Sample records for space exploration coordination

  1. International Coordination of Exploring and Using Lunar Polar Volatiles

    NASA Technical Reports Server (NTRS)

    Gruener, J. E.; Suzuki, N. H.; Carpenter, J. D.

    2016-01-01

    Fourteen international space agencies are participating in the International Space Exploration Coordination Group (ISECG), working together to advance a long-range strategy for human and robotic space exploration beyond low earth orbit. The ISECG is a voluntary, non-binding international coordination mechanism through which individual agencies may exchange information regarding interests, objectives, and plans in space exploration with the goal of strengthening both individual exploration programs as well as the collective effort. The ISECG has developed a Global Exploration Roadmap (GER) that reflects the coordinated international dialog and continued preparation for exploration beyond low-Earth orbit, beginning with the Moon and cis-lunar space, and continuing to near-Earth asteroids, and Mars.

  2. Toward an International Lunar Polar Volatiles Strategy

    NASA Technical Reports Server (NTRS)

    Gruener, J. E.; Suzuki, N. H.; Carpenter, J. D.

    2015-01-01

    Fourteen international space agencies are participating in the International Space Exploration Coordination Group (ISECG), working together to advance a long-range human space exploration strategy. The ISECG is a voluntary, non-binding international coordination mechanism through which individual agencies may exchange information regarding interests, objectives, and plans in space exploration with the goal of strengthening both individual exploration programs as well as the collective effort. The ISECG has developed a Global Exploration Roadmap (GER) that reflects the coordinated international dialog and continued preparation for exploration beyond low-Earth orbit - beginning with the Moon and cis-lunar space, and continuing to near-Earth asteroids, and Mars. Space agencies agree that human space exploration will be most successful as an international endeavor, given the challenges of these missions. The roadmap demonstrates how initial capabilities can enable a variety of missions in the lunar vicinity, responding to individual and common goals and objectives, while contributing to building partnerships required for sustainable human space exploration that delivers value to the public.

  3. Opportunities and challenges of international coordination efforts in space exploration - the DLR perspective

    NASA Astrophysics Data System (ADS)

    Boese, Andrea

    The German Aerospace Center and German Space Agency DLR has defined internationalisation one of the four pillars of its corporate strategy. Driven by global challenges, national space agencies like DLR are seeking partnerships to contribute to essential societal needs, such as human welfare, sustainability of life, economic development, security, culture and knowledge. All partnerships with both traditional and non-traditional partners must reflect a balanced approach between national requirements and needs of the international community. In view of the challenges emerging from this complexity, endeavours like space exploration must be built on mutual cooperation especially in a challenging political environment. Effective and efficient exploitation of existing expertise, human resources, facilities and infrastructures require consolidated actions of stakeholders, interest groups and authorities. This basic principle applies to any space exploration activity. DLR is among the agencies participating in the International Space Exploration Coordination Group (ISECG) from its beginning in 2007. The strategic goals of DLR regarding space exploration correspond to the purpose of ISECG as a forum to share objectives and plans to take concrete steps towards partnerships for a globally coordinated effort in space exploration. DLR contributes to ISECG publications especially the “Global Exploration Roadmap” and the “Benefits stemming from Space Exploration” to see those messages reflected that support cooperation with internal and external exploration stakeholders in science and technology and communication with those in politics and society. DLR provides input also to other groups engaging in space exploration. However, taking into account limited resources and expected results, the effectiveness of multiple coordination and planning mechanisms needs to be discussed.

  4. International Coordination of Lunar Polar Volatiles Exploration

    NASA Astrophysics Data System (ADS)

    Gruener, J. E.; Suzuki, N. H.; Carpenter, J. D.

    2015-10-01

    The International Space Exploration Coordination Group (ISECG) has established a study team to coordinate the worldwide interest in lunar polar volatiles, and in particular water ice, in an effort to stimulate cooperation and collaboration.

  5. A Mission Concept Based on the ISECG Human Lunar Surface Architecture

    NASA Technical Reports Server (NTRS)

    Gruener, J. E.; Lawrence, S. J.

    2017-01-01

    The National Aeronautics and Space Administration (NASA) is participating in the International Space Exploration Coordination Group (ISECG), working together with 13 other space agencies to advance a long-range human space exploration strategy. The ISECG has developed a Global Exploration Roadmap (GER) that reflects the coordinated international dialog and continued preparation for exploration beyond low-Earth orbit - beginning with the International Space Station (ISS) and continuing to the Moon, near-Earth asteroids, and Mars [1]. The roadmap demonstrates how initial capabilities can enable a variety of missions in the lunar vicinity, responding to individual and common goals and objectives, while contributing to building partnerships required for sustainable human space exploration that delivers value to the public. The current GER includes three different near-term themes: exploration of a near-Earth asteroid, extended duration crew missions in cis-lunar space, and humans to the lunar surface.

  6. A Coordinated Initialization Process for the Distributed Space Exploration Simulation (DSES)

    NASA Technical Reports Server (NTRS)

    Phillips, Robert; Dexter, Dan; Hasan, David; Crues, Edwin Z.

    2007-01-01

    This document describes the federate initialization process that was developed at the NASA Johnson Space Center with the HIIA Transfer Vehicle Flight Controller Trainer (HTV FCT) simulations and refined in the Distributed Space Exploration Simulation (DSES). These simulations use the High Level Architecture (HLA) IEEE 1516 to provide the communication and coordination between the distributed parts of the simulation. The purpose of the paper is to describe a generic initialization sequence that can be used to create a federate that can: 1. Properly initialize all HLA objects, object instances, interactions, and time management 2. Check for the presence of all federates 3. Coordinate startup with other federates 4. Robustly initialize and share initial object instance data with other federates.

  7. Assessing Space Exploration Technology Requirements as a First Step Towards Ensuring Technology Readiness for International Cooperation in Space Exploration

    NASA Technical Reports Server (NTRS)

    Laurini, Kathleen C.; Hufenbach, Bernhard; Satoh, Maoki; Piedboeuf, Jean-Claude; Neumann, Benjamin

    2010-01-01

    Advancing critical and enhancing technologies is considered essential to enabling sustainable and affordable human space exploration. Critical technologies are those that enable a certain class of mission, such as technologies necessary for safe landing on the Martian surface, advanced propulsion, and closed loop life support. Others enhance the mission by leading to a greater satisfaction of mission objectives or increased probability of mission success. Advanced technologies are needed to reduce mass and cost. Many space agencies have studied exploration mission architectures and scenarios with the resulting lists of critical and enhancing technologies being very similar. With this in mind, and with the recognition that human space exploration will only be enabled by agencies working together to address these challenges, interested agencies participating in the International Space Exploration Coordination Group (ISECG) have agreed to perform a technology assessment as an important step in exploring cooperation opportunities for future exploration mission scenarios. "The Global Exploration Strategy: The Framework for Coordination" was developed by fourteen space agencies and released in May 2007. Since the fall of 2008, several International Space Exploration Coordination Group (ISECG) participating space agencies have been studying concepts for human exploration of the moon. They have identified technologies considered critical and enhancing of sustainable space exploration. Technologies such as in-situ resource utilization, advanced power generation/energy storage systems, reliable dust resistant mobility systems, and closed loop life support systems are important examples. Similarly, agencies such as NASA, ESA, and Russia have studied Mars exploration missions and identified critical technologies. They recognize that human and robotic precursor missions to destinations such as LEO, moon, and near earth objects provide opportunities to demonstrate the technologies needed for Mars mission. Agencies see the importance of assessing gaps and overlaps in their plans to advance technologies in order to leverage their investments and enable exciting missions as soon as practical. They see the importance of respecting the ability of any agency to invest in any technologies considered interesting or strategic. This paper will describe the importance of developing an appropriate international strategy for technology development and ideas for effective mechanisms for advancing an international strategy. This work will both inform and be informed by the development of an ISECG Global Exploration Roadmap and serve as a concrete step forward in advancing the Global Exploration Strategy.

  8. Space agencies' scientific roadmaps need harmonisation and reegular re-assessment

    NASA Astrophysics Data System (ADS)

    Worms, Jean-Claude; Culhane, J. Leonard; Walter, Nicolas; Swings, Jean-Pierre; Detsis, Emmanouil

    The need to consider international collaboration in the exploration of space has been recognised since the dawn of the space age in 1957. Since then, international collaboration has been the main operational working mode amongst space scientists the world over, setting aside national pre-eminence and other political arguments. COSPAR itself was created as a tool for scientists to maintain the dialogue at the time of the cold war. Similarly the inherent constraints of the field (cost, complexity, time span) have led space agencies to try and coordinate their efforts. As a result many - if not all - of the key space science missions since the 60’s have been collaborative by nature. Different collaboration models have existed with varying success, and the corresponding lessons learned have been assessed through various fora and reports. For various reasons whose scope has broadened since that time (use of space in other domains such as Earth observation, telecommunication and navigation; emergence of commercial space activities; increased public appeal and capacity to motivate the young generation to engage into related careers), the importance of international collaboration in space has never faltered and coordination among spacefaring nations has become the norm. However programme harmonisation is often found to be lacking, and duplication of efforts sometimes happens due to different planning and decision procedures, programmatic timelines or budgetary constraints. Previous studies, in particular by the European ESSC-ESF, with input from the US NAS-SSB, advocated the need to establish a coordinating body involving major space agencies to address these coordination issues in a systematic and harmonious way. Since then and in line with this recommendation, the International Space Exploration Coordination Group (ISECG) of 14 space agencies was created in 2007 and published a first roadmap to advance a “Global Exploration Strategy”. ISECG is non-binding though and recent examples of lack of coordination in international planning probably indicate that this should be brought to a higher, more systematic level of coordination. Even more recently, discussions i.e. at the ISECG level, have led this forum to envisage setting up a Science Working Group to inform ISECG on ways to better coordinate the “…interaction between the exploration community…” (i.e. agencies) and the “…scientific community”. Following the recommendations by ESSC-ESF, the need for a rational and systematic approach to the harmonisation of agencies’ scientific roadmaps should be undertaken on a regular basis (ideally on an annual basis), through an inter-agency scientific collaboration working group, which would include agency executives but also scientific membership chosen after appropriate consultation. The ISECG Science Working Group could serve as an embryo to this inter-agency body. The presentation will offer prospects for the establishment of such a body and suggestions on its operating mode.

  9. Automation of Coordinated Planning Between Observatories: The Visual Observation Layout Tool (VOLT)

    NASA Technical Reports Server (NTRS)

    Maks, Lori; Koratkar, Anuradha; Kerbel, Uri; Pell, Vince

    2002-01-01

    Fulfilling the promise of the era of great observatories, NASA now has more than three space-based astronomical telescopes operating in different wavebands. This situation provides astronomers with the unique opportunity of simultaneously observing a target in multiple wavebands with these observatories. Currently scheduling multiple observatories simultaneously, for coordinated observations, is highly inefficient. Coordinated observations require painstaking manual collaboration among the observatory staff at each observatory. Because they are time-consuming and expensive to schedule, observatories often limit the number of coordinated observations that can be conducted. In order to exploit new paradigms for observatory operation, the Advanced Architectures and Automation Branch of NASA's Goddard Space Flight Center has developed a tool called the Visual Observation Layout Tool (VOLT). The main objective of VOLT is to provide a visual tool to automate the planning of coordinated observations by multiple astronomical observatories. Four of NASA's space-based astronomical observatories - the Hubble Space Telescope (HST), Far Ultraviolet Spectroscopic Explorer (FUSE), Rossi X-ray Timing Explorer (RXTE) and Chandra - are enthusiastically pursuing the use of VOLT. This paper will focus on the purpose for developing VOLT, as well as the lessons learned during the infusion of VOLT into the planning and scheduling operations of these observatories.

  10. With Eyes on the Future, Marshall Leads the Way to Deep Space in 2017

    NASA Image and Video Library

    2017-12-27

    NASA's Marshall Space Flight Center in Huntsville, Alabama, led the way in space exploration in 2017. Marshall's work is advancing how we explore space and preparing for deep-space missions to the Moon, Mars and beyond. Progress continued on NASA's Space Launch System that will enable missions beyond Earth's orbit, while flight controllers at "Science Central" for the International Space Station coordinated research and experiments with astronauts in orbit, learning how to live in space. At Marshall, 2017 was also marked with ground-breaking discoveries, innovations that will send us into deep space, and events that will inspire future generations of explorers. Follow along in 2018 as Marshall continues to advance space exploration: www.nasa.gov/marshall

  11. ISECG Global Exploration Roadmap: A Stepwise Approach to Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Martinez, Roland; Goodliff, Kandyce; Whitley, Ryan

    2013-01-01

    In 2011, ISECG released the Global Exploration Roadmap (GER), advancing the "Global Exploration Strategy: The Framework for Coordination" by articulating the perspectives of participating agencies on exploration goals and objectives, mission scenarios, and coordination of exploration preparatory activities. The GER featured a stepwise development and demonstration of capabilities ultimately required for human exploration of Mars. In 2013 the GER was updated to reflect the ongoing evolution of agency's exploration policies and plans, informed by individual agency and coordinated analysis activities that are relevant to various elements of the GER framework as well as coordinated stakeholder engagement activities. For this release of version 2 of the GER in the mid 2013 timeframe, a modified mission scenario is presented, more firmly reflecting the importance of a stepwise evolution of critical capabilities provided by multiple partners necessary for executing increasingly complex missions to multiple destinations and leading to human exploration of Mars. This paper will describe the updated mission scenario, the changes since the release of version 1, the mission themes incorporated into the scenario, and risk reduction for Mars missions provided by exploration at various destinations.

  12. A parallel coordinates style interface for exploratory volume visualization.

    PubMed

    Tory, Melanie; Potts, Simeon; Möller, Torsten

    2005-01-01

    We present a user interface, based on parallel coordinates, that facilitates exploration of volume data. By explicitly representing the visualization parameter space, the interface provides an overview of rendering options and enables users to easily explore different parameters. Rendered images are stored in an integrated history bar that facilitates backtracking to previous visualization options. Initial usability testing showed clear agreement between users and experts of various backgrounds (usability, graphic design, volume visualization, and medical physics) that the proposed user interface is a valuable data exploration tool.

  13. ISECG Mission Scenarios and Their Role in Informing Next Steps for Human Exploration Beyond Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Culbert, Christopher J.; Mongrard, Olivier; Satoh, Naoki; Goodliff, Kandyce; Seaman, Calvin H.; Troutman, Patrick; Martin, Eric

    2011-01-01

    The International Space Exploration Coordination Group (ISECG) was established in response to The Global Exploration Strategy (GES): The Framework for Coordination developed by fourteen space agencies* and released in May 2007. This GES Framework Document recognizes that preparing for human space exploration is a stepwise process, starting with basic knowledge and culminating in a sustained human presence in deep space. ISECG has developed several optional global exploration mission scenarios enabling the phased transition from human operations in Low Earth Orbit (LEO) and utilization of the International Space Station (ISS) to human missions beyond LEO leading ultimately to human missions to cis-lunar space, the Moon, Near Earth Asteroids, Mars and its environs. Mission scenarios provide the opportunity for judging various exploration approaches in a manner consistent with agreed international goals and strategies. Each ISECG notional mission scenario reflects a series of coordinated human and robotic exploration missions over a 25-year horizon. Mission scenarios are intended to provide insights into next steps for agency investments, following on the success of the ISS. They also provide a framework for advancing the definition of Design Reference Missions (DRMs) and the concepts for capabilities contained within. Each of the human missions contained in the scenarios has been characterized by a DRM which is a top level definition of mission sequence and the capabilities needed to execute that mission. While DRMs are generally destination focused, they will comprise capabilities which are reused or evolved from capabilities used at other destinations. In this way, an evolutionary approach to developing a robust set of capabilities to sustainably explore our solar system is defined. Agencies also recognize that jointly planning for our next steps, building on the accomplishments of ISS, is important to ensuring the robustness and sustainability of any human exploration plan. Developing a shared long-term vision is important, but agencies recognize this is an evolutionary process and requires consideration of many strategic factors. Strategic factors such as the implications of an emerging commercial space industry in LEO, the opportunity provided by extending ISS lifetime to at least 2020, and the importance of defining a plan which is sustainable in light of inevitable domestic policy shifts are timely for agency consideration.

  14. Improving Search Algorithms by Using Intelligent Coordinates

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.; Tumer, Kagan; Bandari, Esfandiar

    2004-01-01

    We consider algorithms that maximize a global function G in a distributed manner, using a different adaptive computational agent to set each variable of the underlying space. Each agent eta is self-interested; it sets its variable to maximize its own function g (sub eta). Three factors govern such a distributed algorithm's performance, related to exploration/exploitation, game theory, and machine learning. We demonstrate how to exploit alI three factors by modifying a search algorithm's exploration stage: rather than random exploration, each coordinate of the search space is now controlled by a separate machine-learning-based player engaged in a noncooperative game. Experiments demonstrate that this modification improves simulated annealing (SA) by up to an order of magnitude for bin packing and for a model of an economic process run over an underlying network. These experiments also reveal interesting small-world phenomena.

  15. Improving search algorithms by using intelligent coordinates

    NASA Astrophysics Data System (ADS)

    Wolpert, David; Tumer, Kagan; Bandari, Esfandiar

    2004-01-01

    We consider algorithms that maximize a global function G in a distributed manner, using a different adaptive computational agent to set each variable of the underlying space. Each agent η is self-interested; it sets its variable to maximize its own function gη. Three factors govern such a distributed algorithm’s performance, related to exploration/exploitation, game theory, and machine learning. We demonstrate how to exploit all three factors by modifying a search algorithm’s exploration stage: rather than random exploration, each coordinate of the search space is now controlled by a separate machine-learning-based “player” engaged in a noncooperative game. Experiments demonstrate that this modification improves simulated annealing (SA) by up to an order of magnitude for bin packing and for a model of an economic process run over an underlying network. These experiments also reveal interesting small-world phenomena.

  16. Quantum anharmonic oscillator plus delta-function potential: a molecular view of pairing formation and breaking in the coordinate space

    NASA Astrophysics Data System (ADS)

    Sumaryada, Tony; Maha Putra, Bima; Pramudito, Sidikrubadi

    2017-05-01

    We propose an alternative way to describe the pairing formation and breaking via a quantum anharmonic oscillator with a delta-function potential model. Unlike BCS theory, which describes the pairing formation in the momentum space, this model works in the coordinate space and is able to give a molecular view of pairing formation and breaking in the coordinate space. By exploring the dynamical interplay between the intrinsic factor (dissociation energy) and external factor (pairing strength) of this system additional information was gained, including the critical pairing strength and critical scattering length, which might relate to the BCS-BEC crossover phenomena and halo state formation. Although only the energetic aspect of pairing is described by this model, its simplicity and pedagogical steps might help undergraduate students to understand the pairing problem in a simple way.

  17. From the Sun to Pluto and Beyond - Inspiring the Next Generation of Explorers

    NASA Astrophysics Data System (ADS)

    Beisser, K.; Matiella Novak, M.; Butler, L.; Turney, D.

    2010-12-01

    The Johns Hopkins University Applied Physics Laboratory (APL) Space Department currently manages a variety of Solar System exploratory satellite missions on behalf of NASA and in coordination with other universities and institutions. Along with managing these missions on a scientific and operational basis, the Space Department also maintains an education and public outreach staff that provides education and outreach events and activities to inspire, engage and educate the next generation of Solar System explorers. The main objective of the E/PO program is to create hands-on, minds-on learning experiences for students, educators and the general public. From the Sun to Pluto, APL is engineering the future of space exploration - examining Earth’s near-space environment, our star, planetary bodies, and the outer solar system. The E/PO office provides unique opportunities for K-12 students, educators, undergraduate and graduate students, museums, science centers, and the general public to share in the excitement of the missions APL manages for NASA. The E/PO program uses mission and instrument science and engineering to enhance the nation’s formal education system and contribute to public understanding of science, mathematics, and technology, making space exploration an adventure for students of all ages. Current Solar System missions that APL is involved with include missions to Pluto and the Kuiper Belt (New Horizons), exploring the Earth’s outermost layers of atmosphere (TIMED), studying the Sun’s coronal mass ejections (STEREO), mapping the geological and surface features of Mars (CRISM), exploring near-Earth asteroids (NEAR), understanding space weather (RBSP), studying Mercury (MESSENGER), and getting closer to the Sun than any probe has ever been (Solar Probe Plus). APL offers education and outreach opportunities, in coordination with NASA, for all of these missions.

  18. An International Strategy for Human Exploration of the Moon: The International Space Exploration Coordination Group (ISECG) Reference Architecture for Human Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Laurini, Kathleen C.; Hufenbach, Bernhard; Junichiro, Kawaguchi; Piedboeuf, Jean-Claude; Schade, Britta; Lorenzoni, Andrea; Curtis, Jeremy; Hae-Dong, Kim

    2010-01-01

    The International Space Exploration Coordination Group (ISECG) was established in response to The Global Exploration Strategy: The Framework for Coordination developed by fourteen space agencies and released in May 2007. Several ISECG participating space agencies have been studying concepts for human exploration of the moon that allow individual and collective goals and objectives to be met. This 18 month study activity culminated with the development of the ISECG Reference Architecture for Human Lunar Exploration. The reference architecture is a series of elements delivered over time in a flexible and evolvable campaign. This paper will describe the reference architecture and how it will inform near-term and long-term programmatic planning within interested agencies. The reference architecture is intended to serve as a global point of departure conceptual architecture that enables individual agency investments in technology development and demonstration, International Space Station research and technology demonstration, terrestrial analog studies, and robotic precursor missions to contribute towards the eventual implementation of a human lunar exploration scenario which reflects the concepts and priorities established to date. It also serves to create opportunities for partnerships that will support evolution of this concept and its eventual realization. The ISECG Reference Architecture for Human Lunar Exploration (commonly referred to as the lunar gPoD) reflects the agency commitments to finding an effective balance between conducting important scientific investigations of and from the moon, as well as demonstrating and mastering the technologies and capabilities to send humans farther into the Solar System. The lunar gPoD begins with a robust robotic precursor phase that demonstrates technologies and capabilities considered important for the success of the campaign. Robotic missions will inform the human missions and buy down risks. Human exploration will start with a thorough scientific investigation of the polar region while allowing the ability to demonstrate and validate the systems needed to take humans on more ambitious lunar exploration excursions. The ISECG Reference Architecture for Human Lunar Exploration serves as a model for future cooperation and is documented in a summary report and a comprehensive document that also describes the collaborative international process that led to its development. ISECG plans to continue with architecture studies such as this to examine an open transportation architecture and other destinations, with expanded participation from ISECG agencies, as it works to inform international partnerships and advance the Global Exploration Strategy.

  19. Topological reaction coordinates to explore the structure of atomic clusters and organic molecule isomers from first principles

    NASA Astrophysics Data System (ADS)

    Pietrucci, Fabio; Andreoni, Wanda

    2011-03-01

    We introduce a simple reaction coordinate based on spectral graph theory which describes the topology of the network of chemical bonds around a given atom. We employ the reaction coordinate in combination with DFT-based first-principles metadynamics to systematically explore the possible structures of silicon and carbon clusters (including fullerene-like cages) for sizes of tens of atoms. From our extensive exploration we are able to estimate the fractal dimension of the configuration space, which both for silicon and carbon clusters turns out to be quite low. Using the same approach we simulate the interconversion among a large number of chemically relevant organic molecules which are isomers of the C4 H5 N formula unit, and we demonstrate the possibility of automatically exploring isomerisation, association, and decomposition reactions without prior knowledge of the products involved.

  20. Concepts for a NASA Applied Spaceflight Environments Office

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Burns, Howard D.; Xapsos, Michael; Spann, Jim; Suggs, Robert

    2010-01-01

    The National Aeronautics and Space Administration (NASA) is launching a bold and ambitious new space initiative. A significant part of this new initiative includes exploration of new worlds, the development of more innovative technologies, and expansion our presence in the solar system. A common theme to this initiative is the exploration of space beyond Low Earth Orbit (LEO). As currently organized, NASA does not have an Agency-level office that provides coordination of space environment research and development. This has contributed to the formation of a gap between spaceflight environments knowledge and the application of this knowledge for multi-program use. This paper outlines a concept to establish a NASA-level Applied Spaceflight Environments (ASE) office that will provide coordination and funding for sustained multi-program support in three technical areas that have demonstrated these needs through customer requests. These technical areas are natural environments characterization and modeling, materials and systems analysis and test, and operational space environments modeling and prediction. This paper will establish the need for the ASE, discuss a concept for organizational structure and outline the scope in the three technical areas

  1. International Space Exploration Coordination Group Assessment of Technology Gaps for Dust Mitigation for the Global Exploration Roadmap

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Vangen, Scott; Abel, Phil; Agui, Juan; Buffington, Jesse; Calle, Carlos; Mary, Natalie; Smith, Jonathan Drew; Straka, Sharon; Mugnuolo, Raffaele; hide

    2016-01-01

    The International Space Exploration Coordination Group (ISECG) formed two Gap Assessment teams to evaluate topic discipline areas that had not been worked at an international level to date. Accordingly, the ISECG Technology Working Group (TWG) recommended two discipline areas based on Global Exploration Roadmap (GER) Critical Technology Needs reflected within the GER Technology Development Map (GTDM): Dust Mitigation and LOX/Methane Propulsion, with this paper addressing the former. The ISECG approved the recommended Gap Assessment teams, and tasked the TWG to formulate the new teams with subject matter experts (SMEs) from the participating agencies. The participating agencies for the Dust Mitigation Gap Assessment Team were ASI, CSA, ESA, JAXA, and NASA. The team was asked to identify and make a presentation on technology gaps related to the GER2 mission scenario (including cislunar and lunar mission themes and long-lead items for human exploration of Mars) at the international level. In addition the team was tasked to produce a gap assessment in the form of a summary report and presentation identifying those GER Critical Technology Needs, including opportunities for international coordination and cooperation in closing the identified gaps. Dust is still a principal limiting factor in returning to the lunar surface for missions of any extended duration. However, viable technology solutions have been identified, but need maturation to be available to support both lunar and Mars missions.

  2. Continuing the International Roadmapping Effort - An Introduction to the Evolution of the ISECG Global Exploration Roadmap

    NASA Astrophysics Data System (ADS)

    Schlutz, Juergen; Hufenbach, Bernhard; Laurini, Kathy; Spiero, Francois

    2016-07-01

    Future space exploration goals call for sending humans and robots beyond low Earth orbit and establishing sustained access to destinations such as the Moon, asteroids and Mars. Space agencies participating in the International Space Exploration Coordination Group (ISECG) are discussing an international approach for achieving these goals, documented in ISECG's Global Exploration Roadmap (GER). The GER reference scenario reflects a step-wise evolution of critical capabilities from ISS to missions in the lunar vicinity in preparation for the journey of humans to Mars. As ISECG agencies advance their individual planning, they also advance the mission themes and reference architecture of the GER to consolidate common goals, near-term mission scenarios and initial opportunities for collaboration. In this context, particular focus has been given to the Better understanding and further refinement of cislunar infrastructure and potential lunar transportation architecture Interaction with international science communities to identify and articulate the scientific opportunities of the near-term exploration mission themes Coordination and consolidation of interest in lunar polar volatiles prospecting and potential for in-situ resource utilisation Identification and articulation of the benefits from exploration and the technology transfer activities The paper discusses the ongoing roadmapping activity of the ISECG agencies. It provides an insight into the status of the above activities and an outlook towards the evolution of the GER that is currently foreseen in the 2017 timeframe.

  3. A NASA Applied Spaceflight Environments Office Concept

    NASA Technical Reports Server (NTRS)

    Spann, James F.; Edwards, David L.; Burns, Howard D.; Xapsos, Mike

    2011-01-01

    The National Aeronautics and Space Administration (NASA) is launching a bold and ambitious new space initiative. A significant part of this new initiative includes exploration of new worlds, the development of more innovative technologies, and expansion our presence in the solar system. A common theme to this initiative is the exploration of space beyond Low Earth Orbit (LEO). As currently organized, NASA does not have an Agency-level office that provides coordination of space environment research and development. This has contributed to the formation of a gap between spaceflight environments knowledge and the application of this knowledge for multi-program use and for use outside NASA. This paper outlines a concept to establish a NASA-level Applied Spaceflight Environments (ASE) office that will provide coordination and funding for sustained multi-program support in three technical areas that have demonstrated these needs through customer requests. These technical areas are natural environments characterization and modeling, materials and systems analysis and test, and operational space environments modeling. Additionally the ASE office will serve as an entry point of contact for external users who wish to take advantage of data and assets associated with space environments, including space weather. This paper will establish the need for the ASE, discuss a concept for organizational structure and outline the scope in the three technical areas.

  4. Simulation Exploration through Immersive Parallel Planes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunhart-Lupo, Nicholas J; Bush, Brian W; Gruchalla, Kenny M

    We present a visualization-driven simulation system that tightly couples systems dynamics simulations with an immersive virtual environment to allow analysts to rapidly develop and test hypotheses in a high-dimensional parameter space. To accomplish this, we generalize the two-dimensional parallel-coordinates statistical graphic as an immersive 'parallel-planes' visualization for multivariate time series emitted by simulations running in parallel with the visualization. In contrast to traditional parallel coordinate's mapping the multivariate dimensions onto coordinate axes represented by a series of parallel lines, we map pairs of the multivariate dimensions onto a series of parallel rectangles. As in the case of parallel coordinates, eachmore » individual observation in the dataset is mapped to a polyline whose vertices coincide with its coordinate values. Regions of the rectangles can be 'brushed' to highlight and select observations of interest: a 'slider' control allows the user to filter the observations by their time coordinate. In an immersive virtual environment, users interact with the parallel planes using a joystick that can select regions on the planes, manipulate selection, and filter time. The brushing and selection actions are used to both explore existing data as well as to launch additional simulations corresponding to the visually selected portions of the input parameter space. As soon as the new simulations complete, their resulting observations are displayed in the virtual environment. This tight feedback loop between simulation and immersive analytics accelerates users' realization of insights about the simulation and its output.« less

  5. Simulation Exploration through Immersive Parallel Planes: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunhart-Lupo, Nicholas; Bush, Brian W.; Gruchalla, Kenny

    We present a visualization-driven simulation system that tightly couples systems dynamics simulations with an immersive virtual environment to allow analysts to rapidly develop and test hypotheses in a high-dimensional parameter space. To accomplish this, we generalize the two-dimensional parallel-coordinates statistical graphic as an immersive 'parallel-planes' visualization for multivariate time series emitted by simulations running in parallel with the visualization. In contrast to traditional parallel coordinate's mapping the multivariate dimensions onto coordinate axes represented by a series of parallel lines, we map pairs of the multivariate dimensions onto a series of parallel rectangles. As in the case of parallel coordinates, eachmore » individual observation in the dataset is mapped to a polyline whose vertices coincide with its coordinate values. Regions of the rectangles can be 'brushed' to highlight and select observations of interest: a 'slider' control allows the user to filter the observations by their time coordinate. In an immersive virtual environment, users interact with the parallel planes using a joystick that can select regions on the planes, manipulate selection, and filter time. The brushing and selection actions are used to both explore existing data as well as to launch additional simulations corresponding to the visually selected portions of the input parameter space. As soon as the new simulations complete, their resulting observations are displayed in the virtual environment. This tight feedback loop between simulation and immersive analytics accelerates users' realization of insights about the simulation and its output.« less

  6. Linking initial microstructure and local response during quasistatic granular compaction

    DOE PAGES

    Hurley, R. C.; Lind, J.; Pagan, D. C.; ...

    2017-07-24

    In this study, we performed experiments combining three-dimensional x-ray diffraction and x-ray computed tomography to explore the relationship between microstructure and local force and strain during quasistatic granular compaction. We found that initial void space around a grain and contact coordination number before compaction can be used to predict regions vulnerable to above-average local force and strain at later stages of compaction. We also found correlations between void space around a grain and coordination number, and between grain stress and maximum interparticle force, at all stages of compaction. Finally, we observed grains that fracture to have an above-average initial localmore » void space and a below-average initial coordination number. In conclusion, our findings provide (1) a detailed description of microstructure evolution during quasistatic granular compaction, (2) an approach for identifying regions vulnerable to large values of strain and interparticle force, and (3) methods for identifying regions of a material with large interparticle forces and coordination numbers from measurements of grain stress and local porosity.« less

  7. Supporting Communication and Coordination in Collaborative Sensemaking.

    PubMed

    Mahyar, Narges; Tory, Melanie

    2014-12-01

    When people work together to analyze a data set, they need to organize their findings, hypotheses, and evidence, share that information with their collaborators, and coordinate activities amongst team members. Sharing externalizations (recorded information such as notes) could increase awareness and assist with team communication and coordination. However, we currently know little about how to provide tool support for this sort of sharing. We explore how linked common work (LCW) can be employed within a `collaborative thinking space', to facilitate synchronous collaborative sensemaking activities in Visual Analytics (VA). Collaborative thinking spaces provide an environment for analysts to record, organize, share and connect externalizations. Our tool, CLIP, extends earlier thinking spaces by integrating LCW features that reveal relationships between collaborators' findings. We conducted a user study comparing CLIP to a baseline version without LCW. Results demonstrated that LCW significantly improved analytic outcomes at a collaborative intelligence task. Groups using CLIP were also able to more effectively coordinate their work, and held more discussion of their findings and hypotheses. LCW enabled them to maintain awareness of each other's activities and findings and link those findings to their own work, preventing disruptive oral awareness notifications.

  8. Report from ILEWG and Cape Canaveral Lunar Declaration 2008

    NASA Astrophysics Data System (ADS)

    Foing, B. H.

    2009-04-01

    We shall report on the ILEWG charter, goals and activities, on ICEUM "lunar declarations" and follow-up activities, with focus on societal questions, and the Cape Canaveral Lunar Declaration 2008. ILEWG charter: ILEWG , the International Lunar Exploration Working Group is a public forum created in 1994, sponsored by the world's space agencies to support "international cooperation towards a world strategy for the exploration and utilization of the Moon - our natural satellite". The charter of ILEWG is: - To develop an international strategy for the exploration of the Moon - To establish a forum and mechanisms for the communication and coordination of activities - To implement international coordination and cooperation - In order to facilitate communication among all interested parties ILEWG agrees to establish an electronic communication network for exchange of science, technology and programmatic information related to lunar activities ILEWG meets regularly, at least, once a year, and leads the organization of an International Conference in order to discuss the state of lunar exploration. Formal reports are given at COSPAR meetings and to space agencies. ILEWG is sponsored by the world's space agencies and is intended to serve three relevant groups: - actual members of the ILEWG, ie delegates and repre-sentatives of the participating Space Agencies and organizations - allowing them to discuss and possibly harmonize their draft concepts and plans - team members of the relevant space projects - allowing them to coordinate their internal work according to the guidelines provided by the Charter of the ILEWG - members of the general public and of the Lunar Explorer's Society who are interested and wish to be informed on the progress of the Moon projects and possibly contribute their own ideas ILEWG activities and working groups: ILEWG task groups include science, technology, human aspects, socio-economics, young explorers and outreach, programmatics, roadmaps and synergies with Mars exploration. Users can obtain information on how to participate, as well as details on the latest news and events regarding lunar exploration, forthcoming meetings, relevant reports and documents of importance for the work of the ILEWG, summary descriptions of current lunar exploration projects (such as SMART-1, Chang'E1, Selene, Chandrayaan-1, LRO, LCROSS) funded by various space agencies, and basic data on the Moon itself. Activities of the related space agencies and organizations can also be found. ILEWG has been organising International Conferences on Exploration and Utilisation of the Moon (ICEUM) since 1994, whose proceedings are published. It has also sponsored a number of activities, workshops, tasks groups and publications in collabora-tions with other organisations: COSPAR, space agencies, IAA, IAF, EGU (see references below). In accor-dance with its charter, ILEWG reports to COSPAR, and a summary was given at Montreal COSPAR2008 on ILEWG activities conducted since the previous COSPAR2006 assembly in Beijing. The recent ILEWG International Conference on Exploration and Utilisation of the Moon, were held respectively in Udaipur, India (ICEUM6, 2004), in Toronto, Canada (ICEUM7, 2005), in Beijing (ICEUM8, 2006), Sorrento (ICEUM9, 2007) and Port Canaveral (ICEUM10/LEAG/SRR, 2008 in conjunction with the NASA Lunar Exploration Analysis Groups and Space Resources Roundtable annual meetings). We'll report on the Cape Canaveral Lunar Declaration and on follow-up activities, in particular in coordination with space agencies, COSPAR and IAF. References: [1] 1st International Lunar Workshop, Balsiger H. et al., Editors, European Space Agency, 1994. ESA-SP-1170. [2] 2nd International Lunar Workshop, Kyoto, H. Mizutani, editor, Japan Space Forum Publisher, 1997. [3] 3rd International Lunar Workshop, Moscow 1998, E. Galimov, editor. [4] ICEUM4, ESTEC, 2000, ESA SP-462, B.H. Foing & M. Perry, editors. [5] ICEUM5, Hawaii Nov 2003, Durst S.M. et al, Editors, Vol 108, 1-576 pp, Science and Technology Series, American Astronautical Society, 2004. [6] ICEUM6, Udaipur 2004, Bhandari N., Editor, Journal Earth System Science, India, 114, No6, Dec 2005, pp. 573-841. [7] ICEUM7, Toronto Sept 2005, sci.esa.int/ilewg. [8] ICEUM8, Beijing July 2006, Journal of Chinese Society of Astronautics, Vol. 28 Sup., 2007, Ji W., Editor. [9] ICEUM9, Sorrento, Italy, Foing B., Espinasse S., Kosters G., Editors. http://sci.esa.int/iceum9, Dec. 2007), [11] Ehrenfreund, P., Foing, B.H., Cellino, A. Editors, The Moon and Near Earth Objects, ASR Vol 37, 1, 2006. [12] Foing, B.H. et al editors, 'Astronomy and Space Science from the Moon', ASR 14, 6, 1994. [13] Foing, B.H. et al, editor, Lunar Exploration, Planetary and Space Science, Vol 50, 14-15, 2002. [14] Foing, B.H., Heather, D. editors, 'Lunar Exploration 2000', ASR Vol 30, Nr 8, 2002. [15] Hunt-ress, W. et al 'The next steps in exploring deep space - A cosmic study by the IAA', Acta Astronautica, Vol 58, Issues 6-7, 2006, p302-377. [16] Ip W.-H., Foing, B.H., Masson Ph.L., editors, The Moon and Mars, ASR Vol 23, 11, 1999.

  9. Environmental Control and Life Support (ECLS) Integrated Roadmap Development

    NASA Technical Reports Server (NTRS)

    Metcalf, Jordan L.; Carrasquillo, Robyn; Bagdigian, Bob; Peterson, Laurie

    2011-01-01

    This white paper documents a roadmap for development of Environmental Control and Life Support (ECLS) Systems (ECLSS) capabilities required to enable beyond-Low Earth Orbit (LEO) Exploration missions. In many cases, the execution of this Exploration-based roadmap will directly benefit International Space Station (ISS) operational capability by resolving known issues and/or improving overall system reliability. In addition, many of the resulting products will be applicable across multiple Exploration elements such as Multi-Purpose Crew Vehicle (MPCV), Multi-Mission Space Exploration Vehicle (MMSEV), Deep Space Habitat (DSH), and Landers. Within the ECLS community, this white paper will be a unifying tool that will improve coordination of resources, common hardware, and technologies. It will help to align efforts to focus on the highest priority needs that will produce life support systems for future human exploration missions that will simply run in the background, requiring minimal crew interaction.

  10. The Behavioral Space of Zebrafish Locomotion and Its Neural Network Analog.

    PubMed

    Girdhar, Kiran; Gruebele, Martin; Chemla, Yann R

    2015-01-01

    How simple is the underlying control mechanism for the complex locomotion of vertebrates? We explore this question for the swimming behavior of zebrafish larvae. A parameter-independent method, similar to that used in studies of worms and flies, is applied to analyze swimming movies of fish. The motion itself yields a natural set of fish "eigenshapes" as coordinates, rather than the experimenter imposing a choice of coordinates. Three eigenshape coordinates are sufficient to construct a quantitative "postural space" that captures >96% of the observed zebrafish locomotion. Viewed in postural space, swim bouts are manifested as trajectories consisting of cycles of shapes repeated in succession. To classify behavioral patterns quantitatively and to understand behavioral variations among an ensemble of fish, we construct a "behavioral space" using multi-dimensional scaling (MDS). This method turns each cycle of a trajectory into a single point in behavioral space, and clusters points based on behavioral similarity. Clustering analysis reveals three known behavioral patterns-scoots, turns, rests-but shows that these do not represent discrete states, but rather extremes of a continuum. The behavioral space not only classifies fish by their behavior but also distinguishes fish by age. With the insight into fish behavior from postural space and behavioral space, we construct a two-channel neural network model for fish locomotion, which produces strikingly similar postural space and behavioral space dynamics compared to real zebrafish.

  11. The Behavioral Space of Zebrafish Locomotion and Its Neural Network Analog

    PubMed Central

    Girdhar, Kiran; Gruebele, Martin; Chemla, Yann R.

    2015-01-01

    How simple is the underlying control mechanism for the complex locomotion of vertebrates? We explore this question for the swimming behavior of zebrafish larvae. A parameter-independent method, similar to that used in studies of worms and flies, is applied to analyze swimming movies of fish. The motion itself yields a natural set of fish "eigenshapes" as coordinates, rather than the experimenter imposing a choice of coordinates. Three eigenshape coordinates are sufficient to construct a quantitative "postural space" that captures >96% of the observed zebrafish locomotion. Viewed in postural space, swim bouts are manifested as trajectories consisting of cycles of shapes repeated in succession. To classify behavioral patterns quantitatively and to understand behavioral variations among an ensemble of fish, we construct a "behavioral space" using multi-dimensional scaling (MDS). This method turns each cycle of a trajectory into a single point in behavioral space, and clusters points based on behavioral similarity. Clustering analysis reveals three known behavioral patterns—scoots, turns, rests—but shows that these do not represent discrete states, but rather extremes of a continuum. The behavioral space not only classifies fish by their behavior but also distinguishes fish by age. With the insight into fish behavior from postural space and behavioral space, we construct a two-channel neural network model for fish locomotion, which produces strikingly similar postural space and behavioral space dynamics compared to real zebrafish. PMID:26132396

  12. International Space Station Research for the Next Decade: International Coordination and Research Accomplishments

    NASA Technical Reports Server (NTRS)

    Thumm, Tracy L.; Robinson, Julie A.; Johnson-Green, Perry; Buckley, Nicole; Karabadzhak, George; Nakamura, Tai; Sorokin, Igor V.; Zell, Martin; Sabbagh, Jean

    2011-01-01

    During 2011, the International Space Station reached an important milestone in the completion of assembly and the shift to the focus on a full and continuous utilization mission in space. The ISS partnership itself has also met a milestone in the coordination and cooperation of utilization activities including research, technology development and education. We plan and track all ISS utilization activities jointly and have structures in place to cooperate on common goals by sharing ISS assets and resources, and extend the impacts and efficiency of utilization activities. The basic utilization areas on the ISS include research, technology development and testing, and education/outreach. Research can be categorized as applied research for future exploration, basic research taking advantage of the microgravity and open space environment, and Industrial R&D / commercial research focused at industrial product development and improvement. Technology development activities range from testing of new spacecraft systems and materials to the use of ISS as an analogue for future exploration missions to destinations beyond Earth orbit. This presentation, made jointly by all ISS international partners, will highlight the ways that international cooperation in all of these areas is achieved, and the overall accomplishments that have come as well as future perspectives from the cooperation. Recently, the partnership has made special efforts to increase the coordination and impact of ISS utilization that has humanitarian benefits. In this context the paper will highlight tentative ISS utilization developments in the areas of Earth remote sensing, medical technology transfer, and education/outreach.

  13. CfDS attends the first meeting of the All-Party Parliamentary Astronomy and Space Environment Group

    NASA Astrophysics Data System (ADS)

    Mizon, B.

    1999-06-01

    This group first met on March 11th, 1999, as 'a forum for discussion to further parliamentary interest in astronomy and the space environment affecting terrestrial life and its climate; and to increase awareness of the social, political and philosophical implications of present and future space technologies connected with exploring and understanding the cosmos'. CfDS coordinator Bob Mizon attended the first meeting of the group.

  14. The ISECG Science White Paper - A Scientific Perspective on the Global Exploration Roadmap

    NASA Astrophysics Data System (ADS)

    Bussey, David B.; Worms, Jean-Claude; Spiero, Francois; Schlutz, Juergen; Ehrenfreund, Pascale

    2016-07-01

    Future space exploration goals call for sending humans and robots beyond low Earth orbit and establishing sustained access to destinations such as the Moon, asteroids and Mars. Space agencies participating in the International Space Exploration Coordination Group (ISECG) are discussing an international approach for achieving these goals, documented in ISECG's Global Exploration Roadmap (GER). The GER reference scenario reflects a step-wise evolution of critical capabilities from ISS to missions in the lunar vicinity in preparation for the journey of humans to Mars. As an element of this continued road mapping effort, the ISECG agencies are therefore soliciting input and coordinated discussion with the scientific community to better articulate and promote the scientific opportunities of the proposed mission themes. An improved understanding of the scientific drivers and the requirements to address priority science questions associated with the exploration destinations (Moon, Near Earth Asteroids, Mars and its moons) as well as the preparatory activities in cis-lunar space is beneficial to optimize the partnership of robotic assets and human presence beyond low Earth orbit. The interaction has resulted in the development of a Science White Paper to: • Identify and highlight the scientific opportunities in early exploration missions as the GER reference architecture matures, • Communicate overarching science themes and their relevance in the GER destinations, • Ensure international science communities' perspectives inform the future evolution of mission concepts considered in the GER The paper aims to capture the opportunities offered by the missions in the GER for a broad range of scientific disciplines. These include planetary and space sciences, astrobiology, life sciences, physical sciences, astronomy and Earth science. The paper is structured around grand science themes that draw together and connect research in the various disciplines, and it will focus on opportunities created by the near-term mission themes in the GER centred around 1) extended duration crew missions to an exploration habitat in cis-lunar space, 2) crew mission(s) to an asteroid, and 3) crew missions to the lunar surface. The preparation of that Science White Paper has been coordinated and led by an external Science Advisory Group composed of scientists form a variety of nations. The first draft of this White Paper has been discussed on the occasion of a COSPAR-ISECG-ESF workshop organised in Paris on 10-11 February 2016. The recommendations developed at the workshop provide further input that is incorporated in the final version of the ISECG Science White Paper, expected to be published in the fall of 2016. The authors aim to present the rationale and contents of this White Paper on the occasion of the COSPAR Assembly.

  15. Education and Public Outreach and Engagement at NASA's Analog Missions in 2012

    NASA Technical Reports Server (NTRS)

    Watkins, Wendy L.; Janoiko, Barbara A.; Mahoney, Erin; Hermann, Nicole B.

    2013-01-01

    Analog missions are integrated, multi-disciplinary activities that test key features of future human space exploration missions in an integrated fashion to gain a deeper understanding of system-level interactions and operations early in conceptual development. These tests often are conducted in remote and extreme environments that are representative in one or more ways to that of future spaceflight destinations. They may also be conducted at NASA facilities, using advanced modeling and human-in-the-loop scenarios. As NASA develops a capability driven framework to transport crew to a variety of space environments, it will use analog missions to gather requirements and develop the technologies necessary to ensure successful exploration beyond low Earth orbit. NASA s Advanced Exploration Systems (AES) Division conducts these high-fidelity integrated tests, including the coordination and execution of a robust education and public outreach (EPO) and engagement program for each mission. Conducting these mission scenarios in unique environments not only provides an opportunity to test the EPO concepts for the particular future-mission scenario, such as the best methods for conducting events with a communication time delay, but it also provides an avenue to deliver NASA s human space exploration key messages. These analogs are extremely exciting to students and the public, and they are performed in such a way that the public can feel like part of the mission. They also provide an opportunity for crew members to obtain training in education and public outreach activities similar to what they would perform in space. The analog EPO team is responsible for the coordination and execution of the events, the overall social media component for each mission, and public affairs events such as media visits and interviews. They also create new and exciting ways to engage the public, manage and create website content, coordinate video footage for missions, and coordinate and integrate each activity into the mission timeline. In 2012, the AES Analog Missions Project performed three distinct missions - NASA Extreme Environment Mission Operations (NEEMO), which simulated a mission to an asteroid using an undersea laboratory; In-Situ Resource Utilization (ISRU) Field Test, which simulated a robotic mission to the moon searching and drilling for water; and Research and Technology Studies (RATS) integrated tests, which also simulated a mission to an asteroid. This paper will discuss the education and public engagement that occurred during these missions.

  16. Innovative Ideas for Coordinating International Space Activities: International Center for Space Medicine, International Space Authority, and other Global Youth Space Initiatives

    NASA Astrophysics Data System (ADS)

    Marshall, W.

    2002-01-01

    The Space Generation Forum SGF, at UNISPACE-III, as one of its ten formal recommendations to the United Nations in 1999, put forward the suggestion that the an international space authority should be created. Other recommendations were the establishment of an International Center for Space Medicine, creation of a global space exploration and development program, establishment of a global space (Nobel) prize, and a global space library. These projects are being further developed at the Space Generation Summit (SGS), an event at World Space Congress (WSC) which shall unite international students and young professionals to develop a youth vision and strategy for the peaceful uses of space. SGS, endorsed by the United Nations, will take place from October 11- 13th, during which the 200 delegates will discuss ongoing youth space activities, particularly those stemming from the UNISPACE-III/SGF and taken forward by the Space Generation Advisory Council. Delegates will address a variety of topics with the goal of devising new recommendations according to the theme, 'Accelerating Our Pace in Space'. The material presented here and in other technical sessions throughout WSC includes the findings of these discussions. In this paper, we present the International Space Authority idea together with recommendations on how that might be taken forward. The purpose of such an organization would be to allow: 1. Oversight and enforcement for the balanced regulation of multiple interests in space 2. Access for all peoples to the material benefits and knowledge and understanding enabled by the exploration and 3. Pooling of national and industry resources for the creation of space infrastructure, missions and enterprises for Operating principles: 1. The ISA regulatory regime would encourage commercialization and the harnessing of competitive market 2. Consistent with its charter to ensure access to all peoples, all UN member states and appropriate NGOs would 3. Close coordination with appropriate industry-based bodies, e.g. the SGF-recommended International Space The Association for the Development of Aerospace Medicine was established in 1999 as a first step towards creating an International Center for Space Medicine. In this paper, we present this and other work of the SGS delegates relating to new international coordination concepts, such as the Global Education Curriculum and the global space prize.

  17. The breakdown of coordinated decision making in distributed systems.

    PubMed

    Bearman, Christopher; Paletz, Susannah B F; Orasanu, Judith; Thomas, Matthew J W

    2010-04-01

    This article aims to explore the nature and resolution of breakdowns in coordinated decision making in distributed safety-critical systems. In safety-critical domains, people with different roles and responsibilities often must work together to make coordinated decisions while geographically distributed. Although there is likely to be a large degree of overlap in the shared mental models of these people on the basis of procedures and experience, subtle differences may exist. Study 1 involves using Aviation Safety Reporting System reports to explore the ways in which coordinated decision making breaks down between pilots and air traffic controllers and the way in which the breakdowns are resolved. Study 2 replicates and extends those findings with the use of transcripts from the Apollo 13 National Aeronautics and Space Administration space mission. Across both studies, breakdowns were caused in part by different types of lower-level breakdowns (or disconnects), which are labeled as operational, informational, or evaluative. Evaluative disconnects were found to be significantly harder to resolve than other types of disconnects. Considering breakdowns according to the type of disconnect involved appears to capture useful information that should assist accident and incident investigators. The current trend in aviation of shifting responsibilities and providing increasingly more information to pilots may have a hidden cost of increasing evaluative disconnects. The proposed taxonomy facilitates the investigation of breakdowns in coordinated decision making and draws attention to the importance of considering subtle differences between participants' mental models when considering complex distributed systems.

