Sample records for space exploration based

  1. Exploration of a Capability-Focused Aerospace System of Systems Architecture Alternative with Bilayer Design Space, Based on RST-SOM Algorithmic Methods

    PubMed Central

    Li, Zhifei; Qin, Dongliang

    2014-01-01

    In defense related programs, the use of capability-based analysis, design, and acquisition has been significant. In order to confront one of the most challenging features of a huge design space in capability based analysis (CBA), a literature review of design space exploration was first examined. Then, in the process of an aerospace system of systems design space exploration, a bilayer mapping method was put forward, based on the existing experimental and operating data. Finally, the feasibility of the foregoing approach was demonstrated with an illustrative example. With the data mining RST (rough sets theory) and SOM (self-organized mapping) techniques, the alternative to the aerospace system of systems architecture was mapping from P-space (performance space) to C-space (configuration space), and then from C-space to D-space (design space), respectively. Ultimately, the performance space was mapped to the design space, which completed the exploration and preliminary reduction of the entire design space. This method provides a computational analysis and implementation scheme for large-scale simulation. PMID:24790572

  2. Exploration of a capability-focused aerospace system of systems architecture alternative with bilayer design space, based on RST-SOM algorithmic methods.

    PubMed

    Li, Zhifei; Qin, Dongliang; Yang, Feng

    2014-01-01

    In defense related programs, the use of capability-based analysis, design, and acquisition has been significant. In order to confront one of the most challenging features of a huge design space in capability based analysis (CBA), a literature review of design space exploration was first examined. Then, in the process of an aerospace system of systems design space exploration, a bilayer mapping method was put forward, based on the existing experimental and operating data. Finally, the feasibility of the foregoing approach was demonstrated with an illustrative example. With the data mining RST (rough sets theory) and SOM (self-organized mapping) techniques, the alternative to the aerospace system of systems architecture was mapping from P-space (performance space) to C-space (configuration space), and then from C-space to D-space (design space), respectively. Ultimately, the performance space was mapped to the design space, which completed the exploration and preliminary reduction of the entire design space. This method provides a computational analysis and implementation scheme for large-scale simulation.

  3. Lunar base as a precursor to Mars exploration and settlement

    NASA Technical Reports Server (NTRS)

    Mendell, Wendell W.

    1991-01-01

    A well planned program of human exploration of the moon is suggested which would provide a base for increasing human capabilities and experience to levels required for Mars exploration. A strategy intended for immediate Mars exploration and settlement is considered to incur serious programmatic risks from current lack of knowledge on human performance on long-duration deep space missions and lack of experience in designing human space systems. The lunar program provides an opportunity to build up space capability in an evolutionary way and to broaden the participation of the educational system in the space exploration.

  4. Model-Based Trade Space Exploration for Near-Earth Space Missions

    NASA Technical Reports Server (NTRS)

    Cohen, Ronald H.; Boncyk, Wayne; Brutocao, James; Beveridge, Iain

    2005-01-01

    We developed a capability for model-based trade space exploration to be used in the conceptual design of Earth-orbiting space missions. We have created a set of reusable software components to model various subsystems and aspects of space missions. Several example mission models were created to test the tools and process. This technique and toolset has demonstrated itself to be valuable for space mission architectural design.

  5. An ESA roadmap for geobiology in space exploration

    NASA Astrophysics Data System (ADS)

    Cousins, Claire R.; Cockell, Charles S.

    2016-01-01

    Geobiology, and in particular mineral-microbe interactions, has a significant role to play in current and future space exploration. This includes the search for biosignatures in extraterrestrial environments, and the human exploration of space. Microorganisms can be exploited to advance such exploration, such as through biomining, maintenance of life-support systems, and testing of life-detection instrumentation. In view of these potential applications, a European Space Agency (ESA) Topical Team "Geobiology in Space Exploration" was developed to explore these applications, and identify research avenues to be investigated to support this endeavour. Through community workshops, a roadmap was produced, with which to define future research directions via a set of 15 recommendations spanning three key areas: Science, Technology, and Community. These roadmap recommendations identify the need for research into: (1) new terrestrial space-analogue environments; (2) community level microbial-mineral interactions; (3) response of biofilms to the space environment; (4) enzymatic and biochemical mineral interaction; (5) technical refinement of instrumentation for space-based microbiology experiments, including precursor flight tests; (6) integration of existing ground-based planetary simulation facilities; (7) integration of fieldsite biogeography with laboratory- and field-based research; (8) modification of existing planetary instruments for new geobiological investigations; (9) development of in situ sample preparation techniques; (10) miniaturisation of existing analytical methods, such as DNA sequencing technology; (11) new sensor technology to analyse chemical interaction in small volume samples; (12) development of reusable Lunar and Near Earth Object experimental platforms; (13) utility of Earth-based research to enable the realistic pursuit of extraterrestrial biosignatures; (14) terrestrial benefits and technological spin-off from existing and future space-based geobiology investigations; and (15) new communication avenues between space agencies and terrestrial research organisations to enable this impact to be developed.

  6. Atmosphere Revitalization Technology Development for Crewed Space Exploration

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.; Carrasquillo, Robyn L.; Harris, Danny W.

    2006-01-01

    As space exploration objectives extend human presence beyond low Earth orbit, the solutions to technological challenges presented by supporting human life in the hostile space environment must build upon experience gained during past and present crewed space exploration programs. These programs and the cabin atmosphere revitalization process technologies and systems developed for them represent the National Aeronautics and Space Administration s (NASA) past and present operational knowledge base for maintaining a safe, comfortable environment for the crew. The contributions of these programs to the NASA s technological and operational working knowledge base as well as key strengths and weaknesses to be overcome are discussed. Areas for technological development to address challenges inherent with the Vision for Space Exploration (VSE) are presented and a plan for their development employing unit operations principles is summarized

  7. The NASA research and technology program on space power: A key element of the Space Exploration Initiative

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.; Brandhorst, Henry W., Jr.; Atkins, Kenneth L.

    1991-01-01

    In July 1989, President Bush announced his space exploration initiative of going back to the Moon to stay and then going to Mars. Building upon its ongoing research and technology base, NASA has established an exploration technology program to develop the technologies needed for piloted missions to the Moon and Mars. A key element for the flights and for the planned bases is power. The NASA research and technology program on space power encompasses power sources, energy storage, and power management.

  8. The future of space - Space tomorrow: The Antarctica model

    NASA Technical Reports Server (NTRS)

    Beggs, J.

    1983-01-01

    The exploration and settling of Antarctica with permanent bases are used as illustrative points for establishing a permanent human presence in near-earth space. NASA activities since 1958 have spawned the computer science, solid-state electronics, medical electronics, and communications satellites industries, which are also rapidly expanding in other countries, as are space-faring capabilities. Antarctica is a paradigm for space exploration in that it is hard to reach, hostile to human life, and a great amount of planning is necessary to arrive at the destination and survive. Aircraft made permanent settlements possible on Antarctica, just as the Shuttle does for space. A space station would provide the remote base from which exploration of other planets and settling on the moon could proceed.

  9. Supervised space robots are needed in space exploration

    NASA Technical Reports Server (NTRS)

    Erickson, Jon D.

    1994-01-01

    High level systems engineering models were developed to simulate and analyze the types, numbers, and roles of intelligent systems, including supervised autonomous robots, which will be required to support human space exploration. Conventional and intelligent systems were compared for two missions: (1) a 20-year option 5A space exploration; and (2) the First Lunar Outpost (FLO). These studies indicate that use of supervised intelligent systems on planet surfaces will 'enable' human space exploration. The author points out that space robotics can be considered a form of the emerging technology of field robotics and solutions to many space applications will apply to problems relative to operating in Earth-based hazardous environments.

  10. The political and legal aspects of space applications

    NASA Technical Reports Server (NTRS)

    Hanessian, J., Jr.

    1972-01-01

    The political and legal repercussions of space programs both domestic and foreign are explored. Emphasis are placed on earth resources exploration (exploration based on information rights), jurisdictional problems, problems of sharing space benefits with other countries, criminal launch and use of satellites, intrusion into territorial sovereignty, and problems of establishing data ownership.

  11. Engineering Ultimate Self-Protection in Autonomic Agents for Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Sterritt, Roy; Hinchey, Mike

    2005-01-01

    NASA's Exploration Initiative (EI) will push space exploration missions to the limit. Future missions will be required to be self-managing as well as self-directed, in order to meet the challenges of human and robotic space exploration. We discuss security and self protection in autonomic agent based-systems, and propose the ultimate self-protection mechanism for such systems-self-destruction. Like other metaphors in Autonomic Computing, this is inspired by biological systems, and is the analog of biological apoptosis. Finally, we discus the role it might play in future NASA space exploration missions.

  12. Space Resources Roundtable 2

    NASA Technical Reports Server (NTRS)

    Ignatiev, A.

    2000-01-01

    Contents include following: Developing Technologies for Space Resource Utilization - Concept for a Planetary Engineering Research Institute. Results of a Conceptual Systems Analysis of Systems for 200 m Deep Sampling of the Martian Subsurface. The Role of Near-Earth Asteroids in Long-Term Platinum Supply. Core Drilling for Extra-Terrestrial Mining. Recommendations by the "LSP and Manufacturing" Group to the NSF-NASA Workshop on Autonomous Construction and Manufacturing for Space Electrical Power Systems. Plasma Processing of Lunar and Planetary Materials. Percussive Force Magnitude in Permafrost. Summary of the Issues Regarding the Martian Subsurface Explorer. A Costing Strategy for Manufacturing in Orbit Using Extraterrestrial Resources. Mine Planning for Asteroid Orebodies. Organic-based Dissolution of Silicates: A New Approach to Element Extraction from LunarRegohth. Historic Frontier Processes Active in Future Space-based Mineral Extraction. The Near-Earth Space Surveillance (NIESS) Mission: Discovery, Tracking, and Characterization of Asteroids, Comets, and Artificial Satellites with a microsatellite. Privatized Space Resource Property Ownership. The Fabrication of Silicon Solar Cells on the Moon Using In-Situ Resources. A New Strategy for Exploration Technology Development: The Human Exploration and Development of Space (HEDS) Exploratiori/Commercialization Technology Initiative. Space Resources for Space Tourism. Recovery of Volatiles from the Moon and Associated Issues. Preliminary Analysis of a Small Robot for Martian Regolith Excavation. The Registration of Space-based Property. Continuous Processing with Mars Gases. Drilling and Logging in Space; An Oil-Well Perspective. LORPEX for Power Surges: Drilling, Rock Crushing. An End-To-End Near-Earth Asteroid Resource Exploitation Plan. An Engineering and Cost Model for Human Space Settlement Architectures: Focus on Space Hotels and Moon/Mars Exploration. The Development and Realization of a Silicon-60-based Economy in CisLunar Space. Our Lunar Destiny: Creating a Lunar Economy. Cost-Effective Approaches to Lunar Passenger Transportation. Lunar Mineral Resources: Extraction and Application. Space Resources Development - The Link Between Human Exploration and the Long-term Commercialization of Space. Toward a More Comprehensive Evaluation of Space Information. Development of Metal Casting Molds by Sol-Gel Technology Using Planetary Resources. A New Concept in Planetary Exploration: ISRU with Power Bursts. Bold Space Ventures Require Fervent Public Support. Hot-pressed Iron from Lunar Soil. The Lunar Dust Problem: A Possible Remedy. Considerations on Use of Lunar Regolith in Lunar Constructions. Experimental Study on Water Production by Hydrogen Reduction of Lunar Soil Simulant in a Fixed Bed Reactor.

  13. Verification of Autonomous Systems for Space Applications

    NASA Technical Reports Server (NTRS)

    Brat, G.; Denney, E.; Giannakopoulou, D.; Frank, J.; Jonsson, A.

    2006-01-01

    Autonomous software, especially if it is based on model, can play an important role in future space applications. For example, it can help streamline ground operations, or, assist in autonomous rendezvous and docking operations, or even, help recover from problems (e.g., planners can be used to explore the space of recovery actions for a power subsystem and implement a solution without (or with minimal) human intervention). In general, the exploration capabilities of model-based systems give them great flexibility. Unfortunately, it also makes them unpredictable to our human eyes, both in terms of their execution and their verification. The traditional verification techniques are inadequate for these systems since they are mostly based on testing, which implies a very limited exploration of their behavioral space. In our work, we explore how advanced V&V techniques, such as static analysis, model checking, and compositional verification, can be used to gain trust in model-based systems. We also describe how synthesis can be used in the context of system reconfiguration and in the context of verification.

  14. A Mission Concept Based on the ISECG Human Lunar Surface Architecture

    NASA Technical Reports Server (NTRS)

    Gruener, J. E.; Lawrence, S. J.

    2017-01-01

    The National Aeronautics and Space Administration (NASA) is participating in the International Space Exploration Coordination Group (ISECG), working together with 13 other space agencies to advance a long-range human space exploration strategy. The ISECG has developed a Global Exploration Roadmap (GER) that reflects the coordinated international dialog and continued preparation for exploration beyond low-Earth orbit - beginning with the International Space Station (ISS) and continuing to the Moon, near-Earth asteroids, and Mars [1]. The roadmap demonstrates how initial capabilities can enable a variety of missions in the lunar vicinity, responding to individual and common goals and objectives, while contributing to building partnerships required for sustainable human space exploration that delivers value to the public. The current GER includes three different near-term themes: exploration of a near-Earth asteroid, extended duration crew missions in cis-lunar space, and humans to the lunar surface.

  15. Virtual environment navigation with look-around mode to explore new real spaces by people who are blind.

    PubMed

    Lahav, Orly; Gedalevitz, Hadas; Battersby, Steven; Brown, David; Evett, Lindsay; Merritt, Patrick

    2018-05-01

    This paper examines the ability of people who are blind to construct a mental map and perform orientation tasks in real space by using Nintendo Wii technologies to explore virtual environments. The participant explores new spaces through haptic and auditory feedback triggered by pointing or walking in the virtual environments and later constructs a mental map, which can be used to navigate in real space. The study included 10 participants who were congenitally or adventitiously blind, divided into experimental and control groups. The research was implemented by using virtual environments exploration and orientation tasks in real spaces, using both qualitative and quantitative methods in its methodology. The results show that the mode of exploration afforded to the experimental group is radically new in orientation and mobility training; as a result 60% of the experimental participants constructed mental maps that were based on map model, compared with only 30% of the control group participants. Using technology that enabled them to explore and to collect spatial information in a way that does not exist in real space influenced the ability of the experimental group to construct a mental map based on the map model. Implications for rehabilitation The virtual cane system for the first time enables people who are blind to explore and collect spatial information via the look-around mode in addition to the walk-around mode. People who are blind prefer to use look-around mode to explore new spaces, as opposed to the walking mode. Although the look-around mode requires users to establish a complex collecting and processing procedure for the spatial data, people who are blind using this mode are able to construct a mental map as a map model. For people who are blind (as for the sighted) construction of a mental map based on map model offers more flexibility in choosing a walking path in a real space, accounting for changes that occur in the space.

  16. [NASA] in the 21st Century

    NASA Technical Reports Server (NTRS)

    Horn, Thomas J.

    2006-01-01

    This viewgraph presentation reviews the NASA programs in support of Aeronautical and Space research. This research involves imagining the future of air travel. There are three major Aeronautics technology programs: (1) Fundamental Aeronautics, (2) Aviation Safety and (3) Airspace Systems. The aim of exploring the depths of the universe through earth based and space based assets. Other Space programs include the plans for exploration of the moon and Mars.

  17. Local, Regional, and Global Albedo Variations on Mars From Recent Space-Based Observations: Implications for Future Human Explorers

    NASA Astrophysics Data System (ADS)

    Bell, J. F.; Wellington, D. F.

    2017-06-01

    We describe recent as well as historic albedo variations on Mars as observed by space-based telescopes, orbiters, and surface missions, and speculate that some regions might offer fewer dust-related problems for future human explorers than others.

  18. An Exploration of Hybrid Spaces for Place-Based Geomorphology with Latino Bilingual Children

    ERIC Educational Resources Information Center

    Martínez-Álvarez, Patricia; Bannan, Brenda

    2014-01-01

    Latino bilingual children hold rich understandings, which are underexplored and underutilized in the geoscience classroom. Oftentimes, young Latinos possess unique cultural land experiences shaping their place identities. We consider science as language and culture, and propose place-based geoscience hybrid space explorations that are culturally…

  19. 76 FR 65540 - National Space-Based Positioning, Navigation, and Timing (PNT) Advisory Board; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-21

    .... James J. Miller, Human Exploration and Operations Mission Directorate, National Aeronautics and Space... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-099)] National Space-Based Positioning, Navigation, and Timing (PNT) Advisory Board; Meeting AGENCY: National Aeronautics and Space Administration...

  20. Evolved Expendable Launch Vehicle: DOD Is Assessing Data on Worldwide Launch Market to Inform New Acquisition Strategy

    DTIC Science & Technology

    2016-07-22

    Launch Services (ILS) of a Proton M launch vehicle and one provided by Space Exploration Technologies ( SpaceX ) of a Falcon 9 launch vehicle — and...U.S. based providers are United Launch Alliance (ULA), Space Exploration Technologies Corporation ( SpaceX ), and Orbital ATK. Countries we reviewed

  1. Space - The long range future

    NASA Technical Reports Server (NTRS)

    Von Puttkamer, J.

    1985-01-01

    Space exploration goals for NASA in the year 2000 time frame are examined. A lunar base would offer the opportunity for continuous earth viewing, further cosmogeochemical exploration and rudimentary steps at self-sufficiency in space. The latter two factors are also compelling reasons to plan a manned Mars base. Furthermore, competition and cooperation in a Mars mission and further interplanetary exploration is an attractive substitute for war. The hardware requirements for various configurations of Mars missions are briefly addressed, along with other, unmanned missions to the asteroid belt, Mercury, Venus, Jupiter and the moons of Jupiter and Saturn. Finally, long-range technological requirements for providing adequate living/working facilities for larger human populations in Space Station environments are summarized.

  2. Global partnerships: Expanding the frontiers of space exploration education

    NASA Astrophysics Data System (ADS)

    MacLeish, Marlene Y.; Akinyede, Joseph O.; Goswami, Nandu; Thomson, William A.

    2012-11-01

    Globalization is creating an interdependent space-faring world and new opportunities for international partnerships that strengthen space knowledge development and transfer. These opportunities have been codified in the Global Exploration Strategy, which endorses the "inspirational and educational value of space exploration" [1]. Also, during the 2010 Heads of Space Agencies Summit celebrating the International Academy of Astronautics' (IAA) 50th Anniversary, space-faring nations from across the globe issued a collective call in support of robust international partnerships to expand the frontiers of space exploration and generate knowledge for improving life on Earth [2]. Educators play a unique role in this mission, developing strategic partnerships and sharing best educational practices to (1) further global understanding of the benefits of space exploration for life on Earth and (2) prepare the next generation of scientists required for the 21st Century space workforce. Educational Outreach (EO) programs use evidence-based, measurable outcomes strategies and cutting edge information technologies to transfer space-based science, technology, engineering and mathematics (STEM) knowledge to new audiences; create indigenous materials with cultural resonance for emerging space societies; support teacher professional development; and contribute to workforce development initiatives that inspire and prepare new cohorts of students for space exploration careers. The National Space Biomedical Research Institute (NSBRI), the National Aeronautics and Space Administration (NASA) and Morehouse School of Medicine (MSM) have sustained a 13-year space science education partnership dedicated to these objectives. This paper briefly describes the design and achievements of NSBRI's educational programs, with special emphasis on those initiatives' involvement with IAA and the International Astronautical Congress (IAC). The IAA Commission 2 Draft Report, Space for Africa, is discussed as a model for developing sustainable partnerships and indigenous programs that support Africa's steady emergence as a global space-faring force. The IAC will provide timely: 2011 South Africa will provide timely feedback to refine that report's strategies for space life sciences education and public engagement in Africa and around the globe.

  3. Giving Children Space: A Phenomenological Exploration of Student Experiences in Space Science Inquiry

    ERIC Educational Resources Information Center

    Horne, Christopher R.

    2011-01-01

    This study explores the experiences of 4th grade students in an inquiry-based space science classroom. At the heart of the study lies the essential question: What is the lived experience of children engaged in the process of space science inquiry? Through the methodology of phenomenological inquiry, the author investigates the essence of the lived…

  4. NASA/ASEE Summer Faculty Fellowship Program, 1990, volume 2

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)

    1990-01-01

    The 1990 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston-University Park and Johnson Space Centers (JSC). A compilation of the final reports on the research projects is presented. The following topics are covered: the Space Shuttle; the Space Station; lunar exploration; mars exploration; spacecraft power supplies; mars rover vehicle; mission planning for the Space Exploration Initiative; instrument calibration standards; a lunar oxygen production plant; optical filters for a hybrid vision system; dynamic structural analysis; lunar bases; pharmacodynamics of scopolamine; planetary spacecraft cost modeling; and others.

  5. Urban Space Explorer: A Visual Analytics System for Urban Planning.

    PubMed

    Karduni, Alireza; Cho, Isaac; Wessel, Ginette; Ribarsky, William; Sauda, Eric; Dou, Wenwen

    2017-01-01

    Understanding people's behavior is fundamental to many planning professions (including transportation, community development, economic development, and urban design) that rely on data about frequently traveled routes, places, and social and cultural practices. Based on the results of a practitioner survey, the authors designed Urban Space Explorer, a visual analytics system that utilizes mobile social media to enable interactive exploration of public-space-related activity along spatial, temporal, and semantic dimensions.

  6. Lunar Plant Growth Chamber: Human Exploration Project STS-118 Design Challenge. A Standards-Based High School Unit Guide. Engineering by Design: Advancing Technological Literacy. A Standards-Based Program Series. EP-2007-08-94-MSFC

    ERIC Educational Resources Information Center

    Caron, Daniel W.; Fuller, Jeremy; Watson, Janice; St. Hilaire, Katherine

    2007-01-01

    In May 2005, the International Technology Education Association (ITEA) was funded by the National Aeronautics and Space Administration (NASA) to develop curricular units for Grades K-12 on Space Exploration. The units focus on aspects of the themes that NASA Engineers and Scientists--as well as future generations of explorers--must consider, such…

  7. GrouseFlocks: steerable exploration of graph hierarchy space.

    PubMed

    Archambault, Daniel; Munzner, Tamara; Auber, David

    2008-01-01

    Several previous systems allow users to interactively explore a large input graph through cuts of a superimposed hierarchy. This hierarchy is often created using clustering algorithms or topological features present in the graph. However, many graphs have domain-specific attributes associated with the nodes and edges, which could be used to create many possible hierarchies providing unique views of the input graph. GrouseFlocks is a system for the exploration of this graph hierarchy space. By allowing users to see several different possible hierarchies on the same graph, the system helps users investigate graph hierarchy space instead of a single fixed hierarchy. GrouseFlocks provides a simple set of operations so that users can create and modify their graph hierarchies based on selections. These selections can be made manually or based on patterns in the attribute data provided with the graph. It provides feedback to the user within seconds, allowing interactive exploration of this space.

  8. Learning to Take an Inquiry Stance in Teacher Research: An Exploration of Unstructured Thought-Partner Spaces

    ERIC Educational Resources Information Center

    Lawton-Sticklor, Nastasia; Bodamer, Scott F.

    2016-01-01

    This article explores a research partnership between a university-based researcher and a middle school science teacher. Our partnership began with project-based inquiry and continued with unstructured thought-partner spaces: meetings with no agenda where we wrestled with problems of practice. Framed as incubation periods, these meetings allowed us…

  9. Lunar and Planetary Science XXXV: Engaging K-12 Educators, Students, and the General Public in Space Science Exploration

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Engaging K-12 Educators, Students, and the General Public in Space Science Exploration" included the following reports:Training Informal Educators Provides Leverage for Space Science Education and Public Outreach; Teacher Leaders in Research Based Science Education: K-12 Teacher Retention, Renewal, and Involvement in Professional Science; Telling the Tale of Two Deserts: Teacher Training and Utilization of a New Standards-based, Bilingual E/PO Product; Lindstrom M. M. Tobola K. W. Stocco K. Henry M. Allen J. S. McReynolds J. Porter T. T. Veile J. Space Rocks Tell Their Secrets: Space Science Applications of Physics and Chemistry for High School and College Classes -- Update; Utilizing Mars Data in Education: Delivering Standards-based Content by Exposing Educators and Students to Authentic Scientific Opportunities and Curriculum; K. E. Little Elementary School and the Young Astronaut Robotics Program; Integrated Solar System Exploration Education and Public Outreach: Theme, Products and Activities; and Online Access to the NEAR Image Collection: A Resource for Educators and Scientists.

  10. Man's future in space

    NASA Technical Reports Server (NTRS)

    Freitag, R. F.

    1975-01-01

    Studies evaluating potential operational and commercial uses of space are being conducted, taking into account astronomy, astrophysics, manned bases and laboratories in earth orbit, space colonization, terrestrial communications, space processing and manufacturing, interstellar probes, planetary exploration, and the use of space for terrestrial energy supply. The present status in the exploration of the solar system is examined, giving attention to Jupiter, Venus, Mars, and Mercury. A brief outline of the development of human colonies on Mars is presented.

  11. NASA's Ares I and Ares V Launch Vehicles--Effective Space Operations Through Efficient Ground Operations

    NASA Technical Reports Server (NTRS)

    Singer, Christopher E.; Dumbacher, Daniel L.; Lyles, Gary M.; Onken, Jay F.

    2008-01-01

    The United States (U.S.) is charting a renewed course for lunar exploration, with the fielding of a new human-rated space transportation system to replace the venerable Space Shuttle, which will be retired after it completes its missions of building the International Space Station (ISS) and servicing the Hubble Space Telescope. Powering the future of space-based scientific exploration will be the Ares I Crew Launch Vehicle, which will transport the Orion Crew Exploration Vehicle to orbit where it will rendezvous with the Altair Lunar Lander, which will be delivered by the Ares V Cargo Launch Vehicle (fig. 1). This configuration will empower rekindled investigation of Earth's natural satellite in the not too distant future. This new exploration infrastructure, developed by the National Aeronautics and Space Administration (NASA), will allow astronauts to leave low-Earth orbit (LEO) for extended lunar missions and preparation for the first long-distance journeys to Mars. All space-based operations - to LEO and beyond - are controlled from Earth. NASA's philosophy is to deliver safe, reliable, and cost-effective architecture solutions to sustain this multi-billion-dollar program across several decades. Leveraging SO years of lessons learned, NASA is partnering with private industry and academia, while building on proven hardware experience. This paper outlines a few ways that the Engineering Directorate at NASA's Marshall Space Flight Center is working with the Constellation Program and its project offices to streamline ground operations concepts by designing for operability, which reduces lifecycle costs and promotes sustainable space exploration.

  12. Multi-Dielectric Brownian Dynamics and Design-Space-Exploration Studies of Permeation in Ion Channels.

    PubMed

    Siksik, May; Krishnamurthy, Vikram

    2017-09-01

    This paper proposes a multi-dielectric Brownian dynamics simulation framework for design-space-exploration (DSE) studies of ion-channel permeation. The goal of such DSE studies is to estimate the channel modeling-parameters that minimize the mean-squared error between the simulated and expected "permeation characteristics." To address this computational challenge, we use a methodology based on statistical inference that utilizes the knowledge of channel structure to prune the design space. We demonstrate the proposed framework and DSE methodology using a case study based on the KcsA ion channel, in which the design space is successfully reduced from a 6-D space to a 2-D space. Our results show that the channel dielectric map computed using the framework matches with that computed directly using molecular dynamics with an error of 7%. Finally, the scalability and resolution of the model used are explored, and it is shown that the memory requirements needed for DSE remain constant as the number of parameters (degree of heterogeneity) increases.

  13. The Space Exploration Initiative: a challenge to advanced life support technologies: keynote presentation

    NASA Technical Reports Server (NTRS)

    Mendell, W. W.

    1991-01-01

    President Bush has enunciated an unparalleled, open-ended commitment to human exploration of space called the Space Exploration Initiative (SEI). At the heart of the SEI is permanent human presence beyond Earth orbit, which implies a new emphasis on life science research and life support system technology. Proposed bioregenerative systems for planetary surface bases will require carefully designed waste processing elements whose development will lead to streamlined and efficient and efficient systems for applications on Earth.

  14. The exploration about the means of lunar-landing based on space-launch

    NASA Astrophysics Data System (ADS)

    Yi, Jiang; Zheming, Zhang; Debin, Fu

    The lunar exploration and lunar-landing is the first step of china s deep space exploration On the basement of our country s achievements and the experiences of the foreign countries the paper brings forward the idea that use the existing transportation technology to sent the Launch vehicles and cosmonauts to the near-earth orbit in batches assemble the components together on the Space-launch Platform and then launch them to the Moon to fulfill our dream of manned landing on the moon The paper also discusses the Space-launch Platform and the launching way

  15. A Space-Based Near-Earth Object Survey Telescope in Support of Human Exploration, Solar System Science, and Planetary Defense

    NASA Technical Reports Server (NTRS)

    Abell, Paul A.

    2011-01-01

    Human exploration of near-Earth objects (NEOs) beginning in 2025 is one of the stated objectives of U.S. National Space Policy. Piloted missions to these bodies would further development of deep space mission systems and technologies, obtain better understanding of the origin and evolution of our Solar System, and support research for asteroid deflection and hazard mitigation strategies. As such, mission concepts have received much interest from the exploration, science, and planetary defense communities. One particular system that has been suggested by all three of these communities is a space-based NEO survey telescope. Such an asset is crucial for enabling affordable human missions to NEOs circa 2025 and learning about the primordial population of objects that could present a hazard to the Earth in the future.

  16. The Ultimate Destination: Choice of Interplanetary Exploration Path can define Future of Interstellar Spaceflight

    NASA Astrophysics Data System (ADS)

    Silin, D. V.

    Manned interstellar spaceflight is facing multiple challenges of great magnitude; among them are extremely large distances and the lack of known habitable planets other than Earth. Many of these challenges are applicable to manned space exploration within the Solar System to the same or lesser degree. If these issues are resolved on an interplanetary scale, better position to pursue interstellar exploration can be reached. However, very little progress (if any) was achieved in manned space exploration since the end of Space Race. There is no lack of proposed missions, but all of them require considerable technological and financial efforts to implement while yielding no tangible benefits that would justify their costs. To overcome this obstacle highest priority in future space exploration plans should be assigned to the creation of added value in outer space. This goal can be reached if reductions in space transportation, construction and maintenance of space-based structures costs are achieved. In order to achieve these requirements several key technologies have to be mastered, such as near-Earth object mining, space- based manufacturing, agriculture and structure assembly. To keep cost and difficulty under control next exploration steps can be limited to nearby destinations such as geostationary orbit, low lunar orbit, Moon surface and Sun-Earth L1 vicinity. Completion of such a program will create a solid foundation for further exploration and colonization of the Solar System, solve common challenges of interplanetary and interstellar spaceflight and create useful results for the majority of human population. Another important result is that perception of suitable destinations for interstellar missions will change significantly. If it becomes possible to create habitable and self-sufficient artificial environments in the nearby interplanetary space, Earth-like habitable planets will be no longer required to expand beyond our Solar System. Large fraction of the stars in the observable Universe will become valid targets for interstellar missions.

  17. Policy opportunities

    NASA Technical Reports Server (NTRS)

    Mccray, Richard; Ostriker, Jeremiah P.; Acton, Loren W.; Bahcall, Neta A.; Bless, Robert C.; Brown, Robert A.; Burbidge, Geoffrey; Burke, Bernard F.; Clark, George W.; Cordova, France A.

    1991-01-01

    Recommendations are given regarding National Science Foundation (NSF) astronomy programs and the NASA Space Astrophysics program. The role of ground based astronomy is reviewed. The role of National Optical Astronomy Observatories (NOAO) in ground-based night-time astronomical research is discussed. An enhanced Explored Program, costs and management of small and moderate space programs, the role of astrophysics within NASA's space exploration initiative, suborbital and airborne astronomical research, the problems of the Hubble Space Telescope, and astronomy education are discussed. Also covered are policy issues related to the role of science advisory committees, international cooperation and competition, archiving and distribution of astronomical data, and multi-wavelength observations of variable sources.

  18. Determine Important Nuclear Fragmentation Processes for Space Radiation Protection in Human Space Explorations

    NASA Technical Reports Server (NTRS)

    Lin, Zi-wei

    2004-01-01

    Space radiation from cosmic ray particles is one of the main challenges for long-term human space explorations such as a permanent moon base or a trip to Mars. Material shielding may provide significant radiation protection to astronauts, and models have been developed in order to evaluate the effectiveness of different shielding materials and to predict radiation environment inside the spacecraft. In this study we determine the nuclear fragmentation cross sections which will most effect the radiation risk behind typical radiation shielding materials. These cross sections thus need more theoretical studies and accurate experimental measurements in order for us to more precisely predict the radiation risk in human space explorations.

  19. Determine Important Nuclear Fragmentation Processes for Space Radiation Protection in Human Space Explorations

    NASA Technical Reports Server (NTRS)

    Lin, Zi-Wei

    2004-01-01

    Space radiation from cosmic ray particles is one of the main challenges for long-term human space explorations such as a permanent moon base or a trip to Mars. Material shielding may provide significant radiation protection to astronauts, and models have been developed in order to evaluate the effectiveness of different shielding materials and to predict radiation environment inside the spacecraft. In this study we determine the nuclear fragmentation cross sections which will most affect the radiation risk behind typical radiation shielding materials. These cross sections thus need more theoretical studies and accurate experimental measurements in order for us to more precisely predict the radiation risk in human space exploration.

  20. Determine Important Nuclear Fragmentation Processes for Space Radiation Protection in Human Space Explorations

    NASA Technical Reports Server (NTRS)

    Lin, Zi-Wei

    2004-01-01

    Space radiation from cosmic ray particles is one of the main challenges for long-term human space explorations such as a permanent moon base or a trip to Mars. Material shielding may provide significant radiation protection to astronauts, and models have been developed in order to evaluate the effectiveness of different shielding materials and to predict radiation environment inside the spacecraft. In this study we determine the nuclear fragmentation cross sections which will most affect the radiation risk behind typical radiation shielding materials. These cross sections thus need more theoretical studies and accurate experimental measurements in order for us to more precisely predict the radiation risk in human space explorations.

  1. Vision 21: The NASA strategic plan

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The NASA Strategic Plan, Vision 21, is a living roadmap to the future to guide the men and women of the NASA team as they ensure U.S. leadership in space exploration and aeronautics research. This multiyear plan consists of a set of programs and activities that will retain our leadership in space science and the exploration of the solar system; help rebuild our nation's technology base and strengthen our leadership in aviation and other key industries; encourage commercial applications of space technology; use the unique perspective of space to better understand our home planet; provide the U.S. and its partners with a permanent space based research facility; expand on the legacy of Apollo and initiate precursor activities to establish a lunar base; and allow us a journey into tomorrow, journey to another planet (Mars), and beyond.

  2. Deep Space Habitat Configurations Based On International Space Station Systems

    NASA Technical Reports Server (NTRS)

    Smitherman, David; Russell, Tiffany; Baysinger, Mike; Capizzo, Pete; Fabisinski, Leo; Griffin, Brand; Hornsby, Linda; Maples,Dauphne; Miernik, Janie

    2012-01-01

    A Deep Space Habitat (DSH) is the crew habitation module designed for long duration missions. Although humans have lived in space for many years, there has never been a habitat beyond low-Earth-orbit. As part of the Advanced Exploration Systems (AES) Habitation Project, a study was conducted to develop weightless habitat configurations using systems based on International Space Station (ISS) designs. Two mission sizes are described for a 4-crew 60-day mission, and a 4-crew 500-day mission using standard Node, Lab, and Multi-Purpose Logistics Module (MPLM) sized elements, and ISS derived habitation systems. These durations were selected to explore the lower and upper bound for the exploration missions under consideration including a range of excursions within the Earth-Moon vicinity, near earth asteroids, and Mars orbit. Current methods for sizing the mass and volume for habitats are based on mathematical models that assume the construction of a new single volume habitat. In contrast to that approach, this study explored the use of ISS designs based on existing hardware where available and construction of new hardware based on ISS designs where appropriate. Findings included a very robust design that could be reused if the DSH were assembled and based at the ISS and a transportation system were provided for its return after each mission. Mass estimates were found to be higher than mathematical models due primarily to the use of multiple ISS modules instead of one new large module, but the maturity of the designs using flight qualified systems have potential for improved cost, schedule, and risk benefits.

  3. Deep Space Habitat Configurations Based on International Space Station Systems

    NASA Technical Reports Server (NTRS)

    Smitherman, David; Russell, Tiffany; Baysinger, Mike; Capizzo, Pete; Fabisinski, Leo; Griffin, Brand; Hornsby, Linda; Maples, Dauphne; Miernik, Janie

    2012-01-01

    A Deep Space Habitat (DSH) is the crew habitation module designed for long duration missions. Although humans have lived in space for many years, there has never been a habitat beyond low-Earth-orbit. As part of the Advanced Exploration Systems (AES) Habitation Project, a study was conducted to develop weightless habitat configurations using systems based on International Space Station (ISS) designs. Two mission sizes are described for a 4-crew 60-day mission, and a 4-crew 500-day mission using standard Node, Lab, and Multi-Purpose Logistics Module (MPLM) sized elements, and ISS derived habitation systems. These durations were selected to explore the lower and upper bound for the exploration missions under consideration including a range of excursions within the Earth-Moon vicinity, near earth asteroids, and Mars orbit. Current methods for sizing the mass and volume for habitats are based on mathematical models that assume the construction of a new single volume habitat. In contrast to that approach, this study explored the use of ISS designs based on existing hardware where available and construction of new hardware based on ISS designs where appropriate. Findings included a very robust design that could be reused if the DSH were assembled and based at the ISS and a transportation system were provided for its return after each mission. Mass estimates were found to be higher than mathematical models due primarily to the use of multiple ISS modules instead of one new large module, but the maturity of the designs using flight qualified systems have potential for improved cost, schedule, and risk benefits.

  4. Deep space communication - A one billion mile noisy channel

    NASA Technical Reports Server (NTRS)

    Smith, J. G.

    1982-01-01

    Deep space exploration is concerned with the study of natural phenomena in the solar system with the aid of measurements made at spacecraft on deep space missions. Deep space communication refers to communication between earth and spacecraft in deep space. The Deep Space Network is an earth-based facility employed for deep space communication. It includes a network of large tracking antennas located at various positions around the earth. The goals and achievements of deep space exploration over the past 20 years are discussed along with the broad functional requirements of deep space missions. Attention is given to the differences in space loss between communication satellites and deep space vehicles, effects of the long round-trip light time on spacecraft autonomy, requirements for the use of massive nuclear power plants on spacecraft at large distances from the sun, and the kinds of scientific return provided by a deep space mission. Problems concerning a deep space link of one billion miles are also explored.

  5. Development and Testing of Mechanism Technology for Space Exploration in Extreme Environments

    NASA Technical Reports Server (NTRS)

    Tyler, Tony R.; Levanas, Greg; Mojarradi, Mohammad M.; Abel, Phillip B.

    2011-01-01

    The NASA Jet Propulsion Lab (JPL), Glenn Research Center (GRC), Langley Research Center (LaRC), and Aeroflex, Inc. have partnered to develop and test actuator hardware that will survive the stringent environment of the moon, and which can also be leveraged for other challenging space exploration missions. Prototype actuators have been built and tested in a unique low temperature test bed with motor interface temperatures as low as 14 degrees Kelvin. Several years of work have resulted in specialized electro-mechanical hardware to survive extreme space exploration environments, a test program that verifies and finds limitations of the designs at extreme temperatures, and a growing knowledge base that can be leveraged by future space exploration missions.

  6. Cis-Lunar Base Camp

    NASA Technical Reports Server (NTRS)

    Merrill, Raymond G.; Goodliff, Kandyce E.; Mazanek, Daniel D.; Reeves, John D., Jr.

    2012-01-01

    Historically, when mounting expeditions into uncharted territories, explorers have established strategically positioned base camps to pre-position required equipment and consumables. These base camps are secure, safe positions from which expeditions can depart when conditions are favorable, at which technology and operations can be tested and validated, and facilitate timely access to more robust facilities in the event of an emergency. For human exploration missions into deep space, cis-lunar space is well suited to serve as such a base camp. The outer regions of cis-lunar space, such as the Earth-Moon Lagrange points, lie near the edge of Earth s gravity well, allowing equipment and consumables to be aggregated with easy access to deep space and to the lunar surface, as well as more distant destinations, such as near-Earth Asteroids (NEAs) and Mars and its moons. Several approaches to utilizing a cis-lunar base camp for sustainable human exploration, as well as some possible future applications are identified. The primary objective of the analysis presented in this paper is to identify options, show the macro trends, and provide information that can be used as a basis for more detailed mission development. Compared within are the high-level performance and cost of 15 preliminary cis-lunar exploration campaigns that establish the capability to conduct crewed missions of up to one year in duration, and then aggregate mass in cis-lunar space to facilitate an expedition from Cis-Lunar Base Camp. Launch vehicles, chemical propulsion stages, and electric propulsion stages are discussed and parametric sizing values are used to create architectures of in-space transportation elements that extend the existing in-space supply chain to cis-lunar space. The transportation options to cis-lunar space assessed vary in efficiency by almost 50%; from 0.16 to 0.68 kg of cargo in cis-lunar space for every kilogram of mass in Low Earth Orbit (LEO). For the 15 cases, 5-year campaign costs vary by only 15% from 0.36 to 0.51 on a normalized scale across all campaigns. Thus the development and first flight costs of assessed transportation options are similar. However, the cost of those options per flight beyond the initial operational capability varies by 70% from 0.3 to 1.0 on a normalized scale. The 10-year campaigns assessed begin to show the effect of this large range of cost beyond initial operational capability as they vary approximately 25% with values from 0.75 to 1.0 on the normalized campaign scale. Therefore, it is important to understand both the cost of implementation and first use as well as long term utilization. Finally, minimizing long term recurring costs is critical to the affordability of future human space exploration missions. Finally minimizing long term recurring costs is critical to the affordability of future human space exploration missions.

  7. Towards human exploration of space: the THESEUS review series on neurophysiology research priorities.

    PubMed

    White, Olivier; Clément, Gilles; Fortrat, Jacques-Olivier; Pavy-LeTraon, Anne; Thonnard, Jean-Louis; Blanc, Stéphane; Wuyts, Floris L; Paloski, William H

    2016-01-01

    The THESEUS project (Towards Human Exploration of Space: a European Strategy), initiated within the seventh Framework Programme by the European Commission, aimed at providing a cross-cutting, life-science-based roadmap for Europe's strategy towards human exploration of long space missions, and its relevance to applications on Earth. This topic was investigated by experts in the field, in the framework of the THESEUS project whose aim was to develop an integrated life sciences research roadmap regarding human space exploration. In particular, decades of research have shown that altered gravity impairs neurological responses at large, such as perception, sleep, motor control, and cognitive factors. International experts established a list of key issues that should be addressed in that context and provided several recommendations such as a maximal exploitation of currently available resources on Earth and in space.

  8. Teacher Kim Cantrell from the Edwards Air Force Base Middle School, Edwards, Calif., participating in a live uplink at NASA Dryden as part of NASA's Explorer Schools program, asks the crew of the International Space Station a question

    NASA Image and Video Library

    2003-07-15

    Teacher Kim Cantrell from the Edwards Air Force Base Middle School, Edwards, Calif., participating in a live uplink at NASA Dryden as part of NASA's Explorer Schools program, asks the crew of the International Space Station a question.

  9. NASA Crew Personal Active Dosimeters (CPADs): Leveraging Novel Terrestrial Personal Radiation Monitoring Capabilities for Space Exploration

    NASA Technical Reports Server (NTRS)

    Leitgab, Martin; Semones, Edward; Lee, Kerry

    2016-01-01

    The NASA Space Radiation Analysis Group (SRAG) is developing novel Crew Personal Active Dosimeters (CAPDs) for upcoming crewed space exploration missions and beyond. To reduce the resource footprint of the project a COTS dosimeter base is used for the development of CPADs. This base was identified from evaluations of existing COTS personal dosimeters against the concept of operations of future crewed missions and tests against detection requirements for radiation characteristic of the space environment. CPADs exploit operations efficiencies from novel features for space flight personal dosimeters such as real-time dose feedback, and autonomous measuring and data transmission capabilities. Preliminary CPAD design, results of radiation testing and aspects of operational integration will be presented.

  10. The case for Mars III: Strategies for exploration - General interest and overview

    NASA Technical Reports Server (NTRS)

    Stoker, Carol R. (Editor)

    1989-01-01

    Papers on the possibilities for manned Mars missions are presented, covering topics such as space policy, space education and Mars exploration, economic issues, international cooperation, life support, biomedical factors, human factors, the Mars Rover Sample Return Mission, and possible unmanned precursor missions to Mars. Other topics include the scientific objectives for human exploration of Mars, mission strategies, possible transportation systems for manned Mars flight, advanced propulsion techniques, and the utilization of Mars resources. Additional subjects include the construction and maintenance of a Martian base, possible systems for mobility on the Martian surface, space power systems, and the use of the Space Station for a Mars mission.

  11. Nanomaterials for Space Exploration Applications

    NASA Technical Reports Server (NTRS)

    Moloney, Padraig G.

    2006-01-01

    Nano-engineered materials are multi-functional materials with superior mechanical, thermal and electrical properties. Nanomaterials may be used for a variety of space exploration applications, including ultracapacitors, active/passive thermal management materials, and nanofiltration for water recovery. Additional applications include electrical power/energy storage systems, hybrid systems power generation, advanced proton exchange membrane fuel cells, and air revitalization. The need for nanomaterials and their growth, characterization, processing and space exploration applications is discussed. Data is presented for developing solid-supported amine adsorbents based on carbon nanotube materials and functionalization of nanomaterials is examined.

  12. In-Space Manufacturing (ISM): Pioneering Space Exploration

    NASA Technical Reports Server (NTRS)

    Werkheiser, Niki

    2015-01-01

    ISM Objective: Develop and enable the manufacturing technologies and processes required to provide on-demand, sustainable operations for Exploration Missions. This includes development of the desired capabilities, as well as the required processes for the certification, characterization & verification that will enable these capabilities to become institutionalized via ground-based and ISS demonstrations.

  13. Space and the American imagination

    NASA Technical Reports Server (NTRS)

    Mccurdy, Howard E.

    1994-01-01

    The introduction will set out the principal theme of the book: that the rise of the U.S. space program was due to a concerted effort by science writers, engineers, industrialists, and civic and political leaders to create a popular culture of space exploration based on important elements of American social life (such as frontier mythology, fears about the cold war, and the rise of the consumer culture). Much of the disillusionment with the NASA space program which set in during the third decade of space flight can be traced to a widening gap between popular expectations and the reality of space exploration.

  14. Space colonization.

    PubMed

    2002-12-01

    NASA interest in colonization encompasses space tourism; space exploration; space bases in orbit, at L1, on the Moon, or on Mars; in-situ resource utilization; and planetary terraforming. Activities progressed during 2002 in areas such as Mars colonies, hoppers, and biomass; space elevators and construction; and in-situ consumables.

  15. Science at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.

    2012-01-01

    The Sciences and Exploration Directorate of the NASA Goddard Space Flight Center (GSFC) is the largest Earth and space science research organization in the world. Its scientists advance understanding of the Earth and its life-sustaining environment, the Sun, the solar system, and the wider universe beyond. Researchers in the Sciences and Exploration Directorate work with engineers, computer programmers, technologists, and other team members to develop the cutting-edge technology needed for space-based research. Instruments are also deployed on aircraft, balloons, and Earth's surface. I will give an overview of the current research activities and programs at GSFC including the James Web Space Telescope (JWST), future Earth Observing programs, experiments that are exploring our solar system and studying the interaction of the Sun with the Earth's magnetosphere.

  16. The Future of Asset Management for Human Space Exploration: Supply Classification and an Integrated Database

    NASA Technical Reports Server (NTRS)

    Shull, Sarah A.; Gralla, Erica L.; deWeck, Olivier L.; Shishko, Robert

    2006-01-01

    One of the major logistical challenges in human space exploration is asset management. This paper presents observations on the practice of asset management in support of human space flight to date and discusses a functional-based supply classification and a framework for an integrated database that could be used to improve asset management and logistics for human missions to the Moon, Mars and beyond.

  17. Sustainable and Autonomic Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G.; Sterritt, Roy; Rouff, Christopher; Rash, James L.; Truszkowski, Walter

    2006-01-01

    Visions for future space exploration have long term science missions in sight, resulting in the need for sustainable missions. Survivability is a critical property of sustainable systems and may be addressed through autonomicity, an emerging paradigm for self-management of future computer-based systems based on inspiration from the human autonomic nervous system. This paper examines some of the ongoing research efforts to realize these survivable systems visions, with specific emphasis on developments in Autonomic Policies.

  18. In-Space Manufacturing: Pioneering a Sustainable Path to Mars

    NASA Technical Reports Server (NTRS)

    Werkheiser, Niki

    2015-01-01

    In order to provide meaningful impacts to exploration technology needs, the In-Space Manufacturing (ISM) Initiative must influence exploration systems design now. In-space manufacturing offers: dramatic paradigm shift in the development and creation of space architectures; efficiency gain and risk reduction for low Earth orbit and deep space exploration; and "pioneering" approach to maintenance, repair, and logistics leading to sustainable, affordable supply chain model. In order to develop application-based capabilities in time to support NASA budget and schedule, ISM must be able to leverage the significant commercial developments, which requires innovative, agile collaborative mechanisms (contracts, challenges, SBIR's, etc.); and NASA-unique investments to focus primarily on adapting the technologies and processes to the microgravity environment. We must do the foundational work - it is the critical path for taking these technologies from lab curiosities to institutionalized capabilities: characterize, certify, institutionalize, design for Additive Manufacturing (AM). Ideally, International Space Station (ISS) U.S. lab rack or partial rack space should be identified for in-space manufacturing utilization in order to continue technology development of a suite of capabilities required for exploration missions, as well as commercialization on ISS.

  19. Logical steps to moon, Mars and beyond

    NASA Astrophysics Data System (ADS)

    Kuriki, Kyoichi

    1993-10-01

    A scenario of the space activities aimed at exploration of moon, Mars, and other planets is proposed. The scenario uses motivations based on the fundamental human instinct, i.e. intellectual curiosity and survival of the humankind. It is shown how these key drivers are threading through the known programs including Space Shuttle and Space Station, Space Energy Exploitation and Space Factory, Lunar Base, and Mars Base. It is concluded that an eventual goal of the mission from planet earth is to set Noah's Arc off into space in the next millenium.

  20. Towards human exploration of space: the THESEUS review series on neurophysiology research priorities

    PubMed Central

    White, Olivier; Clément, Gilles; Fortrat, Jacques-Olivier; Pavy-LeTraon, Anne; Thonnard, Jean-Louis; Blanc, Stéphane; Wuyts, Floris L; Paloski, William H

    2016-01-01

    The THESEUS project (Towards Human Exploration of Space: a European Strategy), initiated within the seventh Framework Programme by the European Commission, aimed at providing a cross-cutting, life-science-based roadmap for Europe’s strategy towards human exploration of long space missions, and its relevance to applications on Earth. This topic was investigated by experts in the field, in the framework of the THESEUS project whose aim was to develop an integrated life sciences research roadmap regarding human space exploration. In particular, decades of research have shown that altered gravity impairs neurological responses at large, such as perception, sleep, motor control, and cognitive factors. International experts established a list of key issues that should be addressed in that context and provided several recommendations such as a maximal exploitation of currently available resources on Earth and in space. PMID:28725734

  1. Exploration Space Suit Architecture and Destination Environmental-Based Technology Development

    NASA Technical Reports Server (NTRS)

    Hill, Terry R.; McFarland, Shane M.; Korona, F. Adam

    2013-01-01

    This paper continues forward where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars left off in the development of a space suit architecture that is modular in design and could be reconfigured prior to launch or during any given mission depending on the tasks or destination. This space suit system architecture and technologies required based on human exploration (EVA) destinations will be discussed, and how these systems should evolve to meet the future exploration EVA needs of the US human space flight program. A series of exercises and analyses provided a strong indication that the Constellation Program space suit architecture, with its maximum reuse of technology and functionality across a range of mission profiles and destinations, is postured to provide a viable solution for future space exploration missions. The destination environmental analysis demonstrates that the modular architecture approach could provide the lowest mass and mission cost for the protection of the crew, given any human mission outside of low-Earth orbit. Additionally, some of the high-level trades presented here provide a review of the environmental and nonenvironmental design drivers that will become increasingly important as humans venture farther from Earth. The presentation of destination environmental data demonstrates a logical clustering of destination design environments that allows a focused approach to technology prioritization, development, and design that will maximize the return on investment, largely independent of any particular design reference mission.

  2. Exploration Space Suit Architecture and Destination Environmental-Based Technology Development

    NASA Technical Reports Server (NTRS)

    Hill, Terry R.; McFarland, Shane M.; Korona, F. Adam

    2013-01-01

    This paper continues forward where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars1 left off in the development of a space suit architecture that is modular in design and could be reconfigured prior to launch or during any given mission depending on the tasks or destination. This paper addresses the space suit system architecture and technologies required based on human exploration (EVA) destinations, and describes how these systems should evolve to meet the future exploration EVA needs of the US human space flight program. A series of exercises and analyses provided a strong indication that the Constellation Program space suit architecture, with its maximum reuse of technology and functionality across a range of mission profiles and destinations, is postured to provide a viable solution for future space exploration missions. The destination environmental analysis demonstrates that the modular architecture approach could provide the lowest mass and mission cost for the protection of the crew, given any human mission outside of low-Earth orbit. Additionally, some of the high-level trades presented here provide a review of the environmental and non-environmental design drivers that will become increasingly important as humans venture farther from Earth. This paper demonstrates a logical clustering of destination design environments that allows a focused approach to technology prioritization, development, and design that will maximize the return on investment, largely independent of any particular design reference mission.

  3. High Resolution Mass Spectrometry for future space instrumentation : current development within the French Space Orbitrap Consortium

    NASA Astrophysics Data System (ADS)

    Briois, Christelle; Lebreton, Jean-Pierre; Szopa, Cyril; Thirkell, Laurent; Aradj, Kenzi; Bouabdellah, Abdel; Boukrara, Amirouche; Carrasco, Nathalie; Chalumeau, Gilles; Chapelon, Olivier; Colin, Fabrice; Cottin, Hervé; Engrand, Cécile; Grand, Noel; Kukui, Alexandre; Pennanech, Cyril; Thissen, Roland; Vuitton, Véronique; Zapf, Pascal; Makarov, Alexander

    2014-05-01

    Mass spectrometry has been used for years in space exploration to characterise the chemical composition of solar system bodies and their environment. Because of the harsh constraints imposed to the space probe instruments, their mass resolution is quite limited compared to laboratory instruments, sometimes leading to significant limitations in the treatment of the data collected with this type of instrumentation. Future in situ solar system exploration missions would significantly benefit from High Resolution Mass Spectrometry (HRMS). For a few years, 5 French laboratories (LPC2E, IPAG, LATMOS, LISA, CSNSM) involved in the chemical investigation of solar system bodies formed a Consortium to develop HRMS for future space exploration, based on the use of the Orbitrap technology (C. Briois et al., 2014, to be submitted). This development is carried out in the frame of a Research and Technology (R&T) development programme partly funded by the French Space Agency (CNES). The work is undertaken in close collaboration with the Thermo Fisher Scientific Company, which commercialises Orbitrap-based laboratory instruments. The R&T activities are currently concentrating on the core elements of the Orbitrap analyser that are required to reach a sufficient maturity level for allowing design studies of future space instruments. We are indeed pursuing, within international collaborations, the definition of several instrument concepts based on the core elements that are subject of our R&T programme. In this talk, we briefly discuss science applications for future orbitrap-based HRMS space instruments. We highlight present results of our R&T programme.

  4. Global Space Weather Observational Network: Challenges and China's Contribution

    NASA Astrophysics Data System (ADS)

    Wang, C.

    2017-12-01

    To understand space weather physical processes and predict space weather accurately, global space-borne and ground-based space weather observational network, making simultaneous observations from the Sun to geo-space (magnetosphere, ionosphere and atmosphere), plays an essential role. In this talk, we will present the advances of the Chinese space weather science missions, including the ASO-S (Advanced Space-borne Solar Observatory), MIT (Magnetosphere - Ionosphere- Thermosphere Coupling Exploration), and the ESA-China joint space weather science mission SMILE (Solar wind - Magnetosphere - Ionosphere Link Explore), a new mission to image the magnetosphere. Compared to satellites, ground-based monitors are cheap, convenient, and provide continuous real-time data. We will also introduce the Chinese Meridian Project (CMP), a ground-based program fully utilizing the geographic location of the Chinese landmass to monitor the geo-space environment. CMP is just one arm of a larger program that Chinese scientists are proposing to the international community. The International Meridian Circle Program (IMCP) for space weather hopes to connect chains of ground-based monitors at the longitudinal meridians 120 deg E and 60 deg W. IMCP takes advantage of the fact that these meridians already have the most monitors of any on Earth, with monitors in Russia, Australia, Brazil, the United States, Canada, and other countries. This data will greatly enhance the ability of scientists to monitor and predict the space weather worldwide.

  5. Exploring the notion of space coupling propulsion

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.

