long duration missions is the show stopper. Langley has developed state-of-the-art radiation protection and shielding technology for space missions. The payload penalty demands a very stringent requirement on the design of the spacecrafts for human deep space missions. The exploration beyond low Earth orbit (LEO) to enable routine access to more interesting regions of space will require protection from the hazards of the accumulated exposures of space radiation, Galactic Cosmic Rays (GCR) and Solar Particle Events (SPE), and minimizing the production of secondary radiation is a great advantage. There is a need to look to new horizons for newer technologies. The present investigation explores the feasibility of using electrostatic shielding in concert with innovative materials shielding and protection technologies. The asymmetries of the radiation shielding problem would be exploited in the electrostatics shielding process. The goal is to repel enough positive charge ions so that they miss the spacecraft without attracting thermal electrons. Conclusions are drawn about the advantages the electrostatic shielding, should it be successful, would bring to the radiation protection design process.
2007-09-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. In this HD video image, the first stage reentry 1/2% model is undergoing pressure measurements inside the wind tunnel testing facility at MSFC. (Highest resolution available)
NASA Technical Reports Server (NTRS)
Gore, Brian F.
2016-01-01
Human space exploration has never been more exciting than it is today. Human presence to outer worlds is becoming a reality as humans are leveraging much of our prior knowledge to the new mission of going to Mars. Exploring the solar system at greater distances from Earth than ever before will possess some unique challenges, which can be overcome thanks to the advances in modeling and simulation technologies. The National Aeronautics and Space Administration (NASA) is at the forefront of exploring our solar system. NASA's Human Research Program (HRP) focuses on discovering the best methods and technologies that support safe and productive human space travel in the extreme and harsh space environment. HRP uses various methods and approaches to answer questions about the impact of long duration missions on the human in space including: gravity's impact on the human body, isolation and confinement on the human, hostile environments impact on the human, space radiation, and how the distance is likely to impact the human. Predictive models are included in the HRP research portfolio as these models provide valuable insights into human-system operations. This paper will provide an overview of NASA's HRP and will present a number of projects that have used modeling and simulation to provide insights into human-system issues (e.g. automation, habitat design, schedules) in anticipation of space exploration.
Building Operations Efficiencies into NASA's Ares I Crew Launch Vehicle Design
NASA Technical Reports Server (NTRS)
Dumbacher, Daniel
2006-01-01
The U.S. Vision for Space Exploration guides the National Aeronautics and Space Administration s (NASA's) challenging missions that expand humanity s boundaries and open new routes to the space frontier. With the Agency's commitment to complete the International Space Station (ISS) and to retire the venerable Space Shuttle by 2010, the NASA Administrator commissioned the Exploration Systems Architecture Study (ESAS) in mid 2005 to analyze options for safe, simple, cost-efficient launch solutions that could deliver human-rated space transportation capabilities in a timely manner within fixed budget guidelines. The Exploration Launch Projects Office, chartered in October 2005, has been conducting systems engineering studies and business planning over the past few months to successively refine the design configurations and better align vehicle concepts with customer and stakeholder requirements, such as significantly reduced life-cycle costs. As the Agency begins the process of replacing the Shuttle with a new generation of spacecraft destined for missions beyond low-Earth orbit to the Moon and Mars, NASA is designing the follow-on crew and cargo launch systems for maximum operational efficiencies. To sustain the long-term exploration of space, it is imperative to reduce the $4.5 billion NASA typically spends on space transportation each year. This paper gives top-level information about how the follow-on Ares I Crew Launch Vehicle (CLV) is being designed for improved safety and reliability, coupled with reduced operations costs.
NASA's Chemical Transfer Propulsion Program for Pathfinder
NASA Technical Reports Server (NTRS)
Hannum, Ned P.; Berkopec, Frank D.; Zurawski, Robert L.
1989-01-01
Pathfinder is a research and technology project, with specific deliverables, initiated by the National Aeronautics and Space Administration (NASA) which will strengthen the technology base of the United States civil space program in preparation for future space exploration missions. Pathfinder begins in Fiscal Year 1989, and is to advance a collection of critical technologies for these missions and ensure technology readiness for future national decisions regarding exploration of the solar system. The four major thrusts of Pathfinder are: surface exploration, in-space operations, humans-in-space, and space transfer. The space transfer thrust will provide the critical technologies needed for transportation to, and return from, the Moon, Mars, and other planets in the solar system, as well as for reliable and cost-effective Earth-orbit operations. A key element of this thrust is the Chemical Transfer Propulsion program which will provide the propulsion technology for high performance, liquid oxygen/liquid hydrogen expander cycle engines which may be operated and maintained in space. Described here are the program overview including the goals and objectives, management, technical plan, and technology transfer for the Chemical Transfer Propulsion element of Pathfinder.
Surgical Capabilities for Exploration and Colonization Space Flight - An Exploratory Symposium
NASA Technical Reports Server (NTRS)
Pantalos, George; Strangman, Gary; Doarn, Charles R.; Broderick, Timothy; Antonsen, Erik
2015-01-01
Identify realistic and achievable pathways for surgical capabilities during exploration and colonization space operations and develop a list of recommendations to the NASA Human Research Program to address challenges to developing surgical capabilities.
Technologies for Human Exploration
NASA Technical Reports Server (NTRS)
Drake, Bret G.
2014-01-01
Access to Space, Chemical Propulsion, Advanced Propulsion, In-Situ Resource Utilization, Entry, Descent, Landing and Ascent, Humans and Robots Working Together, Autonomous Operations, In-Flight Maintenance, Exploration Mobility, Power Generation, Life Support, Space Suits, Microgravity Countermeasures, Autonomous Medicine, Environmental Control.
Exploring Space Weathering on Mercury Using Global UV-VIS Reflectance Spectroscopy
NASA Astrophysics Data System (ADS)
Izenberg, N. R.; Denevi, B. W.
2018-05-01
We apply UV analysis methods used on lunar LROC data to Mercury to explore space weathering maturity and possibly evidence of shocked minerals. What says the UV // about shock, maturity // on dear Mercury?
GrouseFlocks: steerable exploration of graph hierarchy space.
Archambault, Daniel; Munzner, Tamara; Auber, David
2008-01-01
Several previous systems allow users to interactively explore a large input graph through cuts of a superimposed hierarchy. This hierarchy is often created using clustering algorithms or topological features present in the graph. However, many graphs have domain-specific attributes associated with the nodes and edges, which could be used to create many possible hierarchies providing unique views of the input graph. GrouseFlocks is a system for the exploration of this graph hierarchy space. By allowing users to see several different possible hierarchies on the same graph, the system helps users investigate graph hierarchy space instead of a single fixed hierarchy. GrouseFlocks provides a simple set of operations so that users can create and modify their graph hierarchies based on selections. These selections can be made manually or based on patterns in the attribute data provided with the graph. It provides feedback to the user within seconds, allowing interactive exploration of this space.