  18. Electrodynamic Dust Shield for Space Applications

    NASA Technical Reports Server (NTRS)

    Mackey, Paul J.; Johansen, Michael R.; Olsen, Robert C.; Raines, Matthew G.; Phillips, James R., III; Cox, Rachel E.; Hogue, Michael D.; Pollard, Jacob R. S.; Calle, Carlos I.

    2016-01-01

    Dust mitigation technology has been highlighted by NASA and the International Space Exploration Coordination Group (ISECG) as a Global Exploration Roadmap (GER) critical technology need in order to reduce life cycle cost and risk, and increase the probability of mission success. The Electrostatics and Surface Physics Lab in Swamp Works at the Kennedy Space Center has developed an Electrodynamic Dust Shield (EDS) to remove dust from multiple surfaces, including glass shields and thermal radiators. Further development is underway to improve the operation and reliability of the EDS as well as to perform material and component testing outside of the International Space Station (ISS) on the Materials on International Space Station Experiment (MISSE). This experiment is designed to verify that the EDS can withstand the harsh environment of space and will look to closely replicate the solar environment experienced on the Moon.

  19. Advanced Materials for Exploration Task Research Results

    NASA Technical Reports Server (NTRS)

    Cook, M. B. (Compiler); Murphy, K. L.; Schneider, T.

    2008-01-01

    The Advanced Materials for Exploration (AME) Activity in Marshall Space Flight Center s (MSFC s) Exploration Science and Technology Directorate coordinated activities from 2001 to 2006 to support in-space propulsion technologies for future missions. Working together, materials scientists and mission planners identified materials shortfalls that are limiting the performance of long-term missions. The goal of the AME project was to deliver improved materials in targeted areas to meet technology development milestones of NASA s exploration-dedicated activities. Materials research tasks were targeted in five areas: (1) Thermal management materials, (2) propulsion materials, (3) materials characterization, (4) vehicle health monitoring materials, and (5) structural materials. Selected tasks were scheduled for completion such that these new materials could be incorporated into customer development plans.

  20. Lattice modeling and calibration with turn-by-turn orbit data

    NASA Astrophysics Data System (ADS)

    Huang, Xiaobiao; Sebek, Jim; Martin, Don

    2010-11-01

    A new method that explores turn-by-turn beam position monitor (BPM) data to calibrate lattice models of accelerators is proposed. The turn-by-turn phase space coordinates at one location of the ring are first established using data from two BPMs separated by a simple section with a known transfer matrix, such as a drift space. The phase space coordinates are then tracked with the model to predict positions at other BPMs, which can be compared to measurements. The model is adjusted to minimize the difference between the measured and predicted orbit data. BPM gains and rolls are included as fitting variables. This technique can be applied to either the entire or a section of the ring. We have tested the method experimentally on a part of the SPEAR3 ring.

  1. Space life and biomedical sciences in support of the global exploration roadmap and societal development

    NASA Astrophysics Data System (ADS)

    Evetts, S. N.

    2014-08-01

    The human exploration of space is pushing the boundaries of what is technically feasible. The space industry is preparing for the New Space era, the momentum for which will emanate from the commercial human spaceflight sector, and will be buttressed by international solar system exploration endeavours. With many distinctive technical challenges to be overcome, human spaceflight requires that numerous biological and physical systems be examined under exceptional circumstances for progress to be made. To effectively tackle such an undertaking significant intra- and international coordination and collaboration is required. Space life and biomedical science research and development (R & D) will support the Global Exploration Roadmap (GER) by enabling humans to 'endure' the extreme activity that is long duration human spaceflight. In so doing the field will discover solutions to some of our most difficult human health issues, and as a consequence benefit society as a whole. This space-specific R&D will drive a significant amount of terrestrial biomedical research and as a result the international community will not only gain benefits in the form of improved healthcare in space and on Earth, but also through the growth of its science base and industry.

  2. Lunar International Science Coordination/Calibration Targets

    NASA Technical Reports Server (NTRS)

    Head, J. W.; Issacson, P.; Petro, N.; Runyon, C.; Ohtake, M.; Foing, B.; Grande, M.

    2007-01-01

    A new era of international lunar exploration has begun and will expand over the next four years with data acquired from at least four sophisticated remote sensing missions: KAGUYA (SELENE) [Japan], Chang'E [China], Chandrayaan-l [India], and LRO [United States]. It is recognized that this combined activity at the Moon with modern sophisticated sensors wi II provide unprecedented new information about the Moon and will dramatically improve our understanding of Earth's nearest neighbor. It is anticipated that the blooming of scientific exploration of the Moon by nations involved in space activities will seed and foster peaceful international coordination and cooperation that will benefit all. Summarized here are eight Lunar International Science Coordination/Calibration Targets (L-ISCT) that are intended to a) allow cross-calibration of diverse multi-national instruments and b) provide a focus for training young scientists about a range of lunar science issues. The targets, discussed at several scientific forums, were selected for coordinated science and instrument calibration of orbital data. All instrument teams are encouraged to participate in a coordinated activity of early-release data that will improve calibration and validation of data across independent and diverse instruments.

  3. Ancestral Genres of Mathematical Graphs

    ERIC Educational Resources Information Center

    Gerofsky, Susan

    2011-01-01

    Drawing from sources in gesture studies, cognitive science, the anthropology of religion and art/architecture history, this article explores cultural, bodily and cosmological resonances carried (unintentionally) by mathematical graphs on Cartesian coordinates. Concepts of asymmetric bodily spaces, grids, orthogonality, mapping and sacred spaces…

  4. Exploring the living universe: A strategy for space life sciences

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The knowledge obtained by space life sciences will play a pivotal role as humankind reaches out to explore the solar system. Information is needed concerning the existence of life beyond the Earth, the potential interactions between planets and living organisms, and the possibilities for humans to inhabit space safely and productively. Programs in the involved disciplines are an integral part of NASA's current and future missions. To realize their objectives, the development and operation of diverse ground and flight facilities and clost coordination with numerous scientific and governmental organizations in the U.S. and abroad are required. The status and goals of the life sciences programs are examined. Ways and means for attaining these goals are suggested.

  5. Advancing NASA's Satellite Control Capabilities: More than Just Better Technology

    NASA Technical Reports Server (NTRS)

    Smith, Danford

    2008-01-01

    This viewgraph presentation reviews the work of the Goddard Mission Services Evolution Center (GMSEC) in the development of the NASA's satellite control capabilities. The purpose of the presentation is to provide a quick overview of NASA's Goddard Space Flight Center and our approach to coordinating the ground system resources and development activities across many different missions. NASA Goddard's work in developing and managing the current and future space exploration missions is highlighted. The GMSEC, was established to to coordinate ground and flight data systems development and services, to create a new standard ground system for many missions and to reflect the reality that business reengineering and mindset were just as important.

  6. Human Research Program Exploration Medical Capability

    NASA Technical Reports Server (NTRS)

    Barsten, Kristina

    2010-01-01

    NASA s Human Research Program (HRP) conducts and coordinates research projects that provide human health and performance countermeasures, knowledge, technologies, and tools to enable safe, reliable, and productive human space exploration. The Program is divided into 6 major elements, which a) Provide the Program s knowledge and capabilities to conduct research, addressing the human health and performance risks. b) Advance the readiness levels of technology and countermeasures to the point of transfer to the customer programs and organizations. The National Space Biomedical Research Institute (NSBRI) is a partner with the HRP in developing a successful research program. 3

  7. A Coordinated Initialization Process for the Distributed Space Exploration Simulation

    NASA Technical Reports Server (NTRS)

    Crues, Edwin Z.; Phillips, Robert G.; Dexter, Dan; Hasan, David

    2007-01-01

    A viewgraph presentation on the federate initialization process for the Distributed Space Exploration Simulation (DSES) is described. The topics include: 1) Background: DSES; 2) Simulation requirements; 3) Nine Step Initialization; 4) Step 1: Create the Federation; 5) Step 2: Publish and Subscribe; 6) Step 3: Create Object Instances; 7) Step 4: Confirm All Federates Have Joined; 8) Step 5: Achieve initialize Synchronization Point; 9) Step 6: Update Object Instances With Initial Data; 10) Step 7: Wait for Object Reflections; 11) Step 8: Set Up Time Management; 12) Step 9: Achieve startup Synchronization Point; and 13) Conclusions

  8. KSC-2012-4218

    NASA Image and Video Library

    2012-08-03

    CAPE CANAVERAL, Fla. -- Dr. Liz Warren, communications coordinator for the International Space Station program Science Office, speaks to about 45 of NASA’s social media followers for two days of presentations on the Kennedy Space Center's past, present and future. The social media participants gathered at the Florida spaceport on Aug. 2 and 3, 2012 to hear from key former and current leaders who related stories of the space agency's efforts to explore the unknown. It was the first social media event totally run by Kennedy. Photo credit: NASA/ Gianni Woods

  9. KSC-2012-4217

    NASA Image and Video Library

    2012-08-03

    CAPE CANAVERAL, Fla. -- Dr. Liz Warren, communications coordinator for the International Space Station program Science office, speaks to about 45 of NASA’s social media followers for two days of presentations on the Kennedy Space Center's past, present and future. The social media participants gathered at the Florida spaceport on Aug. 2 and 3, 2012 to hear from key former and current leaders who related stories of the space agency's efforts to explore the unknown. It was the first social media event totally run by Kennedy. Photo credit: NASA/ Gianni Woods

  10. International Space Station Execution Replanning Process: Trends and Implications

    NASA Technical Reports Server (NTRS)

    McCormick, Robet J.

    2007-01-01

    International Space Station is a joint venture. Because of this, ISS execution planning- planning within the week for the ISS requires coordination across multiple partner, and the associated processes and tools to allow this coordination to occur. These processes and tools are currently defined and are extensively used. This paper summarizes these processes, and documents the current data trends associated with these processes and tools, with a focus on the metrics provided from the ISS Planning Product Change Request (PPCR) tool. As NASA's Vision for Space Exploration and general Human spaceflight trends are implemented, the probability of joint venture long duration programs such as ISS, with varying levels of intergovernmental and/or corporate partnership, will increase. Therefore, the results of this PPCR analysis serve as current Lessons learned for the ISS and for further similar ventures.

  11. Stability of steady hand force production explored across spaces and methods of analysis.

    PubMed

    de Freitas, Paulo B; Freitas, Sandra M S F; Lewis, Mechelle M; Huang, Xuemei; Latash, Mark L

    2018-06-01

    We used the framework of the uncontrolled manifold (UCM) hypothesis and explored the reliability of several outcome variables across different spaces of analysis during a very simple four-finger accurate force production task. Fourteen healthy, young adults performed the accurate force production task with each hand on 3 days. Small spatial finger perturbations were generated by the "inverse piano" device three times per trial (lifting the fingers 1 cm/0.5 s and lowering them). The data were analyzed using the following main methods: (1) computation of indices of the structure of inter-trial variance and motor equivalence in the space of finger forces and finger modes, and (2) analysis of referent coordinates and apparent stiffness values for the hand. Maximal voluntary force and the index of enslaving (unintentional finger force production) showed good to excellent reliability. Strong synergies stabilizing total force were reflected in both structure of variance and motor equivalence indices. Variance within the UCM and the index of motor equivalent motion dropped over the trial duration and showed good to excellent reliability. Variance orthogonal to the UCM and the index of non-motor equivalent motion dropped over the 3 days and showed poor to moderate reliability. Referent coordinate and apparent stiffness indices co-varied strongly and both showed good reliability. In contrast, the computed index of force stabilization showed poor reliability. The findings are interpreted within the scheme of neural control with referent coordinates involving the hierarchy of two basic commands, the r-command and c-command. The data suggest natural drifts in the finger force space, particularly within the UCM. We interpret these drifts as reflections of a trade-off between stability and optimization of action. The implications of these findings for the UCM framework and future clinical applications are explored in the discussion. Indices of the structure of variance and motor equivalence show good reliability and can be recommended for applied studies.

  12. Architecting Communication Network of Networks for Space System of Systems

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Hayden, Jeffrey L.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) and the Department of Defense (DoD) are planning Space System of Systems (SoS) to address the new challenges of space exploration, defense, communications, navigation, Earth observation, and science. In addition, these complex systems must provide interoperability, enhanced reliability, common interfaces, dynamic operations, and autonomy in system management. Both NASA and the DoD have chosen to meet the new demands with high data rate communication systems and space Internet technologies that bring Internet Protocols (IP), routers, servers, software, and interfaces to space networks to enable as much autonomous operation of those networks as possible. These technologies reduce the cost of operations and, with higher bandwidths, support the expected voice, video, and data needed to coordinate activities at each stage of an exploration mission. In this paper, we discuss, in a generic fashion, how the architectural approaches and processes are being developed and used for defining a hypothetical communication and navigation networks infrastructure to support lunar exploration. Examples are given of the products generated by the architecture development process.

  13. Beijing Lunar Declaration 2010: B) Technology and Resources; Infrastructures and Human Aspects; Moon, Space and Society

    NASA Technical Reports Server (NTRS)

    Arvidson, R.; Foing, B. H.; Plescial, J.; Cohen, B.; Blamont, J. E.

    2010-01-01

    We report on the Beijing Lunar Declaration endorsed by the delegates of the Global Lunar Conference/11th ILEWG Conference on Exploration and Utilisation of the Moon, held at Beijing on 30 May- 3 June 2010. Specifically we focus on Part B:Technologies and resources; Infrastructures and human aspects; Moon, Space, Society and Young Explorers. We recommend continued and enhanced development and implementation of sessions about lunar exploration, manned and robotic, at key scientific and engineering meetings. A number of robotic missions to the Moon are now undertaken independently by various nations, with a degree of exchange of information and coordination. That should increase towards real cooperation, still allowing areas of competition for keeping the process active, cost-effective and faster. - Lunar landers, pressurized lunar rover projects as presented from Europe, Asia and America are important steps that can create opportunities for international collaboration, within a coordinated village of robotic precursors and assistants to crew missions. - We have to think about development, modernization of existing navigation capabilities, and provision of lunar positioning, navigation and data relay assets to support future robotic and human exploration. New concepts and new methods for transportation have attracted much attention and are of great potential.

  14. Illustrating dynamical symmetries in classical mechanics: The Laplace-Runge-Lenz vector revisited

    NASA Astrophysics Data System (ADS)

    O'Connell, Ross C.; Jagannathan, Kannan

    2003-03-01

    The inverse square force law admits a conserved vector that lies in the plane of motion. This vector has been associated with the names of Laplace, Runge, and Lenz, among others. Many workers have explored aspects of the symmetry and degeneracy associated with this vector and with analogous dynamical symmetries. We define a conserved dynamical variable α that characterizes the orientation of the orbit in two-dimensional configuration space for the Kepler problem and an analogous variable β for the isotropic harmonic oscillator. This orbit orientation variable is canonically conjugate to the angular momentum component normal to the plane of motion. We explore the canonical one-parameter group of transformations generated by α(β). Because we have an obvious pair of conserved canonically conjugate variables, it is desirable to use them as a coordinate-momentum pair. In terms of these phase space coordinates, the form of the Hamiltonian is nearly trivial because neither member of the pair can occur explicitly in the Hamiltonian. From these considerations we gain a simple picture of dynamics in phase space. The procedure we use is in the spirit of the Hamilton-Jacobi method.

  15. Toward a global space exploration program: A stepping stone approach

    NASA Astrophysics Data System (ADS)

    Ehrenfreund, Pascale; McKay, Chris; Rummel, John D.; Foing, Bernard H.; Neal, Clive R.; Masson-Zwaan, Tanja; Ansdell, Megan; Peter, Nicolas; Zarnecki, John; Mackwell, Steve; Perino, Maria Antionetta; Billings, Linda; Mankins, John; Race, Margaret

    2012-01-01

    In response to the growing importance of space exploration in future planning, the Committee on Space Research (COSPAR) Panel on Exploration (PEX) was chartered to provide independent scientific advice to support the development of exploration programs and to safeguard the potential scientific assets of solar system objects. In this report, PEX elaborates a stepwise approach to achieve a new level of space cooperation that can help develop world-wide capabilities in space science and exploration and support a transition that will lead to a global space exploration program. The proposed stepping stones are intended to transcend cross-cultural barriers, leading to the development of technical interfaces and shared legal frameworks and fostering coordination and cooperation on a broad front. Input for this report was drawn from expertise provided by COSPAR Associates within the international community and via the contacts they maintain in various scientific entities. The report provides a summary and synthesis of science roadmaps and recommendations for planetary exploration produced by many national and international working groups, aiming to encourage and exploit synergies among similar programs. While science and technology represent the core and, often, the drivers for space exploration, several other disciplines and their stakeholders (Earth science, space law, and others) should be more robustly interlinked and involved than they have been to date. The report argues that a shared vision is crucial to this linkage, and to providing a direction that enables new countries and stakeholders to join and engage in the overall space exploration effort. Building a basic space technology capacity within a wider range of countries, ensuring new actors in space act responsibly, and increasing public awareness and engagement are concrete steps that can provide a broader interest in space exploration, worldwide, and build a solid basis for program sustainability. By engaging developing countries and emerging space nations in an international space exploration program, it will be possible to create a critical bottom-up support structure to support program continuity in the development and execution of future global space exploration frameworks. With a focus on stepping stones, COSPAR can support a global space exploration program that stimulates scientists in current and emerging spacefaring nations, and that will invite those in developing countries to participate—pursuing research aimed at answering outstanding questions about the origins and evolution of our solar system and life on Earth (and possibly elsewhere). COSPAR, in cooperation with national and international science foundations and space-related organizations, will advocate this stepping stone approach to enhance future cooperative space exploration efforts.

  16. Towards a National Space Weather Predictive Capability

    NASA Astrophysics Data System (ADS)

    Fox, N. J.; Lindstrom, K. L.; Ryschkewitsch, M. G.; Anderson, B. J.; Gjerloev, J. W.; Merkin, V. G.; Kelly, M. A.; Miller, E. S.; Sitnov, M. I.; Ukhorskiy, A. Y.; Erlandson, R. E.; Barnes, R. J.; Paxton, L. J.; Sotirelis, T.; Stephens, G.; Comberiate, J.

    2014-12-01

    National needs in the area of space weather informational and predictive tools are growing rapidly. Adverse conditions in the space environment can cause disruption of satellite operations, communications, navigation, and electric power distribution grids, leading to a variety of socio-economic losses and impacts on our security. Future space exploration and most modern human endeavors will require major advances in physical understanding and improved transition of space research to operations. At present, only a small fraction of the latest research and development results from NASA, NOAA, NSF and DoD investments are being used to improve space weather forecasting and to develop operational tools. The power of modern research and space weather model development needs to be better utilized to enable comprehensive, timely, and accurate operational space weather tools. The mere production of space weather information is not sufficient to address the needs of those who are affected by space weather. A coordinated effort is required to support research-to-applications transition efforts and to develop the tools required those who rely on this information. In this presentation we will review datasets, tools and models that have resulted from research by scientists at JHU/APL, and examine how they could be applied to support space weather applications in coordination with other community assets and capabilities.

  17. NASA's Internal Space Weather Working Group

    NASA Technical Reports Server (NTRS)

    St. Cyr, O. C.; Guhathakurta, M.; Bell, H.; Niemeyer, L.; Allen, J.

    2011-01-01

    Measurements from many of NASA's scientific spacecraft are used routinely by space weather forecasters, both in the U.S. and internationally. ACE, SOHO (an ESA/NASA collaboration), STEREO, and SDO provide images and in situ measurements that are assimilated into models and cited in alerts and warnings. A number of years ago, the Space Weather laboratory was established at NASA-Goddard, along with the Community Coordinated Modeling Center. Within that organization, a space weather service center has begun issuing alerts for NASA's operational users. NASA's operational user community includes flight operations for human and robotic explorers; atmospheric drag concerns for low-Earth orbit; interplanetary navigation and communication; and the fleet of unmanned aerial vehicles, high altitude aircraft, and launch vehicles. Over the past three years we have identified internal stakeholders within NASA and formed a Working Group to better coordinate their expertise and their needs. In this presentation we will describe this activity and some of the challenges in forming a diverse working group.

  18. International Cooperation at NASA

    NASA Astrophysics Data System (ADS)

    Tawney, Timothy; Feldstein, Karen

    International cooperation is a cornerstone principle of NASA’s activities, especially within the activities of the Science Mission Directorate. Nearly two thirds of the flight missions in which NASA leads or participates involve international cooperation. Numerous ground based activities also rely on international cooperation, whether because of unique expertise, unique geography, or the need for a global response. Going forward, in an era of tighter budgets and a more integrated global perspective, NASA and the rest of the space agencies around the world will be forced to work more closely together, in a broader array of activities than ever before, in order to be able to afford to push the boundaries of space exploration. The goal of this presentation is to provide an overview of NASA’s current international science cooperative activities. It will include a discussion of why NASA conducts international cooperation and look at the mechanisms through which international cooperation can occur at NASA, including peer-to-peer development of relationships. It will also discuss some of the limiting factors of international cooperation, such as export control, and ways in which to manage those constraints. Finally, the presentation would look at some of the present examples where NASA is working to increase international cooperation and improve coordination. Case studies will be used to demonstrate these mechanisms and concepts. For example, NASA continues to participate in international coordination groups such as the International Mars Exploration Working Group (IMEWG) and International Space Exploration Coordination Group (ISECG), but is expanding into new areas as well. NASA is one of the leaders in expanding and improving international coordination in the area of Near-Earth Object detection, characterization, and mitigation. Having participated in the first meetings of such groups as the International Asteroid Warning Network (IAWN) and Space Missions Planning Advisory Group (SMPAG), NASA is placing an ever greater emphasis on sharing information among members and working to avoid duplication of effort for the betterment of all humanity. International cooperation at NASA takes many forms. In some cases NASA leads, while in other cases it follows the lead of our many international partners, all in the name of obtaining the best science. In many cases, truly stellar partnerships emerge. In a few cases, the partnership is ended before it can flourish. But in all cases, the partners are learning to work more closely together so that in the future, our partnerships will yield ever better results.

  19. Power and Networks in Worldwide Knowledge Coordination: The Case of Global Science

    ERIC Educational Resources Information Center

    King, Roger

    2011-01-01

    The article considers the global governance of knowledge systems, exploring concepts of power, networks, standards (defined as normative practices), and structuration. The focus is on science as a form of predominantly private global governance, particularly the self-regulatory and collaborative processes stretching across time and space. These…

  20. Care coordination in intensive care units: communicating across information spaces.

    PubMed

    Miller, Anne; Weinger, Matthew B; Buerhaus, Peter; Dietrich, Mary S

    2010-04-01

    This study explores the interactions among phases of team coordination, patient-related information, decision-making levels, and role holders in intensive care units (ICUs). The effects of communication improvement initiatives on adverse patient events or improved outcomes have been difficult to establish. Conceptual inconsistencies and methodological shortcomings suggest insufficient understanding about clinical communication and care coordination. Data were collected by shadowing a charge nurse, fellow, resident, and nurse in each of eight ICUs and recording each of their conversations during 12 hrs (32 role holders during 350 hrs). Hierarchical log linear analyses show statistically significant three-way interactions between the patient information, phases of team coordination, and decision levels, chi2(df = 75) = 212, p < .0001; between roles, phases of team coordination, and decision levels, chi2(df = 60) = 109, p < .0001; and between roles, patient information, and decision levels, chi2(df = 60) = 155, p < .0001. Differences among levels of the variables were evaluated with the use of standardized parameter estimates and 95% confidence intervals. ICU communication and care coordination involve complex decision structures and role interactions across two information spaces. Different role holders mediate vertical and lateral process flows with goals and directions representing an important conceptual transition. However, lateral isolation within decision levels (charge nurses) and information overload (residents) are potential communication and care coordination vulnerabilities. Results are consistent with and extend the findings of previous studies. The profile of ICU communication and care coordination provides a systemic framework that may inform future interventions and research.

  1. Collective search by mobile robots using alpha-beta coordination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldsmith, S.Y.; Robinett, R. III

    1998-04-01

    One important application of mobile robots is searching a geographical region to locate the origin of a specific sensible phenomenon. Mapping mine fields, extraterrestrial and undersea exploration, the location of chemical and biological weapons, and the location of explosive devices are just a few potential applications. Teams of robotic bloodhounds have a simple common goal; to converge on the location of the source phenomenon, confirm its intensity, and to remain aggregated around it until directed to take some other action. In cases where human intervention through teleoperation is not possible, the robot team must be deployed in a territory withoutmore » supervision, requiring an autonomous decentralized coordination strategy. This paper presents the alpha beta coordination strategy, a family of collective search algorithms that are based on dynamic partitioning of the robotic team into two complementary social roles according to a sensor based status measure. Robots in the alpha role are risk takers, motivated to improve their status by exploring new regions of the search space. Robots in the beta role are motivated to improve but are conservative, and tend to remain aggregated and stationary until the alpha robots have identified better regions of the search space. Roles are determined dynamically by each member of the team based on the status of the individual robot relative to the current state of the collective. Partitioning the robot team into alpha and beta roles results in a balance between exploration and exploitation, and can yield collective energy savings and improved resistance to sensor noise and defectors. Alpha robots waste energy exploring new territory, and are more sensitive to the effects of ambient noise and to defectors reporting inflated status. Beta robots conserve energy by moving in a direct path to regions of confirmed high status.« less

  2. Developing the "Lunar Vicinity" Scenario of the Global Exploration Roadmap

    NASA Astrophysics Data System (ADS)

    Schmidt, G.; Neal, C. R.; Crawford, I. A.; Ehrenfreund, P.

    2014-04-01

    The Global Exploration Roadmap (GER, [1]) has been developed by the International Space Exploration Coordination Group (ISECG - comprised of 14 space agencies) to define various pathways to getting humans beyond low Earth orbit and eventually to Mars. Such pathways include visiting asteroids or the Moon before going on to Mars. This document has been written at a very high level and many details are still to be determined. However, a number of important papers regarding international space exploration can form a basis for this document (e.g. [2,3]). In this presentation, we focus on developing the "Lunar Vicinity" scenario by adding detail via mapping a number of recent reports/documents into the GER. Precedence for this scenario is given by Szajnfarber et al. [4] who stated "We find that when international partners are considered endogenously, the argument for a "flexible path" approach is weakened substantially. This is because international contributions can make "Moon first" economically feasible". The documents highlighted here are in no way meant to be all encompassing and other documents can and should be added, (e.g., the JAXA Space Exploration Roadmap). This exercise is intended to demonstrate that existing documents can be mapped into the GER despite the major differences in granularity, and that this mapping is a way to promote broader national and international buy-in to the Lunar Vicinity scenario. The documents used here are: the Committee on Space Research (COSPAR) Panel on Exploration report on developing a global space exploration program [5], the Strategic Knowledge Gaps (SKGs) report from the Lunar Exploration Analysis Group (LEAG) [6], the Lunar Exploration Roadmap developed by LEAG [7], the National Research Council report Scientific Context for the Exploration of the Moon (SCEM) [8], the scientific rationale for resuming lunar surface exploration [9], the astrobiological benefits of human space exploration [9,10].

  3. Advanced Technologies for Robotic Exploration Leading to Human Exploration: Results from the SpaceOps 2015 Workshop

    NASA Technical Reports Server (NTRS)

    Lupisella, Mark L.; Mueller, Thomas

    2016-01-01

    This paper will provide a summary and analysis of the SpaceOps 2015 Workshop all-day session on "Advanced Technologies for Robotic Exploration, Leading to Human Exploration", held at Fucino Space Center, Italy on June 12th, 2015. The session was primarily intended to explore how robotic missions and robotics technologies more generally can help lead to human exploration missions. The session included a wide range of presentations that were roughly grouped into (1) broader background, conceptual, and high-level operations concepts presentations such as the International Space Exploration Coordination Group Roadmap, followed by (2) more detailed narrower presentations such as rover autonomy and communications. The broader presentations helped to provide context and specific technical hooks, and helped lay a foundation for the narrower presentations on more specific challenges and technologies, as well as for the discussion that followed. The discussion that followed the presentations touched on key questions, themes, actions and potential international collaboration opportunities. Some of the themes that were touched on were (1) multi-agent systems, (2) decentralized command and control, (3) autonomy, (4) low-latency teleoperations, (5) science operations, (6) communications, (7) technology pull vs. technology push, and (8) the roles and challenges of operations in early human architecture and mission concept formulation. A number of potential action items resulted from the workshop session, including: (1) using CCSDS as a further collaboration mechanism for human mission operations, (2) making further contact with subject matter experts, (3) initiating informal collaborative efforts to allow for rapid and efficient implementation, and (4) exploring how SpaceOps can support collaboration and information exchange with human exploration efforts. This paper will summarize the session and provide an overview of the above subjects as they emerged from the SpaceOps 2015 Workshop session.

  4. Multi-team dynamics and distributed expertise in imission operations.

    PubMed

    Caldwell, Barrett S

    2005-06-01

    The evolution of space exploration has brought an increased awareness of the social and socio-technical issues associated with team performance and task coordination, both for the onboard astronauts and in mission control. Spaceflight operations create a unique environment in which to address classic group dynamics topics including communication, group process, knowledge development and sharing, and time-critical task performance. Mission operations in the early years of the 21st century have developed into a set of complex, multi-team task settings incorporating multiple mission control teams and flight crews interacting in novel ways. These more complex operational settings help highlight the emergence of a new paradigm of distributed supervisory coordination, and the need to consider multiple dimensions of expertise being supported and exchanged among team members. The creation of new mission profiles with very long-duration time scales (months, rather than days) for the International Space Station, as well as planned exploration missions to the Moon and Mars, emphasize fundamental distinctions from the 40 yr from Mercury to the Space Shuttle. Issues in distributed expertise and information flow in mission control settings from two related perspectives are described. A general conceptual view of knowledge sharing and task synchronization is presented within the context of the mission control environment. This conceptual presentation is supplemented by analysis of quasi-experimental data collected from actual flight controllers at NASA-Johnson Space Center, Houston, TX.

  5. The ISECG* Global Exploration Roadmap as Context for Robotic and Human Exploration Operations

    NASA Technical Reports Server (NTRS)

    Lupisella, Mark

    2015-01-01

    The International Space Exploration Coordination Group (ISECG) Global Exploration Roadmap (GER) provides a broad international context for understanding how robotic missions and robotic assets can enable future human exploration of multiple destinations. This presentation will provide a brief high-level review of the GER with a focus on key robotic missions and robotic assets that can provide enabling technology advancements and that also raise interesting operational challenges in both the near-term and long-term. The GER presently features a variety of robotic missions and robotic assets that can provide important technology advancements as well as operational challenges and improvements, in areas ranging from: (a) leveraging the International Space Station, (b) planetary science robotic missions to potential human destinations, (c) micro-g body proximity operations (e.g. asteroids), (d) autonomous operations, (e) high and low-latency telerobotics, (f) human assisted sample return, and (g) contamination control. This presentation will highlight operational and technology challenges in these areas that have feed forward implications for human exploration.

  6. International Space Exploration Coordination Group Assessment of Technology Gaps for LOx/Methane Propulsion Systems for the Global Exploration Roadmap

    NASA Technical Reports Server (NTRS)

    Hurlbert, Eric A.; Whitley, Ryan; Klem, Mark D.; Johnson, Wesley; Alexander, Leslie; D'Aversa, Emanuela; Ruault, Jean-Marc; Manfletti, Chiara; Caruana, Jean-Noel; Ueno, Hiroshi; hide

    2016-01-01

    As part of the Global Exploration Roadmap (GER), the International Space Exploration Coordination Group (ISECG) formed two technology gap assessment teams to evaluate topic discipline areas that had not been worked at an international level to date. The participating agencies were ASI, CNES, DLR, ESA, JAXA, and NASA. Accordingly, the ISECG Technology Working Group (TWG) recommended two discipline areas based on Critical Technology Needs reflected within the GER Technology Development Map (GTDM): Dust Mitigation and LOX/Methane Propulsion. LOx/Methane propulsion systems are enabling for future human missions Mars by significantly reducing the landed mass of the Mars ascent stage through the use of in-situ propellant production, for improving common fluids for life support, power and propulion thus allowing for diverse redundancy, for eliminating the corrosive and toxic propellants thereby improving surface operations and resusabilty, and for inceasing the performance of propulsion systems. The goals and objectives of the international team are to determine the gaps in technology that must be closed for LOx/Methane to be used in human exploration missions in cis-lunar, lunar, and Mars mission applications. An emphasis is placed on near term lunar lander applications with extensibility to Mars. Each agency provided a status of the substantial amount of Lox/Methane propulsion system development to date and their inputs on the gaps in the technology that are remaining. The gaps, which are now opportunities for collaboration, are then discussed.

  7. Exploration of a Variety of Copper Molybdate Coordination Hybrids Based on a Flexible Bis(1,2,4-triazole) Ligand: A Look through the Composition-Space Diagram.

    PubMed

    Senchyk, Ganna A; Lysenko, Andrey B; Domasevitch, Konstantin V; Erhart, Oliver; Henfling, Stefan; Krautscheid, Harald; Rusanov, Eduard B; Krämer, Karl W; Decurtins, Silvio; Liu, Shi-Xia

    2017-11-06

    We investigated the coordination ability of the bis(1,2,4-triazolyl) module, tr 2 pr = 1,3-bis(1,2,4-triazol-4-yl)propane, toward the engineering of solid-state structures of copper polyoxomolybdates utilizing a composition space diagram approach. Different binding modes of the ligand including [N-N]-bridging and N-terminal coordination and the existence of favorable conformation forms (anti/anti, gauche/anti, and gauche/gauche) resulted in varieties of mixed metal Cu I /Mo VI and Cu II /Mo VI coordination polymers prepared under hydrothermal conditions. The composition space analysis employed was aimed at both the development of new coordination solids and their crystallization fields through systematic changes of the reagent ratios [copper(II) and molybdenum(VI) oxide precursors and the tr 2 pr ligand]. Nine coordination compounds were synthesized and structurally characterized. The diverse coordination architectures of the compounds are composed of cationic fragments such as [Cu II 3 (μ 2 -OH) 2 (μ 2 -tr) 2 ] 4+ , [Cu II 3 (μ 2 -tr) 6 ] 6+ , [Cu II 2 (μ 2 -tr) 3 ] 4+ , etc., connected to polymeric arrays by anionic species (molybdate MoO 4 2- , isomeric α-, δ-, and β-octamolybdates {Mo 8 O 26 } 4- or {Mo 8 O 28 H 2 } 6- ). The inorganic copper(I,II)/molybdenum(VI) oxide matrix itself forms discrete or low-dimensional subtopological motifs (0D, 1D, or 2D), while the organic spacers interconnect them into higher-dimensional networks. The 3D coordination hybrids show moderate thermal stability up to 230-250 °C, while for the 2D compounds, the stability of the framework is distinctly lower (∼190 °C). The magnetic properties of the most representative samples were investigated. The magnetic interactions were rationalized in terms of analyzing the planes of the magnetic orbitals.

  8. Rapid exploration of configuration space with diffusion-map-directed molecular dynamics.

    PubMed

    Zheng, Wenwei; Rohrdanz, Mary A; Clementi, Cecilia

    2013-10-24

    The gap between the time scale of interesting behavior in macromolecular systems and that which our computational resources can afford often limits molecular dynamics (MD) from understanding experimental results and predicting what is inaccessible in experiments. In this paper, we introduce a new sampling scheme, named diffusion-map-directed MD (DM-d-MD), to rapidly explore molecular configuration space. The method uses a diffusion map to guide MD on the fly. DM-d-MD can be combined with other methods to reconstruct the equilibrium free energy, and here, we used umbrella sampling as an example. We present results from two systems: alanine dipeptide and alanine-12. In both systems, we gain tremendous speedup with respect to standard MD both in exploring the configuration space and reconstructing the equilibrium distribution. In particular, we obtain 3 orders of magnitude of speedup over standard MD in the exploration of the configurational space of alanine-12 at 300 K with DM-d-MD. The method is reaction coordinate free and minimally dependent on a priori knowledge of the system. We expect wide applications of DM-d-MD to other macromolecular systems in which equilibrium sampling is not affordable by standard MD.

  9. Rapid Exploration of Configuration Space with Diffusion Map-directed-Molecular Dynamics

    PubMed Central

    Zheng, Wenwei; Rohrdanz, Mary A.; Clementi, Cecilia

    2013-01-01

    The gap between the timescale of interesting behavior in macromolecular systems and that which our computational resources can afford oftentimes limits Molecular Dynamics (MD) from understanding experimental results and predicting what is inaccessible in experiments. In this paper, we introduce a new sampling scheme, named Diffusion Map-directed-MD (DM-d-MD), to rapidly explore molecular configuration space. The method uses diffusion map to guide MD on the fly. DM-d-MD can be combined with other methods to reconstruct the equilibrium free energy, and here we used umbrella sampling as an example. We present results from two systems: alanine dipeptide and alanine-12. In both systems we gain tremendous speedup with respect to standard MD both in exploring the configuration space and reconstructing the equilibrium distribution. In particular, we obtain 3 orders of magnitude of speedup over standard MD in the exploration of the configurational space of alanine-12 at 300K with DM-d-MD. The method is reaction coordinate free and minimally dependent on a priori knowledge of the system. We expect wide applications of DM-d-MD to other macromolecular systems in which equilibrium sampling is not affordable by standard MD. PMID:23865517

  10. Task-specific stability in muscle activation space during unintentional movements.

    PubMed

    Falaki, Ali; Towhidkhah, Farzad; Zhou, Tao; Latash, Mark L

    2014-11-01

    We used robot-generated perturbations applied during position-holding tasks to explore stability of induced unintentional movements in a multidimensional space of muscle activations. Healthy subjects held the handle of a robot against a constant bias force and were instructed not to interfere with hand movements produced by changes in the external force. Transient force changes were applied leading to handle displacement away from the initial position and then back toward the initial position. Intertrial variance in the space of muscle modes (eigenvectors in the muscle activations space) was quantified within two subspaces, corresponding to unchanged handle coordinate and to changes in the handle coordinate. Most variance was confined to the former subspace in each of the three phases of movement, the initial steady state, the intermediate position, and the final steady state. The same result was found when the changes in muscle activation were analyzed between the initial and final steady states. Changes in the dwell time between the perturbation force application and removal led to different final hand locations undershooting the initial position. The magnitude of the undershot scaled with the dwell time, while the structure of variance in the muscle activation space did not depend on the dwell time. We conclude that stability of the hand coordinate is ensured during both intentional and unintentional actions via similar mechanisms. Relative equifinality in the external space after transient perturbations may be associated with varying states in the redundant space of muscle activations. The results fit a hierarchical scheme for the control of voluntary movements with referent configurations and redundant mapping between the levels of the hierarchy.

  11. NASA technology investments: building America's future

    NASA Astrophysics Data System (ADS)

    Peck, Mason

    2013-03-01

    Investments in technology and innovation enable new space missions, stimulate the economy, contribute to the nation's global competitiveness, and inspire America's next generation of scientists, engineers and astronauts. Chief Technologist Mason Peck will provide an overview of NASA's ambitious program of space exploration that builds on new technologies, as well as proven capabilities, as it expands humanity's reach into the solar system while providing broadly-applicable benefits here on Earth. Peck also will discuss efforts of the Office of the Chief Technologist to coordinate the agency's overall technology portfolio, identifying development needs, ensuring synergy and reducing duplication, while furthering the national initiatives as outlined by President Obama's Office of Science and Technology Policy. By coordinating technology programs within NASA, Peck's office facilitates integration of available and new technology into operational systems that support specific human-exploration missions, science missions, and aeronautics. The office also engages other government agencies and the larger aerospace community to develop partnerships in areas of mutual interest that could lead to new breakthrough capabilities. NASA technology transfer translates our air and space missions into societal benefits for people everywhere. Peck will highlight NASA's use of technology transfer and commercialization to help American entrepreneurs and innovators develop technological solutions that stimulate the growth of the innovation economy by creating new products and services, new business and industries and high quality, sustainable jobs.

  12. NASA Space Launch System: A Cornerstone Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; Robinson, Kimberly F.

    2014-01-01

    Under construction today, the National Aeronautics and Space Administration's (NASA) Space Launch System (SLS), managed at the Marshall Space Flight Center, will provide a robust new capability for human and robotic exploration beyond Earth orbit. The vehicle's initial configuration, sched will enable human missions into lunar space and beyond, as well as provide game-changing benefits for space science missions, including offering substantially reduced transit times for conventionally designed spacecraft. From there, the vehicle will undergo a series of block upgrades via an evolutionary development process designed to expedite mission capture as capability increases. The Space Launch System offers multiple benefits for a variety of utilization areas. From a mass-lift perspective, the initial configuration of the vehicle, capable of delivering 70 metric tons (t) to low Earth orbit (LEO), will be the world's most powerful launch vehicle. Optimized for missions beyond Earth orbit, it will also be the world's only exploration-class launch vehicle capable of delivering 25 t to lunar orbit. The evolved configuration, with a capability of 130 t to LEO, will be the most powerful launch vehicle ever flown. From a volume perspective, SLS will be compatible with the payload envelopes of contemporary launch vehicles, but will also offer options for larger fairings with unprecedented volume-lift capability. The vehicle's mass-lift capability also means that it offers extremely high characteristic energy for missions into deep space. This paper will discuss the impacts that these factors - mass-lift, volume, and characteristic energy - have on a variety of mission classes, particularly human exploration and space science. It will address the vehicle's capability to enable existing architectures for deep-space exploration, such as those documented in the Global Exploration Roadmap, a capabilities-driven outline for future deep-space voyages created by the International Space Exploration Coordination Group, which represents 14 of the world's space agencies. In addition, this paper will detail this new rocket's capability to support missions beyond the human exploration roadmap, including robotic precursor missions to other worlds or uniquely high-mass space operation facilities in Earth orbit. As this paper will explain, the SLS Program is currently building a global infrastructure asset that will provide robust space launch capability to deliver sustainable solutions for exploration.

  13. NASA's Space Launch System: A Cornerstone Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.

    2014-01-01

    Under construction today, the National Aeronautics and Space Administration's (NASA) Space Launch System (SLS), managed at the Marshall Space Flight Center, will provide a robust new capability for human and robotic exploration beyond Earth orbit. The vehicle's initial configuration, scheduled for first launch in 2017, will enable human missions into lunar space and beyond, as well as provide game-changing benefits for space science missions, including offering substantially reduced transit times for conventionally designed spacecraft. From there, the vehicle will undergo a series of block upgrades via an evolutionary development process designed to expedite mission capture as capability increases. The Space Launch System offers multiple benefits for a variety of utilization areas. From a mass-lift perspective, the initial configuration of the vehicle, capable of delivering 70 metric tons (t) to low Earth orbit (LEO), will be the world's most powerful launch vehicle. Optimized for missions beyond Earth orbit, it will also be the world's only exploration-class launch vehicle capable of delivering 25 t to lunar orbit. The evolved configuration, with a capability of 130 t to LEO, will be the most powerful launch vehicle ever flown. From a volume perspective, SLS will be compatible with the payload envelopes of contemporary launch vehicles, but will also offer options for larger fairings with unprecedented volume-lift capability. The vehicle's mass-lift capability also means that it offers extremely high characteristic energy for missions into deep space. This paper will discuss the impacts that these factors - mass-lift, volume, and characteristic energy - have on a variety of mission classes, particularly human exploration and space science. It will address the vehicle's capability to enable existing architectures for deep-space exploration, such as those documented in the Global Exploration Roadmap, a capabilities-driven outline for future deep-space voyages created by the International Space Exploration Coordination Group, which represents 12 of the world's space agencies. In addition, this paper will detail this new rocket's capability to support missions beyond the human exploration roadmap, including robotic precursor missions to other worlds or uniquely high-mass space operation facilities in Earth orbit. As this paper will explain, the SLS Program is currently building a global infrastructure asset that will provide robust space launch capability to deliver sustainable solutions for exploration.

  14. Report from ILEWG to the COSPAR Panel on Exploration

    NASA Astrophysics Data System (ADS)

    Foing, Bernard H.

    The International Lunar Exploration Working Group (ILEWG) was established in April 1995 at a meeting in Hamburg, Germany. As established in its charter, this working group reports to COSPAR and is charged with developing an international strategy for the exploration of the Moon. It discusses coordination between missions, and a road map for future international lunar exploration and utilisation. It fosters information exchange or potential and real future lunar robotic and human missions, as well as for new scientific and exploration information about the Moon. ILEWG was used to feed forward results from lunar missions such as SMART1 to the next ones, and we look now to integrate lessons from all recent orbiters and landers, for the upcoming landers, sample return missions, and human activities. We give a report on ILEWG community activities, refer to COSPAR and ILEWG ICEUM and lunar conferences and declarations [1-18], and discuss the follow-up of GLUC/ICEUM11 declaration relevant to COSPAR PEX*. References: [1] 1st International Lunar Workshop, Balsiger H. et al., Editors, European Space Agency, 1994. ESA-SP-1170. [2] 2nd International Lunar Workshop, Kyoto, H. Mizutani, editor, Japan Space Forum Publisher, 1997. [3] 3rd International Lunar Workshop, Moscow 1998, E. Galimov, editor. [4] ICEUM4, ESTEC, 2000, ESA SP-462, B.H. Foing & M. Perry, editors. [5] ICEUM5, Hawaii Nov 2003, Durst S.M. et al, Editors, Vol 108, 1-576 pp, Science and Technology Series, American Astronautical Society, 2004. [6] ICEUM6, Udaipur 2004, Bhandari N., Editor, Journal Earth Sys-tem Science, India, 114, No6, Dec 2005, pp. 573-841. [7] ICEUM7, Toronto Sept 2005, sci.esa.int/ilewg. [8] ICEUM8, Beijing July 2006, Journal of Chinese Society of Astronautics, Vol. 28 Sup., 2007, Ji W., Editor. [9] ICEUM9, Sorrento, Italy, Foing B., Espinasse S., Kosters G., Editors. http://sci.esa.int/iceum9, Dec. 2007), [11] Ehrenfreund, P., Foing, B.H., Cellino, A. Editors, The Moon and Near Earth Objects, ASR Vol 37, 1, 2006. [12] Foing, B.H. et al editors, 'Astronomy and Space Science from the Moon', ASR 14, 6, 1994. [13] Ip W.-H., Foing, B.H., Masson Ph.L., editors, The Moon and Mars, ASR Vol 23, 11, 1999. [14] Foing, B.H. et al, editor, Lunar Exploration, Planetary and Space Science, Vol 50, 14-15, 2002. [15] Foing, B.H., Heather, D. editors, 'Lunar Exploration 2000', ASR Vol 30, Nr 8, 2002. [16] Huntress, W. et al 'The next steps in exploring deep space - A cosmic study by the IAA', Acta Astronautica, Vol 58, Issues 6-7, 2006, p302-377. [17] http://sci.esa.int/ilewg/43654-declaration-iceum10-leag-srr-florida-2008/ [18] Ehrenfreund P. et al (COSPAR planetary exploration panel report) 2012, ASR Vol 49, Nr 1, pp. 2-48. *Relevant extract from GLUC/ICEUM11 declaration: “467 International Lunar Explorers, registered delegates from 26 countries, assembled at GLUC Global Lunar Conference including the 11th ILEWG Conference on Exploration and Utilisation of the Moon (ICEUM11) in Beijing." "1. Science and exploration (related GLUC/ICEUM11 recommendations will be addressed at COSPAR B0.1 Lunar science and exploration session) 2. Technologies and resources - A number of robotic missions to the Moon are now undertaken independently by various nations, with a degree of exchange of information and co-ordination. That should increase towards real co-operation, still allowing areas of competition for keeping the process active, cost-effective and faster. - Lunar landers, pressurized lunar rover projects as presented from Europe, Asia and America are important steps that can create opportunities for international collaboration, within a coordinated village of robotic precursors and assistants to crew missions. - We have to think about development, modernization of existing navigation capabilities, and provision of lunar positioning, navigation and data relay assets to support future robotic and human exploration. New concepts and new methods for transportation have attracted much attention and are of great potential. 3. Infrastructures and human aspects - It is recommended to have technical sessions and activities dealing with different aspects of human adaptation to space environments, the modeling of sub-systems, microbial protection and use of inflatable technologies - While the Moon is the best and next logical step in human exploration, we should make best use of the space stations as stepping stones for exploration and human spaceflight beyond Low Earth Orbit. - Further research is needed on lunar dust aspects in regard to humans and interaction with habitats. We note high interest in CELSS for Moon and Mars bases, and recommend further research and development. - We recommend the development and use of terrestrial analogues research sites and facilities, for technology demonstrations, comparative geology and human performance research, and public engagement. We endorse the proposal of development of a site at La Reunion for international Moon-Mars analogue research. 4. Moon, Space, Society and Young Explorers - We consider that the current legal regime as set out in the Outer Space Treaty and the Moon agreement are satisfactory for current and future missions, but may require further clarification for future exploration. Issues of transparency and security will need to be addressed. - Great things are happening for Young Lunar Explorers, with inspiring missions and hands-on activities as coordinated by ILEWG. Lunar exploration is encouraging students of all ages to pursue higher education. - More possibilities for participatory engagement should be offered to the society for example via inter-disciplinary activities with the humanities. - We appreciate the work from COSPAR panel on Exploration PEX that should be shared further. - Continued cooperation should be enforced at all levels. The space community feels strongly that joining the forces of space faring nations to explore the Moon should be seriously implemented, with the views of expanding a Global Robotic Village and building in the long run a Manned International Lunar Base.” “We, the participants of the GLUC-ICEUM11 conference, commit to an enhanced global cooperation towards international lunar exploration for the benefit of humankind. Endorsed by the delegates of GLUC-ICEUM11”

  15. NASA's Space Launch System: One Vehicle, Many Destinations

    NASA Technical Reports Server (NTRS)

    May, Todd A.; Creech, Stephen D.

    2013-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for exploration beyond Earth orbit. Developed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will start its missions in 2017 with 10 percent more thrust than the Saturn V rocket that launched astronauts to the Moon 40 years ago. From there it will evolve into the most powerful launch vehicle ever flown, via an upgrade approach that will provide building blocks for future space exploration and development. The International Space Exploration Coordination Group, representing 12 of the world's space agencies, has created the Global Exploration Roadmap, which outlines paths toward a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for all three destinations. This paper will explore the capability of SLS to meet those requirements and enable those missions. It will explain how the SLS Program is executing this development within flat budgetary guidelines by using existing engines assets and developing advanced technology based on heritage systems, from the initial 70 metric ton (t) lift capability through a block upgrade approach to an evolved 130-t capability. It will also detail the significant progress that has already been made toward its first launch in 2017. The SLS will offer a robust way to transport international crews and the air, water, food, and equipment they will need for extended trips to explore new frontiers. In addition, this paper will summarize the SLS rocket's capability to support science and robotic precursor missions to other worlds, or uniquely high-mass space facilities in Earth orbit. As this paper will explain, the SLS is making measurable progress toward becoming a global infrastructure asset for robotic and human scouts of all nations by providing the robust launch capability to deliver sustainable solutions for space exploration.

  16. The development of performance, interference, sharing and coordination criteria

    NASA Technical Reports Server (NTRS)

    Tillotson, Tom

    1986-01-01

    The criteria for sharing and coordination between the Earth Exploration Satellite service and other radio services is not fully developed at this time. The purpose is to develop a plan showing how the necessary criteria might be developed. Some criteria does exist in the form of general restrictions, protection criteria, and coordination procedures for space and terrestrial services sharing the same bands. Determining suitable criteria for EES bands depends on the use of the band and the shared services. For example the criteria developed for EES passive sensing band will be developed in a manner different than for a telemetry band. In either case the resultant criteria will be related to, and can be referenced from the system noise power or equivalent noise temperature.