    1990-01-01

    All existing methods of space propulsion are based on expelling a reaction mass (propellant) to induce motion. Alternatively, 'space coupling propulsion' refers to speculations about reacting with space-time itself to generate propulsive forces. Conceivably, the resulting increases in payload, range, and velocity would constitute a breakthrough in space propulsion. Such speculations are still considered science fiction for a number of reasons: (1) it appears to violate conservation of momentum; (2) no reactive media appear to exist in space; (3) no 'Grand Uniform Theories' exist to link gravity, an acceleration field, to other phenomena of nature such as electrodynamics. The rationale behind these objectives is the focus of interest. Various methods to either satisfy or explore these issues are presented along with secondary considerations. It is found that it may be useful to consider alternative conventions of science to further explore speculations of space coupling propulsion.

  6. Toward an electrical power utility for space exploration

    NASA Technical Reports Server (NTRS)

    Bercaw, Robert W.

    1989-01-01

    Plans for space exploration depend on today's technology programs addressing the novel requirements of space-based enterprise. The requirements for electrical power will be formidable: megawatts in magnitude, reliability for multi-year missions and the flexibility to adapt to needs unanticipated at design time. The reasons for considering the power management and distribution in the various systems from a total mission perspective, rather than simply extrapolating current spacecraft design practice, are discussed. A utility approach to electric power being developed at the Lewis Research Center is described. It integrates requirements from a broad selection of current development programs with studies in which both space and terrestrial technologies are conceptually applied to exploration mission scenarios.

  7. A Situation Awareness Assistant for Human Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Boy, Guy A.; Platt, Donald

    2013-01-01

    This paper presents the development and testing of a Virtual Camera (VC) system to improve astronaut and mission operations situation awareness while exploring other planetary bodies. In this embodiment, the VC is implemented using a tablet-based computer system to navigate through inter active database application. It is claimed that the advanced interaction media capability of the VC can improve situation awareness as the distribution of hu man space exploration roles change in deep space exploration. The VC is being developed and tested for usability and capability to improve situation awareness. Work completed thus far as well as what is needed to complete the project will be described. Planned testing will also be described.

  8. Explorations in Education and Public Outreach in Space Sciences - a Wisconsin Experience

    NASA Astrophysics Data System (ADS)

    Limaye, S. S.; Pertzborn, R. A.

    1999-09-01

    To better serve the Education and Public Outreach needs of federally funded space science research programs at the University of Wisconsin, an Office of Space Science Education has recently been established on the University of Wisconsin-Madison campus. This office also acts as the campus focus for the Wisconsin Space Grant Consortium, and has undertaken a broad spectrum of interdisciplinary space science programs in the past several years. These activities range from a public exhibition focusing on current space exploration in conjunction with the DPS '98 meeting in Madison, WI that attracted over 5,000 students and teachers from across the state, to organizing state-of-the-art HDTV presentations on earth remote sensing topics at a Milwaukee science museum. Programs for students have included development and support of a six week solar system exploration program in the Milwaukee Public Schools for at-risk students, a two week college access program for minority middle school students, the NASA/QEM/SHARP Plus program for minority high school students, and a web based journal for middle school science projects (SPARK). Teacher professional development efforts include summer workshops for academic credit, year-round classroom support for pilot school programs, and support for development of standards-based curriculum in both space science and earth remote sensing topics. Public outreach activities have included evening family activities and public lectures at the Space Place, an off-campus outreach center, and an ask-a-scientist web based program. These efforts continue to affirm the need for effective outreach programs for diverse and multigenerational communities. In spite of the growing recognition at both the state and federal level for an improved level of literacy in the space-related sciences, sustainable support, program opportunities and logistical implementation continue to pose significant challenges. We gratefully acknowledge the support we have received from NASA, NOAA, the Division for Planetary Sciences of the AAS (space exploration exhibition), the University of Wisconsin System and the Eisenhower Professional Development Program.

  9. PDB-Explorer: a web-based interactive map of the protein data bank in shape space.

    PubMed

    Jin, Xian; Awale, Mahendra; Zasso, Michaël; Kostro, Daniel; Patiny, Luc; Reymond, Jean-Louis

    2015-10-23

    The RCSB Protein Data Bank (PDB) provides public access to experimentally determined 3D-structures of biological macromolecules (proteins, peptides and nucleic acids). While various tools are available to explore the PDB, options to access the global structural diversity of the entire PDB and to perceive relationships between PDB structures remain very limited. A 136-dimensional atom pair 3D-fingerprint for proteins (3DP) counting categorized atom pairs at increasing through-space distances was designed to represent the molecular shape of PDB-entries. Nearest neighbor searches examples were reported exemplifying the ability of 3DP-similarity to identify closely related biomolecules from small peptides to enzyme and large multiprotein complexes such as virus particles. The principle component analysis was used to obtain the visualization of PDB in 3DP-space. The 3DP property space groups proteins and protein assemblies according to their 3D-shape similarity, yet shows exquisite ability to distinguish between closely related structures. An interactive website called PDB-Explorer is presented featuring a color-coded interactive map of PDB in 3DP-space. Each pixel of the map contains one or more PDB-entries which are directly visualized as ribbon diagrams when the pixel is selected. The PDB-Explorer website allows performing 3DP-nearest neighbor searches of any PDB-entry or of any structure uploaded as protein-type PDB file. All functionalities on the website are implemented in JavaScript in a platform-independent manner and draw data from a server that is updated daily with the latest PDB additions, ensuring complete and up-to-date coverage. The essentially instantaneous 3DP-similarity search with the PDB-Explorer provides results comparable to those of much slower 3D-alignment algorithms, and automatically clusters proteins from the same superfamilies in tight groups. A chemical space classification of PDB based on molecular shape was obtained using a new atom-pair 3D-fingerprint for proteins and implemented in a web-based database exploration tool comprising an interactive color-coded map of the PDB chemical space and a nearest neighbor search tool. The PDB-Explorer website is freely available at www.cheminfo.org/pdbexplorer and represents an unprecedented opportunity to interactively visualize and explore the structural diversity of the PDB. ᅟ

  10. Alternatives for Future U.S. Space-Launch Capabilities

    DTIC Science & Technology

    2006-10-01

    directive issued on January 14, 2004—called the new Vision for Space Exploration (VSE)—set out goals for future exploration of the solar system using...of the solar system using manned spacecraft. Among those goals was a proposal to return humans to the moon no later than 2020. The ultimate goal...U.S. launch capacity exclude the Sea Launch system operated by Boeing in partnership with RSC- Energia (based in Moscow), Kvaerner ASA (based in Oslo

  11. NASA Laboratory Analysis for Manned Exploration Missions

    NASA Technical Reports Server (NTRS)

    Krihak, Michael (Editor); Shaw, Tianna

    2014-01-01

    The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability Element under the NASA Human Research Program. ELA instrumentation is identified as an essential capability for future exploration missions to diagnose and treat evidence-based medical conditions. However, mission architecture limits the medical equipment, consumables, and procedures that will be available to treat medical conditions during human exploration missions. Allocated resources such as mass, power, volume, and crew time must be used efficiently to optimize the delivery of in-flight medical care. Although commercial instruments can provide the blood and urine based measurements required for exploration missions, these commercial-off-the-shelf devices are prohibitive for deployment in the space environment. The objective of the ELA project is to close the technology gap of current minimally invasive laboratory capabilities and analytical measurements in a manner that the mission architecture constraints impose on exploration missions. Besides micro gravity and radiation tolerances, other principal issues that generally fail to meet NASA requirements include excessive mass, volume, power and consumables, and nominal reagent shelf-life. Though manned exploration missions will not occur for nearly a decade, NASA has already taken strides towards meeting the development of ELA medical diagnostics by developing mission requirements and concepts of operations that are coupled with strategic investments and partnerships towards meeting these challenges. This paper focuses on the remote environment, its challenges, biomedical diagnostics requirements and candidate technologies that may lead to successful blood/urine chemistry and biomolecular measurements in future space exploration missions. SUMMARY The NASA Exploration Laboratory Analysis project seeks to develop capability to diagnose anticipated space exploration medical conditions on future manned missions. To achieve this goal, NASA will leverage existing point-of-care technology to provide clinical laboratory measurements in space. This approach will place the project on a path to minimize sample, reagent consumption, mass, volume and power. For successful use in the space environment, NASA specific conditions such as micro gravity and radiation, for example, will also need to be addressed.

  12. Space 2100: A Shared Visioning Exercise for the Future Space Economy

    NASA Astrophysics Data System (ADS)

    Ferguson, C. K.; Nall, M. E.; Scott, D. W.; Tinker, M. L.; Oneil, D.; Sivak, A. D.; Wright, G. M.; Eberly, E. A.; Ramdall, C.

    In 2013, NASA's Marshall Space Flight Center chartered a diverse team for a six-week "sprint" to envision how Earth, space, and public/private entities might be operating in the year 2100. This sprint intended to inspire innovation, creativity and improved teamwork between all levels of employees, in addition to pulling diverse ideas about exploration from organizations that are not traditionally included in technology development at NASA. The team was named Space 2100. In 2014, the team ran a sprint based on the previous outcomes to a) develop detailed estimates of operations and challenges of space activities in the vicinity of the Earth and Moon in the year 2050, b) identify evolutionary steps to make this vision a reality, and c) recommend actions to enable those steps. In 2015, the team continued building on previous years by identifying technologies and approaches to reduce and ultimately eliminate the need for resupply from Earth, enabling self-sufficient exploration throughout the solar system. This exercise identified 30 technologies as potential critical paths to Earth independency. Space 2100's conclusions and recommendations are not part of NASA's strategic planning or policy. This paper explores the three Space 2100 sprints and their implications for the future of space exploration.

  13. Power system requirements and concepts for a commercially viable lunar base architecture

    NASA Astrophysics Data System (ADS)

    Lenard, Roger X.; Binder, Alan B.

    1999-01-01

    Historically, space exploration has been the province of governments and major agencies within those governmental entities. Recent advances in the state-of-the-art in many subsystem technology areas and the revealed inadequacies of governments to singlehandedly underwrite major exploration ventures present the potential to expand the venue of space exploration to the commercial sector. Further, major international projects such as the International Space Station have revealed weaknesses in both international financing and management of such projects. Cost overruns are the rule and significant schedule slips and/or failures to deliver have resulted in an enormously costly and delayed program. The exorbitant costs have stymied exploration ventures beyond Earth orbit. There are many potential advantages to a commercial operation including cost, schedule and a distinct customer orientation to services. The objective of this paper is to describe the first phase of a phased strawman commercial lunar base concept which operates as a user facility for governmental entities, corporations and companies. The paper will discuss the power system options and conditions under which such a base can be made to become profitable.

  14. Remotely Powered Reconfigurable Receiver for Extreme Sensing Platforms

    NASA Technical Reports Server (NTRS)

    Sheldon, Douglas J. (Inventor)

    2017-01-01

    Unmanned space programs are currently used to enable scientists to explore and research the furthest reaches of outer space. Systems and methods for low power communication devices in accordance with embodiments of the invention are disclosed, describing a wide variety of low power communication devices capable of remotely collecting, processing, and transmitting data from outer space in order to further mankind's goal of exploring the cosmos. Many embodiments of the invention include a Flash-based FPGA, an energy-harvesting power supply module, a sensor module, and a radio module. By utilizing technologies that withstand the harsh environment of outer space, more reliable low power communication devices can be deployed, enhancing the quality and longevity of the low power communication devices, enabling more data to be gathered and aiding in the exploration of outer space.

  15. Advanced Water Recovery Technologies for Long Duration Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Liu, Scan X.

    2005-01-01

    Extended-duration space travel and habitation require recovering water from wastewater generated in spacecrafts and extraterrestrial outposts since the largest consumable for human life support is water. Many wastewater treatment technologies used for terrestrial applications are adoptable to extraterrestrial situations but challenges remain as constraints of space flights and habitation impose severe limitations of these technologies. Membrane-based technologies, particularly membrane filtration, have been widely studied by NASA and NASA-funded research groups for possible applications in space wastewater treatment. The advantages of membrane filtration are apparent: it is energy-efficient and compact, needs little consumable other than replacement membranes and cleaning agents, and doesn't involve multiphase flow, which is big plus for operations under microgravity environment. However, membrane lifespan and performance are affected by the phenomena of concentration polarization and membrane fouling. This article attempts to survey current status of membrane technologies related to wastewater treatment and desalination in the context of space exploration and quantify them in terms of readiness level for space exploration. This paper also makes specific recommendations and predictions on how scientist and engineers involving designing, testing, and developing space-certified membrane-based advanced water recovery technologies can improve the likelihood of successful development of an effective regenerative human life support system for long-duration space missions.

  16. Science on the International Space Station: Stepping Stones for Exploration

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.

    2007-01-01

    This viewgraph presentation reviews the state of science research on the International Space Station (ISS). The shuttle and other missions that have delivered science research facilities to the ISS are shown. The different research facilities provided by both NASA and partner organizations available for use and future facilities are reviewed. The science that has been already completed is discussed. The research facilitates the Vision for Space Exploration, in Human Life Sciences, Biological Sciences, Materials Science, Fluids Science, Combustion Science, and all other sciences. The ISS Focus for NASA involves: Astronaut health and countermeasure, development to protect crews from the space environment during long duration voyages, Testing research and technology developments for future exploration missions, Developing and validating operational procedures for long-duration space missions. The ISS Medical Project (ISSMP) address both space systems and human systems. ISSMP has been developed to maximize the utilization of ISS to obtain solutions to the human health and performance problems and the associated mission risks of exploration class missions. Including complete programmatic review with medical operations (space medicine/flight surgeons) to identify: (1) evidence base on risks (2) gap analysis.

  17. Myth-free space advocacy part I-The myth of innate exploratory and migratory urges

    NASA Astrophysics Data System (ADS)

    Schwartz, James S. J.

    2017-08-01

    This paper discusses the ;myth; that we have an innate drive to explore or to migrate into space. Three interpretations of the claim are considered. According to the ;mystical interpretation,; it is part of our ;destiny; as humans to explore and migrate into space. Such a claim has no rational basis and should play no role in rationally- or evidence-based space advocacy. According to the ;cultural interpretation,; exploration and migration are essential features of human culture and society. These are not universal features because there are cultures and societies that have not encouraged exploration and migration. Moreover, the cultures that have explored have seldom conducted exploration for its own sake. According to the ;biological interpretation; there is a psychological or genetic basis for exploration or migration. While there is limited genetic evidence for such a claim, that evidence suggests that genes associated with exploratory behavior were selected for subsequent to migration, making it unlikely that these genes played a role in causing migration. In none of these senses is it clearly true that we have an innate drive to explore or migrate into space; and even if we did it would be fallacious to argue that the existence of such a drive justified spaceflight activities.

  18. Innovative Approaches to Space-Based Manufacturing and Rapid Prototyping of Composite Materials

    NASA Technical Reports Server (NTRS)

    Hill, Charles S.

    2012-01-01

    The ability to deploy large habitable structures, construct, and service exploration vehicles in low earth orbit will be an enabling capability for continued human exploration of the solar system. It is evident that advanced manufacturing methods to fabricate replacement parts and re-utilize launch vehicle structural mass by converting it to different uses will be necessary to minimize costs and allow flexibility to remote crews engaged in space travel. Recent conceptual developments and the combination of inter-related approaches to low-cost manufacturing of composite materials and structures are described in context leading to the possibility of on-orbit and space-based manufacturing.

  19. Biological Life Support Technologies: Commercial Opportunities

    NASA Technical Reports Server (NTRS)

    Nelson, Mark (Editor); Soffen, Gerald (Editor)

    1990-01-01

    The papers from the workshop on Biological Life Support Technologies: Commercial Opportunities are presented. The meeting attracted researchers in environmental and bioregenerative systems. The role of biological support technologies was evaluated in the context of the global environmental challenge on Earth and the space exploration initiative, with its goal of a permanent space station, lunar base, and Mars exploration.

  20. Talk in Blended-Space Speech Communities: An Exploration of Discursive Practices of a Professional Development Group

    ERIC Educational Resources Information Center

    Garvin, Tabitha Ann

    2011-01-01

    This study is an exploration of alternative teacher professional development. While using symbolic interactionism for a research lens, it characterizes the discursive practices commonly found in formal, informal, and blended-space speech communities based on the talk within a leadership-development program comprised of five female, church-based…

  1. Guiding exploration in conformational feature space with Lipschitz underestimation for ab-initio protein structure prediction.

    PubMed

    Hao, Xiaohu; Zhang, Guijun; Zhou, Xiaogen

    2018-04-01

    Computing conformations which are essential to associate structural and functional information with gene sequences, is challenging due to the high dimensionality and rugged energy surface of the protein conformational space. Consequently, the dimension of the protein conformational space should be reduced to a proper level, and an effective exploring algorithm should be proposed. In this paper, a plug-in method for guiding exploration in conformational feature space with Lipschitz underestimation (LUE) for ab-initio protein structure prediction is proposed. The conformational space is converted into ultrafast shape recognition (USR) feature space firstly. Based on the USR feature space, the conformational space can be further converted into Underestimation space according to Lipschitz estimation theory for guiding exploration. As a consequence of the use of underestimation model, the tight lower bound estimate information can be used for exploration guidance, the invalid sampling areas can be eliminated in advance, and the number of energy function evaluations can be reduced. The proposed method provides a novel technique to solve the exploring problem of protein conformational space. LUE is applied to differential evolution (DE) algorithm, and metropolis Monte Carlo(MMC) algorithm which is available in the Rosetta; When LUE is applied to DE and MMC, it will be screened by the underestimation method prior to energy calculation and selection. Further, LUE is compared with DE and MMC by testing on 15 small-to-medium structurally diverse proteins. Test results show that near-native protein structures with higher accuracy can be obtained more rapidly and efficiently with the use of LUE. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. The first steps towards a de minimus, affordable NEA exploration architecture

    NASA Astrophysics Data System (ADS)

    Landis, Rob R.; Abell, Paul A.; Adamo, Daniel R.; Barbee, Brent W.; Johnson, Lindley N.

    2013-03-01

    The impetus for asteroid exploration is scientific, political, and pragmatic. The notion of sending human explorers to asteroids is not new. Piloted missions to these primitive bodies were first discussed in the 1960s, pairing Saturn V rockets with enhanced Apollo spacecraft to explore what were then called "Earth-approaching asteroids." Two decades ago, NASA's Space Exploration Initiative (SEI) also briefly examined the possibility of visiting these small celestial bodies. Most recently, the US Human Space Flight Review Committee (the second Augustine Commission) suggested that near-Earth objects (NEOs) represent a target-rich environment for exploration via the "Flexible Path" option. However, prior to seriously considering human missions to NEOs, it has become clear that we currently lack a robust catalog of human-accessible targets. The majority of the known NEOs identified by a study team across several NASA centers as "human-accessible" are probably too small and have orbits that are too uncertain to consider mounting piloted expeditions to these small worlds. The first step in developing a comprehensive catalog is, therefore, to complete a space-based NEO survey. The resulting catalog of candidate NEOs would then be transformed into a matrix of opportunities for robotic and human missions for the next several decades and shared with the international community. This initial step of a space-based NEO survey is therefore the linchpin to laying the foundation of a low-risk architecture to venture out and explore these primitive bodies. We suggest such a minimalist framework architecture from (1) extensive ground-based and precursor spacecraft investigations (while applying operational knowledge from science-driven robotic missions), (2) astronaut servicing of spacecraft operating at geosynchronous Earth orbit to retain essential skills and experience, and (3) applying the sum of these skills, knowledge and experience to piloted missions to NEOs.

  3. A Low Risk Strategy for the Exploration of Near-Earth Objects

    NASA Technical Reports Server (NTRS)

    Landis, Rob R.

    2011-01-01

    The impetus for asteroid exploration is scientific, political, and pragmatic. The notion of sending human explorers to asteroids is not new. Piloted missions to these primitive bodies were first discussed in the 1960s, pairing Saturn V rockets with enhanced Apollo spacecraft to explore what were then called "Earth-approaching asteroids." Two decades ago, NASA's Space Exploration Initiative (SEI) also briefly examined the possibility of visiting these small celestial bodies. Most recently, the U.S. Human Space Flight Review Committee (the second Augustine Commission) suggested that near-Earth objects (NEOs) represent a target-rich environment for exploration via the "Flexible Path" option. However, prior to seriously considering human missions to NEOs, it has become clear that we currently lack a robust catalog of human accessible targets. The majority of the NEOs identified by a study team across several NASA centers as "human-accessible" are probably too small and have orbits that are too uncertain to consider mounting piloted expeditions to these small worlds. The first step in developing such a catalog is, therefore, to complete a space-based NEO survey. The resulting catalog of candidate NEOs would then be transformed into a matrix of opportunities for robotic and human missions for the next several decades. This initial step of a space-based NEO survey first is the linchpin to laying the foundation of a low-risk architecture to venture out and explore these primitive bodies. We suggest such a minimalist framework architecture from 1) extensive ground-based and precursor spacecraft investigations (while applying operational knowledge from science-driven robotic missions), 2) astronaut servicing of spacecraft operating at geosynchronous Earth orbit to retain essential skills and experience, and 3) applying the sum of these skills, knowledge and experience to piloted missions to NEOs.

  4. Human exploration of space and power development

    NASA Technical Reports Server (NTRS)

    Cohen, Aaron

    1991-01-01

    Reasons for mounting the Space Exploration Initiative, the variables facing U.S. planners, and the developmental technologies that will be needed to support this initiative are discussed. The three more advanced technological approaches in the field of power generation described include a lunar-based solar power system, a geosynchronous-based earth orbit solar power satellite system, and the utilization of helium-3/deuterium fusion reaction to create a nuclear fuel cycle. It is noted that the major elements of the SEI will include a heavy-lift launch vehicle, a transfer vehicle and a descent/ascent vehicle for use on lunar missions and adaptable to Mars exploration.

  5. Teaching, Learning, and Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Brown, Robert A.

    2002-01-01

    This is the final report of a program that examined the fundamentals of education associated with space activities, promoted educational policy development in appropriate forums, and developed pathfinder products and services to demonstrate the utility of advanced communication technologies for space-based education. Our focus was on space astrophysics and planetary exploration, with a special emphasis on the themes of the Origins Program, with which the Principal Investigator (PI) had been involved from the outset. Teaching, Learning, and Planetary Exploration was also the core funding of the Space Telescope Science Institute's (ST ScI) Special Studies Office (SSO), and as such had provided basic support for such important NASA studies as the fix for Hubble Space Telescope (HST) spherical aberration, scientific conception of the HST Advanced Camera, specification of the Next-Generation Space Telescope (NGST), and the strategic plan for the second decade of the HST science program.

  6. Shielding Strategies for Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Wilson J. W. (Editor); Miller, J. (Editor); Konradi, A. (Editor); Cucinotta, F. A. (Editor)

    1997-01-01

    A group of twenty-nine scientists and engineers convened a 'Workshop on Shielding Strategies for Human Space Exploration' at the Lyndon B. Johnson Space Center in Houston, Texas. The provision of shielding for a Mars mission or a Lunar base from the hazards of space radiations is a critical technology since astronaut radiation safety depends on it and shielding safety factors to control risk uncertainty appear to be great. The purpose of the workshop was to define requirements for the development and evaluation of high performance shield materials and designs and to develop ideas regarding approaches to radiation shielding. The workshop was organized to review the recent experience on shielding strategies gained in studies of the 'Space Exploration Initiative (SEI),' to review the current knowledge base for making shield assessment, to examine a basis for new shielding strategies, and to recommend a strategy for developing the required technologies for a return to the moon or for Mars exploration. The uniqueness of the current workshop arises from the expected long duration of the missions without the protective cover of the geomagnetic field in which the usually small and even neglected effects of the galactic cosmic rays (GCR) can no longer be ignored. It is the peculiarity of these radiations for which the inter-action physics and biological action are yet to be fully understood.

  7. Automated Design Space Exploration with Aspen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spafford, Kyle L.; Vetter, Jeffrey S.

    Architects and applications scientists often use performance models to explore a multidimensional design space of architectural characteristics, algorithm designs, and application parameters. With traditional performance modeling tools, these explorations forced users to first develop a performance model and then repeatedly evaluate and analyze the model manually. These manual investigations proved laborious and error prone. More importantly, the complexity of this traditional process often forced users to simplify their investigations. To address this challenge of design space exploration, we extend our Aspen (Abstract Scalable Performance Engineering Notation) language with three new language constructs: user-defined resources, parameter ranges, and a collection ofmore » costs in the abstract machine model. Then, we use these constructs to enable automated design space exploration via a nonlinear optimization solver. We show how four interesting classes of design space exploration scenarios can be derived from Aspen models and formulated as pure nonlinear programs. The analysis tools are demonstrated using examples based on Aspen models for a three-dimensional Fast Fourier Transform, the CoMD molecular dynamics proxy application, and the DARPA Streaming Sensor Challenge Problem. Our results show that this approach can compose and solve arbitrary performance modeling questions quickly and rigorously when compared to the traditional manual approach.« less

  8. Automated Design Space Exploration with Aspen

    DOE PAGES

    Spafford, Kyle L.; Vetter, Jeffrey S.

    2015-01-01

    Architects and applications scientists often use performance models to explore a multidimensional design space of architectural characteristics, algorithm designs, and application parameters. With traditional performance modeling tools, these explorations forced users to first develop a performance model and then repeatedly evaluate and analyze the model manually. These manual investigations proved laborious and error prone. More importantly, the complexity of this traditional process often forced users to simplify their investigations. To address this challenge of design space exploration, we extend our Aspen (Abstract Scalable Performance Engineering Notation) language with three new language constructs: user-defined resources, parameter ranges, and a collection ofmore » costs in the abstract machine model. Then, we use these constructs to enable automated design space exploration via a nonlinear optimization solver. We show how four interesting classes of design space exploration scenarios can be derived from Aspen models and formulated as pure nonlinear programs. The analysis tools are demonstrated using examples based on Aspen models for a three-dimensional Fast Fourier Transform, the CoMD molecular dynamics proxy application, and the DARPA Streaming Sensor Challenge Problem. Our results show that this approach can compose and solve arbitrary performance modeling questions quickly and rigorously when compared to the traditional manual approach.« less

  9. Teaching Heliophysics Science to Undergraduates in an Engineering Context

    NASA Astrophysics Data System (ADS)

    Baker, J. B.; Sweeney, D. G.; Ruohoniemi, J.

    2013-12-01

    In recent years, space research at Virginia Tech has experienced rapid growth since the initiation of the Center for Space Science and Engineering Research (Space@VT) during the summer of 2007. The Space@VT center resides in the College of Engineering and currently comprises approximately 30-40 faculty and students. Space@VT research encompasses a wide spectrum of science and engineering activities including: magnetosphere-ionosphere data analysis; ground- and space-based instrument development; spacecraft design and environmental interactions; and numerical space plasma simulations. In this presentation, we describe how Space@VT research is being integrated into the Virginia Tech undergraduate engineering curriculum via classroom instruction and hands-on group project work. In particular, we describe our experiences teaching a new sophomore course titled 'Exploration of the Space Environment' which covers a broad range of scientific, engineering, and societal aspects associated with the exploration and technological exploitation of space. Topics covered include: science of the space environment; space weather hazards and societal impacts; elementary orbital mechanics and rocket propulsion; spacecraft engineering subsystems; and applications of space-based technologies. We also describe a high-altitude weather balloon project which has been offered as a 'hands-on' option for fulfilling the course project requirements of the course.

  10. Environmental Controls and Life Support System Design for a Space Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    Stambaugh, Imelda C.; Rodriguez, Branelle; Vonau, Walt, Jr.; Borrego, Melissa

    2012-01-01

    Engineers at Johnson Space Center (JSC) are developing an Environmental Control and Life Support System (ECLSS) design for the Space Exploration Vehicle (SEV). The SEV will aid to expand the human exploration envelope for Geostationary Transfer Orbit (GEO), Near Earth Object (NEO), or planetary missions by using pressurized surface exploration vehicles. The SEV, formerly known as the Lunar Electric Rover (LER), will be an evolutionary design starting as a ground test prototype where technologies for various systems will be tested and evolve into a flight vehicle. This paper will discuss the current SEV ECLSS design, any work contributed toward the development of the ECLSS design, and the plan to advance the ECLSS design based on the SEV vehicle and system needs.

  11. Environmental Controls and Life Support System (ECLSS) Design for a Space Exploration Vehicle (SEV)

    NASA Technical Reports Server (NTRS)

    Stambaugh, Imelda; Sankaran, Subra

    2010-01-01

    Engineers at Johnson Space Center (JSC) are developing an Environmental Control and Life Support System (ECLSS) design for the Space Exploration Vehicle (SEV). The SEV will aid to expand the human exploration envelope for Geostationary Transfer Orbit (GEO), Near Earth Object (NEO), or planetary missions by using pressurized surface exploration vehicles. The SEV, formerly known as the Lunar Electric Rover (LER), will be an evolutionary design starting as a ground test prototype where technologies for various systems will be tested and evolve into a flight vehicle. This paper will discuss the current SEV ECLSS design, any work contributed toward the development of the ECLSS design, and the plan to advance the ECLSS design based on the SEV vehicle and system needs.

  12. NASA's Ares I and Ares V Launch Vehicles -- Effective Space Operations Through Efficient Ground Operations

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.; Singer, Christopher E.; Onken, Jay F.

    2008-01-01

    The United States (U.S.) plans to return to the Moon by 2020, with the development of a new human-rated space transportation system to replace the Space Shuttle, which is due for retirement in 2010 after it completes its missions of building the International Space Station and servicing the Hubble Space Telescope. Powering the future of space-based scientific exploration will be the Ares I Crew Launch Vehicle, which will transport the Orion Crew Exploration Vehicle to orbit where it will rendezvous with the Lunar Lander. which will be delivered by the Ares V Cargo Launch Vehicle. This new transportation infrastructure, developed by the National Aeronautics and Space Administration (NASA), will allow astronauts to leave low-Earth orbit for extended lunar exploration and preparation for the first footprint on Mars. All space-based operations begin and are controlled from Earth. NASA's philosophy is to deliver safe, reliable, and cost-effective solutions to sustain a multi-billion-dollar program across several decades. Leveraging 50 years of lessons learned, NASA is partnering with private industry, while building on proven hardware experience. This paper will discuss how the Engineering Directorate at NASA's Marshall Space Flight Center is working with the Ares Projects Office to streamline ground operations concepts and reduce costs. Currently, NASA's budget is around $17 billion, which is less than 1 percent of the U.S. Federal budget. Of this amount, NASA invests approximately $4.5 billion each year in Space Shuttle operations, regardless of whether the spacecraft is flying or not. The affordability requirement is for the Ares I to reduce this expense by 50 percent, in order to allow NASA to invest more in space-based scientific operations. Focusing on this metric, the Engineering Directorate provides several solutions-oriented approaches, including Lean/Six Sigma practices and streamlined hardware testing and integration, such as assembling major hardware elements before shipping to the Kennedy Space Center for launch operations. This paper provides top-level details for several cost saving initiatives, including both process and product improvements that will result in space transportation systems that are designed with operations efficiencies in mind. The Engineering Directorate provides both the intellectual capital embodied in an experienced workforce and unique facilities in which to validate the information technology tools that allow a nationwide team to collaboratively connect across miles that separate them and the engineering disciplines that integrate various piece parts into a whole system. As NASA transforms ground-based operations, it also is transitioning its workforce from an era of intense hands-on labor to a new one of mechanized conveniences and robust hardware with simpler interfaces. Ensuring that space exploration is on sound footing requires that operations efficiencies be designed into the transportation system and implemented in the development stage. Applying experience gained through decades of ground and space op'erations, while using value-added processes and modern business and engineering tools, is the philosophy upon which a new era of exploration will be built to solve some of the most pressing exploration challenges today -- namely, safety, reliability, and affordability.

  13. Johnson Space Center's Solar and Wind-Based Renewable Energy System

    NASA Technical Reports Server (NTRS)

    Vasquez, A.; Ewert, M.; Rowlands, J.; Post, K.

    2009-01-01

    The NASA Johnson Space Center (JSC) in Houston, Texas has a Sustainability Partnership team that seeks ways for earth-based sustainability practices to also benefit space exploration research. A renewable energy gathering system was installed in 2007 at the JSC Child Care Center (CCC) which also offers a potential test bed for space exploration power generation and remote monitoring and control concepts. The system comprises: 1) several different types of photovoltaic panels (29 kW), 2) two wind-turbines (3.6 kW total), and 3) one roof-mounted solar thermal water heater and tank. A tie to the JSC local electrical grid was provided to accommodate excess power. The total first year electrical energy production was 53 megawatt-hours. A web-based real-time metering system collects and reports system performance and weather data. Improvements in areas of the CCC that were detected during subsequent energy analyses and some concepts for future efforts are also presented.

  14. Gas/Water and Heat Management of PEM-Based Fuel Cell and Electrolyzer Systems for Space Applications

    NASA Astrophysics Data System (ADS)

    Guo, Qing; Ye, Fang; Guo, Hang; Ma, Chong Fang

    2017-02-01

    Hydrogen/oxygen fuel cells were successfully utilized in the field of space applications to provide electric energy and potable water in human-rated space mission since the 1960s. Proton exchange membrane (PEM) based fuel cells, which provide high power/energy densities, were reconsidered as a promising space power equipment for future space exploration. PEM-based water electrolyzers were employed to provide life support for crews or as major components of regenerative fuel cells for energy storage. Gas/water and heat are some of the key challenges in PEM-based fuel cells and electrolytic cells, especially when applied to space scenarios. In the past decades, efforts related to gas/water and thermal control have been reported to effectively improve cell performance, stability lifespan, and reduce mass, volume and costs of those space cell systems. This study aimed to present a primary review of research on gas/water and waste thermal management for PEM-based electrochemical cell systems applied to future space explorations. In the fuel cell system, technologies related to reactant supplement, gas humidification, water removal and active/passive water separation were summarized in detail. Experimental studies were discussed to provide a direct understanding of the effect of the gas-liquid two-phase flow on product removal and mass transfer for PEM-based fuel cell operating in a short-term microgravity environment. In the electrolyzer system, several active and static passive phaseseparation methods based on diverse water supplement approaches were discussed. A summary of two advanced passive thermal management approaches, which are available for various sizes of space cell stacks, was specifically provided

  15. Technology developments integrating a space network communications testbed

    NASA Technical Reports Server (NTRS)

    Kwong, Winston; Jennings, Esther; Clare, Loren; Leang, Dee

    2006-01-01

    As future manned and robotic space explorations missions involve more complex systems, it is essential to verify, validate, and optimize such systems through simulation and emulation in a low cost testbed environment. The goal of such a testbed is to perform detailed testing of advanced space and ground communications networks, technologies, and client applications that are essential for future space exploration missions. We describe the development of new technologies enhancing our Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) that enables its integration in a distributed space communications testbed. MACHETE combines orbital modeling, link analysis, and protocol and service modeling to quantify system performance based on comprehensive considerations of different aspects of space missions.

  16. The Space Medicine Exploration Medical Condition List

    NASA Technical Reports Server (NTRS)

    Watkins, Sharmi; Barr, Yael; Kerstman, Eric

    2011-01-01

    Exploration Medical Capability (ExMC) is an element of NASA s Human Research Program (HRP). ExMC's goal is to address the risk of the "Inability to Adequately Recognize or Treat an Ill or Injured Crewmember." This poster highlights the approach ExMC has taken to address this risk. The Space Medicine Exploration Medical Condition List (SMEMCL) was created to define the set of medical conditions that are most likely to occur during exploration space flight missions. The list was derived from the International Space Station Medical Checklist, the Shuttle Medical Checklist, in-flight occurrence data from the Lifetime Surveillance of Astronaut Health, and NASA subject matter experts. The list of conditions was further prioritized for eight specific design reference missions with the assistance of the ExMC Advisory Group. The purpose of the SMEMCL is to serve as an evidence-based foundation for the conditions that could affect a crewmember during flight. This information is used to ensure that the appropriate medical capabilities are available for exploration missions.

  17. Astrobiological benefits of human space exploration.

    PubMed

    Crawford, Ian A

    2010-01-01

    An ambitious program of human space exploration, such as that envisaged in the Global Exploration Strategy and considered in the Augustine Commission report, will help advance the core aims of astrobiology in multiple ways. In particular, a human exploration program will confer significant benefits in the following areas: (i) the exploitation of the lunar geological record to elucidate conditions on early Earth; (ii) the detailed study of near-Earth objects for clues relating to the formation of the Solar System; (iii) the search for evidence of past or present life on Mars; (iv) the provision of a heavy-lift launch capacity that will facilitate exploration of the outer Solar System; and (v) the construction and maintenance of sophisticated space-based astronomical tools for the study of extrasolar planetary systems. In all these areas a human presence in space, and especially on planetary surfaces, will yield a net scientific benefit over what can plausibly be achieved by autonomous robotic systems. A number of policy implications follow from these conclusions, which are also briefly considered.

  18. Pegasus ICON Spacecraft Move Into Cleanroom

    NASA Image and Video Library

    2018-05-01

    NASA's Ionospheric Connection Explorer (ICON) is moved to a clean room on May 4, 2018, inside Building 1555 at Vandenberg Air Force Base in California. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  19. Pegasus ICON Spacecraft Arrival Activites

    NASA Image and Video Library

    2018-05-01

    NASA's Ionospheric Connection Explorer (ICON), inside its shipping container, is moved inside Building 1555 on May 1, 2018, at Vandenberg Air Force Base in California. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  20. Pegasus ICON Spacecraft Arrival Activites

    NASA Image and Video Library

    2018-05-01

    NASA's Ionospheric Connection Explorer (ICON) is uncrated from its shipping container on May 1, 2018, inside Building 1555 at Vandenberg Air Force Base in California. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  1. WENESSA, Wide Eye-Narrow Eye Space Simulation fo Situational Awareness

    NASA Astrophysics Data System (ADS)

    Albarait, O.; Payne, D. M.; LeVan, P. D.; Luu, K. K.; Spillar, E.; Freiwald, W.; Hamada, K.; Houchard, J.

    In an effort to achieve timelier indications of anomalous object behaviors in geosynchronous earth orbit, a Planning Capability Concept (PCC) for a “Wide Eye-Narrow Eye” (WE-NE) telescope network has been established. The PCC addresses the problem of providing continuous and operationally robust, layered and cost-effective, Space Situational Awareness (SSA) that is focused on monitoring deep space for anomalous behaviors. It does this by first detecting the anomalies with wide field of regard systems, and then providing reliable handovers for detailed observational follow-up by another optical asset. WENESSA will explore the added value of such a system to the existing Space Surveillance Network (SSN). The study will assess and quantify the degree to which the PCC completely fulfills, or improves or augments, these deep space knowledge deficiencies relative to current operational systems. In order to improve organic simulation capabilities, we will explore options for the federation of diverse community simulation approaches, while evaluating the efficiencies offered by a network of small and larger aperture, ground-based telescopes. Existing Space Modeling and Simulation (M&S) tools designed for evaluating WENESSA-like problems will be taken into consideration as we proceed in defining and developing the tools needed to perform this study, leading to the creation of a unified Space M&S environment for the rapid assessment of new capabilities. The primary goal of this effort is to perform a utility assessment of the WE-NE concept. The assessment will explore the mission utility of various WE-NE concepts in discovering deep space anomalies in concert with the SSN. The secondary goal is to generate an enduring modeling and simulation environment to explore the utility of future proposed concepts and supporting technologies. Ultimately, our validated simulation framework would support the inclusion of other ground- and space-based SSA assets through integrated analysis. Options will be explored using at least two competing simulation capabilities, but emphasis will be placed on reasoned analyses as supported by the simulations.

  2. Blue Marble Space Institute essay contest

    NASA Astrophysics Data System (ADS)

    Wendel, JoAnna

    2014-04-01

    The Blue Marble Space Institute of Science, based in Seattle, Wash., is inviting college students to participate in its essay contest. Essays need to address the question, "In the next 100 years, how can human civilization prepare for the long-term changes to the Earth system that will occur over the coming millennium?" According to the institute, the purpose of the contest is "to stimulate creative thinking relating to space exploration and global issues by exploring how changes in the Earth system will affect humanity's future."

  3. NASA's In-Space Propulsion Technology Program: A Step Toward Interstellar Exploration

    NASA Technical Reports Server (NTRS)

    Johnson, Les; James, Bonnie; Baggett, Randy; Montgomery, Sandy

    2005-01-01

    NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space. The maximum theoretical efficiencies have almost been reached and are insufficient to meet needs for many ambitious science missions currently being considered. By developing the capability to support mid-term robotic mission needs, the program is laying the technological foundation for travel to nearby interstellar space. The In-Space Propulsion Technology Program s technology portfolio includes many advanced propulsion systems. From the next-generation ion propulsion systems operating in the 5-10 kW range, to solar sail propulsion, substantial advances in spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called "propellantless" because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations, such as solar sails, electrodynamic and momentum transfer tethers, and aerocapture. This paper will provide an overview of those propellantless and propellant-based advanced propulsion technologies that will most significantly advance our exploration of deep space.

  4. Multi-Purpose Avionic Architecture for Vision Based Navigation Systems for EDL and Surface Mobility Scenarios

    NASA Astrophysics Data System (ADS)

    Tramutola, A.; Paltro, D.; Cabalo Perucha, M. P.; Paar, G.; Steiner, J.; Barrio, A. M.

    2015-09-01

    Vision Based Navigation (VBNAV) has been identified as a valid technology to support space exploration because it can improve autonomy and safety of space missions. Several mission scenarios can benefit from the VBNAV: Rendezvous & Docking, Fly-Bys, Interplanetary cruise, Entry Descent and Landing (EDL) and Planetary Surface exploration. For some of them VBNAV can improve the accuracy in state estimation as additional relative navigation sensor or as absolute navigation sensor. For some others, like surface mobility and terrain exploration for path identification and planning, VBNAV is mandatory. This paper presents the general avionic architecture of a Vision Based System as defined in the frame of the ESA R&T study “Multi-purpose Vision-based Navigation System Engineering Model - part 1 (VisNav-EM-1)” with special focus on the surface mobility application.

  5. Mars mission benefits - A layman's perspective

    NASA Astrophysics Data System (ADS)

    Newell, Reginald

    Space exploration-related investments such as those currently anticipated for the exploration of Mars promote advancements in technology and have an economic 'multiplier effect' that has been estimated as $2.10 of additional business per dollar spent. These allocations must go to the development of a new heavy-launch vehicle, a space station, supply craft for LEO operations, and perhaps a lunar base; many of these entail a regenerative closed ecological life-support system. An evaluation is made of recent Mars-exploration considerations discussed by Sagan (1991).

  6. Generalized probabilistic scale space for image restoration.

    PubMed

    Wong, Alexander; Mishra, Akshaya K

    2010-10-01

    A novel generalized sampling-based probabilistic scale space theory is proposed for image restoration. We explore extending the definition of scale space to better account for both noise and observation models, which is important for producing accurately restored images. A new class of scale-space realizations based on sampling and probability theory is introduced to realize this extended definition in the context of image restoration. Experimental results using 2-D images show that generalized sampling-based probabilistic scale-space theory can be used to produce more accurate restored images when compared with state-of-the-art scale-space formulations, particularly under situations characterized by low signal-to-noise ratios and image degradation.

  7. Russia sets sights on lunar base

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-06-01

    Vladimir Popovkin, director of Roscomos, the Russian Federal Space Agency, said the agency is setting its sights on the Moon. “We strongly feel that it is time for us to start working toward being able to establish a permanent base on the Moon,” Popovkin said at a 22 May panel discussion and news briefing held in conjunction with the Global Space Exploration Conference in Washington, D. C. Establishing a goal of lunar exploration does not mean that Roscomos is giving up on other priorities such as exploration of Mars, asteroids, or the moons of Jupiter, Popovkin said. “We have much better chances to come up with very productive and tangible results while concentrating on Moon exploration,” he said, noting the findings of water in polar areas.

  8. Space life and biomedical sciences in support of the global exploration roadmap and societal development

    NASA Astrophysics Data System (ADS)

    Evetts, S. N.

    2014-08-01

    The human exploration of space is pushing the boundaries of what is technically feasible. The space industry is preparing for the New Space era, the momentum for which will emanate from the commercial human spaceflight sector, and will be buttressed by international solar system exploration endeavours. With many distinctive technical challenges to be overcome, human spaceflight requires that numerous biological and physical systems be examined under exceptional circumstances for progress to be made. To effectively tackle such an undertaking significant intra- and international coordination and collaboration is required. Space life and biomedical science research and development (R & D) will support the Global Exploration Roadmap (GER) by enabling humans to 'endure' the extreme activity that is long duration human spaceflight. In so doing the field will discover solutions to some of our most difficult human health issues, and as a consequence benefit society as a whole. This space-specific R&D will drive a significant amount of terrestrial biomedical research and as a result the international community will not only gain benefits in the form of improved healthcare in space and on Earth, but also through the growth of its science base and industry.

  9. A truly international lunar base as the next logical step for human spaceflight

    NASA Astrophysics Data System (ADS)

    Bonneville, R.

    2018-06-01

    A human mission to Mars has been highlighted as the long term goal for space exploration, with intermediate stages such as missions to the Moon and/or to asteroids, but a human mission to Mars will not be feasible before several decades. For the time being the major ambitious accomplishment in the field of human spaceflight is the International Space Station but a human spaceflight programme which would be restricted to Low Earth orbit (LEO) has indeed little interest. Thus the next step in the field of human exploration should be the definition of a new exploration programme beyond LEO, built within a long term perspective. We must acknowledge that science is not the main driver of human space exploration and that the main success of the ISS is to have allowed its partners to work together. The main goal of a new human exploration programme will be to promote international cooperation between the major space-faring countries. The only sensible and feasible objective of a near/mid-term human spaceflight programme should be the edification of a lunar base, under the condition that this base is built as a truly international venture. The ISS in the 1990s had illustrated a calmed relation between the USA, together with Europe, Canada and Japan, and Russia; a lunar base would be the symbol of a similar calmed relation between the same partners and China, and possibly others such as India. For the benefit of all humankind this extra continent, the Moon, should be used only for peaceful purposes like Antarctica today, and should not become the theatre or the stake of conflicts. Such a programme is technically feasible and financially affordable in a rather short term. So let us go to the Moon, but let us get there together.

  10. NOAA Office of Exploration and Research > Exploration > Overview

    Science.gov Websites

    archaeological aspects of the ocean in the three dimensions of space and in time. The Panel's recommendations limited to) marine biodiversity, the Arctic Ocean, the Gulf of Mexico, exploring the ocean through time exploration, giving shore-based explorers of all kinds and ages access to the excitement of real-time

  11. New technology innovations with potential for space applications

    NASA Astrophysics Data System (ADS)

    Krishen, Kumar

    2008-07-01

    Human exploration and development of space is being pursued by spacefaring nations to explore, use, and enable the development of space and expand the human experience there. The goals include: increasing human knowledge of nature's processes using the space environment; exploring and settling the solar system; achieving routine space travel; and enriching life on Earth through living and working in space. A crucial aspect of future space missions is the development of infrastructure to optimize safety, productivity, and costs. A major component of mission execution is operations management. NASA's International Space Station is providing extensive experience in both infrastructure and operations. In view of this, a vigorously organized approach is needed to implement successful space-, planet-, and ground-based research and operations that entails wise and efficient use of technical and human resources. Many revolutionary technologies being pursued by researchers and technologists may be vital in making space missions safe, reliable, cost-effective, and productive. These include: ionic polymer-metal composite technology; solid-state lasers; time-domain sensors and communication systems; high-temperature superconductivity; nanotechnology; variable specific impulse magneto plasma rocket; fuzzy logic; wavelet technology; and neural networks. An overview of some of these will be presented, along with their application to space missions.

  12. Baseline antenna design for space exploration initiative

    NASA Technical Reports Server (NTRS)

    Chen, Y. L.; Nasir, M. A.; Lee, S. W.; Zaman, Afroz

    1993-01-01

    A key element of the future NASA Space Exploration Initiative (SEI) mission is the lunar and Mars telecommunication system. This system will provide voice, image, and data transmission to monitor unmanned missions to conduct experiments, and to provide radiometric data for navigation. In the later half of 1991, a study was conducted on antennas for the Mars Exploration Communication. Six antenna configurations were examined: three reflector and three phased array. The conclusion was that due to wide-angle scan requirement, and multiple simultaneous tracking beams, phased arrays are more suitable. For most part, this report studies phased array antenna designs for two different applications for Space Exploration Initiative. It also studies one design for a tri-reflector type antenna. These antennas will be based on a Mars orbiting satellite.

  13. Biosentinel: Developing a Space Radiation Biosensor

    NASA Technical Reports Server (NTRS)

    Santa Maria, Sergio R.; Marina, Diana B.; Parra, Macarena P.; Boone, Travis D.; Tan, Ming; Ricco, Antonio J.; Straume, Tore N.; Lusby, Terry C.; Harkness, T.; Reiss-Bubenheim, Debra; hide

    2014-01-01

    Ionizing radiation presents a major challenge to human exploration and long-term residence in space. The deep-space radiation spectrum includes highly energetic particles that generate double strand breaks (DSBs), deleterious DNA lesions that are usually repaired without errors via homologous recombination (HR), a conserved pathway in all eukaryotes. While progress identifying and characterizing biological radiation effects using Earth-based facilities has been significant, no terrestrial source duplicates the unique space radiation environment.We are developing a biosensor-based nanosatellite to fly aboard NASAs Space Launch System Exploration Mission 1, expected to launch in 2017 and reach a 1AU (astronomic unit) heliocentric orbit. Our biosensor (called BioSentinel) uses the yeast S. cerevisiae to measure DSBs in response to ambient space radiation. The BioSentinel strain contains engineered genetic defects that prevent growth until and unless a radiation-induced DSB near a reporter gene activates the yeasts HR repair mechanisms. Thus, culture growth and metabolic activity directly indicate a successful DSB-and-repair event. In parallel, HR-defective and wild type strains will provide survival data. Desiccated cells will be carried within independent culture microwells, built into 96-well microfluidic cards. Each microwell set will be activated by media addition at different time points over 18 months, and cell growth will be tracked continuously via optical density. One reserve set will be activated only in the occurrence of a solar particle event. Biological measurements will be compared to data provided by onboard physical dosimeters and to Earth-based experiments.BioSentinel will conduct the first study of biological response to space radiation outside Low Earth Orbit in over 40 years. BioSentinel will thus address strategic knowledge gaps related to the biological effects of space radiation and will provide an adaptable platform to perform human-relevant measurements in multiple space environments. We hope that it can therefore be used on the ISS, on and around other planetary bodies as well as other exploration platforms as a self-contained system that will allow us to compare and calibrate different radiation environments.BioSentinels results will be critical for improving interpretation of the effects of space radiation exposure, and for reducing the risk associated with long-term human exploration.

  14. The Challenge of Space Infrastructure Construction

    NASA Technical Reports Server (NTRS)

    Howe, A. Scott; Colombano, Silvano P.

    2010-01-01

    This paper reviews the range of technologies that will contribute to the construction of space infrastructure that will both enable and, in some cases, provide the motivation for space exploration. Five parts are addressed: Managing complexity, robotics based construction, materials acquisition, manufacturing, and self-sustaining systems.

  15. Processing of Space Resources to Enable the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A.

    2006-01-01

    The NASA human exploration program as directed by the Vision for Exploration (G.W. Bush, Jan. 14,2004) includes developing methods to process materials on the Moon and beyond to enable safe and affordable human exploration. Processing space resources was first popularized (O Neill 1976) as a technically viable, economically feasible means to build city sized habitats and multi GWatt solar power satellites in Earth/Moon space. Although NASA studies found the concepts to be technically reasonable in the post Apollo era (AMES 1979), the front end costs the limits of national or corporate investment. In the last decade analysis of space on has shown it to be economically justifiable even on a relatively small mission or commercial scenario basis. The Mars Reference Mission analysis (JSC 1997) demonstrated that production of return propellant on Mars can enable an order of magnitude decrease in the costs of human Mars missions. Analysis (by M. Duke 2003) shows that production of propellant on the Moon for the Earth based satellite industries can be commercially viable after a human lunar base is established. Similar economic analysis (Rapp 2005) also shows large cost benefits for lunar propellant production for Mars missions and for the use of lunar materials for the production of photovoltaic power (Freundlich 2005). Recent technologies could enable much smaller initial costs, to achieve mass, energy, and life support self sufficiency, than were achievable in the 1970s. If the Exploration Vision program is executed with a front end emphasis on space resources, it could provide a path for human self reliance beyond Earth orbit. This path can lead to an open, non-zero-sum, future for humanity with safer human competition with limitless growth potential. This paper discusses extension of the analysis for space resource utilization, to determine the minimum systems necessary for human self sufficiency and growth off Earth. Such a approach can provide a more compelling and comprehensive path to space resource utilization.

  16. Beyond Earth's Boundaries: Human Exploration of the Solar System in the 21st Century. 1988 Annual Report to the Administrator.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC. Office of Exploration.

    In June 1987, the National Aeronautics and Space Administration (NASA) Administrator established the Office of Exploration in response to a national need for a long-term goal to energize the civilian space program and stimulate the development of new technology. This document describes work accomplished in developing the knowledge base that will…

  17. A Comparison of Probabilistic and Deterministic Campaign Analysis for Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Merrill, R. Gabe; Andraschko, Mark; Stromgren, Chel; Cirillo, Bill; Earle, Kevin; Goodliff, Kandyce

    2008-01-01

    Human space exploration is by its very nature an uncertain endeavor. Vehicle reliability, technology development risk, budgetary uncertainty, and launch uncertainty all contribute to stochasticity in an exploration scenario. However, traditional strategic analysis has been done in a deterministic manner, analyzing and optimizing the performance of a series of planned missions. History has shown that exploration scenarios rarely follow such a planned schedule. This paper describes a methodology to integrate deterministic and probabilistic analysis of scenarios in support of human space exploration. Probabilistic strategic analysis is used to simulate "possible" scenario outcomes, based upon the likelihood of occurrence of certain events and a set of pre-determined contingency rules. The results of the probabilistic analysis are compared to the nominal results from the deterministic analysis to evaluate the robustness of the scenario to adverse events and to test and optimize contingency planning.

  18. Environmental Control and Life Support (ECLS) Integrated Roadmap Development

    NASA Technical Reports Server (NTRS)

    Metcalf, Jordan L.; Carrasquillo, Robyn; Bagdigian, Bob; Peterson, Laurie

    2011-01-01

    This white paper documents a roadmap for development of Environmental Control and Life Support (ECLS) Systems (ECLSS) capabilities required to enable beyond-Low Earth Orbit (LEO) Exploration missions. In many cases, the execution of this Exploration-based roadmap will directly benefit International Space Station (ISS) operational capability by resolving known issues and/or improving overall system reliability. In addition, many of the resulting products will be applicable across multiple Exploration elements such as Multi-Purpose Crew Vehicle (MPCV), Multi-Mission Space Exploration Vehicle (MMSEV), Deep Space Habitat (DSH), and Landers. Within the ECLS community, this white paper will be a unifying tool that will improve coordination of resources, common hardware, and technologies. It will help to align efforts to focus on the highest priority needs that will produce life support systems for future human exploration missions that will simply run in the background, requiring minimal crew interaction.

  19. Self-supervised learning as an enabling technology for future space exploration robots: ISS experiments on monocular distance learning

    NASA Astrophysics Data System (ADS)

    van Hecke, Kevin; de Croon, Guido C. H. E.; Hennes, Daniel; Setterfield, Timothy P.; Saenz-Otero, Alvar; Izzo, Dario

    2017-11-01

    Although machine learning holds an enormous promise for autonomous space robots, it is currently not employed because of the inherent uncertain outcome of learning processes. In this article we investigate a learning mechanism, Self-Supervised Learning (SSL), which is very reliable and hence an important candidate for real-world deployment even on safety-critical systems such as space robots. To demonstrate this reliability, we introduce a novel SSL setup that allows a stereo vision equipped robot to cope with the failure of one of its cameras. The setup learns to estimate average depth using a monocular image, by using the stereo vision depths from the past as trusted ground truth. We present preliminary results from an experiment on the International Space Station (ISS) performed with the MIT/NASA SPHERES VERTIGO satellite. The presented experiments were performed on October 8th, 2015 on board the ISS. The main goals were (1) data gathering, and (2) navigation based on stereo vision. First the astronaut Kimiya Yui moved the satellite around the Japanese Experiment Module to gather stereo vision data for learning. Subsequently, the satellite freely explored the space in the module based on its (trusted) stereo vision system and a pre-programmed exploration behavior, while simultaneously performing the self-supervised learning of monocular depth estimation on board. The two main goals were successfully achieved, representing the first online learning robotic experiments in space. These results lay the groundwork for a follow-up experiment in which the satellite will use the learned single-camera depth estimation for autonomous exploration in the ISS, and are an advancement towards future space robots that continuously improve their navigation capabilities over time, even in harsh and completely unknown space environments.

  20. NASA's Chemical Transfer Propulsion Program for Pathfinder

    NASA Technical Reports Server (NTRS)

    Hannum, Ned P.; Berkopec, Frank D.; Zurawski, Robert L.

    1989-01-01

    Pathfinder is a research and technology project, with specific deliverables, initiated by the National Aeronautics and Space Administration (NASA) which will strengthen the technology base of the United States civil space program in preparation for future space exploration missions. Pathfinder begins in Fiscal Year 1989, and is to advance a collection of critical technologies for these missions and ensure technology readiness for future national decisions regarding exploration of the solar system. The four major thrusts of Pathfinder are: surface exploration, in-space operations, humans-in-space, and space transfer. The space transfer thrust will provide the critical technologies needed for transportation to, and return from, the Moon, Mars, and other planets in the solar system, as well as for reliable and cost-effective Earth-orbit operations. A key element of this thrust is the Chemical Transfer Propulsion program which will provide the propulsion technology for high performance, liquid oxygen/liquid hydrogen expander cycle engines which may be operated and maintained in space. Described here are the program overview including the goals and objectives, management, technical plan, and technology transfer for the Chemical Transfer Propulsion element of Pathfinder.

  1. Private space exploration: A new way for starting a spacefaring society?

    NASA Astrophysics Data System (ADS)

    Genta, Giancarlo

    2014-11-01

    Since the beginning space was an exclusive domain of public organizations, the role of privates is becoming more and more important, and not only in commercial activities. However, the main international treaties dealing with this subject are still based on the assumption that space activities are mostly reserved to states. In the last decade the idea that the role of privates could include the management of space infrastructures and launch vehicles gained support and now private launch services are a reality. An even wider role of privates is now advocated and private exploration and exploitation missions are discussed. This requires that space activity in general can generate an attractive return and those business models are identified.

  2. The challenges and benefits of lunar exploration

    NASA Technical Reports Server (NTRS)

    Cohen, Aaron

    1992-01-01

    Three decades into the Space Age, the United States is experiencing a fundamental shift in space policy with the adoption of a broad national goal to expand human presence and activity beyond Earth orbit and out into the Solar System. These plans mark a turning point in American space exploration, for they entail a shift away from singular forays to a long-term, evolutionary program of exploration and utilization of space. No longer limited to the technical and operational specifics of any one vehicle or any one mission plan, this new approach will involve a fleet of spacecraft and a stable of off-planet research laboratories, industrial facilities, and exploration programs. The challenges inherent in this program are immense, but so too are the benefits. Central to this new space architecture is the concept of using a lunar base for in-situ resource utilization, and for the development of planetary surface exploration systems, applicable to the Moon, Mars, and other planetary bodies in the Solar System. This paper discusses the technical, economic, and political challenges involved in this new approach, and details the latest thinking on the benefits that could come from bold new endeavors on the final frontier.

  3. Enabling technologies for transition to utilization of space-based resources and operations

    NASA Technical Reports Server (NTRS)

    Sadin, S. R.; Litty, J. D.

    1985-01-01

    This article explores a potential scenario for the further development of space infrastructure resources and operations management. It is a scenario that transitions from the current ground-based system to an architecture that is predominantly space-based by exploiting key mission systems in an operational support role. If this view is accurate, an examination of the range of potential infrastructure elements and how they might interact in a maximally productive space-based operations complex is needed, innovative technologies beyond the current Shuttle and Space Station legacy need to be identified, and research programs pursued. Development of technologies within the areas of telerobotics, machine autonomy, human autonomy, in-space manufacturing and construction, propulsion and energy is discussed.

  4. Pegasus ICON Spacecraft Mate to Separation System

    NASA Image and Video Library

    2018-05-09

    Technicians prepare NASA's Ionospheric Connection Explorer (ICON) to be attached to the spacecraft separation system May 9, 2018, in a clean room inside Building 1555 at Vandenberg Air Force Base in California. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  5. Pegasus ICON Starboard Black Light Inspection

    NASA Image and Video Library

    2018-05-22

    A technician begins a black light inspection of the Orbital ATK Pegasus starboard on May 22, 2018, prior to mating NASA's Ionospheric Connection Explorer (ICON) to Pegasus inside Building 1555 at Vandenberg Air Force Base in California. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on the Pegasus XL, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology and communications systems.

  6. Pegasus ICON Spacecraft Arrival Activites

    NASA Image and Video Library

    2018-05-01

    Technicians prepare NASA's Ionospheric Connection Explorer (ICON) for lift and transfer to a work stand on May 1, 2018, inside Building 1555 at Vandenberg Air Force Base in California. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  7. Pegasus ICON Spacecraft Arrival Activites

    NASA Image and Video Library

    2018-05-01

    A crane lifts and moves NASA's Ionospheric Connection Explorer (ICON) to a work stand on May 1, 2018, inside Building 1555 at Vandenberg Air Force Base in California. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  8. Pegasus ICON Spacecraft Arrival Activites

    NASA Image and Video Library

    2018-05-01

    A technician operates a crane that lifts the shipping container up from NASA's Ionospheric Connection Explorer (ICON) on May 1, 2018, inside Building 1555 at Vandenberg Air Force Base in California. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  9. Pegasus ICON Spacecraft Arrival Activites

    NASA Image and Video Library

    2018-05-01

    NASA's Ionospheric Connection Explorer (ICON) arrives by truck on May 1, 2018, at Vandenberg Air Force Base in California. ICON will be offloaded and transported to Building 1555. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  10. Pegasus ICON Spacecraft Mate to Separation System

    NASA Image and Video Library

    2018-05-09

    Technicians secure NASA's Ionospheric Connection Explorer (ICON) on the spacecraft separation system May 9, 2018, in a clean room inside Building 1555 at Vandenberg Air Force Base in California. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  11. Pegasus ICON Spacecraft Mate

    NASA Image and Video Library

    2018-05-21

    NASA's Ionospheric Connection Explorer (ICON) spacecraft is partially mated to the starboard faring of Orbital ATK's Pegasus XL rocket on May 21, 2018, inside Building 1555 at Vandenberg Air Force Base in California. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on the Pegasus XL, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology and communications systems.

  12. Pegasus ICON Spacecraft Move Into Cleanroom

    NASA Image and Video Library

    2018-05-01

    Technicians prepare NASA's Ionospheric Connection Explorer (ICON) for its move to a clean room on May 4, 2018, inside Building 1555 at Vandenberg Air Force Base in California. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  13. Life cycle cost based program decisions

    NASA Technical Reports Server (NTRS)

    Dick, James S.

    1991-01-01

    The following subject areas are covered: background (space propulsion facility assessment team final report); changes (Advanced Launch System, National Aerospace Plane, and space exploration initiative); life cycle cost analysis rationale; and recommendation to panel.

  14. How HRP Research Results Contribute to Human Space Exploration Risk Mitigation

    NASA Technical Reports Server (NTRS)

    Lumpkins, S. B.; Mindock, J. A.

    2014-01-01

    In addition to the scientific value of publications derived from research, results from Human Research Program (HRP) research also support HRP’s goals of mitigating crew health and performance risks in space flight. Research results are used to build the evidence base characterizing crew health and performance risks, to support risk research plan development, to inform crew health and performance standards, and to provide technologies to programs for meeting those standards and optimizing crew health and performance in space. This talk will describe examples of how research results support these efforts. For example, HRP research results are used to revise or even create new standards for human space flight, which have been established to protect crew health and performance during flight, and prevent negative long-term health consequences due to space flight. These standards are based on the best available clinical and scientific evidence, as well as operational experience from previous space flight missions, and are reviewed as new evidence emerges. Research results are also used to update the HRP evidence base, which is comprised of a set of reports that provide a current record of the state of knowledge from research and operations for each of the defined human health and performance risks for future NASA exploration missions. A discussion of the role of evidence within the HRP architecture will also be presented. The scope of HRP research results extends well beyond publications, as they are used in several capacities to support HRP deliverables and, ultimately, the advancement of human space exploration beyond low-Earth orbit.

  15. How HRP Research Results Contribute to Human Space Exploration Risk Mitigation

    NASA Technical Reports Server (NTRS)

    Lumpkins, Sarah; Mindock, Jennifer

    2014-01-01

    In addition to the scientific value of publications derived from research, results from Human Research Program (HRP) research also support HRP's goals of mitigating crew health and performance risks in space flight. Research results are used to build the evidence base characterizing crew health and performance risks, to support risk research plan development, to inform crew health and performance standards, and to provide technologies to programs for meeting those standards and optimizing crew health and performance in space. This talk will describe examples of how research results support these efforts. For example, HRP research results are used to revise or even create new standards for human space flight, which have been established to protect crew health and performance during flight, and prevent negative long-term health consequences due to space flight. These standards are based on the best available clinical and scientific evidence, as well as operational experience from previous space flight missions, and are reviewed as new evidence emerges. Research results are also used to update the HRP evidence base, which is comprised of a set of reports that provide a current record of the state of knowledge from research and operations for each of the defined human health and performance risks for future NASA exploration missions. A discussion of the role of evidence within the HRP architecture will also be presented. The scope of HRP research results extends well beyond publications, as they are used in several capacities to support HRP deliverables and, ultimately, the advancement of human space exploration beyond low-Earth orbit.

  16. Multiple Perspectives, Loyalties and Identities: Exploring Intrapersonal Spaces through Research-Based Theatre

    ERIC Educational Resources Information Center

    White, Vince; Belliveau, George

    2011-01-01

    This paper recounts the investigative journey of a small group of faculty and graduate students at the University of British Columbia who extensively employed research-based theatre methods to collaboratively and performatively explore three distinct but related contexts that represent critical "moments" in the professional lives of…

  17. Space Missions Trade Space Generation and Assessment Using JPL Rapid Mission Architecture (RMA) Team Approach

    NASA Technical Reports Server (NTRS)

    Moeller, Robert C.; Borden, Chester; Spilker, Thomas; Smythe, William; Lock, Robert

    2011-01-01

    The JPL Rapid Mission Architecture (RMA) capability is a novel collaborative team-based approach to generate new mission architectures, explore broad trade space options, and conduct architecture-level analyses. RMA studies address feasibility and identify best candidates to proceed to further detailed design studies. Development of RMA first began at JPL in 2007 and has evolved to address the need for rapid, effective early mission architectural development and trade space exploration as a precursor to traditional point design evaluations. The RMA approach integrates a small team of architecture-level experts (typically 6-10 people) to generate and explore a wide-ranging trade space of mission architectures driven by the mission science (or technology) objectives. Group brainstorming and trade space analyses are conducted at a higher level of assessment across multiple mission architectures and systems to enable rapid assessment of a set of diverse, innovative concepts. This paper describes the overall JPL RMA team, process, and high-level approach. Some illustrative results from previous JPL RMA studies are discussed.

  18. Space resources. Volume 4: Social concerns

    NASA Technical Reports Server (NTRS)

    Mckay, Mary Fae (Editor); Mckay, David S. (Editor); Duke, Michael B. (Editor)

    1992-01-01

    Space resources must be used to support life on the Moon and exploration of Mars. This volume, Social Concerns, covers some of the most important issues which must be addressed in any major program for the human exploration of space. The volume begins with a consideration of the economics and management of large scale space activities. Then the legal aspects of these activities are discussed, particularly the interpretation of treaty law with respect to the Moon and asteroids. The social and cultural issues of moving people into space are considered in detail, and the eventual emergence of a space culture different from the existing culture is envisioned. The environmental issues raised by the development of space settlements are faced. Some innovative approaches are proposed to space communities and habitats and self-sufficiency is considered along with human safety at a lunar base or outpost.

  19. ALI (Autonomous Lunar Investigator): Revolutionary Approach to Exploring the Moon with Addressable Reconfigurable Technology

    NASA Technical Reports Server (NTRS)

    Clark, P. E.; Curtis, S. A.; Rilee, M. L.; Floyd, S. R.

    2005-01-01

    Addressable Reconfigurable Technology (ART) based structures: Mission Concepts based on Addressable Reconfigurable Technology (ART), originally studied for future ANTS (Autonomous Nanotechnology Swarm) Space Architectures, are now being developed as rovers for nearer term use in lunar and planetary surface exploration. The architecture is based on the reconfigurable tetrahedron as a building block. Tetrahedra are combined to form space-filling networks, shaped for the required function. Basic structural components are highly modular, addressable arrays of robust nodes (tetrahedral apices) from which highly reconfigurable struts (tetrahedral edges), acting as supports or tethers, are efficiently reversibly deployed/stowed, transforming and reshaping the structures as required.

  20. Exploration Space Suit Architecture and Destination Environmental-Based Technology Development

    NASA Technical Reports Server (NTRS)

    Hill, Terry R.; Korona, F. Adam; McFarland, Shane

    2012-01-01

    This paper continues forward where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars [1] left off in the development of a space suit architecture that is modular in design and could be reconfigured prior to launch or during any given mission depending on the tasks or destination. This paper will address the space suit system architecture and technologies required based upon human exploration extravehicular activity (EVA) destinations, and describe how they should evolve to meet the future exploration EVA needs of the US human space flight program.1, 2, 3 In looking forward to future US space exploration to a space suit architecture with maximum reuse of technology and functionality across a range of mission profiles and destinations, a series of exercises and analyses have provided a strong indication that the Constellation Program (CxP) space suit architecture is postured to provide a viable solution for future exploration missions4. The destination environmental analysis presented in this paper demonstrates that the modular architecture approach could provide the lowest mass and mission cost for the protection of the crew given any human mission outside of low-Earth orbit (LEO). Additionally, some of the high-level trades presented here provide a review of the environmental and non-environmental design drivers that will become increasingly important the farther away from Earth humans venture. This paper demonstrates a logical clustering of destination design environments that allows a focused approach to technology prioritization, development, and design that will maximize the return on investment, independent of any particular program, and provide architecture and design solutions for space suit systems in time or ahead of need dates for any particular crewed flight program in the future. The approach to space suit design and interface definition discussion will show how the architecture is very adaptable to programmatic and funding changes with minimal redesign effort such that the modular architecture can be quickly and efficiently honed into a specific mission point solution if required. Additionally, the modular system will allow for specific technology incorporation and upgrade as required with minimal redesign of the system.

  1. Space-Inspired Trailers Encourage Exploration on Earth

    NASA Technical Reports Server (NTRS)

    2013-01-01

    Architect Garret Finney joined Johnson Space Center's Habitability Design Center to work on creating comfortable, efficiently designed crew quarters for the ISS. Drawing directly on that experience, Finney founded Houston-based Cricket and set about creating unique, versatile recreational trailers that incorporate space habitat principles and features.

  2. Continuing to Build a Community Consensus on the Future of Human Space Flight: Report of the Fourth Community Workshop on Achievability and Sustainability of Human Exploration of Mars (AM IV)

    NASA Technical Reports Server (NTRS)

    Thronson, Harley A.; Baker, John; Beaty, David; Carberry, Chris; Craig, Mark; Davis, Richard M.; Drake, Bret G.; Cassady, Joseph; Hays, Lindsay; Hoffman, Stephen J.; hide

    2016-01-01

    To continue to build broadly based consensus on the future of human space exploration, the Fourth Community Workshop on Achievability and Sustainability of Human Exploration of Mars (AM IV), organized by Explore Mars, Inc. and the American Astronautical Society, was held at the Double Tree Inn in Monrovia, CA., December 68, 2016. Approximately 60 invited professionals from the industrial and commercial sectors, academia, and NASA, along with international colleagues, participated in the workshop. These individuals were chosen to be representative of the breadth of interests in astronaut and robotic Mars exploration.

  3. Trends in sensorimotor research and countermeasures for exploration-class space flights.

    PubMed

    Shelhamer, Mark

    2015-01-01

    Research in the area of sensorimotor and neurovestibular function has played an important role in enabling human space flight. This role, however, is changing. One of the key aspects of sensorimotor function relevant to this role will build on its widespread connections with other physiological and psychological systems in the body. The firm knowledge base in this area can provide a strong platform to explore these interactions, which can also provide for the development of effective and efficient countermeasures to the deleterious effects of space flight.

  4. Fiber Lasers and Amplifiers for Space-based Science and Exploration

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Krainak, Michael A.; Stephen, Mark A.; Chen, Jeffrey R.; Coyle, Barry; Numata, Kenji; Camp, Jordan; Abshire, James B.; Allan, Graham R.; Li, Steven X.; hide

    2012-01-01

    We present current and near-term uses of high-power fiber lasers and amplifiers for NASA science and spacecraft applications. Fiber lasers and amplifiers offer numerous advantages for the deployment of instruments on exploration and science remote sensing satellites. Ground-based and airborne systems provide an evolutionary path to space and a means for calibration and verification of space-borne systems. NASA fiber-laser-based instruments include laser sounders and lidars for measuring atmospheric carbon dioxide, oxygen, water vapor and methane and a pulsed or pseudo-noise (PN) code laser ranging system in the near infrared (NIR) wavelength band. The associated fiber transmitters include high-power erbium, ytterbium, and neodymium systems and a fiber laser pumped optical parametric oscillator. We discuss recent experimental progress on these systems and instrument prototypes for ongoing development efforts.

  5. Racialized Spaces in Teacher Discourse: A Critical Discourse Analysis of Place-Based Identities in Roche Bois, Mauritius

    ERIC Educational Resources Information Center

    Wiehe, Elsa M.

    2013-01-01

    This eleven-month ethnographic study puts critical discourse analysis in dialogue with postmodern conceptualizations of space and place to explore how eight educators talk about space and in the process, produce racialized spaces in Roche Bois, Mauritius. The macro-historical context of racialization of this urban marginalized community informs…

  6. Orion Underway Recovery Test 5 (URT-5) - Orion Boiler Plate Test

    NASA Image and Video Library

    2016-10-20

    A base employee checks out an inflatable scale model of NASA’s Space Launch System rocket with Orion on the mobile launcher at Naval Base San Diego in California. Service members, base employees and their families had the opportunity to view a test version of the Orion crew module before Underway Recovery Test 5 (URT-5). NASA, Orion manufacturer Lockheed Martin and the U.S. Navy will head out to sea with the Orion test vehicle aboard the USS San Diego to demonstrate and evaluate the recovery processes, procedures, hardware and personnel necessary for recovery of Orion on its return from a deep space mission. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch atop NASA’s Space Launch System rocket in 2018. For more information, visit http://www.nasa.gov/orion.

  7. Research in space science and technology. [including X-ray astronomy and interplanetary plasma physics

    NASA Technical Reports Server (NTRS)

    Beckley, L. E.

    1977-01-01

    Progress in various space flight research programs is reported. Emphasis is placed on X-ray astronomy and interplanetary plasma physics. Topics covered include: infrared astronomy, long base line interferometry, geological spectroscopy, space life science experiments, atmospheric physics, and space based materials and structures research. Analysis of galactic and extra-galactic X-ray data from the Small Astronomy Satellite (SAS-3) and HEAO-A and interplanetary plasma data for Mariner 10, Explorers 47 and 50, and Solrad is discussed.

  8. Space radiation health program plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Space Radiation Health Program intends to establish the scientific basis for the radiation protection of humans engaged in the exploration of space, with particular emphasis on the establishment of a firm knowledge base to support cancer risk assessment for future planetary exploration. This document sets forth the technical and management components involved in the implementation of the Space Radiation Health Program, which is a major part of the Life Sciences Division (LSD) effort in the Office of Space Science and Applications (OSSA) at the National Aeronautics and Space Administration (NASA). For the purpose of implementing this program, the Life Sciences Division supports scientific research into the fundamental mechanisms of radiation effects on living systems and the interaction of radiation with cells, tissues, and organs, and the development of instruments and processes for measuring radiation and its effects. The Life Sciences Division supports researchers at universities, NASA field centers, non-profit research institutes and national laboratories; establishes interagency agreements for cooperative use and development of facilities; and conducts a space-based research program using available and future spaceflight vehicles.

  9. InSight Prelaunch Briefing

    NASA Image and Video Library

    2018-05-03

    Col. Michael Hough, Commander 30th Space Wing, Vandenberg Air Force Base, left, and 1st Lieutenant Kristina Williams, weather officer, 30th Space Wing, Vandenberg Air Force Base, discuss NASA's InSight mission during a prelaunch media briefing, Thursday, May 3, 2018, at Vandenberg Air Force Base in California. InSight, short for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, is a Mars lander designed to study the "inner space" of Mars: its crust, mantle, and core. Photo Credit: (NASA/Bill Ingalls)

  10. Review of NASA approach to space radiation risk assessments for Mars exploration.

    PubMed

    Cucinotta, Francis A

    2015-02-01

    Long duration space missions present unique radiation protection challenges due to the complexity of the space radiation environment, which includes high charge and energy particles and other highly ionizing radiation such as neutrons. Based on a recommendation by the National Council on Radiation Protection and Measurements, a 3% lifetime risk of exposure-induced death for cancer has been used as a basis for risk limitation by the National Aeronautics and Space Administration (NASA) for low-Earth orbit missions. NASA has developed a risk-based approach to radiation exposure limits that accounts for individual factors (age, gender, and smoking history) and assesses the uncertainties in risk estimates. New radiation quality factors with associated probability distribution functions to represent the quality factor's uncertainty have been developed based on track structure models and recent radiobiology data for high charge and energy particles. The current radiation dose limits are reviewed for spaceflight and the various qualitative and quantitative uncertainties that impact the risk of exposure-induced death estimates using the NASA Space Cancer Risk (NSCR) model. NSCR estimates of the number of "safe days" in deep space to be within exposure limits and risk estimates for a Mars exploration mission are described.

  11. NICER Mission

    NASA Image and Video Library

    2017-12-08

    This video previews the Neutron star Interior Composition Explorer (NICER). NICER is an Astrophysics Mission of Opportunity within NASA’s Explorer program, which provides frequent flight opportunities for world-class scientific investigations from space utilizing innovative, streamlined and efficient management approaches within the heliophysics and astrophysics science areas. NASA’s Space Technology Mission Directorate supports the SEXTANT component of the mission, demonstrating pulsar-based spacecraft navigation. NICER is an upcoming International Space Station payload scheduled to launch in June 2017. Learn more about the mission at nasa.gov/nicer NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. Micro-Inspector Spacecraft for Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Mueller, Juergen; Alkalai, Leon; Lewis, Carol

    2005-01-01

    NASA is seeking to embark on a new set of human and robotic exploration missions back to the Moon, to Mars, and destinations beyond. Key strategic technical challenges will need to be addressed to realize this new vision for space exploration, including improvements in safety and reliability to improve robustness of space operations. Under sponsorship by NASA's Exploration Systems Mission, the Jet Propulsion Laboratory (JPL), together with its partners in government (NASA Johnson Space Center) and industry (Boeing, Vacco Industries, Ashwin-Ushas Inc.) is developing an ultra-low mass (<3.0 kg) free-flying micro-inspector spacecraft in an effort to enhance safety and reduce risk in future human and exploration missions. The micro-inspector will provide remote vehicle inspections to ensure safety and reliability, or to provide monitoring of in-space assembly. The micro-inspector spacecraft represents an inherently modular system addition that can improve safety and support multiple host vehicles in multiple applications. On human missions, it may help extend the reach of human explorers, decreasing human EVA time to reduce mission cost and risk. The micro-inspector development is the continuation of an effort begun under NASA's Office of Aerospace Technology Enabling Concepts and Technology (ECT) program. The micro-inspector uses miniaturized celestial sensors; relies on a combination of solar power and batteries (allowing for unlimited operation in the sun and up to 4 hours in the shade); utilizes a low-pressure, low-leakage liquid butane propellant system for added safety; and includes multi-functional structure for high system-level integration and miniaturization. Versions of this system to be designed and developed under the H&RT program will include additional capabilities for on-board, vision-based navigation, spacecraft inspection, and collision avoidance, and will be demonstrated in a ground-based, space-related environment. These features make the micro-inspector design unique in its ability to serve crewed as well as robotic spacecraft, well beyond Earth-orbit and into arenas such as robotic missions, where human teleoperation capability is not locally available.

  13. Anaesthesia in austere environments: literature review and considerations for future space exploration missions.

    PubMed

    Komorowski, Matthieu; Fleming, Sarah; Mawkin, Mala; Hinkelbein, Jochen

    2018-01-01

    Future space exploration missions will take humans far beyond low Earth orbit and require complete crew autonomy. The ability to provide anaesthesia will be important given the expected risk of severe medical events requiring surgery. Knowledge and experience of such procedures during space missions is currently extremely limited. Austere and isolated environments (such as polar bases or submarines) have been used extensively as test beds for spaceflight to probe hazards, train crews, develop clinical protocols and countermeasures for prospective space missions. We have conducted a literature review on anaesthesia in austere environments relevant to distant space missions. In each setting, we assessed how the problems related to the provision of anaesthesia (e.g., medical kit and skills) are dealt with or prepared for. We analysed how these factors could be applied to the unique environment of a space exploration mission. The delivery of anaesthesia will be complicated by many factors including space-induced physiological changes and limitations in skills and equipment. The basic principles of a safe anaesthesia in an austere environment (appropriate training, presence of minimal safety and monitoring equipment, etc.) can be extended to the context of a space exploration mission. Skills redundancy is an important safety factor, and basic competency in anaesthesia should be part of the skillset of several crewmembers. The literature suggests that safe and effective anaesthesia could be achieved by a physician during future space exploration missions. In a life-or-limb situation, non-physicians may be able to conduct anaesthetic procedures, including simplified general anaesthesia.

  14. Strategy Space Exploration of a Multi-Agent Model for the Labor Market

    NASA Astrophysics Data System (ADS)

    de Grande, Pablo; Eguia, Manuel

    We present a multi-agent system where typical labor market mechanisms emerge. Based on a few simple rules, our model allows for different interpretative paradigms to be represented and for different scenarios to be tried out. We thoroughly explore the space of possible strategies both for those unemployed and for companies and analyze the trade-off between these strategies regarding global social and economical indicators.

  15. Medicine in long duration space exploration: the role of virtual reality and broad bandwidth telecommunications networks

    NASA Technical Reports Server (NTRS)

    Ross, M. D.

    2001-01-01

    Safety of astronauts during long-term space exploration is a priority for NASA. This paper describes efforts to produce Earth-based models for providing expert medical advice when unforeseen medical emergencies occur on spacecraft. These models are Virtual Collaborative Clinics that reach into remote sites using telecommunications and emerging stereo-imaging and sensor technologies. c 2001. Elsevier Science Ltd. All rights reserved.

  16. The Opportunity in Commercial Approaches for Future NASA Deep Space Exploration Elements

    NASA Technical Reports Server (NTRS)

    Zapata, Edgar

    2017-01-01

    In 2011, NASA released a report assessing the market for commercial crew and cargo services to low Earth orbit (LEO). The report stated that NASA had spent a few hundred million dollars in the Commercial Orbital Transportation Services (COTS) program on the portion related to the development of the Falcon 9 launch vehicle. Yet a NASA cost model predicted the cost would have been significantly more with a non-commercial cost-plus contracting approach. By 2016 a NASA request for information stated it must "maximize the efficiency and sustainability of the Exploration Systems development programs", as "critical to free resources for reinvestment...such as other required deep space exploration capabilities." This work joins the previous two events, showing the potential for commercial, public private partnerships, modeled on programs like COTS, to reduce the cost to NASA significantly for "...other required deep space exploration capabilities." These other capabilities include landers, stages and more. We mature the concept of "costed baseball cards", adding cost estimates to NASA's space systems "baseball cards." We show some potential costs, including analysis, the basis of estimates, data sources and caveats to address a critical question - based on initial assessment, are significant agency resources justified for more detailed analysis and due diligence to understand and invest in public private partnerships for human deep space exploration systems? The cost analysis spans commercial to cost-plus contracting approaches, for smaller elements vs. larger, with some variation for lunar or Mars. By extension, we delve briefly into the potentially much broader significance of the individual cost estimates if taken together as a NASA investment portfolio where public private partnership are stitched together for deep space exploration. How might multiple improvements in individual systems add up to NASA human deep space exploration achievements, realistically, affordably, sustainably, in a relevant timeframe?

  17. Giving children space: A phenomenological exploration of student experiences in space science inquiry

    NASA Astrophysics Data System (ADS)

    Horne, Christopher R.

    This study explores the experiences of 4th grade students in an inquiry-based space science classroom. At the heart of the study lies the essential question: What is the lived experience of children engaged in the process of space science inquiry? Through the methodology of phenomenological inquiry, the author investigates the essence of the lived experience of twenty 4th grade students as well as the reflections of two high school students looking back on their 4th grade space science experience. To open the phenomenon more deeply, the concept of space is explored as an overarching theme throughout the text. The writings of several philosophers including Martin Heidegger and Hans-Georg Gadamer are opened up to understand the existential aspects of phenomenology and the act of experiencing the classroom as a lived human experience. The methodological structure for the study is based largely on the work of Max van Manen (2003) in his seminal work, Researching Lived Experience, which describes a structure of human science research. A narrative based on classroom experiences, individual conversations, written reflections, and group discussion provides insight into the students' experiences. Their stories and thoughts reveal the themes of activity , interactivity, and "inquiractivity," each emerging as an essential element of the lived experience in the inquiry-based space science classroom. The metaphor of light brings illumination to the themes. Activity in the classroom is associated with light's constant and rapid motion throughout the Milky Way and beyond. Interactivity is seen through students' interactions just as light's reflective nature is seen through the illumination of the planets. Finally, inquiractivity is connected to questioning, the principal aspect of the inquiry-based classroom just as the sun is the essential source of light in our solar system. As the era of No Child Left Behind fades, and the next generation of science standards emerge, the students' stories are viewed through the lens of the scientific practices found in A Framework for K-12 Science Education (The National Research Council, 2011). The critical challenge for elementary educators interacting with this text is to find the lived meaning of giving children space in an inquiry-based experience.

  18. Energy Management of the Multi-Mission Space Exploration Vehicle Using a Goal-Oriented Control System

    NASA Technical Reports Server (NTRS)

    Braman, Julia M. B.; Wagner, David A.

    2010-01-01

    Safe human exploration in space missions requires careful management of limited resources such as breathable air and stored electrical energy. Daily activities for astronauts must be carefully planned with respect to such resources, and usage must be monitored as activities proceed to ensure that they can be completed while maintaining safe resource margins. Such planning and monitoring can be complex because they depend on models of resource usage, the activities being planned, and uncertainties. This paper describes a system - and the technology behind it - for energy management of the NASA-Johnson Space Center's Multi-Mission Space Exploration Vehicles (SEV), that provides, in an onboard advisory mode, situational awareness to astronauts and real-time guidance to mission operators. This new capability was evaluated during this year's Desert RATS (Research and Technology Studies) planetary exploration analog test in Arizona. This software aided ground operators and crew members in modifying the day s activities based on the real-time execution of the plan and on energy data received from the rovers.

  19. NASA's Space Launch System: One Vehicle, Many Destinations

    NASA Technical Reports Server (NTRS)

    May, Todd A.; Creech, Stephen D.

    2013-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for exploration beyond Earth orbit. Developed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will start its missions in 2017 with 10 percent more thrust than the Saturn V rocket that launched astronauts to the Moon 40 years ago. From there it will evolve into the most powerful launch vehicle ever flown, via an upgrade approach that will provide building blocks for future space exploration and development. The International Space Exploration Coordination Group, representing 12 of the world's space agencies, has created the Global Exploration Roadmap, which outlines paths toward a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for all three destinations. This paper will explore the capability of SLS to meet those requirements and enable those missions. It will explain how the SLS Program is executing this development within flat budgetary guidelines by using existing engines assets and developing advanced technology based on heritage systems, from the initial 70 metric ton (t) lift capability through a block upgrade approach to an evolved 130-t capability. It will also detail the significant progress that has already been made toward its first launch in 2017. The SLS will offer a robust way to transport international crews and the air, water, food, and equipment they will need for extended trips to explore new frontiers. In addition, this paper will summarize the SLS rocket's capability to support science and robotic precursor missions to other worlds, or uniquely high-mass space facilities in Earth orbit. As this paper will explain, the SLS is making measurable progress toward becoming a global infrastructure asset for robotic and human scouts of all nations by providing the robust launch capability to deliver sustainable solutions for space exploration.

  20. NASA's Space Launch System: A Flagship for Exploration Beyond Earth's Orbit

    NASA Technical Reports Server (NTRS)

    May, Todd A.; Creech, Stephen D.

    2012-01-01

    The National Aeronautics and Space Administration s (NASA s) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making measurable progress toward delivering a new capability for human and scientific exploration. To arrive at the current plan, government and industry experts carefully analyzed hundreds of architecture options and selected the one clear solution to stringent requirements for safety, affordability, and sustainability over the decades that the rocket will be in operation. Slated for its maiden voyage in 2017, the SLS will provide a platform for further cooperation in space based on the International Space Station model. This briefing will focus on specific progress that has been made by the SLS team in its first year, as well as provide a framework for evolving the vehicle for far-reaching missions to destinations such as near-Earth asteroids, Lagrange Points, and Mars. As this briefing will show, the SLS will serve as an infrastructure asset for robotic and human scouts of all nations by harnessing business and technological innovations to deliver sustainable solutions for space exploration.

  1. Bone Research and Animal Support of Human Space Exploration: Where do we go from here?

    NASA Technical Reports Server (NTRS)

    Morey-Holton, Emily R.

    2004-01-01

    NASA exploration goals include returning humans to the moon by 20 15-2020 as a prelude for human exploration of Mars and beyond. The number of human flight subjects available during this very short time period is insufficient to solve high-risk problems without data from animals. This presentation will focus on three questions: What do we know? What do we need to know? Where do we go from here?: roles for animals in the exploration era. Answers to these questions are based on flight and ground-based models using humans and animals. First, what do we know? Adult humans have spent less than 1% of their lifespan in space while juvenile rats have spent almost 2%. This information suggests that our data are rather meager for projecting to a 30-month mission to Mars. The space platforms for humans have included Skylab, STS/MIR, and STS/ISS and for animals have included the unmanned Bion series and shuttle. The ground-based models include head-down bedrest in humans (BR) and hindlimb unloading in rodents (HU). We know that as gravity decreases, the impact forces generated by the body during locomotion decrease. For example, on Earth, your legs supports approximately 1 body weight (BW) when standing, 1.33BW when walking, and 3BW when jogging. On Mars, the same activity would generate 0.38BW standing, 0.5BW walking, and 1BW when jogging. In space, no impact load is generated, as gravity is minimal.

  2. Performance impact of stop lists and morphological decomposition on word-word corpus-based semantic space models.

    PubMed

    Keith, Jeff; Westbury, Chris; Goldman, James

    2015-09-01

    Corpus-based semantic space models, which primarily rely on lexical co-occurrence statistics, have proven effective in modeling and predicting human behavior in a number of experimental paradigms that explore semantic memory representation. The most widely studied extant models, however, are strongly influenced by orthographic word frequency (e.g., Shaoul & Westbury, Behavior Research Methods, 38, 190-195, 2006). This has the implication that high-frequency closed-class words can potentially bias co-occurrence statistics. Because these closed-class words are purported to carry primarily syntactic, rather than semantic, information, the performance of corpus-based semantic space models may be improved by excluding closed-class words (using stop lists) from co-occurrence statistics, while retaining their syntactic information through other means (e.g., part-of-speech tagging and/or affixes from inflected word forms). Additionally, very little work has been done to explore the effect of employing morphological decomposition on the inflected forms of words in corpora prior to compiling co-occurrence statistics, despite (controversial) evidence that humans perform early morphological decomposition in semantic processing. In this study, we explored the impact of these factors on corpus-based semantic space models. From this study, morphological decomposition appears to significantly improve performance in word-word co-occurrence semantic space models, providing some support for the claim that sublexical information-specifically, word morphology-plays a role in lexical semantic processing. An overall decrease in performance was observed in models employing stop lists (e.g., excluding closed-class words). Furthermore, we found some evidence that weakens the claim that closed-class words supply primarily syntactic information in word-word co-occurrence semantic space models.

  3. WeightLifter: Visual Weight Space Exploration for Multi-Criteria Decision Making.

    PubMed

    Pajer, Stephan; Streit, Marc; Torsney-Weir, Thomas; Spechtenhauser, Florian; Muller, Torsten; Piringer, Harald

    2017-01-01

    A common strategy in Multi-Criteria Decision Making (MCDM) is to rank alternative solutions by weighted summary scores. Weights, however, are often abstract to the decision maker and can only be set by vague intuition. While previous work supports a point-wise exploration of weight spaces, we argue that MCDM can benefit from a regional and global visual analysis of weight spaces. Our main contribution is WeightLifter, a novel interactive visualization technique for weight-based MCDM that facilitates the exploration of weight spaces with up to ten criteria. Our technique enables users to better understand the sensitivity of a decision to changes of weights, to efficiently localize weight regions where a given solution ranks high, and to filter out solutions which do not rank high enough for any plausible combination of weights. We provide a comprehensive requirement analysis for weight-based MCDM and describe an interactive workflow that meets these requirements. For evaluation, we describe a usage scenario of WeightLifter in automotive engineering and report qualitative feedback from users of a deployed version as well as preliminary feedback from decision makers in multiple domains. This feedback confirms that WeightLifter increases both the efficiency of weight-based MCDM and the awareness of uncertainty in the ultimate decisions.

  4. Commercialization is Required for Sustainable Space Exploration and Development

    NASA Technical Reports Server (NTRS)

    Martin, Gary L.; Olson, John M.

    2009-01-01

    The U.S. Space Exploration policy outlines an exciting new direction in space for human and robotic exploration and development beyond low Earth orbit. Pressed by this new visionary guidance, human civilization will be able to methodically build capabilities to move off Earth and into the solar system in a step-by-step manner, gradually increasing the capability for humans to stay longer in space and move further away from Earth. The new plans call for an implementation that would create an affordable and sustainable program in order to span over generations of explorers, each new generation pushing back the boundaries and building on the foundations laid by the earlier. To create a sustainable program it is important to enable and encourage the development of a selfsupporting commercial space industry leveraging both traditional and non-traditional segments of the industrial base. Governments will not be able to open the space frontier on their own because their goals change over relatively short timescales and because the large costs associated with human spaceflight cannot be sustained. A strong space development industrial sector is needed that can one day support the needs of commercial space enterprises as well as provide capabilities that the National Aeronautics and Space Administration (NASA) and other national space agencies can buy to achieve their exploration goals. This new industrial space sector will someday provide fundamental capabilities like communications, power, logistics, and even cargo and human space transportation, just as commercial companies are able to provide these services on Earth today. To help develop and bolster this new space industrial sector, NASA and other national space agencies can enable and facilitate it in many ways, including reducing risk by developing important technologies necessary for commercialization of space, and as a paying customer, partner, or anchor tenant. This transition from all or mostly government developed and operated facilities and services to commercial supplied facilities and services should be considered from the very earliest stages of planning. This paper will first discuss the importance of space commercialization to fulfilling national goals and the associated policy and strategic objectives that will enable space exploration and development. Then the paper will offer insights into how government can provide leadership to promote the nascent commercial space industry. In addition, the paper describes programs and policies already in place at NASA and offers five important principles government can use to strengthen space industry.

  5. Is a Space Laundry Needed for Exploration?

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K.; Jeng, Frank F.

    2014-01-01

    Future human space exploration missions will lengthen to years, and keeping crews clothed without a huge resupply burden is an important consideration for habitation systems. A space laundry system could be the solution; however, the resources it uses must be accounted for and must win out over the very reliable practice of bringing along enough spare underwear. Through NASA's Logistics Reduction and Repurposing project, trade off studies have been conducted to compare current space clothing systems, life extension of that clothing, traditional water based clothes washing and other sanitizing techniques. The best clothing system of course depends on the mission and assumptions, but in general, analysis results indicate that washing clothes on space missions will start to pay off as mission durations push past a year.

  6. In-space assembly and servicing infrastructures for the Evolvable Space Telescope (EST)

    NASA Astrophysics Data System (ADS)

    Lillie, Charles F.; MacEwen, Howard A.

    2016-07-01

    The concept for EST presented in past SPIE forums will benefit significantly from the current efforts of DARPA, NASA and several commercial organizations to develop an in-space infrastructure that will enable on-orbit assembly, servicing, repair and repurposing of space vehicles. Two documents provide particularly relevant discussions: "NASA's Journey to Mars: Pioneering Next Steps in Space Exploration" provides a recent (2015) outline of NASA's thoughts on human deep space exploration and the tools that will enable it, while the "On-Orbit Satellite Servicing Study: Project Report" details a number of the concepts and technologies that must be developed. In this paper we examine the concepts in these and related documents to explore how systems such as EST will shape and support the infrastructure needed by future space vehicles. In so doing, we address previous examples of on-orbit assembly and servicing of space vehicles; the lessons learned from these efforts and the existing systems and facilities available to execute servicing missions; the EST concept for an LUVOIR telescope designed for in-orbit assembly and servicing and the resulting requirements for a servicing vehicle; the use of heavy lift launch vehicles, including the SLS and Exploration Upper Stage to co-manifest other large payloads along with a crewed Orion mission; Deep Space Habitats (DSHs) in cislunar space as a site for assembly and servicing spacecraft vehicles, and a base for Maneuverable Servicing Vehicles; and how space vehicles need to be designed for in-space assembly and servicing (i.e., commonality of parts, systems, modularity, accessibility, and stable maneuverability).

  7. Orion Underway Recovery Test 5 (URT-5) - Orion Boiler Plate Test

    NASA Image and Video Library

    2016-10-20

    A test version of the Orion crew module is on display for viewing by service members, base employees and their families at Naval Base San Diego in California, before Underway Recovery Test 5 (URT-5). NASA, Orion manufacturer Lockheed Martin and the U.S. Navy will head out to sea with the Orion test vehicle aboard the USS San Diego to demonstrate and evaluate the recovery processes, procedures, hardware and personnel necessary for recovery of Orion on its return from a deep space mission. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch atop NASA’s Space Launch System rocket in 2018. For more information, visit http://www.nasa.gov/orion.

  8. Orion Underway Recovery Test 5 (URT-5) - Orion Boiler Plate Test

    NASA Image and Video Library

    2016-10-20

    A base employee and his family check out a test version of the Orion crew module at Naval Base San Diego in California before Underway Recovery Test 5 (URT-5). NASA, Orion manufacturer Lockheed Martin and the U.S. Navy will head out to sea with the Orion test vehicle aboard the USS San Diego to demonstrate and evaluate the recovery processes, procedures, hardware and personnel necessary for recovery of Orion on its return from a deep space mission. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch atop NASA’s Space Launch System rocket in 2018. For more information, visit http://www.nasa.gov/orion.

  9. Pegasus ICON Starboard Black Light Inspection

    NASA Image and Video Library

    2018-05-22

    A technician performs a black light inspection of the Orbital ATK Pegasus starboard on May 22, 2018, prior to fully mating NASA's Ionospheric Connection Explorer (ICON) to Pegasus inside Building 1555 at Vandenberg Air Force Base in California. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on the Pegasus XL, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology and communications systems.

  10. Pegasus ICON Fairing Arrival

    NASA Image and Video Library

    2017-08-04

    Technicians move the first half of the payload fairing for the Orbital ATK Pegasus XL rocket inside Building 1555 at Vandenberg Air Force Base in California on Aug. 4, 2018. The Pegasus rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  11. Pegasus ICON Lift onto Assembly Integration Trailer (AIT)

    NASA Image and Video Library

    2017-08-23

    The payload fairing halves for Orbital ATK's Pegasus XL rocket are staged inside Building 1555 at Vandenberg Air Force Base in California on Aug. 23, 2017. The Pegasus rocket is being prepared for NASA's Ionospheric Connection Explorer (ICON) mission. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on the Pegasus XL, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  12. Pegasus ICON Spacecraft Mate to Separation System

    NASA Image and Video Library

    2018-05-09

    A crane is used to move and lower NASA's Ionospheric Connection Explorer (ICON) onto the spacecraft separation system May 9, 2018, in a clean room inside Building 1555 at Vandenberg Air Force Base in California. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  13. Pegasus ICON Fairing Arrival

    NASA Image and Video Library

    2017-08-04

    The payload fairing for Orbital ATK's Pegasus XL rocket arrives by flatbed truck Aug. 4, 2017, at Vandenberg Air Force Base in California. The Pegasus rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  14. Pegasus ICON Fairing Arrival

    NASA Image and Video Library

    2017-08-04

    The first half of the payload fairing for the Orbital ATK Pegasus XL rocket is inside Building 1555 at Vandenberg Air Force Base in California on Aug. 4, 2018. The Pegasus rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  15. International food patterns for space food

    NASA Technical Reports Server (NTRS)

    Ahmed, Selina; Cox, Amanda; Cornish, Pauline V.

    1989-01-01

    The purpose of this research was to obtain basic data on ethnic foods by studying dietary patterns and multicultural foods, and to determine nutritional status of multicultural space explorers by evaluating dietary, clinical, biochemical, and socioeconomic factors. The study will plan a significant role in providing nutritional research for space explorers of different ethnic backgrounds. It will provide scientific background information by bringing together cross cultural dietary and nutritional from different ethnic groups. Results will also help the health care personnel including physicians, dietitians, and nutritionists to better understand and assist patients from other cultures illness. Also, the results will provide data which will help in the development of future food plans for long duration flights involving manned exploration to Mars and lunar base colonies.

  16. Orion Underway Recovery Test 5 (URT-5) - Orion Boiler Plate Test

    NASA Image and Video Library

    2016-10-20

    A test version of the Orion crew module and an inflatable model of NASA’s Space Launch System rocket, Orion spacecraft and mobile launcher are on display at Naval Base San Diego in California, for viewing by service members, base employees and their families before Underway Recovery Test 5 (URT-5). NASA, Orion manufacturer Lockheed Martin and the U.S. Navy will head out to sea with the Orion test vehicle aboard the USS San Diego to demonstrate and evaluate the recovery processes, procedures, hardware and personnel necessary for recovery of Orion on its return from a deep space mission. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch atop NASA’s Space Launch System rocket in 2018. For more information, visit http://www.nasa.gov/orion.

  17. NASA Utilization of the International Space Station and the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Thumm, Tracy L.; Thomas, Donald A.

    2006-01-01

    In response to the U.S. President s Vision for Space Exploration (January 14, 2004), NASA has revised its utilization plans for ISS to focus on (1) research on astronaut health and the development of countermeasures that will protect our crews from the space environment during long duration voyages, (2) ISS as a test bed for research and technology developments that will insure vehicle systems and operational practices are ready for future exploration missions, (3) developing and validating operational practices and procedures for long-duration space missions. In addition, NASA will continue a small amount of fundamental research in life and microgravity sciences. There have been significant research accomplishments that are important for achieving the Exploration Vision. Some of these have been formal research payloads, while others have come from research based on the operation of International Space Station (ISS). We will review a selection of these experiments and results, as well as outline some of ongoing and upcoming research. The ISS represents the only microgravity opportunity to perform on-orbit long-duration studies of human health and performance and technologies relevant for future long-duration missions planned during the next 25 years. Even as NASA focuses on developing the Orion spacecraft and return to the moon (2015-2020), research on and operation of the ISS is fundamental to the success of NASA s Exploration Vision.

  18. NASA Utilization of the International Space Station and the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Thumm, Tracy L.; Thomas, Donald A.

    2007-01-01

    In response to the U.S. President s Vision for Space Exploration (January 14, 2004), NASA has revised its utilization plans for ISS to focus on (1) research on astronaut health and the development of countermeasures that will protect our crews from the space environment during long duration voyages, (2) ISS as a test bed for research and technology developments that will insure vehicle systems and operational practices are ready for future exploration missions, (3) developing and validating operational practices and procedures for long-duration space missions. In addition, NASA will continue a small amount of fundamental research in life and microgravity sciences. There have been significant research accomplishments that are important for achieving the Exploration Vision. Some of these have been formal research payloads, while others have come from research based on the operation of International Space Station (ISS). We will review a selection of these experiments and results, as well as outline some of ongoing and upcoming research. The ISS represents the only microgravity opportunity to perform on-orbit long-duration studies of human health and performance and technologies relevant for future long-duration missions planned during the next 25 years. Even as NASA focuses on developing the Orion spacecraft and return to the moon (2015-2020), research on and operation of the ISS is fundamental to the success of NASA s Exploration Vision.

  19. NASA Utilization of the International Space Station and the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Thomas, Donald A.; Thumm, Tracy L.

    2006-01-01

    In response to the U.S. President's Vision for Space Exploration (January 14, 2004), NASA has revised its utilization plans for ISS to focus on (1) research on astronaut health and the development of countermeasures that will protect our crews from the space environment during long duration voyages, (2) ISS as a test bed for research and technology developments that will insure vehicle systems and operational practices are ready for future exploration missions, (3) developing and validating operational practices and procedures for long-duration space missions. In addition, NASA will continue a small amount of fundamental research in life and microgravity sciences. There have been significant research accomplishments that are important for achieving the Exploration Vision. Some of these have been formal research payloads, while others have come from research based on the operation of International Space Station (ISS). We will review a selection of these experiments and results, as well as outline some of ongoing and upcoming research. The ISS represents the only microgravity opportunity to perform on-orbit long-duration studies of human health and performance and technologies relevant for future long-duration missions planned during the next 25 years. Even as NASA focuses on developing the Orion spacecraft and return to the moon (2015-2020), research on and operation of the ISS is fundamental to the success of NASA s Exploration Vision.

  20. Risk of Adverse Health Outcomes and Decrements in Performance Due to In-flight Medical Conditions

    NASA Technical Reports Server (NTRS)

    Antonsen,Erik

    2017-01-01

    The drive to undertake long-duration space exploration missions at greater distances from Earth gives rise to many challenges concerning human performance under extreme conditions. At NASA, the Human Research Program (HRP) has been established to investigate the specific risks to astronaut health and performance presented by space exploration, in addition to developing necessary countermeasures and technology to reduce risk and facilitate safer, more productive missions in space (NASA Human Research Program 2009). The HRP is divided into five subsections, covering behavioral health, space radiation, habitability, and other areas of interest. Within this structure is the ExMC Element, whose research contributes to the overall development of new technologies to overcome the challenges of expanding human exploration and habitation of space. The risk statement provided by the HRP to the ExMC Element states: "Given that medical conditions/events will occur during human spaceflight missions, there is a possibility of adverse health outcomes and decrements in performance in mission and for long term health" (NASA Human Research Program 2016). Within this risk context, the Exploration Medical Capabilities (ExMC) Element is specifically concerned with establishing evidenced-based methods of monitoring and maintaining astronaut health. Essential to completing this task is the advancement in techniques that identify, prevent, and treat any health threats that may occur during space missions. The ultimate goal of the ExMC Element is to develop and demonstrate a pathway for medical system integration into vehicle and mission design to mitigate the risk of medical issues. Integral to this effort is inclusion of an evidence-based medical and data handling system appropriate for long-duration, exploration-class missions. This requires a clear Concept of Operations, quantitative risk metrics or other tools to address changing risk throughout a mission, and system scoping and system engineering. Because of the novel nature of the risks involved in exploration missions, new and complex ethical challenges are likely to be encountered. This document describes the relevant background and evidence that informs the development of an exploration medical system.

  1. Micro-Power Sources Enabling Robotic Outpost Based Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    West, W. C.; Whitacre, J. F.; Ratnakumar, B. V.; Brandon, E. J.; Studor, G. F.

    2001-01-01

    Robotic outpost based exploration represents a fundamental shift in mission design from conventional, single spacecraft missions towards a distributed risk approach with many miniaturized semi-autonomous robots and sensors. This approach can facilitate wide-area sampling and exploration, and may consist of a web of orbiters, landers, or penetrators. To meet the mass and volume constraints of deep space missions such as the Europa Ocean Science Station, the distributed units must be fully miniaturized to fully leverage the wide-area exploration approach. However, presently there is a dearth of available options for powering these miniaturized sensors and robots. This group is currently examining miniaturized, solid state batteries as candidates to meet the demand of applications requiring low power, mass, and volume micro-power sources. These applications may include powering microsensors, battery-backing rad-hard CMOS memory and providing momentary chip back-up power. Additional information is contained in the original extended abstract.

  2. Applications for Mission Operations Using Multi-agent Model-based Instructional Systems with Virtual Environments

    NASA Technical Reports Server (NTRS)

    Clancey, William J.

    2004-01-01

    This viewgraph presentation provides an overview of past and possible future applications for artifical intelligence (AI) in astronaut instruction and training. AI systems have been used in training simulation for the Hubble Space Telescope repair, the International Space Station, and operations simulation for the Mars Exploration Rovers. In the future, robots such as may work as partners with astronauts on missions such as planetary exploration and extravehicular activities.

  3. International Space Station-Based Electromagnetic Launcher for Space Science Payloads

    NASA Technical Reports Server (NTRS)

    Jones, Ross M.

    2013-01-01

    A method was developed of lowering the cost of planetary exploration missions by using an electromagnetic propulsion/launcher, rather than a chemical-fueled rocket for propulsion. An electromagnetic launcher (EML) based at the International Space Station (ISS) would be used to launch small science payloads to the Moon and near Earth asteroids (NEAs) for the science and exploration missions. An ISS-based electromagnetic launcher could also inject science payloads into orbits around the Earth and perhaps to Mars. The EML would replace rocket technology for certain missions. The EML is a high-energy system that uses electricity rather than propellant to accelerate payloads to high velocities. The most common type of EML is the rail gun. Other types are possible, e.g., a coil gun, also known as a Gauss gun or mass driver. The EML could also "drop" science payloads into the Earth's upper

  4. Teleoperation support for early human planetary missions.

    PubMed

    Genta, Giancarlo; Perino, Maria Antonietta

    2005-12-01

    A renewed interest in human exploration is flourishing among all the major spacefaring nations. In fact, in the complex scene of planned future space activities, the development of a Moon base and the human exploration of Mars might have the potential to renew the enthusiasm in expanding the human presence beyond the boundaries of Earth. Various initiatives have been undertaken to define scenarios and identify the required infrastructures and related technology innovations. The typical proposed approach follows a multistep strategy, starting with a series of precursor robotic missions to acquire further knowledge of the planet and to select the best potential landing sites, and evolving toward more demanding missions for the development of a surface infrastructure necessary to sustain human presence. The technologies involved in such a demanding enterprise range from typical space technologies, like transportation and propulsion, automation and robotics, rendezvous and docking, entry/reentry, aero-braking, navigation, and deep space communications, to human-specific issues like physiology, psychology, behavioral aspects, and nutritional science for long-duration exposure, that go beyond the traditional boundaries of space activities. Among the required elements to support planetary exploration, both for the precursor robotic missions and to sustain human exploration, rovers and trucks play a key role. A robust level of autonomy will need to be secured to perform preplanned operations, particularly for the surface infrastructure development, and a teleoperated support, either from Earth or from a local base, will enhance the in situ field exploration capability.

  5. Shared Space, Liminal Space: Five Years into a Community-University Place-Based Experiment

    ERIC Educational Resources Information Center

    Barajas, Heidi Lasley; Martin, Lauren

    2016-01-01

    This article explores shared space at the University of Minnesota's Robert J. Jones Urban Research and Outreach Engagement Center (UROC), located four miles off campus in a community strong in assets, but facing inequality, disinvestment and racism. UROC's mission promotes university-community collaboration to solve critical urban challenges. We…

  6. Accommodations: Staff Identity and University Space

    ERIC Educational Resources Information Center

    Cox, Andrew; Herrick, Tim; Keating, Patrick

    2012-01-01

    Space has been of growing significance in social theory in recent years, yet, explorations of it in the scholarship of higher education have been limited. This is surprising, given the critical role space has in shaping staff and students' engagement with the university. Taking a practice-based approach and focusing on academic identities, this…

  7. Translational Research and Medicine at NASA: From Earth to Space and Back Again

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J.; Cohrs, Randall; Crucian, Brian A,; Levine Benjamin; Otto, Christian; Ploutz-Schneider, Lori; Shackelford, Linda C.

    2014-01-01

    The Space Environment provides many challenges to the human physiology and therefore to extended habitation and exploration. Translational research and medical strategies are meeting these challenges by combining Earth based medical solutions with innovative and developmental engineering approaches. Translational methodologies are current applied to spaceflight related dysregulations in the areas of: (1) cardiovascular fluid shifts, intracranial hypertension and neuro-ocular impairment 2) immune insufficiency and suppression/viral re-expression, 3) bone loss and fragility (osteopenia/osteoporosis) and muscle wasting, and finally 4) radiation sensitivity and advanced ageing. Over 40 years of research into these areas have met with limited success due to lack of tools and basic understanding of central issues that cause physiologic maladaptaion and distrupt homeostatis. I will discuss the effects of living in space (reduced gravity, increased radiation and varying atmospheric conditions [EVA]) during long-duration, exploration-class missions and how translational research has benefited not only space exploration but also Earth based medicine. Modern tools such as telemedicine advances in genomics, proteomics, and metabolomics (Omicssciences) has helped address syndromes, at the systemic level by enlisting a global approach to assessing spaceflight physiology and to develop countermeasures thereby permitting our experience in space to be translated to the Earth's medical community.

  8. The exploration of outer space with cameras: A history of the NASA unmanned spacecraft missions

    NASA Astrophysics Data System (ADS)

    Mirabito, M. M.

    The use of television cameras and other video imaging devices to explore the solar system's planetary bodies with unmanned spacecraft is chronicled. Attention is given to the missions and the imaging devices, beginning with the Ranger 7 moon mission, which featured the first successfully operated electrooptical subsystem, six television cameras with vidicon image sensors. NASA established a network of parabolic, ground-based antennas on the earth (the Deep Space Network) to receive signals from spacecraft travelling farther than 16,000 km into space. The image processing and enhancement techniques used to convert spacecraft data transmissions into black and white and color photographs are described, together with the technological requirements that drove the development of the various systems. Terrestrial applications of the planetary imaging systems are explored, including medical and educational uses. Finally, the implementation and functional characteristics of CCDs are detailed, noting their installation on the Space Telescope.

  9. Early Program Development

    NASA Image and Video Library

    1970-01-01

    This 1970 artist's concept shows the Nuclear Shuttle and Space Tug operating in conjunction with other spacecraft to support lunar exploration. Marshall Space Flight Center plans during the late 1960s for lunar orbital and surface bases required extensive logistics operations in lunar orbit.