  17. Maximizing information from space data resources: a case for expanding integration across research disciplines.

    PubMed

    Goswami, Nandu; Batzel, Jerry J; Clément, Gilles; Stein, T Peter; Hargens, Alan R; Sharp, M Keith; Blaber, Andrew P; Roma, Peter G; Hinghofer-Szalkay, Helmut G

    2013-07-01

    Regulatory systems are affected in space by exposure to weightlessness, high-energy radiation or other spaceflight-induced changes. The impact of spaceflight occurs across multiple scales and systems. Exploring such interactions and interdependencies via an integrative approach provides new opportunities for elucidating these complex responses. This paper argues the case for increased emphasis on integration, systematically archiving, and the coordination of past, present and future space and ground-based analogue experiments. We also discuss possible mechanisms for such integration across disciplines and missions. This article then introduces several discipline-specific reviews that show how such integration can be implemented. Areas explored include: adaptation of the central nervous system to space; cerebral autoregulation and weightlessness; modelling of the cardiovascular system in space exploration; human metabolic response to spaceflight; and exercise, artificial gravity, and physiologic countermeasures for spaceflight. In summary, spaceflight physiology research needs a conceptual framework that extends problem solving beyond disciplinary barriers. Administrative commitment and a high degree of cooperation among investigators are needed to further such a process. Well-designed interdisciplinary research can expand opportunities for broad interpretation of results across multiple physiological systems, which may have applications on Earth.

  18. Exploring biology with small organic molecules

    PubMed Central

    Stockwell, Brent R.

    2011-01-01

    Small organic molecules have proven to be invaluable tools for investigating biological systems, but there is still much to learn from their use. To discover and to use more effectively new chemical tools to understand biology, strategies are needed that allow us to systematically explore ‘biological-activity space’. Such strategies involve analysing both protein binding of, and phenotypic responses to, small organic molecules. The mapping of biological-activity space using small molecules is akin to mapping the stars — uncharted territory is explored using a system of coordinates that describes where each new feature lies. PMID:15602550

  19. Caring in the Dynamics of Design and Languaging: Exploring Second Language Learning in 3D Virtual Spaces

    ERIC Educational Resources Information Center

    Zheng, Dongping

    2012-01-01

    This study provides concrete evidence of ecological, dialogical views of languaging within the dynamics of coordination and cooperation in a virtual world. Beginning level second language learners of Chinese engaged in cooperative activities designed to provide them opportunities to refine linguistic actions by way of caring for others, for the…

  20. Exploring the Free Energy Landscape of Solutes Embedded in Lipid Bilayers.

    PubMed

    Jämbeck, Joakim P M; Lyubartsev, Alexander P

    2013-06-06

    Free energy calculations are vital for our understanding of biological processes on an atomistic scale and can offer insight to various mechanisms. However, in some cases, degrees of freedom (DOFs) orthogonal to the reaction coordinate have high energy barriers and/or long equilibration times, which prohibit proper sampling. Here we identify these orthogonal DOFs when studying the transfer of a solute from water to a model membrane. Important DOFs are identified in bulk liquids of different dielectric nature with metadynamics simulations and are used as reaction coordinates for the translocation process, resulting in two- and three-dimensional space of reaction coordinates. The results are in good agreement with experiments and elucidate the pitfalls of using one-dimensional reaction coordinates. The calculations performed here offer the most detailed free energy landscape of solutes embedded in lipid bilayers to date and show that free energy calculations can be used to study complex membrane translocation phenomena.

  1. Dimensional oscillation. A fast variation of energy embedding gives good results with the AMBER potential energy function.

    PubMed

    Snow, M E; Crippen, G M

    1991-08-01

    The structure of the AMBER potential energy surface of the cyclic tetrapeptide cyclotetrasarcosyl is analyzed as a function of the dimensionality of coordinate space. It is found that the number of local energy minima decreases as the dimensionality of the space increases until some limit at which point equipotential subspaces appear. The applicability of energy embedding methods to finding global energy minima in this type of energy-conformation space is explored. Dimensional oscillation, a computationally fast variant of energy embedding is introduced and found to sample conformation space widely and to do a good job of finding global and near-global energy minima.

  2. Hamiltonian flow over saddles for exploring molecular phase space structures

    NASA Astrophysics Data System (ADS)

    Farantos, Stavros C.

    2018-03-01

    Despite using potential energy surfaces, multivariable functions on molecular configuration space, to comprehend chemical dynamics for decades, the real happenings in molecules occur in phase space, in which the states of a classical dynamical system are completely determined by the coordinates and their conjugate momenta. Theoretical and numerical results are presented, employing alanine dipeptide as a model system, to support the view that geometrical structures in phase space dictate the dynamics of molecules, the fingerprints of which are traced by following the Hamiltonian flow above saddles. By properly selecting initial conditions in alanine dipeptide, we have found internally free rotor trajectories the existence of which can only be justified in a phase space perspective. This article is part of the theme issue `Modern theoretical chemistry'.

  3. Towards a National Space Weather Predictive Capability

    NASA Astrophysics Data System (ADS)

    Fox, N. J.; Ryschkewitsch, M. G.; Merkin, V. G.; Stephens, G. K.; Gjerloev, J. W.; Barnes, R. J.; Anderson, B. J.; Paxton, L. J.; Ukhorskiy, A. Y.; Kelly, M. A.; Berger, T. E.; Bonadonna, L. C. M. F.; Hesse, M.; Sharma, S.

    2015-12-01

    National needs in the area of space weather informational and predictive tools are growing rapidly. Adverse conditions in the space environment can cause disruption of satellite operations, communications, navigation, and electric power distribution grids, leading to a variety of socio-economic losses and impacts on our security. Future space exploration and most modern human endeavors will require major advances in physical understanding and improved transition of space research to operations. At present, only a small fraction of the latest research and development results from NASA, NOAA, NSF and DoD investments are being used to improve space weather forecasting and to develop operational tools. The power of modern research and space weather model development needs to be better utilized to enable comprehensive, timely, and accurate operational space weather tools. The mere production of space weather information is not sufficient to address the needs of those who are affected by space weather. A coordinated effort is required to support research-to-applications transition efforts and to develop the tools required those who rely on this information. In this presentation we will review the space weather system developed for the Van Allen Probes mission, together with other datasets, tools and models that have resulted from research by scientists at JHU/APL. We will look at how these, and results from future missions such as Solar Probe Plus, could be applied to support space weather applications in coordination with other community assets and capabilities.

  4. Alpha-beta coordination method for collective search

    DOEpatents

    Goldsmith, Steven Y.

    2002-01-01

    The present invention comprises a decentralized coordination strategy called alpha-beta coordination. The alpha-beta coordination strategy is a family of collective search methods that allow teams of communicating agents to implicitly coordinate their search activities through a division of labor based on self-selected roles and self-determined status. An agent can play one of two complementary roles. An agent in the alpha role is motivated to improve its status by exploring new regions of the search space. An agent in the beta role is also motivated to improve its status, but is conservative and tends to remain aggregated with other agents until alpha agents have clearly identified and communicated better regions of the search space. An agent can select its role dynamically based on its current status value relative to the status values of neighboring team members. Status can be determined by a function of the agent's sensor readings, and can generally be a measurement of source intensity at the agent's current location. An agent's decision cycle can comprise three sequential decision rules: (1) selection of a current role based on the evaluation of the current status data, (2) selection of a specific subset of the current data, and (3) determination of the next heading using the selected data. Variations of the decision rules produce different versions of alpha and beta behaviors that lead to different collective behavior properties.

  5. Ending Year in Space: NASA Goddard Network Maintains Communications from Space to Ground

    NASA Image and Video Library

    2016-03-01

    NASA's Goddard Space Flight Center in Greenbelt, Maryland, will monitor the landing of NASA Astronaut Scott Kelly and Russian Cosmonaut Mikhail Kornienko from their #YearInSpace Mission. Goddard's Networks Integration Center, pictured above, leads all coordination for space-to-ground communications support for the International Space Station and provides contingency support for the Soyuz TMA-18M 44S spacecraft, ensuring complete communications coverage through NASA's Space Network. The Soyuz 44S spacecraft will undock at 8:02 p.m. EST this evening from the International Space Station. It will land approximately three and a half hours later, at 11:25 p.m. EST in Kazakhstan. Both Kelly and Kornienko have spent 340 days aboard the International Space Station, preparing humanity for long duration missions and exploration into deep space. Read more: www.nasa.gov/feature/goddard/2016/ending-year-in-space-na... Credit: NASA/Goddard/Rebecca Roth NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. Ending Year in Space: NASA Goddard Network Maintains Communications from Space to Ground

    NASA Image and Video Library

    2017-12-08

    NASA's Goddard Space Flight Center in Greenbelt, Maryland, will monitor the landing of NASA Astronaut Scott Kelly and Russian Cosmonaut Mikhail Kornienko from their #YearInSpace Mission. Goddard's Networks Integration Center, pictured above, leads all coordination for space-to-ground communications support for the International Space Station and provides contingency support for the Soyuz TMA-18M 44S spacecraft, ensuring complete communications coverage through NASA's Space Network. The Soyuz 44S spacecraft will undock at 8:02 p.m. EST this evening from the International Space Station. It will land approximately three and a half hours later, at 11:25 p.m. EST in Kazakhstan. Both Kelly and Kornienko have spent 340 days aboard the International Space Station, preparing humanity for long duration missions and exploration into deep space. Read more: www.nasa.gov/feature/goddard/2016/ending-year-in-space-na... Credit: NASA/Goddard/Rebecca Roth NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Life Support and Environmental Monitoring International System Maturation Team Considerations.

    NASA Technical Reports Server (NTRS)

    Anderson, Molly; Gatens, Robyn; Ikeda, Toshitami; Ito, Tsuyoshi; Hovland, Scott; Witt, Johannes

    2016-01-01

    Human exploration of the solar system is an ambitious goal. Future human missions to Mars or other planets will require the cooperation of many nations to be feasible. Exploration goals and concepts have been gathered by the International Space Exploration Coordination Group (ISECG) at a very high level, representing the overall goals and strategies of each participating space agency. The Global Exploration Roadmap published by ISECG states that international partnerships are part of what drives the the mission scenarios. It states "Collaborations will be established at all levels (missions, capabilities, technologies), with various levels of interdependency among the partners." To make missions with interdependency successful, technologists and system experts need to share information early, before agencies have made concrete plans and binding agreements. This paper provides an overview of possible ways of integrating NASA, ESA, and JAXA work into a conceptual roadmap of life support and environmental monitoring capabilities for future exploration missions. Agencies may have immediate plans as well as long term goals or new ideas that are not part of official policy. But relationships between plans and capabilities may influence the strategies for the best ways to achieve partner goals. Without commitments and an organized program like the International Space Station, requirements for future missions are unclear. Experience from ISS has shown that standards and an early understanding of requirements are an important part of international partnerships. Attempting to integrate systems that were not designed together can create many problems. Several areas have been identified that could be important to discuss and understand early: units of measure, cabin CO2 levels, and the definition and description of fluids like high purity oxygen, potable water and residual biocide, and crew urine and urine pretreat. Each of the partners is exploring different kinds of technologies. Different specific parameters may important to define or explore possible ranges depending on the system concepts. Early coordination between technology developers can create new possibilities for collaboration, and provide input to determine what combined options may provide the best overall system architecture.

  8. Life Support and Environmental Monitoring International System Maturation Team Considerations

    NASA Technical Reports Server (NTRS)

    Anderson, Molly; Gatens, Robyn; Ikeda, Toshitami; Ito, Tsuyoshi; Hovland, Scott; Witt, Johannes

    2016-01-01

    Human exploration of the solar system is an ambitious goal. Future human missions to Mars or other planets will require the cooperation of many nations to be feasible. Exploration goals and concepts have been gathered by the International Space Exploration Coordination Group (ISECG) at a very high level, representing the overall goals and strategies of each participating space agency. The Global Exploration Roadmap published by ISECG states that international partnerships are part of what drives the mission scenarios. It states "Collaborations will be established at all levels (missions, capabilities, technologies), with various levels of interdependency among the partners." To make missions with interdependency successful, technologists and system experts need to share information early, before agencies have made concrete plans and binding agreements. This paper provides an overview of possible ways of integrating NASA, ESA, and JAXA work into a conceptual roadmap of life support and environmental monitoring capabilities for future exploration missions. Agencies may have immediate plans as well as long term goals or new ideas that are not part of official policy. But relationships between plans and capabilities may influence the strategies for the best ways to achieve partner goals. Without commitments and an organized program like the International Space Station, requirements for future missions are unclear. Experience from ISS has shown that standards and an early understanding of requirements are an important part of international partnerships. Attempting to integrate systems that were not designed together can create many problems. Several areas have been identified that could be important to discuss and understand early: units of measure, cabin CO2 levels, and the definition and description of fluids like high purity oxygen, potable water and residual biocide, and crew urine and urine pretreat. Each of the partners is exploring different kinds of technologies. Different specific parameters may important to define or explore possible ranges depending on the system concepts. Early coordination between technology developers can create new possibilities for collaboration, and provide input to determine what combined options may provide the best overall system architecture.

  9. Embodied Interaction Priority: Other's Body Part Affects Numeral-Space Mappings.

    PubMed

    You, Xuqun; Zhang, Yu; Zhu, Rongjuan; Guo, Yu

    2018-01-01

    Traditionally, the spatial-numerical association of response codes (SNARC) effect was presented in two-choice condition, in which only one individual reacted to both even (small) and odd (large) numbers. Few studies explored SNARC effect in a social situation. Moreover, there are many reference frames involved in SNARC effect, and it has not yet been investigated which reference frame is dominated when two participants perform the go-nogo task together. In the present study, we investigated which reference frame plays a primary role in SNARC effect when allocentric and egocentric reference frames were consistent or inconsistent in social settings. Furthermore, we explored how two actors corepresent number-space mapping interactively. Results of the two experiments demonstrated that egocentric reference frame was at work primarily when two reference frames were consistent and inconsistent. This shows that body-centered coordinate frames influence number-space mapping in social settings, and one actor may represent another actor's action and tasks.

  10. Using Analog Field Tests To Link and Prepare Science and In-Situ Resource Utilization for Future Space Missions

    NASA Technical Reports Server (NTRS)

    Sanders, Gerald B.

    2010-01-01

    A major goal of NASA s human exploration program is to learn how to use the resources of space, known as In-Situ Resource Utilization (ISRU), to lower the cost and risk of human space exploration. Successful implementation of ISRU requires detailed knowledge of surface and subsurface materials, minerals, and volatiles that may be present. This same information is required to better understand the physical and geologic composition, structure, origin, and evolution of the Moon, Mars, and other extraterrestrial bodies of interest. It is also important to recognize that while ISRU and science objectives may be similar, the desired method or hardware to achieve the information desired may be drastically different. One method to promote understanding, coordination, and joint development of instruments and operations between Science and ISRU is the use of analog field demonstrations.

  11. Implementing NASA's Capability-Driven Approach: Insight into NASA's Processes for Maturing Exploration Systems

    NASA Technical Reports Server (NTRS)

    Williams-Byrd, Julie; Arney, Dale; Rodgers, Erica; Antol, Jeff; Simon, Matthew; Hay, Jason; Larman, Kevin

    2015-01-01

    NASA is engaged in transforming human spaceflight. The Agency is shifting from an exploration-based program with human activities focused on low Earth orbit (LEO) and targeted robotic missions in deep space to a more sustainable and integrated pioneering approach. Through pioneering, NASA seeks to address national goals to develop the capacity for people to work, learn, operate, live, and thrive safely beyond the Earth for extended periods of time. However, pioneering space involves more than the daunting technical challenges of transportation, maintaining health, and enabling crew productivity for long durations in remote, hostile, and alien environments. This shift also requires a change in operating processes for NASA. The Agency can no longer afford to engineer systems for specific missions and destinations and instead must focus on common capabilities that enable a range of destinations and missions. NASA has codified a capability driven approach, which provides flexible guidance for the development and maturation of common capabilities necessary for human pioneers beyond LEO. This approach has been included in NASA policy and is captured in the Agency's strategic goals. It is currently being implemented across NASA's centers and programs. Throughout 2014, NASA engaged in an Agency-wide process to define and refine exploration-related capabilities and associated gaps, focusing only on those that are critical for human exploration beyond LEO. NASA identified 12 common capabilities ranging from Environmental Control and Life Support Systems to Robotics, and established Agency-wide teams or working groups comprised of subject matter experts that are responsible for the maturation of these exploration capabilities. These teams, called the System Maturation Teams (SMTs) help formulate, guide and resolve performance gaps associated with the identified exploration capabilities. The SMTs are defining performance parameters and goals for each of the 12 capabilities, developing maturation plans and roadmaps for the identified performance gaps, specifying the interfaces between the various capabilities, and ensuring that the capabilities mature and integrate to enable future pioneering missions. By managing system development through the SMTs instead of traditional NASA programs and projects, the Agency is shifting from mission-driven development to a more flexible, capability-driven development. The process NASA uses to establish, integrate, prioritize, and manage the SMTs and associated capabilities is iterative. NASA relies on the Human Exploration and Operation Mission Directorate's SMT Integration Team within Advanced Exploration Systems to coordinate and facilitate the SMT process. The SMT Integration team conducts regular reviews and coordination meetings among the SMTs and has developed a number of tools to help the Agency implement capability driven processes. The SMT Integration team is uniquely positioned to help the Agency coordinate the SMTs and other processes that are making the capability-driven approach a reality. This paper will introduce the SMTs and the 12 key capabilities they represent. The role of the SMTs will be discussed with respect to Agency-wide processes to shift from mission-focused exploration to a capability-driven pioneering approach. Specific examples will be given to highlight systems development and testing within the SMTs. These examples will also show how NASA is using current investments in the International Space Station and future investments to develop and demonstrate capabilities. The paper will conclude by describing next steps and a process for soliciting feedback from the space exploration community to refine NASA's process for developing common exploration capabilities.

  12. Community Report and Recommendations from International Lunar Exploration Working Group (ILEWG)

    NASA Astrophysics Data System (ADS)

    Foing, Bernard H.

    2016-07-01

    The International Lunar Exploration Working Group (ILEWG) was established in April 1995 at a meeting in Hamburg, Germany. As established in its charter, this working group reports to COSPAR and is charged with developing an international strategy for the exploration of the Moon. It discusses coordination between missions, and a road map for future international lunar exploration and utilisation. It fosters information exchange or potential and real future lunar robotic and human missions, as well as for new scientific and exploration information about the Moon. We refer to COSPAR and ILEWG ICEUM and lunar conferences and declarations [1-18], present the GLUC/ICEUM11 declaration and give a report on ongoing relevant ILEWG community activities. ILEWG supported community forums, ILEWG EuroMoonMars field campaigns and technology validation activities, as well as Young Lunar Explorers events, and activities with broad stakeholders. We discuss how lunar missions SMART-1, Kaguya, Chang'E1&2, Chandrayaan-1, LCROSS, LRO, GRAIL, LADEE, Chang'E3 and upcoming missions contribute to lunar exploration objectives & roadmap towards the Moon Village. GLUC/ICEUM11 declaration: "467 International Lunar Explorers, registered delegates from 26 countries, assembled at GLUC Global Lunar Conference including the 11th ILEWG Conference on Exploration and Utilisation of the Moon (ICEUM11) in Beijing. The conference engaged scientists, engineers, enthusiast explorers, agencies and organisations in the discussion of recent results and activities and the review of plans for exploration. Space agencies representatives gave the latest reports on their current lunar activities and programmes. GLUC-ICEUM11 was a truly historical meeting that demonstrated the world-wide interest in lunar exploration, discovery, and science. More than 400 abstracts were accepted for oral and poster presentations in the technical sessions, organised in 32 sessions within 4 symposia: Science and Exploration; Technology and Resource Utilisation; Infrastructure and Human aspects; Moon, Space and Society. The latest technical achievements and results of recent missions (SMART-1, Kaguya, Chang'E1, Chandrayaan-1, LCROSS and LRO) were discussed at a plenary panel and technical sessions, with the Lunar Reconnaissance Orbiter (LRO) still in operation. Chang'E1 has generated many useful results for the community. Four plenary panel sessions were conducted: 1. What are the plans? 2. New mission results; 3. From space stations and robotic precursors to lunar bases; 4. Moon, Space, Society The participants summarised their findings, discussions and recommend o continue efforts by agencies and the community on previous ICEUM recommendations, and the continuation of the ILEWG forum, technical groups activities and pilot projects. 1. Science and exploration - World-wide access to raw and derived (geophysical units) data products using consistent formats and coordinate systems will maximize return on investment. We call to develop and implement plans for generation, validation, and release of these data products. Data should be made available for scientific analysis and supporting the development and planning of future missions - There are still Outstanding Questions: Structure and composition of crust, mantle, and core and implications for the origin and evolution of the Earth-Moon system; Timing, origin, and consequences of late heavy bombardment; Impact processes and regolith evolution; Nature and origin of volatile emplacement; Implications for resource utilization. These questions require international cooperation and sharing of results in order to be answered in a cost-effective manner - Ground truth information on the lunar far side is missing and needed to address many important scientific questions, e.g. with a sample return from South Pole- Aitken Basin - Knowledge of the interior is poor relative to the surface, and is needed to address a number of key questions, e.g. with International Lunar Network for seismometry and other geophysical measurements - Lunar missions will be driven by exploration, resource utilization, and science; we should consider minimum science payload for every mission, e.g., landers and rovers should carry instruments to determine surface composition and mineralogy - It is felt important to have a shared database about previous missions available for free, so as to provide inputs to future missions, including a gap analysis of needed measurements. Highly resolved global data sets are required. Autonomous landing and hazard avoidance will depend on the best topographic map of the Moon, achievable by combining shared data. - New topics such as life sciences, partial gravity processes on the Moon should be followed in relation to future exploration needs. 2. Technologies and resources - A number of robotic missions to the Moon are now undertaken independently by various nations, with a degree of exchange of information and coordination. That should increase towards real cooperation, still allowing areas of competition for keeping the process active, cost-effective and faster. - Lunar landers, pressurized lunar rover projects as presented from Europe, Asia and America are important steps that can create opportunities for international collaboration, within a coordinated village of robotic precursors and assistants to crew missions. - We have to think about development, modernization of existing navigation capabilities, and provision of lunar positioning, navigation and data relay assets to support future robotic and human exploration. New concepts and new methods for transportation have attracted much attention and are of great potential. 3. Infrastructures and human aspects - It is recommended to have technical sessions and activities dealing with different aspects of human adaptation to space environments, the modeling of sub-systems, microbial protection and use of inflatable technologies - While the Moon is the best and next logical step in human exploration, we should make best use of the space stations as stepping stones for exploration and human spaceflight beyond Low Earth Orbit. - Further research is needed on lunar dust aspects in regard to humans and interaction with habitats. We note high interest in CELSS for Moon and Mars bases, and recommend further research and development. - We recommend the development and use of terrestrial analogues research sites and facilities, for technology demonstrations, comparative geology and human performance research, and public engagement. We endorse the proposal of development of a site at La Reunion for international Moon-Mars analogue research. 4. Moon, Space, Society and Young Explorers - We consider that the current legal regime as set out in the Outer Space Treaty and the Moon agreement are satisfactory for current and future missions, but may require further clarification for future exploration. Issues of transparency and security will need to be addressed. - Great things are happening for Young Lunar Explorers, with inspiring missions and hands-on activities as coordinated by ILEWG. Lunar exploration is encouraging students of all ages to pursue higher education. - More possibilities for participatory engagement should be offered to the society for example via interdisciplinary activities with the humanities. - We appreciate the work from COSPAR panel on Exploration PEX that should be shared further. - Continued cooperation should be enforced at all levels. The space community feels strongly that joining the forces of space faring nations to explore the Moon should be seriously implemented, with the views of expanding a Global Robotic Village and building in the long run a Manned International Lunar Base. - We propose that a panel be formed through ILEWG with the help of IAF and Chinese Society of Astronautics in cooperation with space agencies, COSPAR and other stakeholders in order to initiate a permanent International Space Exploration Governance Forum We, the participants of the GLUC-ICEUM11 conference, commit to an enhanced global cooperation towards international lunar exploration for the benefit of humankind. Endorsed by the delegates of GLUC-ICEUM11" References: [1] 1st International Lunar Workshop, Balsiger H. et al., Editors, European Space Agency, 1994. ESA-SP-1170. [2] 2nd International Lunar Workshop, Kyoto, H. Mizutani, editor, Japan Space Forum Publisher, 1997. [3] 3rd International Lunar Workshop, Moscow 1998, E. Galimov, editor. [4] ICEUM4, ESTEC, 2000, ESA SP-462, B.H. Foing & M. Perry, editors. [5] ICEUM5, Hawaii Nov 2003, Durst S.M. et al, Editors, Vol 108, 1-576 pp, Science and Technology Series, American Astronautical Society, 2004. [6] ICEUM6, Udaipur 2004, Bhandari N., Editor, Journal Earth System Science, India, 114, No6, Dec 2005, pp. 573-841. [7] ICEUM7, Toronto Sept 2005, sci.esa.int/ilewg. [8] ICEUM8, Beijing July 2006, Journal of Chinese Society of Astronautics, Vol. 28 Sup., 2007, Ji W., Editor. [9] ICEUM9, Sorrento, Italy, Foing B., Espinasse S., Kosters G., Editors. http://sci.esa.int/iceum9, Dec. 2007), [11] Ehrenfreund, P., Foing, B.H., Cellino, A. Editors, The Moon and Near Earth Objects, ASR Vol 37, 1, 2006. [12] Foing, B.H. et al editors, 'Astronomy and Space Science from the Moon', ASR 14, 6, 1994. [13] Ip W.-H., Foing, B.H., Masson Ph.L., editors, The Moon and Mars, ASR Vol 23, 11, 1999. [14] Foing, B.H. et al, editor, Lunar Exploration, Planetary and Space Science, Vol 50, 14-15, 2002. [15] Foing, B.H., Heather, D. editors, 'Lunar Exploration 2000', ASR Vol 30, Nr 8, 2002. [16] Huntress, W. et al 'The next steps in exploring deep space - A cosmic study by the IAA', Acta Astronautica, Vol 58, Issues 6-7, 2006, p302-377. [17] http://sci.esa.int/ilewg/43654-declaration-iceum10-leag-srr-florida-2008/ [18] Ehrenfreund P. et al (COSPAR planetary exploration panel report) 2012, ASR Vol 49, Nr 1, pp. 2-48.

  13. Time and Energy, Exploring Trajectory Options Between Nodes in Earth-Moon Space

    NASA Technical Reports Server (NTRS)

    Martinez, Roland; Condon, Gerald; Williams, Jacob

    2012-01-01

    The Global Exploration Roadmap (GER) was released by the International Space Exploration Coordination Group (ISECG) in September of 2011. It describes mission scenarios that begin with the International Space Station and utilize it to demonstrate necessary technologies and capabilities prior to deployment of systems into Earth-Moon space. Deployment of these systems is an intermediate step in preparation for more complex deep space missions to near-Earth asteroids and eventually Mars. In one of the scenarios described in the GER, "Asteroid Next", there are activities that occur in Earth-Moon space at one of the Earth-Moon Lagrange (libration) points. In this regard, the authors examine the possible role of an intermediate staging point in an effort to illuminate potential trajectory options for conducting missions in Earth-Moon space of increasing duration, ultimately leading to deep space missions. This paper will describe several options for transits between Low Earth Orbit (LEO) and the libration points, transits between libration points, and transits between the libration points and interplanetary trajectories. The solution space provided will be constrained by selected orbital mechanics design techniques and physical characteristics of hardware to be used in both crewed missions and uncrewed missions. The relationships between time and energy required to transfer hardware between these locations will provide a better understanding of the potential trade-offs mission planners could consider in the development of capabilities, individual missions, and mission series in the context of the ISECG GER.

  14. Movement-based estimation and visualization of space use in 3D for wildlife ecology and conservation

    USGS Publications Warehouse

    Tracey, Jeff A.; Sheppard, James; Zhu, Jun; Wei, Fu-Wen; Swaisgood, Ronald R.; Fisher, Robert N.

    2014-01-01

    Advances in digital biotelemetry technologies are enabling the collection of bigger and more accurate data on the movements of free-ranging wildlife in space and time. Although many biotelemetry devices record 3D location data with x, y, and z coordinates from tracked animals, the third z coordinate is typically not integrated into studies of animal spatial use. Disregarding the vertical component may seriously limit understanding of animal habitat use and niche separation. We present novel movement-based kernel density estimators and computer visualization tools for generating and exploring 3D home ranges based on location data. We use case studies of three wildlife species – giant panda, dugong, and California condor – to demonstrate the ecological insights and conservation management benefits provided by 3D home range estimation and visualization for terrestrial, aquatic, and avian wildlife research.

  15. Movement-Based Estimation and Visualization of Space Use in 3D for Wildlife Ecology and Conservation

    PubMed Central

    Tracey, Jeff A.; Sheppard, James; Zhu, Jun; Wei, Fuwen; Swaisgood, Ronald R.; Fisher, Robert N.

    2014-01-01

    Advances in digital biotelemetry technologies are enabling the collection of bigger and more accurate data on the movements of free-ranging wildlife in space and time. Although many biotelemetry devices record 3D location data with x, y, and z coordinates from tracked animals, the third z coordinate is typically not integrated into studies of animal spatial use. Disregarding the vertical component may seriously limit understanding of animal habitat use and niche separation. We present novel movement-based kernel density estimators and computer visualization tools for generating and exploring 3D home ranges based on location data. We use case studies of three wildlife species – giant panda, dugong, and California condor – to demonstrate the ecological insights and conservation management benefits provided by 3D home range estimation and visualization for terrestrial, aquatic, and avian wildlife research. PMID:24988114

  16. NASA's Space Launch System: One Vehicle, Many Destinations

    NASA Technical Reports Server (NTRS)

    May, Todd A.; Creech, Stephen D.

    2013-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for exploration beyond Earth orbit (BEO). Developed with the goals of safety, affordability and sustainability in mind, SLS will start with 10 percent more thrust than the Saturn V rocket that launched astronauts to the Moon 40 years ago. From there it will evolve into the most powerful launch vehicle ever flown, via an upgrade approach that will provide building blocks for future space exploration and development. The International Space Exploration Coordination Group, representing 12 of the world's space agencies, has worked together to create the Global Exploration Roadmap, which outlines paths towards a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for all three destinations. This paper will explore the requirements needed for missions to BEO destinations, and the capability of SLS to meet those requirements and enable those missions. It will explain how NASA will execute this development within flat budgetary guidelines by using existing engines assets and heritage technology, from the initial 70 metric ton (t) lift capability through a block upgrade approach to an evolved 130-t capability. The SLS will offer a robust way to transport international crews and the air, water, food, and equipment they would need for extended trips to asteroids, the Moon, and Mars. In addition, this paper will detail SLS's capability to support missions beyond the human exploration roadmap, including robotic precursor missions to other worlds or uniquely high-mass space operation facilities in Earth orbit. As this paper will explain, the SLS provides game-changing mass and volume lift capability that makes it enhancing or enabling for a variety of unprecedented human and robotic missions.

  17. 78 FR 34557 - Establishment of Class E Airspace; Sanibel, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ... the FAA found that the heliport coordinates were incorrectly listed as point in space coordinates; and point in space coordinates were inadvertently omitted. This action makes the correction. Except for.... Controlled airspace within a 6-mile radius of the point in space coordinates of the heliport is necessary for...

  18. 78 FR 33967 - Establishment of Class E Airspace; Captiva, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    ... the FAA found that the heliport coordinates were incorrectly listed as point in space coordinates; and point in space coordinates were inadvertently omitted. This action makes the correction. Except for... Heliport. Controlled airspace within a 6-mile radius of the point in space coordinates of the heliport is...

  19. Minimal scales from an extended Hilbert space

    NASA Astrophysics Data System (ADS)

    Kober, Martin; Nicolini, Piero

    2010-12-01

    We consider an extension of the conventional quantum Heisenberg algebra, assuming that coordinates as well as momenta fulfil nontrivial commutation relations. As a consequence, a minimal length and a minimal mass scale are implemented. Our commutators do not depend on positions and momenta and we provide an extension of the coordinate coherent state approach to noncommutative geometry. We explore, as a toy model, the corresponding quantum field theory in a (2+1)-dimensional spacetime. Then we investigate the more realistic case of a (3+1)-dimensional spacetime, foliated into noncommutative planes. As a result, we obtain propagators, which are finite in the ultraviolet as well as the infrared regime.

  20. Using Authentic Science in the Classroom: NASA's Coordinated Efforts to Enhance STEM Education

    NASA Astrophysics Data System (ADS)

    Lawton, B.; Schwerin, T.; Low, R.

    2015-11-01

    A key NASA education goal is to attract and retain students in science, technology engineering, and mathematics (STEM) disciplines. When teachers engage students in the examination of authentic data derived from NASA satellite missions, they simultaneously build 21st century technology skills as well as core content knowledge about the Earth and space. In this session, we highlight coordinated efforts by NASA Science Mission Directorate (SMD) Education and Public Outreach (EPO) programs to enhance educator accessibility to data resources, distribute state-of -the-art data tools and expand pathways for educators to find and use data resources. The group discussion explores how NASA SMD EPO efforts can further improve teacher access to authentic NASA data, identifies the types of tools and lessons most requested by the community, and explores how communication and collaboration between product developers and classroom educators using data tools and products can be enhanced.

  1. Exploration Life Support Critical Questions for Future Human Space Missions

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K.; Barta, Daniel J.; McQuillan, Jeff

    2009-01-01

    Exploration Life Support (ELS) is a project under NASA s Exploration Technology Development Program. The ELS Project plans, coordinates and implements the development of advanced life support technologies for human exploration missions in space. Recent work has focused on closed loop atmosphere and water systems for a lunar outpost, including habitats and pressurized rovers. But, what are the critical questions facing life support system developers for these and other future human missions? This paper explores those questions and discusses how progress in the development of ELS technologies can help answer them. The ELS Project includes Atmosphere Revitalization Systems (ARS), Water Recovery Systems (WRS), Waste Management Systems (WMS), Habitation Engineering, Systems Integration, Modeling and Analysis (SIMA), and Validation and Testing, which includes the sub-elements Flight Experiments and Integrated Testing. Systems engineering analysis by ELS seeks to optimize the overall mission architecture by considering all the internal and external interfaces of the life support system and the potential for reduction or reuse of commodities. In particular, various sources and sinks of water and oxygen are considered along with the implications on loop closure and the resulting launch mass requirements.

  2. Ultrasonic Attenuation in Normal and Superconducting Indium.

    DTIC Science & Technology

    1980-05-22

    dimension x space coordinate, dislocation displacement dislocation displacement y space coordinate.1z space coordinate x ACKNOWLEDGMENTS The author...The driving force on the dislocation is given by: F=bO (2.7) In general, the dislocation displacement will be a function of three space coordinates...mm diameter, 50 Q impedance coaxial conductors 47 * made of stainless steel and teflon . The cavity button is soldered * directly to the rigid

  3. An assessment of prospects for international cooperation on the Space Exploration Initiative

    NASA Technical Reports Server (NTRS)

    Cline, Lynn F. H.; Rosendhal, Jeffrey D.

    1991-01-01

    This paper discusses the unique characteristics of the Space Exploration Initiative (SEI) which will have to be taken into account if the Initiative is to become an international one; the technical capabilities offered by prospective international partners; the political and economic prospects for proceeding with the Initiative both in the United States and elsewhere; and the advantages and disadvantages of various possible approaches to international cooperation on SEI. SEI preparatory activities are likely to extend over a several-year period. Such an extended preparatory period should provide the time needed for coordinating studies, for identifing interests and potential contributions, and for resolving the numerous planning, budgeting, organizational and political issues which will have to be dealt with if such a complex undertaking is to be successfully internationalized.

  4. 78 FR 33968 - Establishment of Class E Airspace; Boca Grande, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    ... publication the FAA found that the heliport coordinates were incorrectly listed as point in space coordinates; and point in space coordinates were inadvertently omitted. This action makes the correction. Except.... Controlled airspace within a 6-mile radius of the point in space coordinates of the heliport is necessary for...

  5. 78 FR 33966 - Establishment of Class E Airspace; Pine Island, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    ... publication the FAA found that the heliport coordinates were incorrectly listed as point in space coordinates; and point in space coordinates were inadvertently omitted. This action makes the correction. Except.... Controlled airspace within a 6-mile radius of the point in space coordinates of the heliport is necessary for...

  6. Planning to Explore: Using a Coordinated Multisource Infrastructure to Overcome Present and Future Space Flight Planning Challenges

    NASA Technical Reports Server (NTRS)

    Balaban, Edward; Orosz, Michael; Kichkaylo, Tatiana; Goforth, Andre; Sweet, Adam; Neches, Robert

    2006-01-01

    Few human endeavors present as much of a planning and scheduling challenge as space flight, particularly manned space flight. Just on the operational side of it, efforts of thousands of people across hundreds of organizations need to be coordinated. Numerous tasks of varying complexity and nature, from scientific to construction, need to be accomplished within limited mission time frames. Resources need to be carefully managed and contingencies worked out, often on a very short notice. From the beginning of the NASA space program, planning has been done by large teams of domain experts working months, sometimes years, to put together a single mission. This approach, while proven very reliable up to now, is becoming increasingly harder to sustain. Elevated levels of NASA space activities, from deployment of the new Crew Exploration Vehicle (CEV) and completion of the International Space Station (ISS), to the planned lunar missions and permanent lunar bases, will put an even greater strain on this largely manual process. While several attempts to automate it have been made in the past, none have fully succeeded. In this paper we describe the current NASA planning methods, outline their advantages and disadvantages, discuss the planning challenges of upcoming missions and propose a distributed planning/scheduling framework (CMMD) aimed at unifying and optimizing the planning effort. CMMD will not attempt to make the process completely automated, but rather serve in a decision support capacity for human managers and planners. It will help manage information gathering, creation of partial and consolidated schedules, inter-team negotiations, contingencies investigation, and rapid re-planning when the situation demands it. The fist area of CMMD application will be planning for Extravehicular Activities (EVA) and associated logistics. Other potential applications, not only in the space flight domain, and future research efforts will be discussed as well.

  7. Considerations on private human access to space from an institutional point of view

    NASA Astrophysics Data System (ADS)

    Hufenbach, Bernhard

    2013-12-01

    Private human access to space as discussed in this article addresses two market segments: suborbital flight and crew flights to Low Earth Orbit. The role of entrepreneurs, the technical complexity, the customers, the market conditions as well as the time to market in these two segments differ significantly. Space agencies take currently a very different approach towards private human access to space in both segments. Analysing the outcome of broader inter-agency deliberations on the future of human spaceflight and exploration, performed e.g. in the framework of the International Space Exploration Coordination Group, enables to derive some common general views on this topic. Various documents developed by inter-agency working groups recognise the general strategic importance for enabling private human access to space for ensuring a sustainable future of human spaceflight, although the specific definition of private human access and approaches vary. ESA has performed some reflections on this subject throughout the last 5 years. While it gained through these reflections a good understanding on the opportunities and implications resulting from the development of capabilities and markets for Private Human Access, limited concrete activities have been initiated in relation to this topic as of today.

  8. NASA's Space Launch System: An Enabling Capability for International Exploration

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; May, Todd A.; Robinson, Kimberly F.

    2014-01-01

    As the program moves out of the formulation phase and into implementation, work is well underway on NASA's new Space Launch System, the world's most powerful launch vehicle, which will enable a new era of human exploration of deep space. As assembly and testing of the rocket is taking place at numerous sites around the United States, mission planners within NASA and at the agency's international partners continue to evaluate utilization opportunities for this ground-breaking capability. Developed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions for exploration and discovery. NASA is developing this new capability in an austere economic climate, a fact which has inspired the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history, via a path that will deliver an initial 70 metric ton (t) capability in December 2017 and then continuing through an incremental evolutionary strategy to reach a full capability greater than 130 t. SLS will be enabling for the first missions of human exploration beyond low Earth in almost half a century, and from its first crewed flight will be able to carry humans farther into space than they have ever voyaged before. In planning for the future of exploration, the International Space Exploration Coordination Group, representing 12 of the world's space agencies, has created the Global Exploration Roadmap, which outlines paths toward a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for these destinations. SLS will offer a robust way to transport international crews and the air, water, food, and equipment they would need for such missions.

  9. Evolution of telemedicine in the space program and earth applications.

    PubMed

    Nicogossian, A E; Pober, D F; Roy, S A

    2001-01-01

    Remote monitoring of crew, spacecraft, and environmental health has always been an integral part of the National Aeronautics and Space Administration's (NASA's) operations. Crew safety and mission success face a number of challenges in outerspace, including physiological adaptations to microgravity, radiation exposure, extreme temperatures and vacuum, and psychosocial reactions to space flight. The NASA effort to monitor and maintain crew health, system performance, and environmental integrity in space flight is a sophisticated and coordinated program of telemedicine combining cutting-edge engineering with medical expertise. As missions have increased in complexity, NASA telemedicine capabilities have grown apace, underlying its role in the field. At the same time, the terrestrial validation of telemedicine technologies to bring healthcare to remote locations provides feedback, improvement, and enhancement of the space program. As NASA progresses in its space exploration program, astronauts will join missions lasting months, even years, that take them millions of miles from home. These long-duration missions necessitate further technological breakthroughs in tele-operations and autonomous technology. Earth-based monitoring will no longer be real-time, requiring telemedicine capabilities to advance with future explorers as they travel deeper into space. The International Space Station will serve as a testbed for the telemedicine technologies to enable future missions as well as improve the quality of healthcare delivery on Earth.

  10. Evolution of telemedicine in the space program and earth applications

    NASA Technical Reports Server (NTRS)

    Nicogossian, A. E.; Pober, D. F.; Roy, S. A.

    2001-01-01

    Remote monitoring of crew, spacecraft, and environmental health has always been an integral part of the National Aeronautics and Space Administration's (NASA's) operations. Crew safety and mission success face a number of challenges in outerspace, including physiological adaptations to microgravity, radiation exposure, extreme temperatures and vacuum, and psychosocial reactions to space flight. The NASA effort to monitor and maintain crew health, system performance, and environmental integrity in space flight is a sophisticated and coordinated program of telemedicine combining cutting-edge engineering with medical expertise. As missions have increased in complexity, NASA telemedicine capabilities have grown apace, underlying its role in the field. At the same time, the terrestrial validation of telemedicine technologies to bring healthcare to remote locations provides feedback, improvement, and enhancement of the space program. As NASA progresses in its space exploration program, astronauts will join missions lasting months, even years, that take them millions of miles from home. These long-duration missions necessitate further technological breakthroughs in tele-operations and autonomous technology. Earth-based monitoring will no longer be real-time, requiring telemedicine capabilities to advance with future explorers as they travel deeper into space. The International Space Station will serve as a testbed for the telemedicine technologies to enable future missions as well as improve the quality of healthcare delivery on Earth.

  11. Ice Velocity Mapping in Antarctica - Towards a Virtual Satellite Constellation

    NASA Astrophysics Data System (ADS)

    Scheuchl, B.; Mouginot, J.; Rignot, E. J.; Crevier, Y.

    2013-12-01

    Ice sheets are acknowledged by the World Meteorological Organization (WMO) and the United Nations Framework Convention on Climate Change (UNFCCC) as an Essential Climate Variable (ECV) needed to make significant progress in the generation of global climate products and derived information. Ice velocity is a crucial geophysical parameter that can be measured using spaceborne Synthetic Aperture Radar (SAR) data. Here, we report on an update to available Earth System Data Records (ESDR) of ice velocity in Antarctica based on data from a suite of spaceborne (SAR) sensors and provide an overview on international coordination in an effort to best utilize the available SAR satellites. Building on the first complete mapping of the flow of ice surface over the Antarctic continent using data predominantly acquired during IPY, we are working on a series of regional studies analyzing data from several different epochs. The analysis of velocity changes between discrete measurements requires even more careful data processing in order to be able to accurately measure subtle changes. Examples for Larsen-C and the Amundsen Sea Embayment will be presented. Data continuity is a crucial aspect to this work, particularly in light of the fact that 4 SAR missions have ceased operations since IPY and all available missions have a primary mandate that is not scientific data collection. Following the successful internationally coordinated SAR data acquisitions over ice sheets during the International Polar Year 2007/2008, efforts are undertaken to continue data acquisitions in the spirit of collaboration. The Polar Space Task Group (PSTG) is succeeding the IPY coordinating body of international space agencies, Space Task Group (STG). The PSTG SAR Coordination Working Group was created to address the issue of SAR data acquisitions in the cryosphere. A review of ice sheet requirements was undertaken by the science community, presented to PSTG, and followed up with a set of sensor specific recommendations. PSTG includes this information in coordinated acquisition planning going forward. In 2013 the Canadian Space Agency committed RADARSAT-2 to a large scale Antarctic data acquisition campaign. This effort will be supported in the near future by the European Space Agency and the Japan Space Exploration Agency once Sentinel-1 and ALOS-2 are launched. In addition, the German Space Agency and the Italian Space Agency acquire high resolution SAR data in high priority sites. We provide an overview of high-level plans and show first results from the RADARSAT-2 campaign. Data analysis and ESDR production is conducted at the Department of Earth System Science, University of California Irvine under a contract with the National Aeronautics and Space Administration's MEaSUREs program. Spaceborne SAR data are made available courtesy of the Polar Space Task Group.

  12. Computation of the soft anomalous dimension matrix in coordinate space

    NASA Astrophysics Data System (ADS)

    Mitov, Alexander; Sterman, George; Sung, Ilmo

    2010-08-01

    We complete the coordinate space calculation of the three-parton correlation in the two-loop massive soft anomalous dimension matrix. The full answer agrees with the result found previously by a different approach. The coordinate space treatment of renormalized two-loop gluon exchange diagrams exhibits their color symmetries in a transparent fashion. We compare coordinate space calculations of the soft anomalous dimension matrix with massive and massless eikonal lines and examine its nonuniform limit at absolute threshold.

  13. Characterization of a Dynamic String Method for the Construction of Transition Pathways in Molecular Reactions

    PubMed Central

    Johnson, Margaret E.; Hummer, Gerhard

    2012-01-01

    We explore the theoretical foundation of different string methods used to find dominant reaction pathways in high-dimensional configuration spaces. Pathways are assessed by the amount of reactive flux they carry and by their orientation relative to the committor function. By examining the effects of transforming between different collective coordinates that span the same underlying space, we unmask artificial coordinate dependences in strings optimized to follow the free energy gradient. In contrast, strings optimized to follow the drift vector produce reaction pathways that are significantly less sensitive to reparameterizations of the collective coordinates. The differences in these paths arise because the drift vector depends on both the free energy gradient and the diffusion tensor of the coarse collective variables. Anisotropy and position dependence of diffusion tensors arise commonly in spaces of coarse variables, whose generally slow dynamics are obtained by nonlinear projections of the strongly coupled atomic motions. We show here that transition paths constructed to account for dynamics by following the drift vector will (to a close approximation) carry the maximum reactive flux both in systems with isotropic position dependent diffusion, and in systems with constant but anisotropic diffusion. We derive a simple method for calculating the committor function along paths that follow the reactive flux. Lastly, we provide guidance for the practical implementation of the dynamic string method. PMID:22616575

  14. US Space VLBI Proposed Outreach Web Site

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The study of how VLBI might be pursued in space began in the late 1970's, when it was realized that the size of the earth was a serious limitation to the study of compact radio sources. By going to space, achieving angular resolution at radio wavelengths that could not be obtained with VLBI systems that were limited by the size of the earth, important tests could not be made of quasar models. The technology appeared to be within reach, and an early space VLBI concept, QUASAT, emerged as a joint project, involving both US and European scientists. In 1984, a workshop was held in Gross Enzerdorf, Austria, under joint sponsorship of NASA and the European Space Agency (ESA). The principal conclusion of the workshop was that a VLBI station in space, telemetering its data to ground data stations, working in connection with ground-based radio telescopes, would give the opportunity to achieve angular resolution of a few tens of micro-arc-seconds, and could develop high-quality radio maps of many classes of radio sources. The ground telemetry stations would also function as the source of a stable local oscillator for the spacecraft, which needs a highly stable frequency reference. The Deep Space Network of NASA could play a vital role in both the frequency-locking system and data acquisition. One outcome of the Gross Enzerdorf workshop was the convening, by COSPAR, of an ad hoc Committee on Space VLBI, to review and recommend procedures by which international collaboration on VLBI in space might be coordinated and promoted. In October 1985, the committee met in Budapest and recommended that the Inter-Agency Consultative Group (IACG) would be an appropriate body to coordinate VLBI activities in space. At the same time ESA convened a committee to explore the technical aspects of coordinating ground and space VLBI activities. At this stage both NASA and ESA were supporting preliminary studies of the QUASAT mission, with effective coordination between the two groups. The Soviet Union had also begun planning a mission with the clear intent to fly it as soon as the could; the mission was designated RadioAstron. In December 1985, the Soviets formed an international study team for the RadioAstron mission, holding the first meeting in Moscow. Subsequent meetings of this international committee were held in Budapest in May 1986 and in Moscow in December 1986. Thus, in 1986 there were three VLBI mission concepts under study: the NASA QUASAT mission, an ESA counterpart, and the Soviet RadioAstron mission.

  15. Patching DFT, T-duality and gerbes

    NASA Astrophysics Data System (ADS)

    Howe, P. S.; Papadopoulos, G.

    2017-04-01

    We clarify the role of the dual coordinates as described from the perspectives of the Buscher T-duality rules and Double Field Theory. We show that the T-duality angular dual coordinates cannot be identified with Double Field Theory dual coordinates in any of the proposals that have been made in the literature for patching the doubled spaces. In particular, we show with explicit examples that the T-duality angular dual coordinates can have non-trivial transition functions over a spacetime and that their identification with the Double Field Theory dual coordinates is in conflict with proposals in which the latter remain inert under the patching of the B-field. We then demonstrate that the Double Field Theory coordinates can be identified with some C-space coordinates and that the T-dual spaces of a spacetime are subspaces of the gerbe in C-space. The construction provides a description of both the local O( d, d) symmetry and the T-dual spaces of spacetime.

  16. The energy cost of quantum information losses

    NASA Astrophysics Data System (ADS)

    Romanelli, Alejandro; de Lima Marquezino, Franklin; Portugal, Renato; Donangelo, Raul

    2018-05-01

    We explore the energy cost of the information loss resulting from the passage of an initial density operator to a reduced one. We use the concept of entanglement temperature in order to obtain a lower bound for the energy change associated with this operation. We determine the minimal energy required for the case of the information losses associated with the trace over the space coordinates of a two-dimensional quantum walk.

  17. Reports and recommendations from COSPAR Planetary Exploration Committee (PEX) & International Lunar Exploration Working Group (ILEWG)

    NASA Astrophysics Data System (ADS)

    Ehrenfreund, Pascale; Foing, Bernard

    2014-05-01

    In response to the growing importance of space exploration, the objectives of the COSPAR Panel on Exploration (PEX) are to provide high quality, independent science input to support the development of a global space exploration program while working to safeguard the scientific assets of solar system bodies. PEX engages with COSPAR Commissions and Panels, science foundations, IAA, IAF, UN bodies, and IISL to support in particular national and international space exploration working groups and the new era of planetary exploration. COSPAR's input, as gathered by PEX, is intended to express the consensus view of the international scientific community and should ultimately provide a series of guidelines to support future space exploration activities and cooperative efforts, leading to outstanding scientific discoveries, opportunities for innovation, strategic partnerships, technology progression, and inspiration for people of all ages and cultures worldwide. We shall focus on the lunar exploration aspects, where the COSPAR PEX is building on previous COSPAR, ILEWG and community conferences. An updated COSPAR PEX report is published and available online (Ehrenfreund P. et al, COSPAR planetary exploration panel report, http://www.gwu.edu/~spi/assets/COSPAR_PEX2012.pdf). We celebrate 20 years after the 1st International Conference on Exploration and Utilisation of the Moon at Beatenberg in June 1994. The International Lunar Exploration Working Group (ILEWG) was established the year after in April 1995 at an EGS meeting in Hamburg, Germany. As established in its charter, this working group reports to COSPAR and is charged with developing an international strategy for the exploration of the Moon (http://sci.esa.int/ilewg/ ). It discusses coordination between missions, and a road map for future international lunar exploration and utilisation. It fosters information exchange or potential and real future lunar robotic and human missions, as well as for new scientific and exploration information about the Moon. We present the GLUC/ICEUM11 declaration (with emphasis on Science and exploration; Technologies and resources, Infrastructures and human aspects; Moon, Space, Society and Young Explorers) (http://sci.esa.int/iceum11). We give a report on ongoing relevant ILEWG community activities. We discuss how lunar missions SMART-1, Kaguya, Chang'E1&2, Chandrayaan-1, LCROSS, LRO, GRAIL, LADEE, Chang'E3 and upcoming missions contribute to lunar exploration objectives & roadmap.

  18. Overview of Intelligent Power Controller Development for the Deep Space Gateway

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey

    2017-01-01

    Intelligent, or autonomous, control of a spacecraft is an enabling technology that must be developed for deep space human exploration. NASAs current long term human space platform, the International Space Station, which is in Low Earth Orbit, is in almost continuous communication with ground based mission control. This allows near real-time control of all the vehicle core systems, including power, to be controlled by the ground. As focus shifts from Low Earth Orbit, communication time-lag and communication bandwidth limitations beyond geosynchronous orbit does not permit this type of operation. This presentation contains ongoing work at NASA to develop an architecture for autonomous power control and the vehicle manager which monitors, coordinates, and delegates to all the on-board subsystems to enable autonomous control of the complete spacecraft.

  19. Advanced Image Processing for NASA Applications

    NASA Technical Reports Server (NTRS)

    LeMoign, Jacqueline

    2007-01-01

    The future of space exploration will involve cooperating fleets of spacecraft or sensor webs geared towards coordinated and optimal observation of Earth Science phenomena. The main advantage of such systems is to utilize multiple viewing angles as well as multiple spatial and spectral resolutions of sensors carried on multiple spacecraft but acting collaboratively as a single system. Within this framework, our research focuses on all areas related to sensing in collaborative environments, which means systems utilizing intracommunicating spatially distributed sensor pods or crafts being deployed to monitor or explore different environments. This talk will describe the general concept of sensing in collaborative environments, will give a brief overview of several technologies developed at NASA Goddard Space Flight Center in this area, and then will concentrate on specific image processing research related to that domain, specifically image registration and image fusion.

  20. NEEMO 21: Tools, Techniques, Technologies and Training for Science Exploration

    NASA Technical Reports Server (NTRS)

    Graff, T.; Young, K.; Coan, D.; Merselis, D.; Bellantuono, A.; Dougan, K.; Rodriguez-Lanetty, M.; Nedimyer, K.; Chappell, S.; Beaton, K.; hide

    2017-01-01

    The 21st mission of the National Aeronautics and Space Administration (NASA) Extreme Environment Mission Operations (NEEMO) was a highly integrated operational field test and evaluation of tools, techniques, technologies, and training for science driven exploration during extravehicular activity (EVA). The mission was conducted in July 2016 from the Aquarius habitat, an underwater laboratory, off the coast of Key Largo in the Florida Keys National Marine Sanctuary. An international crew of eight (comprised of NASA and ESA astronauts, engineers, medical personnel, and habitat technicians) lived and worked in and around Aquarius and its surrounding reef environment for 16 days. The integrated testing (both interior and exterior objectives) conducted from this unique facility continues to support current and future human space exploration endeavors. Expanding on the scientific and operational evaluations conducted during NEEMO 20, the 21st NEEMO mission further incorporated a diverse Science Team comprised of planetary geoscientists from the Astromaterials Research and Exploration Science (ARES/XI) Division from the Johnson Space Center, marine scientists from the Department of Biological Sciences at Florida International University (FIU) Integrative Marine Genomics and Symbiosis (IMaGeS) Lab, and conservationists from the Coral Restoration Foundation. The Science Team worked in close coordination with the long-standing EVA operations, planning, engineering, and research components of NEEMO in all aspects of mission planning, development, and execution.

  1. On exploration of geometrically constrained space by medicinal leeches Hirudo verbana.

    PubMed

    Adamatzky, Andrew

    2015-04-01

    Leeches are fascinating creatures: they have simple modular nervous circuitry yet exhibit a rich spectrum of behavioural modes. Leeches could be ideal blue-prints for designing flexible soft robots which are modular, multi-functional, fault-tolerant, easy to control, capable for navigating using optical, mechanical and chemical sensorial inputs, have autonomous inter-segmental coordination and adaptive decision-making. With future designs of leech-robots in mind we study how leeches behave in geometrically constrained spaces. Core results of the paper deal with leeches exploring a row of rooms arranged along a narrow corridor. In laboratory experiments we find that rooms closer to ends of the corridor are explored by leeches more often than rooms in the middle of the corridor. Also, in series of scoping experiments, we evaluate leeches capabilities to navigating in mazes towards sources of vibration and chemo-attraction. We believe our results lay foundation for future developments of robots mimicking behaviour of leeches. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Exploration Life Support Critical Questions for Future Human Space Missions

    NASA Technical Reports Server (NTRS)

    Kwert, Michael K.; Barta, Daniel J.; McQuillan, Jeff

    2010-01-01

    Exploration Life Support (ELS) is a current project under NASA's Exploration Systems Mission Directorate. The ELS Project plans, coordinates and implements the development of advanced life support technologies for human exploration missions in space. Recent work has focused on closed loop atmosphere and water systems for long duration missions, including habitats and pressurized rovers. But, what are the critical questions facing life support system developers for these and other future human missions? This paper explores those questions and how progress in the development of ELS technologies can help answer them. The ELS Project includes the following Elements: Atmosphere Revitalization Systems, Water Recovery Systems, Waste Management Systems, Habitation Engineering, Systems Integration, Modeling and Analysis, and Validation and Testing, which includes the Sub-Elements Flight Experiments and Integrated Testing. Systems engineering analysis by ELS seeks to optimize overall mission architectures by considering all the internal and external interfaces of the life support system and the potential for reduction or reuse of commodities. In particular, various sources and sinks of water and oxygen are considered along with the implications on loop closure and the resulting launch mass requirements. Systems analysis will be validated through the data gathered from integrated testing, which will demonstrate the interfaces of a closed loop life support system. By applying a systematic process for defining, sorting and answering critical life support questions, the ELS project is preparing for a variety of future human space missions

  3. 78 FR 32355 - Establishment of Class E Airspace; Bass Harbor, ME

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-30

    ... received. Subsequent to publication the FAA found that the points of space coordinates were incorrect. This... space coordinates of the heliport is necessary for the safety and management of IFR operations at the heliport. Geographic coordinates for the heliport and points in space are corrected and separately listed...

  4. Learning More About Our Earth: An Exploration of NASA's Contributions to Earth Science Through Remote Sensing Technologies

    NASA Technical Reports Server (NTRS)

    Lindsay, Francis

    2017-01-01

    NASA is commonly known for its pioneering work in space exploration and the technological advancements that made access to space possible. NASA is now increasingly known for the agency's research and technologies that support the Earth sciences. This is a presentation focusing on NASA's Earth science efforts told mostly through the technological innovations NASA uses to achieve a greater understanding of the Earth, making it possible to explore the Earth as a system. Enabling this science is NASA's fleet of over two dozen Earth science spacecraft, supported by aircraft, ships and ground observations. NASA's Earth Observing System (EOS) is a coordinated series of polar-orbiting and low inclination satellites for long-term global observations of the land surface, biosphere, solid Earth, atmosphere, and oceans. With the launching of the three flagship satellite missions, Terra, Aqua and Aura, beginning in 1999, NASA's initial Mission to Planet Earth made it possible to measure aspects of the environment that touch the lives of every person around the world. NASA harnessing the unique space-based platform means, fortunately, no planet is better studied than the one we actually live on.

  5. Jointly structuring triadic spaces of meaning and action: book sharing from 3 months on

    PubMed Central

    Rossmanith, Nicole; Costall, Alan; Reichelt, Andreas F.; López, Beatriz; Reddy, Vasudevi

    2014-01-01

    This study explores the emergence of triadic interactions through the example of book sharing. As part of a naturalistic study, 10 infants were visited in their homes from 3–12 months. We report that (1) book sharing as a form of infant-caregiver-object interaction occurred from as early as 3 months. Using qualitative video analysis at a micro-level adapting methodologies from conversation and interaction analysis, we demonstrate that caregivers and infants practiced book sharing in a highly co-ordinated way, with caregivers carving out interaction units and shaping actions into action arcs and infants actively participating and co-ordinating their attention between mother and object from the beginning. We also (2) sketch a developmental trajectory of book sharing over the first year and show that the quality and dynamics of book sharing interactions underwent considerable change as the ecological situation was transformed in parallel with the infants' development of attention and motor skills. Social book sharing interactions reached an early peak at 6 months with the infants becoming more active in the coordination of attention between caregiver and book. From 7 to 9 months, the infants shifted their interest largely to solitary object exploration, in parallel with newly emerging postural and object manipulation skills, disrupting the social coordination and the cultural frame of book sharing. In the period from 9 to 12 months, social book interactions resurfaced, as infants began to effectively integrate manual object actions within the socially shared activity. In conclusion, to fully understand the development and qualities of triadic cultural activities such as book sharing, we need to look especially at the hitherto overlooked early period from 4 to 6 months, and investigate how shared spaces of meaning and action are structured together in and through interaction, creating the substrate for continuing cooperation and cultural learning. PMID:25540629

  6. Jointly structuring triadic spaces of meaning and action: book sharing from 3 months on.

    PubMed

    Rossmanith, Nicole; Costall, Alan; Reichelt, Andreas F; López, Beatriz; Reddy, Vasudevi

    2014-01-01

    This study explores the emergence of triadic interactions through the example of book sharing. As part of a naturalistic study, 10 infants were visited in their homes from 3-12 months. We report that (1) book sharing as a form of infant-caregiver-object interaction occurred from as early as 3 months. Using qualitative video analysis at a micro-level adapting methodologies from conversation and interaction analysis, we demonstrate that caregivers and infants practiced book sharing in a highly co-ordinated way, with caregivers carving out interaction units and shaping actions into action arcs and infants actively participating and co-ordinating their attention between mother and object from the beginning. We also (2) sketch a developmental trajectory of book sharing over the first year and show that the quality and dynamics of book sharing interactions underwent considerable change as the ecological situation was transformed in parallel with the infants' development of attention and motor skills. Social book sharing interactions reached an early peak at 6 months with the infants becoming more active in the coordination of attention between caregiver and book. From 7 to 9 months, the infants shifted their interest largely to solitary object exploration, in parallel with newly emerging postural and object manipulation skills, disrupting the social coordination and the cultural frame of book sharing. In the period from 9 to 12 months, social book interactions resurfaced, as infants began to effectively integrate manual object actions within the socially shared activity. In conclusion, to fully understand the development and qualities of triadic cultural activities such as book sharing, we need to look especially at the hitherto overlooked early period from 4 to 6 months, and investigate how shared spaces of meaning and action are structured together in and through interaction, creating the substrate for continuing cooperation and cultural learning.

  7. Geometric analysis characterizes molecular rigidity in generic and non-generic protein configurations

    PubMed Central

    Budday, Dominik; Leyendecker, Sigrid; van den Bedem, Henry

    2015-01-01

    Proteins operate and interact with partners by dynamically exchanging between functional substates of a conformational ensemble on a rugged free energy landscape. Understanding how these substates are linked by coordinated, collective motions requires exploring a high-dimensional space, which remains a tremendous challenge. While molecular dynamics simulations can provide atomically detailed insight into the dynamics, computational demands to adequately sample conformational ensembles of large biomolecules and their complexes often require tremendous resources. Kinematic models can provide high-level insights into conformational ensembles and molecular rigidity beyond the reach of molecular dynamics by reducing the dimensionality of the search space. Here, we model a protein as a kinematic linkage and present a new geometric method to characterize molecular rigidity from the constraint manifold Q and its tangent space Q at the current configuration q. In contrast to methods based on combinatorial constraint counting, our method is valid for both generic and non-generic, e.g., singular configurations. Importantly, our geometric approach provides an explicit basis for collective motions along floppy modes, resulting in an efficient procedure to probe conformational space. An atomically detailed structural characterization of coordinated, collective motions would allow us to engineer or allosterically modulate biomolecules by selectively stabilizing conformations that enhance or inhibit function with broad implications for human health. PMID:26213417

  8. Geometric analysis characterizes molecular rigidity in generic and non-generic protein configurations

    NASA Astrophysics Data System (ADS)

    Budday, Dominik; Leyendecker, Sigrid; van den Bedem, Henry

    2015-10-01

    Proteins operate and interact with partners by dynamically exchanging between functional substates of a conformational ensemble on a rugged free energy landscape. Understanding how these substates are linked by coordinated, collective motions requires exploring a high-dimensional space, which remains a tremendous challenge. While molecular dynamics simulations can provide atomically detailed insight into the dynamics, computational demands to adequately sample conformational ensembles of large biomolecules and their complexes often require tremendous resources. Kinematic models can provide high-level insights into conformational ensembles and molecular rigidity beyond the reach of molecular dynamics by reducing the dimensionality of the search space. Here, we model a protein as a kinematic linkage and present a new geometric method to characterize molecular rigidity from the constraint manifold Q and its tangent space Tq Q at the current configuration q. In contrast to methods based on combinatorial constraint counting, our method is valid for both generic and non-generic, e.g., singular configurations. Importantly, our geometric approach provides an explicit basis for collective motions along floppy modes, resulting in an efficient procedure to probe conformational space. An atomically detailed structural characterization of coordinated, collective motions would allow us to engineer or allosterically modulate biomolecules by selectively stabilizing conformations that enhance or inhibit function with broad implications for human health.

  9. The Hyperwall

    NASA Technical Reports Server (NTRS)

    Biegel, Bryan A. (Technical Monitor); Sandstrom, Timothy A.; Henze, Chris; Levit, Creon

    2003-01-01

    This paper presents the hyperwall, a visualization cluster that uses coordinated visualizations for interactive exploration of multidimensional data and simulations. The system strongly leverages the human eye-brain system with a generous 7x7 array offlat panel LCD screens powered by a beowulf clustel: With each screen backed by a workstation class PC, graphic and compute intensive applications can be applied to a broad range of data. Navigational tools are presented that allow for investigation of high dimensional spaces.

  10. A panning DLT procedure for three-dimensional videography.

    PubMed

    Yu, B; Koh, T J; Hay, J G

    1993-06-01

    The direct linear transformation (DLT) method [Abdel-Aziz and Karara, APS Symposium on Photogrammetry. American Society of Photogrammetry, Falls Church, VA (1971)] is widely used in biomechanics to obtain three-dimensional space coordinates from film and video records. This method has some major shortcomings when used to analyze events which take place over large areas. To overcome these shortcomings, a three-dimensional data collection method based on the DLT method, and making use of panning cameras, was developed. Several small single control volumes were combined to construct a large total control volume. For each single control volume, a regression equation (calibration equation) is developed to express each of the 11 DLT parameters as a function of camera orientation, so that the DLT parameters can then be estimated from arbitrary camera orientations. Once the DLT parameters are known for at least two cameras, and the associated two-dimensional film or video coordinates of the event are obtained, the desired three-dimensional space coordinates can be computed. In a laboratory test, five single control volumes (in a total control volume of 24.40 x 2.44 x 2.44 m3) were used to test the effect of the position of the single control volume on the accuracy of the computed three dimensional space coordinates. Linear and quadratic calibration equations were used to test the effect of the order of the equation on the accuracy of the computed three dimensional space coordinates. For four of the five single control volumes tested, the mean resultant errors associated with the use of the linear calibration equation were significantly larger than those associated with the use of the quadratic calibration equation. The position of the single control volume had no significant effect on the mean resultant errors in computed three dimensional coordinates when the quadratic calibration equation was used. Under the same data collection conditions, the mean resultant errors in the computed three dimensional coordinates associated with the panning and stationary DLT methods were 17 and 22 mm, respectively. The major advantages of the panning DLT method lie in the large image sizes obtained and in the ease with which the data can be collected. The method also has potential for use in a wide variety of contexts. The major shortcoming of the method is the large amount of digitizing necessary to calibrate the total control volume. Adaptations of the method to reduce the amount of digitizing required are being explored.

  11. Phase space manipulation in high-brightness electron beams

    NASA Astrophysics Data System (ADS)

    Rihaoui, Marwan M.

    Electron beams have a wide range of applications, including discovery science, medicine, and industry. Electron beams can also be used to power next-generation, high-gradient electron accelerators. The performances of some of these applications could be greatly enhanced by precisely tailoring the phase space distribution of the electron beam. The goal of this dissertation is to explore some of these phase space manipulations. We especially focus on transformations capable of tailoring the beam current distribution. Specifically, we investigate a beamline exchanging phase space coordinates between the horizontal and longitudinal degrees of freedom. The key components necessary for this beamline were constructed and tested. The preliminary beamline was used as a singleshot phase space diagnostics and to produce a train of picoseconds electron bunches. We also investigate the use of multiple electron beams to control the transverse focusing. Our numerical and analytical studies are supplemented with experiments performed at the Argonne Wakefield Accelerator.

  12. Coordinating Multiple Spacecraft Assets for Joint Science Campaigns

    NASA Technical Reports Server (NTRS)

    Estlin, Tara; Chien, Steve; Castano, Rebecca; Gaines, Daniel; de Granville, Charles; Doubleday, Josh; Anderson, Robert C.; Knight, Russell; Bornstein, Benjamin; Rabideau, Gregg; hide

    2010-01-01

    This paper describes technology to support a new paradigm of space science campaigns. These campaigns enable opportunistic science observations to be autonomously coordinated between multiple spacecraft. Coordinated spacecraft can consist of multiple orbiters, landers, rovers, or other in-situ vehicles (such as an aerobot). In this paradigm, opportunistic science detections can be cued by any of these assets where additional spacecraft are requested to take further observations characterizing the identified event or surface feature. Such coordination will enable a number of science campaigns not possible with present spacecraft technology. Examples from Mars include enabling rapid data collection from multiple craft on dynamic events such as new Mars dark slope streaks, dust-devils or trace gases. Technology to support the identification of opportunistic science events and/or the re-tasking of a spacecraft to take new measurements of the event is already in place on several individual missions such as the Mars Exploration Rover (MER) Mission and the Earth Observing One (EO1) Mission. This technology includes onboard data analysis techniques as well as capabilities for planning and scheduling. This paper describes how these techniques can be cue and coordinate multiple spacecraft in observing the same science event from their different vantage points.

  13. Working Group Reports and Presentations: Cis-lunar

    NASA Technical Reports Server (NTRS)

    Laubscher, Bryan

    2006-01-01

    Space agencies are committed to the "safe, sustained, affordable human and robotic exploration of the Moon, Mars, and beyond." However, we recommend that they explicitly define our ultimate goal and motivation in order to portray a sense of purpose to the public. Our goal is sustainable human settlement of the Moon and Mars and our motivation is to preserve the human race. All secondary exploration and science objectives flow from this main goal and are still imperative to our success. As an economic guiding principle, governments should be limited to those areas where only government can perform the activity and should recognize and coordinate with the larger private and military sectors. Also, space agencies must continue to fund the interdisciplinary science necessary to characterize environmental hazards associated with dust, radiation, surface charging, topology, and meteorites in order to make our first attempts at extraterrestrial living viable.

  14. Chemical space visualization: transforming multidimensional chemical spaces into similarity-based molecular networks.

    PubMed

    de la Vega de León, Antonio; Bajorath, Jürgen

    2016-09-01

    The concept of chemical space is of fundamental relevance for medicinal chemistry and chemical informatics. Multidimensional chemical space representations are coordinate-based. Chemical space networks (CSNs) have been introduced as a coordinate-free representation. A computational approach is presented for the transformation of multidimensional chemical space into CSNs. The design of transformation CSNs (TRANS-CSNs) is based upon a similarity function that directly reflects distance relationships in original multidimensional space. TRANS-CSNs provide an immediate visualization of coordinate-based chemical space and do not require the use of dimensionality reduction techniques. At low network density, TRANS-CSNs are readily interpretable and make it possible to evaluate structure-activity relationship information originating from multidimensional chemical space.

  15. On the calculation of puckering free energy surfaces

    NASA Astrophysics Data System (ADS)

    Sega, M.; Autieri, E.; Pederiva, F.

    2009-06-01

    Cremer-Pople puckering coordinates appear to be the natural candidate variables to explore the conformational space of cyclic compounds and in literature different parametrizations have been used to this end. However, while every parametrization is equivalent in identifying conformations, it is not obvious that they can also act as proper collective variables for the exploration of the puckered conformations free energy surface. It is shown that only the polar parametrization is fit to produce an unbiased estimate of the free energy landscape. As an example, the case of a six-membered ring, glucuronic acid, is presented, showing the artifacts that are generated when a wrong parametrization is used.

  16. On the calculation of puckering free energy surfaces.

    PubMed

    Sega, M; Autieri, E; Pederiva, F

    2009-06-14

    Cremer-Pople puckering coordinates appear to be the natural candidate variables to explore the conformational space of cyclic compounds and in literature different parametrizations have been used to this end. However, while every parametrization is equivalent in identifying conformations, it is not obvious that they can also act as proper collective variables for the exploration of the puckered conformations free energy surface. It is shown that only the polar parametrization is fit to produce an unbiased estimate of the free energy landscape. As an example, the case of a six-membered ring, glucuronic acid, is presented, showing the artifacts that are generated when a wrong parametrization is used.

  17. Verification, Validation, and Accreditation Challenges of Distributed Simulation for Space Exploration Technology

    NASA Technical Reports Server (NTRS)

    Thomas, Danny; Hartway, Bobby; Hale, Joe

    2006-01-01

    Throughout its rich history, NASA has invested heavily in sophisticated simulation capabilities. These capabilities reside in NASA facilities across the country - and with partners around the world. NASA s Exploration Systems Mission Directorate (ESMD) has the opportunity to leverage these considerable investments to resolve technical questions relating to its missions. The distributed nature of the assets, both in terms of geography and organization, present challenges to their combined and coordinated use, but precedents of geographically distributed real-time simulations exist. This paper will show how technological advances in simulation can be employed to address the issues associated with netting NASA simulation assets.

  18. Space Medicine: Shuttle - Space Station Crew Health and Safety Challenges for Exploration

    NASA Technical Reports Server (NTRS)

    Dervay, Joseph

    2010-01-01

    This slide presentation combines some views of the shuttle take off, and the shuttle and space station on orbit, and some views of the underwater astronaut training , with a general discussion of Space Medicine. It begins with a discussion of the some of the physiological issues of space flight. These include: Space Motion Sickness (SMS), Cardiovascular, Neurovestibular, Musculoskeletal, and Behavioral/Psycho-social. There is also discussion of the space environment and the issues that are posed including: Radiation, Toxic products and propellants, Habitability, Atmosphere, and Medical events. Included also is a discussion of the systems and crew training. There are also artists views of the Constellation vehicles, the planned lunar base, and extended lunar settlement. There are also slides showing the size of earth in perspective to the other planets, and the sun and the sun in perspective to other stars. There is also a discussion of the in-flight changes that occur in neural feedback that produces postural imbalance and loss of coordination after return.

  19. OEXP exploration studies technical report. Volume 3: Special reports, studies, and indepth systems assessments

    NASA Technical Reports Server (NTRS)

    Roberts, Barney B.; Bland, Dan

    1988-01-01

    The Office of Exploration (OEXP) at NASA has been tasked with defining and recommending alternatives for an early 1990's national decision on a focused program of manned exploration of the Solar System. The Mission analysis and System Engineering (MASE) group, which is managed by the Exploration Studies Office at the Johnson Space Center, is responsible for coordinating the technical studies necessary for accomplishing such a task. This technical report, produced by the MASE, describes the process used to conduct exploration studies and discusses the mission developed in a case study approach. The four case studies developed in FY88 include: (1) a manned expedition to PHOBOS; (2) a manned expedition to MARS; (3) a lunar surface observatory; and a lunar outpost to early Mars evolution. The final outcome of this effort is a set of programmatic and technical conclusions and recommendations for the following year's work.

  20. The Necessity of Functional Analysis for Space Exploration Programs

    NASA Technical Reports Server (NTRS)

    Morris, A. Terry; Breidenthal, Julian C.

    2011-01-01

    As NASA moves toward expanded commercial spaceflight within its human exploration capability, there is increased emphasis on how to allocate responsibilities between government and commercial organizations to achieve coordinated program objectives. The practice of program-level functional analysis offers an opportunity for improved understanding of collaborative functions among heterogeneous partners. Functional analysis is contrasted with the physical analysis more commonly done at the program level, and is shown to provide theoretical performance, risk, and safety advantages beneficial to a government-commercial partnership. Performance advantages include faster convergence to acceptable system solutions; discovery of superior solutions with higher commonality, greater simplicity and greater parallelism by substituting functional for physical redundancy to achieve robustness and safety goals; and greater organizational cohesion around program objectives. Risk advantages include avoidance of rework by revelation of some kinds of architectural and contractual mismatches before systems are specified, designed, constructed, or integrated; avoidance of cost and schedule growth by more complete and precise specifications of cost and schedule estimates; and higher likelihood of successful integration on the first try. Safety advantages include effective delineation of must-work and must-not-work functions for integrated hazard analysis, the ability to formally demonstrate completeness of safety analyses, and provably correct logic for certification of flight readiness. The key mechanism for realizing these benefits is the development of an inter-functional architecture at the program level, which reveals relationships between top-level system requirements that would otherwise be invisible using only a physical architecture. This paper describes the advantages and pitfalls of functional analysis as a means of coordinating the actions of large heterogeneous organizations for space exploration programs.

  1. Heterogeneous Coordination Environments in Lithium-Neutralized Ionomers Identified Using 1H and 7Li MAS NMR

    PubMed Central

    Alam, Todd M.; Jenkins, Janelle E.; Bolintineanu, Dan S.; Stevens, Mark J.; Frischknecht, Amalie L.; Buitrago, C. Francisco; Winey, Karen I.; Opper, Kathleen L.; Wagener, Kenneth B.

    2012-01-01

    The carboxylic acid proton and the lithium coordination environments for precise and random Li-neutralized polyethylene acrylic acid P(E-AA) ionomers were explored using high speed solid-state 1H and 7Li MAS NMR. While the 7Li NMR revealed only a single Li coordination environment, the chemical shift temperature variation was dependent on the precise or random nature of the P(E-AA) ionomer. The 1H MAS NMR revealed two different carboxylic acid proton environments in these materials. By utilizing 1H-7Li rotational echo double resonance (REDOR) MAS NMR experiments, it was demonstrated that the proton environments correspond to different average 1H-7Li distances, with the majority of the protonated carboxylic acids having a close through space contact with the Li. Molecular dynamics simulations suggest that the shortest 1H-7Li distance corresponds to un-neutralized carboxylic acids directly involved in the coordination environment of Li clusters. These solid-state NMR results show that heterogeneous structural motifs need to be included when developing descriptions of these ionomer materials.

  2. NextGen Operations in a Simulated NY Area Airspace

    NASA Technical Reports Server (NTRS)

    Smith, Nancy M.; Parke, Bonny; Lee, Paul; Homola, Jeff; Brasil, Connie; Buckley, Nathan; Cabrall, Chris; Chevalley, Eric; Lin, Cindy; Morey, Susan; hide

    2013-01-01

    A human-in-the-loop simulation conducted in the Airspace Operations Laboratory (AOL) at NASA Ames Research Center explored the feasibility of a Next Generation Air Transportation System (NextGen) solution to address airspace and airport capacity limitations in and around the New York metropolitan area. A week-long study explored the feasibility of a new Optimal Profile Descent (OPD) arrival into the airspace as well as a novel application of a Terminal Area Precision Scheduling and Spacing (TAPSS) enhancement to the Traffic Management Advisor (TMA) arrival scheduling tool to coordinate high volume arrival traffic to intersecting runways. In the simulation, four en route sector controllers and four terminal radar approach control (TRACON) controllers managed traffic inbound to Newark International Airport's primary runway, 22L, and its intersecting overflow runway, 11. TAPSS was used to generate independent arrival schedules for each runway and a traffic management coordinator participant adjusted the arrival schedule for each runway 11 aircraft to follow one of the 22L aircraft. TAPSS also provided controller-managed spacing tools (slot markers with speed advisories and timelines) to assist the TRACON controllers in managing the arrivals that were descending on OPDs. Results showed that the tools significantly decreased the occurrence of runway violations (potential go-arounds) when compared with a Baseline condition with no tools. Further, the combined use of the tools with the new OPD produced a peak arrival rate of over 65 aircraft per hour using instrument flight rules (IFR), exceeding the current maximum arrival rate at Newark Liberty International Airport (EWR) of 52 per hour under visual flight rules (VFR). Although the participants rated the workload as relatively low and acceptable both with and without the tools, they rated the tools as reducing their workload further. Safety and coordination were rated by most participants as acceptable in both conditions, although the TRACON Runway Coordinator (TRC) rated neither as acceptable in the Baseline condition. Regarding the role of the TRC, the two TRACON controllers handling the 11 arrivals indicated that the TRC was very much needed in the Baseline condition without tools, but not needed in the condition with tools. This indicates that the tools were providing much of the sequencing and spacing information that the TRC had supplied in the Baseline condition.

  3. GPM Launch Day at NASA Goddard (Feb. 27, 2014)

    NASA Image and Video Library

    2014-02-27

    One of the control rooms at NASA’s Goddard Space Flight Center in Greenbelt, Md., prepares for the GPM mission’s Core Observatory on Feb. 27, 2014. Credit: NASA's Goddard Space Flight Center/Debbie McCallum GPM's Core Observatory is poised for launch from the Japan Aerospace Exploration Agency's Tanegashima Space Center, scheduled for the afternoon of Feb. 27, 2014 (EST). GPM is a joint venture between NASA and the Japan Aerospace Exploration Agency. The GPM Core Observatory will link data from a constellation of current and planned satellites to produce next-generation global measurements of rainfall and snowfall from space. The GPM mission is the first coordinated international satellite network to provide near real-time observations of rain and snow every three hours anywhere on the globe. The GPM Core Observatory anchors this network by providing observations on all types of precipitation. The observatory's data acts as the measuring stick by which partner observations can be combined into a unified data set. The data will be used by scientists to study climate change, freshwater resources, floods and droughts, and hurricane formation and tracking. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. GPM Launch Day at NASA Goddard (Feb. 27, 2014)

    NASA Image and Video Library

    2014-02-27

    Children at the visitor center at NASA's Goddard Space Flight Center in Greenbelt, Md., receive a rainfall demonstration as part of activities tied to the launch of the Global Precipitation Measurement mission's Core Observatory on Feb. 27, 2014. Credit: NASA's Goddard Space Flight Center/Debbie McCallum GPM's Core Observatory is poised for launch from the Japan Aerospace Exploration Agency's Tanegashima Space Center, scheduled for the afternoon of Feb. 27, 2014 (EST). GPM is a joint venture between NASA and the Japan Aerospace Exploration Agency. The GPM Core Observatory will link data from a constellation of current and planned satellites to produce next-generation global measurements of rainfall and snowfall from space. The GPM mission is the first coordinated international satellite network to provide near real-time observations of rain and snow every three hours anywhere on the globe. The GPM Core Observatory anchors this network by providing observations on all types of precipitation. The observatory's data acts as the measuring stick by which partner observations can be combined into a unified data set. The data will be used by scientists to study climate change, freshwater resources, floods and droughts, and hurricane formation and tracking. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. The Art and Science of Systems Engineering

    NASA Technical Reports Server (NTRS)

    Singer, Christopher E.

    2009-01-01

    The National Aeronautics and Space Administration (NASA) was established in 1958, and its Marshall Space Flight Center was founded in 1960, as space-related work was transferred from the Army Ballistic Missile Agency at Redstone Arsenal, where Marshall is located. With this heritage, Marshall contributes almost 50 years of systems engineering experience with human-rated launch vehicles and scientific spacecraft to fulfill NASA's mission exploration and discovery. These complex, highly specialized systems have provided vital platforms for expanding the knowledge base about Earth, the solar system, and cosmos; developing new technologies that also benefit life on Earth; and opening new frontiers for America's strategic space goals. From Mercury and Gemini, to Apollo and the Space Shuttle, Marshall's systems engineering expertise is an unsurpassed foundational competency for NASA and the nation. Current assignments comprise managing Space Shuttle Propulsion systems; developing environmental control and life support systems and coordinating science operations on the International Space Station; and a number of exploration-related responsibilities. These include managing and performing science missions, such as the Lunar Crater Observation and Sensing Satellite and the Lunar Reconnaissance Orbiter slated to launch for the Moon in April 2009, to developing the Ares I crew launch vehicle upper stage and integrating the vehicle stack in house, as well as designing the Ares V cargo launch vehicle and contributing to the development of the Altair Lunar Lander and an International Lunar Network with communications nodes and other infrastructure.

  6. Technology coordination

    NASA Technical Reports Server (NTRS)

    Hartman, Steven

    1992-01-01

    Viewgraphs on technology coordination are provided. Topics covered include: technology coordination process to date; goals; how the Office of Aeronautics and Space Technology (OAST) can support the Office of Space Science and Applications (OSSA); how OSSA can support OAST; steps to technology transfer; and recommendations.

  7. A Convective Coordinate Approach to Continuum Mechanics with Application to Electrodynamics

    DTIC Science & Technology

    2013-01-01

    7 3. Differential Operators in Curvilinear Spaces 9 3.1 The Covariant...the particles in an arbitrary (perhaps initial or even fictitious) configuration, and a set of spatial coordinates that fixes locations in space (that...of field quantities defined in such spaces . 2.1 The Background Cartesian System Before defining the physical coordinate systems at the heart of this

  8. Earth's Bow Shock: Elapsed-Time Observations by Two Closely Spaced Satellites.

    PubMed

    Greenstadt, E W; Green, I M; Colburn, D S

    1968-11-22

    Coordinated observations of the earth's bow shock were made as Vela 3A and Explorer 33 passed within 6 earth radii of each other. Elapsed time measurements of shock motion give directly determined velocities in the range 1 to 10 kilometers per second and establish the existence of two regions, one of large amplitude magnetic "shock" oscillations and another of smaller, sunward, upstream oscillations. Each region is as thick as 1 earth radius, or more.

  9. Commercial Orbital Transportation Services (COTS) Program Lessons Learned

    NASA Technical Reports Server (NTRS)

    Lindenmoyer, Alan; Horkachuck, Mike; Shotwell, Gwynne; Manners, Bruce; Culbertson, Frank

    2015-01-01

    This report has been developed by the National Aeronautics and Space Administration (NASA) Human Exploration and Operations Mission Directorate (HEOMD) Risk Management team in close coordination with the COTS Program. This document provides a point-in-time, cumulative, summary of actionable key lessons learned derived from the design project. Lessons learned invariably address challenges and risks and the way in which these areas have been addressed. Accordingly the risk management thread is woven throughout the document.

  10. Ares Knowledge Capture: Summary and Key Themes Presentation

    NASA Technical Reports Server (NTRS)

    Coates, Ralph H.

    2011-01-01

    This report has been developed by the National Aeronautics and Space Administration (NASA) Human Exploration and Operations Mission Directorate (HEOMD) Risk Management team in close coordination with the MSFC Chief Engineers Office. This document provides a point-in-time, cumulative, summary of actionable key lessons learned derived from the design project. Lessons learned invariably address challenges and risks and the way in which these areas have been addressed. Accordingly the risk management thread is woven throughout the document.

  11. ESMD Risk Management Workshop: Systems Engineering and Integration Risks

    NASA Technical Reports Server (NTRS)

    Thomas, L. Dale

    2005-01-01

    This report has been developed by the National Aeronautics and Space Administration (NASA) Exploration Systems Mission Directorate (ESMD) Risk Management team in close coordination with the Systems Engineering Team. This document provides a point-in-time, cumulative, summary of key lessons learned derived from the SE RFP Development process. Lessons learned invariably address challenges and risks and the way in which these areas have been addressed. Accordingly the risk management thread is woven throughout the document.

  12. Synthesis, crystal structure, and magnetic properties of two-dimensional divalent metal glutarate/dipyridylamine coordination polymers, with a single crystal-to-single crystal transformation in the copper derivative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montney, Matthew R.; Supkowski, Ronald M.; Staples, Richard J.

    Hydrothermal reaction of divalent metal chlorides with glutaric acid and 4,4'-dipyridylamine (dpa) has afforded an isostructural family of coordination polymers with formulation [M(glu)(dpa)]{sub n} (M=Co (1), Ni (2), Cu (3); glu=glutarate). Square pyramidal coordination is seen in 1-3, with semi-ligation of a sixth donor to produce a '5+1' extended coordination sphere. Neighboring metal atoms are linked into 1D [M(glu)]{sub n} neutral chains through chelating/monodentate bridging glutarate moieties with a syn-anti binding mode, and semi-chelation of the pendant carboxylate oxygen. These chains further connect into 2D layers through dipodal dpa ligands. Neighboring layers stack into the pseudo 3D crystal structure ofmore » 1-3 through supramolecular hydrogen bonding between dpa amine units and the semi-chelated glutarate oxygen atoms. The variable temperature magnetic behavior of 1-3 was explored and modeled as infinite 1D Heisenberg chains. Notably, complex 3 undergoes a thermally induced single crystal-to-single crystal transformation between centric and acentric space groups, with a conformationally disordered unilayer structure at 293 K and an ordered bilayer structure at 173 K. All materials were further characterized via infrared spectroscopy and elemental and thermogravimetric analyses. - Graphical abstract: The coordination polymers [M(glu)(dpa)]{sub n} (M=Co (1), Ni (2), Cu (3); glu=glutarate, dpa=4,4'-dipyridylamine) exhibit 2D layer structures based on 1D [M(glu)]{sub n} chains linked through dpa tethers. Antiferromagnetic coupling is observed for 2 and 3, while ferromagnetism is predominant in 1. Compound 3 undergoes a thermally induced single crystal-to-single crystal transformation from an acentric to a centrosymmetric space group.« less

  13. Exploration Life Support Technology Development for Lunar Missions

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K.; Barta, Daniel J.; McQuillan, Jeffrey

    2009-01-01

    Exploration Life Support (ELS) is one of NASA's Exploration Technology Development Projects. ELS plans, coordinates and implements the development of new life support technologies for human exploration missions as outlined in NASA's Vision for Space Exploration. ELS technology development currently supports three major projects of the Constellation Program - the Orion Crew Exploration Vehicle (CEV), the Altair Lunar Lander and Lunar Surface Systems. ELS content includes Air Revitalization Systems (ARS), Water Recovery Systems (WRS), Waste Management Systems (WMS), Habitation Engineering, Systems Integration, Modeling and Analysis (SIMA), and Validation and Testing. The primary goal of the ELS project is to provide different technology options to Constellation which fill gaps or provide substantial improvements over the state-of-the-art in life support systems. Since the Constellation missions are so challenging, mass, power, and volume must be reduced from Space Shuttle and Space Station technologies. Systems engineering analysis also optimizes the overall architecture by considering all interfaces with the life support system and potential for reduction or reuse of resources. For long duration missions, technologies which aid in closure of air and water loops with increased reliability are essential as well as techniques to minimize or deal with waste. The ELS project utilizes in-house efforts at five NASA centers, aerospace industry contracts, Small Business Innovative Research contracts and other means to develop advanced life support technologies. Testing, analysis and reduced gravity flight experiments are also conducted at the NASA field centers. This paper gives a current status of technologies under development by ELS and relates them to the Constellation customers who will eventually use them.

  14. Collisionless high energy particle losses in optimized stellarators calculated in real-space coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemov, V. V.; Kasilov, S. V.; Institut für Theoretische Physik—Computational Physics, Technische Universität Graz, Fusion@ÖAW, Petersgasse 16, A-8010 Graz

    An approach for the direct computation of collisionless losses of high energy charged particles is developed for stellarator magnetic fields given in real space coordinates. With this approach, the corresponding computations can be performed for magnetic fields with three-dimensional inhomogeneities in the presence of stochastic regions as well as magnetic islands. A code, which is based on this approach, is applied to various stellarator configurations. It is found that the life time of fast particles obtained in real-space coordinates can be smaller than that obtained in magnetic coordinates.

  15. Bound-Preserving Discontinuous Galerkin Methods for Conservative Phase Space Advection in Curvilinear Coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mezzacappa, Anthony; Endeve, Eirik; Hauck, Cory D.

    We extend the positivity-preserving method of Zhang & Shu [49] to simulate the advection of neutral particles in phase space using curvilinear coordinates. The ability to utilize these coordinates is important for non-equilibrium transport problems in general relativity and also in science and engineering applications with specific geometries. The method achieves high-order accuracy using Discontinuous Galerkin (DG) discretization of phase space and strong stabilitypreserving, Runge-Kutta (SSP-RK) time integration. Special care in taken to ensure that the method preserves strict bounds for the phase space distribution function f; i.e., f ϵ [0, 1]. The combination of suitable CFL conditions and themore » use of the high-order limiter proposed in [49] is su cient to ensure positivity of the distribution function. However, to ensure that the distribution function satisfies the upper bound, the discretization must, in addition, preserve the divergencefree property of the phase space ow. Proofs that highlight the necessary conditions are presented for general curvilinear coordinates, and the details of these conditions are worked out for some commonly used coordinate systems (i.e., spherical polar spatial coordinates in spherical symmetry and cylindrical spatial coordinates in axial symmetry, both with spherical momentum coordinates). Results from numerical experiments - including one example in spherical symmetry adopting the Schwarzschild metric - demonstrate that the method achieves high-order accuracy and that the distribution function satisfies the maximum principle.« less

  16. Findings from the UK and Canadian Space Situational Awareness (SSA) Experimentation during the Relocation of SKYNET 5A Satellite

    NASA Astrophysics Data System (ADS)

    Ash, A.; Scott, L.; Feline, W.

    2016-09-01

    This paper describes the planning, execution, analysis and lessons identified from a collaborative Space Situational Awareness (SSA) experiment to observe the SKYNET 5A satellite during a series of orbital maneuvers that occurred in the summer of 2015. In March 2015 Airbus Defence and Space (Airbus DS) announced its intention to relocate the SKYNET 5A satellite from the Atlantic to the Asia Pacific region to increase its global coverage; this provided an opportunity to observe this high value asset to explore the challenges and technical solutions related to deep space SSA. Within the UK the Defence Science and Technology Laboratory (Dstl, part of the UK Ministry of Defence) were established as the lead agency to plan the observation campaign utilising operational and emerging experimental SSA capabilities. The campaign was then expanded to involve Canada, the United States and Australia under the auspices of the Combined Space Operations (CSpO) Memorandum of Understanding (MOU) to further explore the coordination of observations between operational systems and potential fusion of data collected using experimental SSA assets. The focus for this paper is the collaborative work between Dstl and Defence Research and Development Canada (DRDC) that featured a period of experimentation to explore methods that enable cross cueing between ground-based and space-based SSA sensors, namely the UK Starbrook facility (located on the island of Cyprus), and NEOSSat/ Sapphire space surveillance satellites located in low-Earth orbit. A number of conclusions and lessons are identified in this paper that seek to inform the wider SSA community on the challenges, potential solutions and benefits of operating a distributed SSA architecture such as the one utilized during this experiment.

  17. Fostering Multilateral Involvement in Analog Research

    NASA Technical Reports Server (NTRS)

    Cromwell, Ronita L.

    2015-01-01

    International collaboration in space flight research is an effective means for conducting investigations and utilizing limited resources to the fullest extent. Through these multilateral collaborations mutual research questions can be investigated and resources contributed by each international partner to maximize the scientific benefits to all parties. Recently the international partners embraced this approach to initiate collaborations in ground-based space flight analog environments. In 2011, the International Analog Research Working Group was established, and later named the International Human Space Flight Analog Research Coordination Group (HANA). Among the goals of this working group are to 1) establish a framework to coordinate research campaigns, as appropriate, to minimize duplication of effort and enhance synergy; 2) define what analogs are best to use for collaborative interests; and 3) facilitate interaction between discipline experts in order to have the full benefit of international expertise. To accomplish these goals, HANA is currently engaged in developing international research campaigns in ground-based analogs. Plans are being made for an international solicitation for proposals to address research of common interest to all international partners. This solicitation with identify an analog environment that will best accommodate the types of investigations requested. Once selected, studies will be integrated into a campaign and implemented at the analog site. Through these combined efforts, research beneficial to all partners will be conducted efficiently to further address human risks of space exploration.

  18. NASA Systems Autonomy Demonstration Project - Development of Space Station automation technology

    NASA Technical Reports Server (NTRS)

    Bull, John S.; Brown, Richard; Friedland, Peter; Wong, Carla M.; Bates, William

    1987-01-01

    A 1984 Congressional expansion of the 1958 National Aeronautics and Space Act mandated that NASA conduct programs, as part of the Space Station program, which will yield the U.S. material benefits, particularly in the areas of advanced automation and robotics systems. Demonstration programs are scheduled for automated systems such as the thermal control, expert system coordination of Station subsystems, and automation of multiple subsystems. The programs focus the R&D efforts and provide a gateway for transfer of technology to industry. The NASA Office of Aeronautics and Space Technology is responsible for directing, funding and evaluating the Systems Autonomy Demonstration Project, which will include simulated interactions between novice personnel and astronauts and several automated, expert subsystems to explore the effectiveness of the man-machine interface being developed. Features and progress on the TEXSYS prototype thermal control system expert system are outlined.

  19. Identifying Organic Molecules in Space: The AstroBiology Explorer (ABE) Mission Concept

    NASA Technical Reports Server (NTRS)

    Ennico, K. A.; Sandford, S. A.; Allamandola, L.; Bregman, J.; Cohen, M.; Cruikshank, D.; Dumas, C.; Greene, T.; Hudgins, D.; Kwok, S.

    2004-01-01

    The AstroBiology Explorer (ABE) mission concept consists of a dedicated space observatory having a 60 cm class primary mirror cooled to T < 50 K equipped with medium resolution cross-dispersed spectrometers having cooled large format near- and mid-infrared detector arrays. Such a system would be capable of addressing outstanding problems in Astrochemistry and Astrophysics that are particularly relevant to Astrobiology and addressable via astronomical observation. The mission s observational program would make fundamental scientific progress in establishing the nature, distribution, formation and evolution of organic and other molecular materials in the following extra-terrestrial environments: 1) The Outflow of Dying Stars, 2) The Diffuse Interstellar Medium, 3) Dense Molecular Clouds, Star Formation Regions, and Young StellarPlanetary Systems, 4) Planets, Satellites, and Small Bodies within the Solar System, and 5 ) The Interstellar Media of Other Galaxies. ABE could make fundamental progress in all of these areas by conducting a 1 to 2 year mission to obtain a coordinated set of infrared spectroscopic observations over the 2.5-20 micron spectral range at a spectral resolution of R > 2000 of about 1500 objects including galaxies, stars, planetary nebulae, young stellar objects, and solar system objects. Keywords: Astrobiology, infrared, Explorers, interstellar organics, telescope, spectrometer, space, infrared detectors

  20. Path description of coordinate-space amplitudes

    NASA Astrophysics Data System (ADS)

    Erdoǧan, Ozan; Sterman, George

    2017-06-01

    We develop a coordinate version of light-cone-ordered perturbation theory, for general time-ordered products of fields, by carrying out integrals over one light-cone coordinate for each interaction vertex. The resulting expressions depend on the lengths of paths, measured in the same light-cone coordinate. Each path is associated with a denominator equal to a "light-cone deficit," analogous to the "energy deficits" of momentum-space time- or light-cone-ordered perturbation theory. In effect, the role played by intermediate states in momentum space is played by paths between external fields in coordinate space. We derive a class of identities satisfied by coordinate diagrams, from which their imaginary parts can be derived. Using scalar QED as an example, we show how the eikonal approximation arises naturally when the external points in a Green function approach the light cone, and we give applications to products of Wilson lines. Although much of our discussion is directed at massless fields in four dimensions, we extend the formalism to massive fields and dimensional regularization.

  1. NASA's Space Launch System: A Transformative Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Cook, Jerry; Hitt, David

    2016-01-01

    Currently making rapid progress toward first launch in 2018, NASA's exploration-class Space Launch System (SLS) represents a game-changing new spaceflight capability, enabling mission profiles that are currently impossible. Designed to launch human deep-space missions farther into space than ever before, the initial configuration of SLS will be able to deliver more than 70 metric tons of payload to low Earth orbit (LEO), and will send NASA's new Orion crew vehicle into lunar orbit. Plans call for the rocket to evolve on its second flight, via a new upper stage, to a more powerful configuration capable of lofting 105 tons to LEO or co-manifesting additional systems with Orion on launches to the lunar vicinity. Ultimately, SLS will evolve to a configuration capable of delivering more than 130 tons to LEO. SLS is a foundational asset for NASA's Journey to Mars, and has been recognized by the International Space Exploration Coordination Group as a key element for cooperative missions beyond LEO. In order to enable human deep-space exploration, SLS provides unrivaled mass, volume, and departure energy for payloads, offering numerous benefits for a variety of other missions. For robotic science probes to the outer solar system, for example, SLS can cut transit times to less than half that of currently available vehicles, producing earlier data return, enhancing iterative exploration, and reducing mission cost and risk. In the field of astrophysics, SLS' high payload volume, in the form of payload fairings with a diameter of up to 10 meters, creates the opportunity for launch of large-aperture telescopes providing an unprecedented look at our universe, and offers the ability to conduct crewed servicing missions to observatories stationed at locations beyond low Earth orbit. At the other end of the spectrum, SLS opens access to deep space for low-cost missions in the form of smallsats. The first launch of SLS will deliver beyond LEO 13 6-unit smallsat payloads, representing multiple disciplines, including three spacecraft competitively chosen through NASA's Centennial Challenges competition. Private organizations have also identified benefits of SLS for unique public-private partnerships. This paper will give an overview of SLS' capabilities and its current status, and discuss the vehicle's potential for human exploration of deep space and other game-changing utilization opportunities.

  2. NASA's Space Launch System: A Transformative Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Cook, Jerry

    2016-01-01

    Currently making rapid progress toward first launch in 2018, NASA's exploration-class Space Launch System (SLS) represents a game-changing new spaceflight capability, enabling mission profiles that are currently impossible. Designed to launch human deep-space missions farther into space than ever before, the initial configuration of SLS will be able to deliver more than 70 metric tons of payload to low Earth orbit (LEO), and will send NASA's new Orion crew vehicle into lunar orbit. Plans call for the rocket to evolve on its second flight, via a new upper stage, to a more powerful configuration capable of lofting 105 t to LEO or comanifesting additional systems with Orion on launches to the lunar vicinity. Ultimately, SLS will evolve to a configuration capable of delivering more than 130 t to LEO. SLS is a foundational asset for NASA's Journey to Mars, and has been recognized by the International Space Exploration Coordination Group as a key element for cooperative missions beyond LEO. In order to enable human deep-space exploration, SLS provides unrivaled mass, volume, and departure energy for payloads, offering numerous benefits for a variety of other missions. For robotic science probes to the outer solar system, for example, SLS can cut transit times to less than half that of currently available vehicles, producing earlier data return, enhancing iterative exploration, and reducing mission cost and risk. In the field of astrophysics, SLS' high payload volume, in the form of payload fairings with a diameter of up to 10 meters, creates the opportunity for launch of large-aperture telescopes providing an unprecedented look at our universe, and offers the ability to conduct crewed servicing missions to observatories stationed at locations beyond low Earth orbit. At the other end of the spectrum, SLS opens access to deep space for low-cost missions in the form of smallsats. The first launch of SLS will deliver beyond LEO 13 6U smallsat payloads, representing multiple disciplines, including three spacecraft competitively chosen through NASA's Centennial Challenges competition. Private organizations have also identified benefits of SLS for unique public-private partnerships. This paper will give an overview of SLS' capabilities and its current status, and discuss the vehicle's potential for human exploration of deep space and other game-changing utilization opportunities.