  10. International Space Station: National Laboratory Education Concept Development Report

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The International Space Station (ISS) program has brought together 16 spacefaring nations in an effort to build a permanent base for human explorers in low-Earth orbit, the first stop past Earth in humanity's path into space. The ISS is a remarkably capable spacecraft, by significant margins the largest and most complex space vehicle ever built. Planned for completion in 2010, the ISS will provide a home for laboratories equipped with a wide array of resources to develop and test the technologies needed for future generations of space exploration. The resources of the only permanent base in space clearly have the potential to find application in areas beyond the research required to enable future exploration missions. In response to Congressional direction in the 2005 National Aeronautics and Space Administration (NASA) Authorization Act, NASA has begun to examine the value of these unique capabilities to other national priorities, particularly education. In early 2006, NASA invited education experts from other Federal agencies to participate in a Task Force charged with developing concepts for using the ISS for educational purposes. Senior representatives from the education offices of the Department of Defense, Department of Education, Department of Energy, National Institutes of Health, and National Science Foundation agreed to take part in the Task Force and have graciously contributed their time and energy to produce a plan that lays out a conceptual framework for potential utilization of the ISS for educational activities sponsored by Federal agencies as well as other future users.

  11. A Sustainable, Reliable Mission-Systems Architecture that Supports a System of Systems Approach to Space Exploration

    NASA Technical Reports Server (NTRS)

    Watson, Steve; Orr, Jim; O'Neil, Graham

    2004-01-01

    A mission-systems architecture based on a highly modular "systems of systems" infrastructure utilizing open-standards hardware and software interfaces as the enabling technology is absolutely essential for an affordable and sustainable space exploration program. This architecture requires (a) robust communication between heterogeneous systems, (b) high reliability, (c) minimal mission-to-mission reconfiguration, (d) affordable development, system integration, and verification of systems, and (e) minimum sustaining engineering. This paper proposes such an architecture. Lessons learned from the space shuttle program are applied to help define and refine the model.

  12. Inflatable Vehicles for In-Situ Exploration of Titan

    NASA Technical Reports Server (NTRS)

    Jones, J. A.

    2001-01-01

    Space Inflatable vehicles have been finding popularity in recent years for applications as varied as spacecraft antennas, space-based telescopes, solar sails, and manned habitats. Another branch of space inflatable technology has also considered developing ambient-filled, solar balloons for Mars as well as ambient-filled inflatable rovers. More recently, some of these inflatable technologies have been applied to the outer solar system bodies with the result that there are some rather unique and compelling inflatable mission capabilities for in situ explorations of Titan, Triton, Uranus, and Neptune. Additional information is contained in the original extended abstract.

  13. Pegasus ICON Stage 1 Motor Arrival

    NASA Image and Video Library

    2017-02-16

    The first stage motor for the Orbital ATK Pegasus XL rocket arrives by truck at Building 1555 at Vandenberg Air Force Base in California. The Pegasus rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. ICON will launch from the Kwajalein Atoll aboard the Pegasus XL on Dec. 8, 2017. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  14. Pegasus ICON Stage 1 Motor Arrival

    NASA Image and Video Library

    2017-02-16

    The first stage motor for the Orbital ATK Pegasus XL rocket is offloaded from a truck at Building 1555 at Vandenberg Air Force Base in California. The Pegasus rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. ICON will launch from the Kwajalein Atoll aboard the Pegasus XL on Dec. 8, 2017. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  15. Pegasus ICON Wing Arrival

    NASA Image and Video Library

    2017-02-22

    The wing for the Orbital ATK Pegasus XL rocket arrives by truck at Building 1555 at Vandenberg Air Force Base in California. The Pegasus rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. ICON will launch from the Kwajalein Atoll aboard the Pegasus XL on Dec. 8, 2017. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  16. Pegasus ICON Stage 2 & 3 Motor Offload

    NASA Image and Video Library

    2017-05-05

    The third stage of the Orbital ATK Pegasus XL rocket is offloaded from a transport vehicle at Building 1555 at Vandenberg Air Force Base in California. The rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. ICON will launch from the Kwajalein Atoll aboard the Pegasus XL on Dec. 8, 2017. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  17. Pegasus ICON Wing Arrival

    NASA Image and Video Library

    2017-02-22

    Workers unload the wing for the Orbital ATK Pegasus XL rocket from a truck at Building 1555 at Vandenberg Air Force Base in California. The rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. ICON will launch from the Kwajalein Atoll aboard the Pegasus XL on Dec. 8, 2017. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  18. Pegasus ICON Wing Arrival

    NASA Image and Video Library

    2017-02-22

    Workers transfer the wing for the Orbital ATK Pegasus XL rocket from a truck to a forklift at Building 1555 at Vandenberg Air Force Base in California. The rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. ICON will launch from the Kwajalein Atoll aboard the Pegasus XL on Dec. 8, 2017. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  19. Pegasus ICON Wing Arrival

    NASA Image and Video Library

    2017-02-22

    The wing for the Orbital ATK Pegasus XL rocket was offloaded from a truck and transporter to Building 1555 at Vandenberg Air Force Base in California. The rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. ICON will launch from the Kwajalein Atoll aboard the Pegasus XL on Dec. 8, 2017. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  20. Pegasus ICON Stage 1 Motor Arrival

    NASA Image and Video Library

    2017-02-16

    The first stage motor for the Orbital ATK Pegasus XL rocket is moved into Building 1555 at Vandenberg Air Force Base in California. The rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. ICON will launch from the Kwajalein Atoll aboard the Pegasus XL on Dec. 8, 2017. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  1. Space activities in 2009/2010

    NASA Astrophysics Data System (ADS)

    Pagkratis, Spyros

    2011-09-01

    The global financial crisis of 2008 has created an economic environment unfavourable to public and corporate economic activity alike, which could not have left space activities unaffected. However, the effects of the crisis upon the space sector have been so far less damaging than anticipated. The following paper presents recent developments in the field of space policies, institutional budgets and commercial activity worldwide, in an effort to improve the understanding of the new trends in commercial and public space activities. It particularly explores the strategies followed by space stakeholders in different countries and regions in order to pursue their planned space programmes in view of difficult financial conditions. Finally, it highlights the differences in the outlook of space activities between established and emerging space-faring nations and attempts to explore their medium-term consequences on an international level. For this purpose, it was based on research conducted in the framework of a recent ESPI report on "Space Policies, Issues and trends in 2009/2010".

  2. Future of robotic space exploration: visions and prospects

    NASA Astrophysics Data System (ADS)

    Haidegger, Tamas

    Autonomous and remote controlled mobile robots and manipulators have already proved their utility throughout several successful national and international space missions. NASA and ESA both sent robots and probes to Mars and beyond in the past years, and the Space Shuttle and Space Station Remote Manipulator Systems brought recognition to CSA. These achievements gained public attention and acknowledgement; however, all are based on technologies developed decades ago. Even the Canadian Dexter robotic arm-to be delivered to the International Space Station this year-had been completed many years ago. In the past decade robotics has become ubiquitous, and the speed of development has increased significantly, opening space for grandiose future plans of autonomous exploration missions. In the mean time, space agencies throughout the world insist on running their own costly human space flight programs. A recent workshop at NASA dealing with the issue stated that the primary reason behind US human space exploration is not science; rather the USA wants to maintain its international leadership in this field. A second space-race may fall upon us, fueled by the desire of the developing space powers to prove their capabilities, mainly driven by national pride. The aim of the paper is to introduce the upcoming unmanned space exploration scenarios that are already feasible with present day robotic technology and to show their humandriven alternatives. Astronauts are to conquer Mars in the foreseeable future, in but robots could go a lot further already. Serious engineering constraints and possibilities are to be discussed, along with issues beyond research and development. Future mission design planning must deal with both the technological and political aspects of space. Compromising on the scientific outcome may pay well by taking advantage of public awareness and nation and international interests.

  3. SPECIAL COLLOQUIUM : Building a Commercial Space Launch System and the Role of Space Tourism in the Future (exceptionally on Tuesday)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitehorn, Will

    The talk will explore a little of the history of space launch systems and rocketry, will explain why commercial space tourism did not take off after Apollo, and what is happening right now with commercial space systems such as Virgin's, utilising advances in aerospace technology not exploited by conventional ground-based rocket systems. I will then explain the Virgin Galactic technology, its business plan as a US-regulated space tourism company, and the nature of its applications. I will then go on to say a little of how our system can be utilised for sub-orbital space science based on a commercial business plan

  4. SPECIAL COLLOQUIUM : Building a Commercial Space Launch System and the Role of Space Tourism in the Future (exceptionally on Tuesday)

    ScienceCinema

    Whitehorn, Will

    2017-12-15

    The talk will explore a little of the history of space launch systems and rocketry, will explain why commercial space tourism did not take off after Apollo, and what is happening right now with commercial space systems such as Virgin's, utilising advances in aerospace technology not exploited by conventional ground-based rocket systems. I will then explain the Virgin Galactic technology, its business plan as a US-regulated space tourism company, and the nature of its applications. I will then go on to say a little of how our system can be utilised for sub-orbital space science based on a commercial business plan

  5. Targeting Cislunar Near Rectilinear Halo Orbits for Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Williams, Jacob; Lee, David E.; Whitley, Ryan J.; Bokelmann, Kevin A.; Davis, Diane C.; Berry, Christopher F.

    2017-01-01

    Part of the challenge of charting a human exploration space architecture is finding locations to stage missions to multiple destinations. To that end, a specific subset of Earth-Moon halo orbits, known as Near Rectilinear Halo Orbits (NRHOs) are evaluated. In this paper, a systematic process for generating full ephemeris based ballistic NRHOs is outlined, different size NRHOs are examined for their favorability to avoid eclipses, the performance requirements for missions to and from NRHOs are calculated, and disposal options are evaluated. Combined, these studies confirm the feasibility of cislunar NRHOs to enable human exploration in the cislunar proving ground.

  6. SPICE-Based Python Packages for ESA Solar System Exploration Mission's Geometry Exploitation

    NASA Astrophysics Data System (ADS)

    Costa, M.; Grass, M.

    2018-04-01

    This contribution outlines three Python packages to provide an enhanced and extended usage of SPICE Toolkit APIS providing higher-level functions and data quick-look capabilities focused on European Space Agency solar system exploration missions.

  7. Challenges of Communications and Tracking for Solar System Small Body Exploration

    NASA Technical Reports Server (NTRS)

    Rush, John J.; Lichten, Stephen M.; Srinivasan, Jeffrey M.

    2011-01-01

    This presentation will address: (1) Communications capabilities that will be needed for space missions for Small Planetary Body exploration (2) Utilization of large ground-based radar capabilities for Small Body remote sensing and mission planning

  8. Protecting the Moon for research: ILEWG report

    NASA Astrophysics Data System (ADS)

    Foing, Bernard H.

    We give a report on recommendations with emphasis on environment protection, and since last COSPAR from ILEWG International conferences Exploration and Utilisation of the Moon on held at Cape Canaveral in 2008 (ICEUM10), and in Beijing in May 2010 with IAF (GLUC -ICEUM11). We discuss the different rationale for Moon exploration, as debated at ILEWG. ILEWG Science task group has listed priorities for scientific investigations: clues on the formation and evolution of rocky planets, accretion and bombardment in the inner solar system, comparative planetology processes (tectonic, volcanic, impact cratering, volatile delivery), records astrobiology, survival of organics; past, present and future life; sciences from a biology lunar laboratory. We discuss how to preserve Moon research potential in these areas while operating with instruments, landers, rover during a cooperative robotic village, and during the transition form lunar human outpost to permanent sustainable human base. We discuss how Moon-Mars Exploration can inspire solutions to global Earth sustained development with the trade-off of In-Situ Utilisation of resources; Establishment of permanent robotic infrastructures, Environmental and planetary protection aspects and lessons for Mars; Life sciences laboratories, and support to human exploration. Co-authors: ILEWG Task Groups on Science, Technology and Human Lunar Bases ILEWG Reference documents: http://sci.esa.int/ilewg -10th ILEWG Conference on Exploration and Utilisation of the Moon, NASA Lunar Ex-ploration Analysis Group-PSace Resources Roundtable, Cape Canaveral October 2008, pro-gramme online at http://sci.esa.int/ilewg/ -9th ILEWG Conference on Exploration and Utilisation of the Moon, ICEUM9 Sorrento 2007, programme online at http://sci.esa.int/ilewg/ -8th ILEWG Conference on Exploration and Utilisation of the Moon, Beijing July 2006, programme online at http://sci.esa.int/ilewg/ -The Moon and Near Earth Objects (P. Ehrenfreund , B.H. Foing, A. Cellino Editors), Ad-vances in Space Research, Volume 37, Issue 1, pp 1-192, 2006 -7th ILEWG Conference on Exploration and Utilisation of the Moon, Toronto Sept 2005, Programme and Proceedings on line at www.ilewg.org, R. Richards et al Editors -6th ILEWG Conference on Exploration and Utilisation of the Moon, Udaipur Nov. 2004, Proceedings ( N. Bhandari Editor), Journal Earth System Science, India, 114, No6, Dec 2005, pp. 573-841 -5th ILEWG Conference on Exploration and Utilisation of the Moon, Hawaii Nov 2003, Pro-ceedings ILC2005/ICEUM5 (S.M. Durst et al Editors), Vol 108, 1-576 pp, Science and Tech-nology Series, American Astronautical Society, 2004 -'The next steps in exploring deep space -A cosmic study by the IAA', W. Huntress, D. Stetson, R. Farquhar, J. Zimmerman, B. Clark, W. O'Neil, R. Bourke and B. Foing, Acta Astronautica, Vol 58, Issues 6-7, March-April 2006, p302-377 -IAA/ESA workshop on "Next Steps in Exploring Deep Space", ESTEC 22-23 sept. 2003 (B.H. Foing W. Huntress, conveners) Lunar Exploration, Planetary and Space Science, Vol 50, issue 14-15, Dec 2002 (B.H. Foing al) -ESLAB36 symposium on "Earth-like Planets and Moons", 2002, ESA-SP514, pp. 1-356, (B.H.Foing B. Battrick, editors) -'Lunar Exploration 2000', (B.H. Foing, D. Heather, Editors), Adv. Space Research Vol 30, Nr 8, 2002 -'Earth-Moon Relationships', Proceedings of the Conference held in Padova, Italy at the Ac-cademia Galileiana di Scienze Lettere ed Arti, Nov. 2000, (C. Barbieri and F. Rampazzi, Editors), in Earth, Moon , Planets Vol. 85-86, Nos 1-3, pp 1-575, 2001 -4th International Conference on Exploration and Utilisation of the Moon, ESTEC, 2000, ESA SP-462 (B.H. Foing M. Perry, editors) -Investing in Space: The Challenge for Europe. Long-Term Space Policy Committee, Second Report, May 1999. ESA-SP-2000 -2nd International Lunar Workshop, held at Kyoto in October 1996, Proceedings, H. Mizutani, editor, Japan Space Forum Publisher, 1997 International Lunar Workshop, 1994 May 31-June 3, Beatenberg, Switzerland. Proceedings. Ed. Balsiger, H. et al. European Space Agency, 1994. ESA-SP-1170 -Astronomy and Space Science from the Moon', Proceedings of COSPAR/IAF session at World Congress, Washington, (B.H. Foing et al editors), Advances in Space Research, Volume 14, Issue 6, 1994 -Mission to the Moon, Europe's Priorities for Scientific Exploration and Utilisation of the Moon', R.M. Bonnet et al, European Space Agency, ESA SP-1150, June 1992

  9. Advances in Autonomous Systems for Missions of Space Exploration

    NASA Astrophysics Data System (ADS)

    Gross, A. R.; Smith, B. D.; Briggs, G. A.; Hieronymus, J.; Clancy, D. J.

    New missions of space exploration will require unprecedented levels of autonomy to successfully accomplish their objectives. Both inherent complexity and communication distances will preclude levels of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of meeting the greatly increased space exploration requirements, along with dramatically reduced design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health monitoring and maintenance capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of space exploration, since the science and operational requirements specified by such missions, as well as the budgetary constraints that limit the ability to monitor and control these missions by a standing army of ground- based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communications distance as are not otherwise possible, as well as many more efficient and low cost applications. One notable example of such missions are those to explore for the existence of water on planets such as Mars and the moons of Jupiter. It is clear that water does not exist on the surfaces of such bodies, but may well be located at some considerable depth below the surface, thus requiring a subsurface drilling capability. Subsurface drilling on planetary surfaces will require a robust autonomous control and analysis system, currently a major challenge, but within conceivable reach of planned technology developments. This paper will focus on new and innovative software for remote, autonomous, space systems flight operations, including flight test results, lessons learned, and implications for the future. An additional focus will be on technologies for planetary exploration using autonomous systems and astronaut-assistance systems that employ new spoken language technology. Topics to be presented will include a description of key autonomous control concepts, illustrated by the Remote Agent program that commanded the Deep Space 1 spacecraft to new levels of system autonomy, recent advances in distributed autonomous system capabilities, and concepts for autonomous vehicle health management systems. A brief description of teaming spacecraft and rovers for complex exploration missions will also be provided. New software for autonomous science data acquisition for planetary exploration will also be described, as well as advanced systems for safe planetary landings. Current results of autonomous planetary drilling system research will be presented. A key thrust within NASA is to develop technologies that will leverage the capabilities of human astronauts during planetary surface explorations. One such technology is spoken dialogue interfaces, which would allow collaboration with semi-autonomous agents that are engaged in activities that are normally accomplished using language, e.g., astronauts in space suits interacting with groups of semi-autonomous rovers and other astronauts. This technology will be described and discussed in the context of future exploration missions and the major new capabilities enabled by such systems. Finally, plans and directions for the future of autonomous systems will be presented.

  10. Space-Based Gravitational-Wave Observatory (SGO) Mission Concept Study

    NASA Technical Reports Server (NTRS)

    Livas, Jeffrey; McNamara, Paul; Jennrich, Oliver

    2012-01-01

    The LISA Mission Concept has been under study for over two decades as a space-based gravitational-wave detector capable of observing astrophysical sources in the 0.0001 to 1 Hz band. The concept has consistently received strong recommendations from various review panels based on the expected science, most recently from the US Astr02010 Decadal Review. Budget constraints have led both the US and European Space agencies to search for lower cost options. We report results from the US effort to explore the tradeoffs between mission cost and science return.

  11. Exploring the Solar System: A Literature Unit within a Whole Language Context.

    ERIC Educational Resources Information Center

    Sandel, Lenore

    A useful framework for literature-based instruction is the curriculum related literature unit which provides a total resource for content area teaching. Such a unit could be based on the science curriculum, "Exploring the Solar System," and could be developed thematically through topics of space or the solar system. The teacher's initial…

  12. Low Gravity Materials Science Research for Space Exploration

    NASA Technical Reports Server (NTRS)

    Clinton, R. G., Jr.; Semmes, Edmund B.; Schlagheck, Ronald A.; Bassler, Julie A.; Cook, Mary Beth; Wargo, Michael J.; Sanders, Gerald B.; Marzwell, Neville I.

    2004-01-01

    On January 14, 2004, the President of the United States announced a new vision for the United States civil space program. The Administrator of the National Aeronautics and Space Administration (NASA) has the responsibility to implement this new vision. The President also created a Presidential Commission 'to obtain recommendations concerning implementation of the new vision for space exploration.' The President's Commission recognized that achieving the exploration objectives would require significant technical innovation, research, and development in focal areas defined as 'enabling technologies.' Among the 17 enabling technologies identified for initial focus were advanced structures; advanced power and propulsion; closed-loop life support and habitability; extravehicular activity system; autonomous systems and robotics; scientific data collection and analysis; biomedical risk mitigation; and planetary in situ resource utilization. The Commission also recommended realignment of NASA Headquarters organizations to support the vision for space exploration. NASA has aggressively responded in its planning to support the vision for space exploration and with the current considerations of the findings and recommendations from the Presidential Commission. This presentation will examine the transformation and realignment activities to support the vision for space exploration that are underway in the microgravity materials science program. The heritage of the microgravity materials science program, in the context of residence within the organizational structure of the Office of Biological and Physical Research, and thematic and sub-discipline based research content areas, will be briefly examined as the starting point for the ongoing transformation. Overviews of future research directions will be presented and the status of organizational restructuring at NASA Headquarters, with respect to influences on the microgravity materials science program, will be discussed. Additional information is included in the original extended abstract.

  13. Exploring Space Physics Concepts Using Simulation Results

    NASA Astrophysics Data System (ADS)

    Gross, N. A.

    2008-05-01

    The Center for Integrated Space Weather Modeling (CISM), a Science and Technology Center (STC) funded by the National Science Foundation, has the goal of developing a suite of integrated physics based computer models of the space environment that can follow the evolution of a space weather event from the Sun to the Earth. In addition to the research goals, CISM is also committed to training the next generation of space weather professionals who are imbued with a system view of space weather. This view should include an understanding of both helio-spheric and geo-space phenomena. To this end, CISM offers a yearly Space Weather Summer School targeted to first year graduate students, although advanced undergraduates and space weather professionals have also attended. This summer school uses a number of innovative pedagogical techniques including devoting each afternoon to a computer lab exercise that use results from research quality simulations and visualization techniques, along with ground based and satellite data to explore concepts introduced during the morning lectures. These labs are suitable for use in wide variety educational settings from formal classroom instruction to outreach programs. The goal of this poster is to outline the goals and content of the lab materials so that instructors may evaluate their potential use in the classroom or other settings.

  14. KSC-2014-2500

    NASA Image and Video Library

    2014-05-11

    CAPE CANAVERAL, Fla. – San Diego Padres fans talk to Doug Lenhardt, Kennedy Space Center's Exploration Flight Test-1, or EFT-1, mission integration manager outside Petco Field in San Diego, California. NASA's Orion boilerplate test vehicle is on display. The boilerplate test vehicle is being prepared for an Exploration Flight Test-1, or EFT-1, pre-transportation test. The Ground Systems Development and Operations Program will run the test at the U.S. Naval Base San Diego to simulate retrieval and transportation procedures for Orion after it splashes down in the ocean and is retrieved for return to land and ground transportation back to Kennedy Space Center in Florida. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett

  15. Development of Improved and Novel Thermal Control Coatings (Preprint)

    DTIC Science & Technology

    2007-05-01

    a ZnO-based coating (Figure 5). A product offered by the 3M Corporation composed of hollow soda - lime borosilicate spheres with diameters ranging...as well as the current zinc oxide based coatings. In addition, a novel pigment concept based on hollow silica particles is continuing to be explored...coatings. In addition, a novel pigment concept based on hollow silica particles is continuing to be explored as an extremely space durable and

  16. The OAST space power program

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.

    1991-01-01

    The NASA Office of Aeronautics and Space Technology (OAST) space power program was established to provide the technology base to meet power system requirements for future space missions, including the Space Station, earth orbiting spacecraft, lunar and planetary bases, and solar system exploration. The program spans photovoltaic energy conversion, chemical energy conversion, thermal energy conversion, power management, thermal management, and focused initiatives on high-capacity power, surface power, and space nuclear power. The OAST space power program covers a broad range of important technologies that will enable or enhance future U.S. space missions. The program is well under way and is providing the kind of experimental and analytical information needed for spacecraft designers to make intelligent decisions about future power system options.

  17. KSC-2012-4887

    NASA Image and Video Library

    2012-09-05

    CAPE CANAVERAL, Fla. – Inside the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida, technicians monitor the progress as a crane is used to move the Orion Exploration Flight Test 1 crew module to the base of a birdcage tool. The birdcage will be used to continue installation of external components in preparation for Orion’s first uncrewed test flight in 2014 atop a Delta IV rocket. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. A second uncrewed flight test is scheduled for 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett

  18. Future In-Space Operations (FISO): A Working Group and Community Engagement

    NASA Technical Reports Server (NTRS)

    Thronson, Harley; Lester, Dan

    2013-01-01

    Long-duration human capabilities beyond low Earth orbit (LEO), either in support of or as an alternative to lunar surface operations, have been assessed at least since the late 1960s. Over the next few months, we will present short histories of concepts for long-duration, free-space human habitation beyond LEO from the end of the Apollo program to the Decadal Planning Team (DPT)/NASA Exploration Team (NExT), which was active in 1999 2000 (see Forging a vision: NASA s Decadal Planning Team and the origins of the Vision for Space Exploration , The Space Review, December 19, 2005). Here we summarize the brief existence of the Future In-Space Operations (FISO) working group in 2005 2006 and its successor, a telecon-based colloquium series, which we co-moderate.

  19. NASA'S information technology activities for the 90's

    NASA Technical Reports Server (NTRS)

    Holcomb, Lee; Erickson, Dan

    1991-01-01

    The Office of Aeronautics, Exploration and Technology (OAET) is completing an extensive assessment of its nearly five hundred million dollars of proposed space technology development work. The budget is divided into four segments which are as follows: (1) the base research and technology program; (2) the Civil Space Technology Initiative (CSTI); (3) the Exploration Technology Program (ETP); and (4) the High Performance Computing Initiative (HPCI). The programs are briefly discussed in the context of Astrotech 21.

  20. Peer-to-Peer Human-Robot Interaction for Space Exploration

    NASA Technical Reports Server (NTRS)

    Fong, Terrence; Nourbakhsh, Illah

    2004-01-01

    NASA has embarked on a long-term program to develop human-robot systems for sustained, affordable space exploration. To support this mission, we are working to improve human-robot interaction and performance on planetary surfaces. Rather than building robots that function as glorified tools, our focus is to enable humans and robots to work as partners and peers. In this paper. we describe our approach, which includes contextual dialogue, cognitive modeling, and metrics-based field testing.

  1. Pax permanent Martian base: Space architecture for the first human habitation on Mars, volume 5

    NASA Technical Reports Server (NTRS)

    Huebner-Moths, Janis; Fieber, Joseph P.; Rebholz, Patrick J.; Paruleski, Kerry L.; Moore, Gary T. (Editor)

    1992-01-01

    America at the Threshold: Report of the Synthesis Group on America's Space Exploration Initiative (the 'Synthesis Report,' sometimes called the Stafford Report after its astronaut chair, published in 1991) recommended that NASA explore what it called four 'architectures,' i.e., four different scenarios for habitation on Mars. The Advanced Design Program in Space Architecture at the University of Wisconsin-Milwaukee supported this report and two of its scenarios--'Architecture 1' and 'Architecture 4'--during the spring of 1992. This report investigates the implications of different mission scenarios, the Martian environment, supporting technologies, and especially human factors and environment-behavior considerations for the design of the first permanent Martian base. The report is comprised of sections on mission analysis, implications of the Martian atmosphere and geologic environment, development of habitability design requirements based on environment-behavior and human factors research, and a full design proposed (concept design and design development) for the first permanent Martian base and habitat. The design is presented in terms of a base site plan, master plan based on a Mars direct scenario phased through IOC, and design development details of a complete Martian habitat for 18 crew members including all laboratory, mission control, and crew support spaces.

  2. Pegasus ICON Lift onto Assembly Integration Trailer (AIT)

    NASA Image and Video Library

    2017-08-23

    The Orbital ATK Pegasus XL rocket, with NASA's Ionospheric Connection Explorer (ICON) spacecraft attached, is moved on an assembly integration trailer from one high bay to another Aug. 23, 2017, at Building 1555 at Vandenberg Air Force Base in California. The Pegasus rocket is being prepared for the ICON mission. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on the Pegasus XL, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology and communications systems.

  3. Pegasus ICON Solar Array Illumination Test

    NASA Image and Video Library

    2018-05-04

    A solar array illumination test is performed on NASA's Ionospheric Connection Explorer (ICON) in a clean room inside Building 1555 at Vandenberg Air Force Base in California on May 4, 2018. The test checks for any imperfections and confirms that the solar arrays are functioning properly. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  4. Pegasus ICON Fairing Arrival

    NASA Image and Video Library

    2017-08-04

    Orbital ATK technicians remove the first half of the payload fairing for the Orbital ATK Pegasus XL rocket from its shipping container Aug. 4, 2017, at Vandenberg Air Force Base in California. The Pegasus rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  5. Pegasus ICON Lift onto Assembly Integration Trailer (AIT)

    NASA Image and Video Library

    2017-08-23

    The Orbital ATK Pegasus XL rocket, with NASA's Ionospheric Connection Explorer (ICON) spacecraft attached, is secured on an assembly integration trailer Aug. 23, 2017, inside Building 1555 at Vandenberg Air Force Base in California. The Pegasus rocket is being prepared for the ICON mission. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on the Pegasus XL, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology and communications systems.

  6. Pegasus ICON Solar Array Illumination Test

    NASA Image and Video Library

    2018-05-04

    A solar array illumination test is performed on NASA's Ionospheric Connection Explorer (ICON) in a clean room on May 4, 2018, inside Building 1555 at Vandenberg Air Force Base in California. The test checks for any imperfections and confirms that the solar arrays are functioning properly. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  7. Pegasus ICON Solar Array Illumination Test

    NASA Image and Video Library

    2018-05-04

    NASA's Ionospheric Connection Explorer (ICON) is prepared for a solar array illumination test in a clean room inside Building 1555 at Vandenberg Air Force Base in California on May 4, 2018. The test checks for any imperfections and confirms that the solar arrays are functioning properly. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  8. Pegasus ICON Fairing Arrival

    NASA Image and Video Library

    2017-08-04

    Orbital ATK technicians remove the second half of the payload fairing for the Orbital ATK Pegasus XL rocket from its shipping container Aug. 4, 2017, at Vandenberg Air Force Base in California. The Pegasus rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  9. Pegasus ICON Lift onto Assembly Integration Trailer (AIT)

    NASA Image and Video Library

    2017-08-23

    The Orbital ATK Pegasus XL rocket, with NASA's Ionospheric Connection Explorer (ICON) spacecraft attached, is being moved on an assembly integration trailer from one high bay to another Aug. 23, 2017, at Building 1555 at Vandenberg Air Force Base in California. The Pegasus rocket is being prepared for the ICON mission. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on the Pegasus XL, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology and communications systems.

  10. Pegasus ICON Aft Skirt Installation

    NASA Image and Video Library

    2017-07-08

    Technician install the aft skirt on the Orbital ATK Pegasus XL rocket July 8, 2017, inside Building 1555 at Vandenberg Air Force Base in California. When the aft skirt is installed, the rudder and fins can be installed. The Pegasus rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATKS's Pegasus XL, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  11. Pegasus ICON Aft Skirt Installation

    NASA Image and Video Library

    2017-07-08

    Technicians install the aft skirt on the Orbital ATK Pegasus XL rocket July 8, 2017, inside Building 1555 at Vandenberg Air Force Base in California. When the aft skirt is installed, the rudder and fins can be installed. The Pegasus rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATKS's Pegasus XL, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  12. Pegasus ICON Solar Array Illumination Test

    NASA Image and Video Library

    2018-05-04

    Technicians prepare NASA's Ionospheric Connection Explorer (ICON) for a solar array illumination test in a clean room inside Building 1555 at Vandenberg Air Force Base in California on May 4, 2018. The test checks for any imperfections and confirms that the solar arrays are functioning properly. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  13. Pegasus ICON Lift onto Assembly Integration Trailer (AIT)

    NASA Image and Video Library

    2017-08-23

    The Orbital ATK Pegasus XL rocket, with NASA's Ionospheric Connection Explorer (ICON) spacecraft attached, is moved on an assembly integration trailer into another high bay Aug. 23, 2017, at Building 1555 at Vandenberg Air Force Base in California. The Pegasus rocket is being prepared for the ICON mission. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on the Pegasus XL, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology and communications systems.

  14. Cooperative intelligent robotics in space III; Proceedings of the Meeting, Boston, MA, Nov. 16-18, 1992

    NASA Technical Reports Server (NTRS)

    Erickson, Jon D. (Editor)

    1992-01-01

    The present volume on cooperative intelligent robotics in space discusses sensing and perception, Space Station Freedom robotics, cooperative human/intelligent robot teams, and intelligent space robotics. Attention is given to space robotics reasoning and control, ground-based space applications, intelligent space robotics architectures, free-flying orbital space robotics, and cooperative intelligent robotics in space exploration. Topics addressed include proportional proximity sensing for telerobots using coherent lasar radar, ground operation of the mobile servicing system on Space Station Freedom, teleprogramming a cooperative space robotic workcell for space stations, and knowledge-based task planning for the special-purpose dextrous manipulator. Also discussed are dimensions of complexity in learning from interactive instruction, an overview of the dynamic predictive architecture for robotic assistants, recent developments at the Goddard engineering testbed, and parallel fault-tolerant robot control.

  15. Novelty Detection in and Between Different Modalities

    NASA Astrophysics Data System (ADS)

    Veflingstad, Henning; Yildirim, Sule

    2008-01-01

    Our general aim is to reflect the advances in artificial intelligence and cognitive science fields to space exploration studies such that next generation space rovers can benefit from these advances. We believe next generation space rovers can benefit from the studies related to employing conceptual representations in generating structured thought. This way, rovers need not be equipped with all necessary steps of an action plan to execute in space exploration but they can autonomously form representations of their world and reason on them to make intelligent decision. As part of this approach, autonomous novelty detection is an important feature of next generation space rovers. This feature allows a rover to make further decisions about exploring a rock sample more closely or not and on its own. This way, a rover will use less of its time for communication between the earth and itself and more of its time for achieving its assigned tasks in space. In this paper, we propose an artificial neural network based novelty detection mechanism that next generation space rovers can employ as part of their intelligence. We also present an implementation of such a mechanism and present its reliability in detecting novelty.

  16. Very large virtual compound spaces: construction, storage and utility in drug discovery.

    PubMed

    Peng, Zhengwei

    2013-09-01

    Recent activities in the construction, storage and exploration of very large virtual compound spaces are reviewed by this report. As expected, the systematic exploration of compound spaces at the highest resolution (individual atoms and bonds) is intrinsically intractable. By contrast, by staying within a finite number of reactions and a finite number of reactants or fragments, several virtual compound spaces have been constructed in a combinatorial fashion with sizes ranging from 10(11)11 to 10(20)20 compounds. Multiple search methods have been developed to perform searches (e.g. similarity, exact and substructure) into those compound spaces without the need for full enumeration. The up-front investment spent on synthetic feasibility during the construction of some of those virtual compound spaces enables a wider adoption by medicinal chemists to design and synthesize important compounds for drug discovery. Recent activities in the area of exploring virtual compound spaces via the evolutionary approach based on Genetic Algorithm also suggests a positive shift of focus from method development to workflow, integration and ease of use, all of which are required for this approach to be widely adopted by medicinal chemists.

  17. A Management Model for International Participation in Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    George, Patrick J.; Pease, Gary M.; Tyburski, Timothy E.

    2005-01-01

    This paper proposes an engineering management model for NASA's future space exploration missions based on past experiences working with the International Partners of the International Space Station. The authors have over 25 years of combined experience working with the European Space Agency, Japan Aerospace Exploration Agency, Canadian Space Agency, Italian Space Agency, Russian Space Agency, and their respective contractors in the design, manufacturing, verification, and integration of their elements electric power system into the United States on-orbit segment. The perspective presented is one from a specific sub-system integration role and is offered so that the lessons learned from solving issues of technical and cultural nature may be taken into account during the formulation of international partnerships. Descriptions of the types of unique problems encountered relative to interactions between international partnerships are reviewed. Solutions to the problems are offered, taking into consideration the technical implications. Through the process of investigating each solution, the important and significant issues associated with working with international engineers and managers are outlined. Potential solutions are then characterized by proposing a set of specific methodologies to jointly develop spacecraft configurations that benefits all international participants, maximizes mission success and vehicle interoperability while minimizing cost.

  18. Space-Time and Architecture

    NASA Astrophysics Data System (ADS)

    Field, F.; Goodbun, J.; Watson, V.

    Architects have a role to play in interplanetary space that has barely yet been explored. The architectural community is largely unaware of this new territory, for which there is still no agreed method of practice. There is moreover a general confusion, in scientific and related fields, over what architects might actually do there today. Current extra-planetary designs generally fail to explore the dynamic and relational nature of space-time, and often reduce human habitation to a purely functional problem. This is compounded by a crisis over the representation (drawing) of space-time. The present work returns to first principles of architecture in order to realign them with current socio-economic and technological trends surrounding the space industry. What emerges is simultaneously the basis for an ecological space architecture, and the representational strategies necessary to draw it. We explore this approach through a work of design-based research that describes the construction of Ocean; a huge body of water formed by the collision of two asteroids at the Translunar Lagrange Point (L2), that would serve as a site for colonisation, and as a resource to fuel future missions. Ocean is an experimental model for extra-planetary space design and its representation, within the autonomous discipline of architecture.

  19. Exploring the Functioning of Decision Space: A Review of the Available Health Systems Literature

    PubMed Central

    Roman, Tamlyn Eslie; Cleary, Susan; McIntyre, Diane

    2017-01-01

    Background: The concept of decision space holds appeal as an approach to disaggregating the elements that may influence decision-making in decentralized systems. This narrative review aims to explore the functioning of decision space and the factors that influence decision space. Methods: A narrative review of the literature was conducted with searches of online databases and academic journals including PubMed Central, Emerald, Wiley, Science Direct, JSTOR, and Sage. The articles were included in the review based on the criteria that they provided insight into the functioning of decision space either through the explicit application of or reference to decision space, or implicitly through discussion of decision-making related to organizational capacity or accountability mechanisms. Results: The articles included in the review encompass literature related to decentralisation, management and decision space. The majority of the studies utilise qualitative methodologies to assess accountability mechanisms, organisational capacities such as finance, human resources and management, and the extent of decision space. Of the 138 articles retrieved, 76 articles were included in the final review. Conclusion: The literature supports Bossert’s conceptualization of decision space as being related to organizational capacities and accountability mechanisms. These functions influence the decision space available within decentralized systems. The exact relationship between decision space and financial and human resource capacities needs to be explored in greater detail to determine the potential influence on system functioning. PMID:28812832

  20. Personalized medicine in human space flight: using Omics based analyses to develop individualized countermeasures that enhance astronaut safety and performance.

    PubMed

    Schmidt, Michael A; Goodwin, Thomas J

    2013-01-01

    Space flight is one of the most extreme conditions encountered by humans. Advances in Omics methodologies (genomics, transcriptomics, proteomics, and metabolomics) have revealed that unique differences exist between individuals. These differences can be amplified in extreme conditions, such as space flight. A better understanding of individual differences may allow us to develop personalized countermeasure packages that optimize the safety and performance of each astronaut. In this review, we explore the role of "Omics" in advancing our ability to: (1) more thoroughly describe the biological response of humans in space; (2) describe molecular attributes of individual astronauts that alter the risk profile prior to entering the space environment; (3) deploy Omics techniques in the development of personalized countermeasures; and (4) develop a comprehensive Omics-based assessment and countermeasure platform that will guide human space flight in the future. In this review, we advance the concept of personalized medicine in human space flight, with the goal of enhancing astronaut safety and performance. Because the field is vast, we explore selected examples where biochemical individuality might significantly impact countermeasure development. These include gene and small molecule variants associated with: (1) metabolism of therapeutic drugs used in space; (2) one carbon metabolism and DNA stability; (3) iron metabolism, oxidative stress and damage, and DNA stability; and (4) essential input (Mg and Zn) effects on DNA repair. From these examples, we advance the case that widespread Omics profiling should serve as the foundation for aerospace medicine and research, explore methodological considerations to advance the field, and suggest why personalized medicine may become the standard of care for humans in space.

  1. Passive Thermal Design Approach for the Space Communications and Navigation (SCaN) Testbed Experiment on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Siamidis, John; Yuko, Jim

    2014-01-01

    The Space Communications and Navigation (SCaN) Program Office at NASA Headquarters oversees all of NASAs space communications activities. SCaN manages and directs the ground-based facilities and services provided by the Deep Space Network (DSN), Near Earth Network (NEN), and the Space Network (SN). Through the SCaN Program Office, NASA GRC developed a Software Defined Radio (SDR) testbed experiment (SCaN testbed experiment) for use on the International Space Station (ISS). It is comprised of three different SDR radios, the Jet Propulsion Laboratory (JPL) radio, Harris Corporation radio, and the General Dynamics Corporation radio. The SCaN testbed experiment provides an on-orbit, adaptable, SDR Space Telecommunications Radio System (STRS) - based facility to conduct a suite of experiments to advance the Software Defined Radio, Space Telecommunications Radio Systems (STRS) standards, reduce risk (Technology Readiness Level (TRL) advancement) for candidate Constellation future space flight hardware software, and demonstrate space communication links critical to future NASA exploration missions. The SCaN testbed project provides NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in the laboratory and space environment based on reconfigurable, software defined radio platforms and the STRS Architecture.The SCaN testbed is resident on the P3 Express Logistics Carrier (ELC) on the exterior truss of the International Space Station (ISS). The SCaN testbed payload launched on the Japanese Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV) and was installed on the ISS P3 ELC located on the inboard RAM P3 site. The daily operations and testing are managed out of NASA GRC in the Telescience Support Center (TSC).

  2. CMsearch: simultaneous exploration of protein sequence space and structure space improves not only protein homology detection but also protein structure prediction.

    PubMed

    Cui, Xuefeng; Lu, Zhiwu; Wang, Sheng; Jing-Yan Wang, Jim; Gao, Xin

    2016-06-15

    Protein homology detection, a fundamental problem in computational biology, is an indispensable step toward predicting protein structures and understanding protein functions. Despite the advances in recent decades on sequence alignment, threading and alignment-free methods, protein homology detection remains a challenging open problem. Recently, network methods that try to find transitive paths in the protein structure space demonstrate the importance of incorporating network information of the structure space. Yet, current methods merge the sequence space and the structure space into a single space, and thus introduce inconsistency in combining different sources of information. We present a novel network-based protein homology detection method, CMsearch, based on cross-modal learning. Instead of exploring a single network built from the mixture of sequence and structure space information, CMsearch builds two separate networks to represent the sequence space and the structure space. It then learns sequence-structure correlation by simultaneously taking sequence information, structure information, sequence space information and structure space information into consideration. We tested CMsearch on two challenging tasks, protein homology detection and protein structure prediction, by querying all 8332 PDB40 proteins. Our results demonstrate that CMsearch is insensitive to the similarity metrics used to define the sequence and the structure spaces. By using HMM-HMM alignment as the sequence similarity metric, CMsearch clearly outperforms state-of-the-art homology detection methods and the CASP-winning template-based protein structure prediction methods. Our program is freely available for download from http://sfb.kaust.edu.sa/Pages/Software.aspx : xin.gao@kaust.edu.sa Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  3. Promoting Collaborative Practice and Reciprocity in Initial Teacher Education: Realising a "Dialogic Space" through Video Capture Analysis

    ERIC Educational Resources Information Center

    Youens, Bernadette; Smethem, Lindsey; Sullivan, Stefanie

    2014-01-01

    This paper explores the potential of video capture to generate a collaborative space for teacher preparation; a space in which traditional hierarchies and boundaries between actors (student teacher, school mentor and university tutor) and knowledge (academic, professional and practical) are disrupted. The study, based in a teacher education…

  4. Following Policy: Networks, Network Ethnography and Education Policy Mobilities

    ERIC Educational Resources Information Center

    Ball, Stephen J.

    2016-01-01

    Based on the "case" of educational reform in India, this paper explores the emergence of both new trans-national spaces of policy and new intra-national spaces of policy and how they are related together, and how policies move across and between these spaces and the relationships that enable and facilitate such movement. The paper is an…

  5. Space Launch System Complex Decision-Making Process

    NASA Technical Reports Server (NTRS)

    Lyles, Garry; Flores, Tim; Hundley, Jason; Monk, Timothy; Feldman,Stuart

    2012-01-01

    The Space Shuttle program has ended and elements of the Constellation Program have either been cancelled or transitioned to new NASA exploration endeavors. The National Aeronautics and Space Administration (NASA) has worked diligently to select an optimum configuration for the Space Launch System (SLS), a heavy lift vehicle that will provide the foundation for future beyond low earth orbit (LEO) large-scale missions for the next several decades. From Fall 2010 until Spring 2011, an SLS decision-making framework was formulated, tested, fully documented, and applied to multiple SLS vehicle concepts at NASA from previous exploration architecture studies. This was a multistep process that involved performing figure of merit (FOM)-based assessments, creating Pass/Fail gates based on draft threshold requirements, performing a margin-based assessment with supporting statistical analyses, and performing sensitivity analysis on each. This paper focuses on the various steps and methods of this process (rather than specific data) that allowed for competing concepts to be compared across a variety of launch vehicle metrics in support of the successful completion of the SLS Mission Concept Review (MCR) milestone.

  6. Modeling subjective evaluation of soundscape quality in urban open spaces: An artificial neural network approach.

    PubMed

    Yu, Lei; Kang, Jian

    2009-09-01

    This research aims to explore the feasibility of using computer-based models to predict the soundscape quality evaluation of potential users in urban open spaces at the design stage. With the data from large scale field surveys in 19 urban open spaces across Europe and China, the importance of various physical, behavioral, social, demographical, and psychological factors for the soundscape evaluation has been statistically analyzed. Artificial neural network (ANN) models have then been explored at three levels. It has been shown that for both subjective sound level and acoustic comfort evaluation, a general model for all the case study sites is less feasible due to the complex physical and social environments in urban open spaces; models based on individual case study sites perform well but the application range is limited; and specific models for certain types of location/function would be reliable and practical. The performance of acoustic comfort models is considerably better than that of sound level models. Based on the ANN models, soundscape quality maps can be produced and this has been demonstrated with an example.

  7. Web-based description of the space radiation environment using the Bethe-Bloch model

    NASA Astrophysics Data System (ADS)

    Cazzola, Emanuele; Calders, Stijn; Lapenta, Giovanni

    2016-01-01

    Space weather is a rapidly growing area of research not only in scientific and engineering applications but also in physics education and in the interest of the public. We focus especially on space radiation and its impact on space exploration. The topic is highly interdisciplinary, bringing together fundamental concepts of nuclear physics with aspects of radiation protection and space science. We give a new approach to presenting the topic by developing a web-based application that combines some of the fundamental concepts from these two fields into a single tool that can be used in the context of advanced secondary or undergraduate university education. We present DREADCode, an outreach or teaching tool to rapidly assess the current conditions of the radiation field in space. DREADCode uses the available data feeds from a number of ongoing space missions (ACE, GOES-13, GOES-15) to produce a first order approximation of the radiation dose an astronaut would receive during a mission of exploration in deep space (i.e. far from the Earth’s shielding magnetic field and from the radiation belts). DREADCode is based on an easy-to-use GUI interface available online from the European Space Weather Portal (www.spaceweather.eu/dreadcode). The core of the radiation transport computation to produce the radiation dose from the observed fluence of radiation observed by the spacecraft fleet considered is based on a relatively simple approximation: the Bethe-Bloch equation. DREADCode also assumes a simplified geometry and material configuration for the shields used to compute the dose. The approach is approximate and sacrifices some important physics on the altar of rapid execution time, which allows a real-time operation scenario. There is no intention here to produce an operational tool for use in space science and engineering. Rather, we present an educational tool at undergraduate level that uses modern web-based and programming methods to learn some of the most important concepts in the application of radiation protection to space weather problems.

  8. Space Station Needs, Attributes and Architectural Options. Contractor orientation briefings

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Requirements are considered for user missions involving life sciences; astrophysics, environmental observation; Earth and planetary exploration; materials processing; Spacelab payloads; technology development; and communications are analyzed. Plans to exchange data with potential cooperating nations and ESA are reviewed. The capability of the space shuttle to support space station activities are discussed. The status of the OAST space station technology study, conceptual architectures for a space station, elements of the space-based infrastructure, and the use of the shuttle external tank are also considered.

  9. Cell biology and biotechnology research for exploration of the Moon and Mars

    NASA Astrophysics Data System (ADS)

    Pellis, N.; North, R.

    Health risks generated by human long exposure to radiation, microgravity, and unknown factors in the planetary environment are the major unresolved issues for human space exploration. A complete characterization of human and other biological systems adaptation processes to long-duration space missions is necessary for the development of countermeasures. The utilization of cell and engineered tissue cultures in space research and exploration complements research in human, animal, and plant subjects. We can bring a small number of humans, animals, or plants to the ISS, Moon, and Mars. However, we can investigate millions of their cells during these missions. Furthermore, many experiments can not be performed on humans, e.g. radiation exposure, cardiac muscle. Cells from critical tissues and tissue constructs per se are excellent subjects for experiments that address underlying mechanisms important to countermeasures. The development of cell tissue engineered for replacement, implantation of biomaterial to induce tissue regeneration (e.g. absorbable collagen matrix for guiding tissue regeneration in periodontal surgery), and immunoisolation (e.g. biopolymer coating on transplanted tissues to ward off immunological rejection) are good examples of cell research and biotechnology applications. NASA Cell Biology and Biotechnology research include Bone/Muscle and Cardiovascular cell culture and tissue engineering; Environmental Health and Life Support Systems; Immune System; Radiation; Gravity Thresholds ; and Advanced Biotechnology Development to increase the understanding of animal and plant cell adaptive behavior when exposed to space, and to advance technologies that facilitates exploration. Cell systems can be used to investigate processes related to food, microbial proliferation, waste management, biofilms and biomaterials. The NASA Cell Science Program has the advantage of conducting research in microgravity based on significantly small resources, and the ability to conduct experiments in the early phase of the development of requirements for exploration. Supporting the NASA concept of stepping stones, we believe that ground based, International Space Station, robotic and satellite missions offer the ideal environment to perform experiments and secure answers necessary for human exploration.

  10. Revisiting Nuclear Thermal Propulsion for Human Mars Exploration

    NASA Technical Reports Server (NTRS)

    Percy, Thomas K.; Rodriguez, Mitchell

    2017-01-01

    Nuclear Thermal Propulsion (NTP) has long been considered as a viable in-space transportation alternative for delivering crew and cargo to the Martian system. While technology development work in nuclear propulsion has continued over the year, general interest in NTP propulsion applications has historically been tied directly to the ebb and flow of interest in sending humans to explore Mars. As far back as the 1960’s, plans for NTP-based human Mars exploration have been proposed and periodically revisited having most recently been considered as part of NASA Design Reference Architecture (DRA) 5.0. NASA has been investigating human Mars exploration strategies tied to its current Journey to Mars for the past few years however, NTP has only recently been added into the set of alternatives under consideration for in-space propulsion under the Mars Study Capability (MSC) team, formerly the Evolvable Mars Campaign (EMC) team. The original charter of the EMC was to find viable human Mars exploration approaches that relied heavily on technology investment work already underway, specifically related to the development of large Solar Electric Propulsion (SEP) systems. The EMC team baselined several departures from traditional Mars exploration ground rules to enable these types of architectures. These ground rule changes included lower energy conjunction class trajectories with corresponding longer flight times, aggregation of mission elements in cis-Lunar space rather than Low Earth Orbit (LEO) and, in some cases, the pre-deployment of Earth return propulsion systems to Mars. As the MSC team continues to refine the in-space transportation trades, an NTP-based architecture that takes advantage of some of these ground rule departures is being introduced.

  11. A Sustainable Architecture for Lunar Resource Prospecting from an EML-based Exploration Platform

    NASA Astrophysics Data System (ADS)

    Klaus, K.; Post, K.; Lawrence, S. J.

    2012-12-01

    Introduction - We present a point of departure architecture for prospecting for Lunar Resources from an Exploration Platform at the Earth - Moon Lagrange points. Included in our study are launch vehicle, cis-lunar transportation architecture, habitat requirements and utilization, lander/rover concepts and sample return. Different transfer design techniques can be explored by mission designers, testing various propulsive systems, maneuvers, rendezvous, and other in-space and surface operations. Understanding the availability of high and low energy trajectory transfer options opens up the possibility of exploring the human and logistics support mission design space and deriving solutions never before contemplated. For sample return missions from the lunar surface, low-energy transfers could be utilized between EML platform and the surface as well as return of samples to EML-based spacecraft. Human Habitation at the Exploration Platform - Telerobotic and telepresence capabilities are considered by the agency to be "grand challenges" for space technology. While human visits to the lunar surface provide optimal opportunities for field geologic exploration, on-orbit telerobotics may provide attractive early opportunities for geologic exploration, resource prospecting, and other precursor activities in advance of human exploration campaigns and ISRU processing. The Exploration Platform provides a perfect port for a small lander which could be refueled and used for multiple missions including sample return. The EVA and robotic capabilities of the EML Exploration Platform allow the lander to be serviced both internally and externally, based on operational requirements. The placement of the platform at an EML point allows the lander to access any site on the lunar surface, thus providing the global lunar surface access that is commonly understood to be required in order to enable a robust lunar exploration program. Designing the sample return lander for low-energy trajectories would reduce the overall mass and potentially increase the sample return mass. The Initial Lunar Mission -Building upon Apollo sample investigations, the recent results of the LRO/LCROSS, international missions such as Chandrayaan-1, and legacy missions including Lunar Prospector, and Clementine, among the most important science and exploration goals is surface prospecting for lunar resources and to provide ground truth for orbital observations. Being able to constrain resource production potential will allow us to estimate the prospect for reducing the size of payloads launched from Earth required for Solar System exploration. Flight opportunities for something like the NASA RESOLVE instrument suite to areas of high science and exploration interest could be used to refine and improve future Exploration architectures, reducing the outlays required for cis-lunar operations. Summary - EML points are excellent for placement of a semi-permanent human-tended Exploration Platform both in the near term, while providing important infrastructure and deep-space experience that will be built upon to gradually increase long-term operational capabilities.

  12. Performance/price estimates for cortex-scale hardware: a design space exploration.

    PubMed

    Zaveri, Mazad S; Hammerstrom, Dan

    2011-04-01

    In this paper, we revisit the concept of virtualization. Virtualization is useful for understanding and investigating the performance/price and other trade-offs related to the hardware design space. Moreover, it is perhaps the most important aspect of a hardware design space exploration. Such a design space exploration is a necessary part of the study of hardware architectures for large-scale computational models for intelligent computing, including AI, Bayesian, bio-inspired and neural models. A methodical exploration is needed to identify potentially interesting regions in the design space, and to assess the relative performance/price points of these implementations. As an example, in this paper we investigate the performance/price of (digital and mixed-signal) CMOS and hypothetical CMOL (nanogrid) technology based hardware implementations of human cortex-scale spiking neural systems. Through this analysis, and the resulting performance/price points, we demonstrate, in general, the importance of virtualization, and of doing these kinds of design space explorations. The specific results suggest that hybrid nanotechnology such as CMOL is a promising candidate to implement very large-scale spiking neural systems, providing a more efficient utilization of the density and storage benefits of emerging nano-scale technologies. In general, we believe that the study of such hypothetical designs/architectures will guide the neuromorphic hardware community towards building large-scale systems, and help guide research trends in intelligent computing, and computer engineering. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. NASA Space Biology Plant Research for 2010-2020

    NASA Technical Reports Server (NTRS)

    Levine, H. G.; Tomko, D. L.; Porterfield, D. M.

    2012-01-01

    The U.S. National Research Council (NRC) recently published "Recapturing a Future for Space Exploration: Life and Physical Sciences Research for a New Era" (http://www.nap.edu/catalog.php?record id=13048), and NASA completed a Space Biology Science Plan to develop a strategy for implementing its recommendations ( http://www.nasa.gov/exploration/library/esmd documents.html). The most important recommendations of the NRC report on plant biology in space were that NASA should: (1) investigate the roles of microbial-plant systems in long-term bioregenerative life support systems, and (2) establish a robust spaceflight program of research analyzing plant growth and physiological responses to the multiple stimuli encountered in spaceflight environments. These efforts should take advantage of recently emerged analytical technologies (genomics, transcriptomics, proteomics, metabolomics) and apply modern cellular and molecular approaches in the development of a vigorous flight-based and ground-based research program. This talk will describe NASA's strategy and plans for implementing these NRC Plant Space Biology recommendations. New research capabilities for Plant Biology, optimized by providing state-of-the-art automated technology and analytical techniques to maximize scientific return, will be described. Flight experiments will use the most appropriate platform to achieve science results (e.g., ISS, free flyers, sub-orbital flights) and NASA will work closely with its international partners and other U.S. agencies to achieve its objectives. One of NASA's highest priorities in Space Biology is the development research capabilities for use on the International Space Station and other flight platforms for studying multiple generations of large plants. NASA will issue recurring NASA Research Announcements (NRAs) that include a rapid turn-around model to more fully engage the biology community in designing experiments to respond to the NRC recommendations. In doing so, NASA's Space Biology research will optimize ISS research utilization, develop and demonstrate technology and hardware that will enable new science, and contribute to the base of fundamental knowledge that will facilitate development of new tools for human space exploration and Earth applications. By taking these steps, NASA will energize the Space Biology user community and advance our knowledge of the effect of the space flight environment on living systems.

  14. Information of Complex Systems and Applications in Agent Based Modeling.

    PubMed

    Bao, Lei; Fritchman, Joseph C

    2018-04-18

    Information about a system's internal interactions is important to modeling the system's dynamics. This study examines the finer categories of the information definition and explores the features of a type of local information that describes the internal interactions of a system. Based on the results, a dual-space agent and information modeling framework (AIM) is developed by explicitly distinguishing an information space from the material space. The two spaces can evolve both independently and interactively. The dual-space framework can provide new analytic methods for agent based models (ABMs). Three examples are presented including money distribution, individual's economic evolution, and artificial stock market. The results are analyzed in the dual-space, which more clearly shows the interactions and evolutions within and between the information and material spaces. The outcomes demonstrate the wide-ranging applicability of using the dual-space AIMs to model and analyze a broad range of interactive and intelligent systems.