  3. Learning to combine high variability with high precision: lack of transfer to a different task.

    PubMed

    Wu, Yen-Hsun; Truglio, Thomas S; Zatsiorsky, Vladimir M; Latash, Mark L

    2015-01-01

    The authors studied effects of practicing a 4-finger accurate force production task on multifinger coordination quantified within the uncontrolled manifold hypothesis. During practice, task instability was modified by changing visual feedback gain based on accuracy of performance. The authors also explored the retention of these effects, and their transfer to a prehensile task. Subjects practiced the force production task for 2 days. After the practice, total force variability decreased and performance became more accurate. In contrast, variance of finger forces showed a tendency to increase during the first practice session while in the space of finger modes (hypothetical commands to fingers) the increase was under the significance level. These effects were retained for 2 weeks. No transfer of these effects to the prehensile task was seen, suggesting high specificity of coordination changes. The retention of practice effects without transfer to a different task suggests that further studies on a more practical method of improving coordination are needed.

  4. Determinants of individual and group performance

    NASA Technical Reports Server (NTRS)

    Helmreich, Robert L.

    1986-01-01

    A broad exploration of individual and group/organizational factors that influence performance in demanding environments such as space and air transport was undertaken. Primary efforts were directed toward defining critical issues, developing new methodologies for the assessment of performance in such environments, and developing new measures of personality and attitudes as predictors of performance. Substantial clarification of relevant issues for research and validation was achieved. A reliable instrument to assess crewmembers' attitudes regarding crew coordination and flightdeck management was validated. Major efforts in data collection to validate concepts were initiated. The results suggest that substantial improvements can be made in the prediction of performance and in the selection of crewmembers for aviation and space.

  5. A vector space model approach to identify genetically related diseases.

    PubMed

    Sarkar, Indra Neil

    2012-01-01

    The relationship between diseases and their causative genes can be complex, especially in the case of polygenic diseases. Further exacerbating the challenges in their study is that many genes may be causally related to multiple diseases. This study explored the relationship between diseases through the adaptation of an approach pioneered in the context of information retrieval: vector space models. A vector space model approach was developed that bridges gene disease knowledge inferred across three knowledge bases: Online Mendelian Inheritance in Man, GenBank, and Medline. The approach was then used to identify potentially related diseases for two target diseases: Alzheimer disease and Prader-Willi Syndrome. In the case of both Alzheimer Disease and Prader-Willi Syndrome, a set of plausible diseases were identified that may warrant further exploration. This study furthers seminal work by Swanson, et al. that demonstrated the potential for mining literature for putative correlations. Using a vector space modeling approach, information from both biomedical literature and genomic resources (like GenBank) can be combined towards identification of putative correlations of interest. To this end, the relevance of the predicted diseases of interest in this study using the vector space modeling approach were validated based on supporting literature. The results of this study suggest that a vector space model approach may be a useful means to identify potential relationships between complex diseases, and thereby enable the coordination of gene-based findings across multiple complex diseases.

  6. A space-time tensor formulation for continuum mechanics in general curvilinear, moving, and deforming coordinate systems

    NASA Technical Reports Server (NTRS)

    Avis, L. M.

    1976-01-01

    Tensor methods are used to express the continuum equations of motion in general curvilinear, moving, and deforming coordinate systems. The space-time tensor formulation is applicable to situations in which, for example, the boundaries move and deform. Placing a coordinate surface on such a boundary simplifies the boundary condition treatment. The space-time tensor formulation is also applicable to coordinate systems with coordinate surfaces defined as surfaces of constant pressure, density, temperature, or any other scalar continuum field function. The vanishing of the function gradient components along the coordinate surfaces may simplify the set of governing equations. In numerical integration of the equations of motion, the freedom of motion of the coordinate surfaces provides a potential for enhanced resolution of the continuum field function. An example problem of an incompressible, inviscid fluid with a top free surface is considered, where the surfaces of constant pressure (including the top free surface) are coordinate surfaces.

  7. Dynamics and Control of Flexible Space Vehicles

    NASA Technical Reports Server (NTRS)

    Likins, P. W.

    1970-01-01

    The purpose of this report is twofold: (1) to survey the established analytic procedures for the simulation of controlled flexible space vehicles, and (2) to develop in detail methods that employ a combination of discrete and distributed ("modal") coordinates, i.e., the hybrid-coordinate methods. Analytic procedures are described in three categories: (1) discrete-coordinate methods, (2) hybrid-coordinate methods, and (3) vehicle normal-coordinate methods. Each of these approaches is described and analyzed for its advantages and disadvantages, and each is found to have an area of applicability. The hybrid-coordinate method combines the efficiency of the vehicle normal-coordinate method with the versatility of the discrete-coordinate method, and appears to have the widest range of practical application. The results in this report have practical utility in two areas: (1) complex digital computer simulation of flexible space vehicles of arbitrary configuration subject to realistic control laws, and (2) preliminary control system design based on transfer functions for linearized models of dynamics and control laws.

  8. Use of a running coupling in the NLO calculation of forward hadron production

    NASA Astrophysics Data System (ADS)

    Ducloué, B.; Iancu, E.; Lappi, T.; Mueller, A. H.; Soyez, G.; Triantafyllopoulos, D. N.; Zhu, Y.

    2018-03-01

    We address and solve a puzzle raised by a recent calculation [1] of the cross section for particle production in proton-nucleus collisions to next-to-leading order: the numerical results show an unreasonably large dependence upon the choice of a prescription for the QCD running coupling, which spoils the predictive power of the calculation. Specifically, the results obtained with a prescription formulated in the transverse coordinate space differ by 1 to 2 orders of magnitude from those obtained with a prescription in momentum space. We show that this discrepancy is an artifact of the interplay between the asymptotic freedom of QCD and the Fourier transform from coordinate space to momentum space. When used in coordinate space, the running coupling can act as a fictitious potential which mimics hard scattering and thus introduces a spurious contribution to the cross section. We identify a new coordinate-space prescription, which avoids this problem, and leads to results consistent with those obtained with the momentum-space prescription.

  9. Science Planning for Multi-Spacecraft Coordinated Observations

    NASA Technical Reports Server (NTRS)

    Maks, Lori; Fishman, Mark; Pell, Vince; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    Fulfilling the promise of an era of great observatories, NASA now has more than three space-based astronomical telescopes operating in different wavebands. This situation provides astronomers with a unique opportunity to simultaneously observe with multiple observatories. Yet scheduling multiple observatories simultaneously is highly inefficient when compared to single observatory observations. Thus, programs using multiple observatories are limited not due to scientific restrictions, but due to operational inefficiencies. Each year, a number of proposals are accepted by a space-based observatory for conduction of astronomical observations and gathering of science data for the study of galactic events. Since each space-based observatory uses a set of instruments designed to operate in specific energy regions, most such studies are conducted by submitting observation proposals to multiple observatories, with requests to coordinate among themselves. To assure that the proposed observations can be scheduled, each observatory's staff has to check that the observations are valid and meet all the constraints for their own observatory; in addition, they have to verify that the observations satisfy the constraints of the other observatories. Thus, coordinated observations require painstaking manual collaboration among the observatory staff at each observatory. In order to exploit new paradigms for observatory operation, the Goddard Space Flight Center's Advanced Architectures and Automation Branch has developed a prototype tool called the Visual Observation Layout Tool (VOLT). The main objective of VOLT is to provide a visual tool to automate the science planning of coordinated observations for multiple spacecraft, as well as to increase the scheduling probability of observations. However, VOLT is also useful for single observatory planning to optimize observatory control. Three space-based missions are interested in using VOLT (the Hubble Space Telescope, the Chandra X-Ray Observatory, and the Far Ultraviolet Spectroscopic Explorer). The VOLT team members have collaborated with these missions to gather requirements and obtain feedback on their mission planning processes. VOLT has been developed as a cross-platform Java client application for use by scientists and observatory science planning staff to visualize scheduling options and constraints. It also supports a lightweight graphical user interface for remote viewing via a Web front end. Additionally, it uniquely supports the ability to interact with multiple, diverse scheduling packages in order to determine windows of opportunity for observations and visually portray the constraints of each observation request. VOLT enables science data capture scenarios which are currently either impossible, or which require extensive time and manpower to coordinate amongst multiple observatories. it supports early detection of planning conflicts by generating coordinated solutions based on observatory schedulability and constraints. The project development approach has included frequent prototype demonstrations to our interested missions to obtain feedback after each release of the software. We will present an overview of our lessons learned in infusing the VOLT tool into the operations of the missions we have collaborated with and a brief demonstration of the software.

  10. Systems Engineering Lessons Learned from Solar Array Structures and Mechanisms Deployment

    NASA Technical Reports Server (NTRS)

    Vipavetz, Kevin; Kraft, Thomas

    2013-01-01

    This report has been developed by the National Aeronautics and Space Administration (NASA) Human Exploration and Operations Mission Directorate (HEOMD) Risk Management team in close coordination with the Engineering Directorate at LaRC. This document provides a point-in-time, cumulative, summary of actionable key lessons learned derived from the design project. Lessons learned invariably address challenges and risks and the way in which these areas have been addressed. Accordingly the risk management thread is woven throughout the document.

  11. Dextrous robot hands

    NASA Technical Reports Server (NTRS)

    Venkataraman, Subramanian T. (Editor); Iberall, Thea (Editor)

    1990-01-01

    Recent studies of human hand function and their implications for the design of robot hands are discussed in reviews and reports. Topics addressed include human grasp choice and robotic grasp analysis, opposition space and human prehension, coordination in normal and prosthetic reaching, and intelligent exploration by the human hand. Consideration is given to a task-oriented dextrous manipulation architecture, the control architecture for the Belgrade/USC hand, the analysis of multifingered grasping and manipulation, and tactile sensing for shape interpretation. Diagrams, graphs, and photographs are provided.

  12. Automated generation of image products for Mars Exploration Rover Mission tactical operations

    NASA Technical Reports Server (NTRS)

    Alexander, Doug; Zamani, Payam; Deen, Robert; Andres, Paul; Mortensen, Helen

    2005-01-01

    This paper will discuss, from design to implementation, the methodologies applied to MIPL's automated pipeline processing as a 'system of systems' integrated with the MER GDS. Overviews of the interconnected product generating systems will also be provided with emphasis on interdependencies, including those for a) geometric rectificationn of camera lens distortions, b) generation of stereo disparity, c) derivation of 3-dimensional coordinates in XYZ space, d) generation of unified terrain meshes, e) camera-to-target ranging (distance) and f) multi-image mosaicking.

  13. Science Community Interface

    NASA Technical Reports Server (NTRS)

    Neupert, Werner M.

    1991-01-01

    The interface is described between NASA HQ, NASA Goddard, and the rocket Principal Investigators. The proposal selection process is described along with the cycle time to flight, constraints imposed by science objectives on operations, campaign modes, and coordination with ground based facilities. There were questions about the success rate of proposals and the primary sources of funding for the payloads program from the branches of the science divisions in OSSA, especially space physics, astrophysics, Earth sciences, and solar system exploration. The presentation is given in the form of viewgraphs.

  14. Modular Software Interfaces for Revolutionary Flexibility in Space Operations

    NASA Technical Reports Server (NTRS)

    Glass, Brian; Braham, Stephen; Pollack, Jay

    2005-01-01

    To make revolutionary improvements in exploration, space systems need to be flexible, realtime reconfigurable, and able to trade data transparently among themselves and mission operations. Onboard operations systems, space assembly coordination and EVA systems in exploration and construction all require real-time modular reconfigurability and data sharing. But NASA's current exploration systems are still largely legacies from hastily-developed, one-off Apollo-era practices. Today's rovers, vehicles, spacesuits, space stations, and instruments are not able to plug-and-play, Lego-like: into different combinations. Point-to-point dominates - individual suit to individual vehicle, individual instrument to rover. All are locally optimized, all unique, each of the data interfaces has been recoded for each possible combination. This will be an operations and maintenance nightmare in the much larger Project Constellation system of systems. This legacy approach does not scale to the hundreds of networked space components needed for space construction and for new, space-based approaches to Earth-Moon operations. By comparison, battlefield information management systems, which are considered critical to military force projection, have long since abandoned a point-to-point approach to systems integration. From a system-of-systems viewpoint, a clean-sheet redesign of the interfaces of all exploration systems is a necessary prerequisite before designing the interfaces of the individual exploration systems. Existing communications and Global Information Grid and middleware technologies are probably sufficient for command and control and information interfaces, with some hardware and time-delay modifications for space environments. NASA's future advanced space operations must also be information and data compatible with aerospace operations and surveillance systems being developed by other US Government agencies such as the Department of Homeland Security, Federal Aviation Administration and Department of Defense. This paper discusses fundamental system-of-systems infrastructure: approaches and architectures for modular plug-and-play software interfaces for revolutionary improvements in flexibility, modularity, robustness, ease of maintenance, reconfigurability, safety and productivity. Starting with middleware, databases, and mobile communications technologies, our technical challenges will be to apply these ideas to the requirements of constellations of space systems and to implement them initially on prototype space hardware. This is necessary to demonstrate an integrated information sharing architecture and services. It is a bottom-up approach, one that solves the problem of space operations data integration. Exploration demands uniform software mechanisms for application information interchange, and the corresponding uniformly available software services to enhance these mechanisms. We will examine the issues in plug-and-play, real-time-configurable systems, including common definition and management and tracking of data and information among many different space systems. Different field test approaches are discussed, including the use of the International Space Station and terrestrial analog mission operations at field sites.

  15. A Biologically Inspired Cooperative Multi-Robot Control Architecture

    NASA Technical Reports Server (NTRS)

    Howsman, Tom; Craft, Mike; ONeil, Daniel; Howell, Joe T. (Technical Monitor)

    2002-01-01

    A prototype cooperative multi-robot control architecture suitable for the eventual construction of large space structures has been developed. In nature, there are numerous examples of complex architectures constructed by relatively simple insects, such as termites and wasps, which cooperatively assemble their nests. The prototype control architecture emulates this biological model. Actions of each of the autonomous robotic construction agents are only indirectly coordinated, thus mimicking the distributed construction processes of various social insects. The robotic construction agents perform their primary duties stigmergically i.e., without direct inter-agent communication and without a preprogrammed global blueprint of the final design. Communication and coordination between individual agents occurs indirectly through the sensed modifications that each agent makes to the structure. The global stigmergic building algorithm prototyped during the initial research assumes that the robotic builders only perceive the current state of the structure under construction. Simulation studies have established that an idealized form of the proposed architecture was indeed capable of producing representative large space structures with autonomous robots. This paper will explore the construction simulations in order to illustrate the multi-robot control architecture.

  16. A Stigmergic Cooperative Multi-Robot Control Architecture

    NASA Technical Reports Server (NTRS)

    Howsman, Thomas G.; O'Neil, Daniel; Craft, Michael A.

    2004-01-01

    In nature, there are numerous examples of complex architectures constructed by relatively simple insects, such as termites and wasps, which cooperatively assemble their nests. A prototype cooperative multi-robot control architecture which may be suitable for the eventual construction of large space structures has been developed which emulates this biological model. Actions of each of the autonomous robotic construction agents are only indirectly coordinated, thus mimicking the distributed construction processes of various social insects. The robotic construction agents perform their primary duties stigmergically, i.e., without direct inter-agent communication and without a preprogrammed global blueprint of the final design. Communication and coordination between individual agents occurs indirectly through the sensed modifications that each agent makes to the structure. The global stigmergic building algorithm prototyped during the initial research assumes that the robotic builders only perceive the current state of the structure under construction. Simulation studies have established that an idealized form of the proposed architecture was indeed capable of producing representative large space structures with autonomous robots. This paper will explore the construction simulations in order to illustrate the multi-robot control architecture.

  17. Exploration studies technical report, FY1988 status. Volume 1: Technical summary

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The Office of Exploration (OEXP) at NASA Headquarters has been tasked with defining and recommending alternatives for an early 1990's nationaL decision on a focused program of human exploration of the solar system. The Mission Analysis and System Engineering (MASE) group, which is managed by the Exploration Studies Office at the Lyndon B. Johnson Space Center, is responsible for coordinating the technical studies necessary for accomplishing such a task. This technical report, produced by the MASE, describes the process that has been developed in a case study approach. The four case studies developed in FY88 include: (1) Human Expedition to Phobos; (2) Human Expedition to Mars; (3) Lunar Observatory; and (4) Lunar Outpost to Early Mars Evolution. The final outcome of this effort is a set of programmatic and technical conclusions and recommendations for the following year's work.

  18. NASA's Space Launch System: A New Capability for Science and Exploration

    NASA Technical Reports Server (NTRS)

    Crumbly, Christopher M.; May, Todd A.; Robinson, Kimberly F.

    2014-01-01

    The National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center (MSFC) is directing efforts to build the Space Launch System (SLS), a heavy-lift rocket that will launch the Orion Multi-Purpose Crew Vehicle (MPCV) and other high-priority payloads into deep space. Its evolvable architecture will allow NASA to begin with human missions beyond the Moon and then go on to transport astronauts or robots to distant places such as asteroids and Mars. Developed with the goals of safety, affordability, and sustainability in mind, SLS will start with 10 percent more thrust than the Saturn V rocket that launched astronauts to the Moon 40 years ago. From there it will evolve into the most powerful launch vehicle ever flown, via an upgrade approach that will provide building blocks for future space exploration. This paper will explain how NASA will execute this development within flat budgetary guidelines by using existing engines assets and heritage technology, from the initial 70 metric ton (t) lift capability through a block upgrade approach to an evolved 130-t capability, and will detail the progress that has already been made toward a first launch in 2017. This paper will also explore the requirements needed for human missions to deep-space destinations and for game-changing robotic science missions, and the capability of SLS to meet those requirements and enable those missions, along with the evolution strategy that will increase that capability. The International Space Exploration Coordination Group, representing 12 of the world's space agencies, has worked together to create the Global Exploration Roadmap, which outlines paths towards a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for all three destinations. The SLS will offer a robust way to transport international crews and the air, water, food, and equipment they would need for extended trips to asteroids, the Moon, and Mars. SLS also offers substantial capability to support robotic science missions, offering benefits such as improved mass margins and radiation mitigation, and reduced mission durations. The SLS rocket, using significantly higher characteristic energy (C3), can more quickly and effectively take the mission directly to its destination, reducing trip time and cost. As this paper will explain, the SLS is making measurable progress toward becoming a global infrastructure asset for robotic and human scouts of all nations by providing the robust space launch capability to deliver sustainable solutions for advanced exploration.

  19. Crew/Robot Coordinated Planetary EVA Operations at a Lunar Base Analog Site

    NASA Technical Reports Server (NTRS)

    Diftler, M. A.; Ambrose, R. O.; Bluethmann, W. J.; Delgado, F. J.; Herrera, E.; Kosmo, J. J.; Janoiko, B. A.; Wilcox, B. H.; Townsend, J. A.; Matthews, J. B.; hide

    2007-01-01

    Under the direction of NASA's Exploration Technology Development Program, robots and space suited subjects from several NASA centers recently completed a very successful demonstration of coordinated activities indicative of base camp operations on the lunar surface. For these activities, NASA chose a site near Meteor Crater, Arizona close to where Apollo Astronauts previously trained. The main scenario demonstrated crew returning from a planetary EVA (extra-vehicular activity) to a temporary base camp and entering a pressurized rover compartment while robots performed tasks in preparation for the next EVA. Scenario tasks included: rover operations under direct human control and autonomous modes, crew ingress and egress activities, autonomous robotic payload removal and stowage operations under both local control and remote control from Houston, and autonomous robotic navigation and inspection. In addition to the main scenario, participants had an opportunity to explore additional robotic operations: hill climbing, maneuvering heaving loads, gathering geo-logical samples, drilling, and tether operations. In this analog environment, the suited subjects and robots experienced high levels of dust, rough terrain, and harsh lighting.

  20. A Structure-Based Distance Metric for High-Dimensional Space Exploration with Multi-Dimensional Scaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hyun Jung; McDonnell, Kevin T.; Zelenyuk, Alla

    2014-03-01

    Although the Euclidean distance does well in measuring data distances within high-dimensional clusters, it does poorly when it comes to gauging inter-cluster distances. This significantly impacts the quality of global, low-dimensional space embedding procedures such as the popular multi-dimensional scaling (MDS) where one can often observe non-intuitive layouts. We were inspired by the perceptual processes evoked in the method of parallel coordinates which enables users to visually aggregate the data by the patterns the polylines exhibit across the dimension axes. We call the path of such a polyline its structure and suggest a metric that captures this structure directly inmore » high-dimensional space. This allows us to better gauge the distances of spatially distant data constellations and so achieve data aggregations in MDS plots that are more cognizant of existing high-dimensional structure similarities. Our MDS plots also exhibit similar visual relationships as the method of parallel coordinates which is often used alongside to visualize the high-dimensional data in raw form. We then cast our metric into a bi-scale framework which distinguishes far-distances from near-distances. The coarser scale uses the structural similarity metric to separate data aggregates obtained by prior classification or clustering, while the finer scale employs the appropriate Euclidean distance.« less

  1. Solving Autonomy Technology Gaps through Wireless Technology and Orion Avionics Architectural Principles

    NASA Astrophysics Data System (ADS)

    Black, Randy; Bai, Haowei; Michalicek, Andrew; Shelton, Blaine; Villela, Mark

    2008-01-01

    Currently, autonomy in space applications is limited by a variety of technology gaps. Innovative application of wireless technology and avionics architectural principles drawn from the Orion crew exploration vehicle provide solutions for several of these gaps. The Vision for Space Exploration envisions extensive use of autonomous systems. Economic realities preclude continuing the level of operator support currently required of autonomous systems in space. In order to decrease the number of operators, more autonomy must be afforded to automated systems. However, certification authorities have been notoriously reluctant to certify autonomous software in the presence of humans or when costly missions may be jeopardized. The Orion avionics architecture, drawn from advanced commercial aircraft avionics, is based upon several architectural principles including partitioning in software. Robust software partitioning provides "brick wall" separation between software applications executing on a single processor, along with controlled data movement between applications. Taking advantage of these attributes, non-deterministic applications can be placed in one partition and a "Safety" application created in a separate partition. This "Safety" partition can track the position of astronauts or critical equipment and prevent any unsafe command from executing. Only the Safety partition need be certified to a human rated level. As a proof-of-concept demonstration, Honeywell has teamed with the Ultra WideBand (UWB) Working Group at NASA Johnson Space Center to provide tracking of humans, autonomous systems, and critical equipment. Using UWB the NASA team can determine positioning to within less than one inch resolution, allowing a Safety partition to halt operation of autonomous systems in the event that an unplanned collision is imminent. Another challenge facing autonomous systems is the coordination of multiple autonomous agents. Current approaches address the issue as one of networking and coordination of multiple independent units, each with its own mission. As a proof-of-concept Honeywell is developing and testing various algorithms that lead to a deterministic, fault tolerant, reliable wireless backplane. Just as advanced avionics systems control several subsystems, actuators, sensors, displays, etc.; a single "master" autonomous agent (or base station computer) could control multiple autonomous systems. The problem is simplified to controlling a flexible body consisting of several sensors and actuators, rather than one of coordinating multiple independent units. By filling technology gaps associated with space based autonomous system, wireless technology and Orion architectural principles provide the means for decreasing operational costs and simplifying problems associated with collaboration of multiple autonomous systems.

  2. Enabling Future Science and Human Exploration with NASA's Next Generation Near Earth and Deep Space Communications and Navigation Architecture

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard; Schier, James; Israel, David; Tai, Wallace; Liebrecht, Philip; Townes, Stephen

    2017-01-01

    The National Aeronautics and Space Administration (NASA) is studying alternatives for the United States space communications architecture through the 2040 timeframe. This architecture provides communication and navigation services to both human exploration and science missions throughout the solar system. Several of NASA's key space assets are approaching their end of design life and major systems are in need of replacement. The changes envisioned in the relay satellite architecture and capabilities around both Earth and Mars are significant undertakings and occur only once or twice each generation, and therefore is referred to as NASA's next generation space communications architecture. NASA's next generation architecture will benefit from technology and services developed over recent years. These innovations will provide missions with new operations concepts, increased performance, and new business and operating models. Advancements in optical communications will enable high-speed data channels and the use of new and more complex science instruments. Modern multiple beam/multiple access technologies such as those employed on commercial high throughput satellites will enable enhanced capabilities for on-demand service, and with new protocols will help provide Internet-like connectivity for cooperative spacecraft to improve data return and coordinate joint mission objectives. On-board processing with autonomous and cognitive networking will play larger roles to help manage system complexity. Spacecraft and ground systems will coordinate among themselves to establish communications, negotiate link connectivity, and learn to share spectrum to optimize resource allocation. Spacecraft will autonomously navigate, plan trajectories, and handle off-nominal events. NASA intends to leverage the ever-expanding capabilities of the satellite communications industry and foster its continued growth. NASA's technology development will complement and extend commercial capabilities to meet unique space environment requirements and to provide capabilities that are beyond the commercial marketplace. The progress of the communications industry, including the emerging global space internet segment and its planned constellations of 100's of satellites offer additional opportunities for new capability and mission concepts. The opportunities and challenges of a future space architecture require an optimal solution encompassing a global perspective. The concepts and technologies intentionally define an architecture that applies not only to NASA, but to other U.S. government agencies, international space and government agencies, and domestic and international industries to advance the openness, interoperability, and affordability of space communications. Cooperation among the worlds space agencies, their capabilities, standards, operations, and interoperability are key to advancing humankinds understand of the universe and extending human presence into the solar system.

  3. Enabling Future Science and Human Exploration with NASA's Next Generation near Earth and Deep Space Communications and Navigation Architecture

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Schier, James S.; Israel, David J.; Tai, Wallace; Liebrecht, Philip E.; Townes, Stephen A.

    2017-01-01

    The National Aeronautics and Space Administration (NASA) is studying alternatives for the United States space communications architecture through the 2040 timeframe. This architecture provides communication and navigation services to both human exploration and science missions throughout the solar system. Several of NASA's key space assets are approaching their end of design life and major systems are in need of replacement. The changes envisioned in the relay satellite architecture and capabilities around both Earth and Mars are significant undertakings and occur only once or twice each generation, and therefore is referred to as NASA's next generation space communications architecture. NASA's next generation architecture will benefit from technology and services developed over recent years. These innovations will provide missions with new operations concepts, increased performance, and new business and operating models. Advancements in optical communications will enable high-speed data channels and the use of new and more complex science instruments. Modern multiple beam/multiple access technologies such as those employed on commercial high throughput satellites will enable enhanced capabilities for on-demand service, and with new protocols will help provide Internet-like connectivity for cooperative spacecraft to improve data return and coordinate joint mission objectives. On-board processing with autonomous and cognitive networking will play larger roles to help manage system complexity. Spacecraft and ground systems will coordinate among themselves to establish communications, negotiate link connectivity, and learn to share spectrum to optimize resource allocation. Spacecraft will autonomously navigate, plan trajectories, and handle off-nominal events. NASA intends to leverage the ever-expanding capabilities of the satellite communications industry and foster its continued growth. NASA's technology development will complement and extend commercial capabilities to meet unique space environment requirements and to provide capabilities that are beyond the commercial marketplace. The progress of the communications industry, including the emerging global space internet segment and its planned constellations of 100's of satellites offer additional opportunities for new capability and mission concepts. The opportunities and challenges of a future space architecture require an optimal solution encompassing a global perspective. The concepts and technologies intentionally define an architecture that applies not only to NASA, but to other U.S. government agencies, international space and government agencies, and domestic and international industries to advance the openness, interoperability, and affordability of space communications. Cooperation among the worlds space agencies, their capabilities, standards, operations, and interoperability are key to advancing humankind's understand of the universe and extending human presence into the solar system.

  4. Creating Body Shapes From Verbal Descriptions by Linking Similarity Spaces.

    PubMed

    Hill, Matthew Q; Streuber, Stephan; Hahn, Carina A; Black, Michael J; O'Toole, Alice J

    2016-11-01

    Brief verbal descriptions of people's bodies (e.g., "curvy," "long-legged") can elicit vivid mental images. The ease with which these mental images are created belies the complexity of three-dimensional body shapes. We explored the relationship between body shapes and body descriptions and showed that a small number of words can be used to generate categorically accurate representations of three-dimensional bodies. The dimensions of body-shape variation that emerged in a language-based similarity space were related to major dimensions of variation computed directly from three-dimensional laser scans of 2,094 bodies. This relationship allowed us to generate three-dimensional models of people in the shape space using only their coordinates on analogous dimensions in the language-based description space. Human descriptions of photographed bodies and their corresponding models matched closely. The natural mapping between the spaces illustrates the role of language as a concise code for body shape that captures perceptually salient global and local body features. © The Author(s) 2016.

  5. KSC-08pd0821

    NASA Image and Video Library

    2008-03-26

    CAPE CANAVERAL, Fla. --- At NASA Kennedy Space Center's Shuttle Landing Facility, STS-123 Commander Dominic Gorie, right, is welcomed back from orbit by NASA Deputy Administrator Shana Dale, left, and NASA Administrator Mike Griffin as Media Coordinator MaryAnn Chevalier looks on. Space shuttle Endeavour landed on Runway 15 to end the STS-123 mission, a 16-day flight to the International Space Station. This was the 16th night landing at Kennedy. The main landing gear touched down at 8:39:08 p.m. EDT. The nose landing gear touched down at 8:39:17 p.m. and wheel stop was at 8:40:41 p.m. The mission completed nearly 6.6 million miles. The landing was on the second opportunity after the first was waved off due to unstable weather in the Kennedy Space Center area. The STS-123 mission delivered the first segment of the Japan Aerospace Exploration Agency's Kibo laboratory and the Canadian Space Agency's two-armed robotic system, known as Dextre. Photo credit: NASA/Kim Shiflett

  6. Cognitive Functioning in Space Exploration Missions: A Human Requirement

    NASA Technical Reports Server (NTRS)

    Fiedler, Edan; Woolford, Barbara

    2005-01-01

    Solving cognitive issues in the exploration missions will require implementing results from both Human Behavior and Performance, and Space Human Factors Engineering. Operational and research cognitive requirements need to reflect a coordinated management approach with appropriate oversight and guidance from NASA headquarters. First, this paper will discuss one proposed management method that would combine the resources of Space Medicine and Space Human Factors Engineering at JSC, other NASA agencies, the National Space Biomedical Research Institute, Wyle Labs, and other academic or industrial partners. The proposed management is based on a Human Centered Design that advocates full acceptance of the human as a system equal to other systems. Like other systems, the human is a system with many subsystems, each of which has strengths and limitations. Second, this paper will suggest ways to inform exploration policy about what is needed for optimal cognitive functioning of the astronaut crew, as well as requirements to ensure necessary assessment and intervention strategies for the human system if human limitations are reached. Assessment strategies will include clinical evaluation and fitness-to-perform evaluations. Clinical intervention tools and procedures will be available to the astronaut and space flight physician. Cognitive performance will be supported through systematic function allocation, task design, training, and scheduling. Human factors requirements and guidelines will lead to well-designed information displays and retrieval systems that reduce crew time and errors. Means of capturing process, design, and operational requirements to ensure crew performance will be discussed. Third, this paper will describe the current plan of action, and future challenges to be resolved before a lunar or Mars expedition. The presentation will include a proposed management plan for research, involvement of various organizations, and a timetable of deliverables.

  7. Transition Pathway and Its Free-Energy Profile: A Protocol for Protein Folding Simulations

    PubMed Central

    Lee, In-Ho; Kim, Seung-Yeon; Lee, Jooyoung

    2013-01-01

    We propose a protocol that provides a systematic definition of reaction coordinate and related free-energy profile as the function of temperature for the protein-folding simulation. First, using action-derived molecular dynamics (ADMD), we investigate the dynamic folding pathway model of a protein between a fixed extended conformation and a compact conformation. We choose the pathway model to be the reaction coordinate, and the folding and unfolding processes are characterized by the ADMD step index, in contrast to the common a priori reaction coordinate as used in conventional studies. Second, we calculate free-energy profile as the function of temperature, by employing the replica-exchange molecular dynamics (REMD) method. The current method provides efficient exploration of conformational space and proper characterization of protein folding/unfolding dynamics from/to an arbitrary extended conformation. We demonstrate that combination of the two simulation methods, ADMD and REMD, provides understanding on molecular conformational changes in proteins. The protocol is tested on a small protein, penta-peptide of met-enkephalin. For the neuropeptide met-enkephalin system, folded, extended, and intermediate sates are well-defined through the free-energy profile over the reaction coordinate. Results are consistent with those in the literature. PMID:23917881

  8. Fact Sheet: National Space Policy. Appendix F-2

    NASA Technical Reports Server (NTRS)

    1996-01-01

    For over three decades, the United States has led the world in the exploration and use of outer space. Our achievements in space have inspired a generation of Americans and people throughout the world. We will maintain this leadership role by supporting a strong, stable, and balanced national space program that serves our goals in national security, foreign policy, economic growth, environmental stewardship, and scientific and technical excellence. Access to and use of space are central for preserving peace and protecting US national security as well as civil and commercial interests. The United States will pursue greater levels of partnership and cooperation in national and international space activities and work with other nations to ensure the continued exploration and use of outer space for peaceful purposes. The goals of the US space program are to: (a) Enhance knowledge of the Earth, the solar system, and the universe through human and robotic exploration; (b) Strengthen and maintain the national security of the United States; (c) Enhance the economic competitiveness and scientific and technical capabilities of the United States; (d) Encourage State, local, and private sector investment in, and use of, space technologies; (e) Promote international cooperation to further US domestic, national security, and foreign policies. The United States is committed to the exploration and use of outer space by all nations for peaceful purposes and for the benefit of all humanity. "Peaceful purposes" allow defense and intelligence-related activities in pursuit of national security and other goals. The United States rejects any claims to sovereignty by any nation over outer space or celestial bodies, or any portion thereof, and rejects any limitations on the fundamental right of sovereign nations to acquire data from space. The United States considers the space systems of any nation to be national property with the right of passage through and operations in space without interference. Purposeful interference with space systems shall be viewed as an infringement on sovereign rights. The US Government will maintain and coordinate separate national security and civil space systems where differing needs dictate. All actions undertaken by agencies and departments in implementing the national space policy shall be consistent with US law, regulations, national security requirements, foreign policy, international obligations, and nonproliferation policy. The National Science and Technology Council (NSTC) is the principal forum for resolving issues related to national space policy. As appropriate, the NSTC and NSC will co-chair policy process. This policy will be implemented within the overall resource and policy guidance provided by the President.

  9. 47 CFR 25.262 - Licensing and domestic coordination requirements for 17/24 GHz BSS space stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... requirements for 17/24 GHz BSS space stations. 25.262 Section 25.262 Telecommunication FEDERAL COMMUNICATIONS... Licensing and domestic coordination requirements for 17/24 GHz BSS space stations. (a) Except as described in paragraphs (b), (c) or (e) of this section, applicants seeking to operate a space station in the...

  10. 47 CFR 25.262 - Licensing and domestic coordination requirements for 17/24 GHz BSS space stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... requirements for 17/24 GHz BSS space stations. 25.262 Section 25.262 Telecommunication FEDERAL COMMUNICATIONS... Licensing and domestic coordination requirements for 17/24 GHz BSS space stations. (a) Except as described in paragraphs (b), (c) or (e) of this section, applicants seeking to operate a space station in the...

  11. 47 CFR 25.262 - Licensing and domestic coordination requirements for 17/24 GHz BSS space stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... requirements for 17/24 GHz BSS space stations. 25.262 Section 25.262 Telecommunication FEDERAL COMMUNICATIONS... Licensing and domestic coordination requirements for 17/24 GHz BSS space stations. (a) Except as described in paragraphs (b), (c) or (e) of this section, applicants seeking to operate a space station in the...

  12. 47 CFR 25.262 - Licensing and domestic coordination requirements for 17/24 GHz BSS space stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... requirements for 17/24 GHz BSS space stations. 25.262 Section 25.262 Telecommunication FEDERAL COMMUNICATIONS... Licensing and domestic coordination requirements for 17/24 GHz BSS space stations. (a) Except as described in paragraphs (b), (c) or (e) of this section, applicants seeking to operate a space station in the...

  13. The Unifying Principle of Coordinated Measurements in Geospace Science

    NASA Astrophysics Data System (ADS)

    Lotko, William

    2017-04-01

    Space scientists recognize geospace as a coupled dynamical system extending from the Earth's upper atmosphere, ionosphere, and magnetosphere, through interplanetary space to the Sun. The weather in geospace describes variability in the electromagnetic fields, particle radiation, plasmas, and gases permeating it, usually in response to solar disturbances. Severe space weather poses a significant threat to human activities in space and to modern technological systems deployed both in space and at Earth. The challenge of characterizing and predicting space weather requires widely distributed, coordinated observations. Partnerships among government agencies, international consortia, and the private sector are developing creative solutions to address this challenge. This brief commentary highlights some of the coordinated measurements and data systems that are unifying knowledge of the geospace environment.

  14. KSC-2011-4167

    NASA Image and Video Library

    2011-05-28

    CAPE CANAVERAL, Fla. -- At NASA Kennedy Space Center's Apollo/Saturn V Center, Jerry Hartman, Education Lead with the Exploration Systems Mission Directorate at NASA Headquarters and Susan Sawyer, Lunabotics Project Coordinator with ReDe/Critique, display the trophy the winning team will receive at the award ceremony for NASA's second annual Lunabotics Mining Competition. Thirty-six teams of undergraduate and graduate students from the United States, Bangladesh, Canada, Colombia and India participated in NASA's Lunabotics Mining Competition May 26 - 28 at the agency's Kennedy Space Center in Florida. The competition is designed to engage and retain students in science, technology, engineering and mathematics (STEM). Teams will maneuver their remote controlled or autonomous excavators, called lunabots, in about 60 tons of ultra-fine simulated lunar soil, called BP-1. The competition is an Exploration Systems Mission Directorate project managed by Kennedy's Education Division. The event also provides a competitive environment that could result in innovative ideas and solutions for NASA's future excavation of the moon. Photo credit: NASA/Jack Pfaller

  15. NASA's Space Launch System: A New Capability for Science and Exploration

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Creech, Stephen D.; May, Todd A.

    2014-01-01

    NASA's Marshall Space Flight Center (MSFC) is directing efforts to build the Space Launch System (SLS), a heavy-lift rocket that will launch the Orion Multi-Purpose Crew Vehicle (MPCV) and other high-priority payloads into deep space. Its evolvable architecture will allow NASA to begin with human missions beyond the Moon and then go on to transport astronauts or robots to distant places such as asteroids and Mars. Developed with the goals of safety, affordability, and sustainability in mind, SLS will start with 10 percent more thrust than the Saturn V rocket that launched astronauts to the Moon 40 years ago. From there it will evolve into the most powerful launch vehicle ever flown, via an upgrade approach that will provide building blocks for future space exploration. This paper will explain how NASA will execute this development within flat budgetary guidelines by using existing engines assets and heritage technology, from the initial 70 metric ton (t) lift capability through a block upgrade approach to an evolved 130-t capability, and will detail the progress that has already been made toward a first launch in 2017. This paper will also explore the requirements needed for human missions to deep-space destinations and for game-changing robotic science missions, and the capability of SLS to meet those requirements and enable those missions, along with the evolution strategy that will increase that capability. The International Space Exploration Coordination Group, representing 12 of the world's space agencies, has worked together to create the Global Exploration Roadmap, which outlines paths towards a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for all three destinations. The SLS will offer a robust way to transport international crews and the air, water, food, and equipment they would need for extended trips to asteroids, the Moon, and Mars. SLS also offers substantial capability to support robotic science missions, offering benefits such as improved mass margins and radiation mitigation, and reduced mission durations. The SLS rocket, using significantly higher C3 energies, can more quickly and effectively take the mission directly to its destination, reducing trip time and cost. As this paper will explain, the SLS is making measurable progress toward becoming a global infrastructure asset for robotic and human scouts of all nations by providing the robust space launch capability to deliver sustainable solutions for advanced exploration.

  16. Future Exploration of Venus

    NASA Astrophysics Data System (ADS)

    Limaye, Sanjay

    Venus has been the target of exploration for half a century, before the successful Mariner 2 fly-by in December 1962. The decade after that was marked by growing sophistication in the instruments and spacecraft. During the second decade of Venus exploration (1972 - 1981) the instruments and spacecraft had advanced to make the first detailed survey of the planet and image the surface. During the third decade Venus was explored with more advanced instruments such as synthetic aperture radar and by balloons - the only balloons in another atmosphere ever flown till present. Then came a long pause until 2005 when ESA launched Venus Express, which is still orbiting the planet and returning data. The nearly two-dozen missions flown to Venus have painted a puzzling picture of Venus - we still do not have answers to some key questions. The foremost is why did Venus evolve so differently from Earth? International space agencies and scientists have been considering various approaches to exploring Venus through small and large missions. The Venus Exploration Analysis Group (NASA) has developed a Venus Exploration Roadmap and a comprehensive list of goals, objectives and investigations (www.lpi.usra.edu/vexag), but an international coordinated, comprehensive plan to explore Venus is needed. To fill this void, the COSPAR International Venus Exploration Working Group (IVEWG) has been active in fostering dialog and discussions among the space faring agencies. One small step in the future exploration of Venus is the formation of a joint Science Definition Team (SDT) (NASA and Roscosmos/IKI) for Russia’s Venera-D mission in early 2014. The team is expected to submit a report to respective agencies in early 2015. Towards identifying key surface regions and atmospheric regions of Venus, a workshop is being held in May 2014 by VEXAG to seek community input. It is likely that calls for proposals for missions will also be announced under the M class by ESA and under the Discovery Program by NASA during 2014. Given that the science questions about Venus are many - ranging from the surface and interior and extending into the atmosphere to 120 km and beyond, it is likely that there will be opportunities for other efforts to contribute to the comprehensive exploration of Venus. If undertaken in a coordinated and collaborative manner, we may make substantial progress in understanding Venus, why and/or how it evolved differently from Earth. This knowledge will help us understand Earth-like rocky planets around other stars that are being discovered at a rapid pace now.

  17. GPM's Launch Vehicle Arrives at Tanegashima Space Center

    NASA Image and Video Library

    2014-02-20

    The launch vehicle for the Global Precipitation Measurement, or GPM, mission's Core Observatory arrived at Tanegashima Space Center, Japan, in the pre-dawn hours of Tuesday, Jan. 21, local time. Credits: NASA/Goddard/Warren Schultzaburger GPM is a joint mission between NASA and the Japan Aerospace Exploration Agency (JAXA). The Core Observatory will link data from a constellation of current and planned satellites to produce next-generation global measurements of rainfall and snowfall from space. The GPM mission is the first coordinated international satellite network to provide near real-time observations of rain and snow every three hours anywhere on the globe. The GPM Core Observatory anchors this network by providing observations on all types of precipitation. The observatory's data acts as the measuring stick by which partner observations can be combined into a unified data set. The data will be used by scientists to study climate change, freshwater resources, floods and droughts, and hurricane formation and tracking. Credit: Mitsubishi Heavy Industries NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. GPM High Gain Antenna System Testing

    NASA Image and Video Library

    2014-02-20

    File: 03/26/2012 The GPM High Gain Antenna System (HGAS) in integration and testing at Goddard Space Flight Center. GPM is a joint mission between NASA and the Japan Aerospace Exploration Agency (JAXA). The Core Observatory will link data from a constellation of current and planned satellites to produce next-generation global measurements of rainfall and snowfall from space. The GPM mission is the first coordinated international satellite network to provide near real-time observations of rain and snow every three hours anywhere on the globe. The GPM Core Observatory anchors this network by providing observations on all types of precipitation. The observatory's data acts as the measuring stick by which partner observations can be combined into a unified data set. The data will be used by scientists to study climate change, freshwater resources, floods and droughts, and hurricane formation and tracking. Credit: Craig E. Huber, Chief Engineer SGT Inc, NASA Goddard Space Flight Center NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. Fifteen Years of Collaborative Innovation and Achievement: NASA Nebraska Space Grant Consortium 15-Year Program Performance and Results Report

    NASA Technical Reports Server (NTRS)

    Schaaf, Michaela M. (Editor); Bowen, Brent D.; Fink, Mary M.; Nickerson, Jocelyn S.; Avery Shelly; Calamaio, Caprice; Carstenson, Larry; Dugan, James; Farr, Lynne; Farritor, Shane

    2003-01-01

    This 15-year evaluation serves as a summary document highlighting the numerous and complete successes of the Nebraska Space Grant Program. Innovation has been highlighted through significant new endeavors during this 5-year period, such as placement of students and faculty at NASA Centers and the expansion of NSGC Native American Outreach Programs. While the last national program evaluation resulted in Nebraska s ranking as the top Capability Enhancement Consortium, and 5th best overall, Nebraska felt there was room for significant growth and development. This has been validated through the recent competitive attainment of Designated Grant status and has allowed for the exploration of new initiatives, as well as the expansion of already successful programs. A comprehensive strategic planning effort has involved all Nebraska representative entities and has guided Nebraska Space Grant through the evaluation period, providing a basis for continual advancement. Nebraska rigorously employs evaluation techniques to ensure that stated outcomes and metrics are achieved and that weaknesses are identified and corrected. With this coordinated approach, Nebraska expects that the next 5 years will yield new opportunities for significant achievement. Nebraska Space Grant will embrace new national endeavors, including the integration of Pender Public Schools -Nebraska s NASA Explorer School, geospatial initiatives, and the National Student Satellite Program.

  20. Experimenting with an Evolving Ground/Space-based Software Architecture to Enable Sensor Webs

    NASA Technical Reports Server (NTRS)

    mandl, Daniel; Frye, Stuart

    2005-01-01

    A series of ongoing experiments are being conducted at the NASA Goddard Space Flight Center to explore integrated ground and space-based software architectures enabling sensor webs. A sensor web, as defined by Steve Talabac at NASA Goddard Space Flight Center(GSFC), is a coherent set of distributed nodes interconnected by a communications fabric, that collectively behave as a single, dynamically adaptive, observing system. The nodes can be comprised of satellites, ground instruments, computing nodes etc. Sensor web capability requires autonomous management of constellation resources. This becomes progressively more important as more and more satellites share resource, such as communication channels and ground station,s while automatically coordinating their activities. There have been five ongoing activities which include an effort to standardize a set of middleware. This paper will describe one set of activities using the Earth Observing 1 satellite, which used a variety of ground and flight software along with other satellites and ground sensors to prototype a sensor web. This activity allowed us to explore where the difficulties that occur in the assembly of sensor webs given today s technology. We will present an overview of the software system architecture, some key experiments and lessons learned to facilitate better sensor webs in the future.

  1. The Panchromatic STARBurst IRregular Dwarf Survey (STARBIRDS): Observations and Data Archive

    NASA Astrophysics Data System (ADS)

    McQuinn, Kristen B. W.; Mitchell, Noah P.; Skillman, Evan D.

    2015-06-01

    Understanding star formation in resolved low mass systems requires the integration of information obtained from observations at different wavelengths. We have combined new and archival multi-wavelength observations on a set of 20 nearby starburst and post-starburst dwarf galaxies to create a data archive of calibrated, homogeneously reduced images. Named the panchromatic “STARBurst IRregular Dwarf Survey” archive, the data are publicly accessible through the Mikulski Archive for Space Telescopes. This first release of the archive includes images from the Galaxy Evolution Explorer Telescope (GALEX), the Hubble Space Telescope (HST), and the Spitzer Space Telescope (Spitzer) Multiband Imaging Photometer instrument. The data sets include flux calibrated, background subtracted images, that are registered to the same world coordinate system. Additionally, a set of images are available that are all cropped to match the HST field of view. The GALEX and Spitzer images are available with foreground and background contamination masked. Larger GALEX images extending to 4 times the optical extent of the galaxies are also available. Finally, HST images convolved with a 5″ point spread function and rebinned to the larger pixel scale of the GALEX and Spitzer 24 μm images are provided. Future additions are planned that will include data at other wavelengths such as Spitzer IRAC, ground-based Hα, Chandra X-ray, and Green Bank Telescope H i imaging. Based on observations made with the NASA/ESA Hubble Space Telescope, and obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST-ECF/ESA), and the Canadian Astronomy Data Centre (CADC/NRC/CSA).

  2. Visualization tool for three-dimensional plasma velocity distributions (ISEE_3D) as a plug-in for SPEDAS

    NASA Astrophysics Data System (ADS)

    Keika, Kunihiro; Miyoshi, Yoshizumi; Machida, Shinobu; Ieda, Akimasa; Seki, Kanako; Hori, Tomoaki; Miyashita, Yukinaga; Shoji, Masafumi; Shinohara, Iku; Angelopoulos, Vassilis; Lewis, Jim W.; Flores, Aaron

    2017-12-01

    This paper introduces ISEE_3D, an interactive visualization tool for three-dimensional plasma velocity distribution functions, developed by the Institute for Space-Earth Environmental Research, Nagoya University, Japan. The tool provides a variety of methods to visualize the distribution function of space plasma: scatter, volume, and isosurface modes. The tool also has a wide range of functions, such as displaying magnetic field vectors and two-dimensional slices of distributions to facilitate extensive analysis. The coordinate transformation to the magnetic field coordinates is also implemented in the tool. The source codes of the tool are written as scripts of a widely used data analysis software language, Interactive Data Language, which has been widespread in the field of space physics and solar physics. The current version of the tool can be used for data files of the plasma distribution function from the Geotail satellite mission, which are publicly accessible through the Data Archives and Transmission System of the Institute of Space and Astronautical Science (ISAS)/Japan Aerospace Exploration Agency (JAXA). The tool is also available in the Space Physics Environment Data Analysis Software to visualize plasma data from the Magnetospheric Multiscale and the Time History of Events and Macroscale Interactions during Substorms missions. The tool is planned to be applied to data from other missions, such as Arase (ERG) and Van Allen Probes after replacing or adding data loading plug-ins. This visualization tool helps scientists understand the dynamics of space plasma better, particularly in the regions where the magnetohydrodynamic approximation is not valid, for example, the Earth's inner magnetosphere, magnetopause, bow shock, and plasma sheet.

  3. Effective methodology to derive strategic decisions from ESA exploration technology roadmaps

    NASA Astrophysics Data System (ADS)

    Cresto Aleina, Sara; Viola, Nicole; Fusaro, Roberta; Saccoccia, Giorgio

    2016-09-01

    Top priorities in future international space exploration missions regard the achievement of the necessary maturation of enabling technologies, thereby allowing Europe to play a role commensurate with its industrial, operational and scientific capabilities. As part of the actions derived from this commitment, ESA Technology Roadmaps for Exploration represent a powerful tool to prioritise R&D activities in technologies for space exploration and support the preparation of a consistent procurement plan for space exploration technologies in Europe. The roadmaps illustrate not only the technology procurement (to TRL-8) paths for specific missions envisaged in the present timeframe, but also the achievement for Europe of technological milestones enabling operational capabilities and building blocks, essential for current and future Exploration missions. Coordination of requirements and funding sources among all European stakeholders (ESA, EU, National, and Industry) is one of the objectives of these roadmaps, that show also possible application of the technologies beyond space exploration, both at ESA and outside. The present paper describes the activity that supports the work on-going at ESA on the elaboration and update of these roadmaps and related tools, in order to criticise the followed approach and to suggest methodologies of assessment of the Roadmaps, and to derive strategic decision for the advancement of Space Exploration in Europe. After a review of Technology Areas, Missions/Programmes and related building blocks (architectures) and operational capabilities, technology applicability analyses are presented. The aim is to identify if a specific technology is required, applicable or potentially a demonstrator in the building blocks of the proposed mission concepts. In this way, for each technology it is possible to outline one or more specific plans to increase TRL up to the required level. In practice, this translates into two possible solutions: on the one hand, approved mission concepts will be complemented with the required technologies if the latter can be considered as applicable or demo; on the other, if they are neither applicable nor demo, new missions, i.e. technology demonstrators based on multidisciplinary grouping of key technologies, shall be evaluated, so as to proceed through incremental steps. Finally, techniques to determine priorities in technology procurement are identified, and methodologies to rank the required technologies are proposed. In addition, a tool that estimates the percentage of technologies required for the final destination that are implementable in each intermediate destination of the incremental approach is presented.