  15. Leadership in Space: Selected Speeches of NASA Administrator Michael Griffin, May 2005 - October 2008

    NASA Technical Reports Server (NTRS)

    Griffin, Michael

    2008-01-01

    Speech topics include: Leadership in Space; Space Exploration: Real and Acceptable Reasons; Why Explore Space?; Space Exploration: Filling up the Canvas; Continuing the Voyage: The Spirit of Endeavour; Incorporating Space into Our Economic Sphere of Influence; The Role of Space Exploration in the Global Economy; Partnership in Space Activities; International Space Cooperation; National Strategy and the Civil Space Program; What the Hubble Space Telescope Teaches Us about Ourselves; The Rocket Team; NASA's Direction; Science and NASA; Science Priorities and Program Management; NASA and the Commercial Space Industry; NASA and the Business of Space; American Competitiveness: NASA's Role & Everyone's Responsibility; Space Exploration: A Frontier for American Collaboration; The Next Generation of Engineers; System Engineering and the "Two Cultures" of Engineering; Generalship of Engineering; NASA and Engineering Integrity; The Constellation Architecture; Then and Now: Fifty Years in Space; The Reality of Tomorrow; and Human Space Exploration: The Next 50 Years.

  16. A New Heavy-Lift Capability for Space Exploration: NASA's Ares V Cargo Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Sumrall, John P.

    2006-01-01

    The National Aeronautics and Space Administration (NASA) is developing new launch systems in preparation for the retirement of the Space Shuttle by 2010, as directed in the United States (U.S.) Vision for Space Exploration. The Ares I Crew Launch Vehicle (CLV) and the Ares V heavy-lift Cargo Launch Vehicle (CaLV) systems will build upon proven, reliable hardware derived from the Apollo Saturn (1961 to 1975) and Space Shuttle (1972 to 2010) programs to deliver safe, reliable, affordable space transportation solutions. This approach leverages existing aerospace talent and a unique infrastructure, as well as the vast amount of legacy knowledge gained from almost a half-century of hard-won experience in the space enterprise. Beginning early next decade, the Ares I will launch the new Crew Exploration Vehicle (CEV) to the International Space Station (ISS) or to low-Earth orbit for trips to the Moon and, ultimately, Mars. Late next decade, the Ares V's Earth Departure Stage will carry larger payloads such as the lunar lander into orbit, and the Crew Exploration Vehicle will dock with it for missions to the Moon, where astronauts will explore new territories and conduct science and technology experiments. Both the Ares I and Ares V systems are being designed to support longer future trips to Mars. The Exploration Launch Projects Office, located at NASA's Marshall Space Flight Center, is designing, developing, testing, and evaluating both launch vehicle systems in partnership with other NASA Centers, Government agencies, and industry contractors. This paper provides top-level information regarding the genesis and evolution of the baseline configuration for the Ares V heavy-lift system. It also touches on risk-based management strategies, such as building on powerful hardware and promoting common features between the Ares I and Ares V systems to reduce technical, schedule, and cost risks, as well as development and operations costs. Finally, it gives a summary of several notable accomplishments over the past year, since the Exploration Launch Projects effort officially kicked off in October 2005, and looks ahead at work planned for 2007 and beyond.

  17. Concept of adaptability in space modules.

    PubMed

    Cooper, M

    1990-10-01

    The space program is aiming towards the permanent use of space; to build and establish an orbital space station, a Moon base and depart to Mars and beyond. We must look after the total independency from the Earth's natural resources and work in the design of a modular space base in which each module is capable of duplicating one natural process, and that all these modules in combination take us to conceive a space base capable of sustaining life. Every area of human knowledge must be involved. This modular concept will let us see other space goals as extensions of the primary project. The basic technology has to be defined, then relatively minor adjustments will let us reach new objectives such as a first approach for a lunar base and for a Mars manned mission. This concept aims towards an open technology in which standards and recommendations will be created to assemble huge space bases and spaceships from specific modules that perform certain functions, that in combination will let us reach the status of permanent use and exploration of space.

  18. From outer space to Earth-The social significance of isolated and confined environment research in human space exploration

    NASA Astrophysics Data System (ADS)

    Tachibana, Koji; Tachibana, Shoichi; Inoue, Natsuhiko

    2017-11-01

    Human space exploration requires massive budgets every fiscal year. Especially under severe financial constraint conditions, governments are forced to justify to society why spending so much tax revenue for human space exploration is worth the cost. The value of human space exploration might be estimated in many ways, but its social significance and cost-effectiveness are two key ways to gauge that worth. Since these measures should be applied country by country because sociopolitical conditions differ in each country and must be taken into consideration, the study on the social significance of human space exploration must take the coloration of a case-study. This paper, focusing on the case of Japan with surveying Japanese literary and national documents as well as taking its sociopolitical conditions into account, examines the social significance of human space exploration. First, we give an overview of the circumstances surrounding Japan's human space exploration program. Derived from the statements of such relevant parties as scholars, journalists, policy makers, and astronauts, this overview indicates that the main concerns about human space exploration in Japan are its social significance and cost-effectiveness (Section 1). Next, an overview of behavioral science-an essential field for human space exploration (referred to in this paper as space behavioral science) that provides support for astronauts-is presented from the perspective of stress research in isolated and confined environments (Section 2). We then give two examples of where such knowledge from space behavioral science research has been applied to terrestrial isolated and confined environments. One is JAXA's support in 2009 for people who were vulnerable to infection by a new strain of flu and accordingly placed in an isolated and confined facility under the Infectious Disease Law and the Quarantine Law. The other is NASA's support in 2010 for Chilean mine workers who were trapped 700 m underground after a mining accident (Section 3). Based on these case studies, we illustrate the further social utility of such knowledge through a discussion of potential applications in other situations in Japan. Focusing on Japan for its geographical and social features in being an earthquake-prone archipelago and having the world's preeminent aging society, we show that refugees living in evacuation centers and people in an elderly-elderly homecare situation pose socially problematic situations specific to Japan. We then argue that space behavioral scientific knowledge can be applied to support people under these and other isolated and confined environments in various ways (Section 4). Finally, we demonstrate that such an application can be understood as an ethical contribution to Japanese society and that this contribution can be embedded in Japan's space policy (Section 5). We conclude that human space exploration can be a socially significant and cost-effective endeavor that is worthy of tax revenue expenditures because space behavioral science is highly likely to provide unique and useful knowledge to help address various social problems concerning terrestrial isolated and confined environments and support people in sufferings there.

  19. KENNEDY SPACE CENTER, FLA. - Garland V. Stewart Magnet Middle School, a NASA Explorer School (NES) in Tampa, Fla., is the site where Center Director Jim Kennedy and astronaut Kay Hire shared the agency’s new vision for space exploration with the next generation of explorers. Kennedy talked with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.

    NASA Image and Video Library

    2004-02-20

    KENNEDY SPACE CENTER, FLA. - Garland V. Stewart Magnet Middle School, a NASA Explorer School (NES) in Tampa, Fla., is the site where Center Director Jim Kennedy and astronaut Kay Hire shared the agency’s new vision for space exploration with the next generation of explorers. Kennedy talked with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.

  20. The Road to Realizing In-Space Manufacturing

    NASA Technical Reports Server (NTRS)

    Clinton, Raymond G.

    2014-01-01

    Additive Manufacturing in space offers tremendous potential for dramatic paradigm shift in the development and manufacturing of space architectures. Additive Manufacturing in space offers the potential for mission safety risk reduction for low Earth orbit and deep space exploration; new paradigms for maintenance, repair, and logistics. Leverage ground-based technology developments, process characterization, and material properties databases. Investments are required primarily in the microgravity environment. We must do the foundational work. It's not sexy, but it is required.

  1. Being with woman: claiming midwifery space.

    PubMed

    Hunter, Louise

    2015-03-01

    Being 'with woman' is characterised as presence, a spiritual concept which is nevertheless bound up with physical space. In this article, the work of the American philosopher Judith Butler is used to explore the interplay between space and relationships in midwifery practice. Butler argues that relationships based on mutual recognition and respect define the actions possible within physical space. In midwifery, being with woman creates a therapeutic space necessary for the wellbeing and empowerment of women and midwives alike.

  2. Companies hone in on radar-docking technology

    NASA Astrophysics Data System (ADS)

    Howell, Elizabeth

    2009-11-01

    As NASA prepares to retire the Space Shuttle next year, two private space firms have tested docking technology that could be used on the next generation of US spacecraft. In September, Canadian firm Neptec tested a new radar system on the Space Shuttle Discovery that allows spacecraft to dock more easily. Meanwhile, Space Exploration Technologies (SpaceX) based in California has revealed that it tested out a new proximity sensor, dubbed "Dragoneye", on an earlier shuttle mission in July.

  3. Computer Game

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Using NASA studies of advanced lunar exploration and colonization, KDT Industries, Inc. and Wesson International have developed MOONBASE, a computer game. The player, or team commander, must build and operate a lunar base using NASA technology. He has 10 years to explore the surface, select a site and assemble structures brought from Earth into an efficient base. The game was introduced in 1991 by Texas Space Grant Consortium.

  4. Advancing Sustainability through Urban Green Space: Cultural Ecosystem Services, Equity, and Social Determinants of Health

    PubMed Central

    Jennings, Viniece; Larson, Lincoln; Yun, Jessica

    2016-01-01

    Urban green spaces provide an array of benefits, or ecosystem services, that support our physical, psychological, and social health. In many cases, however, these benefits are not equitably distributed across diverse urban populations. In this paper, we explore relationships between cultural ecosystem services provided by urban green space and the social determinants of health outlined in the United States Healthy People 2020 initiative. Specifically, we: (1) explore connections between cultural ecosystem services and social determinants of health; (2) examine cultural ecosystem services as nature-based health amenities to promote social equity; and (3) recommend areas for future research examining links between urban green space and public health within the context of environmental justice. PMID:26861365

  5. [STEM on Station Education

    NASA Technical Reports Server (NTRS)

    Lundebjerg, Kristen

    2016-01-01

    The STEM on Station team is part of Education which is part of the External Relations organization (ERO). ERO has traditional goals based around BHAG (Big Hairy Audacious Goal). The BHAG model is simplified to a saying: Everything we do stimulates actions by others to advance human space exploration. The STEM on Station education initiate is a project focused on bringing off the earth research and learning into classrooms. Educational resources such as lesson plans, activities to connect with the space station and STEM related contests are available and hosted by the STEM on Station team along with their partners such as Texas Instruments. These educational activities engage teachers and students in the current happenings aboard the international space station, inspiring the next generation of space explorers.

  6. Nuclear Fragmentation Processes Relevant for Human Space Radiation Protection

    NASA Technical Reports Server (NTRS)

    Lin, Zi-Wei

    2007-01-01

    Space radiation from cosmic ray particles is one of the main challenges for human space explorations such-as a moon base or a trip to Mars. Models have been developed in order to predict the radiation exposure to astronauts and to evaluate the effectiveness of different shielding materials, and a key ingredient in these models is the physics of nuclear fragmentations. We have developed a semi-analytical method to determine which partial cross sections of nuclear fragmentations most affect the radiation dose behind shielding materials due to exposure to galactic cosmic rays. The cross sections thus determined will require more theoretical and/or experimental studies in order for us to better predict, reduce and mitigate the radiation exposure in human space explorations.

  7. Security Policy for a Generic Space Exploration Communication Network Architecture

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Sheehe, Charles J.; Vaden, Karl R.

    2016-01-01

    This document is one of three. It describes various security mechanisms and a security policy profile for a generic space-based communication architecture. Two other documents accompany this document- an Operations Concept (OpsCon) and a communication architecture document. The OpsCon should be read first followed by the security policy profile described by this document and then the architecture document. The overall goal is to design a generic space exploration communication network architecture that is affordable, deployable, maintainable, securable, evolvable, reliable, and adaptable. The architecture should also require limited reconfiguration throughout system development and deployment. System deployment includes subsystem development in a factory setting, system integration in a laboratory setting, launch preparation, launch, and deployment and operation in space.

  8. Advancing Sustainability through Urban Green Space: Cultural Ecosystem Services, Equity, and Social Determinants of Health.

    PubMed

    Jennings, Viniece; Larson, Lincoln; Yun, Jessica

    2016-02-05

    Urban green spaces provide an array of benefits, or ecosystem services, that support our physical, psychological, and social health. In many cases, however, these benefits are not equitably distributed across diverse urban populations. In this paper, we explore relationships between cultural ecosystem services provided by urban green space and the social determinants of health outlined in the United States Healthy People 2020 initiative. Specifically, we: (1) explore connections between cultural ecosystem services and social determinants of health; (2) examine cultural ecosystem services as nature-based health amenities to promote social equity; and (3) recommend areas for future research examining links between urban green space and public health within the context of environmental justice.

  9. Orion is on Pad 37 Prior to Hoist & Mate

    NASA Image and Video Library

    2014-11-12

    The Orion spacecraft and its transporter stand at the base of the service structure at Space Launch Complex 37. A crane inside the structure will lift Orion off its transporter to hoist it into place atop the Delta IV Heavy rocket that is already assembled at the pad. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014, atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.

  10. Multi-Objective Reinforcement Learning-based Deep Neural Networks for Cognitive Space Communications

    NASA Technical Reports Server (NTRS)

    Ferreria, Paulo; Paffenroth, Randy; Wyglinski, Alexander M.; Hackett, Timothy; Bilen, Sven; Reinhart, Richard; Mortensen, Dale

    2017-01-01

    Future communication subsystems of space exploration missions can potentially benefit from software-defined radios (SDRs) controlled by machine learning algorithms. In this paper, we propose a novel hybrid radio resource allocation management control algorithm that integrates multi-objective reinforcement learning and deep artificial neural networks. The objective is to efficiently manage communications system resources by monitoring performance functions with common dependent variables that result in conflicting goals. The uncertainty in the performance of thousands of different possible combinations of radio parameters makes the trade-off between exploration and exploitation in reinforcement learning (RL) much more challenging for future critical space-based missions. Thus, the system should spend as little time as possible on exploring actions, and whenever it explores an action, it should perform at acceptable levels most of the time. The proposed approach enables on-line learning by interactions with the environment and restricts poor resource allocation performance through virtual environment exploration. Improvements in the multiobjective performance can be achieved via transmitter parameter adaptation on a packet-basis, with poorly predicted performance promptly resulting in rejected decisions. Simulations presented in this work considered the DVB-S2 standard adaptive transmitter parameters and additional ones expected to be present in future adaptive radio systems. Performance results are provided by analysis of the proposed hybrid algorithm when operating across a satellite communication channel from Earth to GEO orbit during clear sky conditions. The proposed approach constitutes part of the core cognitive engine proof-of-concept to be delivered to the NASA Glenn Research Center SCaN Testbed located onboard the International Space Station.

  11. Multi-Objective Reinforcement Learning-Based Deep Neural Networks for Cognitive Space Communications

    NASA Technical Reports Server (NTRS)

    Ferreria, Paulo Victor R.; Paffenroth, Randy; Wyglinski, Alexander M.; Hackett, Timothy M.; Bilen, Sven G.; Reinhart, Richard C.; Mortensen, Dale J.

    2017-01-01

    Future communication subsystems of space exploration missions can potentially benefit from software-defined radios (SDRs) controlled by machine learning algorithms. In this paper, we propose a novel hybrid radio resource allocation management control algorithm that integrates multi-objective reinforcement learning and deep artificial neural networks. The objective is to efficiently manage communications system resources by monitoring performance functions with common dependent variables that result in conflicting goals. The uncertainty in the performance of thousands of different possible combinations of radio parameters makes the trade-off between exploration and exploitation in reinforcement learning (RL) much more challenging for future critical space-based missions. Thus, the system should spend as little time as possible on exploring actions, and whenever it explores an action, it should perform at acceptable levels most of the time. The proposed approach enables on-line learning by interactions with the environment and restricts poor resource allocation performance through virtual environment exploration. Improvements in the multiobjective performance can be achieved via transmitter parameter adaptation on a packet-basis, with poorly predicted performance promptly resulting in rejected decisions. Simulations presented in this work considered the DVB-S2 standard adaptive transmitter parameters and additional ones expected to be present in future adaptive radio systems. Performance results are provided by analysis of the proposed hybrid algorithm when operating across a satellite communication channel from Earth to GEO orbit during clear sky conditions. The proposed approach constitutes part of the core cognitive engine proof-of-concept to be delivered to the NASA Glenn Research Center SCaN Testbed located onboard the International Space Station.

  12. NASA's engineering research centers and interdisciplinary education

    NASA Technical Reports Server (NTRS)

    Johnston, Gordon I.

    1990-01-01

    A new program of interactive education between NASA and the academic community aims to improve research and education, provide long-term, stable funding, and support cross-disciplinary and multi-disciplinary research. The mission of NASA's Office of Aeronautics, Exploration and Technology (OAET) is discussed and it is pointed out that the OAET conducts about 10 percent of its total R&D program at U.S. universities. Other NASA university-based programs are listed including the Office of Commercial Programs Centers for the Commercial Development of Space (CCDS) and the National Space Grant program. The importance of university space engineering centers and the selection of the nine current centers are discussed. A detailed composite description is provided of the University Space Engineering Research Centers. Other specialized centers are described such as the Center for Space Construction, the Mars Mission Research Center, and the Center for Intelligent Robotic Systems for Space Exploration. Approaches to educational outreach are discussed.

  13. International Lunar Decade Status

    NASA Astrophysics Data System (ADS)

    Beldavs, VZ; Crisafulli, J.; Dunlop, D.; Foing, B.

    2017-09-01

    The International Lunar Decade is a global decadal event designed to provide a framework for strategically directed international cooperation for permanent return to the Moon. To be launched July 20, 2019, the 50th anniversary of the giant leap for mankind marked by Neil Armstrong's first step on the Moon, the ILD launch will include events around the world to celebrate space exploration, science, and the expansion of humanity into the Solar System. The ILD framework links lunar exploration and space sciences with the development of enabling technologies, infrastructure, means of financing, laws and policies aimed at lowering the costs and risks of venturing into space. Dramatically reduced costs will broaden the range of opportunities available in space and widen access to space for more states, companies and people worldwide. The ILD is intended to bring about the efflorescence of commercial business based on space resources from the Moon, asteroids, comets and other bodies in the Solar System.

  14. Vision 2040: Evolving the Successful International Space University

    NASA Technical Reports Server (NTRS)

    Martin, Gary; Marti, Izan Peris; Tlustos, Reinhard; Lorente, Arnau Pons; Panerati, Jocopo; Mensink, Wendy; Sorkhabi, Elbruz; Garcia, Oriol Gasquez; Musilova, Michaela; Pearson, Thomas

    2015-01-01

    Space exploration has always been full of inspiration, innovation, and creativity, with the promise of expanding human civilization beyond Earth. The space sector is currently experiencing rapid change as disruptive technologies, grassroots programs, and new commercial initiatives have reshaped long-standing methods of operation. Throughout the last 28 years, the International Space University (ISU) has been a leading institution for space education, forming international partnerships, and encouraging entrepreneurship in its over 4,000 alumni. In this report, our Vision 2040 team projected the next 25 years of space exploration and analyzed how ISU could remain a leading institution in the rapidly changing industry. Vision 2040 considered five important future scenarios for the space sector: real-time Earth applications, orbital stations, lunar bases, lunar and asteroid mining, and a human presence on Mars. We identified the signals of disruptive change within these scenarios, including underlying driving forces and potential challenges, and derived a set of skills that will be required in the future space industry. Using these skills as a starting point, we proposed strategies in five areas of focus for ISU: the future of the Space Studies Program (SSP), analog missions, outreach, alumni, and startups. We concluded that ISU could become not just an increasingly innovative educational institution, but one that acts as an international organization that drives space commercialization, exploration, innovation, and cooperation.

  15. Reproduction in the space environment: Part II. Concerns for human reproduction

    NASA Technical Reports Server (NTRS)

    Jennings, R. T.; Santy, P. A.

    1990-01-01

    Long-duration space flight and eventual colonization of our solar system will require successful control of reproductive function and a thorough understanding of factors unique to space flight and their impact on gynecologic and obstetric parameters. Part II of this paper examines the specific environmental factors associated with space flight and the implications for human reproduction. Space environmental hazards discussed include radiation, alteration in atmospheric pressure and breathing gas partial pressures, prolonged toxicological exposure, and microgravity. The effects of countermeasures necessary to reduce cardiovascular deconditioning, calcium loss, muscle wasting, and neurovestibular problems are also considered. In addition, the impact of microgravity on male fertility and gamete quality is explored. Due to current constraints, human pregnancy is now contraindicated for space flight. However, a program to explore effective countermeasures to current constraints and develop the required health care delivery capability for extended-duration space flight is suggested. A program of Earth- and space-based research to provide further answers to reproductive questions is suggested.

  16. A technology assessment of alternative communications systems for the space exploration initiative

    NASA Technical Reports Server (NTRS)

    Ponchak, Denise S.; Zuzek, John E.; Whyte, Wayne A., Jr.; Spence, Rodney L.; Sohn, Philip Y.

    1990-01-01

    Telecommunications, Navigation, and Information Management (TNIM) services are vital to accomplish the ambitious goals of the Space Exploration Initiative (SEI). A technology assessment is provided for four alternative lunar and Mars operational TNIM systems based on detailed communications link analyses. The four alternative systems range from a minimum to a fully enhanced capability and use frequencies from S-band, through Ka-band, and up to optical wavelengths. Included are technology development schedules as they relate to present SEI mission architecture time frames.

  17. Synthesis of Triazole Derivatives of Levoglucosenone As Promising Anticancer Agents: Effective Exploration of the Chemical Space through retro-aza-Michael//aza-Michael Isomerizations.

    PubMed

    Tsai, Yi-Hsuan; Borini Etichetti, Carla M; Di Benedetto, Carolina; Girardini, Javier E; Martins, Felipe Terra; Spanevello, Rolando A; Suárez, Alejandra G; Sarotti, Ariel M

    2018-04-06

    The design and synthesis of biomass-derived triazoles and the in vitro evaluation as potential anticancer agents are described. The discovery of base-catalyzed retro-aza-Michael//aza-Michael isomerizations allowed the exploration of the chemical space by affording novel types of triazoles, difficult to obtain otherwise. Following this strategy, 2,4-disubstituted 1,2,3-triazoles could be efficiently obtained from the corresponding 1,4-disubstituted analogues.

  18. A TT&C Performance Simulator for Space Exploration and Scientific Satellites - Architecture and Applications

    NASA Astrophysics Data System (ADS)

    Donà, G.; Faletra, M.

    2015-09-01

    This paper presents the TT&C performance simulator toolkit developed internally at Thales Alenia Space Italia (TAS-I) to support the design of TT&C subsystems for space exploration and scientific satellites. The simulator has a modular architecture and has been designed using a model-based approach using standard engineering tools such as MATLAB/SIMULINK and mission analysis tools (e.g. STK). The simulator is easily reconfigurable to fit different types of satellites, different mission requirements and different scenarios parameters. This paper provides a brief description of the simulator architecture together with two examples of applications used to demonstrate some of the simulator’s capabilities.

  19. Pegasus ICON Stage 1 Motor Arrival

    NASA Image and Video Library

    2017-02-16

    The first stage motor for the Orbital ATK Pegasus XL rocket is moved inside Building 1555 at Vandenberg Air Force Base in California. In the background are the second and third stage segments. The rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. ICON will launch from the Kwajalein Atoll aboard the Pegasus XL on Dec. 8, 2017. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  20. Pegasus ICON Stage 2 & 3 Motor Offload

    NASA Image and Video Library

    2017-05-05

    Workers prepare to offload the second and third stages of the Orbital ATK Pegasus XL rocket from a transport vehicle at Building 1555 at Vandenberg Air Force Base in California. The rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. ICON will launch from the Kwajalein Atoll aboard the Pegasus XL on Dec. 8, 2017. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  1. Pegasus ICON Stage 2 & 3 Motor Offload

    NASA Image and Video Library

    2017-05-05

    The second and third stages of the Orbital ATK Pegasus XL rocket are offloaded from a transport vehicle at Building 1555 at Vandenberg Air Force Base in California. The rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. ICON will launch from the Kwajalein Atoll aboard the Pegasus XL on Dec. 8, 2017. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  2. Pegasus ICON Stage 1 Motor Arrival

    NASA Image and Video Library

    2017-02-16

    The first stage motor for the Orbital ATK Pegasus XL rocket was moved inside Building 1555 at Vandenberg Air Force Base in California. In the background are the second and third stage segments. The rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. ICON will launch from the Kwajalein Atoll aboard the Pegasus XL on Dec. 8, 2017. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  3. The Benefits of Virtual Presence in Space (VPS) to Deep Space Missions

    NASA Technical Reports Server (NTRS)

    De Jong, Eric M.; McGuffie, Barbara A; Levoe, Steven R.; Suzuki, Shigeru; Gorjian, Zareh; Leung, Chris; Cordell, Christopher; Loaiza, Frank; Baldwin, Robert; Craig, Jason; hide

    2006-01-01

    Understanding our place in the Universe is one of mankind's greatest scientific and technological challenges and achievements. The invention of the telescope, the Copernican Revolution, the development of Newtonian mechanics, and the Space Age exploration of our solar system; provided us with a deeper understanding of our place in the Universe; based on better observations and models. As we approach the end of the first decade of the new millennium, the same quest, to understand our place in the Universe, remains a great challenge. New technologies will enable us to construct and interact with a "Virtual Universe" based on remote and in situ observations of other worlds. As we continue the exploration that began in the last century, we will experience a "Virtual Presence in Space (VPS)" in this century. This paper describes VPS technology, the mechanisms for VPS product distribution and display, the benefits of this technology, and future plans. Deep space mission stereo observations and frames from stereo High Definition Television (HDTV) mission animations are used to illustrate the effectiveness of VPS technology.

  4. Low-Latency Science Exploration of Planetary Bodies: How ISS Might Be Used as Part of a Low-Latency Analog Campaign for Human Exploration

    NASA Technical Reports Server (NTRS)

    Thronson, Harley; Valinia, Azita; Bleacher, Jacob; Eigenbrode, Jennifer; Garvin, Jim; Petro, Noah

    2014-01-01

    We suggest that the International Space Station be used to examine the application and validation of low-latency telepresence for surface exploration from space as an alternative, precursor, or potentially as an adjunct to astronaut "boots on the ground." To this end, controlled experiments that build upon and complement ground-based analog field studies will be critical for assessing the effects of different latencies (0 to 500 milliseconds), task complexity, and alternate forms of feedback to the operator. These experiments serve as an example of a pathfinder for NASA's roadmap of missions to Mars with low-latency telerobotic exploration as a precursor to astronaut's landing on the surface to conduct geological tasks.

  5. Telecommunications, navigation and information management concept overview for the Space Exploration Initiative program

    NASA Technical Reports Server (NTRS)

    Bell, Jerome A.; Stephens, Elaine; Barton, Gregg

    1991-01-01

    An overview is provided of the Space Exploration Initiative (SEI) concepts for telecommunications, information systems, and navigation (TISN), and engineering and architecture issues are discussed. The SEI program data system is reviewed to identify mission TISN interfaces, and reference TISN concepts are described for nominal, degraded, and mission-critical data services. The infrastructures reviewed include telecommunications for robotics support, autonomous navigation without earth-based support, and information networks for tracking and data acquisition. Four options for TISN support architectures are examined which relate to unique SEI exploration strategies. Detailed support estimates are given for: (1) a manned stay on Mars; (2) permanent lunar and Martian settlements; short-duration missions; and (4) systematic exploration of the moon and Mars.

  6. Happy Anniversary to a Galactic Explorer

    NASA Image and Video Library

    2004-05-24

    The Galaxy Evolution Explorer specializes in surveying galaxies in ultraviolet light. Its telescope, 50 centimeters (19.7 inches) in diameter, has a field of view that is much wider than most ground-based and space-based telescopes. This field of view, nearly three times the diameter of the Moon, allowed the Galaxy Evolution Explorer to discover seemingly newborn galaxies in our local universe. The telescope surveyed thousands of galaxies before finding three-dozen of these newborns. http://photojournal.jpl.nasa.gov/catalog/PIA05979

  7. In-Space Propulsion Engine Architecture Based on Sublimation of Planetary Resources: From Exploration Robots to NED Mitigation

    NASA Technical Reports Server (NTRS)

    Sibille, Laurent; Mantovani, James; Dominquez, Jesus

    2011-01-01

    The purpose of this NIAC study is to identify those volatile and mineral resources that are available on asteroids, comets, moons and planets in the solar system, and investigate methods to transform these resources into forms of power that will expand the capabilities of future robotic and human exploration missions to explore planetary bodies beyond the Moon and will mitigate hazards from NEOs. The sources of power used for deep space probe missions are usually derived from either solar panels for electrical energy, radioisotope thermal generators for thermal energy, or fuel cells and chemical reactions for chemical energy and propulsion.

  8. Drawing Lines with Light in Holographic Space

    NASA Astrophysics Data System (ADS)

    Chang, Yin-Ren; Richardson, Martin

    2013-02-01

    This paper explores the dynamic and expressive possibilities of holographic art through a comparison of art history and technical media such as photography, film and holographic technologies. Examples of modern art and creative expression of time and motions are examined using the early 20th century art movement, Cubism, where subjects are portrayed to be seen simultaneously from different angles. Folding space is represented as subject matter as it can depict space from multiple points of time. The paper also investigates the way holographic art has explored time and space. The lenticular lens-based media reveal a more subjective poetic art in the form of the lyrical images and messages as spectators pass through time, or walk along with the piece of work through an interactive process. It is argued that photographic practice is another example of artistic representation in the form of aesthetic medium of time movement and as such shares a common ground with other dynamic expression that require time based interaction.

  9. Thorough exploration of complex environments with a space-based potential field

    NASA Astrophysics Data System (ADS)

    Kenealy, Alina; Primiano, Nicholas; Keyes, Alex; Lyons, Damian M.

    2015-01-01

    Robotic exploration, for the purposes of search and rescue or explosive device detection, can be improved by using a team of multiple robots. Potential field navigation methods offer natural and efficient distributed exploration algorithms in which team members are mutually repelled to spread out and cover the area efficiently. However, they also suffer from field minima issues. Liu and Lyons proposed a Space-Based Potential Field (SBPF) algorithm that disperses robots efficiently and also ensures they are driven in a distributed fashion to cover complex geometry. In this paper, the approach is modified to handle two problems with the original SBPF method: fast exploration of enclosed spaces, and fast navigation of convex obstacles. Firstly, a "gate-sensing" function was implemented. The function draws the robot to narrow openings, such as doors or corridors that it might otherwise pass by, to ensure every room can be explored. Secondly, an improved obstacle field conveyor belt function was developed which allows the robot to avoid walls and barriers while using their surface as a motion guide to avoid being trapped. Simulation results, where the modified SPBF program controls the MobileSim Pioneer 3-AT simulator program, are presented for a selection of maps that capture difficult to explore geometries. Physical robot results are also presented, where a team of Pioneer 3-AT robots is controlled by the modified SBPF program. Data collected prior to the improvements, new simulation results, and robot experiments are presented as evidence of performance improvements.

  10. KSC-2012-4882

    NASA Image and Video Library

    2012-09-05

    CAPE CANAVERAL, Fla. – Inside the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, technicians attach a crane to the Orion Exploration Flight Test 1 crew module so that it can be moved to the base of a birdcage tool. The birdcage will be used to continue installation of external components in preparation for Orion’s first uncrewed test flight in 2014 atop a Delta IV rocket. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. A second uncrewed flight test is scheduled for 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett

  11. KSC-2012-4885

    NASA Image and Video Library

    2012-09-05

    CAPE CANAVERAL, Fla. – Inside the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, a technician attaches a crane to the Orion Exploration Flight Test 1 crew module so that it can be moved to the base of a birdcage tool. The birdcage will be used to continue installation of external components in preparation for Orion’s first uncrewed test flight in 2014 atop a Delta IV rocket. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. A second uncrewed flight test is scheduled for 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett

  12. Future superconductivity applications in space - A review

    NASA Astrophysics Data System (ADS)

    Krishen, Kumar; Ignatiev, Alex

    High temperature superconductor (HISC) materials and devices can provide immediate applications for many space missions. The in-space thermal environment provides an opportunity to develop, test, and apply this technology to enhance performance and reliability for many applications of crucial importance to NASA. Specifically, the technology development areas include: (1) high current power transmission, (2) microwave components, devices, and antennas, (3) microwave, optical, and infrared sensors, (4) signal processors, (5) submillimeter wave components and systems, (6) ultra stable space clocks, (7) electromagnetic launch systems, and (8) accelerometers and position sensors for flight operations. HTSC is expected to impact NASA's Lunar Bases, Mars exploration, Mission to Earth, and Planetary exploration programs providing enabling and cost-effect technology. A review of the space applications of the HTSC technology is presented. Problem areas in technology development needing special attention are identified.

  13. Space transfer vehicle concepts and requirements study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Weber, Gary A.

    1991-01-01

    A description of the study in terms of background, objectives, and issues is provided. NASA is currently studying new initiatives of space exploration involving both piloted and unpiloted missions to destinations throughout the solar system. Many of these missions require substantial improvements in launch vehicle and upper stage capabilities. This study provides a focused examination of the Space Transfer Vehicles (STV) required to perform these missions using the emerging national launch vehicle definition, the Space Station Freedom (SSF) definition, and the latest mission scenario requirements. The study objectives are to define preferred STV concepts capable of accommodating future exploration missions in a cost-effective manner, determine the technology development (if any) required to perform these missions, and develop a decision database of various programmatic approaches for the development of the STV family of vehicles. Special emphasis was given to examining space basing (stationing reusable vehicles at a space station), examining the piloted lunar mission as a primary design mission, and restricting trade studies to the high-performance, near-term cryogenics (LO2/LH2) as vehicle propellant. The study progressed through three distinct 6-month phases. The first phase concentrated on supporting a NASA 3 month definition of exploration requirements (the '90-day study') and during this phase developed and optimized the space-based point-of-departure (POD) 2.5-stage lunar vehicle. The second phase developed a broad decision database of 95 different vehicle options and transportation architectures. The final phase chose the three most cost-effective architectures and developed point designs to carry to the end of the study. These reference vehicle designs are mutually exclusive and correspond to different national choices about launch vehicles and in-space reusability. There is, however, potential for evolution between concepts.

  14. "A Space for You to Be Who You Are": An Ethnographic Portrait of Reterritorializing Indigenous Student Identities

    ERIC Educational Resources Information Center

    Anthony-Stevens, Vanessa; Stevens, Philip

    2017-01-01

    This article explores the discourse practices of an Indigenous, community-based charter school and its efforts to create space for Indigenous both/and identities across rural-urban divides. The ethnographic portrait of Urban Native Middle School (UNMS) analyzes the discourse of making "a space for you", which brings together rural and…

  15. The Implementation of Life Space Crisis Intervention as a School-Wide Strategy for Reducing Violence and Supporting Students' Continuation in Public Schools

    ERIC Educational Resources Information Center

    Ramin, John E.

    2011-01-01

    The purpose of this study was to explore the effectiveness of implementing Life Space Crisis Intervention as a school-wide strategy for reducing school violence. Life Space Crisis Intervention (LSCI) is a strength-based verbal interaction strategy (Long, Fecser, Wood, 2001). LSCI utilizes naturally occurring crisis situations as teachable…

  16. Potential converter for laser-power beaming

    NASA Technical Reports Server (NTRS)

    Walker, Gilbert H.; Williams, Michael D.; Schuster, Gregory L.; Iles, Peter A.

    1991-01-01

    Future space missions, such as those associated with the Space Exploration Initiative (SEI), will require large amounts of power for operation of bases, rovers, and orbit transfer vehicles. One method for supplying this power is to beam power from a spaced based or Earth based laser power station to a receiver where laser photons can be converted to electricity. Previous research has described such laser power stations orbiting the Moon and beaming power to a receiver on the surface of the Moon by using arrays of diode lasers. Photovoltaic converters that can be efficiently used with these diode lasers are described.

  17. Exploration Laboratory Analysis - ARC

    NASA Technical Reports Server (NTRS)

    Krihak, Michael K.; Fung, Paul P.

    2012-01-01

    The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability (ExMC) risk, Risk of Inability to Adequately Treat an Ill or Injured Crew Member, and ExMC Gap 4.05: Lack of minimally invasive in-flight laboratory capabilities with limited consumables required for diagnosing identified Exploration Medical Conditions. To mitigate this risk, the availability of inflight laboratory analysis instrumentation has been identified as an essential capability in future exploration missions. Mission architecture poses constraints on equipment and procedures that will be available to treat evidence-based medical conditions according to the Space Medicine Exploration Medical Conditions List (SMEMCL). The SMEMCL provided diagnosis and treatment for the evidence-based medical conditions and hence, a basis for developing ELA functional requirements.

  18. 48 CFR 1852.228-78 - Cross-waiver of liability for science or space exploration activities unrelated to the...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... for science or space exploration activities unrelated to the International Space Station. 1852.228-78... Cross-waiver of liability for science or space exploration activities unrelated to the International... Liability for Science or Space Exploration Activities Unrelated to the International Space Station (OCT 2012...

  19. 48 CFR 1852.228-78 - Cross-waiver of liability for science or space exploration activities unrelated to the...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... for science or space exploration activities unrelated to the International Space Station. 1852.228-78... Cross-waiver of liability for science or space exploration activities unrelated to the International... Liability for Science or Space Exploration Activities Unrelated to the International Space Station (OCT 2012...

  20. Pegasus ICON Aft Skirt Installation

    NASA Image and Video Library

    2017-07-08

    A technician installs the aft skirt on the Orbital ATK Pegasus XL rocket July 8, 2017, inside Building 1555 at Vandenberg Air Force Base in California. When the aft skirt is installed, the rudder and fins can be installed. The Pegasus rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATKS's Pegasus XL, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  1. Remote Sensing Assessment of Lunar Resources: We Know Where to Go to Find What We Need

    NASA Technical Reports Server (NTRS)

    Gillis, J. J.; Taylor, G. J.; Lucey, P. G.

    2004-01-01

    The utilization of space resources is necessary to not only foster the growth of human activities in space, but is essential to the President s vision of a "sustained and affordable human and robotic program to explore the solar system and beyond." The distribution of resources will shape planning permanent settlements by affecting decisions about where to locate a settlement. Mapping the location of such resources, however, is not the limiting factor in selecting a site for a lunar base. It is indecision about which resources to use that leaves the location uncertain. A wealth of remotely sensed data exists that can be used to identify targets for future detailed exploration. Thus, the future of space resource utilization pre-dominantly rests upon developing a strategy for resource exploration and efficient methods of extraction.

  2. InSight Prelaunch Briefing

    NASA Image and Video Library

    2018-05-03

    1st Lieutenant Kristina Williams, weather officer, 30th Space Wing, Vandenberg Air Force Base, discusses NASA's InSight mission during a prelaunch media briefing, Thursday, May 3, 2018, at Vandenberg Air Force Base in California. InSight, short for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, is a Mars lander designed to study the "inner space" of Mars: its crust, mantle, and core. Photo Credit: (NASA/Bill Ingalls)

  3. InSight Prelaunch Briefing

    NASA Image and Video Library

    2018-05-03

    Col. Michael Hough, Commander 30th Space Wing, Vandenberg Air Force Base, discusses NASA's InSight mission during a prelaunch media briefing, Thursday, May 3, 2018, at Vandenberg Air Force Base in California. InSight, short for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, is a Mars lander designed to study the "inner space" of Mars: its crust, mantle, and core. Photo Credit: (NASA/Bill Ingalls)

  4. Global change - Geoengineering and space exploration

    NASA Technical Reports Server (NTRS)

    Jenkins, Lyle M.

    1992-01-01

    Geoengineering options and alternatives are proposed for mitigating the effects of global climate change and depletion of the ozone layer. Geoengineering options were discussed by the National Academy of Science Panel on the Policy Implications of Greenhouse Warming. Several of the ideas conveyed in their published report are space-based or depend on space systems for implementation. Among the geoengineering options using space that are discussed include the use of space power systems as an alternative to fossil fuels for generating electricity, the use of lunar He-3 to aid in the development of fusion energy, and the establishment of a lunar power system for solar energy conversion and electric power beaming back to earth. Other geoengineering options are discussed. They include the space-based modulation of hurricane forces and two space-based approaches in dealing with ozone layer depletion. The engineering challenges and policy implementation issues are discussed for these geongineering options.

  5. Intelligent (Autonomous) Power Controller Development for Human Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Soeder, James; Raitano, Paul; McNelis, Anne

    2016-01-01

    As NASAs Evolvable Mars Campaign and other exploration initiatives continue to mature they have identified the need for more autonomous operations of the power system. For current human space operations such as the International Space Station, the paradigm is to perform the planning, operation and fault diagnosis from the ground. However, the dual problems of communication lag as well as limited communication bandwidth beyond GEO synchronous orbit, underscore the need to change the operation methodology for human operation in deep space. To address this need, for the past several years the Glenn Research Center has had an effort to develop an autonomous power controller for human deep space vehicles. This presentation discusses the present roadmap for deep space exploration along with a description of conceptual power system architecture for exploration modules. It then contrasts the present ground centric control and management architecture with limited autonomy on-board the spacecraft with an advanced autonomous power control system that features ground based monitoring with a spacecraft mission manager with autonomous control of all core systems, including power. It then presents a functional breakdown of the autonomous power control system and examines its operation in both normal and fault modes. Finally, it discusses progress made in the development of a real-time power system model and how it is being used to evaluate the performance of the controller and well as using it for verification of the overall operation.

  6. Human Exploration of the Solar System by 2100

    NASA Technical Reports Server (NTRS)

    Litchford, Ronald J.

    2017-01-01

    It has been suggested that the U.S., in concert with private entities and international partners, set itself on a course to accomplish human exploration of the solar system by the end of this century. This is a strikingly bold vision intended to revitalize the aspirations of HSF in service to the security, economic, and scientific interests of the nation. Solar system distance and time scales impose severe requirements on crewed space transportation systems, however, and fully realizing all objectives in support of this goal will require a multi-decade commitment employing radically advanced technologies - most prominently, space habitats capable of sustaining and protecting life in harsh radiation environments under zero gravity conditions and in-space propulsion technologies capable of rapid deep space transits with earth return, the subject of this paper. While near term mission destinations such as the moon and Mars can be accomplished with chemical propulsion and/or high power SEP, fundamental capability constraints render these traditional systems ineffective for solar system wide exploration. Nuclear based propulsion and alternative energetic methods, on the other hand, represent potential avenues, perhaps the only viable avenues, to high specific power space transport evincing reduced trip time, reduced IMLEO, and expanded deep space reach. Here, very long term HSF objectives for solar system wide exploration are examined in relation to the advanced propulsion technology solution landscape including foundational science, technical/engineering challenges, and developmental prospects.

  7. Internet Technologies for Space-based Communications: State of the Art and Challenges

    NASA Technical Reports Server (NTRS)

    Bhasin, K.; DePaula, R.; Edwards, C.

    2000-01-01

    The Internet is rapidly changing the ways we communicate information around the globe today. The desire to provide Internet-based services to anyone, anywhere, anytime has brought satellite communications to the forefront to become an integral part of the Internet. In spite of the distances involved, satellite links are proving to be capable of providing Internet services based on Internet protocol (TCP/IP) stack. This development has led to the question particularly at NASA; can satellites and other space platforms become an Internet-node in space? This will allow the direct transfer of information directly from space to the users on Earth and even be able to control the spacecraft and its instruments. NASA even wants to extend the near earth space Internet to deep space applications where scientists and the public here on Earth may view space exploration in real time via the Internet. NASA's future solar system exploration will involve intensive in situ investigations of planets, moons, asteroids, and comets. While past missions typically involved a single fly-by or orbiting science spacecraft, future missions will begin to use fleets of small, highly intelligent robotic vehicles to carry out collaborative investigations. The resulting multi-spacecraft topologies will effectively create a wide area network spanning the solar system. However, this will require significant development in Internet technologies for space use. This paper provides the status'of the Internet for near earth applications and the potential extension of the Internet for use in deep space planetary exploration. The paper will discuss the overall challenges of implementing the space Internet and how the space Internet will integrate into the complex terrestrial systems those forms the Internet of today in a hybrid set of networks. Internet. We envision extending to the deep space environment such Internet concepts as a well-designed layered architecture. This effort will require an ability to develop and infuse new physical layer technology to increase network bandwidth at very low-bit error rates. In addition, we identify network technologies such as routers and switches needed to maintain standard application layer interfaces, while providing low-cost, efficient, modular networking solutions. We will describe the overall architectural approach to extending the concept of the Internet to space and highlight the important technological challenges and initiatives that will make it a reality.

  8. Management of Service Projects in Support of Space Flight Research

    NASA Technical Reports Server (NTRS)

    Love, J.

    2009-01-01

    Goal:To provide human health and performance countermeasures, knowledge, technologies, and tools to enable safe, reliable, and productive human space exploration . [HRP-47051] Specific Objectives: 1) Develop capabilities, necessary countermeasures, and technologies in support of human space exploration, focusing on mitigating the highest risks to human health and performance. 2) Define and improve human spaceflight medical, environmental, and human factors standards. 3) Develop technologies that serve to reduce medical and environmental risks, to reduce human systems resource requirements (mass, volume, power, data, etc.) and to ensure effective human-system integration across exploration systems. 4) Ensure maintenance of Agency core competencies necessary to enable risk reduction in the following areas: A. Space medicine B. Physiological and behavioral effects of long duration spaceflight on the human body C. Space environmental effects, including radiation, on human health and performance D. Space "human factors" [HRP-47051]. Service projects can form integral parts of research-based project-focused programs to provide specialized functions. Traditional/classic project management methodologies and agile approaches are not mutually exclusive paradigms. Agile strategies can be combined with traditional methods and applied in the management of service projects functioning in changing environments. Creative collaborations afford a mechanism for mitigation of constrained resource limitations.

  9. Human Assisted Robotic Vehicle Studies - A conceptual end-to-end mission architecture

    NASA Astrophysics Data System (ADS)

    Lehner, B. A. E.; Mazzotta, D. G.; Teeney, L.; Spina, F.; Filosa, A.; Pou, A. Canals; Schlechten, J.; Campbell, S.; Soriano, P. López

    2017-11-01

    With current space exploration roadmaps indicating the Moon as a proving ground on the way to human exploration of Mars, it is clear that human-robotic partnerships will play a key role for successful future human space missions. This paper details a conceptual end-to-end architecture for an exploration mission in cis-lunar space with a focus on human-robot interactions, called Human Assisted Robotic Vehicle Studies (HARVeSt). HARVeSt will build on knowledge of plant growth in space gained from experiments on-board the ISS and test the first growth of plants on the Moon. A planned deep space habitat will be utilised as the base of operations for human-robotic elements of the mission. The mission will serve as a technology demonstrator not only for autonomous tele-operations in cis-lunar space but also for key enabling technologies for future human surface missions. The successful approach of the ISS will be built on in this mission with international cooperation. Mission assets such as a modular rover will allow for an extendable mission and to scout and prepare the area for the start of an international Moon Village.

  10. KENNEDY SPACE CENTER, FLA. - Center Director Jim Kennedy talks to students in Garland V. Stewart Magnet Middle School, a NASA Explorer School (NES) in Tampa, Fla. Kennedy made the trip with NASA astronaut Kay Hire to share the agency’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.

    NASA Image and Video Library

    2004-02-20

    KENNEDY SPACE CENTER, FLA. - Center Director Jim Kennedy talks to students in Garland V. Stewart Magnet Middle School, a NASA Explorer School (NES) in Tampa, Fla. Kennedy made the trip with NASA astronaut Kay Hire to share the agency’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.

  11. KENNEDY SPACE CENTER, FLA. - Astronaut Kay Hire talks to students in Garland V. Stewart Magnet Middle School, a NASA Explorer School (NES) in Tampa, Fla. She joined Center Director Jim Kennedy in sharing the agency’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.

    NASA Image and Video Library

    2004-02-20

    KENNEDY SPACE CENTER, FLA. - Astronaut Kay Hire talks to students in Garland V. Stewart Magnet Middle School, a NASA Explorer School (NES) in Tampa, Fla. She joined Center Director Jim Kennedy in sharing the agency’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.

  12. KENNEDY SPACE CENTER, FLA. - Students at Garland V. Stewart Magnet Middle School, a NASA Explorer School (NES) in Tampa, Fla., listen attentively to astronaut Kay Hire. She and Center Director Jim Kennedy were at the school to share the agency’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.

    NASA Image and Video Library

    2004-02-20

    KENNEDY SPACE CENTER, FLA. - Students at Garland V. Stewart Magnet Middle School, a NASA Explorer School (NES) in Tampa, Fla., listen attentively to astronaut Kay Hire. She and Center Director Jim Kennedy were at the school to share the agency’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.

  13. KSC-2014-2496

    NASA Image and Video Library

    2014-05-10

    CAPE CANAVERAL, Fla. – The San Diego Padres' mascot checks out NASA's Orion boilerplate test vehicle inside Petco Park in San Diego, California. The boilerplate test vehicle is being prepared for an Exploration Flight Test-1, or EFT-1, pre-transportation test. The Ground Systems Development and Operations Program will run the test at the U.S. Naval Base San Diego to simulate retrieval and transportation procedures for Orion after it splashes down in the ocean and is retrieved for return to land and ground transportation back to Kennedy Space Center in Florida. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett

  14. Overview of Space Transportation and Propulsion at NASA

    NASA Technical Reports Server (NTRS)

    Sackheim, Robert L.

    2003-01-01

    Topics considered include: 1. Scientific discovery: The search for the life beyond Earth. Understanding our Planet. Understanding our Universe. Exploration of the Planets and beyond. 2. The ultimate high ground for national security: Intelligence, communications, rapid response, GPS. 3. Space-based commerce: Communications and Earth observing.

  15. The Role of Cis-Lunar Space in Future Global Space Exploration

    NASA Technical Reports Server (NTRS)

    Bobskill, Marianne R.; Lupisella, Mark L.

    2012-01-01

    Cis-lunar space offers affordable near-term opportunities to help pave the way for future global human exploration of deep space, acting as a bridge between present missions and future deep space missions. While missions in cis-lunar space have value unto themselves, they can also play an important role in enabling and reducing risk for future human missions to the Moon, Near-Earth Asteroids (NEAs), Mars, and other deep space destinations. The Cis-Lunar Destination Team of NASA's Human Spaceflight Architecture Team (HAT) has been analyzing cis-lunar destination activities and developing notional missions (or "destination Design Reference Missions" [DRMs]) for cis-lunar locations to inform roadmap and architecture development, transportation and destination elements definition, operations, and strategic knowledge gaps. The cis-lunar domain is defined as that area of deep space under the gravitational influence of the earth-moon system. This includes a set of earth-centered orbital locations in low earth orbit (LEO), geosynchronous earth orbit (GEO), highly elliptical and high earth orbits (HEO), earth-moon libration or "Lagrange" points (E-ML1 through E-ML5, and in particular, E-ML1 and E-ML2), and low lunar orbit (LLO). To help explore this large possibility space, we developed a set of high level cis-lunar mission concepts in the form of a large mission tree, defined primarily by mission duration, pre-deployment, type of mission, and location. The mission tree has provided an overall analytical context and has helped in developing more detailed design reference missions that are then intended to inform capabilities, operations, and architectures. With the mission tree as context, we will describe two destination DRMs to LEO and GEO, based on present human space exploration architectural considerations, as well as our recent work on defining mission activities that could be conducted with an EML1 or EML2 facility, the latter of which will be an emphasis of this paper, motivated in part by recent interest expressed at the Global Exploration Roadmap Stakeholder meeting. This paper will also explore the links between this HAT Cis-Lunar Destination Team analysis and the recently released ISECG Global Exploration Roadmap and other potential international considerations, such as preventing harmful interference to radio astronomy observations in the shielded zone of the moon.

  16. A timely rationale for space exploration

    NASA Technical Reports Server (NTRS)

    Peterson, Douglas D.; Walters, Larry D.

    1992-01-01

    Space exploration is shown to be useful for enhancing a country's education, technology, and economic competitiveness. Technologies required for the Space Exploration Initiative are compared to emerging technologies identified by the U.S. Department of Commerce. The impact of previous space ventures on specific technologies are illustrated with examples such as miniaturized electronics, computers and software, and high-strength materials. The case for educational advancement as a by-product of space exploration is made by discussing the high-level requirements of the programs and describing the inspirational effect of space exploration on young students. Invigorating space exploration is argued to generate near- and long-term economic opportunities for key sectors of the national economy by means of technology transfer, space-resource utilization, and the commercialization of space.

  17. Dual Processing and Discourse Space: Exploring Fifth Grade Students' Language, Reasoning, and Understanding through Writing

    ERIC Educational Resources Information Center

    Yoon, Sae Yeol

    2012-01-01

    The purpose of this study was to explore the development of students' understanding through writing while immersed in an environment where there was a strong emphasis on a language-based argument inquiry approach. Additionally, this study explored students' spoken discourse to gain a better understanding of what role(s) talking plays in…

  18. Toxicological Risks During Human Space Exploration

    NASA Technical Reports Server (NTRS)

    James, John T.; Limero, T. F.; Lam, C. W.; Billica, Roger (Technical Monitor)

    2000-01-01

    The goal of toxicological risk assessment of human space flight is to identify and quantify significant risks to astronaut health from air pollution inside the vehicle or habitat, and to develop a strategy for control of those risks. The approach to completing a toxicological risk assessment involves data and experience on the frequency and severity of toxicological incidents that have occurred during space flight. Control of these incidents depends on being able to understand their cause from in-flight and ground-based analysis of air samples, crew reports of air quality, and known failures in containment of toxic chemicals. Toxicological risk assessment in exploration missions must be based on an evaluation of the unique toxic hazards presented by the habitat location. For example, lunar and Martian dust must be toxicologically evaluated to determine the appropriate control measures for exploration missions. Experience with near-earth flights has shown that the toxic products from fires present the highest risk to crew health from air pollution. Systems and payload leaks also present a significant hazard. The health risk from toxicity associated with materials offgassing or accumulation of human metabolites is generally well controlled. Early tests of lunar and Martian dust simulants have shown that each posses the potential to cause fibrosis in the lung in a murine model. Toxicological risks from air pollutants in space habitats originate from many sources. A number of risks have been identified through near-earth operations; however, the evaluation of additional new risks present during exploration missions will be a challenge.

  19. Lunar base - A stepping stone to Mars

    NASA Technical Reports Server (NTRS)

    Duke, M. B.; Mendell, W. W.; Roberts, B. B.

    1985-01-01

    Basic elements of technology and programmatic development are identified that appear relevant to the Case for Mars, starting from a base on the moon. The moon is a logical stepping stone toward human exploration of Mars because a lunar base can provide the first test of human ability to use the resources of another planetary body to provide basic materials for life support. A lunar base can provide the first long-term test of human capability to work and live in a reduced (but not zero) gravity field. A lunar base requires creation of the elements of a space transportation system that will be necessary to deliver large payloads to Mars and the space operations capability and experience necessary to carry out a Mars habitation program efficiently and with high reliability. A lunar base is feasible for the first decade of the 21st Century. Scenarios have been studied that provide advanced capability by 2015 within budget levels that are less than historical U.S. space expenditures (Apollo). Early return on the investment in terms of knowledge, practical experience and lunar products are important in gaining momentum for an expanded human exploration of the solar system and the eventual colonization of Mars.

  20. A vector space model approach to identify genetically related diseases.

    PubMed

    Sarkar, Indra Neil

    2012-01-01

    The relationship between diseases and their causative genes can be complex, especially in the case of polygenic diseases. Further exacerbating the challenges in their study is that many genes may be causally related to multiple diseases. This study explored the relationship between diseases through the adaptation of an approach pioneered in the context of information retrieval: vector space models. A vector space model approach was developed that bridges gene disease knowledge inferred across three knowledge bases: Online Mendelian Inheritance in Man, GenBank, and Medline. The approach was then used to identify potentially related diseases for two target diseases: Alzheimer disease and Prader-Willi Syndrome. In the case of both Alzheimer Disease and Prader-Willi Syndrome, a set of plausible diseases were identified that may warrant further exploration. This study furthers seminal work by Swanson, et al. that demonstrated the potential for mining literature for putative correlations. Using a vector space modeling approach, information from both biomedical literature and genomic resources (like GenBank) can be combined towards identification of putative correlations of interest. To this end, the relevance of the predicted diseases of interest in this study using the vector space modeling approach were validated based on supporting literature. The results of this study suggest that a vector space model approach may be a useful means to identify potential relationships between complex diseases, and thereby enable the coordination of gene-based findings across multiple complex diseases.

  1. The United Nations Human Space Technology Initiative

    NASA Astrophysics Data System (ADS)

    Balogh, Werner; Miyoshi, Takanori

    2016-07-01

    The United Nations Office for Outer Space Affairs (OOSA) launched the Human Space Technology Initiative (HSTI) in 2010 within the United Nations Programme on Space Applications, based on relevant recommendations of the Third United Nations Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE III). The activities of HSTI are characterized by the following "Three Pillars": International Cooperation, Outreach, and Capacity-building. For International Cooperation, OOSA and the Japan Aerospace Exploration Agency (JAXA) jointly launched a new programme entitled "KiboCUBE". KiboCUBE aims to provide educational or research institutions located in developing countries with opportunities to deploy cube satellites of their own design and manufacture from Japanese Experiment Module "Kibo" on-board the International Space Station (ISS). The Announcement of Opportunity was released on 8 September 2015 and the selected institution is to be announced by 1 August 2016. OOSA is also collaborating with WHO and with the COPUOS Expert Group on Space and Global Health to promote space technologies and ground- and space-based research activities that can contribute to improving global health. For Outreach, OOSA and the government of Costa Rica are jointly organising the United Nations/Costa Rica Workshop on Human Space Technology from 7 to 11 March 2016. Participants will exchange information on achievements in human space programmes and discuss how to promote international cooperation by further facilitating the participation of developing countries in human space exploration-related activities. Also, it will address the role of space industries in human space exploration and its related activities, considering that they have become significant stakeholders in this field. For Capacity-building, OOSA has been carrying out two activities: the Zero-Gravity Instrument Project (ZGIP) and the Drop Tower Experiment Series (DropTES). In ZGIP, OOSA has annually distributed clinostats (microgravity simulation instruments) worldwide. ZGIP has been providing students and teachers with the opportunity to study gravitational effects on samples such as plant seeds in a simulated microgravity condition. Currently, second and third cycles are on-going. DropTES is a fellowship programme, in which OOSA and the Centre of Applied Space Technology and Microgravity (ZARM) jointly provide one student team annually with the opportunity to conduct their own microgravity experiment at the Bremen Drop Tower, Germany. In 2015, in the DropTES second cycle, Universidad Católica Boliviana "San Pablo" was given the fellowship. DropTES has been extended to the third cycle for 2016.