  4. A preliminary study of the Soviet civil space program. Volume 1: Organization and Operations

    NASA Technical Reports Server (NTRS)

    Newton, Elizabeth K.

    1990-01-01

    The organization, planning, and personnel is focused of Soviet space, advantage is taken of glasnost and improved foreign relations to explore a hitherto obscure subject. The way in which the civil space program obtains approval and funding is altered. Missions must be approved before the Supreme Soviet, and public opinion is beginning to play a greater role in the legislature's budget decision. The Soviet civil space program remains a collection of disparate elements, not unified by any national, centralized space agency. An attempt was made to catalog and delineate the relationships between the components proves helpful. There is little or no coordination of independent associations' efforts, and the planning process relied on previously to set priorities and allocate resources appears to be currently inoperative or in a state of flux. The civil space program is moving in new directions: toward budget tautness, more international interactions, an emphasis on civilian over military applications, commercialization, and fiscal accountability. This study is a snapshot of a dynamic subject, but hopefully on which has highlighted the critical elements to track.

  5. A co-ordinated and synergistic analysis strategy for future ground-based and space helioseismology

    NASA Technical Reports Server (NTRS)

    Ulrich, Roger K.

    1991-01-01

    The variety of helioseismology observational programs planned for the mid-1990s represents an unprecedented opportunity to improve understanding of the solar interior. This review discusses the coordination of the GONG, IRIS, Birmingham and other ground-based observational programs with the space experiments on the SOHO mission: GOLF, VIRGO, and MDI. The integration and coordination of the different data streams in terms of the spatial and temporal coverage as well as the implications of the different spectral resolution and stability characteristics of each experiment are discussed. The study of the effect of active regions on various helioseismology signals is presented as an example of how ground-based and space experiments can be coordinated.

  6. Report on the COSPAR Workshop on Refining Planetary Protection Requirements for Human Missions

    NASA Astrophysics Data System (ADS)

    Spry, James Andrew; Rummel, John; Conley, Catharine; Race, Margaret; Kminek, Gerhard; Siegel, Bette

    2016-07-01

    A human mission to Mars has been the driving long-term goal for the development of the Global Exploration Roadmap by the International Space Exploration Coordination Group. Additionally, multiple national space agencies and commercial organizations have published similar plans and aspirations for human missions beyond LEO. The current COSPAR planetary protection "Guidelines for Human Missions to Mars" were developed in a series of workshops in the early 2000s and adopted into COSPAR policy at the Montreal Assembly in 2008. With changes and maturation in mission architecture concepts and hardware capabilities, the holding of a workshop provided an opportunity for timely review of these guidelines and their interpretation within current frameworks provided by ISECG and others. The COSPAR Workshop on Refining Planetary Protection Requirements for Human Missions was held in the US in spring 2016 to evaluate recent efforts and activities in the context of current COSPAR policy, as well as collect inputs from the various organizations considering crewed exploration missions to Mars and precursor robotic missions focused on surface material properties and environmental challenges. The workshop also considered potential updates to the COSPAR policy for human missions across a range of planetary destinations. This paper will report on those deliberations.

  7. An Integrated Extravehicular Activity Research Plan

    NASA Technical Reports Server (NTRS)

    Abercromby, Andrew F. J.; Ross, Amy J.; Cupples, J. Scott

    2016-01-01

    Multiple organizations within NASA and outside of NASA fund and participate in research related to extravehicular activity (EVA). In October 2015, representatives of the EVA Office, the Crew and Thermal Systems Division (CTSD), and the Human Research Program (HRP) at NASA Johnson Space Center agreed on a formal framework to improve multi-year coordination and collaboration in EVA research. At the core of the framework is an Integrated EVA Research Plan and a process by which it will be annually reviewed and updated. The over-arching objective of the collaborative framework is to conduct multi-disciplinary cost-effective research that will enable humans to perform EVAs safely, effectively, comfortably, and efficiently, as needed to enable and enhance human space exploration missions. Research activities must be defined, prioritized, planned and executed to comprehensively address the right questions, avoid duplication, leverage other complementary activities where possible, and ultimately provide actionable evidence-based results in time to inform subsequent tests, developments and/or research activities. Representation of all appropriate stakeholders in the definition, prioritization, planning and execution of research activities is essential to accomplishing the over-arching objective. A formal review of the Integrated EVA Research Plan will be conducted annually. External peer review of all HRP EVA research activities including compilation and review of published literature in the EVA Evidence Book is already performed annually. Coordination with stakeholders outside of the EVA Office, CTSD, and HRP is already in effect on a study-by-study basis; closer coordination on multi-year planning with other EVA stakeholders including academia is being actively pursued. Details of the current Integrated EVA Research Plan are presented including description of ongoing and planned research activities in the areas of: Benchmarking; Anthropometry and Suit Fit; Sensors; Human-Suit Modeling; Suit Trauma Monitoring and Countermeasures; EVA Workload and Duration Effects; Decompression Sickness Risk Mitigation; Deconditioned EVA Performance; and Exploration EVA Concept of Operations.

  8. Quintessential inflation from a variable cosmological constant in a 5D vacuum

    NASA Astrophysics Data System (ADS)

    Membiela, Agustin; Bellini, Mauricio

    2006-10-01

    We explore an effective 4D cosmological model for the universe where the variable cosmological constant governs its evolution and the pressure remains negative along all the expansion. This model is introduced from a 5D vacuum state where the (space-like) extra coordinate is considered as noncompact. The expansion is produced by the inflaton field, which is considered as nonminimally coupled to gravity. We conclude from experimental data that the coupling of the inflaton with gravity should be weak, but variable in different epochs of the evolution of the universe.

  9. Coordinate references for the indoor/outdoor seamless positioning

    NASA Astrophysics Data System (ADS)

    Ruan, Ling; Zhang, Ling; Long, Yi; Cheng, Fei

    2018-05-01

    Indoor positioning technologies are being developed rapidly, and seamless positioning which connected indoor and outdoor space is a new trend. The indoor and outdoor positioning are not applying the same coordinate system and different indoor positioning scenes uses different indoor local coordinate reference systems. A specific and unified coordinate reference frame is needed as the space basis and premise in seamless positioning application. Trajectory analysis of indoor and outdoor integration also requires a uniform coordinate reference. However, the coordinate reference frame in seamless positioning which can applied to various complex scenarios is lacking of research for a long time. In this paper, we proposed a universal coordinate reference frame in indoor/outdoor seamless positioning. The research focus on analysis and classify the indoor positioning scenes and put forward the coordinate reference system establishment and coordinate transformation methods in each scene. And, through some experiments, the calibration method feasibility was verified.

  10. 78 FR 32553 - Establishment of Class E Airspace; Boothbay, ME

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-31

    ... the FAA found that the points of space coordinates were incorrect. This action makes the correction... Heliport. Controlled airspace within a 6-mile radius of the point in space coordinates of the heliport is... heliport and point in space are corrected and separately listed. The FAA has determined that this...

  11. Development of a New De Novo Design Algorithm for Exploring Chemical Space.

    PubMed

    Mishima, Kazuaki; Kaneko, Hiromasa; Funatsu, Kimito

    2014-12-01

    In the first stage of development of new drugs, various lead compounds with high activity are required. To design such compounds, we focus on chemical space defined by structural descriptors. New compounds close to areas where highly active compounds exist will show the same degree of activity. We have developed a new de novo design system to search a target area in chemical space. First, highly active compounds are manually selected as initial seeds. Then, the seeds are entered into our system, and structures slightly different from the seeds are generated and pooled. Next, seeds are selected from the new structure pool based on the distance from target coordinates on the map. To test the algorithm, we used two datasets of ligand binding affinity and showed that the proposed generator could produce diverse virtual compounds that had high activity in docking simulations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The History of the Animal Care Program at NASA Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Khan-Mayberry, Noreen; Bassett, Stephanie

    2010-01-01

    This slide presentation reviews the work of the Animal Care Program (ACP). Animals have been used early in space exploration to ascertain if it were possible to launch a manned spacecraft. The program is currently involved in many studies that assist in enhancing the scientific knowledge of the effect of space travel. The responsibilities of the ACP are: (1) Organize and supervise animal care operations & activities (research, testing & demonstration). (2) Maintain full accreditation by the International Association for the Assessment and Accreditation of Laboratory Animal Care (AAALAC) (3) Ensure protocol compliance with IACUC recommendations (4) Training astronauts for in-flight animal experiments (5) Maintain accurate & timely records for all animal research testing approved by JSC IACUC (6) Organize IACUC meetings and assist IACUC members (7) Coordinate IACUC review of the Institutional Program for Humane Care and Use of Animals (every 6 mos)

  13. Linear State-Space Representation of the Dynamics of Relative Motion, Based on Restricted Three Body Dynamics

    NASA Technical Reports Server (NTRS)

    Luquette,Richard J.; Sanner, Robert M.

    2004-01-01

    Precision Formation Flying is an enabling technology for a variety of proposed space-based observatories, including the Micro-Arcsecond X-ray Imaging Mission (MAXIM) , the associated MAXIM pathfinder mission, Stellar Imager (SI) and the Terrestrial Planet Finder (TPF). An essential element of the technology is the control algorithm, requiring a clear understanding of the dynamics of relative motion. This paper examines the dynamics of relative motion in the context of the Restricted Three Body Problem (RTBP). The natural dynamics of relative motion are presented in their full nonlinear form. Motivated by the desire to apply linear control methods, the dynamics equations are linearized and presented in state-space form. The stability properties are explored for regions in proximity to each of the libration points in the Earth/Moon - Sun rotating frame. The dynamics of relative motion are presented in both the inertial and rotating coordinate frames.

  14. KSC-06pd2798

    NASA Image and Video Library

    2006-12-14

    KENNEDY SPACE CENTER, FLA. -- THEMIS logo: NASA's 2-year Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission consists of five identical probes that will track these violent, colorful eruptions near the North Pole. When the five identical probes align over the North American continent, scientists will collect coordinated measurements along the Sun-Earth line, allowing the first comprehensive look at the onset of substorms and how they trigger auroral eruptions. Over the mission’s lifetime, the probes should be able to observe some 30 substorms – sufficient to finally know their origin. THEMIS is a NASA-funded mission managed by the Explorers Program Office at Goddard Space Flight Center in Greenbelt, Md. The Space Science Laboratory at the University of California at Berkeley is responsible for the project management, science instruments, mission integration, post launch operations and data analysis. Swales Aerospace of Beltsville, Md., manufactured the THEMIS spacecraft bus.

  15. Coordinated Analysis 101: A Joint Training Session Sponsored by LPI and ARES/JSC

    NASA Technical Reports Server (NTRS)

    Draper, D. S.; Treiman, A. H.

    2017-01-01

    The Lunar and Planetary Institute (LPI) and the Astromaterials Research and Exploration Science (ARES) Division, part of the Exploration Integration and Science Directorate at NASA Johnson Space Center (JSC), co-sponsored a training session in November 2016 for four early-career scientists in the techniques of coordinated analysis. Coordinated analysis refers to the approach of systematically performing high-resolution and -precision analytical studies on astromaterials, particularly the very small particles typical of recent and near-future sample return missions such as Stardust, Hayabusa, Hayabusa2, and OSIRIS-REx. A series of successive analytical steps is chosen to be performed on the same particle, as opposed to separate subsections of a sample, in such a way that the initial steps do not compromise the results from later steps in the sequence. The data from the entire series can then be integrated for these individual specimens, revealing important in-sights obtainable no other way. ARES/JSC scientists have played a leading role in the development and application of this approach for many years. Because the coming years will bring new sample collections from these and other planned NASA and international exploration missions, it is timely to begin disseminating specialized techniques for the study of small and precious astromaterial samples. As part of the Cooperative Agreement between NASA and the LPI, this training workshop was intended as the first in a series of similar training exercises that the two organizations will jointly sponsor in the coming years. These workshops will span the range of analytical capabilities and sample types available at ARES/JSC in the Astromaterials Research and Astro-materials Acquisition and Curation Offices. Here we summarize the activities and participants in this initial training.

  16. GPM Launch Day at NASA Goddard (Feb. 27, 2014)

    NASA Image and Video Library

    2014-02-27

    The Daruma doll is a symbol of good luck and in Japan is often given as a gift for encouragement to reach a goal. When the goal is set, one eye is colored in. When the goal is achieved, the other eye is colored. An identical doll sits in the control room at the Japan Aerospace Agency’s (JAXA) Tanegashima Space Center, leading up to the launch of the joint NASA-JAXA Global Precipitation Measurement mission’s Core Observatory. Credit: NASA's Goddard Space Flight Center/Debbie McCallum GPM's Core Observatory is poised for launch from the Japan Aerospace Exploration Agency's Tanegashima Space Center, scheduled for the afternoon of Feb. 27, 2014 (EST). GPM is a joint venture between NASA and the Japan Aerospace Exploration Agency. The GPM Core Observatory will link data from a constellation of current and planned satellites to produce next-generation global measurements of rainfall and snowfall from space. The GPM mission is the first coordinated international satellite network to provide near real-time observations of rain and snow every three hours anywhere on the globe. The GPM Core Observatory anchors this network by providing observations on all types of precipitation. The observatory's data acts as the measuring stick by which partner observations can be combined into a unified data set. The data will be used by scientists to study climate change, freshwater resources, floods and droughts, and hurricane formation and tracking. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. Standard spacecraft procurement analysis: A case study in NASA-DoD coordination in space programs. Ph.D. Thesis - Rand Graduate Inst.

    NASA Technical Reports Server (NTRS)

    Harris, E. D.

    1980-01-01

    The Space Test Program Standard Satellite (STPSS), a design proposed by the Air Force, and two NASA candidates, the Applications Explorer Mission spacecraft (AEM) and the Multimission Modular Spacecraft (MMS), were considered during the first phase. During the second phase, a fourth candidate was introduced, a larger, more capable AEM (L-AEM), configured by the Boeing Company under NASA sponsorship to meet the specifications jointly agreed upon by NASA and the Air Force. Total program costs for a variety of procurement options, each of which is capable of performing all of the Air Force Space Test Program missions during the 1980-1990 time period, were used as the principal measure for distinguishing among procurement options. Program cost does not provide a basis for choosing among the AEM, STPSS, and MMS spacecraft, given their present designs. The availability of the L-AEM spacecraft, or some very similar design, would provide a basis for minimizing the cost of the Air Force Space Test Program.

  18. Design of chemical space networks on the basis of Tversky similarity

    NASA Astrophysics Data System (ADS)

    Wu, Mengjun; Vogt, Martin; Maggiora, Gerald M.; Bajorath, Jürgen

    2016-01-01

    Chemical space networks (CSNs) have been introduced as a coordinate-free representation of chemical space. In CSNs, nodes represent compounds and edges pairwise similarity relationships. These network representations are mostly used to navigate sections of biologically relevant chemical space. Different types of CSNs have been designed on the basis of alternative similarity measures including continuous numerical similarity values or substructure-based similarity criteria. CSNs can be characterized and compared on the basis of statistical concepts from network science. Herein, a new CSN design is introduced that is based upon asymmetric similarity assessment using the Tversky coefficient and termed TV-CSN. Compared to other CSNs, TV-CSNs have unique features. While CSNs typically contain separate compound communities and exhibit small world character, many TV-CSNs are also scale-free in nature and contain hubs, i.e., extensively connected central compounds. Compared to other CSNs, these hubs are a characteristic of TV-CSN topology. Hub-containing compound communities are of particular interest for the exploration of structure-activity relationships.

  19. The MATROSHKA experiment: results and comparison from extravehicular activity (MTR-1) and intravehicular activity (MTR-2A/2B) exposure.

    PubMed

    Berger, Thomas; Bilski, Paweł; Hajek, Michael; Puchalska, Monika; Reitz, Günther

    2013-12-01

    Astronauts working and living in space are exposed to considerably higher doses and different qualities of ionizing radiation than people on Earth. The multilateral MATROSHKA (MTR) experiment, coordinated by the German Aerospace Center, represents the most comprehensive effort to date in radiation protection dosimetry in space using an anthropomorphic upper-torso phantom used for radiotherapy treatment planning. The anthropomorphic upper-torso phantom maps the radiation distribution as a simulated human body installed outside (MTR-1) and inside different compartments (MTR-2A: Pirs; MTR-2B: Zvezda) of the Russian Segment of the International Space Station. Thermoluminescence dosimeters arranged in a 2.54 cm orthogonal grid, at the site of vital organs and on the surface of the phantom allow for visualization of the absorbed dose distribution with superior spatial resolution. These results should help improve the estimation of radiation risks for long-term human space exploration and support benchmarking of radiation transport codes.

  20. Location memory biases reveal the challenges of coordinating visual and kinesthetic reference frames

    PubMed Central

    Simmering, Vanessa R.; Peterson, Clayton; Darling, Warren; Spencer, John P.

    2008-01-01

    Five experiments explored the influence of visual and kinesthetic/proprioceptive reference frames on location memory. Experiments 1 and 2 compared visual and kinesthetic reference frames in a memory task using visually-specified locations and a visually-guided response. When the environment was visible, results replicated previous findings of biases away from the midline symmetry axis of the task space, with stability for targets aligned with this axis. When the environment was not visible, results showed some evidence of bias away from a kinesthetically-specified midline (trunk anterior–posterior [a–p] axis), but there was little evidence of stability when targets were aligned with body midline. This lack of stability may reflect the challenges of coordinating visual and kinesthetic information in the absence of an environmental reference frame. Thus, Experiments 3–5 examined kinesthetic guidance of hand movement to kinesthetically-defined targets. Performance in these experiments was generally accurate with no evidence of consistent biases away from the trunk a–p axis. We discuss these results in the context of the challenges of coordinating reference frames within versus between multiple sensori-motor systems. PMID:17703284

  1. The International Lunar Decade Declaration

    NASA Astrophysics Data System (ADS)

    Beldavs, V.; Foing, B.; Bland, D.; Crisafulli, J.

    2015-10-01

    The International Lunar Decade Declaration was discussed at the conference held November 9-13, 2014 in Hawaii "The Next Giant Leap: Leveraging Lunar Assets for Sustainable Pathways to Space" - http://2014giantleap.aerospacehawaii.info/ and accepted by a core group that forms the International Lunar Decade Working Group (ILDWG) that is seeking to make the proposed global event and decade long process a reality. The Declaration will be updated from time to time by members of the ILDWreflecting new knowledge and fresh perspectives that bear on building a global consortium with a mission to progress from lunar exploration to the transformation of the Moon into a wealth gene rating platform for the expansion of humankind into the solar system. When key organizations have endorsed the idea and joined the effort the text of the Declaration will be considered final. An earlier International Lunar Decade proposal was issued at the 8th ICEUM Conference in 2006 in Beijing together with 13 specific initiatives for lunar exploration[1,2,3]. These initiatives have been largely implemented with coordination among the different space agencies involved provided by the International Lunar Exploration Working Group[2,3]. The Second International Lunar Decade from 2015 reflects current trends towards increasing involvement of commercial firms in space, particularly seeking opportunities beyond low Earth orbit. The central vision of the International Lunar Decade is to build the foundations for a sustainable space economy through international collaboration concurrently addressing Lunar exploration and building a shared knowledge base;Policy development that enables collabo rative research and development leading to lunar mining and industrial and commercial development;Infrastructure on the Moon and in cislunar space (communications, transport, energy systems, way-stations, other) that reduces costs, lowers risks and speeds up the time to profitable operations;Enabling technologies needed for lunar operations (robotic and human), lunar mining, materials processing, manufacturing, transportation, life support and other.

  2. Working Group 1: Current plans of various organisations for lunar activities

    NASA Technical Reports Server (NTRS)

    Balsiger, H.; Pilcher, C.

    1994-01-01

    Summaries of presentations by representatives of several space agencies and the International Academy of Astronautics concerning lunar activities are presented. Participating space agencies reported two different types of lunar planning, long term planning and scenarios and lunar missions competing within regular programs. The long term plans of the various agencies look remarkably similar. They all involve a phased approach (coincidentally all incorporating four phases) and all address three prime scientific elements: science of, on, and from the Moon. The missions under consideration by the second group of agencies could readily fit as elements in the longer term program. There is great interest in lunar astronomy. There is a great deal of potential infrastructure and lunar transport capability already available. There is also a wide range of interesting technological developments that could form part of a lunar program. A well concerted and coordinated international effort could lead to an affordable program. Recommendations are: an international conference on lunar exploration should be held every other year; an electronic network should be established for the daily exchange of information; and a mechanism should be established for regular working level coordination of activities.

  3. Optimum structure of Whipple shield against hypervelocity impact

    NASA Astrophysics Data System (ADS)

    Lee, M.

    2014-05-01

    Hypervelocity impact of a spherical aluminum projectile onto two spaced aluminum plates (Whipple shield) was simulated to estimate an optimum structure. The Smooth Particle Hydrodynamics (SPH) code which has a unique migration scheme from a rectangular coordinate to an axisymmetic coordinate was used. The ratio of the front plate thickness to sphere diameter varied from 0.06 to 0.48. The impact velocities considered here were 6.7 km/s. This is the procedure we explored. To guarantee the early stage simulation, the shapes of debris clouds were first compared with the previous experimental pictures, indicating a good agreement. Next, the debris cloud expansion angle was predicted and it shows a maximum value of 23 degree for thickness ratio of front bumper to sphere diameter of 0.23. A critical sphere diameter causing failure of rear wall was also examined while keeping the total thickness of two plates constant. There exists an optimum thickness ratio of front bumper to rear wall, which is identified as a function of the size combination of the impacting body, front and rear plates. The debris cloud expansion-correlated-optimum thickness ratio study provides a good insight on the hypervelocity impact onto spaced target system.

  4. 3D visualization of solar wind ion data from the Chang'E-1 exploration

    NASA Astrophysics Data System (ADS)

    Zhang, Tian; Sun, Yankui; Tang, Zesheng

    2011-10-01

    Chang'E-1 (abbreviation CE-1), China's first Moon-orbiting spacecraft launched in 2007, carried equipment called the Solar Wind Ion Detector (abbreviation SWID), which sent back tens of gigabytes of solar wind ion differential number flux data. These data are essential for furthering our understanding of the cislunar space environment. However, to fully comprehend and analyze these data presents considerable difficulties, not only because of their huge size (57 GB), but also because of their complexity. Therefore, a new 3D visualization method is developed to give a more intuitive representation than traditional 1D and 2D visualizations, and in particular to offer a better indication of the direction of the incident ion differential number flux and the relative spatial position of CE-1 with respect to the Sun, the Earth, and the Moon. First, a coordinate system named Selenocentric Solar Ecliptic (SSE) which is more suitable for our goal is chosen, and solar wind ion differential number flux vectors in SSE are calculated from Geocentric Solar Ecliptic System (GSE) and Moon Center Coordinate (MCC) coordinates of the spacecraft, and then the ion differential number flux distribution in SSE is visualized in 3D space. This visualization method is integrated into an interactive visualization analysis software tool named vtSWIDs, developed in MATLAB, which enables researchers to browse through numerous records and manipulate the visualization results in real time. The tool also provides some useful statistical analysis functions, and can be easily expanded.

  5. Realistic Goals and Processes for Future Space Astronomy Portfolio Planning

    NASA Astrophysics Data System (ADS)

    Morse, Jon

    2015-08-01

    It is generally recognized that international participation and coordination is highly valuable for maximizing the scientific impact of modern space science facilities, as well as for cost-sharing reasons. Indeed, all large space science missions, and most medium and small missions, are international, even if one country or space agency has a clear leadership role and bears most of the development costs. International coordination is a necessary aspect of future mission planning, but how that coordination is done remains debatable. I propose that the community's scientific vision is generally homogeneous enough to permit international coordination of decadal-scale strategic science goals. However, the timing and budget allocation/funding mechanisms of individual countries and/or space agencies are too disparate for effective long-term strategic portfolio planning via a single international process. Rather, I argue that coordinated space mission portfolio planning is a natural consequence of international collaboration on individual strategic missions. I review the process and outcomes of the U.S. 2010 decadal survey in astronomy & astrophysics from the perspective of a government official who helped craft the survey charter and transmitted guidance to the scientific community on behalf of a sponsoring agency (NASA), while continuing to manage the current portfolio that involved ongoing negotiations with other space agencies. I analyze the difficulties associated with projecting long-term budgets, obtaining realistic mission costs (including the additional cost burdens of international partnerships), and developing new (possibly transformational) technologies. Finally, I remark on the future role that privately funded space science missions can have in accomplishing international science community goals.

  6. Canonical quantization of classical mechanics in curvilinear coordinates. Invariant quantization procedure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Błaszak, Maciej, E-mail: blaszakm@amu.edu.pl; Domański, Ziemowit, E-mail: ziemowit@amu.edu.pl

    In the paper is presented an invariant quantization procedure of classical mechanics on the phase space over flat configuration space. Then, the passage to an operator representation of quantum mechanics in a Hilbert space over configuration space is derived. An explicit form of position and momentum operators as well as their appropriate ordering in arbitrary curvilinear coordinates is demonstrated. Finally, the extension of presented formalism onto non-flat case and related ambiguities of the process of quantization are discussed. -- Highlights: •An invariant quantization procedure of classical mechanics on the phase space over flat configuration space is presented. •The passage tomore » an operator representation of quantum mechanics in a Hilbert space over configuration space is derived. •Explicit form of position and momentum operators and their appropriate ordering in curvilinear coordinates is shown. •The invariant form of Hamiltonian operators quadratic and cubic in momenta is derived. •The extension of presented formalism onto non-flat case and related ambiguities of the quantization process are discussed.« less

  7. Recommended coordinate systems for thin spherocylindrical lenses.

    PubMed

    Deal, F C; Toop, J

    1993-05-01

    Because the set of thin spherocylindrical lenses forms a vector space, any such lens can be expressed in terms of its cartesian coordinates with respect to whatever set of basis lenses we may choose. Two types of cartesian coordinate systems have become prominent, those having coordinates associated with the lens power matrix and those having coordinates associated with the Humphrey Vision Analyzer. This paper emphasizes the value of a particular cartesian coordinate system of the latter type, and the cylindrical coordinate system related to it, by showing how it can simplify the trigonometry of adding lenses and how it preserves symmetry in depicting the sets of all spherical lenses, all Jackson crossed-cylinders, and all cylindrical lenses. It also discusses appropriate coordinates for keeping statistics on lenses and shows that an easy extension of the lens vector space to include general optical systems is not possible.

  8. Buildup of spatial information over time and across eye-movements.

    PubMed

    Zimmermann, Eckart; Morrone, M Concetta; Burr, David C

    2014-12-15

    To interact rapidly and effectively with our environment, our brain needs access to a neural representation of the spatial layout of the external world. However, the construction of such a map poses major challenges, as the images on our retinae depend on where the eyes are looking, and shift each time we move our eyes, head and body to explore the world. Research from many laboratories including our own suggests that the visual system does compute spatial maps that are anchored to real-world coordinates. However, the construction of these maps takes time (up to 500ms) and also attentional resources. We discuss research investigating how retinotopic reference frames are transformed into spatiotopic reference-frames, and how this transformation takes time to complete. These results have implications for theories about visual space coordinates and particularly for the current debate about the existence of spatiotopic representations. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Emerging Multifunctional Metal-Organic Framework Materials.

    PubMed

    Li, Bin; Wen, Hui-Min; Cui, Yuanjing; Zhou, Wei; Qian, Guodong; Chen, Banglin

    2016-10-01

    Metal-organic frameworks (MOFs), also known as coordination polymers, represent an interesting type of solid crystalline materials that can be straightforwardly self-assembled through the coordination of metal ions/clusters with organic linkers. Owing to the modular nature and mild conditions of MOF synthesis, the porosities of MOF materials can be systematically tuned by judicious selection of molecular building blocks, and a variety of functional sites/groups can be introduced into metal ions/clusters, organic linkers, or pore spaces through pre-designing or post-synthetic approaches. These unique advantages enable MOFs to be used as a highly versatile and tunable platform for exploring multifunctional MOF materials. Here, the bright potential of MOF materials as emerging multifunctional materials is highlighted in some of the most important applications for gas storage and separation, optical, electric and magnetic materials, chemical sensing, catalysis, and biomedicine. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Y0: An innovative tool for spatial data analysis

    NASA Astrophysics Data System (ADS)

    Wilson, Jeremy C.

    1993-08-01

    This paper describes an advanced analysis and visualization tool, called Y0 (pronounced ``Why not?!''), that has been developed to directly support the scientific process for earth and space science research. Y0 aids the scientific research process by enabling the user to formulate algorithms and models within an integrated environment, and then interactively explore the solution space with the aid of appropriate visualizations. Y0 has been designed to provide strong support for both quantitative analysis and rich visualization. The user's algorithm or model is defined in terms of algebraic formulas in cells on worksheets, in a similar fashion to spreadsheet programs. Y0 is specifically designed to provide the data types and rich function set necessary for effective analysis and manipulation of remote sensing data. This includes various types of arrays, geometric objects, and objects for representing geographic coordinate system mappings. Visualization of results is tailored to the needs of remote sensing, with straightforward methods of composing, comparing, and animating imagery and graphical information, with reference to geographical coordinate systems. Y0 is based on advanced object-oriented technology. It is implemented in C++ for use in Unix environments, with a user interface based on the X window system. Y0 has been delivered under contract to Unidata, a group which provides data and software support to atmospheric researches in universities affiliated with UCAR. This paper will explore the key concepts in Y0, describe its utility for remote sensing analysis and visualization, and will give a specific example of its application to the problem of measuring glacier flow rates from Landsat imagery.

  11. BRIEF COMMUNICATION: A note on the Coulomb collision operator in curvilinear coordinates

    NASA Astrophysics Data System (ADS)

    Goncharov, P. R.

    2010-10-01

    The dynamic friction force, diffusion tensor, flux density in velocity space and Coulomb collision term are expressed in curvilinear coordinates via Trubnikov potential functions corresponding to each species of a background plasma. For comparison, explicit formulae are given for the dynamic friction force, diffusion tensor and collisional flux density in velocity space in curvilinear coordinates via Rosenbluth potential functions summed over all species of the background plasma.

  12. OSIRIS-REx "Uncovering the Secrets of Asteroids" Briefing

    NASA Image and Video Library

    2016-09-07

    In a panel discussion in the Kennedy Space Center’s Operations Support Building II, social media followers were briefed by NASA scientists on asteroids, how they relate to the origins of our solar system and the search for life beyond Earth. The discussion took place before launch of the agency’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. Panelists for this conversation are, from the left, Ellen Stofan, NASA chief scientist; Michelle Thaller, deputy director of science communications for NASA’s Science Mission Directorate; Felicia Chou, NASA Communications; Alex Young, associate director for science in the Heliophysics Science Division at NASA’s Goddard Space Flight Center in Greenbelt, Maryland; and Lindley Johnson, director of the Planetary Defense Coordination Office in NASA’s Science Mission Directorate.

  13. Telerobotic research at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Sliwa, Nancy E.

    1987-01-01

    An overview of Automation Technology Branch facilities and research is presented. Manipulator research includes dual-arm coordination studies, space manipulator dynamics, end-effector controller development, automatic space structure assembly, and the development of a dual-arm master-slave telerobotic manipulator system. Sensor research includes gravity-compensated force control, real-time monovision techniques, and laser ranging. Artificial intelligence techniques are being explored for supervisory task control, collision avoidance, and connectionist system architectures. A high-fidelity dynamic simulation of robotic systems, ROBSIM, is being supported and extended. Cooperative efforts with Oak Ridge National Laboratory have verified the ability of teleoperators to perform complex structural assembly tasks, and have resulted in the definition of a new dual-arm master-slave telerobotic manipulator. A bibliography of research results and a list of technical contacts are included.

  14. Electrodynamic Dust Shield for Space Applications

    NASA Technical Reports Server (NTRS)

    Mackey, P. J.; Johansen, M. R.; Olsen, R. C.; Raines, M. G.; Phillips, J. R., III; Pollard, J. R. S.; Calle, C. I.

    2016-01-01

    The International Space Exploration Coordination Group (ISECG) has chosen dust mitigation technology as a Global Exploration Roadmap (GER) critical technology need in order to reduce life cycle cost and risk, and increase the probability of mission success. NASA has also included Particulate Contamination Prevention and Mitigation as a cross-cutting technology to be developed for contamination prevention, cleaning and protection. This technology has been highlighted due to the detrimental effect of dust on both human and robotic missions. During manned Apollo missions, dust caused issues with both equipment and crew. Contamination of equipment caused many issues including incorrect instrument readings and increased temperatures due to masking of thermal radiators. The astronauts were directly affected by dust that covered space suits, obscured face shields and later propagated to the cabin and into the crew's eyes and lungs. Robotic missions on Mars were affected when solar panels were obscured by dust thereby reducing the effectiveness of the solar panels. The Electrostatics and Surface Physics Lab in Swamp Works at the Kennedy Space Center has been developing an Electrodynamic Dust Shield (EDS) to remove dust from multiple surfaces, including glass shields and thermal radiators. This technology has been tested in lab environments and has evolved over several years. Tests of the technology include reduced gravity flights (one-sixth g) in which Apollo Lunar dust samples were successfully removed from glass shields while under vacuum (10(exp -6) kPa).

  15. Using sketch-map coordinates to analyze and bias molecular dynamics simulations

    PubMed Central

    Tribello, Gareth A.; Ceriotti, Michele; Parrinello, Michele

    2012-01-01

    When examining complex problems, such as the folding of proteins, coarse grained descriptions of the system drive our investigation and help us to rationalize the results. Oftentimes collective variables (CVs), derived through some chemical intuition about the process of interest, serve this purpose. Because finding these CVs is the most difficult part of any investigation, we recently developed a dimensionality reduction algorithm, sketch-map, that can be used to build a low-dimensional map of a phase space of high-dimensionality. In this paper we discuss how these machine-generated CVs can be used to accelerate the exploration of phase space and to reconstruct free-energy landscapes. To do so, we develop a formalism in which high-dimensional configurations are no longer represented by low-dimensional position vectors. Instead, for each configuration we calculate a probability distribution, which has a domain that encompasses the entirety of the low-dimensional space. To construct a biasing potential, we exploit an analogy with metadynamics and use the trajectory to adaptively construct a repulsive, history-dependent bias from the distributions that correspond to the previously visited configurations. This potential forces the system to explore more of phase space by making it desirable to adopt configurations whose distributions do not overlap with the bias. We apply this algorithm to a small model protein and succeed in reproducing the free-energy surface that we obtain from a parallel tempering calculation. PMID:22427357

  16. Astronomy Education Programs at the Smithsonian National Air and Space Museum

    NASA Astrophysics Data System (ADS)

    Nagy, Katie; de Messieres, G.; Edson, S.

    2014-01-01

    Astronomy educators present the range of astronomy education programming available at the National Air and Space Museum, including the following. In the Phoebe Waterman Haas Public Observatory, visitors use telescopes and other scientific equipment to observe and discuss the Sun, Venus, and other celestial sights in an unstructured, inquiry-based environment. At Discovery Stations throughout the Museum, staff and volunteers engage visitors in hands-on exploration of a wide range of artifacts and teaching materials. Astronomy-related Discovery Stations include Cosmic Survey, an exploration of gravitational lensing using a rubber sheet, spectroscopy using discharge tubes, and several others. Astronomy lectures in the planetarium or IMAX theater, featuring researchers as the speakers, include a full evening of activities: a custom pre-lecture Discovery Station, a handout to help visitors explore the topic in more depth, and evening stargazing at the Public Observatory. Astronomy educators present planetarium shows, including star tours and explorations of recent science news. During Astronomy Chat, an astronomy researcher engages visitors in an informal conversation about science. The goal is to make the public feel welcome in the environment of professional research and to give busy scientists a convenient outreach opportunity. Astronomy educators also recruit, train, and coordinate a corps of volunteers who contribute their efforts to the programming above. The volunteer program has grown significantly since the Public Observatory was built in 2009.

  17. Focus groups to explore healthcare professionals' experiences of care coordination: towards a theoretical framework for the study of care coordination.

    PubMed

    Van Houdt, Sabine; Sermeus, Walter; Vanhaecht, Kris; De Lepeleire, Jan

    2014-12-24

    Strategies to improve care coordination between primary and hospital care do not always have the desired results. This is partly due to incomplete understanding of the key concepts of care coordination. An in-depth analysis of existing theoretical frameworks for the study of care coordination identified 14 interrelated key concepts. In another study, these 14 key concepts were further explored in patients' experiences. Additionally, "patient characteristics" was identified as a new key concept in patients' experiences and the previously identified key concept "quality of relationship" between healthcare professionals was extended to "quality of relationship" with the patient. Together, these 15 interrelated key concepts resulted in a new theoretical framework. The present study aimed at improving our understanding of the 15 previously identified key concepts and to explore potentially previous unidentified key concepts and the links between these by exploring how healthcare professionals experience care coordination. A qualitative design was used. Six focus groups were conducted including primary healthcare professionals involved in the care of patients who had breast cancer surgery at three hospitals in Belgium. Data were analyzed using constant comparative analysis. All 15 previously identified key concepts of care coordination were further explored in healthcare professionals' experiences. Links between these 15 concepts were identified, including 9 newly identified links. The concept "external factors" was linked with all 6 concepts relating to (inter)organizational mechanisms; "task characteristics", "structure", "knowledge and information technology", "administrative operational processes", "cultural factors" and "need for coordination". Five of these concepts related to 3 concepts of relational coordination; "roles", "quality of relationship" and "exchange of information". The concept of "task characteristics" was only linked with "roles" and "exchange of information". The concept "patient characteristics" related with the concepts "need for coordination" and "patient outcome". Outcome was influenced by "roles", "quality of relationship" and "exchange of information". External factors and the (inter)organizational mechanism should enhance "roles" and "quality of relationship" between healthcare professionals and with the patient as well as "exchange of information", and setting and sharing of common "goals" to improve care coordination and quality of care.

  18. Semantics and Syntax of Non-Standard Coordination

    ERIC Educational Resources Information Center

    Paperno, Denis

    2012-01-01

    This dissertation explores the diversity and unity of coordination constructions in natural language. Following the goal of bridging syntactic typology with formal semantics, it takes the typological variation in NP coordination patterns as a challenge for semantic theory. Hybrid Coordination in Russian and Comitative Coordination in…

  19. Reorganization of finger coordination patterns through motor exploration in individuals after stroke.

    PubMed

    Ranganathan, Rajiv

    2017-09-11

    Impairment of hand and finger function after stroke is common and affects the ability to perform activities of daily living. Even though many of these coordination deficits such as finger individuation have been well characterized, it is critical to understand how stroke survivors learn to explore and reorganize their finger coordination patterns for optimizing rehabilitation. In this study, I examine the use of a body-machine interface to assess how participants explore their movement repertoire, and how this changes with continued practice. Ten participants with chronic stroke wore a data glove and the finger joint angles were mapped on to the position of a cursor on a screen. The task of the participants was to move the cursor back and forth between two specified targets on a screen. Critically, the map between the finger movements and cursor motion was altered so that participants sometimes had to generate coordination patterns that required finger individuation. There were two phases to the experiment - an initial assessment phase on day 1, followed by a learning phase (days 2-5) where participants trained to reorganize their coordination patterns. Participants showed difficulty in performing tasks which had maps that required finger individuation, and the degree to which they explored their movement repertoire was directly related to clinical tests of hand function. However, over four sessions of practice, participants were able to learn to reorganize their finger movement coordination pattern and improve their performance. Moreover, training also resulted in improvements in movement repertoire outside of the context of the specific task during free exploration. Stroke survivors show deficits in movement repertoire in their paretic hand, but facilitating movement exploration during training can increase the movement repertoire. This suggests that exploration may be an important element of rehabilitation to regain optimal function.

  20. Brain templates and atlases.

    PubMed

    Evans, Alan C; Janke, Andrew L; Collins, D Louis; Baillet, Sylvain

    2012-08-15

    The core concept within the field of brain mapping is the use of a standardized, or "stereotaxic", 3D coordinate frame for data analysis and reporting of findings from neuroimaging experiments. This simple construct allows brain researchers to combine data from many subjects such that group-averaged signals, be they structural or functional, can be detected above the background noise that would swamp subtle signals from any single subject. Where the signal is robust enough to be detected in individuals, it allows for the exploration of inter-individual variance in the location of that signal. From a larger perspective, it provides a powerful medium for comparison and/or combination of brain mapping findings from different imaging modalities and laboratories around the world. Finally, it provides a framework for the creation of large-scale neuroimaging databases or "atlases" that capture the population mean and variance in anatomical or physiological metrics as a function of age or disease. However, while the above benefits are not in question at first order, there are a number of conceptual and practical challenges that introduce second-order incompatibilities among experimental data. Stereotaxic mapping requires two basic components: (i) the specification of the 3D stereotaxic coordinate space, and (ii) a mapping function that transforms a 3D brain image from "native" space, i.e. the coordinate frame of the scanner at data acquisition, to that stereotaxic space. The first component is usually expressed by the choice of a representative 3D MR image that serves as target "template" or atlas. The native image is re-sampled from native to stereotaxic space under the mapping function that may have few or many degrees of freedom, depending upon the experimental design. The optimal choice of atlas template and mapping function depend upon considerations of age, gender, hemispheric asymmetry, anatomical correspondence, spatial normalization methodology and disease-specificity. Accounting, or not, for these various factors in defining stereotaxic space has created the specter of an ever-expanding set of atlases, customized for a particular experiment, that are mutually incompatible. These difficulties continue to plague the brain mapping field. This review article summarizes the evolution of stereotaxic space in term of the basic principles and associated conceptual challenges, the creation of population atlases and the future trends that can be expected in atlas evolution. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Coordinated trajectory planning of dual-arm space robot using constrained particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Wang, Mingming; Luo, Jianjun; Yuan, Jianping; Walter, Ulrich

    2018-05-01

    Application of the multi-arm space robot will be more effective than single arm especially when the target is tumbling. This paper investigates the application of particle swarm optimization (PSO) strategy to coordinated trajectory planning of the dual-arm space robot in free-floating mode. In order to overcome the dynamics singularities issue, the direct kinematics equations in conjunction with constrained PSO are employed for coordinated trajectory planning of dual-arm space robot. The joint trajectories are parametrized with Bézier curve to simplify the calculation. Constrained PSO scheme with adaptive inertia weight is implemented to find the optimal solution of joint trajectories while specific objectives and imposed constraints are satisfied. The proposed method is not sensitive to the singularity issue due to the application of forward kinematic equations. Simulation results are presented for coordinated trajectory planning of two kinematically redundant manipulators mounted on a free-floating spacecraft and demonstrate the effectiveness of the proposed method.

  2. Composite system in rotationally invariant noncommutative phase space

    NASA Astrophysics Data System (ADS)

    Gnatenko, Kh. P.; Tkachuk, V. M.

    2018-03-01

    Composite system is studied in noncommutative phase space with preserved rotational symmetry. We find conditions on the parameters of noncommutativity on which commutation relations for coordinates and momenta of the center-of-mass of composite system reproduce noncommutative algebra for coordinates and momenta of individual particles. Also, on these conditions, the coordinates and the momenta of the center-of-mass satisfy noncommutative algebra with effective parameters of noncommutativity which depend on the total mass of the system and do not depend on its composition. Besides, it is shown that on these conditions the coordinates in noncommutative space do not depend on mass and can be considered as kinematic variables, the momenta are proportional to mass as it has to be. A two-particle system with Coulomb interaction is studied and the corrections to the energy levels of the system are found in rotationally invariant noncommutative phase space. On the basis of this result the effect of noncommutativity on the spectrum of exotic atoms is analyzed.

  3. The CEOS Atmospheric Composition Constellation: Enhancing the Value of Space-Based Observations

    NASA Technical Reports Server (NTRS)

    Eckman, Richard; Zehner, Claus; Al-Saadi, Jay

    2015-01-01

    The Committee on Earth Observation Satellites (CEOS) coordinates civil space-borne observations of the Earth. Participating agencies strive to enhance international coordination and data exchange and to optimize societal benefit. In recent years, CEOS has collaborated closely with the Group on Earth Observations (GEO) in implementing the Global Earth Observing System of Systems (GEOSS) space-based objectives. The goal of the CEOS Atmospheric Composition Constellation (ACC) is to collect and deliver data to improve monitoring, assessment and predictive capabilities for changes in the ozone layer, air quality and climate forcing associated with changes in the environment through coordination of existing and future international space assets. A project to coordinate and enhance the science value of a future constellation of geostationary sensors measuring parameters relevant to air quality supports the forthcoming European Sentinel-4, Korean GEMS, and US TEMPO missions. Recommendations have been developed for harmonization to mutually improve data quality and facilitate widespread use of the data products.

  4. Government and Industry Issues for Expanding Commercial Markets into Space

    NASA Technical Reports Server (NTRS)

    Smitherman, David V., Jr.

    2003-01-01

    In 2002, the Foresight and Governance Project at the Woodrow Wilson Center in Washington, D.C, organized a "Global Foresight Workshop" in partnership with NASA and in cooperation with other Federal Agencies to provide integrated consideration of broad challenges for the 2lst century. Many long-range goals for the nation were discussed and selected, among them were space related goals of interest to NASA. During much of the Agency's history, NASA advanced studies have focused consistently on the challenges of science-driven space exploration and operations. However, workshop findings indicate little interest in these goals unless they can also solve national and global issues. Many technologies and space development studies indicate great potential to enable new, important commercial markets in space that could address the many global challenges facing America in this century. But communication of these ideas are lacking. In conclusion, it appears that the commercial development of space could have broad implications on many impending problems, including energy resources, environmental impact, and climate changes. The challenge will be to develop a consistent coordinated effort among the many industries and Agencies that should be involved in opening this new frontier for these new commercial markets.

  5. Robonaut 2 and Watson: Cognitive Dexterity for Future Exploration

    NASA Technical Reports Server (NTRS)

    Badger, Julia M.; Strawser, Philip; Farrell, Logan; Goza, S. Michael; Claunch, Charles A.; Chancey, Raphael; Potapinski, Russell

    2018-01-01

    Future exploration missions will dictate a level of autonomy never before experienced in human spaceflight. Mission plans involving the uncrewed phases of complex human spacecraft in deep space will require a coordinated autonomous capability to be able to maintain the spacecraft when ground control is not available. One promising direction involves embedding intelligence into the system design both through the employment of state-of-the-art system engineering principles as well as through the creation of a cognitive network between a smart spacecraft or habitat and embodiments of cognitive agents. The work described here details efforts to integrate IBM's Watson and other cognitive computing services into NASA Johnson Space Center (JSC)'s Robonaut 2 (R2) anthropomorphic robot. This paper also discusses future directions this work will take. A cognitive spacecraft management system that is able to seamlessly collect data from subsystems, determine corrective actions, and provide commands to enable those actions is the end goal. These commands could be to embedded spacecraft systems or to a set of robotic assets that are tied into the cognitive system. An exciting collaboration with Woodside provides a promising Earth-bound testing analog, as controlling and maintaining not normally manned off-shore platforms have similar constraints to the space missions described.

  6. Robust Coordination for Large Sets of Simple Rovers

    NASA Technical Reports Server (NTRS)

    Tumer, Kagan; Agogino, Adrian

    2006-01-01

    The ability to coordinate sets of rovers in an unknown environment is critical to the long-term success of many of NASA;s exploration missions. Such coordination policies must have the ability to adapt in unmodeled or partially modeled domains and must be robust against environmental noise and rover failures. In addition such coordination policies must accommodate a large number of rovers, without excessive and burdensome hand-tuning. In this paper we present a distributed coordination method that addresses these issues in the domain of controlling a set of simple rovers. The application of these methods allows reliable and efficient robotic exploration in dangerous, dynamic, and previously unexplored domains. Most control policies for space missions are directly programmed by engineers or created through the use of planning tools, and are appropriate for single rover missions or missions requiring the coordination of a small number of rovers. Such methods typically require significant amounts of domain knowledge, and are difficult to scale to large numbers of rovers. The method described in this article aims to address cases where a large number of rovers need to coordinate to solve a complex time dependent problem in a noisy environment. In this approach, each rover decomposes a global utility, representing the overall goal of the system, into rover-specific utilities that properly assign credit to the rover s actions. Each rover then has the responsibility to create a control policy that maximizes its own rover-specific utility. We show a method of creating rover-utilities that are "aligned" with the global utility, such that when the rovers maximize their own utility, they also maximize the global utility. In addition we show that our method creates rover-utilities that allow the rovers to create their control policies quickly and reliably. Our distributed learning method allows large sets rovers be used unmodeled domains, while providing robustness against rover failures and changing environments. In experimental simulations we show that our method scales well with large numbers of rovers in addition to being robust against noisy sensor inputs and noisy servo control. The results show that our method is able to scale to large numbers of rovers and achieves up to 400% performance improvement over standard machine learning methods.

  7. Teaching, learning, and planetary exploration

    NASA Technical Reports Server (NTRS)

    Brown, Robert A.

    1992-01-01

    The progress accomplished in the first five months of the three-year grant period of Teaching, Learning, and Planetary Exploration is presented. The objectives of this project are to discover new education products and services based on space science, particularly planetary exploration. An Exploration in Education is the umbrella name for the education projects as they are seen by teachers and the interested public. As described in the proposal, our approach consists of: (1) increasing practical understanding of the potential role and capabilities of the research community to contribute to basic education using new discoveries; (2) developing an intellectual framework for these contributions by supplying criteria and templates for the teacher's stories; (3) attracting astronomers, engineers, and technical staff to the project and helping them form productive education partnerships for the future, (4) exploring relevant technologies and networks for authoring and communicating the teacher's stories; (5) enlisting the participation of potential user's of the teacher's stories in defining the products; (6) actually producing and delivering many educationally useful teacher's stories; and (7) reporting the pilot study results with critical evaluation. Technical progress was made by assembling our electronic publishing stations, designing electronic publications based on space science, and developing distribution approaches for electronic products. Progress was made addressing critical issues by developing policies and procedures for securing intellectual property rights and assembling a focus group of teachers to test our ideas and assure the quality of our products. The following useful materials are being produced: the TOPS report; three electronic 'PictureBooks'; one 'ElectronicArticle'; three 'ElectronicReports'; ten 'PrinterPosters'; and the 'FaxForum' with an initial complement of printed materials. We have coordinated with planetary scientists and astronomers both at the technical and policy level to assure the efficiency and ultimate utility of these efforts to derive educational benefits from the space science and exploration program as a whole.

  8. Aperture Mask for Unambiguous Parity Determination in Long Wavelength Imagers

    NASA Technical Reports Server (NTRS)

    Bos, Brent

    2011-01-01

    A document discusses a new parity pupil mask design that allows users to unambiguously determine the image space coordinate system of all the James Webb Space Telescope (JWST) science instruments by using two out-of-focus images. This is an improvement over existing mask designs that could not completely eliminate the coordinate system parity ambiguity at a wavelength of 5.6 microns. To mitigate the problem of how the presence of diffraction artifacts can obscure the pupil mask detail, this innovation has been created with specifically designed edge features so that the image space coordinate system parity can be determined in the presence of diffraction, even at long wavelengths.