  2. The Role of Robots and Automation in Space

    NASA Technical Reports Server (NTRS)

    Heer, E.

    1978-01-01

    Advanced space transportation systems based on the shuttle and interim upper stage will open the way to the use of large-scale industrial and commercial systems in space. The role of robot and automation technology in the cost-effective implementation and operation of such systems in the next two decades is discussed. Planning studies initiated by NASA are described as applied to space exploration, global services, and space industrialization, and a forecast of potential missions in each category is presented. The appendix lists highlights of space robot technology from 1967 to the present.

  3. A temporal forecast of radiation environments for future space exploration missions.

    PubMed

    Kim, Myung-Hee Y; Cucinotta, Francis A; Wilson, John W

    2007-06-01

    The understanding of future space radiation environments is an important goal for space mission operations, design, and risk assessment. We have developed a solar cycle statistical model in which sunspot number is coupled to space-related quantities, such as the galactic cosmic radiation (GCR) deceleration potential (phi) and the mean occurrence frequency of solar particle events (SPEs). Future GCR fluxes were derived from a predictive model, in which the temporal dependence represented by phi was derived from GCR flux and ground-based Climax neutron monitor rate measurements over the last four decades. These results showed that the point dose equivalent inside a typical spacecraft in interplanetary space was influenced by solar modulation by up to a factor of three. It also has been shown that a strong relationship exists between large SPE occurrences and phi. For future space exploration missions, cumulative probabilities of SPEs at various integral fluence levels during short-period missions were defined using a database of proton fluences of past SPEs. Analytic energy spectra of SPEs at different ranks of the integral fluences for energies greater than 30 MeV were constructed over broad energy ranges extending out to GeV for the analysis of representative exposure levels at those fluences. Results will guide the design of protection systems for astronauts during future space exploration missions.

  4. NASA In-Space Propulsion Technology Program: Overview and Update

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Alexander, Leslie; Baggett, Randy M.; Bonometti, Joseph A.; Herrmann, Melody; James, Bonnie F.; Montgomery, Sandy E.

    2004-01-01

    NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space - the maximum theoretical efficiencies have almost been reached and they are insufficient to meet needs for many ambitious science missions currently being considered. The In-Space Propulsion Technology Program's technology portfolio includes many advanced propulsion systems. From the next-generation ion propulsion system operating in the 5- to 10-kW range to aerocapture and solar sails, substantial advances in - spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called 'propellantless' because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations such as solar sails, electrodynamic and momentum transfer.tethers, aeroassist and aerocapture. This paper will provide an overview of both propellantless and propellant-based advanced propulsion technologies, as well as NASA's plans for advancing them as part of the In-Space Propulsion Technology Program.

  5. NASA's In-Space Propulsion Technology Program: Overview and Status

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Alexander, Leslie; Baggett, Randy; Bonometti, Joe; Herrmann, Melody; James, Bonnie; Montgomery, Sandy

    2004-01-01

    NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space - the maximum theoretical efficiencies have almost been reached and they are insufficient to meet needs for many ambitious science missions currently being considered. The In-Space Propulsion Technology Program s technology portfolio includes many advanced propulsion systems. From the next generation ion propulsion system operating in the 5 - 10 kW range, to advanced cryogenic propulsion, substantial advances in spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called, 'propellantless' because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations such as solar sails, electrodynamic and momentum transfer tethers, aeroassist, and aerocapture. This paper will provide an overview of both propellantless and propellant-based advanced propulsion technologies, and NASA s plans for advancing them as part of the $60M per year In-Space Propulsion Technology Program.

  6. NASA's In-Space Propulsion Technology Program: Overview and Update

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Alexander, Leslie; Baggett, Randy M.; Bonometti, Joseph A.; Herrmann, Melody; James, Bonnie F.; Montgomery, Sandy E.

    2004-01-01

    NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space - the maximum theoretical efficiencies have almost been reached and they are insufficient to meet needs for many ambitious science missions currently being considered. The In-Space Propulsion Technology Program s technology portfolio includes many advanced propulsion systems. From the next-generation ion propulsion system operating in the 5- to 10-kW range to aerocapture and solar sails, substantial advances in spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals ase the environment of space itself for energy and propulsion and are generically called 'propellantless' because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations such as solar sails, electrodynamic and momentum transfer tethers, aeroassist, and aerocapture. This paper will provide an overview of both propellantless and propellant-based advanced propulsion technologies, as well as NASA s plans for advancing them as part of the In-Space Propulsion Technology Program.

  7. Status of advanced propulsion for space based orbital transfer vehicle

    NASA Technical Reports Server (NTRS)

    Cooper, Larry P.; Scheer, Dean D.

    1986-01-01

    A new Orbital Transfer Vehicle (OTV) propulsion system will be required to meet the needs of space missions beyond the mid-1990's. As envisioned, the advanced OTV will be used in conjunction with earth-to-orbit vehicles, Space Station, and Orbit Maneuvering Vehicle. The OTV will transfer men, large space structures, and conventional payloads between low earth and higher energy orbits. Space probes carried by the OTV will continue the exploration of the solar system. When lunar bases are established, the OTV will be their transportation link to earth. NASA is currently funding the development of technology for advanced propulsion concepts for future Orbital Transfer Vehicles. Progress in key areas during 1986 is presented.

  8. Status of advanced propulsion for space based orbital transfer vehicle

    NASA Technical Reports Server (NTRS)

    Cooper, L. P.; Scheer, D. D.

    1986-01-01

    A new Orbital Transfer Vehicle (OTV) propulsion system will be required to meet the needs of space missions beyond the mid-1990's. As envisioned, the advanced OTV will be used in conjunction with Earth-to-orbit vehicles, Space Station, and Orbit Maneuvering Vehicle. The OTV will transfer men, large space structures, and conventional payloads between low Earth and higher energy orbits. Space probes carried by the OTV will continue the exploration of the solar system. When lunar bases are established, the OTV will be their transportation link to Earth. NASA is currently funding the development of technology for advanced propulsion concepts for future Orbital Transfer Vehicles. Progress in key areas during 1986 is presented.

  9. Balancing exploration and exploitation in population-based sampling improves fragment-based de novo protein structure prediction.

    PubMed

    Simoncini, David; Schiex, Thomas; Zhang, Kam Y J

    2017-05-01

    Conformational search space exploration remains a major bottleneck for protein structure prediction methods. Population-based meta-heuristics typically enable the possibility to control the search dynamics and to tune the balance between local energy minimization and search space exploration. EdaFold is a fragment-based approach that can guide search by periodically updating the probability distribution over the fragment libraries used during model assembly. We implement the EdaFold algorithm as a Rosetta protocol and provide two different probability update policies: a cluster-based variation (EdaRose c ) and an energy-based one (EdaRose en ). We analyze the search dynamics of our new Rosetta protocols and show that EdaRose c is able to provide predictions with lower C αRMSD to the native structure than EdaRose en and Rosetta AbInitio Relax protocol. Our software is freely available as a C++ patch for the Rosetta suite and can be downloaded from http://www.riken.jp/zhangiru/software/. Our protocols can easily be extended in order to create alternative probability update policies and generate new search dynamics. Proteins 2017; 85:852-858. © 2016 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. An assessment of waste processing/resource recovery technologies for lunar/Mars life applications

    NASA Technical Reports Server (NTRS)

    Verostko, Charles E.; Packham, Nigel J. C.; Henninger, Donald H.

    1992-01-01

    NASA's future manned missions to explore the solar system are by nature of long duration, mandating extensive regeneration of life support consumables from wastes generated in space-based habitats. Long-duration exploration missions would otherwise be prohibitive due to the number and frequency of energy-intensive resupply missions from Earth. Resource recovery is therefore a critical component of the controlled ecological life support system (CELSS). In order to assess resource recovery technologies for CELSS applications, the Crew and Thermal Systems Division at NASA-Johnson Space Center convened a three-day workshop to assess potential resource recovery technologies for application in a space-based CELSS. This paper describes the methodology of assessing and ranking of these technologies. Recommendations and issues are identified. Evaluations focused on the processes for handling and treatment of inedible plant biomass, human waste, and human generated trash. Technologies were assessed on the basis of safety, reliability, technology readiness, and performance characteristics.

  11. Effects of radiation and temperature on gallium nitride (GaN) metal-semiconductor-metal ultraviolet photodetectors

    NASA Astrophysics Data System (ADS)

    Chiamori, Heather C.; Angadi, Chetan; Suria, Ateeq; Shankar, Ashwin; Hou, Minmin; Bhattacharya, Sharmila; Senesky, Debbie G.

    2014-06-01

    The development of radiation-hardened, temperature-tolerant materials, sensors and electronics will enable lightweight space sub-systems (reduced packaging requirements) with increased operation lifetimes in extreme harsh environments such as those encountered during space exploration. Gallium nitride (GaN) is a ceramic, semiconductor material stable within high-radiation, high-temperature and chemically corrosive environments due to its wide bandgap (3.4 eV). These material properties can be leveraged for ultraviolet (UV) wavelength photodetection. In this paper, current results of GaN metal-semiconductor-metal (MSM) UV photodetectors behavior after irradiation up to 50 krad and temperatures of 15°C to 150°C is presented. These initial results indicate that GaN-based sensors can provide robust operation within extreme harsh environments. Future directions for GaN-based photodetector technology for down-hole, automotive and space exploration applications are also discussed.

  12. Understanding the Lunar System Architecture Design Space

    NASA Technical Reports Server (NTRS)

    Arney, Dale C.; Wilhite, Alan W.; Reeves, David M.

    2013-01-01

    Based on the flexible path strategy and the desire of the international community, the lunar surface remains a destination for future human exploration. This paper explores options within the lunar system architecture design space, identifying performance requirements placed on the propulsive system that performs Earth departure within that architecture based on existing and/or near-term capabilities. The lander crew module and ascent stage propellant mass fraction are primary drivers for feasibility in multiple lander configurations. As the aggregation location moves further out of the lunar gravity well, the lunar lander is required to perform larger burns, increasing the sensitivity to these two factors. Adding an orbit transfer stage to a two-stage lunar lander and using a large storable stage for braking with a one-stage lunar lander enable higher aggregation locations than Low Lunar Orbit. Finally, while using larger vehicles enables a larger feasible design space, there are still feasible scenarios that use three launches of smaller vehicles.

  13. Upper Management Visits Pegasus ICON

    NASA Image and Video Library

    2017-06-06

    Managers of NASA's Launch Services Program (LSP) at Kennedy Space Center visit the processing facility for the Pegasus XL rocket at Vandenberg Air Force Base in California. From left, are Chuck Dovale, deputy manager; Amanda Mitskevich, manager; Eric Denbrook, launch vehicle processing at VAFB; and Tim Dunn, NASA assistant launch manager for ICON. The Pegasus XL rocket is being prepared for the agency's Ionospheric Connection Explorer, or ICON, mission. ICON will launch from the Kwajalein Atoll aboard the Pegasus XL on Dec. 8, 2017. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  14. Lunar exploration and the advancement of biomedical research: a physiologist's view.

    PubMed

    Piantadosi, Claude A

    2006-10-01

    Over the next few years, it will become apparent just how important lunar exploration is to biomedical research and vice versa, and how critical both are to the future of human spaceflight. NASA's Project Constellation should put a new lunar-capable vehicle into service by 2014 that will rely on proven Space Shuttle components and allow four astronauts to spend 7 d on the lunar surface. A modern space transportation system opens up a unique opportunity in the space sciences--the establishment of a permanent lunar laboratory for the physical and life sciences. This commentary presents a rationale for focusing American efforts in space on such a Moon base in order to promote understanding of the long-term physiological effects of living on a planetary body outside the Van Allen belts.

  15. KSC-2011-7886

    NASA Image and Video Library

    2011-11-23

    CAPE CANAVERAL, Fla. -- Media learn about the plans Space Exploration Technologies Corp. (SpaceX) has to take NASA astronauts to the International Space Station at Space Launch Complex-40 on Cape Canaveral Air Force Station. SpaceX is working to make its Falcon 9 rocket and Dragon capsule safe for humans for NASA's Commercial Crew Program (CCP) under the Commercial Crew Development Round 2 (CCDev2) activities. SpaceX already is developing these systems under NASA's Commercial Orbital Transportation System (COTS) Program to take supplies to the space station. Scott Henderson, director of SpaceX mission assurance, explained that the company is drafting designs to make the Dragon capsule crew-capable with life support systems while meeting CCP's safety requirements. One such option under discussion is a launch abort system that would push astronauts away from the launch pad in the event of an emergency, which is different than traditional pull systems. It's the freedom to develop innovative solutions such as this that CCP hopes will drive down the cost of space travel as well as open up space to more people than ever before. CCP, which is based at NASA's Kennedy Space Center in Florida, partnered with seven aerospace companies to mature launch vehicle and spacecraft designs under CCDev2, including Alliant Techsystems Inc. (ATK) of Promontory, Utah, Blue Origin of Kent, Wash., The Boeing Co., of Houston, Excalibur Almaz Inc. of Houston, Sierra Nevada Corp. of Louisville, Colo., Space Exploration Technologies (SpaceX) of Hawthorne, Calif., and United Launch Alliance (ULA) of Centennial, Colo. For more information, visit www.nasa.gov/exploration/commercial Photo credit: Jim Grossmann

  16. KSC-2011-7885

    NASA Image and Video Library

    2011-11-23

    CAPE CANAVERAL, Fla. -- Media learn about the plans Space Exploration Technologies Corp. (SpaceX) has to take NASA astronauts to the International Space Station at Space Launch Complex-40 on Cape Canaveral Air Force Station. SpaceX is working to make its Falcon 9 rocket and Dragon capsule safe for humans for NASA's Commercial Crew Program (CCP) under the Commercial Crew Development Round 2 (CCDev2) activities. SpaceX already is developing these systems under NASA's Commercial Orbital Transportation System (COTS) Program to take supplies to the space station. Scott Henderson, director of SpaceX mission assurance, explained that the company is drafting designs to make the Dragon capsule crew-capable with life support systems while meeting CCP's safety requirements. One such option under discussion is a launch abort system that would push astronauts away from the launch pad in the event of an emergency, which is different than traditional pull systems. It's the freedom to develop innovative solutions such as this that CCP hopes will drive down the cost of space travel as well as open up space to more people than ever before. CCP, which is based at NASA's Kennedy Space Center in Florida, partnered with seven aerospace companies to mature launch vehicle and spacecraft designs under CCDev2, including Alliant Techsystems Inc. (ATK) of Promontory, Utah, Blue Origin of Kent, Wash., The Boeing Co., of Houston, Excalibur Almaz Inc. of Houston, Sierra Nevada Corp. of Louisville, Colo., Space Exploration Technologies (SpaceX) of Hawthorne, Calif., and United Launch Alliance (ULA) of Centennial, Colo. For more information, visit www.nasa.gov/exploration/commercial Photo credit: Jim Grossmann

  17. Planetary exploration, Horizon 2061: A joint ISSI-EUROPLANET community foresight exercisse

    NASA Astrophysics Data System (ADS)

    Blanc, Michel

    2017-04-01

    We will present the preliminary results of a foresight exercise jointly implemented by the Europlanet Research Infrastructure project of the European Union and by the International Space Science Institute (ISSI) to produce a community Vision of Planetary Exploration up to the 2061 horizon, named H2061 for short. 2061 was chosen as a symbolic date corresponding to the return of Halley's comet into the inner Solar System and to the centennial of the first Human space flight. This Vision will be built on a con-current analysis of the four "pillars" of planetary exploration: (1) The key priority questions to be addressed in Solar System science; (2) The representative planetary missions that need to be flown to address and hopefully answer these questions; (3) The enabling technologies that will need to be available to fly this set of ambitious mis-sions; (4) The supporting infrastructures, both space-based and ground-based, to be made available. In this science-driven approach, we will build our Horizon 2061 Vision in three following steps. In step 1, an international community forum convened in Bern, Switzerland on September 13th to 15th, 2016 by ISSI and Europlanet identified the first two pillars: key questions and representative planetary missions. The outputs of step 1 will be used as inputs to step 2, an open community meeting focusing on the identification of pillars 3 and 4 which will be hosted by the EPFL in Lausanne, Switzerland, on Jan. 29th to Feb. 1st, 2018. Ultimately, the four pillars identified by steps 1 and 2 will be discussed and compared in the "synthesis" meeting of step 3, which will take place in Toulouse, France, on the occasion of the European Open Science Forum 2018 (ESOF 2018). Planetary Exploration Horizon 2061: scientific approach. Since 1995 and the discovery of the first exoplanet orbiting a main sequence star, we are living a revolution in planetary science: as of today, over 3000 exoplanets have been identified by a diversity of techniques, first by ground-based telescopes and more recently by space missions like Corot and Kepler. Many more are to come in the few decades ahead of us, bringing to our knowledge an ever-increasing num-ber of exoplanets. While the "exploration" of exoplan-etary systems will remain the privilege of space-based telescopes and remote sensing techniques for a long time, space exploration opens a far more detailed ac-cess to a far more limited number of systems and of constituting objects in the Solar System. Linking these two uniquely complementary lines of research lays the foundations of a new type of comparative science: the science of planetary systems. The science-based com-ponent of our foresight exercise is a contribution to this perspective which we will share with the EGU com-munity.

  18. Proceedings of the 2nd Annual Conference on NASA/University Advanced Space Design Program

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Topics discussed include: lunar transportation system, Mars rover, lunar fiberglass production, geosynchronous space stations, regenerative system for growing plants, lunar mining devices, lunar oxygen transporation system, mobile remote manipulator system, Mars exploration, launch/landing facility for a lunar base, and multi-megawatt nuclear power system.

  19. A fault tolerant spacecraft supercomputer to enable a new class of scientific discovery

    NASA Technical Reports Server (NTRS)

    Katz, D. S.; McVittie, T. I.; Silliman, A. G., Jr.

    2000-01-01

    The goal of the Remote Exploration and Experimentation (REE) Project is to move supercomputeing into space in a coste effective manner and to allow the use of inexpensive, state of the art, commercial-off-the-shelf components and subsystems in these space-based supercomputers.

  20. Visualization of Earth and Space Science Data at JPL's Science Data Processing Systems Section

    NASA Technical Reports Server (NTRS)

    Green, William B.

    1996-01-01

    This presentation will provide an overview of systems in use at NASA's Jet Propulsion Laboratory for processing data returned by space exploration and earth observations spacecraft. Graphical and visualization techniques used to query and retrieve data from large scientific data bases will be described.

  1. Telescience testbedding for life science missions on the Space Station

    NASA Technical Reports Server (NTRS)

    Rasmussen, D.; Mian, A.; Bosley, J.

    1988-01-01

    'Telescience', defined as the ability of distributed system users to perform remote operations associated with NASA Space Station life science operations, has been explored by a developmental testbed project allowing rapid prototyping to evaluate the functional requirements of telescience implementation in three areas: (1) research planning and design, (2) remote operation of facilities, and (3) remote access to data bases for analysis. Attention is given to the role of expert systems in telescience, its use in realistic simulation of Space Shuttle payload remote monitoring, and remote interaction with life science data bases.

  2. Common In-Situ Consumable Production Plant for Robotic Mars Exploration

    NASA Technical Reports Server (NTRS)

    Sanders, G. B.; Trevathan, J. R.; Peters, T. A.; Baird, R. S.

    2000-01-01

    Utilization of extraterrestrial resources, or In-Situ Resource Utilization (ISRU), is viewed by the Human Exploration and Development of Space (HEDS) Enterprise as an enabling technology for the exploration and commercial development of space. A key subset of ISRU which has significant cost, mass, and risk reduction benefits for robotic and human exploration, and which requires a minimum of infrastructure, is In-Situ Consumable Production (ISCP). ISCP involves acquiring, manufacturing, and storing mission consumables from in situ resources, such as propellants, fuel cell reagents, and gases for crew and life support, inflation, science and pneumatic equipment. One of the four long-term goals for the Space Science Enterprise (SSE) is to 'pursue space science programs that enable and are enabled by future human exploration beyond low-Earth orbit - a goal exploiting the synergy with the human exploration of space'. Adequate power and propulsion capabilities are critical for both robotic and human exploration missions. Minimizing the mass and volume of these systems can reduce mission cost or enhance the mission by enabling the incorporation of new science or mission-relevant equipment. Studies have shown that in-situ production of oxygen and methane propellants can enhance sample return missions by enabling larger samples to be returned to Earth or by performing Direct Earth Return (DER) sample return missions instead of requiring a Mars Orbit Rendezvous (MOR). Recent NASA and Department of Energy (DOE) work on oxygen and hydrocarbon-based fuel cell power systems shows the potential of using fuel cell power systems instead of solar arrays and batteries for future rovers and science equipment. The development and use of a common oxygen/methane ISCP plant for propulsion and power generation can extend and enhance the scientific exploration of Mars while supporting the development and demonstration of critical technologies and systems for the human exploration of Mars.

  3. Common In-Situ Consumable Production Plant for Robotic Mars Exploration

    NASA Astrophysics Data System (ADS)

    Sanders, G. B.; Trevathan, J. R.; Peters, T. A.; Baird, R. S.

    2000-07-01

    Utilization of extraterrestrial resources, or In-Situ Resource Utilization (ISRU), is viewed by the Human Exploration and Development of Space (HEDS) Enterprise as an enabling technology for the exploration and commercial development of space. A key subset of ISRU which has significant cost, mass, and risk reduction benefits for robotic and human exploration, and which requires a minimum of infrastructure, is In-Situ Consumable Production (ISCP). ISCP involves acquiring, manufacturing, and storing mission consumables from in situ resources, such as propellants, fuel cell reagents, and gases for crew and life support, inflation, science and pneumatic equipment. One of the four long-term goals for the Space Science Enterprise (SSE) is to 'pursue space science programs that enable and are enabled by future human exploration beyond low-Earth orbit - a goal exploiting the synergy with the human exploration of space'. Adequate power and propulsion capabilities are critical for both robotic and human exploration missions. Minimizing the mass and volume of these systems can reduce mission cost or enhance the mission by enabling the incorporation of new science or mission-relevant equipment. Studies have shown that in-situ production of oxygen and methane propellants can enhance sample return missions by enabling larger samples to be returned to Earth or by performing Direct Earth Return (DER) sample return missions instead of requiring a Mars Orbit Rendezvous (MOR). Recent NASA and Department of Energy (DOE) work on oxygen and hydrocarbon-based fuel cell power systems shows the potential of using fuel cell power systems instead of solar arrays and batteries for future rovers and science equipment. The development and use of a common oxygen/methane ISCP plant for propulsion and power generation can extend and enhance the scientific exploration of Mars while supporting the development and demonstration of critical technologies and systems for the human exploration of Mars.

  4. Swingbed Amine Carbon Dioxide Removal Flight Experiment - Feasibility Study and Concept Development for Cost-Effective Exploration Technology Maturation on The International Space Station

    NASA Technical Reports Server (NTRS)

    Hodgson, Edward; Papale, William; Nalette, Timothy; Graf, John; Sweterlitsch, Jeffery; Hayley, Elizabeth; Williams, Antony; Button, Amy

    2011-01-01

    The completion of International Space Station Assembly and transition to a full six person crew has created the opportunity to create and implement flight experiments that will drive down the ultimate risks and cost for human space exploration by maturing exploration technologies in realistic space environments that are impossible or incredibly costly to duplicate in terrestrial laboratories. An early opportunity for such a technology maturation experiment was recognized in the amine swingbed technology baselined for carbon dioxide and humidity control on the Orion spacecraft and Constellation Spacesuit System. An experiment concept using an existing high fidelity laboratory swing bed prototype has been evaluated in a feasibility and concept definition study leading to the conclusion that the envisioned flight experiment can be both feasible and of significant value for NASA s space exploration technology development efforts. Based on the results of that study NASA has proceeded with detailed design and implementation for the flight experiment. The study effort included the evaluation of technology risks, the extent to which ISS provided unique opportunities to understand them, and the implications of the resulting targeted risks for the experiment design and operational parameters. Based on those objectives and characteristics, ISS safety and integration requirements were examined, experiment concepts developed to address them and their feasibility assessed. This paper will describe the analysis effort and conclusions and present the resulting flight experiment concept. The flight experiment, implemented by NASA and launched in two packages in January and August 2011, integrates the swing bed with supporting elements including electrical power and controls, sensors, cooling, heating, fans, air- and water-conserving functionality, and mechanical packaging structure. It is now on board the ISS awaiting installation and activation.

  5. Asteroid exploration and utilization: The Hawking explorer

    NASA Technical Reports Server (NTRS)

    Carlson, Alan; Date, Medha; Duarte, Manny; Erian, Neil; Gafka, George; Kappler, Peter; Patano, Scott; Perez, Martin; Ponce, Edgar; Radovich, Brian

    1991-01-01

    The Earth is nearing depletion of its natural resources at a time when human beings are rapidly expanding the frontiers of space. The resources which may exist on asteroids could have enormous potential for aiding and enhancing human space exploration as well as life on Earth. With the possibly limitless opportunities that exist, it is clear that asteroids are the next step for human existence in space. This report comprises the efforts of NEW WORLDS, Inc. to develop a comprehensive design for an asteroid exploration/sample return mission. This mission is a precursor to proof-of-concept missions that will investigate the validity of mining and materials processing on an asteroid. Project STONER (Systematic Transfer of Near Earth Resources) is based on two utilization scenarios: (1) moving an asteroid to an advantageous location for use by Earth; and (2) mining an asteroids and transporting raw materials back to Earth. The asteroid explorer/sample return mission is designed in the context of both scenarios and is the first phase of a long range plane for humans to utilize asteroid resources. The report concentrates specifically on the selection of the most promising asteroids for exploration and the development of an exploration scenario. Future utilization as well as subsystem requirements of an asteroid sample return probe are also addressed.

  6. Asteroid exploration and utilization: The Hawking explorer

    NASA Astrophysics Data System (ADS)

    Carlson, Alan; Date, Medha; Duarte, Manny; Erian, Neil; Gafka, George; Kappler, Peter; Patano, Scott; Perez, Martin; Ponce, Edgar; Radovich, Brian

    1991-12-01

    The Earth is nearing depletion of its natural resources at a time when human beings are rapidly expanding the frontiers of space. The resources which may exist on asteroids could have enormous potential for aiding and enhancing human space exploration as well as life on Earth. With the possibly limitless opportunities that exist, it is clear that asteroids are the next step for human existence in space. This report comprises the efforts of NEW WORLDS, Inc. to develop a comprehensive design for an asteroid exploration/sample return mission. This mission is a precursor to proof-of-concept missions that will investigate the validity of mining and materials processing on an asteroid. Project STONER (Systematic Transfer of Near Earth Resources) is based on two utilization scenarios: (1) moving an asteroid to an advantageous location for use by Earth; and (2) mining an asteroids and transporting raw materials back to Earth. The asteroid explorer/sample return mission is designed in the context of both scenarios and is the first phase of a long range plane for humans to utilize asteroid resources. The report concentrates specifically on the selection of the most promising asteroids for exploration and the development of an exploration scenario. Future utilization as well as subsystem requirements of an asteroid sample return probe are also addressed.

  7. 14 CFR 1266.104 - Cross-waiver of liability for launch agreements for science or space exploration activities...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... agreements for science or space exploration activities unrelated to the International Space Station. 1266.104... LIABILITY § 1266.104 Cross-waiver of liability for launch agreements for science or space exploration... cross-waiver of liability between the parties to agreements for NASA's science or space exploration...

  8. 14 CFR 1266.104 - Cross-waiver of liability for launch agreements for science or space exploration activities...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... agreements for science or space exploration activities unrelated to the International Space Station. 1266.104... LIABILITY § 1266.104 Cross-waiver of liability for launch agreements for science or space exploration... cross-waiver of liability between the parties to agreements for NASA's science or space exploration...

  9. 14 CFR 1266.104 - Cross-waiver of liability for launch agreements for science or space exploration activities...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... agreements for science or space exploration activities unrelated to the International Space Station. 1266.104... LIABILITY § 1266.104 Cross-waiver of liability for launch agreements for science or space exploration... cross-waiver of liability between the parties to agreements for NASA's science or space exploration...

  10. Exploring the free energy surface using ab initio molecular dynamics

    DOE PAGES

    Samanta, Amit; Morales, Miguel A.; Schwegler, Eric

    2016-04-22

    Efficient exploration of the configuration space and identification of metastable structures are challenging from both computational as well as algorithmic perspectives. Here, we extend the recently proposed orderparameter aided temperature accelerated sampling schemes to efficiently and systematically explore free energy surfaces, and search for metastable states and reaction pathways within the framework of density functional theory based molecular dynamics. The sampling method is applied to explore the relevant parts of the configuration space in prototypical materials SiO 2 and Ti to identify the different metastable structures corresponding to different phases in these materials. In addition, we use the string methodmore » in collective variables to study the melting pathways in the high pressure cotunnite phase of SiO 2 and the hcp to fcc phase transition in Ti.« less

  11. 48 CFR 1828.371 - Clauses incorporating cross-waivers of liability for International Space Station activities and...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... cross-waivers of liability for International Space Station activities and Science or Space Exploration... Station activities and Science or Space Exploration activities unrelated to the International Space Station. (a) In contracts covering International Space Station activities, or Science or Space Exploration...

  12. 48 CFR 1828.371 - Clauses incorporating cross-waivers of liability for International Space Station activities and...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... cross-waivers of liability for International Space Station activities and Science or Space Exploration... Station activities and Science or Space Exploration activities unrelated to the International Space Station. (a) In contracts covering International Space Station activities, or Science or Space Exploration...

  13. Development of cultural tourism area based on the spiritual space of Cirebon Keraton

    NASA Astrophysics Data System (ADS)

    Rosmalia, D.; Prasetya, L. E.

    2018-03-01

    Cirebon is a city laden with spiritual activities. These are held almost every month in a year, by palace (keraton) disciples from surrounding Cirebon region and Indonesia. The spiritual events are located in almost of sacred places of keratons around Cirebon, and make an imaginary sacred space from the south to the north of Cirebon city. Sacred spiritual space is potential to be developed into tourism area destination, especially for religious tourist. Therefore, this study aims to explore an attractiveness of tourism, based on the spiritual area of keraton disciples, as a part of the cultural tourism space of Cirebon. To explore tourism potential, this research used survey and observation method in the palace, and in-depth interview with seven key persons, i.e., palace informants. After that, this potential was developed for the planning of tourist areas based on spiritual tourism destinations, divided by the core and the supporting areas, formed by sacred places and major tourist attractions. The core area is located in two locations, i.e., (1) the area of Cirebon keratons, and (2) complexes of graves on Gunung Jati. Meanwhile, the supporting area is formed by other supporting tourist objects and the ritual route of tourism.

  14. InSight Prelaunch Briefing

    NASA Image and Video Library

    2018-05-03

    1st Lieutenant Kristina Williams, weather officer, 30th Space Wing, Vandenberg Air Force Base, right, discusses NASA's InSight mission during a prelaunch media briefing, Thursday, May 3, 2018, at Vandenberg Air Force Base in California. InSight, short for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, is a Mars lander designed to study the "inner space" of Mars: its crust, mantle, and core. Photo Credit: (NASA/Bill Ingalls)

  15. New Strategy for Exploration Technology Development: The Human Exploration and Development of Space (HEDS) Exploration/Commercialization Technology Initiative

    NASA Technical Reports Server (NTRS)

    Mankins, John C.

    2000-01-01

    In FY 2001, NASA will undertake a new research and technology program supporting the goals of human exploration: the Human Exploration and Development of Space (HEDS) Exploration/Commercialization Technology Initiative (HTCI). The HTCI represents a new strategic approach to exploration technology, in which an emphasis will be placed on identifying and developing technologies for systems and infrastructures that may be common among exploration and commercial development of space objectives. A family of preliminary strategic research and technology (R&T) road maps have been formulated that address "technology for human exploration and development of space (THREADS). These road maps frame and bound the likely content of the HTCL Notional technology themes for the initiative include: (1) space resources development, (2) space utilities and power, (3) habitation and bioastronautics, (4) space assembly, inspection and maintenance, (5) exploration and expeditions, and (6) space transportation. This paper will summarize the results of the THREADS road mapping process and describe the current status and content of the HTCI within that framework. The paper will highlight the space resources development theme within the Initiative and will summarize plans for the coming year.

  16. Pegasus ICON Fin Installation

    NASA Image and Video Library

    2017-07-08

    Technicians install the rudder on the Orbital ATK Pegasus XL rocket July 8, 2017, inside Building 1555 at Vandenberg Air Force Base in California. The Pegasus rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. ICON will launch on June 15 from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  17. Environmental control and life support technologies for advanced manned space missions

    NASA Technical Reports Server (NTRS)

    Powell, F. T.; Wynveen, R. A.; Lin, C.

    1986-01-01

    Regenerative environmental control and life support system (ECLSS) technologies are found by the present evaluation to have reached a degree of maturity that recommends their application to long duration manned missions. The missions for which regenerative ECLSSs are attractive in virtue of the need to avoid expendables and resupply requirements have been identified as that of the long duration LEO Space Station, long duration stays at GEO, a permanently manned lunar base (or colony), manned platforms located at the earth-moon libration points L4 or L5, a Mars mission, deep space exploration, and asteroid exploration. A comparison is made between nonregenerative and regenerative ECLSSs in the cases of 10 essential functions.

  18. KENNEDY SPACE CENTER, FLA. - Astronaut Kay Hire poses with 8th grader Kristy Wiggins at Garland V. Stewart Magnet Middle School, a NASA Explorer School (NES) in Tampa, Fla. Hire joined Center Director Jim Kennedy at the school in sharing the agency’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.

    NASA Image and Video Library

    2004-02-20

    KENNEDY SPACE CENTER, FLA. - Astronaut Kay Hire poses with 8th grader Kristy Wiggins at Garland V. Stewart Magnet Middle School, a NASA Explorer School (NES) in Tampa, Fla. Hire joined Center Director Jim Kennedy at the school in sharing the agency’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.

  19. KENNEDY SPACE CENTER, FLA. - Warren Elly (left), with WTVT-TV, Fox News, talks with Center Director Jim Kennedy at Garland V. Stewart Magnet Middle School, a NASA Explorer School (NES) in Tampa, Fla. Kennedy was joined by astronaut Kay Hire in sharing the agency’s new vision for space exploration with the next generation of explorers. Kennedy talked with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.

    NASA Image and Video Library

    2004-02-20

    KENNEDY SPACE CENTER, FLA. - Warren Elly (left), with WTVT-TV, Fox News, talks with Center Director Jim Kennedy at Garland V. Stewart Magnet Middle School, a NASA Explorer School (NES) in Tampa, Fla. Kennedy was joined by astronaut Kay Hire in sharing the agency’s new vision for space exploration with the next generation of explorers. Kennedy talked with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.

  20. KENNEDY SPACE CENTER, FLA. - Center Director Jim Kennedy talks to WTSP-ABC News about his trip to Garland V. Stewart Magnet Middle School, a NASA Explorer School (NES) in Tampa, Fla. Kennedy made the trip with NASA astronaut Kay Hire to share the agency’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.

    NASA Image and Video Library

    2004-02-20

    KENNEDY SPACE CENTER, FLA. - Center Director Jim Kennedy talks to WTSP-ABC News about his trip to Garland V. Stewart Magnet Middle School, a NASA Explorer School (NES) in Tampa, Fla. Kennedy made the trip with NASA astronaut Kay Hire to share the agency’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.

  1. New Directions in Space: A Report on the Lunar and Mars Initiatives

    NASA Technical Reports Server (NTRS)

    Seitz, Frederick; Hawkins, Willis; Jastrow, Robert; Nierenberg, William A.

    1990-01-01

    This report focuses on one aspect of the current space program: The establishment of a manned base on the Moon and the manned exploration of Mars. These missions were announced by the President last year as a major U.S. space policy objective to be implemented under the leadership of the Vice President, acting as Chairman of the National Space Council. On March 8, 1990, the White House released Presidential guidelines for the execution of the lunar and Mars programs. The guidelines stressed the need for new approaches and the development of innovative technologies with a potential for major cost, schedule and performance improvements. They also called for a competitive environment, with several years allotted to the definition of at least two significantly different human space exploration "reference architectures." Selection of the final technical concepts for the mission is scheduled to occur only after the relative merits of the competing reference architectures have been evaluated.

  2. Findings from the UK and Canadian Space Situational Awareness (SSA) Experimentation during the Relocation of SKYNET 5A Satellite

    NASA Astrophysics Data System (ADS)

    Ash, A.; Scott, L.; Feline, W.

    2016-09-01

    This paper describes the planning, execution, analysis and lessons identified from a collaborative Space Situational Awareness (SSA) experiment to observe the SKYNET 5A satellite during a series of orbital maneuvers that occurred in the summer of 2015. In March 2015 Airbus Defence and Space (Airbus DS) announced its intention to relocate the SKYNET 5A satellite from the Atlantic to the Asia Pacific region to increase its global coverage; this provided an opportunity to observe this high value asset to explore the challenges and technical solutions related to deep space SSA. Within the UK the Defence Science and Technology Laboratory (Dstl, part of the UK Ministry of Defence) were established as the lead agency to plan the observation campaign utilising operational and emerging experimental SSA capabilities. The campaign was then expanded to involve Canada, the United States and Australia under the auspices of the Combined Space Operations (CSpO) Memorandum of Understanding (MOU) to further explore the coordination of observations between operational systems and potential fusion of data collected using experimental SSA assets. The focus for this paper is the collaborative work between Dstl and Defence Research and Development Canada (DRDC) that featured a period of experimentation to explore methods that enable cross cueing between ground-based and space-based SSA sensors, namely the UK Starbrook facility (located on the island of Cyprus), and NEOSSat/ Sapphire space surveillance satellites located in low-Earth orbit. A number of conclusions and lessons are identified in this paper that seek to inform the wider SSA community on the challenges, potential solutions and benefits of operating a distributed SSA architecture such as the one utilized during this experiment.

  3. Concepts for a Space-Based Gravitational-Wave Observatory (SGO)

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin T.

    2012-01-01

    The low-frequency band (0.0001 - 1 Hz) of the gravitational wave spectrum has the most interesting astrophysical sources. It is only accessible from space. The Laser Interferometer Space Antenna (LISA) concept has been the leading contender for a space-based detector in this band. Despite a strong recommendation from Astro2010, constrained budgets motivate the search for a less expensive concept, even at the loss of some science. We have explored the range of lower cost mission concepts derived from two decades of studying the LISA concept We describe LlSA-like concepts that span the range of affordable and scientifically worthwhile missions, and summarize the analyses behind them.

  4. Using space-based investigations to inform cancer research on Earth.

    PubMed

    Becker, Jeanne L; Souza, Glauco R

    2013-05-01

    Experiments conducted in the microgravity environment of space are not typically at the forefront of the mind of a cancer biologist. However, space provides physical conditions that are not achievable on Earth, as well as conditions that can be exploited to study mechanisms and pathways that control cell growth and function. Over the past four decades, studies have shown how exposure to microgravity alters biological processes that may be relevant to cancer. In this Review, we explore the influence of microgravity on cell biology, focusing on tumour cells grown in space together with work carried out using models in ground-based investigations.

  5. Efficient exploration of chemical space by fragment-based screening.

    PubMed

    Hall, Richard J; Mortenson, Paul N; Murray, Christopher W

    2014-01-01

    Screening methods seek to sample a vast chemical space in order to identify starting points for further chemical optimisation. Fragment based drug discovery exploits the superior sampling of chemical space that can be achieved when the molecular weight is restricted. Here we show that commercially available fragment space is still relatively poorly sampled and argue for highly sensitive screening methods to allow the detection of smaller fragments. We analyse the properties of our fragment library versus the properties of X-ray hits derived from the library. We particularly consider properties related to the degree of planarity of the fragments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Telescopes and space exploration

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.; Maran, S. P.

    1976-01-01

    The necessity for different types of telescopes for astronomical investigations is discussed. Major findings in modern astronomy by ground-based and spaceborne telescopes are presented. Observations of the Crab Nebula, solar flares, interstellar gas, and the Black Hole are described. The theory of the oscillating universe is explored. Operating and planned telescopes are described.

  7. Marshall Space Flight Center - Launching the Future of Science and Exploration

    NASA Technical Reports Server (NTRS)

    Shivers, Alisa; Shivers, Herbert

    2010-01-01

    Topics include: NASA Centers around the country, launching a legacy (Explorer I), Marshall's continuing role in space exploration, MSFC history, lifting from Earth, our next mission STS 133, Space Shuttle propulsion systems, Space Shuttle facts, Space Shuttle and the International Space Station, technologies/materials originally developed for the space program, astronauts come from all over, potential future missions and example technologies, significant accomplishments, living and working in space, understanding our world, understanding worlds beyond, from exploration to innovation, inspiring the next generation, space economy, from exploration to opportunity, new program assignments, NASA's role in education, and images from deep space including a composite of a galaxy with a black hole, Sagittarius A, Pillars of Creation, and an ultra deep field

  8. The use of activity-based cost estimation as a management tool for cultural change

    NASA Technical Reports Server (NTRS)

    Mandell, Humboldt; Bilby, Curt

    1991-01-01

    It will be shown that the greatest barrier to American exploration of the planet Mars is not the development of the technology needed to deliver humans and return them safely to earth. Neither is it the cost of such an undertaking, as has been previously suggested, although certainly, such a venture may not be inexpensive by some measures. The predicted costs of exploration have discouraged serious political dialog on the subject. And, in fact, even optimistic projections of the NASA budget do not contain the resources required, under the existing development and management paradigm, for human space exploration programs. It will be demonstrated that the perception of the costs of such a venture, and the cultural responses to the perceptions are factors inhibiting American exploration of the moon and the planet Mars. Cost models employed in the aerospace industry today correctly mirror the history of past space programs, and as such, are representative of the existing management and development paradigms. However, if, under this current paradigm no major exploration programs are feasible, then cost analysis methods based in the past may not have great utility in exploring the needed cultural changes. This paper explores the use of a new type of model, the activity based cost model, which will treat management style as an input variable, in a sense providing a tool whereby a complete, affordable program might be designed, including both the technological and management aspects.

  9. Electric Propulsion Concepts Enabled by High Power Systems for Space Exploration

    NASA Technical Reports Server (NTRS)

    Gilland, James; Fiehler, Douglas; Lyons, Valerie

    2005-01-01

    This paper describes the latest development in electric propulsion systems being planned for the new Space Exploration initiative. Missions to the Moon and Mars will require these new thrusters to deliver the large quantities of supplies that would be needed to support permanent bases on other worlds. The new thrusters are also being used for unmanned exploration missions that will go to the far reaches of the solar system. This paper is intended to give the reader some insight into several electric propulsion concepts their operating principles and capabilities, as well as an overview of some mission applications that would benefit from these propulsion systems, and their accompanying advanced power systems.

  10. Future Missions for Space Weather Specifications and Forecasts

    NASA Astrophysics Data System (ADS)

    Onsager, T. G.; Biesecker, D. A.; Anthes, R. A.; Maier, M. W.; Gallagher, F. W., III; St Germain, K.

    2017-12-01

    The progress of technology and the global integration of our economic and security infrastructures have introduced vulnerabilities to space weather that demand a more comprehensive ability to specify and to predict the dynamics of the space environment. This requires a comprehensive network of real-time space-based and ground-based observations with long-term continuity. In order to determine the most cost effective space architectures for NOAA's weather, space weather, and environmental missions, NOAA conducted the NOAA Satellite Observing System Architecture (NSOSA) study. This presentation will summarize the process used to document the future needs and the relative priorities for NOAA's operational space-based observations. This involves specifying the most important observations, defining the performance attributes at different levels of capability, and assigning priorities for achieving the higher capability levels. The highest priority observations recommended by the Space Platform Requirements Working Group (SPRWG) for improvement above a minimal capability level will be described. Finally, numerous possible satellite architectures have been explored to assess the costs and benefits of various architecture configurations.

  11. Aeronautics and Space Report of the President: Fiscal Year 2009 Activities

    NASA Technical Reports Server (NTRS)

    2009-01-01

    In fiscal year 2009 (FY 09), the Exploration Systems Mission Directorate's (ESMD) Advanced Capabilities Division (ACD) provided critical research and technology products that reduced operational and technical risks for the flight systems being developed by the Constellation Program.1 These products addressed high-priority technology requirements for lunar exploration; risk mitigation related to astronaut health and performance; basic research in life and physical sciences using the International Space Station (ISS), free-flying spacecraft, and ground-based laboratories; and lunar robotic missions to gather data relevant to future human lunar missions.

  12. Exploring G Protein-Coupled Receptors (GPCRs) Ligand Space via Cheminformatics Approaches: Impact on Rational Drug Design

    PubMed Central

    Basith, Shaherin; Cui, Minghua; Macalino, Stephani J. Y.; Park, Jongmi; Clavio, Nina A. B.; Kang, Soosung; Choi, Sun

    2018-01-01

    The primary goal of rational drug discovery is the identification of selective ligands which act on single or multiple drug targets to achieve the desired clinical outcome through the exploration of total chemical space. To identify such desired compounds, computational approaches are necessary in predicting their drug-like properties. G Protein-Coupled Receptors (GPCRs) represent one of the largest and most important integral membrane protein families. These receptors serve as increasingly attractive drug targets due to their relevance in the treatment of various diseases, such as inflammatory disorders, metabolic imbalances, cardiac disorders, cancer, monogenic disorders, etc. In the last decade, multitudes of three-dimensional (3D) structures were solved for diverse GPCRs, thus referring to this period as the “golden age for GPCR structural biology.” Moreover, accumulation of data about the chemical properties of GPCR ligands has garnered much interest toward the exploration of GPCR chemical space. Due to the steady increase in the structural, ligand, and functional data of GPCRs, several cheminformatics approaches have been implemented in its drug discovery pipeline. In this review, we mainly focus on the cheminformatics-based paradigms in GPCR drug discovery. We provide a comprehensive view on the ligand– and structure-based cheminformatics approaches which are best illustrated via GPCR case studies. Furthermore, an appropriate combination of ligand-based knowledge with structure-based ones, i.e., integrated approach, which is emerging as a promising strategy for cheminformatics-based GPCR drug design is also discussed. PMID:29593527

  13. RADECS Short Course Session I: The Space Radiation Environment

    NASA Technical Reports Server (NTRS)

    Xapsos, Michael; Bourdarie, Sebastien

    2007-01-01

    The presented slides and accompanying paper focus on radiation in the space environment. Since space exploration has begun it has become evident that the space environment is a highly aggressive medium. Beyond the natural protection provided by the Earth's atmosphere, various types of radiation can be encountered. Their characteristics (energy and nature), origins and distributions in space are extremely variable. This environment degrades electronic systems and on-board equipment in particular and creates radiobiological hazards during manned space flights. Based on several years of space exploration, a detailed analysis of the problems on satellites shows that the part due to the space environment is not negligible. It appears that the malfunctions are due to problems linked to the space environment, electronic problems, design problems, quality problems, other issues, and unexplained reasons. The space environment is largely responsible for about 20% of the anomalies occurring on satellites and a better knowledge of that environment could only increase the average lifetime of space vehicles. This naturally leads to a detailed study of the space environment and of the effects that it induces on space vehicles and astronauts. Sources of radiation in the space environment are discussed here and include the solar activity cycle, galactic cosmic rays, solar particle events, and Earth radiation belts. Future challenges for space radiation environment models are briefly addressed.

  14. Space-Based Gravitational-wave Mission Concept Studies

    NASA Technical Reports Server (NTRS)

    Livas, Jeffrey C.

    2012-01-01

    The LISA Mission Concept has been under study for over two decades as a spacebased gravitational-wave detector capable of observing astrophysical sources in the 0.0001 to 1 Hz band. The concept has consistently received strong recommendations from various review panels based on the expected science, most recently from the US Astr02010 Decadal Review. Budget constraints have led both the US and European Space agencies to search for lower cost options. We report results from the US effort to explore the tradeoffs between mission cost and science return, and in particular a family of mission concepts referred to as SGO (Space-based Gravitational-wave Observatory).

  15. Toward an International Lunar Polar Volatiles Strategy

    NASA Technical Reports Server (NTRS)

    Gruener, J. E.; Suzuki, N. H.; Carpenter, J. D.

    2015-01-01

    Fourteen international space agencies are participating in the International Space Exploration Coordination Group (ISECG), working together to advance a long-range human space exploration strategy. The ISECG is a voluntary, non-binding international coordination mechanism through which individual agencies may exchange information regarding interests, objectives, and plans in space exploration with the goal of strengthening both individual exploration programs as well as the collective effort. The ISECG has developed a Global Exploration Roadmap (GER) that reflects the coordinated international dialog and continued preparation for exploration beyond low-Earth orbit - beginning with the Moon and cis-lunar space, and continuing to near-Earth asteroids, and Mars. Space agencies agree that human space exploration will be most successful as an international endeavor, given the challenges of these missions. The roadmap demonstrates how initial capabilities can enable a variety of missions in the lunar vicinity, responding to individual and common goals and objectives, while contributing to building partnerships required for sustainable human space exploration that delivers value to the public.

  16. Rationalisation of the Solar System exploration

    NASA Astrophysics Data System (ADS)

    Czechowski, L.

    2017-09-01

    Present attitude to space exploration is often a result irrational political pressure. The better cooperation between space agencies could be beneficial for the space exploration and for national space programs.

  17. Multi-Spectral Image Analysis for Improved Space Object Characterization

    NASA Astrophysics Data System (ADS)

    Duggin, M.; Riker, J.; Glass, W.; Bush, K.; Briscoe, D.; Klein, M.; Pugh, M.; Engberg, B.

    The Air Force Research Laboratory (AFRL) is studying the application and utility of various ground based and space-based optical sensors for improving surveillance of space objects in both Low Earth Orbit (LEO) and Geosynchronous Earth Orbit (GEO). At present, ground-based optical and radar sensors provide the bulk of remotely sensed information on satellites and space debris, and will continue to do so into the foreseeable future. However, in recent years, the Space Based Visible (SBV) sensor was used to demonstrate that a synthesis of space-based visible data with ground-based sensor data could provide enhancements to information obtained from any one source in isolation. The incentives for space-based sensing include improved spatial resolution due to the absence of atmospheric effects and cloud cover and increased flexibility for observations. Though ground-based optical sensors can use adaptive optics to somewhat compensate for atmospheric turbulence, cloud cover and absorption are unavoidable. With recent advances in technology, we are in a far better position to consider what might constitute an ideal system to monitor our surroundings in space. This work has begun at the AFRL using detailed optical sensor simulations and analysis techniques to explore the trade space involved in acquiring and processing data from a variety of hypothetical space-based and ground-based sensor systems. In this paper, we briefly review the phenomenology and trade space aspects of what might be required in order to use multiple band-passes, sensor characteristics, and observation and illumination geometries to increase our awareness of objects in space.

  18. The impact of sex and gender on adaptation to space: executive summary.

    PubMed

    Mark, Saralyn; Scott, Graham B I; Donoviel, Dorit B; Leveton, Lauren B; Mahoney, Erin; Charles, John B; Siegel, Bette

    2014-11-01

    This review article is a compendium of six individual manuscripts, a Commentary, and an Executive Summary. This body of work is entitled "The Impact of Sex and Gender on Adaptation to Space" and was developed in response to a recommendation from the 2011 National Academy of Sciences Decadal Survey, "Recapturing a Future for Space Exploration: Life and Physical Sciences for a New Era," which emphasized the need to fully understand sex and gender differences in space. To ensure the health and safety of male and female astronauts during long-duration space missions, it is imperative to examine and understand the influences that sex and gender have on physiological and psychological changes that occur during spaceflight. In this collection of manuscripts, six workgroups investigated and summarized the current body of published and unpublished human and animal research performed to date related to sex- and gender-based differences in the areas of cardiovascular, immunological, sensorimotor, musculoskeletal, reproductive, and behavioral adaptations to human spaceflight. Each workgroup consisted of scientists and clinicians from academia, the National Aeronautics and Space Administration (NASA), and other federal agencies and was co-chaired by one representative from NASA and one from the external scientific community. The workgroups met via telephone and e-mail over 6 months to review literature and data from space- and ground-based studies to identify sex and gender factors affecting crew health. In particular, the Life Sciences Data Archive and the Lifetime Surveillance of Astronaut Health were extensively mined. The groups identified certain sex-related differences that impact the risks and the optimal medical care required by space-faring women and men. It represents innovative research in sex and gender-based biology that impacts those individuals that are at the forefront of space exploration.

  19. Beyond Earth's boundaries: Human exploration of the Solar System in the 21st Century

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This is an annual report describing work accomplished in developing the knowledge base that will permit informed recommendations and decisions concerning national space policy and the goal of human expansion into the solar system. The following topics are presented: (1) pathways to human exploration; (2) human exploration case studies; (3) case study results and assessment; (4) exploration program implementation strategy; (5) approach to international cooperation; (6) recommendations; and (7) future horizons.

  20. Extra-terrestrial construction processes - Advancements, opportunities and challenges

    NASA Astrophysics Data System (ADS)

    Lim, Sungwoo; Prabhu, Vibha Levin; Anand, Mahesh; Taylor, Lawrence A.

    2017-10-01

    Government space agencies, including NASA and ESA, are conducting preliminary studies on building alternative space-habitat systems for deep-space exploration. Such studies include development of advanced technologies for planetary surface exploration, including an in-depth understanding of the use of local resources. Currently, NASA plans to land humans on Mars in the 2030s. Similarly, other space agencies from Europe (ESA), Canada (CSA), Russia (Roscosmos), India (ISRO), Japan (JAXA) and China (CNSA) have already initiated or announced their plans for launching a series of lunar missions over the next decade, ranging from orbiters, landers and rovers for extended stays on the lunar surface. As the Space Odyssey is one of humanity's oldest dreams, there has been a series of research works for establishing temporary or permanent settlement on other planetary bodies, including the Moon and Mars. This paper reviews current projects developing extra-terrestrial construction, broadly categorised as: (i) ISRU-based construction materials; (ii) fabrication methods; and (iii) construction processes. It also discusses four categories of challenges to developing an appropriate construction process: (i) lunar simulants; (ii) material fabrication and curing; (iii) microwave-sintering based fabrication; and (iv) fully autonomous and scaled-up construction processes.

  1. The International Space Station in Space Exploration

    NASA Technical Reports Server (NTRS)

    Gerstenmaier, William H.; McKay, Meredith M.

    2006-01-01

    The International Space Station (ISS) Program has many lessons to offer for the future of space exploration. Among these lessons of the ISS Program, three stand out as instrumental for the next generation of explorers. These include: 1) resourcefulness and the value of a strong international partnership; 2) flexibility as illustrated by the evolution of the ISS Program and 3) designing with dissimilar redundancy and simplicity of sparing. These lessons graphically demonstrate that the ISS Program can serve as a test bed for future programs. As the ISS Program builds upon the strong foundation of previous space programs, it can provide insight into the prospects for continued growth and cooperation in space exploration. As the capacity for spacefaring increases worldwide and as more nations invest in space exploration and space sector development, the potential for advancement in space exploration is unlimited. By building on its engineering and research achievements and international cooperation, the ISS Program is inspiring tomorrow s explorers today.

  2. 48 CFR 1828.371 - Clauses for cross-waivers of liability for Space Shuttle services, Expendable Launch Vehicle (ELV...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Space Station activities and Science or Space Exploration activities unrelated to the International... Exploration activities unrelated to the International Space Station that involve a launch, NASA shall require... or Space Exploration Activities unrelated to the International Space Station, in solicitations and...

  3. China (CNSA) views of the Moon

    NASA Astrophysics Data System (ADS)

    He, S.

    China's lunar objectives have widely attracted the world's attention since China National Space Administration (CNSA) chief Luan Enjie in October 2000 officially affirmed the nation plans to carry out lunar exploration. The success of the Shenzhou-3 mission last April, which indicates that China is on the eve to become the third nation to attain an independent ability to launch humans into space, coupled with Chinese president Jiang Zemin's announcement issued immediately after the launch of SZ-3 that China will develop its own space station, further prompted the mass media in the West to ponder whether "the next footsteps on the Moon will be Chinese." Although China's lunar intention is well publicized, no detail about the project has yet been unveiled in the Western space media because China's space program has been notoriously cloaked in state-imposed secrecy, while the available information is basically unreported by Western observers mainly due to the cultural and language barriers. Based on original research of both the unpublished documents as well as reports in China's space media and professional journals, this paper attempts to piece together the available material gathered from China, providing some insight into China's Moon project, and analyzing the Chinese activities in pursuit of their lunar dream in perspective of space policy. Motivations China's presence on the Moon, in the Chinese leadership's view, could help aggrandize China's international prestige and consolidate the cohesion of the Chinese nation. Lunar exploration, the science community consents, not only helps acquire knowledge about the Moon, but also deepen the understanding of the Earth. A lunar project is believed to be able to accelerate the development of launching and navigating technologies, preparing for future deep space exploration. The emergence of the return to the Moon movement in the world, and the presumption that NASA has plans to return to the Moon, as evidenced by prominent Chinese space scientists' remarks, are also the driving forces for China's determination to reach the Moon. Preliminary Studies Although China did not begin preliminary studies for lunar exploration seriously until the early 1990s, approximately the same time when the human spaceflight Project 921 started, lunar studies have been carried out in the nation for a few decades. The Advancement of Selenology, completed in 1977 by a team led by Ouyang Ziyuan at the CAS Institute of Geochemistry in Guiyang, is probably the most important work on the subject published in China. Under the direction of the Project 863 Experts Committee, a team of scientists led by Ouyang Ziyuan and Zhu Guibo of China Aerospace Industry Corporation in 1993 began to study the feasibility and necessity of lunar exploration by China. Based on a comprehensive survey of the nation's space technology and infrastructures, the feasibility study completed in 1995 believed it was possible to orbit a lunar satellite by 2000. In April 1997, CAS members Yang Jiachi, Wang Daheng and Chen Fangyun issued the "Proposal for Development of Our Nation's Lunar Exploration Technology" as part of the Project 863. The research and development of robotic rovers for lunar exploration began the following year. In May 2000 and January 2001, Tsinghua University organized two symposia on lunar exploration technology. The third lunar conference was held in March 2001 at Beijing University of Aeronautics and Astronautics (BUAA) to discuss China's lunar exploration and human spaceflight in the 21st century. A feasibility study for China's lunar adventure was unveiled at the conference for the first time. Objectives and Scenarios The primary objective of the first stage of lunar exploration, according to the feasibility study, will be a comprehensive survey of the lunar surface through remote sensing. Based on this survey, areas for soft landings will be selected. Lunar rovers will further explore these areas to identify an ideal site for the construction of a lunar base. To achieve this goal, a five-step plan has been developed. Launching orbiting missions to obtain data about the topography and resource distribution of the lunar surface before 2005 will be the task of the first phase; landing rovers on selected areas to test the soft landing technology and survey the target areas before 2010 will be the major operations for the second period of exploration; robotic exploration using rovers to survey lunar surface will be the focus of the third step (2010-2020) and sample return missions will be launched during the fourth phase (2020-2030) of the program. Upon completing these steps, CNSA will concentrate on human missions and the construction of a lunar base after 2030. Chinese scientists are currently pushing for the nation's 1st mission to the Moon, suggesting that CNSA should simplify the design of the short-term plan for lunar exploration, utilizing the existing technology and available resources to start the lunar project as soon as possible. Estimated Costs According to principal scientist of the lunar project Ouyang Ziyuan's estimation last December, CNSA may launch its 1st orbiting mission to the Moon with one billion RMB yuan (US122 million), which approximately doubles the initial estimated costs presented in the 1995 feasibility study. Technological Readiness China has laid solid foundations in the areas of satellite application, launch vehicle, ground control and tracking, astronomical observations and scientific investigations. The conditions for carrying out lunar exploration, according to the feasibility study, have completely matured. Launch vehicles: Three types of Long March 3A rockets with cryogen propellant upper stage are already capable of launching probes weighting 1,600 kg, 2,400 kg and 3,300 kg to lunar transfer orbit respectively, according to a report last January. The human-rated LM 2F, which lofted SZ-3, is also able to launch missions to the Moon. Besides, the LM 3B can be upgraded to send 1.5-ton to 3-ton payloads into lunar orbit. The next generation rockets based on the Long March series currently being developed will meet the requirements for sample return and human missions. The development of the new launchers is expected to be completed within about six years. Launch centers: Two of the three existing centers, in Jiuquan and Xichang, can be used to launch missions to the Moon. In addition, Chinese space experts have been pushing for building the 4th launch center on Hainan island for new exploration missions and commercial satellite launch, which would be the embarkation point for China's future lunar missions. Tracking and control: The existing tracking and control network, including the TT&C stations in Swakopmund, Namibia and on Tarawa Atoll in Kiribati, and the Long View fleet of 4 tracking ships, can be used for lunar missions. However, a deep space tracking station needs to be built in either Kashi, Xinjiang or Beijing to improve efficiency. But the ground stations within China's territory can only track lunar probes for 8 hours daily. The global DSN needs to be utilized in order to ensure 24-hour tracking operation. Therefore, international cooperation is necessary. International Cooperation CNSA hopes to cooperate with foreign space agencies, using NASA's DSN stations in Madrid, Goldstone and Canberra to support its lunar expeditions. As compared to other space activities in LEO, lunar exploration, the Chinese reason, is basically scientific endeavour and is unrelated to military. Therefore, it is likely that other countries would cooperate with China. China has been cooperating with Russia in many areas. CNSA also has been closely working with ESA on the Double Star project. Most recently, NASA administrator Sean O'Keefe expressed that NASA was interested in China's participation in the ISS. If such cooperation materializes, joint efforts in lunar expeditions should be a logical extension, and the prospects for truly global cooperation in peaceful exploration and utilization of space will be promising. References (all in Chinese): Chinese Academy of Sciences Institute of Geochemistry in Guiyang. Advancement of Selenology. Beijing:Science Press, 1977. Project 863 Lunar Exploration Program Team. "A Study of Necessity and Feasibility of Lunar Exploration in Our Country." Project 863 Aerospace Program, 1995. Yang Jiachi, Wang Daheng and Chen Fangyun. "Proposal for the Development of Our Nation's LunarExploration Technology." Project 863 Aerospace Program, 1997. Zi Xiao. "China's Lunar Exploration Plans Emerge." Aeronautics Knowledge, published by Beijing University of Aeronautics and Astronautics, June and July 2001. "To Realize China's Lunar Dream." A special issue on lunar exploration in China Space News, No. 838, 5 January 2002.

  4. Adapting New Space System Designs into Existing Ground Infrastructure

    NASA Technical Reports Server (NTRS)

    Delgado, Hector N.; McCleskey, Carey M.

    2008-01-01

    As routine space operations extend beyond earth orbit, the ability for ground infrastructures to take on new launch vehicle systems and a more complex suite of spacecraft and payloads has become a new challenge. The U.S. Vision for Space Exploration and its Constellation Program provides opportunities for our space operations community to meet this challenge. Presently, as new flight and ground systems add to the overall groundbased and space-based capabilities for NASA and its international partners, specific choices are being made as to what to abandon, what to retain, as well as what to build new. The total ground and space-based infrastructure must support a long-term, sustainable operation after it is all constructed, deployed, and activated. This paper addresses key areas of engineering concern during conceptual design, development, and routine operations, with a particular focus on: (1) legacy system reusability, (2) system supportability attributes and operations characteristics, (3) ground systems design trades and criteria, and (4) technology application survey. Each key area explored weighs the merits of reusability of the infrastructure in terms of: engineering analysis methods and techniques; top-level facility, systems, and equipment design criteria; and some suggested methods for making the operational system attributes (the "-ilities") highly visible to the design teams and decisionmakers throughout the design process.

  5. KENNEDY SPACE CENTER, FLA. - Center Director Jim Kennedy talks to radio station WFLA-AM and Florida Radio Network about his trip to Garland V. Stewart Magnet Middle School, a NASA Explorer School (NES) in Tampa, Fla. Kennedy made the trip with NASA astronaut Kay Hire to share the agency’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.

    NASA Image and Video Library

    2004-02-20

    KENNEDY SPACE CENTER, FLA. - Center Director Jim Kennedy talks to radio station WFLA-AM and Florida Radio Network about his trip to Garland V. Stewart Magnet Middle School, a NASA Explorer School (NES) in Tampa, Fla. Kennedy made the trip with NASA astronaut Kay Hire to share the agency’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.

  6. NOAA Photo Library - Voyage to Inner Space -- Exploring the Seas with NOAA

    Science.gov Websites

    Inner Space - Exploring the Sea with NOAA NOAA and its ancestor agencies have been exploring the sea for Inner Space -- Exploring the Sea with NOAA fish Ocean Exploration Collection submersible National

  7. Space Science

    NASA Image and Video Library

    2003-06-01

    NASA’s Virtual Glovebox (VGX) was developed to allow astronauts on Earth to train for complex biology research tasks in space. The astronauts may reach into the virtual environment, naturally manipulating specimens, tools, equipment, and accessories in a simulated microgravity environment as they would do in space. Such virtual reality technology also provides engineers and space operations staff with rapid prototyping, planning, and human performance modeling capabilities. Other Earth based applications being explored for this technology include biomedical procedural training and training for disarming bio-terrorism weapons.

  8. Toward a global space exploration program: A stepping stone approach

    NASA Astrophysics Data System (ADS)

    Ehrenfreund, Pascale; McKay, Chris; Rummel, John D.; Foing, Bernard H.; Neal, Clive R.; Masson-Zwaan, Tanja; Ansdell, Megan; Peter, Nicolas; Zarnecki, John; Mackwell, Steve; Perino, Maria Antionetta; Billings, Linda; Mankins, John; Race, Margaret

    2012-01-01

    In response to the growing importance of space exploration in future planning, the Committee on Space Research (COSPAR) Panel on Exploration (PEX) was chartered to provide independent scientific advice to support the development of exploration programs and to safeguard the potential scientific assets of solar system objects. In this report, PEX elaborates a stepwise approach to achieve a new level of space cooperation that can help develop world-wide capabilities in space science and exploration and support a transition that will lead to a global space exploration program. The proposed stepping stones are intended to transcend cross-cultural barriers, leading to the development of technical interfaces and shared legal frameworks and fostering coordination and cooperation on a broad front. Input for this report was drawn from expertise provided by COSPAR Associates within the international community and via the contacts they maintain in various scientific entities. The report provides a summary and synthesis of science roadmaps and recommendations for planetary exploration produced by many national and international working groups, aiming to encourage and exploit synergies among similar programs. While science and technology represent the core and, often, the drivers for space exploration, several other disciplines and their stakeholders (Earth science, space law, and others) should be more robustly interlinked and involved than they have been to date. The report argues that a shared vision is crucial to this linkage, and to providing a direction that enables new countries and stakeholders to join and engage in the overall space exploration effort. Building a basic space technology capacity within a wider range of countries, ensuring new actors in space act responsibly, and increasing public awareness and engagement are concrete steps that can provide a broader interest in space exploration, worldwide, and build a solid basis for program sustainability. By engaging developing countries and emerging space nations in an international space exploration program, it will be possible to create a critical bottom-up support structure to support program continuity in the development and execution of future global space exploration frameworks. With a focus on stepping stones, COSPAR can support a global space exploration program that stimulates scientists in current and emerging spacefaring nations, and that will invite those in developing countries to participate—pursuing research aimed at answering outstanding questions about the origins and evolution of our solar system and life on Earth (and possibly elsewhere). COSPAR, in cooperation with national and international science foundations and space-related organizations, will advocate this stepping stone approach to enhance future cooperative space exploration efforts.

  9. Communities, commodities, cultural space, and style.

    PubMed

    Freitas, A; Kaiser, S; Hammidi, T

    1996-01-01

    This article explores the interconnections between queer communities and cultural space(s) in the context of style. Visibility issues and politics have become important to gay communities in the U.S. Gays and lesbians use clothing and appearance style to signal membership in or separation from specific cultures or communities. Within commodity capital, the heuristic categories of 'subculture' and 'target market' describe space or spaces that gays and lesbians occupy, and often occupy differently, based on self positionality within gay cultures, within commodity capital, and in relation to gender-specific discourse. Based on in-depth interviews with 60 lesbians and gays, this paper illuminates the ambivalences gays and lesbians express in embracing 'subculture' and 'target market' as categories to establish differences and fashion identities within the current cultural economy.

  10. Maximizing information from space data resources: a case for expanding integration across research disciplines.

    PubMed

    Goswami, Nandu; Batzel, Jerry J; Clément, Gilles; Stein, T Peter; Hargens, Alan R; Sharp, M Keith; Blaber, Andrew P; Roma, Peter G; Hinghofer-Szalkay, Helmut G

    2013-07-01

    Regulatory systems are affected in space by exposure to weightlessness, high-energy radiation or other spaceflight-induced changes. The impact of spaceflight occurs across multiple scales and systems. Exploring such interactions and interdependencies via an integrative approach provides new opportunities for elucidating these complex responses. This paper argues the case for increased emphasis on integration, systematically archiving, and the coordination of past, present and future space and ground-based analogue experiments. We also discuss possible mechanisms for such integration across disciplines and missions. This article then introduces several discipline-specific reviews that show how such integration can be implemented. Areas explored include: adaptation of the central nervous system to space; cerebral autoregulation and weightlessness; modelling of the cardiovascular system in space exploration; human metabolic response to spaceflight; and exercise, artificial gravity, and physiologic countermeasures for spaceflight. In summary, spaceflight physiology research needs a conceptual framework that extends problem solving beyond disciplinary barriers. Administrative commitment and a high degree of cooperation among investigators are needed to further such a process. Well-designed interdisciplinary research can expand opportunities for broad interpretation of results across multiple physiological systems, which may have applications on Earth.

  11. KSC-2014-2493

    NASA Image and Video Library

    2014-05-10

    CAPE CANAVERAL, Fla. – Doug Lenhardt, Kennedy Space Center's Exploration Flight Test-1, or EFT-1, mission integration manager, and the San Diego Padres mascot wave at the crowds at Petco Field in San Diego, California before the start of the baseball game. The Orion boilerplate test vehicle is on display in the stadium. The boilerplate test vehicle is being prepared for an EFT-1 pre-transportation test. The Ground Systems Development and Operations Program will run the test at the U.S. Naval Base San Diego to simulate retrieval and transportation procedures for Orion after it splashes down in the ocean and is retrieved for return to land and ground transportation back to Kennedy Space Center in Florida. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett

  12. Goddard Visiting Scientist Program for the Space and Earth Sciences Directorate

    NASA Technical Reports Server (NTRS)

    Kerr, Frank

    1992-01-01

    A visiting scientist program was conducted in the space and earth sciences at GSFC. Research was performed in the following areas: astronomical observations; broadband x-ray spectral variability; ground-based spectroscopic and photometric studies; Seyfert galaxies; active galactic nuclei (AGN); massive stellar black holes; the differential microwave radiometer (DMR) onboard the cosmic background explorer (COBE); atmospheric models; and airborne and ground based radar observations. The specific research efforts are detailed by tasks.

  13. KSC-2014-4444

    NASA Image and Video Library

    2014-11-12

    CAPE CANAVERAL, Fla. - The Orion spacecraft and its transporter stand at the base of the service structure at Space Launch Complex 37. A crane inside the structure will lift Orion off its transporter to hoist it into place atop the Delta IV Heavy rocket that is already assembled at the pad. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014, atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion Photo credit: Photo credit: NASA/Frankie Martin

  14. Writing in the Wild: Writers' Motivation in Fan-Based Affinity Spaces

    ERIC Educational Resources Information Center

    Curwood, Jen Scott; Magnifico, Alecia Marie; Lammers, Jayne C.

    2013-01-01

    In order to understand the culture of the physical, virtual, and blended spheres that adolescents inhabit, we build on Gee's concept of affinity spaces. Drawing on our ethnographic research of adolescent literacies related to The Hunger Games novels, the Neopets online game, and The Sims videogames, this article explores the nature of…

  15. Drawings as Spaces for Intellectual Play

    ERIC Educational Resources Information Center

    Wood, Elizabeth; Hall, Emese

    2011-01-01

    The aims of this article are to explore the links between drawing and playing and to conceptualise drawings as spaces for intellectual play. The empirical research that supports this position is based on an interpretivist study involving 14 children aged four-six in a primary school in England. Over a one-year period, 882 drawings were collected…

  16. Singing the Spaces: Artful Approaches to Navigating the Emotional Landscape in Environmental Education

    ERIC Educational Resources Information Center

    Burkhart, Jocelyn

    2016-01-01

    This paper briefly explores the gap in the environmental education literature on emotions, and then offers a rationale and potential directions for engaging the emotions more fully, through the arts. Using autoenthnographic and arts-based methods, and including original songs and invitational reflective questions to open spaces for further inquiry…

  17. Alternative Fuels Data Center: Johnson Space Center Explores Alternative

    Science.gov Websites

    Fuel Vehicles Johnson Space Center Explores Alternative Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: Johnson Space Center Explores Alternative Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: Johnson Space Center Explores Alternative Fuel Vehicles on

  18. Microbial Contamination in the Spacecraft

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.

    2001-01-01

    Spacecraft and space habitats supporting human exploration contain a diverse population of microorganisms. Microorganisms may threaten human habitation in many ways that directly or indirectly impact the health, safety, or performance of astronauts. The ability to produce and maintain spacecraft and space stations with environments suitable for human habitation has been established over 40 years of human spaceflight. An extensive database of environmental microbiological parameters has been provided for short-term (< 20 days) spaceflight by more than 100 missions aboard the Space Shuttle. The NASA Mir Program provided similar data for long-duration missions. Interestingly, the major bacterial and fungal species found in the Space Shuttle are similar to those encountered in the nearly 15-year-old Mir. Lessons learned from both the US and Russian space programs have been incorporated into the habitability plan for the International Space Station. The focus is on preventive measures developed for spacecraft, cargo, and crews. On-orbit regular housekeeping practices complete with visual inspections are essential, along with microbiological monitoring. Risks associated with extended stays on the Moon or a Mars exploration mission will be much greater than previous experiences because of additional unknown variables. The current knowledge base is insufficient for exploration missions, and research is essential to understand the effects of spaceflight on biological functions and population dynamics of microorganisms in spacecraft.

  19. Countermeasure for space flight effects on immune system: nutritional nucleotides

    NASA Technical Reports Server (NTRS)

    Kulkarni, A. D.; Yamauchi, K.; Sundaresan, A.; Ramesh, G. T.; Pellis, N. R.

    2005-01-01

    Microgravity and its environment have adverse effects on the immune system. Abnormal immune responses observed in microgravity may pose serious consequences, especially for the recent directions of NASA for long-term space missions to Moon, Mars and deep Space exploration. The study of space flight immunology is limited due to relative inaccessibility, difficulty of performing experiments in space, and inadequate provisions in this area in the United States and Russian space programs (Taylor 1993). Microgravity and stress experienced during space flights results in immune system aberration (Taylor 1993). In ground-based mouse models for some of the microgravity effects on the human body, hindlimb unloading (HU) has been reported to cause abnormal cell proliferation and cytokine production (Armstrong et al., 1993, Chapes et al. 1993). In this report, we document that a nutritional nucleotide supplementation as studied in ground-based microgravity analogs, has potential to serve as a countermeasure for the immune dysfunction observed in space travel.

  20. TCBMs over the military use of outer space

    NASA Astrophysics Data System (ADS)

    Takaya-Umehara, Yuri

    2010-11-01

    Although no legal instrument resulted from long negotiations in the UN and Conference on Disarmament (CD), the application of confidence-building measures (CBMs) that was once considered in the 1990's attracted attention again to restrict military use of outer space. Since 2005, the concept of "Transparency and confidence-building measures (TCBMs)" entered into the lexicon of space law to explore the possibility of reinforcing security in outer space activities. While CBMs have been developed and applied to treaty-based verification mechanisms, the introduction of TCBMs in space law needs further examination to fit in the context of space security. Therefore, by evaluating the function of CBMs applied to the existing law on disarmament and arms control, the author examines the application of TCBMs to space law and calls for the need to establish non-treaty-based monitoring mechanisms for transparency and confidence-building in outer space activities.

  1. Rule-based graph theory to enable exploration of the space system architecture design space

    NASA Astrophysics Data System (ADS)

    Arney, Dale Curtis

    The primary goal of this research is to improve upon system architecture modeling in order to enable the exploration of design space options. A system architecture is the description of the functional and physical allocation of elements and the relationships, interactions, and interfaces between those elements necessary to satisfy a set of constraints and requirements. The functional allocation defines the functions that each system (element) performs, and the physical allocation defines the systems required to meet those functions. Trading the functionality between systems leads to the architecture-level design space that is available to the system architect. The research presents a methodology that enables the modeling of complex space system architectures using a mathematical framework. To accomplish the goal of improved architecture modeling, the framework meets five goals: technical credibility, adaptability, flexibility, intuitiveness, and exhaustiveness. The framework is technically credible, in that it produces an accurate and complete representation of the system architecture under consideration. The framework is adaptable, in that it provides the ability to create user-specified locations, steady states, and functions. The framework is flexible, in that it allows the user to model system architectures to multiple destinations without changing the underlying framework. The framework is intuitive for user input while still creating a comprehensive mathematical representation that maintains the necessary information to completely model complex system architectures. Finally, the framework is exhaustive, in that it provides the ability to explore the entire system architecture design space. After an extensive search of the literature, graph theory presents a valuable mechanism for representing the flow of information or vehicles within a simple mathematical framework. Graph theory has been used in developing mathematical models of many transportation and network flow problems in the past, where nodes represent physical locations and edges represent the means by which information or vehicles travel between those locations. In space system architecting, expressing the physical locations (low-Earth orbit, low-lunar orbit, etc.) and steady states (interplanetary trajectory) as nodes and the different means of moving between the nodes (propulsive maneuvers, etc.) as edges formulates a mathematical representation of this design space. The selection of a given system architecture using graph theory entails defining the paths that the systems take through the space system architecture graph. A path through the graph is defined as a list of edges that are traversed, which in turn defines functions performed by the system. A structure to compactly represent this information is a matrix, called the system map, in which the column indices are associated with the systems that exist and row indices are associated with the edges, or functions, to which each system has access. Several contributions have been added to the state of the art in space system architecture analysis. The framework adds the capability to rapidly explore the design space without the need to limit trade options or the need for user interaction during the exploration process. The unique mathematical representation of a system architecture, through the use of the adjacency, incidence, and system map matrices, enables automated design space exploration using stochastic optimization processes. The innovative rule-based graph traversal algorithm ensures functional feasibility of each system architecture that is analyzed, and the automatic generation of the system hierarchy eliminates the need for the user to manually determine the relationships between systems during or before the design space exploration process. Finally, the rapid evaluation of system architectures for various mission types enables analysis of the system architecture design space for multiple destinations within an evolutionary exploration program. (Abstract shortened by UMI.).

  2. Next Generation Life Support Project: Development of Advanced Technologies for Human Exploration Missions

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.

    2012-01-01

    Next Generation Life Support (NGLS) is one of several technology development projects sponsored by the National Aeronautics and Space Administration s Game Changing Development Program. NGLS is developing life support technologies (including water recovery, and space suit life support technologies) needed for humans to live and work productively in space. NGLS has three project tasks: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, and Alternative Water Processing. The selected technologies within each of these areas are focused on increasing affordability, reliability, and vehicle self sufficiency while decreasing mass and enabling long duration exploration. The RCA and VOR tasks are directed at key technology needs for the Portable Life Support System (PLSS) for an Exploration Extravehicular Mobility Unit (EMU), with focus on prototyping and integrated testing. The focus of the Rapid Cycle Amine (RCA) swing-bed ventilation task is to provide integrated carbon dioxide removal and humidity control that can be regenerated in real time during an EVA. The Variable Oxygen Regulator technology will significantly increase the number of pressure settings available to the space suit. Current spacesuit pressure regulators are limited to only two settings while the adjustability of the advanced regulator will be nearly continuous. The Alternative Water Processor efforts will result in the development of a system capable of recycling wastewater from sources expected in future exploration missions, including hygiene and laundry water, based on natural biological processes and membrane-based post treatment. The technologies will support a capability-driven architecture for extending human presence beyond low Earth orbit to potential destinations such as the Moon, near Earth asteroids and Mars.

  3. Options for a lunar base surface architecture

    NASA Technical Reports Server (NTRS)

    Roberts, Barney B.

    1992-01-01

    The Planet Surface Systems Office at the NASA Johnson Space Center has participated in an analysis of the Space Exploration Initiative architectures described in the Synthesis Group report. This effort involves a Systems Engineering and Integration effort to define point designs for evolving lunar and Mars bases that support substantial science, exploration, and resource production objectives. The analysis addresses systems-level designs; element requirements and conceptual designs; assessments of precursor and technology needs; and overall programmatics and schedules. This paper focuses on the results of the study of the Space Resource Utilization Architecture. This architecture develops the capability to extract useful materials from the indigenous resources of the Moon and Mars. On the Moon, a substantial infrastructure is emplaced which can support a crew of up to twelve. Two major process lines are developed: one produces oxygen, ceramics, and metals; the other produces hydrogen, helium, and other volatiles. The Moon is also used for a simulation of a Mars mission. Significant science capabilities are established in conjunction with resource development. Exploration includes remote global surveys and piloted sorties of local and regional areas. Science accommodations include planetary science, astronomy, and biomedical research. Greenhouses are established to provide a substantial amount of food needs.

  4. KSC-2014-2578

    NASA Image and Video Library

    2014-05-12

    SAN DIEGO, Calif. – Workers on scissor lifts build up a protective structure at the Mole Pier at the Naval Base San Diego in California for the Orion boilerplate test vehicle. The Ground Systems Development and Operations Program, Lockheed Martin and U.S. Navy are evaluating the hardware and processes for preparing the Orion crew module for Exploration Flight Test-1, or EFT-1, for overland transport from the naval base to NASA's Kennedy Space Center in Florida. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett

  5. KSC-2014-2585

    NASA Image and Video Library

    2014-05-13

    SAN DIEGO, Calif. – Inside a protective structure at the Mole Pier at the Naval Base San Diego in California, workers prepare for a simulated fit check of the hatch cover on the Orion boilerplate test vehicle. The Ground Systems Development and Operations Program, Lockheed Martin and the U.S. Navy are evaluating the hardware and processes for preparing the Orion crew module for Exploration Flight Test-1, or EFT-1, for overland transport from the naval base to NASA's Kennedy Space Center in Florida. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett

  6. Exploring the Universe.

    ERIC Educational Resources Information Center

    Aviation/Space, 1982

    1982-01-01

    Highlights National Aeronautics and Space Administration's (NASA) space exploration studies, focusing on Voyager at Saturn, advanced Jupiter exploration, infrared observatory, space telescope, Dynamics Explorers (satellites designed to provide understanding of earth/sun energy relationship), and ozone studies. (JN)

  7. Developing Advanced Human Support Technologies for Planetary Exploration Missions

    NASA Technical Reports Server (NTRS)

    Berdich, Debra P.; Campbell, Paul D.; Jernigan, J. Mark

    2004-01-01

    The United States Vision for Space Exploration calls for sending robots and humans to explore the Earth's moon, the planet Mars, and beyond. The National Aeronautics and Space Administration (NASA) is developing a set of design reference missions that will provide further detail to these plans. Lunar missions are expected to provide a stepping stone, through operational research and evaluation, in developing the knowledge base necessary to send crews on long duration missions to Mars and other distant destinations. The NASA Exploration Systems Directorate (ExSD), in its program of bioastronautics research, manages the development of technologies that maintain human life, health, and performance in space. Using a system engineering process and risk management methods, ExSD's Human Support Systems (HSS) Program selects and performs research and technology development in several critical areas and transfers the results of its efforts to NASA exploration mission/systems development programs in the form of developed technologies and new knowledge about the capabilities and constraints of systems required to support human existence beyond Low Earth Orbit. HSS efforts include the areas of advanced environmental monitoring and control, extravehicular activity, food technologies, life support systems, space human factors engineering, and systems integration of all these elements. The HSS Program provides a structured set of deliverable products to meet the needs of exploration programs. These products reduce the gaps that exist in our knowledge of and capabilities for human support for long duration, remote space missions. They also reduce the performance gap between the efficiency of current space systems and the greater efficiency that must be achieved to make human planetary exploration missions economically and logistically feasible. In conducting this research and technology development program, it is necessary for HSS technologists and program managers to develop a common currency for decision making and the allocation of funding. A high level assessment is made of both the knowledge gaps and the system performance gaps across the program s technical project portfolio. This allows decision making that assures proper emphasis areas and provides a key measure of annual technological progress, as exploration mission plans continue to mature.

  8. Developing Advanced Support Technologies for Planetary Exploration Missions

    NASA Technical Reports Server (NTRS)

    Berdich, Debra P.; Campbel, Paul D.; Jernigan, J. Mark

    2004-01-01

    The United States Vision for Space Exploration calls for sending robots and humans to explore the Earth s moon, the planet Mars, and beyond. The National Aeronautics and Space Administration (NASA) is developing a set of design reference missions that will provide further detail to these plans. Lunar missions are expected to provide a stepping stone, through operational research and evaluation, in developing the knowledge base necessary to send crews on long duration missions to Mars and other distant destinations. The NASA Exploration Systems Directorate (ExSD), in its program of bioastronautics research, manages the development of technologies that maintain human life, health, and performance in space. Using a systems engineering process and risk management methods, ExSD s Human Support Systems (HSS) Program selects and performs research and technology development in several critical areas and transfers the results of its efforts to NASA exploration mission/systems development programs in the form of developed technologies and new knowledge about the capabilities and constraints of systems required to support human existence beyond Low Earth Orbit. HSS efforts include the areas of advanced environmental monitoring and control, extravehicular activity, food technologies, life support systems, space human factors engineering, and systems integration of all these elements. The HSS Program provides a structured set of deliverable products to meet the needs of exploration programs. these products reduce the gaps that exist in our knowledge of and capabilities for human support for long duration, remote space missions. They also reduce the performance gap between the efficiency of current space systems and the greater efficiency that must be achieved to make human planetary exploration missions economically and logistically feasible. In conducting this research and technology development program, it is necessary for HSS technologists and program managers to develop a common currency for decision making and the allocation of funding. A high level assessment is made of both the knowledge gaps and the system performance gaps across the program s technical project portfolio. This allows decision making that assures proper emphasis areas and provides a key measure of annual technological progress, as exploration mission plans continue to mature.

  9. Status of advanced orbital transfer propulsion

    NASA Technical Reports Server (NTRS)

    Cooper, L. P.

    1985-01-01

    A new Orbital Transfer Vehicle (OTV) propulsion system that will be used in conjunction with the Space Shuttle, Space Station and Orbit Maneuvering Vehicle is discussed. The OTV will transfer men, large space structures and conventional payloads between low Earth and higher energy orbits. Space probes carried by the OTV will continue the exploration of the solar system. When lunar bases are established, the OTV will be their transportation link to Earth. Critical engine design considerations based upon the need for low cost payload delivery, space basing, reusability, aeroassist maneuvering, low g transfers of large space structures and man rating are described. The importance of each of these to propulsion design is addressed. Specific propulsion requirements discussed are: (1) high performance H2/O2 engine; (2) multiple engine configurations totalling no more than 15,000 lbf thrust 15 to 20 hr life; (3) space maintainable modular design; (4) health monitoring capability; and (5) safety and mission success with backup auxiliary propulsion.

  10. Multi-spectral image analysis for improved space object characterization

    NASA Astrophysics Data System (ADS)

    Glass, William; Duggin, Michael J.; Motes, Raymond A.; Bush, Keith A.; Klein, Meiling

    2009-08-01

    The Air Force Research Laboratory (AFRL) is studying the application and utility of various ground-based and space-based optical sensors for improving surveillance of space objects in both Low Earth Orbit (LEO) and Geosynchronous Earth Orbit (GEO). This information can be used to improve our catalog of space objects and will be helpful in the resolution of satellite anomalies. At present, ground-based optical and radar sensors provide the bulk of remotely sensed information on satellites and space debris, and will continue to do so into the foreseeable future. However, in recent years, the Space-Based Visible (SBV) sensor was used to demonstrate that a synthesis of space-based visible data with ground-based sensor data could provide enhancements to information obtained from any one source in isolation. The incentives for space-based sensing include improved spatial resolution due to the absence of atmospheric effects and cloud cover and increased flexibility for observations. Though ground-based optical sensors can use adaptive optics to somewhat compensate for atmospheric turbulence, cloud cover and absorption are unavoidable. With recent advances in technology, we are in a far better position to consider what might constitute an ideal system to monitor our surroundings in space. This work has begun at the AFRL using detailed optical sensor simulations and analysis techniques to explore the trade space involved in acquiring and processing data from a variety of hypothetical space-based and ground-based sensor systems. In this paper, we briefly review the phenomenology and trade space aspects of what might be required in order to use multiple band-passes, sensor characteristics, and observation and illumination geometries to increase our awareness of objects in space.

  11. Prognostics and health management (PHM) for astronauts: a collaboration project on the International Space Station

    NASA Astrophysics Data System (ADS)

    Popov, Alexandre; Fink, Wolfgang; Hess, Andrew

    2016-05-01

    Long-duration missions bring numerous risks that must be understood and mitigated in order to keep astronauts healthy, rather than treat a diagnosed health disorder. Having a limited medical support from mission control center on space exploration missions, crew members need a personal health-tracking tool to predict and assess his/her health risks if no preventive measures are taken. This paper refines a concept employing technologies from Prognostics and Health Management (PHM) for systems, namely real-time health monitoring and condition-based health maintenance with predictive diagnostics capabilities. Mapping particular PHM-based solutions to some Human Health and Performance (HH&P) technology candidates, namely by NASA designation, the Autonomous Medical Decision technology and the Integrated Biomedical Informatics technology, this conceptual paper emphasize key points that make the concept different from that of both current conventional medicine and telemedicine including space medicine. The primary benefit of the technologies development for the HH&P domain is the ability to successfully achieve affordable human space missions to Low Earth Orbit (LEO) and beyond. Space missions on the International Space Station (ISS) program directly contribute to the knowledge base and advancements in the HH&P domain, thanks to continued operations on the ISS, a unique human-tended test platform and the only test bed within the space environment. The concept is to be validated on the ISS, the only "test bed" on which to prepare for future manned exploration missions. The paper authors believe that early self-diagnostic coupled with autonomous identification of proper preventive responses on negative trends are critical in order to keep astronauts healthy.

  12. America at the threshold. [Contains bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-01-01

    On the 20th anniversary of the first lunar landing mission, Apollo 11, President Bush outlined a program that would put the United States on an aggressive track to return to the Moon to stay, and to land humans on Mars. The president's space policy calls for expanding human presence an activity beyond Earth orbit into the Solar System; obtaining scientific, technological and economic benefits for the American people; encouraging private sector participation in space; improving the quality of life on the Earth; strengthening national security; and promoting international cooperation in space. The Space Exploration Initiative accomplishes these goals. In Augustmore » 1989, NASA began an extensive review to summarize the technology and strategies for going back to the Moon and on to Mars. To obtain the final objective, major topical activities were defined. These activities were incremental capabilities to be achieved to fulfill the national space vision. They include: (1) moon waypoints (lunar exploration; preparation for mars; habitation; lunar based observation; fuels; energy to earth); (2) asteroids waypoints; and (3) mars waypoints. The six national space vision are (1) to increase our knowledge of solar system and beyond; (2) to rejuvenate interest in Science and engineering; (3) to refocus the US position in world leadership (from military to economic and scientific); (4) to develop technology with terrestrial application; (5) to facilitate further space exploration and commercialization; and, (6) to boost the US economy. 126 refs.« less

  13. Technology Developments Integrating a Space Network Communications Testbed

    NASA Technical Reports Server (NTRS)

    Kwong, Winston; Jennings, Esther; Clare, Loren; Leang, Dee

    2006-01-01

    As future manned and robotic space explorations missions involve more complex systems, it is essential to verify, validate, and optimize such systems through simulation and emulation in a low cost testbed environment. The goal of such a testbed is to perform detailed testing of advanced space and ground communications networks, technologies, and client applications that are essential for future space exploration missions. We describe the development of new technologies enhancing our Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) that enable its integration in a distributed space communications testbed. MACHETE combines orbital modeling, link analysis, and protocol and service modeling to quantify system performance based on comprehensive considerations of different aspects of space missions. It can simulate entire networks and can interface with external (testbed) systems. The key technology developments enabling the integration of MACHETE into a distributed testbed are the Monitor and Control module and the QualNet IP Network Emulator module. Specifically, the Monitor and Control module establishes a standard interface mechanism to centralize the management of each testbed component. The QualNet IP Network Emulator module allows externally generated network traffic to be passed through MACHETE to experience simulated network behaviors such as propagation delay, data loss, orbital effects and other communications characteristics, including entire network behaviors. We report a successful integration of MACHETE with a space communication testbed modeling a lunar exploration scenario. This document is the viewgraph slides of the presentation.

  14. KSC-2014-3295

    NASA Image and Video Library

    2014-07-28

    SAN DIEGO, Calif. – At the U.S. Naval Base San Diego in California, former NASA astronaut Heidi Piper talks with visitors about Exploration Flight Test-1 during an outreach event at the naval base. The USS Anchorage is being prepared for the Orion Underway Recovery Test 2. The Orion boilerplate test vehicle and other hardware will be loaded into the well deck of the ship and head out to sea in the Pacific Ocean off the coast of San Diego. NASA, Lockheed Martin and the U.S. Navy will conduct the test to prepare for recovery of the Orion crew module, forward bay cover and parachutes on its return from a deep space mission. The underway recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, new support hardware and personnel in open waters. The Ground Systems Development and Operations Program will conduct the underway recovery tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett

  15. KSC-2014-2502

    NASA Image and Video Library

    2014-05-11

    CAPE CANAVERAL, Fla. – Fans sign the banner surrounding NASA's Orion boilerplate test vehicle on display at Petco Park in San Diego, California, before the start of a San Diego Padres' baseball game. The boilerplate test vehicle is being prepared for an Exploration Flight Test-1, or EFT-1, pre-transportation test. The Ground Systems Development and Operations Program will run the test at the U.S. Naval Base San Diego to simulate retrieval and transportation procedures for Orion after it splashes down in the ocean and is retrieved for return to land and ground transportation back to Kennedy Space Center in Florida. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett

  16. KSC-2014-2495

    NASA Image and Video Library

    2014-05-10

    CAPE CANAVERAL, Fla. – The Orion boilerplate test vehicle is on display at Petco Park in San Diego, California, before the San Diego Padres' baseball game. The boilerplate test vehicle is being prepared for an Exploration Flight Test-1, or EFT-1, pre-transportation test. The Ground Systems Development and Operations Program will run the test at the U.S. Naval Base San Diego to simulate retrieval and transportation procedures for Orion after it splashes down in the ocean and is retrieved for return to land and ground transportation back to Kennedy Space Center in Florida. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett

  17. KSC-2014-2498

    NASA Image and Video Library

    2014-05-11

    CAPE CANAVERAL, Fla. – A San Diego Padres fan on stilts stands near NASA's Orion boilerplate test vehicle on display at Petco Park in San Diego, California. The boilerplate test vehicle will be prepared for an Exploration Flight Test-1, or EFT-1, pre-transportation test. The Ground Systems Development and Operations Program will run the test at the U.S. Naval Base San Diego to simulate retrieval and transportation procedures for Orion after it splashes down in the ocean and is retrieved for return to land and ground transportation back to Kennedy Space Center in Florida. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett

  18. KSC-2014-2499

    NASA Image and Video Library

    2014-05-11

    CAPE CANAVERAL, Fla. – Fans sign the banner draped around NASA's Orion boilerplate test vehicle on display at the San Diego Padres Petco Field in San Diego, California, before the start of the baseball game. The test vehicle is being prepared for an Exploration Flight Test-1, or EFT-1, pre-transportation test. The Ground Systems Development and Operations Program will run the test at the U.S. Naval Base San Diego to simulate retrieval and transportation procedures for Orion after it splashes down in the ocean and is retrieved for return to land and ground transportation back to Kennedy Space Center in Florida. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett

  19. KSC-2014-2494

    NASA Image and Video Library

    2014-05-10

    CAPE CANAVERAL, Fla. – The Orion boilerplate test vehicle is on display at Petco Park in San Diego, California, before the San Diego Padres' baseball game. The boilerplate test vehicle is being prepared for an Exploration Flight Test-1, or EFT-1, pre-transportation test. The Ground Systems Development and Operations Program will run the test at the U.S. Naval Base San Diego to simulate retrieval and transportation procedures for Orion after it splashes down in the ocean and is retrieved for return to land and ground transportation back to Kennedy Space Center in Florida. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett

  20. KSC-2014-2501

    NASA Image and Video Library

    2014-05-11

    CAPE CANAVERAL, Fla. – Fans check out NASA's Orion boilerplate test vehicle on display at Petco Park in San Diego, California, before the start of a San Diego Padres' baseball game. The boilerplate test vehicle is being prepared for an Exploration Flight Test-1, or EFT-1, pre-transportation test. The Ground Systems Development and Operations Program will run the test at the U.S. Naval Base San Diego to simulate retrieval and transportation procedures for Orion after it splashes down in the ocean and is retrieved for return to land and ground transportation back to Kennedy Space Center in Florida. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett

  1. KSC-2014-2492

    NASA Image and Video Library

    2014-05-10

    CAPE CANAVERAL, Fla. – The Orion boilerplate test vehicle is on display at Petco Park in San Diego, California, before the San Diego Padres' baseball game. The boilerplate test vehicle is being prepared for an Exploration Flight Test-1, or EFT-1, pre-transportation test. The Ground Systems Development and Operations Program will run the test at the U.S. Naval Base San Diego to simulate retrieval and transportation procedures for Orion after it splashes down in the ocean and is retrieved for return to land and ground transportation back to Kennedy Space Center in Florida. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett

  2. KSC-2014-2503

    NASA Image and Video Library

    2014-05-11

    CAPE CANAVERAL, Fla. – Fans check out NASA's Orion boilerplate test vehicle on display at Petco Park in San Diego, California, before the start of a San Diego Padres' baseball game. The boilerplate test vehicle is being prepared for an Exploration Flight Test-1, or EFT-1, pre-transportation test. The Ground Systems Development and Operations Program will run the test at the U.S. Naval Base San Diego to simulate retrieval and transportation procedures for Orion after it splashes down in the ocean and is retrieved for return to land and ground transportation back to Kennedy Space Center in Florida. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett

  3. The In-Space Soldering Investigation: Research Conducted on the International Space Station in Support of NASA's Exploration Initiative

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Fincke, M.; Sergre, P. N.; Ogle, J. A.; Funkhouser, G.; Parris, F.; Murphy, L.; Gillies, D.; Hua, F.

    2004-01-01

    Soldering is a well established joining and repair process that is of particular importance in the electronics industry. Still. internal solder joint defects such as porosity are prevalent and compromise desired properties such as electrical/thermal conductivity and fatigue strength. Soldering equipment resides aboard the International Space Station (ISS) and will likely accompany Exploration Missions during transit to, as well as on, the moon and Mars. Unfortunately, detrimental porosity appears to be enhanced in lower gravity environments. To this end, the In-Space Soldering Investigation (ISSI) is being conducted in the Microgravity Workbench Area (MWA) aboard the ISS as "Saturday Science" with the goal of promoting our understanding of joining techniques, shape equilibrium, wetting phenomena, and microstructural development in a microgravity environment. The work presented here will focus on direct observation of melting dynamics and shape determination in comparison to ground-based samples, with implications made to processing in other low-gravity environments. Unexpected convection effects, masked on Earth, will also be shown as well as the value of the ISS as a research platform in support of Exploration Missions.

  4. On-orbit assembly considerations of manned Mars transfer vehicles

    NASA Technical Reports Server (NTRS)

    D'Amara, Mark

    1990-01-01

    Ever since the United States space program started some forty years ago, there have been many ideas on how the U.S. should proceed to explore space. Throughout the years, many innovative designs have surfaced for transfer vehicles, space stations, and surface bases. Usually the difference in designs are due to differences in mission objectives and requirements. The problem for Mars is how to choose an architecture for human travel to Mars and what kind of base construction to design for Mars that will be reliable and cost effective. Eventually, if the Space Exploration Initiative is to become a reality, NASA will have to select and fund a single mission architecture involving manned and unmanned Mars fly-by precursors, a Mars landing vehicle, and, ultimately, the plan for constructing a Mars base. The decision to commit to a single architecture is a vital one and, therefore, the design issues, the decision making process, and the analysis tools must be available to explore all of the options that are available. A large part of any space mission architecture is the Earth-to-Mars transfer vehicle. The decision on the type of transfer vehicle to design is a crucial one. The many options must take into account the constraints encountered when assembling the vehicle in earth orbit such as effective joining methods, test and evaluation methods, preventative maintenance measures, etc. Therefore, the process of trading off various designs must include every facet of that design. The on-orbit assembly/construction constraints will drive designs and architectures. This viewgraph presentation highlights the above critical issues so that designs may be evaluated from these viewpoints. Evaluating designs from the issues contained in this paper will help decision makers detect inadequate designs. Stressing these issues in the evaluation procedure will have a great impact on the decisions of future space mission transfer vehicles and consequent architectures.

  5. Integrating School-Based and Therapeutic Conflict Management Models at School.

    ERIC Educational Resources Information Center

    D'Oosterlinck, Franky; Broekaert, Eric

    2003-01-01

    Explores the possibility of integrating school-based and therapeutic conflict management models, comparing two management models: a school-based conflict management program, "Teaching Students To Be Peacemakers"; and a therapeutic conflict management program, "Life Space Crisis Intervention." The paper concludes that integration might be possible…

  6. NASA Laboratory Analysis for Manned Exploration Missions

    NASA Technical Reports Server (NTRS)

    Krihak, Michael K.; Shaw, Tianna E.

    2014-01-01

    The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability Element under the NASA Human Research Program. ELA instrumentation is identified as an essential capability for future exploration missions to diagnose and treat evidence-based medical conditions. However, mission architecture limits the medical equipment, consumables, and procedures that will be available to treat medical conditions during human exploration missions. Allocated resources such as mass, power, volume, and crew time must be used efficiently to optimize the delivery of in-flight medical care. Although commercial instruments can provide the blood and urine based measurements required for exploration missions, these commercial-off-the-shelf devices are prohibitive for deployment in the space environment. The objective of the ELA project is to close the technology gap of current minimally invasive laboratory capabilities and analytical measurements in a manner that the mission architecture constraints impose on exploration missions. Besides micro gravity and radiation tolerances, other principal issues that generally fail to meet NASA requirements include excessive mass, volume, power and consumables, and nominal reagent shelf-life. Though manned exploration missions will not occur for nearly a decade, NASA has already taken strides towards meeting the development of ELA medical diagnostics by developing mission requirements and concepts of operations that are coupled with strategic investments and partnerships towards meeting these challenges. This paper focuses on the remote environment, its challenges, biomedical diagnostics requirements and candidate technologies that may lead to successful blood-urine chemistry and biomolecular measurements in future space exploration missions.

  7. PISCES: A "Stepping Stone" to International Space Exploration and Development

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Henley, Mark W.; Schowengerdt, Frank

    2007-01-01

    The Pacific International Space Center for Exploration Systems (PISCES) was initiated by the Japan/US Science, Technology and Space Application Programs (JUSTSAP) to advance research and education in space exploration technology and systems working closely with the State of Hawaii. Hawaii has a heritage with space exploration including the training of Apollo astronauts and testing of lunar rover systems in some of the most realistic terrestrial sites available. The high altitude dry environment with greater solar insolation, and the dry lunar regolith-like volcanic ash and cratered terrain make Hawaiian sites ideal to support, international space exploration technology development, demonstration, education and training. This paper will summarize development and roles of PISCES in lunar surface analogs, simulations, technology demonstrations, research and training for space exploration technology and systems.

  8. Enriching mission planning approach with state transition graph heuristics for deep space exploration

    NASA Astrophysics Data System (ADS)

    Jin, Hao; Xu, Rui; Xu, Wenming; Cui, Pingyuan; Zhu, Shengying

    2017-10-01

    As to support the mission of Mars exploration in China, automated mission planning is required to enhance security and robustness of deep space probe. Deep space mission planning requires modeling of complex operations constraints and focus on the temporal state transitions of involved subsystems. Also, state transitions are ubiquitous in physical systems, but have been elusive for knowledge description. We introduce a modeling approach to cope with these difficulties that takes state transitions into consideration. The key technique we build on is the notion of extended states and state transition graphs. Furthermore, a heuristics that based on state transition graphs is proposed to avoid redundant work. Finally, we run comprehensive experiments on selected domains and our techniques present an excellent performance.

  9. Pegasus ICON Fin Installation

    NASA Image and Video Library

    2017-07-08

    Technicians install the starboard fin on the Orbital ATK Pegasus XL rocket July 8, 2017, inside Building 1555 at Vandenberg Air Force Base in California. The Pegasus rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. ICON will launch on June 15 from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  10. Pegasus ICON Fin Installation

    NASA Image and Video Library

    2017-07-08

    Technicians prepare the rudder for installation on the Orbital ATK Pegasus XL rocket July 8, 2017, inside Building 1555 at Vandenberg Air Force Base in California. The Pegasus rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. ICON will launch on June 15 from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  11. Architecture for the silver generation: exploring the meaning of appropriate space for ageing in a Swedish municipality.

    PubMed

    Andersson, Jonas E

    2011-03-01

    This paper focuses on an architecture competition for the silver generation, namely those aged 65 years and older. Twenty-seven Swedish informants were interviewed using an interviewing guide that included a photographic survey. The informants emphasised aesthetic dimensions in architecture for the prolongation of ageing in place and independent living in a residential home. This study highlights the individual adjustment of space, and the integrated location in existing urban settings near nature. Based on the findings, a habitational model for exploring the appropriate space for ageing is formulated. It suggests that architecture through location and spatial features needs to generate positive associations with the users. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. A Collection of Technical Papers

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Papers presented at the 6th Space Logistics Symposium covered such areas as: The International Space Station; The Hubble Space Telescope; Launch site computer simulation; Integrated logistics support; The Baikonur Cosmodrome; Probabalistic tools for high confidence repair; A simple space station rescue vehicle; Integrated Traffic Model for the International Space Station; Packaging the maintenance shop; Leading edge software support; Storage information management system; Consolidated maintenance inventory logistics planning; Operation concepts for a single stage to orbit vehicle; Mission architecture for human lunar exploration; Logistics of a lunar based solar power satellite scenario; Just in time in space; NASA acquisitions/logistics; Effective transition management; Shuttle logistics; and Revitalized space operations through total quality control management.

  13. Human Exploration and Development of Space: Strategic Plan

    NASA Technical Reports Server (NTRS)

    Branscome, Darrell (Editor); Allen, Marc (Editor); Bihner, William (Editor); Craig, Mark (Editor); Crouch, Matthew (Editor); Crouch, Roger (Editor); Flaherty, Chris (Editor); Haynes, Norman (Editor); Horowitz, Steven (Editor)

    2000-01-01

    The five goals of the Human Exploration and Development of Space include: 1) Explore the Space Frontier; 2) Expand Scientific Knowledge; 3) Enable Humans to Live and Work Permanently in Space; 4) Enable the Commercial Development of Space; and 5) Share the Experience and Benefits of Discovery.

  14. A semiconductor radiation imaging pixel detector for space radiation dosimetry.

    PubMed

    Kroupa, Martin; Bahadori, Amir; Campbell-Ricketts, Thomas; Empl, Anton; Hoang, Son Minh; Idarraga-Munoz, John; Rios, Ryan; Semones, Edward; Stoffle, Nicholas; Tlustos, Lukas; Turecek, Daniel; Pinsky, Lawrence

    2015-07-01

    Progress in the development of high-performance semiconductor radiation imaging pixel detectors based on technologies developed for use in high-energy physics applications has enabled the development of a completely new generation of compact low-power active dosimeters and area monitors for use in space radiation environments. Such detectors can provide real-time information concerning radiation exposure, along with detailed analysis of the individual particles incident on the active medium. Recent results from the deployment of detectors based on the Timepix from the CERN-based Medipix2 Collaboration on the International Space Station (ISS) are reviewed, along with a glimpse of developments to come. Preliminary results from Orion MPCV Exploration Flight Test 1 are also presented. Copyright © 2015 The Committee on Space Research (COSPAR). All rights reserved.

  15. The Importance of Conducting Life Sciences Experiments on the Deep Space Gateway Platform

    NASA Technical Reports Server (NTRS)

    Bhattacharya, S.

    2018-01-01

    Over the last several decades important information has been gathered by conducting life science experiments on the Space Shuttle and on the International Space Station. It is now time to leverage that scientific knowledge, as well as aspects of the hardware that have been developed to support the biological model systems, to NASA's next frontier - the Deep Space Gateway. In order to facilitate long duration deep space exploration for humans, it is critical for NASA to understand the effects of long duration, low dose, deep space radiation on biological systems. While carefully controlled ground experiments on Earth-based radiation facilities have provided valuable preliminary information, we still have a significant knowledge gap on the biological responses of organisms to chronic low doses of the highly ionizing particles encountered beyond low Earth orbit. Furthermore, the combined effects of altered gravity and radiation have the potential to cause greater biological changes than either of these parameters alone. Therefore a thorough investigation of the biological effects of a cis-lunar environment will facilitate long term human exploration of deep space.

  16. Single Step to Orbit; a First Step in a Cooperative Space Exploration Initiative

    NASA Technical Reports Server (NTRS)

    Lusignan, Bruce; Sivalingam, Shivan

    1999-01-01

    At the end of the Cold War, disarmament planners included a recommendation to ease reduction of the U.S. and Russian aerospace industries by creating cooperative scientific pursuits. The idea was not new, having earlier been suggested by Eisenhower and Khrushchev to reduce the pressure of the "Military Industrial Complex" by undertaking joint space exploration. The Space Exploration Initiative (SEI) proposed at the end of the Cold War by President Bush and Premier Gorbachev was another attempt to ease the disarmament process by giving the bloated war industries something better to do. The engineering talent and the space rockets could be used for peaceful pursuits, notably for going back to the Moon and then on to Mars with human exploration and settlement. At the beginning of this process in 1992 staff of the Stanford Center for International Cooperation in Space attended the International Space University in Canada, met with Russian participants and invited a Russian team to work with us on a joint Stanford-Russian Mars Exploration Study. A CIA student and Airforce and Navy students just happened to join the Stanford course the next year and all students were aware that the leader of the four Russian engineers was well versed in Russian security. But, as long as they did their homework, they were welcome to participate with other students in defining the Mars mission and the three engineers they sent were excellent. At the end of this study we were invited to give a briefing to Dr. Edward Teller at Stanford's Hoover Institution of War and Peace. We were also encouraged to hold a press conference on Capitol Hill to introduce the study to the world. At a pre-conference briefing at the Space Council, we were asked to please remind the press that President Bush had asked for a cooperative exploration proposal not a U.S. alone initiative. The Stanford-Russian study used Russia's Energia launchers, priced at $300 Million each. The mission totaled out to $71.5 Billion, to send a six-person crew to establish a Mars base and return. It was an on going international venture with plans for new crews, base expansion, and extended exploration at every two year opportunity. The $71.5 Billion international approach contrasted with NASA's own 90-day U.S. - alone study that proposed a package topping $500 Billion by some admissions. NASA's approach was also challenged by an internal D.O.E. proposal at much lower cost, described to the Mars Society last year by Lowell Wood and, of course, by Bob Zubrin's "Mars Direct" proposal.

  17. Nutrition in Space: Benefits on Earth

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.

    2006-01-01

    History has often proven the criticality for adequate nutrition to ensure expedition success. Space exploration will be no different, with the exception of the certainty that food will not be found along the journey. Ensuring the health and safety of astronauts is critical and nutrition will serve several functions to that end. Nutritional assessment of International Space Station (ISS) crewmembers not only serves to evaluate the nutritional health of individuals, but also allows a better understanding of how space flight affects nutritional requirements, and how nutrition can serve in mitigating the negative effects of weightlessness on the human. Available data suggest that the nutritional status of astronauts is compromised during and after flight. Inadequate dietary intake and subsequent weight loss are often considered hallmarks of space flight, although exceptions to this do exist, and provide hope. However, beyond energy intake, specific nutrient issues also exist. Several vitamins, including D and folate, are affected in space travelers. Hematological and antioxidant defense systems are impacted, with increased iron storage, and increased markers of oxidative damage. Bone loss during space flight remains a critical challenge. Ground-based studies have proven that nutrition is a potent modulator of the bone response to simulated weightlessness. Protein and sodium are two nutrients which tend to exacerbate bone resorption and loss, likely mediated through acid base balance. Defining nutrient requirements, and being able to provide and maintain those nutrients on exploration missions, will be critical for maintaining crew member health. Both flight and ground-based research provide a unique situation, one where healthy individuals are put in a unique and challenging environment. A full understanding of the role of nutrition during space flight will not only enhance crew health and safety during flight, but will also expand our understanding of the role of nutrition in health of those remaining on Earth.

  18. The Impact of Sex and Gender on Adaptation to Space: Executive Summary

    PubMed Central

    Mark, Saralyn; Scott, Graham B.I.; Donoviel, Dorit B.; Leveton, Lauren B.; Mahoney, Erin; Charles, John B.