  9. A flooding algorithm for multirobot exploration.

    PubMed

    Cabrera-Mora, Flavio; Xiao, Jizhong

    2012-06-01

    In this paper, we present a multirobot exploration algorithm that aims at reducing the exploration time and to minimize the overall traverse distance of the robots by coordinating the movement of the robots performing the exploration. Modeling the environment as a tree, we consider a coordination model that restricts the number of robots allowed to traverse an edge and to enter a vertex during each step. This coordination is achieved in a decentralized manner by the robots using a set of active landmarks that are dropped by them at explored vertices. We mathematically analyze the algorithm on trees, obtaining its main properties and specifying its bounds on the exploration time. We also define three metrics of performance for multirobot algorithms. We simulate and compare the performance of this new algorithm with those of our multirobot depth first search (MR-DFS) approach presented in our recent paper and classic single-robot DFS.

  10. NEEMO 20: Science Training, Operations, and Tool Development

    NASA Technical Reports Server (NTRS)

    Graff, T.; Miller, M.; Rodriguez-Lanetty, M.; Chappell, S.; Naids, A.; Hood, A.; Coan, D.; Abell, P.; Reagan, M.; Janoiko, B.

    2016-01-01

    The 20th mission of the National Aeronautics and Space Administration (NASA) Extreme Environment Mission Operations (NEEMO) was a highly integrated evaluation of operational protocols and tools designed to enable future exploration beyond low-Earth orbit. NEEMO 20 was conducted from the Aquarius habitat off the coast of Key Largo, FL in July 2015. The habitat and its surroundings provide a convincing analog for space exploration. A crew of six (comprised of astronauts, engineers, and habitat technicians) lived and worked in and around the unique underwater laboratory over a mission duration of 14-days. Incorporated into NEEMO 20 was a diverse Science Team (ST) comprised of geoscientists from the Astromaterials Research and Exploration Science (ARES/XI) Division from the Johnson Space Center (JSC), as well as marine scientists from the Department of Biological Sciences at Florida International University (FIU). This team trained the crew on the science to be conducted, defined sampling techniques and operational procedures, and planned and coordinated the science focused Extra Vehicular Activities (EVAs). The primary science objectives of NEEMO 20 was to study planetary sampling techniques and tools in partial gravity environments under realistic mission communication time delays and operational pressures. To facilitate these objectives two types of science sites were employed 1) geoscience sites with available rocks and regolith for testing sampling procedures and tools and, 2) marine science sites dedicated to specific research focused on assessing the photosynthetic capability of corals and their genetic connectivity between deep and shallow reefs. These marine sites and associated research objectives included deployment of handheld instrumentation, context descriptions, imaging, and sampling; thus acted as a suitable proxy for planetary surface exploration activities. This abstract briefly summarizes the scientific training, scientific operations, and tool development conducted during NEEMO 20 with an emphasis on the primary lessons learned.

  11. Sommerfeld's influence on Einstein's evaluation of Minkowski, 1908 to 1916

    NASA Astrophysics Data System (ADS)

    Smith, Felix T.

    2016-03-01

    Einstein (E.), who had begun entirely hostile to Minkowski's (M.'s) space-time view of relativity in 1908, completely reversed himself by March 1916, saying in the second sentence of his major article on General Relativity (G.R.) in Ann. d. Phys.: ``The generalization of the theory of relativity was greatly facilitated through the form that the special theory of relativity was given by Minkowski, the mathematician who first made clear the formal equivalence of the spatial coordinates and the time coordinate and made it practically useable for the construction of the theory.'' Two major steps in this evolution exhibit E.'s respect for Sommerfeld's (S.'s) knowledge and judgment. At a meeting in Salzburg, Sept., 1909, they discussed and disagreed strongly about the value of M.'s contributions, but by the Feb., 1910, Part 2 of a survey paper E. had come to follow S. in accepting fully M.'s space-time and its coordinate x4 = ict . Step 2 followed S.'s June, 1915, publication of a 1907 lecture on relativity by M., doctoring it slightly to influence E. Unknown is whatever else S. communicated to E. at that time, but S.'s unrivalled knowledge of the implications of M.'s 4-vector algebra and analysis were at E.'s disposal. There soon followed both a paper by E. in Feb., 1916, adapting to the needs of G.R. a covariant form of Maxwell's equations discovered by M., and then E.'s handsome acknowledgement in March. The importance of early personality issues between M. and E. and of S.'s later diplomatic interventions will be explored.

  12. Analysis of Decentralized Variable Structure Control for Collective Search by Mobile Robots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feddema, J.; Goldsmith, S.; Robinett, R.

    1998-11-04

    This paper presents an analysis of a decentralized coordination strategy for organizing and controlling a team of mobile robots performing collective search. The alpha-beta coordination strategy is a family of collective search algorithms that allow teams of communicating robots to implicitly coordinate their search activities through a division of labor based on self-selected roIes. In an alpha-beta team. alpha agents are motivated to improve their status by exploring new regions of the search space. Beta a~ents are conservative, and reiy on the alpha agents to provide advanced information on favorable regions of the search space. An agent selects its currentmore » role dynamically based on its current status value relative to the current status values of the other team members. Status is determined by some function of the agent's sensor readings, and is generally a measurement of source intensity at the agent's current location. Variations on the decision rules determining alpha and beta behavior produce different versions of the algorithm that lead to different global properties. The alpha-beta strategy is based on a simple finite-state machine that implements a form of Variable Structure Control (VSC). The VSC system changes the dynamics of the collective system by abruptly switching at defined states to alternative control laws . In VSC, Lyapunov's direct method is often used to design control surfaces which guide the system to a given goal. We introduce the alpha-beta aIgorithm and present an analysis of the equilibrium point and the global stability of the alpha-beta algorithm based on Lyapunov's method.« less

  13. Analysis of decentralized variable structure control for collective search by mobile robots

    NASA Astrophysics Data System (ADS)

    Goldsmith, Steven Y.; Feddema, John T.; Robinett, Rush D., III

    1998-10-01

    This paper presents an analysis of a decentralized coordination strategy for organizing and controlling a team of mobile robots performing collective search. The alpha- beta coordination strategy is a family of collective search algorithms that allow teams of communicating robots to implicitly coordinate their search activities through a division of labor based on self-selected roles. In an alpha- beta team, alpha agents are motivated to improve their status by exploring new regions of the search space. Beta agents are conservative, and rely on the alpha agents to provide advanced information on favorable regions of the search space. An agent selects its current role dynamically based on its current status value relative to the current status values of the other team members. Status is determined by some function of the agent's sensor readings, and is generally a measurement of source intensity at the agent's current location. Variations on the decision rules determining alpha and beta behavior produce different versions of the algorithm that lead to different global properties. The alpha-beta strategy is based on a simple finite-state machine that implements a form of Variable Structure Control (VSC). The VSC system changes the dynamics of the collective system by abruptly switching at defined states to alternative control laws. In VSC, Lyapunov's direct method is often used to design control surfaces which guide the system to a given goal. We introduce the alpha- beta algorithm and present an analysis of the equilibrium point and the global stability of the alpha-beta algorithm based on Lyapunov's method.

  14. Exploring the Role of Elementary Parent Involvement Coordinators in a North Georgia Title I Charter School District

    ERIC Educational Resources Information Center

    Elrod, Philip

    2015-01-01

    This study explored the role of elementary parent involvement coordinators (EPIC) in a Northeast Georgia Title I Charter School District. EPICs were charged with facilitating programs designed to build social capital and network closure for families. This nested case study explored the experiences of five EPICs, each located in one of the five…

  15. Stabilizing embedology: Geometry-preserving delay-coordinate maps

    NASA Astrophysics Data System (ADS)

    Eftekhari, Armin; Yap, Han Lun; Wakin, Michael B.; Rozell, Christopher J.

    2018-02-01

    Delay-coordinate mapping is an effective and widely used technique for reconstructing and analyzing the dynamics of a nonlinear system based on time-series outputs. The efficacy of delay-coordinate mapping has long been supported by Takens' embedding theorem, which guarantees that delay-coordinate maps use the time-series output to provide a reconstruction of the hidden state space that is a one-to-one embedding of the system's attractor. While this topological guarantee ensures that distinct points in the reconstruction correspond to distinct points in the original state space, it does not characterize the quality of this embedding or illuminate how the specific parameters affect the reconstruction. In this paper, we extend Takens' result by establishing conditions under which delay-coordinate mapping is guaranteed to provide a stable embedding of a system's attractor. Beyond only preserving the attractor topology, a stable embedding preserves the attractor geometry by ensuring that distances between points in the state space are approximately preserved. In particular, we find that delay-coordinate mapping stably embeds an attractor of a dynamical system if the stable rank of the system is large enough to be proportional to the dimension of the attractor. The stable rank reflects the relation between the sampling interval and the number of delays in delay-coordinate mapping. Our theoretical findings give guidance to choosing system parameters, echoing the tradeoff between irrelevancy and redundancy that has been heuristically investigated in the literature. Our initial result is stated for attractors that are smooth submanifolds of Euclidean space, with extensions provided for the case of strange attractors.

  16. Stabilizing embedology: Geometry-preserving delay-coordinate maps.

    PubMed

    Eftekhari, Armin; Yap, Han Lun; Wakin, Michael B; Rozell, Christopher J

    2018-02-01

    Delay-coordinate mapping is an effective and widely used technique for reconstructing and analyzing the dynamics of a nonlinear system based on time-series outputs. The efficacy of delay-coordinate mapping has long been supported by Takens' embedding theorem, which guarantees that delay-coordinate maps use the time-series output to provide a reconstruction of the hidden state space that is a one-to-one embedding of the system's attractor. While this topological guarantee ensures that distinct points in the reconstruction correspond to distinct points in the original state space, it does not characterize the quality of this embedding or illuminate how the specific parameters affect the reconstruction. In this paper, we extend Takens' result by establishing conditions under which delay-coordinate mapping is guaranteed to provide a stable embedding of a system's attractor. Beyond only preserving the attractor topology, a stable embedding preserves the attractor geometry by ensuring that distances between points in the state space are approximately preserved. In particular, we find that delay-coordinate mapping stably embeds an attractor of a dynamical system if the stable rank of the system is large enough to be proportional to the dimension of the attractor. The stable rank reflects the relation between the sampling interval and the number of delays in delay-coordinate mapping. Our theoretical findings give guidance to choosing system parameters, echoing the tradeoff between irrelevancy and redundancy that has been heuristically investigated in the literature. Our initial result is stated for attractors that are smooth submanifolds of Euclidean space, with extensions provided for the case of strange attractors.

  17. NASA's Ship-Aircraft Bio-Optical Research (SABOR)

    NASA Image and Video Library

    2014-08-25

    Sunset Over the Gulf of Maine On July 20, 2013, scientists at sea with NASA's SABOR experiment witnessed a spectacular sunset over the Gulf of Maine. NASA's Ship-Aircraft Bio-Optical Research (SABOR) experiment is a coordinated ship and aircraft observation campaign off the Atlantic coast of the United States, an effort to advance space-based capabilities for monitoring microscopic plants that form the base of the marine food chain. Read more: 1.usa.gov/WWRVzj Credit: NASA/SABOR/Wayne Slade, Sequoia Scientific .NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. NASA's Ship-Aircraft Bio-Optical Research (SABOR)

    NASA Image and Video Library

    2017-12-08

    Instruments Overboard On July 26, 2014, scientists worked past dusk to prepare and deploy the optical instruments and ocean water sensors during NASA's SABOR experiment. NASA's Ship-Aircraft Bio-Optical Research (SABOR) experiment is a coordinated ship and aircraft observation campaign off the Atlantic coast of the United States, an effort to advance space-based capabilities for monitoring microscopic plants that form the base of the marine food chain. Read more: 1.usa.gov/WWRVzj Credit: NASA/SABOR/Wayne Slade, Sequoia Scientific . NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. OSIRIS-REx "Uncovering the Secrets of Asteroids" Briefing

    NASA Image and Video Library

    2016-09-07

    In a panel discussion in the Kennedy Space Center’s Operations Support Building II, social media followers were briefed by NASA scientists on asteroids, how they relate to the origins of our solar system and the search for life beyond Earth. The discussion took place before launch of the agency’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. Panelists in view are, from the left, Felicia Chou, NASA Communications; Alex Young, associate director for science in the Heliophysics Science Division at NASA’s Goddard Space Flight Center in Greenbelt, Maryland; and Lindley Johnson, director of the Planetary Defense Coordination Office in NASA’s Science Mission Directorate. Also participating in the panel discussion are Ellen Stofan, NASA chief scientist and Michelle Thaller, deputy director of science communications for NASA’s Science Mission Directorate.

  20. NASA's Ship-Aircraft Bio-Optical Research (SABOR)

    NASA Image and Video Library

    2014-08-25

    What's in the Water? Robert Foster, of the City College of New York, filters seawater on July 23, 2414, for chlorophyll analysis in a lab on the R/V Endeavor. NASA's Ship-Aircraft Bio-Optical Research (SABOR) experiment is a coordinated ship and aircraft observation campaign off the Atlantic coast of the United States, an effort to advance space-based capabilities for monitoring microscopic plants that form the base of the marine food chain. Read more: 1.usa.gov/WWRVzj Credit: NASA/SABOR/Wayne Slade, Sequoia Scientific..NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. Relativistic chaos is coordinate invariant.

    PubMed

    Motter, Adilson E

    2003-12-05

    The noninvariance of Lyapunov exponents in general relativity has led to the conclusion that chaos depends on the choice of the space-time coordinates. Strikingly, we uncover the transformation laws of Lyapunov exponents under general space-time transformations and we find that chaos, as characterized by positive Lyapunov exponents, is coordinate invariant. As a result, the previous conclusion regarding the noninvariance of chaos in cosmology, a major claim about chaos in general relativity, necessarily involves the violation of hypotheses required for a proper definition of the Lyapunov exponents.

  2. The Sixth Alumni Conference of the International Space University

    NASA Technical Reports Server (NTRS)

    Berry, Steve (Editor)

    1997-01-01

    These proceedings cover the sixth alumni conference of the International Space University, coordinated by the ISU U.S. Alumni Organization, which was held at Rice University in Houston, Texas, on July 11, 1997. The alumni conference gives graduates of the International Space University's interdisciplinary, international, and intercultural program a forum in which they may present and exchange technical ideas, and keep abreast of the wide variety of work in which the ever-growing body of alumni is engaged. The diversity that is characteristic of ISU is reflected in the subject matter of the papers published in this proceedings. This proceedings preserves the order of the alumni presentations given at the 1997 ISU Alumni Conference. As in previous years, a special effort was made to solicit papers with a strong connection to the two ISU 1997 Summer Session Program design projects: (1) Transfer of Technology, Spin-Offs, Spin-Ins; and (2) Strategies for the Exploration of Mars. Papers in the remaining ten sessions cover the departmental areas traditional to the ISU summer session program.

  3. Exercise during long term exposure to space: Value of exercise during space exploration

    NASA Technical Reports Server (NTRS)

    1990-01-01

    There appear to be two general physiological reasons why exercise will be beneficial to space travelers who will experience a weightless and isolated environment for many months or a few years: (1) to alleviate or prevent tissue atrophy (principally bone and muscle), to maintain cardiovascular function, and to prevent deleterious changes in extracellular and cellular fluid volumes and plasma constituents, especially electrolytes; and (2) to maintain whole organism functional physical and physiological status with special reference to neuromuscular coordination (physical skill) and physical fitness (muscle strength and power, flexibility, and aerobic endurance). The latter reason also relates well to the ability of the crew members to resist both general and local fatigue and thus ensure consistent physical performance. Various forms of exercise, performed regularly, could help alleviate boredom and assist the travelers in coping with stress, anxiety, and depression. The type, frequency, duration and intensity of exercise and ways of ensuring that crew members engage in it are discussed.

  4. Discovery of gigantic molecular nanostructures using a flow reaction array as a search engine.

    PubMed

    Zang, Hong-Ying; de la Oliva, Andreu Ruiz; Miras, Haralampos N; Long, De-Liang; McBurney, Roy T; Cronin, Leroy

    2014-04-28

    The discovery of gigantic molecular nanostructures like coordination and polyoxometalate clusters is extremely time-consuming since a vast combinatorial space needs to be searched, and even a systematic and exhaustive exploration of the available synthetic parameters relies on a great deal of serendipity. Here we present a synthetic methodology that combines a flow reaction array and algorithmic control to give a chemical 'real-space' search engine leading to the discovery and isolation of a range of new molecular nanoclusters based on [Mo(2)O(2)S(2)](2+)-based building blocks with either fourfold (C4) or fivefold (C5) symmetry templates and linkers. This engine leads us to isolate six new nanoscale cluster compounds: 1, {Mo(10)(C5)}; 2, {Mo(14)(C4)4(C5)2}; 3, {Mo(60)(C4)10}; 4, {Mo(48)(C4)6}; 5, {Mo(34)(C4)4}; 6, {Mo(18)(C4)9}; in only 200 automated experiments from a parameter space spanning ~5 million possible combinations.

  5. Maintenance of time and frequency in the Jet Propulsion Laboratory's Deep Space Network using the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Clements, P. A.; Borutzki, S. E.; Kirk, A.

    1984-01-01

    The Deep Space Network (DSN), managed by the Jet Propulsion Laboratory for NASA, must maintain time and frequency within specified limits in order to accurately track the spacecraft engaged in deep space exploration. Various methods are used to coordinate the clocks among the three tracking complexes. These methods include Loran-C, TV Line 10, Very Long Baseline Interferometry (VLBI), and the Global Positioning System (GPS). Calculations are made to obtain frequency offsets and Allan variances. These data are analyzed and used to monitor the performance of the hydrogen masers that provide the reference frequencies for the DSN Frequency and Timing System (DFT). Areas of discussion are: (1) a brief history of the GPS timing receivers in the DSN, (2) a description of the data and information flow, (3) data on the performance of the DSN master clocks and GPS measurement system, and (4) a description of hydrogen maser frequency steering using these data.

  6. How does culture affect experiential training feedback in exported Canadian health professional curricula?

    PubMed Central

    Mousa Bacha, Rasha; Abdelaziz, Somaia

    2017-01-01

    Objectives To explore feedback processes of Western-based health professional student training curricula conducted in an Arab clinical teaching setting. Methods This qualitative study employed document analysis of in-training evaluation reports (ITERs) used by Canadian nursing, pharmacy, respiratory therapy, paramedic, dental hygiene, and pharmacy technician programs established in Qatar. Six experiential training program coordinators were interviewed between February and May 2016 to explore how national cultural differences are perceived to affect feedback processes between students and clinical supervisors. Interviews were recorded, transcribed, and coded according to a priori cultural themes. Results Document analysis found all programs’ ITERs outlined competency items for students to achieve. Clinical supervisors choose a response option corresponding to their judgment of student performance and may provide additional written feedback in spaces provided. Only one program required formal face-to-face feedback exchange between students and clinical supervisors. Experiential training program coordinators identified that no ITER was expressly culturally adapted, although in some instances, modifications were made for differences in scopes of practice between Canada and Qatar.  Power distance was recognized by all coordinators who also identified both student and supervisor reluctance to document potentially negative feedback in ITERs. Instances of collectivism were described as more lenient student assessment by clinical supervisors of the same cultural background. Uncertainty avoidance did not appear to impact feedback processes. Conclusions Our findings suggest that differences in specific cultural dimensions between Qatar and Canada have implications on the feedback process in experiential training which may be addressed through simple measures to accommodate communication preferences. PMID:28315858

  7. How does culture affect experiential training feedback in exported Canadian health professional curricula?

    PubMed

    Wilbur, Kerry; Mousa Bacha, Rasha; Abdelaziz, Somaia

    2017-03-17

    To explore feedback processes of Western-based health professional student training curricula conducted in an Arab clinical teaching setting. This qualitative study employed document analysis of in-training evaluation reports (ITERs) used by Canadian nursing, pharmacy, respiratory therapy, paramedic, dental hygiene, and pharmacy technician programs established in Qatar. Six experiential training program coordinators were interviewed between February and May 2016 to explore how national cultural differences are perceived to affect feedback processes between students and clinical supervisors. Interviews were recorded, transcribed, and coded according to a priori cultural themes. Document analysis found all programs' ITERs outlined competency items for students to achieve. Clinical supervisors choose a response option corresponding to their judgment of student performance and may provide additional written feedback in spaces provided. Only one program required formal face-to-face feedback exchange between students and clinical supervisors. Experiential training program coordinators identified that no ITER was expressly culturally adapted, although in some instances, modifications were made for differences in scopes of practice between Canada and Qatar.  Power distance was recognized by all coordinators who also identified both student and supervisor reluctance to document potentially negative feedback in ITERs. Instances of collectivism were described as more lenient student assessment by clinical supervisors of the same cultural background. Uncertainty avoidance did not appear to impact feedback processes. Our findings suggest that differences in specific cultural dimensions between Qatar and Canada have implications on the feedback process in experiential training which may be addressed through simple measures to accommodate communication preferences.

  8. Accelerated weight histogram method for exploring free energy landscapes

    NASA Astrophysics Data System (ADS)

    Lindahl, V.; Lidmar, J.; Hess, B.

    2014-07-01

    Calculating free energies is an important and notoriously difficult task for molecular simulations. The rapid increase in computational power has made it possible to probe increasingly complex systems, yet extracting accurate free energies from these simulations remains a major challenge. Fully exploring the free energy landscape of, say, a biological macromolecule typically requires sampling large conformational changes and slow transitions. Often, the only feasible way to study such a system is to simulate it using an enhanced sampling method. The accelerated weight histogram (AWH) method is a new, efficient extended ensemble sampling technique which adaptively biases the simulation to promote exploration of the free energy landscape. The AWH method uses a probability weight histogram which allows for efficient free energy updates and results in an easy discretization procedure. A major advantage of the method is its general formulation, making it a powerful platform for developing further extensions and analyzing its relation to already existing methods. Here, we demonstrate its efficiency and general applicability by calculating the potential of mean force along a reaction coordinate for both a single dimension and multiple dimensions. We make use of a non-uniform, free energy dependent target distribution in reaction coordinate space so that computational efforts are not wasted on physically irrelevant regions. We present numerical results for molecular dynamics simulations of lithium acetate in solution and chignolin, a 10-residue long peptide that folds into a β-hairpin. We further present practical guidelines for setting up and running an AWH simulation.

  9. Accelerated weight histogram method for exploring free energy landscapes.

    PubMed

    Lindahl, V; Lidmar, J; Hess, B

    2014-07-28

    Calculating free energies is an important and notoriously difficult task for molecular simulations. The rapid increase in computational power has made it possible to probe increasingly complex systems, yet extracting accurate free energies from these simulations remains a major challenge. Fully exploring the free energy landscape of, say, a biological macromolecule typically requires sampling large conformational changes and slow transitions. Often, the only feasible way to study such a system is to simulate it using an enhanced sampling method. The accelerated weight histogram (AWH) method is a new, efficient extended ensemble sampling technique which adaptively biases the simulation to promote exploration of the free energy landscape. The AWH method uses a probability weight histogram which allows for efficient free energy updates and results in an easy discretization procedure. A major advantage of the method is its general formulation, making it a powerful platform for developing further extensions and analyzing its relation to already existing methods. Here, we demonstrate its efficiency and general applicability by calculating the potential of mean force along a reaction coordinate for both a single dimension and multiple dimensions. We make use of a non-uniform, free energy dependent target distribution in reaction coordinate space so that computational efforts are not wasted on physically irrelevant regions. We present numerical results for molecular dynamics simulations of lithium acetate in solution and chignolin, a 10-residue long peptide that folds into a β-hairpin. We further present practical guidelines for setting up and running an AWH simulation.

  10. Inflight Treadmill Exercise Can Serve as Multi-Disciplinary Countermeasure System

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Batson, C. D.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Laurie, S.; Lee, S. M. C.; Miller, C. A.; Mulavara, A. P.; Peters, B. T.; hide

    2014-01-01

    The goals of the Functional Task Test (FTT) study were to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. Ultimately this information will be used to assess performance risks and inform the design of countermeasures for exploration class missions. We have previously shown that for Shuttle, ISS and bed rest subjects, functional tasks requiring a greater demand for dynamic control of postural equilibrium (i.e. fall recovery, seat egress/obstacle avoidance during walking, object translation, jump down) showed the greatest decrement in performance. Functional tests with reduced requirements for postural stability (i.e. hatch opening, ladder climb, manual manipulation of objects and tool use) showed little reduction in performance. These changes in functional performance were paralleled by similar decrements in sensorimotor tests designed to specifically assess postural equilibrium and dynamic gait control. The bed rest analog allows us to investigate the impact of axial body unloading in isolation on both functional tasks and on the underlying physiological factors that lead to decrements in performance and then compare them with the results obtained in our space flight study. These results indicate that body support unloading experienced during space flight plays a central role in postflight alteration of functional task performance. These data also support the concept that space flight may cause central adaptation of converging body-load somatosensory and vestibular input during gravitational transitions [1]. Therefore, we conclude that providing significant body-support loading during inflight treadmill along with balance training is necessary to mitigate decrements in critical mission tasks that require dynamic postural stability and mobility. Data obtained from space flight and bed rest support the notion that in-flight treadmill exercise, in addition to providing aerobic exercise and mechanical stimuli to the bone, also has a number of sensorimotor benefits by providing: 1) A balance challenge during locomotion requiring segmental coordination in response to a downward force. 2) Body-support loading during performance of a full-body active motor task. 3) Oscillatory stimulation of the otoliths and synchronized periodic foot impacts that facilitate the coordination of gait motions and tune the full-body gaze control system. 4) Appropriate sensory input (foot tactile input, muscle and tendon stretch input) to spinal locomotor central pattern generators required for the control of locomotion. Forward work will focus on a follow-up bed rest study that incorporates aerobic and resistance exercise with a treadmill balance and gait training system that can serve as an integrated interdisciplinary countermeasure system for future exploration class missions.

  11. 14 CFR 385.18 - Authority of the Chief, Coordination Section, Documentary Services Division.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Authority of the Chief, Coordination Section, Documentary Services Division. 385.18 Section 385.18 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ORGANIZATION STAFF ASSIGNMENTS AND REVIEW OF ACTION UNDER ASSIGNMENTS Assignment of Functions...

  12. 14 CFR 385.18 - Authority of the Chief, Coordination Section, Documentary Services Division.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Authority of the Chief, Coordination Section, Documentary Services Division. 385.18 Section 385.18 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ORGANIZATION STAFF ASSIGNMENTS AND REVIEW OF ACTION UNDER ASSIGNMENTS Assignment of Functions...

  13. 14 CFR 385.18 - Authority of the Chief, Coordination Section, Documentary Services Division.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Authority of the Chief, Coordination Section, Documentary Services Division. 385.18 Section 385.18 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ORGANIZATION STAFF ASSIGNMENTS AND REVIEW OF ACTION UNDER ASSIGNMENTS Assignment of Functions...

  14. 14 CFR 385.18 - Authority of the Chief, Coordination Section, Documentary Services Division.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Authority of the Chief, Coordination Section, Documentary Services Division. 385.18 Section 385.18 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ORGANIZATION STAFF ASSIGNMENTS AND REVIEW OF ACTION UNDER ASSIGNMENTS Assignment of Functions...

  15. 14 CFR 385.18 - Authority of the Chief, Coordination Section, Documentary Services Division.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Authority of the Chief, Coordination Section, Documentary Services Division. 385.18 Section 385.18 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ORGANIZATION STAFF ASSIGNMENTS AND REVIEW OF ACTION UNDER ASSIGNMENTS Assignment of Functions...

  16. An Encoding Method for Compressing Geographical Coordinates in 3d Space

    NASA Astrophysics Data System (ADS)

    Qian, C.; Jiang, R.; Li, M.

    2017-09-01

    This paper proposed an encoding method for compressing geographical coordinates in 3D space. By the way of reducing the length of geographical coordinates, it helps to lessen the storage size of geometry information. In addition, the encoding algorithm subdivides the whole space according to octree rules, which enables progressive transmission and loading. Three main steps are included in this method: (1) subdividing the whole 3D geographic space based on octree structure, (2) resampling all the vertices in 3D models, (3) encoding the coordinates of vertices with a combination of Cube Index Code (CIC) and Geometry Code. A series of geographical 3D models were applied to evaluate the encoding method. The results showed that this method reduced the storage size of most test data by 90 % or even more under the condition of a speed of encoding and decoding. In conclusion, this method achieved a remarkable compression rate in vertex bit size with a steerable precision loss. It shall be of positive meaning to the web 3d map storing and transmission.

  17. Goddard Monitors Orions EFT-1 Test Flight

    NASA Image and Video Library

    2017-12-08

    NASA's Goddard Space Flight Center in Greenbelt, Maryland, played a critical role in the test flight of the #Orion spacecraft on Dec. 5, 2014. Goddard's Networks Integration Center, pictured here, coordinated the communications support for both the Orion vehicle and the Delta IV rocket, ensuring complete communications coverage through NASA's Space Network and Tracking and Data Relay Satellite. The Orion spacecraft lifted off from Cape Canaveral Air Force Station's Space Launch Complex 37 in Florida at 7:05 a.m. EST. The Orion capsule splashed down about four and a half hours later, at 11:29 a.m. EST, about 600 miles off the coast of San Diego, California. While no humans were aboard Orion for this test flight, in the future, Orion will allow humans to travel deeper in to space than ever before, including an asteroid and Mars. Credit: NASA/Goddard/Amber Jacobson Credit: NASA/Goddard/Amber Jacobson NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. Real-Time Mapping Spectroscopy on the Ground, in the Air, and in Space

    NASA Astrophysics Data System (ADS)

    Thompson, D. R.; Allwood, A.; Chien, S.; Green, R. O.; Wettergreen, D. S.

    2016-12-01

    Real-time data interpretation can benefit both remote in situ exploration and remote sensing. Basic analyses at the sensor can monitor instrument performance and reveal invisible science phenomena in real time. This promotes situational awareness for remote robotic explorers or campaign decision makers, enabling adaptive data collection, reduced downlink requirements, and coordinated multi-instrument observations. Fast analysis is ideal for mapping spectrometers providing unambiguous, quantitative geophysical measurements. This presentation surveys recent computational advances in real-time spectroscopic analysis for Earth science and planetary exploration. Spectral analysis at the sensor enables new operations concepts that significantly improve science yield. Applications include real-time detection of fugitive greenhouse emissions by airborne monitoring, real-time cloud screening and mineralogical mapping by orbital spectrometers, and adaptive measurement by the PIXL instrument on the Mars 2020 rover. Copyright 2016 California Institute of Technology. All Rights Reserved. We acknowledge support of the US Government, NASA, the Earth Science Division and Terrestrial Ecology program.

  19. On the dynamical and geometrical symmetries of Keplerian motion

    NASA Astrophysics Data System (ADS)

    Wulfman, Carl E.

    2009-05-01

    The dynamical symmetries of classical, relativistic and quantum-mechanical Kepler systems are considered to arise from geometric symmetries in PQET phase space. To establish their interconnection, the symmetries are related with the aid of a Lie-algebraic extension of Dirac's correspondence principle, a canonical transformation containing a Cunningham-Bateman inversion, and a classical limit involving a preliminary canonical transformation in ET space. The Lie-algebraic extension establishes the conditions under which the uncertainty principle allows the local dynamical symmetry of a quantum-mechanical system to be the same as the geometrical phase-space symmetry of its classical counterpart. The canonical transformation converts Poincaré-invariant free-particle systems into ISO(3,1) invariant relativistic systems whose classical limit produces Keplerian systems. Locally Cartesian relativistic PQET coordinates are converted into a set of eight conjugate position and momentum coordinates whose classical limit contains Fock projective momentum coordinates and the components of Runge-Lenz vectors. The coordinate systems developed via the transformations are those in which the evolution and degeneracy groups of the classical system are generated by Poisson-bracket operators that produce ordinary rotation, translation and hyperbolic motions in phase space. The way in which these define classical Keplerian symmetries and symmetry coordinates is detailed. It is shown that for each value of the energy of a Keplerian system, the Poisson-bracket operators determine two invariant functions of positions and momenta, which together with its regularized Hamiltonian, define the manifold in six-dimensional phase space upon which motions evolve.

  20. The Linear Parameters and the Decoupling Matrix for Linearly Coupled Motion in 6 Dimensional Phase Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parzen, George

    It will be shown that starting from a coordinate system where the 6 phase space coordinates are linearly coupled, one can go to a new coordinate system, where the motion is uncoupled, by means of a linear transformation. The original coupled coordinates and the new uncoupled coordinates are related by a 6 x 6 matrix, R. R will be called the decoupling matrix. It will be shown that of the 36 elements of the 6 x 6 decoupling matrix R, only 12 elements are independent. This may be contrasted with the results for motion in 4- dimensional phase space, wheremore » R has 4 independent elements. A set of equations is given from which the 12 elements of R can be computed from the one period transfer matrix. This set of equations also allows the linear parameters, the β i,α i, i = 1, 3, for the uncoupled coordinates, to be computed from the one period transfer matrix. An alternative procedure for computing the linear parameters,β i,α i, i = 1, 3, and the 12 independent elements of the decoupling matrix R is also given which depends on computing the eigenvectors of the one period transfer matrix. These results can be used in a tracking program, where the one period transfer matrix can be computed by multiplying the transfer matrices of all the elements in a period, to compute the linear parameters α i and β i, i = 1, 3, and the elements of the decoupling matrix R. The procedure presented here for studying coupled motion in 6-dimensional phase space can also be applied to coupled motion in 4-dimensional phase space, where it may be a useful alternative procedure to the procedure presented by Edwards and Teng. In particular, it gives a simpler programing procedure for computing the beta functions and the emittances for coupled motion in 4-dimensional phase space.« less

  1. The linear parameters and the decoupling matrix for linearly coupled motion in 6 dimensional phase space. Informal report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parzen, G.

    It will be shown that starting from a coordinate system where the 6 phase space coordinates are linearly coupled, one can go to a new coordinate system, where the motion is uncoupled, by means of a linear transformation. The original coupled coordinates and the new uncoupled coordinates are related by a 6 {times} 6 matrix, R. R will be called the decoupling matrix. It will be shown that of the 36 elements of the 6 {times} 6 decoupling matrix R, only 12 elements are independent. This may be contrasted with the results for motion in 4-dimensional phase space, where Rmore » has 4 independent elements. A set of equations is given from which the 12 elements of R can be computed from the one period transfer matrix. This set of equations also allows the linear parameters, {beta}{sub i}, {alpha}{sub i} = 1, 3, for the uncoupled coordinates, to be computed from the one period transfer matrix. An alternative procedure for computing the linear parameters, the {beta}{sub i}, {alpha}{sub i} i = 1, 3, and the 12 independent elements of the decoupling matrix R is also given which depends on computing the eigenvectors of the one period transfer matrix. These results can be used in a tracking program, where the one period transfer matrix can be computed by multiplying the transfer matrices of all the elements in a period, to compute the linear parameters {alpha}{sub i} and {beta}{sub i}, i = 1, 3, and the elements of the decoupling matrix R. The procedure presented here for studying coupled motion in 6-dimensional phase space can also be applied to coupled motion in 4-dimensional phase space, where it may be a useful alternative procedure to the procedure presented by Edwards and Teng. In particular, it gives a simpler programming procedure for computing the beta functions and the emittances for coupled motion in 4-dimensional phase space.« less

  2. Algorithm for transforming the coordinates of lunar objects while changing from various coordinate systems into the selenocentric one

    NASA Astrophysics Data System (ADS)

    Mazurova, Elena; Mikhaylov, Aleksandr

    2013-04-01

    The selenocentric network of objects setting the coordinate system on the Moon, with the origin coinciding with the mass centre and axes directed along the inertia axes can become one of basic elements of the coordinate-time support for lunar navigation with use of cartographic materials and control objects. A powerful array of highly-precise and multiparameter information obtained by modern space vehicles allows one to establish Lunar Reference Frames (LRF) of an essentially another accuracy. Here, a special role is played by the results of scanning the lunar surface by the Lunar Reconnaissance Orbiter(LRO) American mission. The coordinates of points calculated only from the results of laser scanning have high enough accuracy of position definition with respect to each other, but it is possible to check up the real accuracy of spatial tie and improve the coordinates only by a network of points whose coordinates are computed both from laser scanning and other methods too, for example, by terrestrial laser location, space photogrammetry methods, and so on. The paper presents the algorithm for transforming selenocentric coordinate systems and the accuracy estimation of changing from one lunar coordinate system to another one. Keywords: selenocentric coordinate system, coordinate-time support.

  3. Reactive scattering with row-orthonormal hyperspherical coordinates. 4. Four-dimensional-space Wigner rotation function for pentaatomic systems.

    PubMed

    Kuppermann, Aron

    2011-05-14

    The row-orthonormal hyperspherical coordinate (ROHC) approach to calculating state-to-state reaction cross sections and bound state levels of N-atom systems requires the use of angular momentum tensors and Wigner rotation functions in a space of dimension N - 1. The properties of those tensors and functions are discussed for arbitrary N and determined for N = 5 in terms of the 6 Euler angles involved in 4-dimensional space.

  4. Dirac Theory on a Space with Linear Lie Type Fuzziness

    NASA Astrophysics Data System (ADS)

    Shariati, Ahmad; Khorrami, Mohammad; Fatollahi, Amir H.

    2012-08-01

    A spinor theory on a space with linear Lie type noncommutativity among spatial coordinates is presented. The model is based on the Fourier space corresponding to spatial coordinates, as this Fourier space is commutative. When the group is compact, the real space exhibits lattice characteristics (as the eigenvalues of space operators are discrete), and the similarity of such a lattice with ordinary lattices is manifested, among other things, in a phenomenon resembling the famous fermion doubling problem. A projection is introduced to make the dynamical number of spinors equal to that corresponding to the ordinary space. The actions for free and interacting spinors (with Fermi-like interactions) are presented. The Feynman rules are extracted and 1-loop corrections are investigated.

  5. Distributed memory approaches for robotic neural controllers

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles C.

    1990-01-01

    The suitability is explored of two varieties of distributed memory neutral networks as trainable controllers for a simulated robotics task. The task requires that two cameras observe an arbitrary target point in space. Coordinates of the target on the camera image planes are passed to a neural controller which must learn to solve the inverse kinematics of a manipulator with one revolute and two prismatic joints. Two new network designs are evaluated. The first, radial basis sparse distributed memory (RBSDM), approximates functional mappings as sums of multivariate gaussians centered around previously learned patterns. The second network types involved variations of Adaptive Vector Quantizers or Self Organizing Maps. In these networks, random N dimensional points are given local connectivities. They are then exposed to training patterns and readjust their locations based on a nearest neighbor rule. Both approaches are tested based on their ability to interpolate manipulator joint coordinates for simulated arm movement while simultaneously performing stereo fusion of the camera data. Comparisons are made with classical k-nearest neighbor pattern recognition techniques.

  6. Transition Region and Coronal Explorer

    NASA Technical Reports Server (NTRS)

    Wolfson, C. Jacob

    2001-01-01

    This contract is for the development and flight of an experiment to study the solar atmosphere with excellent spatial and temporal resolution; and reduction and analysis of the resultant data. After being launched into a near perfect orbit on 2 April 1998, the spacecraft and instrument remain in good condition and the resultant data are spectacular. Over 6.6 million images have now been taken. Observing highlights this month included several coordinations with CDS, studies of the quiet Sun with SUMER and NMI, coordinations with observers at the SPO Dunn Tower Telescope, and a variety of active region observations. Some of the latter were relatively unique in that they emphasized using the hottest (284A) channel of TRACE. We were informed of the results of the Senior Review Committee's evaluation of all Space Science on-orbit missions and the corresponding fiscal year budgets for TRACE. The budget for FY-02 is modestly less than is being spent in FY-01 and for the years beyond that it is much, much lower.

  7. Spline Trajectory Algorithm Development: Bezier Curve Control Point Generation for UAVs

    NASA Technical Reports Server (NTRS)

    Howell, Lauren R.; Allen, B. Danette

    2016-01-01

    A greater need for sophisticated autonomous piloting systems has risen in direct correlation with the ubiquity of Unmanned Aerial Vehicle (UAV) technology. Whether surveying unknown or unexplored areas of the world, collecting scientific data from regions in which humans are typically incapable of entering, locating lost or wanted persons, or delivering emergency supplies, an unmanned vehicle moving in close proximity to people and other vehicles, should fly smoothly and predictably. The mathematical application of spline interpolation can play an important role in autopilots' on-board trajectory planning. Spline interpolation allows for the connection of Three-Dimensional Euclidean Space coordinates through a continuous set of smooth curves. This paper explores the motivation, application, and methodology used to compute the spline control points, which shape the curves in such a way that the autopilot trajectory is able to meet vehicle-dynamics limitations. The spline algorithms developed used to generate these curves supply autopilots with the information necessary to compute vehicle paths through a set of coordinate waypoints.

  8. Space Weather Products at the Community Coordinated Modeling Center

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Kuznetsova, M.; Pulkkinen, A.; Maddox, M.; Rastaetter, L.; Berrios, D.; MacNeice, P.

    2010-01-01

    The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second CCMC activity is to support Space Weather forecasting at national Space Weather Forecasting Centers. This second activity involves model evaluations, model transitions to operations, and the development of space weather forecasting tools. Owing to the pace of development in the science community, new model capabilities emerge frequently. Consequently, space weather products and tools involve not only increased validity, but often entirely new capabilities. This presentation will review the present state of space weather tools as well as point out emerging future capabilities.

  9. Community Coordinated Modeling Center: Paving the Way for Progress in Space Science Research to Operational Space Weather Forecasting

    NASA Astrophysics Data System (ADS)

    Kuznetsova, M. M.; Maddox, M. M.; Mays, M. L.; Mullinix, R.; MacNeice, P. J.; Pulkkinen, A. A.; Rastaetter, L.; Shim, J.; Taktakishvili, A.; Zheng, Y.; Wiegand, C.

    2013-12-01

    Community Coordinated Modeling Center (CCMC) was established at the dawn of the millennium as an essential element on the National Space Weather Program. One of the CCMC goals was to pave the way for progress in space science research to operational space weather forecasting. Over the years the CCMC acquired the unique experience in preparing complex models and model chains for operational environment, in developing and maintaining powerful web-based tools and systems ready to be used by space weather service providers and decision makers as well as in space weather prediction capabilities assessments. The presentation will showcase latest innovative solutions for space weather research, analysis, forecasting and validation and review on-going community-wide initiatives enabled by CCMC applications.

  10. State Appropriation Priorities: Coordinating Board Member Perceptions of Higher Education Funding Policy

    ERIC Educational Resources Information Center

    Wilson, China L.

    2017-01-01

    This qualitative study explored the state appropriation process and development of budgeting priorities for colleges and universities. In addition, this study explored coordinating board member perceptions of higher education funding priorities regarding state appropriations in Virginia. Focus groups, observations, and an analysis of documents…

  11. Close range fault tolerant noncontacting position sensor

    DOEpatents

    Bingham, D.N.; Anderson, A.A.

    1996-02-20

    A method and system are disclosed for locating the three dimensional coordinates of a moving or stationary object in real time. The three dimensional coordinates of an object in half space or full space are determined based upon the time of arrival or phase of the wave front measured by a plurality of receiver elements and an established vector magnitudes proportional to the measured time of arrival or phase at each receiver element. The coordinates of the object are calculated by solving a matrix equation or a set of closed form algebraic equations. 3 figs.

  12. Darboux coordinates and instanton corrections in projective superspace

    NASA Astrophysics Data System (ADS)

    Crichigno, P. Marcos; Jain, Dharmesh

    2012-10-01

    By demanding consistency of the Legendre transform construction of hyperkähler metrics in projective superspace, we derive the expression for the Darboux coordinates on the hyperkähler manifold. We apply these results to study the Coulomb branch moduli space of 4D, {N}=2 super-Yang-Mills theory (SYM) on {{{R}}^3}× {S^1} , recovering the results by GMN. We also apply this method to study the electric corrections to the moduli space of 5D, {N}=1 SYM on {{{R}}^3}× {T^2} and give the Darboux coordinates explicitly.

  13. Vibrational quasi-degenerate perturbation theory with optimized coordinates: applications to ethylene and trans-1,3-butadiene.

    PubMed

    Yagi, Kiyoshi; Otaki, Hiroki

    2014-02-28

    A perturbative extension to optimized coordinate vibrational self-consistent field (oc-VSCF) is proposed based on the quasi-degenerate perturbation theory (QDPT). A scheme to construct the degenerate space (P space) is developed, which incorporates degenerate configurations and alleviates the divergence of perturbative expansion due to localized coordinates in oc-VSCF (e.g., local O-H stretching modes of water). An efficient configuration selection scheme is also implemented, which screens out the Hamiltonian matrix element between the P space configuration (p) and the complementary Q space configuration (q) based on a difference in their quantum numbers (λpq = ∑s|ps - qs|). It is demonstrated that the second-order vibrational QDPT based on optimized coordinates (oc-VQDPT2) smoothly converges with respect to the order of the mode coupling, and outperforms the conventional one based on normal coordinates. Furthermore, an improved, fast algorithm is developed for optimizing the coordinates. First, the minimization of the VSCF energy is conducted in a restricted parameter space, in which only a portion of pairs of coordinates is selectively transformed. A rational index is devised for this purpose, which identifies the important coordinate pairs to mix from others that may remain unchanged based on the magnitude of harmonic coupling induced by the transformation. Second, a cubic force field (CFF) is employed in place of a quartic force field, which bypasses intensive procedures that arise due to the presence of the fourth-order force constants. It is found that oc-VSCF based on CFF together with the pair selection scheme yields the coordinates similar in character to the conventional ones such that the final vibrational energy is affected very little while gaining an order of magnitude acceleration. The proposed method is applied to ethylene and trans-1,3-butadiene. An accurate, multi-resolution potential, which combines the MP2 and coupled-cluster with singles, doubles, and perturbative triples level of electronic structure theory, is generated and employed in the oc-VQDPT2 calculation to obtain the fundamental tones as well as selected overtones/combination tones coupled to the fundamentals through the Fermi resonance. The calculated frequencies of ethylene and trans-1,3-butadiene are found to be in excellent agreement with the experimental values with a mean absolute error of 8 and 9 cm(-1), respectively.

  14. Roles and relationships between health professionals involved in insulin initiation for people with type 2 diabetes in the general practice setting: a qualitative study drawing on relational coordination theory.

    PubMed

    Manski-Nankervis, Jo-Anne; Furler, John; Blackberry, Irene; Young, Doris; O'Neal, David; Patterson, Elizabeth

    2014-01-31

    The majority of care for people with type 2 diabetes occurs in general practice, however when insulin initiation is required it often does not occur in this setting or in a timely manner and this may have implications for the development of complications. Increased insulin initiation in general practice is an important goal given the increasing prevalence of type 2 diabetes and a relative shortage of specialists. Coordination between primary and secondary care, and between medical and nursing personnel, may be important in achieving this. Relational coordination theory identifies key concepts that underpin effective interprofessional work: communication which is problem solving, timely, accurate and frequent and relationships between professional roles which are characterized by shared goals, shared knowledge and mutual respect. This study explores roles and relationships between health professionals involved in insulin initiation in order to gain an understanding of factors which may impact on this task being carried out in the general practice setting. 21 general practitioners, practice nurses, diabetes nurse educators and physicians were purposively sampled to participate in a semi-structured interview. Transcripts of the interviews were analysed using framework analysis. There were four closely interlinked themes identified which impacted on how health professionals worked together to initiate people with type 2 diabetes on insulin: 1. Ambiguous roles; 2. Uncertain competency and capacity; 3. Varying relationships and communication; and 4. Developing trust and respect. This study has shown that insulin initiation is generally recognised as acceptable in general practice. The role of the DNE and practice nurse in this space and improved communication and relationships between health professionals across organisations and levels of care are factors which need to be addressed to support this clinical work. Relational coordination provides a useful framework for exploring these issues.

  15. International Space Station Remote Sensing Pointing Analysis

    NASA Technical Reports Server (NTRS)

    Jacobson, Craig A.

    2007-01-01

    This paper analyzes the geometric and disturbance aspects of utilizing the International Space Station for remote sensing of earth targets. The proposed instrument (in prototype development) is SHORE (Station High-Performance Ocean Research Experiment), a multiband optical spectrometer with 15 m pixel resolution. The analysis investigates the contribution of the error effects to the quality of data collected by the instrument. This analysis supported the preliminary studies to determine feasibility of utilizing the International Space Station as an observing platform for a SHORE type of instrument. Rigorous analyses will be performed if a SHORE flight program is initiated. The analysis begins with the discussion of the coordinate systems involved and then conversion from the target coordinate system to the instrument coordinate system. Next the geometry of remote observations from the Space Station is investigated including the effects of the instrument location in Space Station and the effects of the line of sight to the target. The disturbance and error environment on Space Station is discussed covering factors contributing to drift and jitter, accuracy of pointing data and target and instrument accuracies.

  16. Rigorous Photogrammetric Processing of CHANG'E-1 and CHANG'E-2 Stereo Imagery for Lunar Topographic Mapping

    NASA Astrophysics Data System (ADS)

    Di, K.; Liu, Y.; Liu, B.; Peng, M.

    2012-07-01

    Chang'E-1(CE-1) and Chang'E-2(CE-2) are the two lunar orbiters of China's lunar exploration program. Topographic mapping using CE-1 and CE-2 images is of great importance for scientific research as well as for preparation of landing and surface operation of Chang'E-3 lunar rover. In this research, we developed rigorous sensor models of CE-1 and CE-2 CCD cameras based on push-broom imaging principle with interior and exterior orientation parameters. Based on the rigorous sensor model, the 3D coordinate of a ground point in lunar body-fixed (LBF) coordinate system can be calculated by space intersection from the image coordinates of con-jugate points in stereo images, and the image coordinates can be calculated from 3D coordinates by back-projection. Due to uncer-tainties of the orbit and the camera, the back-projected image points are different from the measured points. In order to reduce these inconsistencies and improve precision, we proposed two methods to refine the rigorous sensor model: 1) refining EOPs by correcting the attitude angle bias, 2) refining the interior orientation model by calibration of the relative position of the two linear CCD arrays. Experimental results show that the mean back-projection residuals of CE-1 images are reduced to better than 1/100 pixel by method 1 and the mean back-projection residuals of CE-2 images are reduced from over 20 pixels to 0.02 pixel by method 2. Consequently, high precision DEM (Digital Elevation Model) and DOM (Digital Ortho Map) are automatically generated.

  17. About the coordinate time for photons in Lifshitz space-times

    NASA Astrophysics Data System (ADS)

    Villanueva, J. R.; Vásquez, Yerko

    2013-10-01

    In this paper we studied the behavior of radial photons from the point of view of the coordinate time in (asymptotically) Lifshitz space-times, and we found a generalization to the result reported in previous works by Cruz et al. (Eur. Phys. J. C 73:7, 2013), Olivares et al. (Astrophys. Space Sci. 347:83-89, 2013), and Olivares et al. (arXiv:1306.5285). We demonstrate that all asymptotically Lifshitz space-times characterized by a lapse function f( r) which tends to one when r→∞, present the same behavior, in the sense that an external observer will see that photons arrive at spatial infinity in a finite coordinate time. Also, we show that radial photons in the proper system cannot determine the presence of the black hole in the region r +< r<∞, because the proper time as a result is independent of the lapse function f( r).

  18. Comparison of joint space and end point space robotic training modalities for rehabilitation of interjoint coordination in individuals with moderate to severe impairment from chronic stroke.