    2014-01-01

    Abstract This review article is a compendium of six individual manuscripts, a Commentary, and an Executive Summary. This body of work is entitled “The Impact of Sex and Gender on Adaptation to Space” and was developed in response to a recommendation from the 2011 National Academy of Sciences Decadal Survey, “Recapturing a Future for Space Exploration: Life and Physical Sciences for a New Era,” which emphasized the need to fully understand sex and gender differences in space. To ensure the health and safety of male and female astronauts during long-duration space missions, it is imperative to examine and understand the influences that sex and gender have on physiological and psychological changes that occur during spaceflight. In this collection of manuscripts, six workgroups investigated and summarized the current body of published and unpublished human and animal research performed to date related to sex- and gender-based differences in the areas of cardiovascular, immunological, sensorimotor, musculoskeletal, reproductive, and behavioral adaptations to human spaceflight. Each workgroup consisted of scientists and clinicians from academia, the National Aeronautics and Space Administration (NASA), and other federal agencies and was co-chaired by one representative from NASA and one from the external scientific community. The workgroups met via telephone and e-mail over 6 months to review literature and data from space- and ground-based studies to identify sex and gender factors affecting crew health. In particular, the Life Sciences Data Archive and the Lifetime Surveillance of Astronaut Health were extensively mined. The groups identified certain sex-related differences that impact the risks and the optimal medical care required by space-faring women and men. It represents innovative research in sex and gender-based biology that impacts those individuals that are at the forefront of space exploration. PMID:25401937

  19. Complex Decision-Making Applications for the NASA Space Launch System

    NASA Technical Reports Server (NTRS)

    Lyles, Garry; Flores, Tim; Hundley, Jason; Feldman, Stuart; Monk, Timothy

    2012-01-01

    The Space Shuttle program is ending and elements of the Constellation Program are either being cancelled or transitioned to new NASA exploration endeavors. The National Aeronautics and Space Administration (NASA) has worked diligently to select an optimum configuration for the Space Launch System (SLS), a heavy lift vehicle that will provide the foundation for future beyond low earth orbit (LEO) large-scale missions for the next several decades. Thus, multiple questions must be addressed: Which heavy lift vehicle will best allow the agency to achieve mission objectives in the most affordable and reliable manner? Which heavy lift vehicle will allow for a sufficiently flexible exploration campaign of the solar system? Which heavy lift vehicle configuration will allow for minimizing risk in design, test, build and operations? Which heavy lift vehicle configuration will be sustainable in changing political environments? Seeking to address these questions drove the development of an SLS decision-making framework. From Fall 2010 until Spring 2011, this framework was formulated, tested, fully documented, and applied to multiple SLS vehicle concepts at NASA from previous exploration architecture studies. This was a multistep process that involved performing figure of merit (FOM)-based assessments, creating Pass/Fail gates based on draft threshold requirements, performing a margin-based assessment with supporting statistical analyses, and performing sensitivity analysis on each. This paper discusses the various methods of this process that allowed for competing concepts to be compared across a variety of launch vehicle metrics. The end result was the identification of SLS launch vehicle candidates that could successfully meet the threshold requirements in support of the SLS Mission Concept Review (MCR) milestone.

  20. Solar Electric Propulsion for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Hack, Kurt J.

    1998-01-01

    Highly propellant-efficient electric propulsion is being combined with advanced solar power technology to provide a non-nuclear transportation option for the human exploration of Mars. By virtue of its high specific impulse, electric propulsion offers a greater change in spacecraft velocity for each pound of propellant than do conventional chemical rockets. As a result, a mission to Mars based on solar electric propulsion (SEP) would require fewer heavy-lift launches than a traditional all-chemical space propulsion scenario would. Performance, as measured by mass to orbit and trip time, would be comparable to the NASA design reference mission for human Mars exploration, which utilizes nuclear thermal propulsion; but it would avoid the issues surrounding the use of nuclear reactors in space.

  1. Space technology and robotics in school projects

    NASA Astrophysics Data System (ADS)

    Villias, Georgios

    2016-04-01

    Space-related educational activities is a very inspiring and attractive way to involve students into science courses, present them the variety of STEM careers that they can follow, while giving them at the same time the opportunity to develop various practical and communication skills necessary for their future professional development. As part of a large scale extracurricular course in Space Science, Space Technology and Robotics that has been introduced in our school, our students, divided in smaller groups of 3-4 students in each, try to understand the challenges that current and future space exploration is facing. Following a mixture of an inquiry-based learning methodology and hands-on practical activities related with constructions and experiments, students get a glimpse of the pre-mentioned fields. Our main goal is to gain practical knowledge and inspiration from the exciting field of Space, to attain an adequate level of team spirit and effective cooperation, while developing technical and research data-mining skills. We use the following two approaches: 1. Constructive (Technical) approach Designing and constructing various customized robotic machines, that will simulate the future space exploration vehicles and satellites needed to study the atmosphere, surface and subsurface of planets, moons or other planetary bodies of our solar system that have shown some promising indications for the existence of life, taking seriously into account their special characteristics and known existing conditions (like Mars, Titan, Europa & Enceladus). The STEM tools we use are the following: - LEGO Mindstorms: to construct rovers for surface exploration. - Hydrobots: an MIT's SeaPerch program for the construction of submarine semi-autonomous robots. - CanSats: Arduino-based microsatellites able to receive, record & transmit data. - Space balloons: appropriate for high altitude atmospheric measurements & photography. 2. Scientific approach Conducting interesting physics experiments (propulsion, comet's compositions and trajectories, gravitational forces, etc.) using educational resourses from ESA's website (http://www.esa.int/Education) and small theoretical researches related with subjects of Astrobiology, Mars & Moon Exploration and Space Science, trying to shed some light over some of the big questions related with: - the origin of life in the universe. - the requirements/conditions/possibilities for the existence of life elsewhere. - whether terraforming is possible or not. - the existing reasons/benefits/problems for the colonization of the moon/mars. - the quest for earth-like exoplanets, etc.

  2. Exploration Laboratory Analysis

    NASA Technical Reports Server (NTRS)

    Krihak, M.; Ronzano, K.; Shaw, T.

    2016-01-01

    The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability (ExMC) risk to minimize or reduce the risk of adverse health outcomes and decrements in performance due to in-flight medical capabilities on human exploration missions. To mitigate this risk, the availability of inflight laboratory analysis instrumentation has been identified as an essential capability for manned exploration missions. Since a single, compact space-ready laboratory analysis capability to perform all exploration clinical measurements is not commercially available, the ELA project objective is to demonstrate the feasibility of emerging operational and analytical capability as a biomedical diagnostics precursor to long duration manned exploration missions. The initial step towards ground and flight demonstrations in fiscal year (FY) 2015 was the down selection of platform technologies for demonstrations in the space environment. The technologies selected included two Small Business Innovation Research (SBIR) performers: DNA Medicine Institutes rHEALTH X and Intelligent Optical Systems later flow assays combined with Holomics smartphone analyzer. The selection of these technologies were based on their compact size, breadth of analytical capability and favorable ability to process fluids in a space environment, among several factors. These two technologies will be advanced to meet ground and flight demonstration success criteria and requirements that will be finalized in FY16. Also, the down selected performers will continue the technology development phase towards meeting prototype deliverables in either late 2016 or 2017.

  3. Exploration Laboratory Analysis

    NASA Technical Reports Server (NTRS)

    Krihak, M.; Ronzano, K.; Shaw, T.

    2016-01-01

    The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability (ExMC) risk to minimize or reduce the risk of adverse health outcomes and decrements in performance due to in-flight medical capabilities on human exploration missions. To mitigate this risk, the availability of inflight laboratory analysis instrumentation has been identified as an essential capability for manned exploration missions. Since a single, compact space-ready laboratory analysis capability to perform all exploration clinical measurements is not commercially available, the ELA project objective is to demonstrate the feasibility of emerging operational and analytical capability as a biomedical diagnostics precursor to long duration manned exploration missions. The initial step towards ground and flight demonstrations in fiscal year (FY) 2015 was the downselection of platform technologies for demonstrations in the space environment. The technologies selected included two Small Business Innovation Research (SBIR) performers: DNA Medicine Institute's rHEALTH X and Intelligent Optical System's lateral flow assays combined with Holomic's smartphone analyzer. The selection of these technologies were based on their compact size, breadth of analytical capability and favorable ability to process fluids in a space environment, among several factors. These two technologies will be advanced to meet ground and flight demonstration success criteria and requirements. The technology demonstrations and metrics for success will be finalized in FY16. Also, the downselected performers will continue the technology development phase towards meeting prototype deliverables in either late 2016 or 2017.

  4. Decision Analysis Methods Used to Make Appropriate Investments in Human Exploration Capabilities and Technologies

    NASA Technical Reports Server (NTRS)

    Williams-Byrd, Julie; Arney, Dale C.; Hay, Jason; Reeves, John D.; Craig, Douglas

    2016-01-01

    NASA is transforming human spaceflight. The Agency is shifting from an exploration-based program with human activities in low Earth orbit (LEO) and targeted robotic missions in deep space to a more sustainable and integrated pioneering approach. Through pioneering, NASA seeks to address national goals to develop the capacity for people to work, learn, operate, live, and thrive safely beyond Earth for extended periods of time. However, pioneering space involves daunting technical challenges of transportation, maintaining health, and enabling crew productivity for long durations in remote, hostile, and alien environments. Prudent investments in capability and technology developments, based on mission need, are critical for enabling a campaign of human exploration missions. There are a wide variety of capabilities and technologies that could enable these missions, so it is a major challenge for NASA's Human Exploration and Operations Mission Directorate (HEOMD) to make knowledgeable portfolio decisions. It is critical for this pioneering initiative that these investment decisions are informed with a prioritization process that is robust and defensible. It is NASA's role to invest in targeted technologies and capabilities that would enable exploration missions even though specific requirements have not been identified. To inform these investments decisions, NASA's HEOMD has supported a variety of analysis activities that prioritize capabilities and technologies. These activities are often based on input from subject matter experts within the NASA community who understand the technical challenges of enabling human exploration missions. This paper will review a variety of processes and methods that NASA has used to prioritize and rank capabilities and technologies applicable to human space exploration. The paper will show the similarities in the various processes and showcase instances were customer specified priorities force modifications to the process. Specifically, this paper will describe the processes that the NASA Langley Research Center (LaRC) Technology Assessment and Integration Team (TAIT) has used for several years and how those processes have been customized to meet customer needs while staying robust and defensible. This paper will show how HEOMD uses these analyses results to assist with making informed portfolio investment decisions. The paper will also highlight which human exploration capabilities and technologies typically rank high regardless of the specific design reference mission. The paper will conclude by describing future capability and technology ranking activities that will continue o leverage subject matter experts (SME) input while also incorporating more model-based analysis.

  5. International Coordination of Exploring and Using Lunar Polar Volatiles

    NASA Technical Reports Server (NTRS)

    Gruener, J. E.; Suzuki, N. H.; Carpenter, J. D.

    2016-01-01

    Fourteen international space agencies are participating in the International Space Exploration Coordination Group (ISECG), working together to advance a long-range strategy for human and robotic space exploration beyond low earth orbit. The ISECG is a voluntary, non-binding international coordination mechanism through which individual agencies may exchange information regarding interests, objectives, and plans in space exploration with the goal of strengthening both individual exploration programs as well as the collective effort. The ISECG has developed a Global Exploration Roadmap (GER) that reflects the coordinated international dialog and continued preparation for exploration beyond low-Earth orbit, beginning with the Moon and cis-lunar space, and continuing to near-Earth asteroids, and Mars.

  6. An Overview of Communications Technology and Development Efforts for 2015 SBIR Phase I

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2017-01-01

    This report highlights innovative SBIR 2015 Phase I projects specifically addressing areas in Communications Technology and Development which is one of six core competencies at NASA Glenn Research Center. There are fifteen technologies featured with emphasis on a wide spectrum of applications such as novel solid state lasers for space-based water vapor dial; wide temperature, high voltage and energy density capacitors for aerospace exploration; instrument for airborne measurement of carbonyl sulfide; high-power tunable seed laser for methane Lidar transmitter; ROC-rib deployable ka-band antenna for nanosatellites; a SIC-based microcontroller for high-temperature in-situ instruments and systems; improved yield, performance and reliability of high-actuator-count deformable mirrors; embedded multifunctional optical sensor system; switching electronics for space-based telescopes with advanced AO systems; integrated miniature DBR laser module for Lidar instruments; and much more. Each article in this booklet describes an innovation, technical objective, and highlights NASA commercial and industrial applications. space-based water vapor dial; wide temperature, high voltage and energy density capacitors foraerospace exploration; instrument for airborne measurement of carbonyl sulfide; high-power tunable seed laser formethane Lidar transmitter; ROC-rib deployable ka-band antenna for nanosatellites.

  7. An Agent-Based Dynamic Model for Analysis of Distributed Space Exploration Architectures

    NASA Astrophysics Data System (ADS)

    Sindiy, Oleg V.; DeLaurentis, Daniel A.; Stein, William B.

    2009-07-01

    A range of complex challenges, but also potentially unique rewards, underlie the development of exploration architectures that use a distributed, dynamic network of resources across the solar system. From a methodological perspective, the prime challenge is to systematically model the evolution (and quantify comparative performance) of such architectures, under uncertainty, to effectively direct further study of specialized trajectories, spacecraft technologies, concept of operations, and resource allocation. A process model for System-of-Systems Engineering is used to define time-varying performance measures for comparative architecture analysis and identification of distinguishing patterns among interoperating systems. Agent-based modeling serves as the means to create a discrete-time simulation that generates dynamics for the study of architecture evolution. A Solar System Mobility Network proof-of-concept problem is introduced representing a set of longer-term, distributed exploration architectures. Options within this set revolve around deployment of human and robotic exploration and infrastructure assets, their organization, interoperability, and evolution, i.e., a system-of-systems. Agent-based simulations quantify relative payoffs for a fully distributed architecture (which can be significant over the long term), the latency period before they are manifest, and the up-front investment (which can be substantial compared to alternatives). Verification and sensitivity results provide further insight on development paths and indicate that the framework and simulation modeling approach may be useful in architectural design of other space exploration mass, energy, and information exchange settings.

  8. The Design, Planning and Control of Robotic Systems in Space

    NASA Technical Reports Server (NTRS)

    Dubowsky, Steven

    1996-01-01

    In the future, robotic systems will be expected to perform important tasks in space, in orbit and in planetary exploration. In orbit, current technology requires that tasks such as the repair, construction and maintenance of space stations and satellites be performed by astronaut Extra Vehicular Activity (EVA). Eliminating the need for astronaut EVA through the use of space manipulators would greatly reduce both mission costs and hazards to astronauts. In planetary exploration, cost and logistical considerations clearly make the use of autonomous and telerobotic systems also very attractive, even in cases where an astronaut explorer might be in the area. However, such applications introduce a number of technical problems not found in conventional earth-bound industrial robots. To design useful and practical systems to meet the needs of future space missions, substantial technical development is required, including in the areas of the design, control and planning. The objectives of this research program were to develop such design paradigms and control and planning algorithms to enable future space robotic systems to meet their proposed mission objectives. The underlying intellectual focus of the program is to construct a set of integrated design, planning and control techniques based on an understanding of the fundamental mechanics of space robotic systems. This work was to build upon the results obtained in our previous research in this area supported by NASA Langley Research Center in which we have made important contributions to the area of space robotics.

  9. The astrophysics program at the National Aeronautics and Space Administration (NASA)

    NASA Technical Reports Server (NTRS)

    Pellerin, C. J.

    1990-01-01

    Three broad themes characterize the goals of the Astrophysics Division at NASA. These are obtaining an understanding of the origin and evolution of the universe, the fundamental laws of physics, and the birth and evolutionary cycle of galaxies, stars, planets and life. These goals are pursued through contemporaneous observations across the electromagnetic spectrum with high sensitivity and resolution. The strategy to accomplish these goals is fourfold: the establishment of long term space based observatories implemented through the Great Observatories program; attainment of crucial bridging and supporting measurements visa missions of intermediate and small scope conducted within the Explorer, Spacelab, and Space Station Attached Payload Programs; enhancement of scientific access to results of space based research activities through an integrated data system; and development and maintenance of the scientific/technical base for space astrophysics programs through the research and analysis and suborbital programs. The near term activities supporting the first two objectives are discussed.

  10. A semiconductor radiation imaging pixel detector for space radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Kroupa, Martin; Bahadori, Amir; Campbell-Ricketts, Thomas; Empl, Anton; Hoang, Son Minh; Idarraga-Munoz, John; Rios, Ryan; Semones, Edward; Stoffle, Nicholas; Tlustos, Lukas; Turecek, Daniel; Pinsky, Lawrence

    2015-07-01

    Progress in the development of high-performance semiconductor radiation imaging pixel detectors based on technologies developed for use in high-energy physics applications has enabled the development of a completely new generation of compact low-power active dosimeters and area monitors for use in space radiation environments. Such detectors can provide real-time information concerning radiation exposure, along with detailed analysis of the individual particles incident on the active medium. Recent results from the deployment of detectors based on the Timepix from the CERN-based Medipix2 Collaboration on the International Space Station (ISS) are reviewed, along with a glimpse of developments to come. Preliminary results from Orion MPCV Exploration Flight Test 1 are also presented.

  11. The idea of space exploration

    NASA Technical Reports Server (NTRS)

    Mazlish, B.

    1985-01-01

    Public reactions to the space program, especially to the 1969 Moon landing are discussed. Space exploration is compared to explorations during the Age of Discovery. It is argued that space exploration has failed to capture the public's imagination, that it has had few economic or social consequences of any importance, and that it has had a minimum impact on national prestige.

  12. Beyond DNA Sequencing in Space: Current and Future Omics Capabilities of the Biomolecule Sequencer Payload

    NASA Technical Reports Server (NTRS)

    Wallace, Sarah

    2017-01-01

    Why do we need a DNA sequencer to support the human exploration of space? (A) Operational environmental monitoring; (1) Identification of contaminating microbes, (2) Infectious disease diagnosis, (3) Reduce down mass (sample return for environmental monitoring, crew health, etc.). (B) Research; (1) Human, (2) Animal, (3) Microbes/Cell lines, (4) Plant. (C) Med Ops; (1) Response to countermeasures, (2) Radiation, (3) Real-time analysis can influence medical intervention. (C) Support astrobiology science investigations; (1) Technology superiorly suited to in situ nucleic acid-based life detection, (2) Functional testing for integration into robotics for extraplanetary exploration mission.

  13. A voyage to Mars: A challenge to collaboration between man and machines

    NASA Technical Reports Server (NTRS)

    Statler, Irving C.

    1991-01-01

    A speech addressing the design of man machine systems for exploration of space beyond Earth orbit from the human factors perspective is presented. Concerns relative to the design of automated and intelligent systems for the NASA Space Exploration Initiative (SEI) missions are largely based on experiences with integrating humans and comparable systems in aviation. The history, present status, and future prospect, of human factors in machine design are discussed in relation to a manned voyage to Mars. Three different cases for design philosophy are presented. The use of simulation is discussed. Recommendations for required research are given.

  14. KSC-04pd0845

    NASA Image and Video Library

    2004-04-13

    KENNEDY SPACE CENTER, FLA. - Astronaut Rick Linnehan shares his experiences in space with students and faculty at Ralph Bunche Middle School, a NASA Explorer School, in Atlanta, Ga. Linnehan accompanied Center Director Jim Kennedy, who is visiting NES sites to share America’s new vision for space exploration with the next generation of explorers. The purpose of the school visit is to talk with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.

  15. KSC-04pd0721

    NASA Image and Video Library

    2004-04-05

    KENNEDY SPACE CENTER, FLA. -- Astronaut Sam Durrance shares stories of his experiences in space with the students at Oscar Patterson Elementary Magnet School in Panama City, Fla. Durrance joined Center Director Jim Kennedy as he shares America’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students in NASA Explorer Schools in Florida and Georgia about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.

  16. Explorers Program Management

    NASA Technical Reports Server (NTRS)

    Volpe, Frank; Comberiate, Anthony B. (Technical Monitor)

    2001-01-01

    The mission of the Explorer Program is to provide frequent flight opportunities for world-class scientific investigations from space within the following space science themes: 1) Astronomical Search for Origins and Planetary Systems; 2) Structure and Evolution of the Universe; and 3) The Sun-Earth Connection. America's space exploration started with Explorer 1 which was launched February 1, 1958 and discovered the Van Allen Radiation Belts. Over 75 Explorer missions have flown. The program seeks to enhance public awareness of, and appreciation for, space science and to incorporate. educational and public outreach activities as integral parts of space science investigations.

  17. Building Bridges for Dance through Arts-Based Research

    ERIC Educational Resources Information Center

    Wilson, Lisa; Moffett, Ann-Thomas

    2017-01-01

    This paper considers arts-based research (ABR) as a useful resource for creating fluid and dialogic spaces between multiple domains of dance knowledge and practices. Through the lens of a multi-disciplinary, arts-based research project "Same Story, Different Countries" explored the socio-political phenomena of racism in the United States…

  18. Biosputniks: The use by the Soviet Union and Russia of dogs, monkeys and other animals in the exploration of space, 1949-93

    NASA Astrophysics Data System (ADS)

    Harvey, B.

    1993-10-01

    The Soviet Union used animals in the exploration of space from 1949 onwards. Russia has continued the use of animals in the exploration of space with the launch on 30 December 1992 of Bion-10 (Cosmos 2229). Animals in the space program is an important theme in the Soviet exploration of space. The use of animals in the exploration of space has four main phases: (1) Suborbital missions 1949-1959; (2) Preparation for man's first flight into space 1960-1; (3) Preparation for man's flight to the Moon 1968-1970; (4) The international biomedical program 1962- . Each is dealt with in turn. The use of animals or biological specimens on board manned orbital space stations is not discussed.

  19. The United Nations programme on space applications: priority thematic areas

    NASA Astrophysics Data System (ADS)

    Haubold, H.

    The Third United Nations Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE III) was held in 1999 with efforts to identify world wide benefits of developing space science and technology, particularly in the developing nations. One of the main vehicles to implement recommendations of UNISPACE III is the United Nations Programme on Space Applications of the Office for Outer Space Affairs at UN Headquarters in Vienna. Following a process of prioritization by Member States, the Programme focus its activities on (i) knowledge-based themes as space law and basic space science, (ii) application-based themes as disaster management, natural resources management, environmental monitoring, tele-health, and (iii) enabling technologies such as remote sensing satellites, communications satellites, global navigation satellite systems, and small satellites. Current activities of the Programme will be reviewed. Further information available at http://www.oosa.unvienna.org/sapidx.html

  20. Virtual Space Exploration: Let's Use Web-Based Computer Game Technology to Boost IYA 2009 Public Interest

    NASA Astrophysics Data System (ADS)

    Hussey, K.; Doronila, P.; Kulikov, A.; Lane, K.; Upchurch, P.; Howard, J.; Harvey, S.; Woodmansee, L.

    2008-09-01

    With the recent releases of both Google's "Sky" and Microsoft's "WorldWide Telescope" and the large and increasing popularity of video games, the time is now for using these tools, and those crafted at NASA's Jet Propulsion Laboratory, to engage the public in astronomy like never before. This presentation will use "Cassini at Saturn Interactive Explorer " (CASSIE) to demonstrate the power of web-based video-game engine technology in providing the public a "first-person" look at space exploration. The concept of virtual space exploration is to allow the public to "see" objects in space as if they were either riding aboard or "flying" next to an ESA/NASA spacecraft. Using this technology, people are able to immediately "look" in any direction from their virtual location in space and "zoom-in" at will. Users can position themselves near Saturn's moons and observe the Cassini Spacecraft's "encounters" as they happened. Whenever real data for their "view" exists it is incorporated into the scene. Where data is missing, a high-fidelity simulation of the view is generated to fill in the scene. The observer can also change the time of observation into the past or future. Our approach is to utilize and extend the Unity 3d game development tool, currently in use by the computer gaming industry, along with JPL mission specific telemetry and instrument data to build our virtual explorer. The potential of the application of game technology for the development of educational curricula and public engagement are huge. We believe this technology can revolutionize the way the general public and the planetary science community views ESA/NASA missions and provides an educational context that is attractive to the younger generation. This technology is currently under development and application at JPL to assist our missions in viewing their data, communicating with the public and visualizing future mission plans. Real-time demonstrations of CASSIE and other applications in development will be shown. Astronomy is one of the oldest basic sciences. We should use one of today's newest communications technologies available to engage the public. We should embrace the use of web-based gaming technology to prepare the world for the International Year of Astronomy 2009.

  1. KSC-04pd1159

    NASA Image and Video Library

    2004-05-14

    KENNEDY SPACE CENTER, FLA. -- Astronaut David Wolf addresses students and faculty of Howard A. Doolin Middle School, Miami, Fla., about his experiences in space. Doolin Middle School is one of 100 to take part in the NASA Explorer Schools (NES) program. Wolf joins Center Director Jim Kennedy on his visit to share America’s new vision for space exploration with the next generation of explorers. He is talking with students in Florida and Georgia Explorer Schools about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.

  2. KSC-04pd1158

    NASA Image and Video Library

    2004-05-14

    KENNEDY SPACE CENTER, FLA. -- Astronaut David Wolf addresses students and faculty of Howard A. Doolin Middle School, Miami, Fla., about his experiences in space. Doolin Middle School is one of 100 to take part in the NASA Explorer Schools (NES) program. Wolf joins Center Director Jim Kennedy on his visit to share America’s new vision for space exploration with the next generation of explorers. He is talking with students in Florida and Georgia Explorer Schools about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.

  3. Modular Software Interfaces for Revolutionary Flexibility in Space Operations

    NASA Technical Reports Server (NTRS)

    Glass, Brian; Braham, Stephen; Pollack, Jay

    2005-01-01

    To make revolutionary improvements in exploration, space systems need to be flexible, realtime reconfigurable, and able to trade data transparently among themselves and mission operations. Onboard operations systems, space assembly coordination and EVA systems in exploration and construction all require real-time modular reconfigurability and data sharing. But NASA's current exploration systems are still largely legacies from hastily-developed, one-off Apollo-era practices. Today's rovers, vehicles, spacesuits, space stations, and instruments are not able to plug-and-play, Lego-like: into different combinations. Point-to-point dominates - individual suit to individual vehicle, individual instrument to rover. All are locally optimized, all unique, each of the data interfaces has been recoded for each possible combination. This will be an operations and maintenance nightmare in the much larger Project Constellation system of systems. This legacy approach does not scale to the hundreds of networked space components needed for space construction and for new, space-based approaches to Earth-Moon operations. By comparison, battlefield information management systems, which are considered critical to military force projection, have long since abandoned a point-to-point approach to systems integration. From a system-of-systems viewpoint, a clean-sheet redesign of the interfaces of all exploration systems is a necessary prerequisite before designing the interfaces of the individual exploration systems. Existing communications and Global Information Grid and middleware technologies are probably sufficient for command and control and information interfaces, with some hardware and time-delay modifications for space environments. NASA's future advanced space operations must also be information and data compatible with aerospace operations and surveillance systems being developed by other US Government agencies such as the Department of Homeland Security, Federal Aviation Administration and Department of Defense. This paper discusses fundamental system-of-systems infrastructure: approaches and architectures for modular plug-and-play software interfaces for revolutionary improvements in flexibility, modularity, robustness, ease of maintenance, reconfigurability, safety and productivity. Starting with middleware, databases, and mobile communications technologies, our technical challenges will be to apply these ideas to the requirements of constellations of space systems and to implement them initially on prototype space hardware. This is necessary to demonstrate an integrated information sharing architecture and services. It is a bottom-up approach, one that solves the problem of space operations data integration. Exploration demands uniform software mechanisms for application information interchange, and the corresponding uniformly available software services to enhance these mechanisms. We will examine the issues in plug-and-play, real-time-configurable systems, including common definition and management and tracking of data and information among many different space systems. Different field test approaches are discussed, including the use of the International Space Station and terrestrial analog mission operations at field sites.

  4. Alternative Spaces of Learning in East London: Opportunities and Challenges

    ERIC Educational Resources Information Center

    Sneddon, Raymonde; Martin, Peter

    2012-01-01

    This article emerges from an ongoing exploration into how British minority ethnic communities in the London area create spaces in community-based programs to maintain or develop their languages and literacies. In London, more than one-third of the 850,000 school children speak a language other than English at home (Baker & Eversley, 2000).…

  5. Learning Spaces in School: Comparing Math Instruction and Learning in School Gardens and Classrooms

    ERIC Educational Resources Information Center

    Boynton, Christine Mary

    2010-01-01

    In 2006, the California legislature released $14 million to the schools of California to create school gardens through the California Instructional School Garden Bill (CA Assembly Bill 1535, 2006). This study examined the differences and similarities of school gardens as learning spaces by exploring a fifth grade school standards-based mathematics…

  6. Invisible Culture: Taking Art Education to the Streets

    ERIC Educational Resources Information Center

    Darts, David

    2011-01-01

    Art educators and administrators allowed a project to evolve based on the "street life" experiences of ordinarily invisible people. The goal was to create a space or number of spaces for celebrating the human spirit through art, music, dance, poetry, theater, and story while also providing a forum for exploring some of the social issues affecting…

  7. Attitude and Passion: Becoming a Teacher in Early Childhood Education and Care

    ERIC Educational Resources Information Center

    Maier-Höfer, Claudia

    2015-01-01

    By focusing on a collective aesthetics based on sensation and affect, researchers, especially in Stockholm, Sweden, are exploring a pedagogy that opens up space for assemblages of desire, acknowledging the expressions of children who transform themselves and their milieus into a weave of bodies, spaces, signs and media. By analysing this pedagogy,…

  8. Elementary properties of triangle in normed spaces

    NASA Astrophysics Data System (ADS)

    Triana, Deri; Yunus, Mahmud

    2018-03-01

    Based on concepts of trigonometric on plane, In this paper we generalized those concept in normed spaces. About the orthogonality concept between two vectors already well known, we are interested to develop elementary properties of triangle, especially the properties of its angle. We propose a non-linear (Wilson) functional to define an angle and explore its properties.

  9. With Eyes on the Future, Marshall Leads the Way to Deep Space in 2017

    NASA Image and Video Library

    2017-12-27

    NASA's Marshall Space Flight Center in Huntsville, Alabama, led the way in space exploration in 2017. Marshall's work is advancing how we explore space and preparing for deep-space missions to the Moon, Mars and beyond. Progress continued on NASA's Space Launch System that will enable missions beyond Earth's orbit, while flight controllers at "Science Central" for the International Space Station coordinated research and experiments with astronauts in orbit, learning how to live in space. At Marshall, 2017 was also marked with ground-breaking discoveries, innovations that will send us into deep space, and events that will inspire future generations of explorers. Follow along in 2018 as Marshall continues to advance space exploration: www.nasa.gov/marshall

  10. Night Vision

    NASA Astrophysics Data System (ADS)

    Rowan-Robinson, Michael

    2013-05-01

    Preface; 1. Introduction; 2. William Herschel opens up the invisible universe; 3. 1800-1950: slow progress - the moon, planets, bright stars, and the discovery of interstellar dust; 4. Dying stars shrouded in dust and stars being born: the emergence of infrared astronomy in the 60s and 70s; 5. Birth of far infrared and submillimetre astronomy: clouds of dust and molecules in our Galaxy; 6. The cosmic microwave background, echo of the Big Bang; 7. The Infrared Astronomical Satellite and the opening up of extragalactic infrared astronomy: starbursts and active galactic nuclei; 8. The Cosmic Background Explorer and the ripples, the Wilkinson Microwave Anisotropy Explorer, and dark energy; 9. Giant ground-based infrared and submillimetre telescopes; 10. The Infrared Space Observatory and the Spitzer Space Telescope: the star-formation history of the universe and infrared galaxy populations; 11. Our dusty Solar System, debris disks and the search for exoplanets; 12. The future: pioneering space missions and giant ground-based telescopes; Notes; Credits for illustrations; Further reading; Bibliography; Glossary; Index of names; Index.

  11. Design of small Stirling dynamic isotope power system for robotic space missions

    NASA Technical Reports Server (NTRS)

    Bents, D. J.; Schreiber, J. G.; Withrow, C. A.; Mckissock, B. I.; Schmitz, P. C.

    1992-01-01

    Design of a multihundred-watt Dynamic Isotope Power System (DIPS) based on the U.S. Department of Energy (DOE) General Purpose Heat Source (GPHS) and small (multihundred-watt) free-piston Stirling engine (FPSE) technology is being pursued as a potential lower cost alternative to radioisotope thermoelectric generators (RTG's). The design is targeted at the power needs of future unmanned deep space and planetary surface exploration missions ranging from scientific probes to Space Exploration Initiative precursor missions. Power level for these missions is less than a kilowatt. Unlike previous DIPS designs which were based on turbomachinery conversion (e.g. Brayton), this small Stirling DIPS can be advantageously scaled down to multihundred-watt unit size while preserving size and mass competitiveness with RTG's. Preliminary characterization of units in the output power ranges 200-600 We indicate that on an electrical watt basis the GPHS/small Stirling DIPS will be roughly equivalent to an advanced RTG in size and mass but require less than a third of the isotope inventory.

  12. Intelligent Systems Technologies for Ops

    NASA Technical Reports Server (NTRS)

    Smith, Ernest E.; Korsmeyer, David J.

    2012-01-01

    As NASA supports International Space Station assembly complete operations through 2020 (or later) and prepares for future human exploration programs, there is additional emphasis in the manned spaceflight program to find more efficient and effective ways of providing the ground-based mission support. Since 2006 this search for improvement has led to a significant cross-fertilization between the NASA advanced software development community and the manned spaceflight operations community. A variety of mission operations systems and tools have been developed over the past decades as NASA has operated the Mars robotic missions, the Space Shuttle, and the International Space Station. NASA Ames Research Center has been developing and applying its advanced intelligent systems research to mission operations tools for both unmanned Mars missions operations since 2001 and to manned operations with NASA Johnson Space Center since 2006. In particular, the fundamental advanced software development work under the Exploration Technology Program, and the experience and capabilities developed for mission operations systems for the Mars surface missions, (Spirit/Opportunity, Phoenix Lander, and MSL) have enhanced the development and application of advanced mission operation systems for the International Space Station and future spacecraft. This paper provides an update on the status of the development and deployment of a variety of intelligent systems technologies adopted for manned mission operations, and some discussion of the planned work for Autonomous Mission Operations in future human exploration. We discuss several specific projects between the Ames Research Center and the Johnson Space Centers Mission Operations Directorate, and how these technologies and projects are enhancing the mission operations support for the International Space Station, and supporting the current Autonomous Mission Operations Project for the mission operation support of the future human exploration programs.

  13. 76 FR 41307 - NASA Advisory Council; Space Operations Committee and Exploration Committee; Joint Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ... Operations Committee and Exploration Committee; Joint Meeting AGENCY: National Aeronautics and Space... the Space Operations Committee and Exploration Committee of the NASA Advisory Council. DATES: Tuesday.../Exploration Systems Mission Directorate Merger Update. [[Page 41308

  14. 77 FR 66082 - NASA Advisory Council; Human Exploration and Operations Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-01

    ... Exploration and Operations Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... Integration --International Space Station Status --Outreach --Human Exploration and Operations Status... Advisory Council Human Exploration and Operations Committee session in the Space Operations Center, Room...

  15. 76 FR 63663 - NASA Advisory Council; Human Exploration and Operations Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ... Exploration and Operations Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration announces a meeting of the Human Exploration... Exploration and Operations Mission Directorate, National Aeronautics and Space Administration Headquarters...

  16. 75 FR 4589 - NASA Advisory Council Exploration Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-28

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-012)] NASA Advisory Council Exploration... Aeronautics and Space Administration announces a meeting of the NASA Advisory Council Exploration Committee... Parham, Exploration Committee Administrative Officer, Mail Stop 7C27, National Aeronautics and Space...

  17. Applications of Response Surface-Based Methods to Noise Analysis in the Conceptual Design of Revolutionary Aircraft

    NASA Technical Reports Server (NTRS)

    Hill, Geoffrey A.; Olson, Erik D.

    2004-01-01

    Due to the growing problem of noise in today's air transportation system, there have arisen needs to incorporate noise considerations in the conceptual design of revolutionary aircraft. Through the use of response surfaces, complex noise models may be converted into polynomial equations for rapid and simplified evaluation. This conversion allows many of the commonly used response surface-based trade space exploration methods to be applied to noise analysis. This methodology is demonstrated using a noise model of a notional 300 passenger Blended-Wing-Body (BWB) transport. Response surfaces are created relating source noise levels of the BWB vehicle to its corresponding FAR-36 certification noise levels and the resulting trade space is explored. Methods demonstrated include: single point analysis, parametric study, an optimization technique for inverse analysis, sensitivity studies, and probabilistic analysis. Extended applications of response surface-based methods in noise analysis are also discussed.

  18. Orion Underway Recovery Test 5 (URT-5) - Orion Boiler Plate Test

    NASA Image and Video Library

    2016-10-20

    A service member and his family check out a test version of the Orion crew module on display at Naval Base San Diego in California, before Underway Recovery Test 5 (URT-5). NASA, Orion manufacturer Lockheed Martin and the U.S. Navy will head out to sea with the Orion test vehicle aboard the USS San Diego to demonstrate and evaluate the recovery processes, procedures, hardware and personnel necessary for recovery of Orion on its return from a deep space mission. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch atop NASA’s Space Launch System rocket in 2018. For more information, visit http://www.nasa.gov/orion.

  19. Orion Underway Recovery Test 5 (URT-5)

    NASA Image and Video Library

    2016-10-26

    The USS San Diego departs Naval Base San Diego in California on its way out to sea in the Pacific Ocean for the Orion Underway Recovery Test 5. NASA's Ground Systems Development and Operations Program and the U.S. Navy will practice recovery techniques using the well deck of the ship and a test version of the Orion crew module to prepare for recovery of Orion on its return from deep space missions. The testing will allow the team to demonstrate and evaluate recovery processes, procedures, hardware and personnel in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA's Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch on NASA's Space Launch System in late 2018. For more information, visit http://www.nasa.gov/orion.

  20. Orion Underway Recovery Test 5 (URT-5)

    NASA Image and Video Library

    2016-11-01

    The USS San Diego approaches Naval Base San Diego in California after completion of Underway Recovery Test 5 in the Pacific Ocean. NASA's Ground Systems Development and Operations Program and the U.S. Navy conducted a series of tests using the ship's well deck and a test version of the Orion crew module to prepare for recovery of Orion on its return from deep space missions. The testing allowed the team to demonstrate and evaluate recovery processes, procedures, hardware and personnel in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA's Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch on NASA's Space Launch System in late 2018. For more information, visit http://www.nasa.gov/orion.

  1. Fiber lasers and amplifiers for science and exploration at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Abshire, James; Allan, Graham R.; Stephen Mark

    2005-01-01

    We discuss present and near-term uses for high-power fiber lasers and amplifiers for NASA- specific applications including planetary topography and atmospheric spectroscopy. Fiber lasers and amplifiers offer numerous advantages for both near-term and future deployment of instruments on exploration and science remote sensing orbiting satellites. Ground-based and airborne systems provide an evolutionary path to space and a means for calibration and verification of space-borne systems. We present experimental progress on both the fiber transmitters and instrument prototypes for ongoing development efforts. These near-infrared instruments are laser sounders and lidars for measuring atmospheric carbon dioxide, oxygen, water vapor and methane and a pseudo-noise (PN) code laser ranging system. The associated fiber transmitters include high-power erbium, ytterbium, neodymium and Raman fiber amplifiers. In addition, we will discuss near-term fiber laser and amplifier requirements and programs for NASA free space optical communications, planetary topography and atmospheric spectroscopy.

  2. Exploring the Functioning of Decision Space: A Review of the Available Health Systems Literature.

    PubMed

    Roman, Tamlyn Eslie; Cleary, Susan; McIntyre, Diane

    2017-02-27

    The concept of decision space holds appeal as an approach to disaggregating the elements that may influence decision-making in decentralized systems. This narrative review aims to explore the functioning of decision space and the factors that influence decision space. A narrative review of the literature was conducted with searches of online databases and academic journals including PubMed Central, Emerald, Wiley, Science Direct, JSTOR, and Sage. The articles were included in the review based on the criteria that they provided insight into the functioning of decision space either through the explicit application of or reference to decision space, or implicitly through discussion of decision-making related to organizational capacity or accountability mechanisms. The articles included in the review encompass literature related to decentralisation, management and decision space. The majority of the studies utilise qualitative methodologies to assess accountability mechanisms, organisational capacities such as finance, human resources and management, and the extent of decision space. Of the 138 articles retrieved, 76 articles were included in the final review. The literature supports Bossert's conceptualization of decision space as being related to organizational capacities and accountability mechanisms. These functions influence the decision space available within decentralized systems. The exact relationship between decision space and financial and human resource capacities needs to be explored in greater detail to determine the potential influence on system functioning. © 2017 The Author(s); Published by Kerman University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

  3. Seismology and space-based geodesy

    NASA Technical Reports Server (NTRS)

    Tralli, David M.; Tajima, Fumiko

    1993-01-01

    The potential of space-based geodetic measurement of crustal deformation in the context of seismology is explored. The achievements of seismological source theory and data analyses, mechanical modeling of fault zone behavior, and advances in space-based geodesy are reviewed, with emphasis on realizable contributions of space-based geodetic measurements specifically to seismology. The fundamental relationships between crustal deformation associated with an earthquake and the geodetically observable data are summarized. The response and spatial and temporal resolution of the geodetic data necessary to understand deformation at various phases of the earthquake cycle is stressed. The use of VLBI, SLR, and GPS measurements for studying global geodynamics properties that can be investigated to some extent with seismic data is discussed. The potential contributions of continuously operating strain monitoring networks and globally distributed geodetic observatories to existing worldwide modern digital seismographic networks are evaluated in reference to mutually addressable problems in seismology, geophysics, and tectonics.

  4. SDR/STRS Flight Experiment and the Role of SDR-Based Communication and Navigation Systems

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.

    2008-01-01

    This presentation describes an open architecture SDR (software defined radio) infrastructure, suitable for space-based radios and operations, entitled Space Telecommunications Radio System (STRS). SDR technologies will endow space and planetary exploration systems with dramatically increased capability, reduced power consumption, and less mass than conventional systems, at costs reduced by vigorous competition, hardware commonality, dense integration, minimizing the impact of parts obsolescence, improved interoperability, and software re-use. To advance the SDR architecture technology and demonstrate its applicability in space, NASA is developing a space experiment of multiple SDRs each with various waveforms to communicate with NASA s TDRSS satellite and ground networks, and the GPS constellation. An experiments program will investigate S-band and Ka-band communications, navigation, and networking technologies and operations.

  5. Guiding Conformation Space Search with an All-Atom Energy Potential

    PubMed Central

    Brunette, TJ; Brock, Oliver

    2009-01-01

    The most significant impediment for protein structure prediction is the inadequacy of conformation space search. Conformation space is too large and the energy landscape too rugged for existing search methods to consistently find near-optimal minima. To alleviate this problem, we present model-based search, a novel conformation space search method. Model-based search uses highly accurate information obtained during search to build an approximate, partial model of the energy landscape. Model-based search aggregates information in the model as it progresses, and in turn uses this information to guide exploration towards regions most likely to contain a near-optimal minimum. We validate our method by predicting the structure of 32 proteins, ranging in length from 49 to 213 amino acids. Our results demonstrate that model-based search is more effective at finding low-energy conformations in high-dimensional conformation spaces than existing search methods. The reduction in energy translates into structure predictions of increased accuracy. PMID:18536015

  6. Nuclear Propulsion through Direct Conversion of Fusion Energy: The Fusion Driven Rocket

    NASA Technical Reports Server (NTRS)

    Slough, John; Pancotti, Anthony; Kirtley, David; Pihl, Christopher; Pfaff, Michael

    2012-01-01

    The future of manned space exploration and development of space depends critically on the creation of a dramatically more proficient propulsion architecture for in-space transportation. A very persuasive reason for investigating the applicability of nuclear power in rockets is the vast energy density gain of nuclear fuel when compared to chemical combustion energy. Current nuclear fusion efforts have focused on the generation of electric grid power and are wholly inappropriate for space transportation as the application of a reactor based fusion-electric system creates a colossal mass and heat rejection problem for space application.

  7. Advanced Autonomous Systems for Space Operations

    NASA Astrophysics Data System (ADS)

    Gross, A. R.; Smith, B. D.; Muscettola, N.; Barrett, A.; Mjolssness, E.; Clancy, D. J.

    2002-01-01

    New missions of exploration and space operations will require unprecedented levels of autonomy to successfully accomplish their objectives. Inherently high levels of complexity, cost, and communication distances will preclude the degree of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of not only meeting the greatly increased space exploration requirements, but simultaneously dramatically reducing the design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health management capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of advanced space operations, since the science and operational requirements specified by such missions, as well as the budgetary constraints will limit the current practice of monitoring and controlling missions by a standing army of ground-based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such on-board systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communication` distances as are not otherwise possible, as well as many more efficient and low cost applications. In addition, utilizing component and system modeling and reasoning capabilities, autonomous systems will play an increasing role in ground operations for space missions, where they will both reduce the human workload as well as provide greater levels of monitoring and system safety. This paper will focus specifically on new and innovative software for remote, autonomous, space systems flight operations. Topics to be presented will include a brief description of key autonomous control concepts, the Remote Agent program that commanded the Deep Space 1 spacecraft to new levels of system autonomy, recent advances in distributed autonomous system capabilities, and concepts for autonomous vehicle health management systems. A brief description of teaming spacecraft and rovers for complex exploration missions will also be provided. New on-board software for autonomous science data acquisition for planetary exploration will be described, as well as advanced systems for safe planetary landings. A new multi-agent architecture that addresses some of the challenges of autonomous systems will be presented. Autonomous operation of ground systems will also be considered, including software for autonomous in-situ propellant production and management, and closed- loop ecological life support systems (CELSS). Finally, plans and directions for the future will be discussed.

  8. Space life sciences strategic plan

    NASA Astrophysics Data System (ADS)

    Nicogossian, Arnauld E.

    1992-05-01

    Over the last three decades the Life Sciences Program has significantly contributed to NASA's manned and unmanned exploration of space, while acquiring new knowledge in the fields of space biology and medicine. The national and international events which have led to the development and revision of NASA strategy will significantly affect the future of life sciences programs both in scope and pace. This document serves as the basis for synthesizing the options to be pursued during the next decade, based on the decisions, evolution, and guiding principles of the National Space Policy. The strategies detailed in this document are fully supportive of the Life Sciences Advisory Subcommittee's 'A Rationale for the Life Sciences,' and the recent Aerospace Medicine Advisory Committee report entitled 'Strategic Considerations for Support of Humans in Space and Moon/Mars Exploration Missions.' Information contained within this document is intended for internal NASA planning and is subject to policy decisions and direction, and to budgets allocated to NASA's Life Sciences Program.

  9. Space life sciences strategic plan

    NASA Technical Reports Server (NTRS)

    Nicogossian, Arnauld E.

    1992-01-01

    Over the last three decades the Life Sciences Program has significantly contributed to NASA's manned and unmanned exploration of space, while acquiring new knowledge in the fields of space biology and medicine. The national and international events which have led to the development and revision of NASA strategy will significantly affect the future of life sciences programs both in scope and pace. This document serves as the basis for synthesizing the options to be pursued during the next decade, based on the decisions, evolution, and guiding principles of the National Space Policy. The strategies detailed in this document are fully supportive of the Life Sciences Advisory Subcommittee's 'A Rationale for the Life Sciences,' and the recent Aerospace Medicine Advisory Committee report entitled 'Strategic Considerations for Support of Humans in Space and Moon/Mars Exploration Missions.' Information contained within this document is intended for internal NASA planning and is subject to policy decisions and direction, and to budgets allocated to NASA's Life Sciences Program.

  10. Strategies For Human Exploration Leading To Human Colonization of Space

    NASA Technical Reports Server (NTRS)

    Smitherman, David; Everett, Harmon

    2009-01-01

    Enabling the commercial development of space is key to the future colonization of space and key to a viable space exploration program. Without commercial development following in the footsteps of exploration it is difficult to justify and maintain public interest in the efforts. NASA's exploration program has suffered from the lack of a good commercial economic strategy for decades. Only small advances in commercial space have moved forward, and only up to Earth orbit with the commercial satellite industry. A way to move beyond this phase is to begin the establishment of human commercial activities in space in partnership with the human exploration program. In 2007 and 2008, the authors researched scenarios to make space exploration and commercial space development more feasible as part of their graduate work in the Space Architecture Program at the Sasakawa International Center for Space Architecture at the University of Houston, Houston, Texas. Through this research it became apparent that the problems facing future colonization are much larger than the technology being developed or the international missions that our space agencies are pursuing. These issues are addressed in this paper with recommendations for space exploration, commercial development, and space policy that are needed to form a strategic plan for human expansion into space. In conclusion, the authors found that the current direction in space as carried out by our space agencies around the world is definitely needed, but is inadequate and incapable of resolving all of the issues that inhibit commercial space development. A bolder vision with strategic planning designed to grow infrastructures and set up a legal framework for commercial markets will go a long way toward enabling the future colonization of space.

  11. Enabling Laser and Lidar Technologies for NASA's Science and Exploration Mission's Applications

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Kavaya, Michael J.

    2005-01-01

    NASA s Laser Risk Reduction Program, begun in 2002, has achieved many technology advances in only 3.5 years. The recent selection of several lidar proposals for Science and Exploration applications indicates that the LRRP goal of enabling future space-based missions by lowering the technology risk has already begun to be met.

  12. Advances in Laser/Lidar Technologies for NASA's Science and Exploration Mission's Applications

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Kavaya, Michael J.

    2005-01-01

    NASA's Laser Risk Reduction Program, begun in 2002, has achieved many technology advances in only 3.5 years. The recent selection of several lidar proposals for Science and Exploration applications indicates that the LRRP goal of enabling future space-based missions by lowering the technology risk has already begun to be met.

  13. Interplay of Entrepreneurial Learning Forms: A Case Study of Experiential Learning Settings

    ERIC Educational Resources Information Center

    Ramsgaard, Michael Breum; Christensen, Marie Ernst

    2018-01-01

    This paper explores the concept of learning in a setting of experiential knowledge acquisition. The main focus is how facilitators of learning processes can design learning spaces, where the boundaries of what is expected from the learner are challenged. The aim is to explore the action-based learning processes occurring in experiential learning…

  14. Performing Home in Barcelona: A Practice-Based Photo Essay

    ERIC Educational Resources Information Center

    Pons, Esther Belvis

    2018-01-01

    During the winter of 2016, I carried out an artistic project in Barcelona entitled 'Performing Home' that aimed to explore the affective and social challenges that artists in political asylum or refuge cope with. The project began with a simple question: "where in public spaces do artists in asylum feel 'at home'?" It explored how public…

  15. Cross Space: The Exploration of SNS-Based Writing Activities in a Multimodal Learning Environment

    ERIC Educational Resources Information Center

    Lee, Kwang-Soon; Kim, Bong-Gyu

    2016-01-01

    This study explores the positive learning effect of formulating English sentences via Social Network Service (SNS; "Kakao-Talk") on less proficient L2 university students' (LPSs') writing, when the application is utilized as a tool to link in and out-of class activities in a multimodal-learning environment. Its objective is also to…

  16. Using Internet, Television and Radio to Promote Public Participation in Space Exploration

    NASA Astrophysics Data System (ADS)

    Clipper, Milton C., Jr.; MacLeish, Marlene Y.

    2008-06-01

    The theme of the 59th International Astronautical Congress, From Imagination to Reality, reflects a global sentiment that future space exploration will require a scientifically literate public that is informed about the benefits of space exploration for life on Earth and is motivated to influence decision makers who provide resources to support space exploration. This paper reports on a successful twelve-year private-public partnership among Public Broadcasting Atlanta, (PBA) Morehouse School of Medicine (MSM), the National Space Biomedical Research Institute (NSBRI) and the National Aeronautics and Space Administration (NASA). The partnership has produced television-radio documentaries, transmitted space science knowledge to classrooms, designed electronic citizen participation platforms, spun off new programs and maintained a space film archive. This model provides a framework for analyzing determinants of innovative public-private partnerships, mobilization of scarce resources, and space exploration knowledge management.

  17. A Delphi-Based Framework for systems architecting of in-orbit exploration infrastructure for human exploration beyond Low Earth Orbit

    NASA Astrophysics Data System (ADS)

    Aliakbargolkar, Alessandro; Crawley, Edward F.

    2014-01-01

    The current debate in the U.S. Human Spaceflight Program focuses on the development of the next generation of man-rated heavy lift launch vehicles. While launch vehicle systems are of critical importance for future exploration, a comprehensive analysis of the entire exploration infrastructure is required to avoid costly pitfalls at early stages of the design process. This paper addresses this need by presenting a Delphi-Based Systems Architecting Framework for integrated architectural analysis of future in-orbit infrastructure for human space exploration beyond Low Earth Orbit. The paper is structured in two parts. The first part consists of an expert elicitation study to identify objectives for the in-space transportation infrastructure. The study was conducted between November 2011 and January 2012 with 15 senior experts involved in human spaceflight in the United States and Europe. The elicitation study included the formation of three expert panels representing exploration, science, and policy stakeholders engaged in a 3-round Delphi study. The rationale behind the Delphi approach, as imported from social science research, is discussed. Finally, a novel version of the Delphi method is presented and applied to technical decision-making and systems architecting in the context of human space exploration. The second part of the paper describes a tradespace exploration study of in-orbit infrastructure coupled with a requirements definition exercise informed by expert elicitation. The uncertainties associated with technical requirements and stakeholder goals are explicitly considered in the analysis. The outcome of the expert elicitation process portrays an integrated view of perceived stakeholder needs within the human spaceflight community. Needs are subsequently converted into requirements and coupled to the system architectures of interest to analyze the correlation between exploration, science, and policy goals. Pareto analysis is used to identify architectures of interest for further consideration by decision-makers. The paper closes with a summary of insights and develops a strategy for evolutionary development of the exploration infrastructure of the incoming decades. The most important result produced by this analysis is the identification of a critical irreducible ambiguity undermining value delivery for the in-space transportation infrastructure of the next three decades: destination choice. Consensus on destination is far from being reached by the community at large, with particular reference to exploration and policy stakeholders. The realization of this ambiguity is a call for NASA to promote an open forum on this topic, and to develop a strong case for policy makers to incentivize investments in the human spaceflight industry in the next decades.

  18. Precursor life science experiments and closed life support systems on the Moon

    NASA Astrophysics Data System (ADS)

    Rodriguez, A.; Paille, C.; Rebeyre, P.; Lamaze, B.; Lobo, M.; Lasseur, C.

    Nowadays the Moon is not only a scientific exploration target but also potentially also a launch pad for deeper space exploration. Establishing an extended human presence on the Moon could reduce the cost of further space exploration, and gather the technical and scientific experience that would make possible the next steps of space exploration, namely manned-missions to Mars. To enable the establishment of such a Moon base, a reliable and regenerative life support system (LSS) is required: without any recycling of metabolic consumables (oxygen, water and food), a 6-person crew during the course of one year would require a supply of 12t from Earth (not including water for hygiene purposes), with a prohibitive associated cost! The recycling of consumables is therefore mandatory for a combination of economic, logistical and also safety reasons. Currently the main regenerative technologies used, namely water recycling in the ISS, are physical-chemical but they do not solve the issue of food production. In the European Space Agency, for the last 15 years, studies are being performed on several life support topics, namely in air revitalisation, food, water and waste management, contaminants, monitoring and control. Ground demonstration, namely the MELiSSA Pilot Plant and Concordia Station, and simulation studies demonstrated the studies feasibility and the recycling levels are promising. To be able to build LSS in a Moon base, the temperature amplitude, the dust and its 14-day night, which limits solar power supply, should be regarded. To reduce these technical difficulties, a landing site should be carefully chosen. Considering the requirements of a mission to the Moon and within the Aurora programme phase I, a preliminary configuration for a regenerative LSS can be proposed as an experiment for a precursor mission to the Moon. An overview of the necessary LSS to a Moon base will be presented, identifying Moon?s specific requirements and showing preliminary calculations. Final recommendations and considerations on the terrestrial interest of LSS technologies are done.

  19. Outreach and capacity building activities for engaging youth and public in Exploration

    NASA Astrophysics Data System (ADS)

    Foing, Bernard H.

    We report to the COSPAR Panel on Education and relevant community on activities, pilot projects and results relevant for outreach and engagement in exploration. Number of activities were developed in the frame of the International Lunar Exploration Working Group (ILEWG) including the participation of students in lunar symposia, space conferences or ICEUM International Conferences on Exploration and Utilisation of the Moon* ILEWG with support from various space agencies, universities and institutions has organized events for young professionals with a wide background (including scientist, engineers, humanistic, law, art students) a Moon academy, lunar and planetary students work-shops, technical training workshops, international observe the Moon sessions. ILEWG has organised or sponsored participants to a series of field training and research campaigns in Utah desert research station, Eifel volcanic park, Iceland, Rio Tinto, La Reunion island. Education and outreach projects used space missions data (SMART-1 views of the Moon, Earth views from space, Mars views, Mars crowdsourcing games, astronomy data analysis) to engage the public in citizen science and exploration. Artistic and sociological projects (e.g. "social lunar telescope, lunar zen garden, Moon academy, MoonLife, MoonLife concept store, Moon republic, artscience projects, space science in the arts, artists in residence, artists in MoonMars base") were also initiated with artists to engage the wide public in exploration. A number of projects have been developed with support from ITACCUS IAF committee. We shall discuss how these pilot projects could be expanded for the benefit of future space projects, young professionals, the space community and the public. Acknowledgements: we thank collaborators from ILEWG community and partner institutes for the different projects mentioned http://sci.esa.int/ilewg/ http://sci.esa.int/ilewg/47170-gluc-iceum11-beijing-2010lunar-declaration/ Foing B., Stoker C., Ehrenfreund P., Astrobiology field research in Moon/Mars , IJA, 10,Special Issue 03 (2011) https://www.google.nl/?gfe_rd=cr&ei=D4MHU5CMB4ve8gfzl4DQCg#q=ilewg+euromoonmars http://www.aliciaframis.com/Moonlife_Concept.html http://www.artscatalyst.org/experiencelearning/detail/itaccus/

  20. 77 FR 6825 - NASA Advisory Council; Human Exploration and Operations Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-09

    ... Exploration and Operations Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration announces a meeting of the Human Exploration... Roadmap Exploration Planning, Partnerships, and Prioritization Summary Status of Space Launch System...

Top