    PubMed

    Brokaw, Elizabeth B; Holley, Rahsaan J; Lum, Peter S

    2013-09-01

    We have developed a novel robotic modality called Time Independent Functional Training (TIFT) that provides focused retraining of interjoint coordination after stroke. TIFT was implemented on the ARMin III exoskeleton and provides joint space walls that resist movement patterns that are inconsistent with the targeted interjoint coordination pattern. In a single test session, ten moderate to severely impaired individuals with chronic stroke practiced synchronous shoulder abduction and elbow extension in TIFT and also in a comparison mode commonly used in robotic therapy called end point tunnel training (EPTT). In EPTT, error is limited by forces applied to the hand that are normal to the targeted end point trajectory. The completion percentage of the movements was comparable between modes, but the coordination patterns used by subjects differed between modes. In TIFT, subjects performed the targeted pattern of synchronous shoulder abduction and elbow extension, while in EPTT, movements were completed with compensatory strategies that incorporated the flexor synergy (shoulder abduction with elbow flexion) or the extensor synergy (shoulder adduction with elbow extension). There were immediate effects on free movements, with TIFT resulting in larger improvements in interjoint coordination than EPTT. TIFT's ability to elicit normal coordination patterns merits further investigation into the effects of longer duration training.

  19. Lessons Learned from a Decade of Sudden Oak Death in California: Evaluating Local Management

    NASA Astrophysics Data System (ADS)

    Alexander, Janice; Lee, Christopher A.

    2010-09-01

    Sudden Oak Death has been impacting California’s coastal forests for more than a decade. In that time, and in the absence of a centrally organized and coordinated set of mandatory management actions for this disease in California’s wildlands and open spaces, many local communities have initiated their own management programs. We present five case studies to explore how local-level management has attempted to control this disease. From these case studies, we glean three lessons: connections count, scale matters, and building capacity is crucial. These lessons may help management, research, and education planning for future pest and disease outbreaks.

  20. Scheduling and rescheduling with iterative repair

    NASA Technical Reports Server (NTRS)

    Zweben, Monte; Davis, Eugene; Daun, Brian; Deale, Michael

    1992-01-01

    This paper describes the GERRY scheduling and rescheduling system being applied to coordinate Space Shuttle Ground Processing. The system uses constraint-based iterative repair, a technique that starts with a complete but possibly flawed schedule and iteratively improves it by using constraint knowledge within repair heuristics. In this paper we explore the tradeoff between the informedness and the computational cost of several repair heuristics. We show empirically that some knowledge can greatly improve the convergence speed of a repair-based system, but that too much knowledge, such as the knowledge embodied within the MIN-CONFLICTS lookahead heuristic, can overwhelm a system and result in degraded performance.

  1. Lessons Learned from a Decade of Sudden Oak Death in California: Evaluating Local Management

    PubMed Central

    Alexander, Janice

    2010-01-01

    Sudden Oak Death has been impacting California’s coastal forests for more than a decade. In that time, and in the absence of a centrally organized and coordinated set of mandatory management actions for this disease in California’s wildlands and open spaces, many local communities have initiated their own management programs. We present five case studies to explore how local-level management has attempted to control this disease. From these case studies, we glean three lessons: connections count, scale matters, and building capacity is crucial. These lessons may help management, research, and education planning for future pest and disease outbreaks. PMID:20559634

  2. Human-Robot Site Survey and Sampling for Space Exploration

    NASA Technical Reports Server (NTRS)

    Fong, Terrence; Bualat, Maria; Edwards, Laurence; Flueckiger, Lorenzo; Kunz, Clayton; Lee, Susan Y.; Park, Eric; To, Vinh; Utz, Hans; Ackner, Nir

    2006-01-01

    NASA is planning to send humans and robots back to the Moon before 2020. In order for extended missions to be productive, high quality maps of lunar terrain and resources are required. Although orbital images can provide much information, many features (local topography, resources, etc) will have to be characterized directly on the surface. To address this need, we are developing a system to perform site survey and sampling. The system includes multiple robots and humans operating in a variety of team configurations, coordinated via peer-to-peer human-robot interaction. In this paper, we present our system design and describe planned field tests.

  3. Dioptric power: its nature and its representation in three- and four-dimensional space.

    PubMed

    Harris, W F

    1997-06-01

    Dioptric power expressed in the familiar three-component form of sphere, cylinder, and axis is unsuited to mathematical and statistical treatments; there is a particular class of power that cannot be represented in the familiar form; and it is possible that sphere, cylinder, and axis will prove inadequate in future clinical and research applications in optometry and ophthalmology. Dioptric power expressed as the four-component dioptric power matrix, however, overcomes these shortcomings. The intention in this paper is to provide a definitive statement on the nature, function, and mathematical representation of dioptric power in terms of the matrix and within the limitations of paraxial or linear optics. The approach is universal in the sense that its point of departure is not power of the familiar form (that is, of thin systems) but of systems in general (thick or thin). Familiar types of power are then seen within the context of power in general. Dioptric power is defined, for systems that may be thick and astigmatic, in terms of the ray transfer matrix. A functional definition is presented for dioptric power and its components: it defines the additive contribution of incident position to emergent direction of a ray passing through the system. For systems that are thin (or thin-equivalent) it becomes possible to describe an alternative and more familiar function; for such systems dioptric power can be regarded as the increase in reduced surface curvature of a wavefront brought about by the system as the wavefront passes through it. The curvital and torsional components of the power are explored in some detail. Dioptric power, at its most general, defines a four-dimensional inner product space called dioptric power space. The familiar types of power define a three-dimensional subspace called symmetric dioptric power space. For completeness a one-dimensional antisymmetric power space is also defined: it is orthogonal in four dimensions to symmetric dioptric power space. Various bases are defined for the spaces as are coordinate vectors with respect to them. Vectorial representations of power in the literature apply only to thin systems and are not obviously generalizable to systems in general. They are shown to be merely different coordinate representations of the same subspace, the space of symmetric powers. Some of the uses and disadvantages of the different representations are described. None of the coordinate vectors fully represent, by themselves, the essential character of dioptric power. Their use is limited to applications, such as finding a mean, where addition and scalar multiplication are involved. The full character of power is represented by the dioptric power matrix; it is in this form that power is appropriate for all mathematical relationships.

  4. Design and Principles Enabling the Space Reference FOM

    NASA Technical Reports Server (NTRS)

    Moeller, Bjoern; Dexter, Dan; Madden, Michael; Crues, Edwin Z.; Garro, Alfredo; Skuratovskiy, Anton

    2017-01-01

    A first complete draft of the Simulation Interoperability Standards Organization (SISO) Space Reference Federation Object Model (FOM) has now been produced. This paper provides some insights into its capabilities and discusses the opportunity for reuse in other domains. The focus of this first version of the standard is execution control, time management and coordinate systems, well-known reference frames, as well as some basic support for physical entities. The biggest part of the execution control is the coordinated start-up process. This process contains a number of steps, including checking of required federates, handling of early versus late joiners, sharing of federation wide configuration data and multi-phase initialization. An additional part of Execution Control is the coordinated and synchronized transition between Run mode, Freeze mode and Shutdown. For time management, several time lines are defined, including real-time, scenario time, High Level Architecture (HLA) logical time and physical time. A strategy for mixing simulations that use different time steps is introduced, as well as an approach for finding common boundaries for fully synchronized freeze. For describing spatial information, a mechanism with a set of reference frames is specified. Each reference frame has a position and orientation related to a parent reference frame. This makes it possible for federates to perform calculations in reference frames that are convenient to them. An operation on the Moon can be performed using lunar coordinates whereas an operation on Earth can be performed using Earth coordinates. At the same time, coordinates in one reference frame have an unambiguous relationship to a coordinate in another reference frame. While the Space Reference FOM is originally being developed for Space operations, the authors believe that many parts of it can be reused for any simulation that has a focus on physical processes with one or more coordinate systems, and require high fidelity and repeatability.

  5. Conditions for order and chaos in the dynamics of a trapped Bose-Einstein condensate in coordinate and energy space

    NASA Astrophysics Data System (ADS)

    Sakhel, Roger R.; Sakhel, Asaad R.; Ghassib, Humam B.; Balaz, Antun

    2016-03-01

    We investigate numerically conditions for order and chaos in the dynamics of an interacting Bose-Einstein condensate (BEC) confined by an external trap cut off by a hard-wall box potential. The BEC is stirred by a laser to induce excitations manifesting as irregular spatial and energy oscillations of the trapped cloud. Adding laser stirring to the external trap results in an effective time-varying trapping frequency in connection with the dynamically changing combined external+laser potential trap. The resulting dynamics are analyzed by plotting their trajectories in coordinate phase space and in energy space. The Lyapunov exponents are computed to confirm the existence of chaos in the latter space. Quantum effects and trap anharmonicity are demonstrated to generate chaos in energy space, thus confirming its presence and implicating either quantum effects or trap anharmonicity as its generator. The presence of chaos in energy space does not necessarily translate into chaos in coordinate space. In general, a dynamic trapping frequency is found to promote chaos in a trapped BEC. An apparent means to suppress chaos in a trapped BEC is achieved by increasing the characteristic scale of the external trap with respect to the condensate size.

  6. Estimability of geodetic parameters from space VLBI observables

    NASA Technical Reports Server (NTRS)

    Adam, Jozsef

    1990-01-01

    The feasibility of space very long base interferometry (VLBI) observables for geodesy and geodynamics is investigated. A brief review of space VLBI systems from the point of view of potential geodetic application is given. A selected notational convention is used to jointly treat the VLBI observables of different types of baselines within a combined ground/space VLBI network. The basic equations of the space VLBI observables appropriate for convariance analysis are derived and included. The corresponding equations for the ground-to-ground baseline VLBI observables are also given for a comparison. The simplified expression of the mathematical models for both space VLBI observables (time delay and delay rate) include the ground station coordinates, the satellite orbital elements, the earth rotation parameters, the radio source coordinates, and clock parameters. The observation equations with these parameters were examined in order to determine which of them are separable or nonseparable. Singularity problems arising from coordinate system definition and critical configuration are studied. Linear dependencies between partials are analytically derived. The mathematical models for ground-space baseline VLBI observables were tested with simulation data in the frame of some numerical experiments. Singularity due to datum defect is confirmed.

  7. Cooperative functions of duetting behaviour in tropical wrens

    NASA Astrophysics Data System (ADS)

    Kovach, Kristin Ashley

    Vocal duets occur when two breeding partners coordinate their songs into a joint display. Duetting serves functions both within and between pairs, and functionality is often context dependent. I explore the function of temporal coordination of male and female songs into duets, testing the hypothesis that coordinated duets are more threatening territorial signals than poorly coordinated duets or solos in three closely related species of wren. Results indicate that birds respond with similar levels of physical aggression to all three levels of coordination; however, they sing more duets in response to both categories of duets. I also explore duets and other vocalizations as they are used during breeding, testing the hypothesis that duets play a role in coordinating nest visitation. Contrary to my predictions, the birds sang the most duets during the incubation stage. My results suggest that duets are used for both territory defence and communication at the nest.

  8. GPM's H-IIA Launch Vehicle No.23, First stage VOS

    NASA Image and Video Library

    2017-12-08

    GPM's launch vehicle, the H-IIA No.23, first stage VOS (Vehicle On Stand). GPM is a joint mission between NASA and the Japan Aerospace Exploration Agency (JAXA). The Core Observatory will link data from a constellation of current and planned satellites to produce next-generation global measurements of rainfall and snowfall from space. The GPM mission is the first coordinated international satellite network to provide near real-time observations of rain and snow every three hours anywhere on the globe. The GPM Core Observatory anchors this network by providing observations on all types of precipitation. The observatory's data acts as the measuring stick by which partner observations can be combined into a unified data set. The data will be used by scientists to study climate change, freshwater resources, floods and droughts, and hurricane formation and tracking. Credit: Mitsubishi Heavy Industries NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. Identifying Organic Molecules in Space: The AstroBiology Explorer (ABE) Mission Concept

    NASA Technical Reports Server (NTRS)

    Ennico, Kimberly; Sandford, S.; Allamandola, L.; Bregman, J.; Cohen, M.; Cruikshank, D.; Dumas, C.; Greene, T.; Hudgins, D.; Kwok, S.

    2004-01-01

    The AstroBiology Explorer (ABE) mission concept consists of a modest dedicated space observatory having a 60 cm class primary mirror cooled to T less than 50 K equipped with medium resolution cross-dispersed spectrometers having cooled large format near- and mid-infrared detector arrays. Such a system would be capable of addressing outstanding problems in Astrochemistry and Astrophysics that are particularly relevant to Astrobiology and addressable via astronomical observation. The mission's observaticxiai program woiild make fundamental scieztific: prngress in establishing the nature, distribution, formation and evolution of organic and other molecular materials in the following extra-terrestrial environments: 1) The Outflow of Dying Stars; 2) The Diffuse Interstellar Medium (DISM); 3) Dense Molecular Clouds, Star Formation Regions, and Young Stellar/Planetary Systems; 4) Planets, Satellites, and Small Bodies within the Solar System; and 5) The Interstellar Media of Other Galaxies ABE could make fundamental progress in all of these area by conducting a 1 to 2 year mission to obtain a coordinated set of infrared spectroscopic observations over the 2.5 - 20 micron spectral range at a spectral resolution of R greater than 2500 of about 1500 galaxies, stars, planetary nebulae, young stellar objects, and solar system objects.

  10. Collision Avoidance: Coordination of Predicted Conjunctions between NASA Satellites and Satellites of other Countries

    NASA Astrophysics Data System (ADS)

    Kelly, A.; Watson, W.

    2014-09-01

    This paper describes one of the challenges facing the flight operations teams of the International Earth Observing constellation satellites at the 705 km orbit, including NASAs satellites. The NASA Earth Science Mission Operations (ESMO) Project has been dealing with predicted conjunctions (close approach) between operational/non-operational space objects and the satellites in the International Earth observing constellations for several years. Constellation satellites include: NASAs Earth Observing System (EOS) Terra, Aqua, and Aura, CloudSat, the joint NASA/CNES CALIPSO mission, Earth Observing 1 (EO-1), the Japan Aerospace and Exploration Agency (JAXA) Global Change Observation Mission-Water 1 (GCOM-W1) mission, the United States Geological Survey (USGS) Landsat 7 and Landsat 8, and until 2013, Argentinas SAC-C mission and the CNES PARASOL mission. The NASA Conjunction Analysis and Risk Assessment (CARA) team provides daily reports to the ESMO Project regarding any high interest close approach events (HIEs) involving the constellation satellites. The daily CARA reports provide risk assessment results that help the operations teams to determine if there is a need to perform a risk mitigation action. If the conjuncting space object is an operational satellite that is capable of maneuvering, the affected satellite team needs to coordinate their action plan with the owner operator of the conjuncting satellite. It is absolutely critical for the two teams to communicate as soon as possible. The goal is to minimize the collision risk; this can happen if both satellite operators do not coordinate their maneuver plans. The constellation teams have established guidelines for coordinating HIEs. This coordination process has worked successfully for several years for satellites that are operated by other organizations in the United States and by NASAs international partners, all with whom NASA has a cooperative agreement. However, the situation is different for HIEs with satellites of foreign operators that do not have an agreement with NASA and the constellation organizations. The current process for coordinating close approach events is neither timely nor satisfactory. Due to the concern that NASAs multi-billion dollar assets at the 705 km orbit can be wiped out by a collision with satellites of foreign operators, the NASA ESMO Project and the CARA team are proposing a more timely coordination and communication process to resolve and safely mitigate these HIEs. This proposed process does not violate any existing communication constraints between the United States and certain foreign operators. This proposal, as described in this paper, will be presented at the conference and comments from other satellite operators will be welcomed and greatly appreciated.

  11. NASA's Ship-Aircraft Bio-Optical Research (SABOR)

    NASA Image and Video Library

    2014-08-25

    Fixing the "Fish" On July 19, 2014, Wayne Slade of Sequoia Scientific, and Allen Milligan of Oregon State University, made adjustments to the "fish" that researchers used to hold seawater collected from a depth of about 3 meters (10 feet) while the ship was underway. NASA's Ship-Aircraft Bio-Optical Research (SABOR) experiment is a coordinated ship and aircraft observation campaign off the Atlantic coast of the United States, an effort to advance space-based capabilities for monitoring microscopic plants that form the base of the marine food chain. Read more: 1.usa.gov/WWRVzj Credit: NASA/SABOR/Wayne Slade, Sequoia Scientific .NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. NASA's Ship-Aircraft Bio-Optical Research (SABOR)

    NASA Image and Video Library

    2017-12-08

    Storm in the Sargasso Sea Scientist aboard the R/V Endeavor in the Sargasso Sea put their research on hold on July 28, 2014, as a storm system brought high waves crashing onto the deck. NASA's Ship-Aircraft Bio-Optical Research (SABOR) experiment is a coordinated ship and aircraft observation campaign off the Atlantic coast of the United States, an effort to advance space-based capabilities for monitoring microscopic plants that form the base of the marine food chain. Read more: 1.usa.gov/WWRVzj Credit: NASA/SABOR/Chris Armanetti, University of Rhode Island .NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Oscillators that sync and swarm.

    PubMed

    O'Keeffe, Kevin P; Hong, Hyunsuk; Strogatz, Steven H

    2017-11-15

    Synchronization occurs in many natural and technological systems, from cardiac pacemaker cells to coupled lasers. In the synchronized state, the individual cells or lasers coordinate the timing of their oscillations, but they do not move through space. A complementary form of self-organization occurs among swarming insects, flocking birds, or schooling fish; now the individuals move through space, but without conspicuously altering their internal states. Here we explore systems in which both synchronization and swarming occur together. Specifically, we consider oscillators whose phase dynamics and spatial dynamics are coupled. We call them swarmalators, to highlight their dual character. A case study of a generalized Kuramoto model predicts five collective states as possible long-term modes of organization. These states may be observable in groups of sperm, Japanese tree frogs, colloidal suspensions of magnetic particles, and other biological and physical systems in which self-assembly and synchronization interact.

  14. NASA's Ship-Aircraft Bio-Optical Research (SABOR)

    NASA Image and Video Library

    2014-08-25

    Catnap at Sea Ali Chase of the University of Maine, and Courtney Kearney of the Naval Research Laboratory, caught a quick nap on July 24, 2014, while between successive stops at sea to make measurements from the R/V Endeavor. NASA's Ship-Aircraft Bio-Optical Research (SABOR) experiment is a coordinated ship and aircraft observation campaign off the Atlantic coast of the United States, an effort to advance space-based capabilities for monitoring microscopic plants that form the base of the marine food chain. Read more: 1.usa.gov/WWRVzj Credit: NASA/SABOR/Wayne Slade, Sequoia Scientific..NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. Rainbow Rindler metric and Unruh effect

    NASA Astrophysics Data System (ADS)

    Yadav, Gaurav; Komal, Baby; Majhi, Bibhas Ranjan

    2017-11-01

    The energy of a particle moving on a space-time, in principle, can affect the background metric. The modifications to it depend on the ratio of energy of the particle and the Planck energy, known as rainbow gravity. Here, we find the explicit expressions for the coordinate transformations from rainbow Minkowski space-time to accelerated frame. The corresponding metric is also obtained which we call as rainbow Rindler metric. So far we are aware of that no body has done it in a concrete manner. Here, this is found from the first principle and hence all the parameters are properly identified. The advantage of this is that the calculated Unruh temperature is compatible with the Hawking temperature of the rainbow black hole horizon, obtained earlier. Since the accelerated frame has several importance in revealing various properties of gravity, we believe that the present result will not only fill that gap, but also help to explore different aspects of rainbow gravity paradigm.

  16. An Explorer-Class Astrobiology Mission

    NASA Technical Reports Server (NTRS)

    Sandford, Scott; Greene, Thomas; Allamandola, Louis; Arno, Roger; Bregman, Jesse; Cox, Sylvia; Davis, Paul K.; Gonzales, Andrew; Haas, Michael; Hanel, Robert; hide

    2000-01-01

    In this paper we describe a potential new Explorer-class space mission, the AstroBiology Explorer (ABE), consisting of a relatively modest dedicated space observatory having a 50 cm aperture primary mirror which is passively cooled to T less than 65 K, resides in a low-background orbit (heliocentric orbit at 1 AU, Earth drift-away), and is equipped with a suite of three moderate order (m approx. 10) dispersive spectrographs equipped with first-order cross-dispersers in an "echellette" configuration and large format (1024xl024 pixel) near- and mid-IR detector arrays cooled by a modest amount of cryogen. Such a system would be capable of addressing outstanding problems in Astrochemistry and Astrophysics that are particularly relevant to Astrobiology and addressable via astronomical observation. The observational program of this mission would make fundamental scientific progress in each of the key areas of the cosmic history of molecular carbon, the distribution and chemistry of organic compounds in the diffuse and dense interstellar media, and the evolution of ices and organic matter in young planetary systems. ABE could make fundamental progress in all of these areas by conducting an approximately one year mission to obtain a coordinated set of infrared spectroscopic observations over the 2.5-20 micrometers spectral range at spectral resolutions of R greater than or equal to 1000 of approximately 1000 galaxies, stars, planetary nebulae, and young star planetary systems.

  17. Development and Demonstration of Sustainable Surface Infrastructure for Moon/Mars Exploration

    NASA Technical Reports Server (NTRS)

    Sanders, Gerald B.; Larson, William E.; Picard, Martin

    2011-01-01

    For long-term human exploration of the Moon and Mars to be practical, affordable, and sustainable, future missions must be able to identify and utilize resources at the site of exploration. The ability to characterize, extract, processes, and separate products from local material, known as In-Situ Resource Utilization (ISRU), can provide significant reductions in launch mass, logistics, and development costs while reducing risk through increased mission flexibility and protection as well as increased mission capabilities in the areas of power and transportation. Making mission critical consumables like propellants, fuel cell reagents and life support gases, as well as in-situ crew/hardware protection and energy storage capabilities can significantly enhance robotic and human science and exploration missions, however other mission systems need to be designed to interface with and utilize these in-situ developed products and services from the start or the benefits will be minimized or eliminated. This requires a level of surface and transportation system development coordination not typically utilized during early technology and system development activities. An approach being utilized by the US National Aeronautics and Space Administration and the Canadian Space Agency has been to utilize joint analogue field demonstrations to focus technology development activities to demonstrate and integrate new and potentially game changing. mission critical capabilities that would enable an affordable and sustainable surface infrastructure for lunar and Mars robotic and human exploration. Two analogue field tests performed in November 2008 and February 2010 demonstrated first generation capabilities for lunar resource prospecting, exploration site preparation, and oxygen extraction from regolith while initiating integration with mobility, science, fuel cell power, and propulsion disciplines. A third analogue field test currently planned for June 2012 will continue and expand the fidelity and integration of these surface exploration and infrastructure capabilities while adding Mars exploration technologies, improving remote operations and control of hardware, and promoting the use of common software, interfaces, & standards for control and operation for surface exploration and science. The next field test will also attempt to include greater involvement by industry, academia, and other countries/space agencies. This paper will provide an overview of the development and demonstration approach utilized to date, the results of the previous two ISRU-focused field analogue tests in Hawaii, and the current objectives and plans for the 3rd international Hawaii analogue field test.

  18. Development of Interpersonal Coordination between Peers during a Drumming Task

    ERIC Educational Resources Information Center

    Endedijk, Hinke M.; Ramenzoni, Veronica C. O.; Cox, Ralf F. A.; Cillessen, Antonius H. N.; Bekkering, Harold; Hunnius, Sabine

    2015-01-01

    During social interaction, the behavior of interacting partners becomes coordinated. Although interpersonal coordination is well-studied in adults, relatively little is known about its development. In this project we explored how 2-, 3-, and 4-year-old children spontaneously coordinated their drumming with a peer. Results showed that all children…

  19. A Handbook for Involving Parents in Head Start.

    ERIC Educational Resources Information Center

    Associate Control, Research and Analysis, Inc., Washington, DC.

    This handbook seeks to help Head Start parent involvement coordinators clarify their role and explore new ways to do their job well. In chapter one, a history of parent involvement in Head Start is presented. Chapter two focuses on roles, relationships, and duties of the parent involvement coordinator. Chapter three explores staff attitudes…

  20. A Trajectory of Troubles: Parents' Impressions of the Impact of Developmental Coordination Disorder

    ERIC Educational Resources Information Center

    Missiuna, Cheryl; Moll, Sandra; King, Susanne; King, Gillian; Law, Mary

    2007-01-01

    Objective: To explore parent perspectives regarding the early experiences of their children with Developmental Coordination Disorder (DCD). Methods: A phenomenological approach was used to explore the meaning of developmental experiences for children with DCD and their families. Parents of 13 children with DCD, aged 6-14, were recruited through…

  1. NASA's Coordinated Efforts to Enhance STEM Education: Bringing NASA Science into the Library

    NASA Astrophysics Data System (ADS)

    Meinke, B. K.; Thomas, C.; Eyermann, S.; Mitchell, S.; LaConte, K.; Hauck, K.

    2015-11-01

    Libraries are community-centered, free-access venues serving learners of all ages and backgrounds. Libraries also recognize the importance of science literacy and strive to include science in their programming portfolio. Scientists and educators can partner with local libraries to advance mutual goals of connecting the public to Earth and Space Science. In this interactive Special Interest Group (SIG) discussion, representatives from the NASA Science Mission Directorate (SMD) Education and Public Outreach (EPO) community's library collaborations discussed the opportunities for partnership with public and school libraries; explored the resources, events, and programs available through libraries; explored NASA science programming and professional development opportunities available for librarians; and strategized about the types of support that librarians require to plan and implement programs that use NASA data and resources. We also shared successes, lessons learned, and future opportunities for incorporating NASA science programming into library settings.

  2. 78 FR 72007 - Establishment of Class E Airspace; McConnellsburg, PA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-02

    ... mile radius of the point in space coordinates for Fulton County Medical Center Heliport, providing the...: Paragraph 6005 Class E Airspace Areas Extending Upward from 700 feet or More Above the Surface of the Earth...., long. 78[deg]00'27'' W.) Point in Space Coordinates (Lat. 39[deg]55'25'' N., long. 78[deg]00'26'' W...

  3. A Summary of NRC Findings and Recommendations on International Collaboration in Space Exploration

    NASA Astrophysics Data System (ADS)

    Moloney, Michael; Smith, David H.; Graham, Sandra

    Collaboration among the world’s space agencies has become an essential tool to achieving shared goals in the exploration of space. In space science international coordination and collaborations have formed the foundation of advances in our knowledge of our universe over the last few decades. In support of the U.S. space science and Earth science programs, NASA has engaged in well over 1000 international activities with many nations. Indeed, international participation in NASA science missions has more often been the norm rather than the exception. Among notable recent examples are the Hubble Space Telescope (with ESA), the Cassini-Huygens Saturn mission (with ESA and Italy), the James Webb Space Telescope (with ESA and Canada) and of course the International Space Station (with Russia, ESA, Japan, and Canada). However, the international character of a space mission is no guarantee of its successful realization. International collaboration can be sidetracked owing to developments in national programs or budgets and the management challenges cannot be understated. In human spaceflight international coordination and collaboration started in earnest with the Apollo-Soyuz program in the 1970s and today it forms the foundation of the successful International Space Station partnership that is likely to continue through into the early 2020s. But what role will international collaboration play in human spaceflight beyond low Earth orbit in the decades ahead? This paper will discuss the findings and recommendations of a number of NRC reports that have considered international collaboration. For instance the 1998 U.S. National Research Council (NRC) / European Science Foundation report “U.S.-European Collaboration in Space Science” found, cooperative programs depend on a clear understanding of how the responsibilities of the mission are to be shared among the partners, a clear management scheme with a well defined interface between the parties, and efficient communication. In successful missions, each partner has had a clearly defined role and a real stake in the success of the mission. A further challenge is how to plan for national programs in an increasingly international context. The community-based space and Earth science decadal surveys—produced by the NRC’s Space Studies Board (SSB)—in astronomy/astrophysics, planetary science, solar and space physics, and Earth science and applications from space, form the foundation for long-term strategic consensus planning by the U.S. research community, NASA, and other government agencies that support space and Earth Science. Each of the recent decadal surveys has discussed the need for improved international cooperative planning and collaboration. In addition, at a November 2012 SSB workshop focused on lessons learned from the most recent round of decadal surveys, the question was asked: how can we best integrate international cooperation globally into the decadal process to ensure the best science can be pursued? On the side of human spaceflight, the NRC’s Committee on Human Spaceflight is due to report out in Spring 2014 and the role of international cooperation in this endeavor will be discussed in their report. This paper will report on various NRC reports dealing with international collaboration and draw out common themes and messages. The paper will also report on ongoing current NRC activities relevant to international collaboration.

  4. Coordinated Flexibility: How Initial Gaze Position Modulates Eye-Hand Coordination and Reaching

    ERIC Educational Resources Information Center

    Adam, Jos J.; Buetti, Simona; Kerzel, Dirk

    2012-01-01

    Reaching to targets in space requires the coordination of eye and hand movements. In two experiments, we recorded eye and hand kinematics to examine the role of gaze position at target onset on eye-hand coordination and reaching performance. Experiment 1 showed that with eyes and hand aligned on the same peripheral start location, time lags…

  5. Coordination nano-space as stage of hydrogen ortho-para conversion.

    PubMed

    Kosone, Takashi; Hori, Akihiro; Nishibori, Eiji; Kubota, Yoshiki; Mishima, Akio; Ohba, Masaaki; Tanaka, Hiroshi; Kato, Kenichi; Kim, Jungeun; Real, José Antonio; Kitagawa, Susumu; Takata, Masaki

    2015-07-01

    The ability to design and control properties of nano-sized space in porous coordination polymers (PCPs) would provide us with an ideal stage for fascinating physical and chemical phenomena. We found an interconversion of nuclear-spin isomers for hydrogen molecule H2 adsorbed in a Hofmann-type PCP, {Fe(pz)[Pd(CN)4]} (pz=pyrazine), by the temperature dependence of Raman spectra. The ortho (o)-para (p) conversion process of H2 is forbidden for an isolated molecule. The charge density study using synchrotron radiation X-ray diffraction reveals the electric field generated in coordination nano-space. The present results corroborate similar findings observed on different systems and confirm that o-p conversion can occur on non-magnetic solids and that electric field can induce the catalytic hydrogen o-p conversion.

  6. Capability 9.1 Exploration

    NASA Technical Reports Server (NTRS)

    Eckelkamp, Rick; Blacic, Jim

    2005-01-01

    The exploration challenge are: To build an efficient, cost effective exploration infrastructure, To coordinate exploration robots & crews from multiple. earth sites to accomplish science and exploration objectives. and To maximize self-sufficiency of the lunar/planetary exploration team.

  7. Clumsiness in Children: Developmental Coordination Disorder.

    ERIC Educational Resources Information Center

    Fox, Mervyn A.

    1998-01-01

    Explores the diagnostic criteria of developmental coordination disorder, a condition that is characterized by motor awkwardness and has a strong association with psychiatric disorders and learning disabilities. Delineates the nature of developmental coordination disorder and discusses its treatment through occupational therapy and cognitive…

  8. IMP 7 (Explorer 47) trajectory, September 26, 1972 to September 25, 1978

    NASA Technical Reports Server (NTRS)

    Milligan, Pamela A.; Lazarus, Alan J.

    1988-01-01

    The trajectory plots for IMP 7 (Explorer 47) are contained. For each orbit the trajectory is shown in five panels on two pages; each panel is a different representation or projection. The trajectory parameters were obtained from the multi-coordinate ephemeris (MCE) tapes supplied to IMP experimenters by the IMP project. The plots on the right hand pages use a geocentric, solar-ecliptic coordinate system. Distances are in units of earth radii. The plots on the left hand pages use geocentric, solar magnetospheric coordinates with distances in earth radii.

  9. Linked Leadership: The Role of Technology in Gifted Education Coordinators' Approaches to Informed Decision Making

    ERIC Educational Resources Information Center

    Calvert, Eric

    2012-01-01

    The purpose of this study was to explore the role of technology in the professional leadership practice of gifted education coordinators. An adapted version of the Teacher Technology Integration Scale (TTIS) was administered to 36 gifted coordinators recruited at meetings of regional gifted coordinator groups affiliated with the state professional…

  10. Using time to investigate space: a review of tactile temporal order judgments as a window onto spatial processing in touch

    PubMed Central

    Heed, Tobias; Azañón, Elena

    2014-01-01

    To respond to a touch, it is often necessary to localize it in space, and not just on the skin. The computation of this external spatial location involves the integration of somatosensation with visual and proprioceptive information about current body posture. In the past years, the study of touch localization has received substantial attention and has become a central topic in the research field of multisensory integration. In this review, we will explore important findings from this research, zooming in on one specific experimental paradigm, the temporal order judgment (TOJ) task, which has proven particularly fruitful for the investigation of tactile spatial processing. In a typical TOJ task participants perform non-speeded judgments about the order of two tactile stimuli presented in rapid succession to different skin sites. This task could be solved without relying on external spatial coordinates. However, postural manipulations affect TOJ performance, indicating that external coordinates are in fact computed automatically. We show that this makes the TOJ task a reliable indicator of spatial remapping, and provide an overview over the versatile analysis options for TOJ. We introduce current theories of TOJ and touch localization, and then relate TOJ to behavioral and electrophysiological evidence from other paradigms, probing the benefit of TOJ for the study of spatial processing as well as related topics such as multisensory plasticity, body processing, and pain. PMID:24596561

  11. Technology Leadership or Technology Somnambulism? Exploring the Discourse of Integration amongst Information and Communication Technology Coordinators

    ERIC Educational Resources Information Center

    McDonagh, Adrian; McGarr, Oliver

    2015-01-01

    This research aimed to explore information and communication technology (ICT) coordinators' discourse in relation to ICT integration in a sample of Irish post-primary schools. As ICT leaders in their schools, how they conceptualise ICT significantly influences school-based policy and use. The research involved semi-structured interviews with a…

  12. Feasibility of a Short-Arm Centrifuge for Mouse Hypergravity Experiments.

    PubMed

    Morita, Hironobu; Obata, Koji; Abe, Chikara; Shiba, Dai; Shirakawa, Masaki; Kudo, Takashi; Takahashi, Satoru

    2015-01-01

    To elucidate the pure impact of microgravity on small mammals despite uncontrolled factors that exist in the International Space Station, it is necessary to construct a 1 g environment in space. The Japan Aerospace Exploration Agency has developed a novel mouse habitat cage unit that can be installed in the Cell Biology Experiment Facility in the Kibo module of the International Space Station. The Cell Biology Experiment Facility has a short-arm centrifuge to produce artificial 1 g gravity in space for mouse experiments. However, the gravitational gradient formed inside the rearing cage is larger when the radius of gyration is shorter; this may have some impact on mice. Accordingly, biological responses to hypergravity induced by a short-arm centrifuge were examined and compared with those induced by a long-arm centrifuge. Hypergravity induced a significant Fos expression in the central nervous system, a suppression of body mass growth, an acute and transient reduction in food intake, and impaired vestibulomotor coordination. There was no difference in these responses between mice raised in a short-arm centrifuge and those in a long-arm centrifuge. These results demonstrate the feasibility of using a short-arm centrifuge for mouse experiments.

  13. Feasibility of a Short-Arm Centrifuge for Mouse Hypergravity Experiments

    PubMed Central

    Morita, Hironobu; Obata, Koji; Abe, Chikara; Shiba, Dai; Shirakawa, Masaki; Kudo, Takashi; Takahashi, Satoru

    2015-01-01

    To elucidate the pure impact of microgravity on small mammals despite uncontrolled factors that exist in the International Space Station, it is necessary to construct a 1 g environment in space. The Japan Aerospace Exploration Agency has developed a novel mouse habitat cage unit that can be installed in the Cell Biology Experiment Facility in the Kibo module of the International Space Station. The Cell Biology Experiment Facility has a short-arm centrifuge to produce artificial 1 g gravity in space for mouse experiments. However, the gravitational gradient formed inside the rearing cage is larger when the radius of gyration is shorter; this may have some impact on mice. Accordingly, biological responses to hypergravity induced by a short-arm centrifuge were examined and compared with those induced by a long-arm centrifuge. Hypergravity induced a significant Fos expression in the central nervous system, a suppression of body mass growth, an acute and transient reduction in food intake, and impaired vestibulomotor coordination. There was no difference in these responses between mice raised in a short-arm centrifuge and those in a long-arm centrifuge. These results demonstrate the feasibility of using a short-arm centrifuge for mouse experiments. PMID:26221724

  14. Attracting Students to Space Science Fields: Mission to Mars

    NASA Astrophysics Data System (ADS)

    Congdon, Donald R.; Lovegrove, William P.; Samec, Ronald G.

    Attracting high school students to space science is one of the main goals of Bob Jones University's annual Mission to Mars (MTM). MTM develops interest in space exploration through a highly realistic simulated trip to Mars. Students study and learn to appreciate the challenges of space travel including propulsion life support medicine planetary astronomy psychology robotics and communication. Broken into teams (Management Spacecraft Design Communications Life Support Navigation Robotics and Science) they address the problems specific to each aspect of the mission. Teams also learn to interact and recognize that a successful mission requires cooperation. Coordinated by the Management Team the students build a spacecraft and associated apparatus connect computers and communications equipment train astronauts on the mission simulator and program a Pathfinder-type robot. On the big day the astronauts enter the spacecraft as Mission Control gets ready to support them through the expected and unexpected of their mission. Aided by teamwork the astronauts must land on Mars perform their scientific mission on a simulated surface of mars and return home. We see the success of MTM not only in successful missions but in the students who come back year after year for another MTM.

  15. Approaches to automatic parameter fitting in a microscopy image segmentation pipeline: An exploratory parameter space analysis.

    PubMed

    Held, Christian; Nattkemper, Tim; Palmisano, Ralf; Wittenberg, Thomas

    2013-01-01

    Research and diagnosis in medicine and biology often require the assessment of a large amount of microscopy image data. Although on the one hand, digital pathology and new bioimaging technologies find their way into clinical practice and pharmaceutical research, some general methodological issues in automated image analysis are still open. In this study, we address the problem of fitting the parameters in a microscopy image segmentation pipeline. We propose to fit the parameters of the pipeline's modules with optimization algorithms, such as, genetic algorithms or coordinate descents, and show how visual exploration of the parameter space can help to identify sub-optimal parameter settings that need to be avoided. This is of significant help in the design of our automatic parameter fitting framework, which enables us to tune the pipeline for large sets of micrographs. The underlying parameter spaces pose a challenge for manual as well as automated parameter optimization, as the parameter spaces can show several local performance maxima. Hence, optimization strategies that are not able to jump out of local performance maxima, like the hill climbing algorithm, often result in a local maximum.

  16. Approaches to automatic parameter fitting in a microscopy image segmentation pipeline: An exploratory parameter space analysis

    PubMed Central

    Held, Christian; Nattkemper, Tim; Palmisano, Ralf; Wittenberg, Thomas

    2013-01-01

    Introduction: Research and diagnosis in medicine and biology often require the assessment of a large amount of microscopy image data. Although on the one hand, digital pathology and new bioimaging technologies find their way into clinical practice and pharmaceutical research, some general methodological issues in automated image analysis are still open. Methods: In this study, we address the problem of fitting the parameters in a microscopy image segmentation pipeline. We propose to fit the parameters of the pipeline's modules with optimization algorithms, such as, genetic algorithms or coordinate descents, and show how visual exploration of the parameter space can help to identify sub-optimal parameter settings that need to be avoided. Results: This is of significant help in the design of our automatic parameter fitting framework, which enables us to tune the pipeline for large sets of micrographs. Conclusion: The underlying parameter spaces pose a challenge for manual as well as automated parameter optimization, as the parameter spaces can show several local performance maxima. Hence, optimization strategies that are not able to jump out of local performance maxima, like the hill climbing algorithm, often result in a local maximum. PMID:23766941

  17. Spectral geometry of {kappa}-Minkowski space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Andrea, Francesco

    After recalling Snyder's idea [Phys. Rev. 71, 38 (1947)] of using vector fields over a smooth manifold as 'coordinates on a noncommutative space', we discuss a two-dimensional toy-model whose 'dual' noncommutative coordinates form a Lie algebra: this is the well-known {kappa}-Minkowski space [Phys. Lett. B 334, 348 (1994)]. We show how to improve Snyder's idea using the tools of quantum groups and noncommutative geometry. We find a natural representation of the coordinate algebra of {kappa}-Minkowski as linear operators on an Hilbert space (a major problem in the construction of a physical theory), study its 'spectral properties', and discuss how tomore » obtain a Dirac operator for this space. We describe two Dirac operators. The first is associated with a spectral triple. We prove that the cyclic integral of Dimitrijevic et al. [Eur. Phys. J. C 31, 129 (2003)] can be obtained as Dixmier trace associated to this triple. The second Dirac operator is equivariant for the action of the quantum Euclidean group, but it has unbounded commutators with the algebra.« less

  18. Construction of a Penrose Diagram for a Spatially Coherent Evaporating Black Hole

    NASA Technical Reports Server (NTRS)

    Brown, Beth A.; Lindesay, James

    2007-01-01

    A Penrose diagram is constructed for an example black hole that evaporates at a steady rate as measured by a distant observer, until the mass vanishes, yielding a final state Minkowski space-time. Coordinate dependencies of significant features, such as the horizon and coordinate anomalies, are clearly demonstrated on the diagram. The large-scale causal structure of the space-time is briefly discussed.

  19. Coordination of Advanced Solar Observatory (ASO) Science Working Group (SWG) for the study of instrument accommodation and operational requirements on space station

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1989-01-01

    The objectives are to coordinate the activities of the Science Working Group (SWG) of the Advanced Solar Observatory (ASO) for the study of instruments accommodation and operation requirements on board space station. In order to facilitate the progress of the objective, two conferences were organized, together with two small group discussions.

  20. Lorentz-covariant coordinate-space representation of the leading hadronic contribution to the anomalous magnetic moment of the muon

    NASA Astrophysics Data System (ADS)

    Meyer, Harvey B.

    2017-09-01

    We present a Lorentz-covariant, Euclidean coordinate-space expression for the hadronic vacuum polarisation, the Adler function and the leading hadronic contribution to the anomalous magnetic moment of the muon. The representation offers a high degree of flexibility for an implementation in lattice QCD. We expect it to be particularly helpful for the quark-line disconnected contributions.

  1. Elucidating the ensemble of functionally-relevant transitions in protein systems with a robotics-inspired method.

    PubMed

    Molloy, Kevin; Shehu, Amarda

    2013-01-01

    Many proteins tune their biological function by transitioning between different functional states, effectively acting as dynamic molecular machines. Detailed structural characterization of transition trajectories is central to understanding the relationship between protein dynamics and function. Computational approaches that build on the Molecular Dynamics framework are in principle able to model transition trajectories at great detail but also at considerable computational cost. Methods that delay consideration of dynamics and focus instead on elucidating energetically-credible conformational paths connecting two functionally-relevant structures provide a complementary approach. Effective sampling-based path planning methods originating in robotics have been recently proposed to produce conformational paths. These methods largely model short peptides or address large proteins by simplifying conformational space. We propose a robotics-inspired method that connects two given structures of a protein by sampling conformational paths. The method focuses on small- to medium-size proteins, efficiently modeling structural deformations through the use of the molecular fragment replacement technique. In particular, the method grows a tree in conformational space rooted at the start structure, steering the tree to a goal region defined around the goal structure. We investigate various bias schemes over a progress coordinate for balance between coverage of conformational space and progress towards the goal. A geometric projection layer promotes path diversity. A reactive temperature scheme allows sampling of rare paths that cross energy barriers. Experiments are conducted on small- to medium-size proteins of length up to 214 amino acids and with multiple known functionally-relevant states, some of which are more than 13Å apart of each-other. Analysis reveals that the method effectively obtains conformational paths connecting structural states that are significantly different. A detailed analysis on the depth and breadth of the tree suggests that a soft global bias over the progress coordinate enhances sampling and results in higher path diversity. The explicit geometric projection layer that biases the exploration away from over-sampled regions further increases coverage, often improving proximity to the goal by forcing the exploration to find new paths. The reactive temperature scheme is shown effective in increasing path diversity, particularly in difficult structural transitions with known high-energy barriers.

  2. Investigating the Role of a District Science Coordinator

    ERIC Educational Resources Information Center

    Whitworth, Brooke A.; Maeng, Jennifer L.; Wheeler, Lindsay B.; Chiu, Jennifer L.

    2017-01-01

    This study explored the professional responsibilities of district science coordinators, their professional development (PD) experiences, the relationship between their role, responsibilities, district context, and background, and barriers encountered in their work. A national sample (n = 122) of self-identified science coordinators completed a…

  3. Community Coordinated Modeling Center (CCMC): Using innovative tools and services to support worldwide space weather scientific communities and networks

    NASA Astrophysics Data System (ADS)

    Mendoza, A. M.; Bakshi, S.; Berrios, D.; Chulaki, A.; Evans, R. M.; Kuznetsova, M. M.; Lee, H.; MacNeice, P. J.; Maddox, M. M.; Mays, M. L.; Mullinix, R. E.; Ngwira, C. M.; Patel, K.; Pulkkinen, A.; Rastaetter, L.; Shim, J.; Taktakishvili, A.; Zheng, Y.

    2012-12-01

    Community Coordinated Modeling Center (CCMC) was established to enhance basic solar terrestrial research and to aid in the development of models for specifying and forecasting conditions in the space environment. In achieving this goal, CCMC has developed and provides a set of innovative tools varying from: Integrated Space Weather Analysis (iSWA) web -based dissemination system for space weather information, Runs-On-Request System providing access to unique collection of state-of-the-art solar and space physics models (unmatched anywhere in the world), Advanced Online Visualization and Analysis tools for more accurate interpretation of model results, Standard Data formats for Simulation Data downloads, and recently Mobile apps (iPhone/Android) to view space weather data anywhere to the scientific community. The number of runs requested and the number of resulting scientific publications and presentations from the research community has not only been an indication of the broad scientific usage of the CCMC and effective participation by space scientists and researchers, but also guarantees active collaboration and coordination amongst the space weather research community. Arising from the course of CCMC activities, CCMC also supports community-wide model validation challenges and research focus group projects for a broad range of programs such as the multi-agency National Space Weather Program, NSF's CEDAR (Coupling, Energetics and Dynamics of Atmospheric Regions), GEM (Geospace Environment Modeling) and Shine (Solar Heliospheric and INterplanetary Environment) programs. In addition to performing research and model development, CCMC also supports space science education by hosting summer students through local universities; through the provision of simulations in support of classroom programs such as Heliophysics Summer School (with student research contest) and CCMC Workshops; training next generation of junior scientists in space weather forecasting; and educating the general public about the importance and impacts of space weather effects. Although CCMC is organizationally comprised of United States federal agencies, CCMC services are open to members of the international science community and encourages interagency and international collaboration. In this poster, we provide an overview of using Community Coordinated Modeling Center (CCMC) tools and services to support worldwide space weather scientific communities and networks.;

  4. Policy model for space economy infrastructure

    NASA Astrophysics Data System (ADS)

    Komerath, Narayanan; Nally, James; Zilin Tang, Elizabeth

    2007-12-01

    Extraterrestrial infrastructure is key to the development of a space economy. Means for accelerating transition from today's isolated projects to a broad-based economy are considered. A large system integration approach is proposed. The beginnings of an economic simulation model are presented, along with examples of how interactions and coordination bring down costs. A global organization focused on space infrastructure and economic expansion is proposed to plan, coordinate, fund and implement infrastructure construction. This entity also opens a way to raise low-cost capital and solve the legal and public policy issues of access to extraterrestrial resources.

  5. Vibrational quasi-degenerate perturbation theory with optimized coordinates: Applications to ethylene and trans-1,3-butadiene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yagi, Kiyoshi, E-mail: kiyoshi.yagi@riken.jp; Otaki, Hiroki

    A perturbative extension to optimized coordinate vibrational self-consistent field (oc-VSCF) is proposed based on the quasi-degenerate perturbation theory (QDPT). A scheme to construct the degenerate space (P space) is developed, which incorporates degenerate configurations and alleviates the divergence of perturbative expansion due to localized coordinates in oc-VSCF (e.g., local O–H stretching modes of water). An efficient configuration selection scheme is also implemented, which screens out the Hamiltonian matrix element between the P space configuration (p) and the complementary Q space configuration (q) based on a difference in their quantum numbers (λ{sub pq} = ∑{sub s}|p{sub s} − q{sub s}|). Itmore » is demonstrated that the second-order vibrational QDPT based on optimized coordinates (oc-VQDPT2) smoothly converges with respect to the order of the mode coupling, and outperforms the conventional one based on normal coordinates. Furthermore, an improved, fast algorithm is developed for optimizing the coordinates. First, the minimization of the VSCF energy is conducted in a restricted parameter space, in which only a portion of pairs of coordinates is selectively transformed. A rational index is devised for this purpose, which identifies the important coordinate pairs to mix from others that may remain unchanged based on the magnitude of harmonic coupling induced by the transformation. Second, a cubic force field (CFF) is employed in place of a quartic force field, which bypasses intensive procedures that arise due to the presence of the fourth-order force constants. It is found that oc-VSCF based on CFF together with the pair selection scheme yields the coordinates similar in character to the conventional ones such that the final vibrational energy is affected very little while gaining an order of magnitude acceleration. The proposed method is applied to ethylene and trans-1,3-butadiene. An accurate, multi-resolution potential, which combines the MP2 and coupled-cluster with singles, doubles, and perturbative triples level of electronic structure theory, is generated and employed in the oc-VQDPT2 calculation to obtain the fundamental tones as well as selected overtones/combination tones coupled to the fundamentals through the Fermi resonance. The calculated frequencies of ethylene and trans-1,3-butadiene are found to be in excellent agreement with the experimental values with a mean absolute error of 8 and 9 cm{sup −1}, respectively.« less

  6. Symplectic approach to calculation of magnetic field line trajectories in physical space with realistic magnetic geometry in divertor tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Punjabi, Alkesh; Ali, Halima

    A new approach to integration of magnetic field lines in divertor tokamaks is proposed. In this approach, an analytic equilibrium generating function (EGF) is constructed in natural canonical coordinates ({psi},{theta}) from experimental data from a Grad-Shafranov equilibrium solver for a tokamak. {psi} is the toroidal magnetic flux and {theta} is the poloidal angle. Natural canonical coordinates ({psi},{theta},{phi}) can be transformed to physical position (R,Z,{phi}) using a canonical transformation. (R,Z,{phi}) are cylindrical coordinates. Another canonical transformation is used to construct a symplectic map for integration of magnetic field lines. Trajectories of field lines calculated from this symplectic map in natural canonicalmore » coordinates can be transformed to trajectories in real physical space. Unlike in magnetic coordinates [O. Kerwin, A. Punjabi, and H. Ali, Phys. Plasmas 15, 072504 (2008)], the symplectic map in natural canonical coordinates can integrate trajectories across the separatrix surface, and at the same time, give trajectories in physical space. Unlike symplectic maps in physical coordinates (x,y) or (R,Z), the continuous analog of a symplectic map in natural canonical coordinates does not distort trajectories in toroidal planes intervening the discrete map. This approach is applied to the DIII-D tokamak [J. L. Luxon and L. E. Davis, Fusion Technol. 8, 441 (1985)]. The EGF for the DIII-D gives quite an accurate representation of equilibrium magnetic surfaces close to the separatrix surface. This new approach is applied to demonstrate the sensitivity of stochastic broadening using a set of perturbations that generically approximate the size of the field errors and statistical topological noise expected in a poloidally diverted tokamak. Plans for future application of this approach are discussed.« less

  7. Symplectic approach to calculation of magnetic field line trajectories in physical space with realistic magnetic geometry in divertor tokamaks

    NASA Astrophysics Data System (ADS)

    Punjabi, Alkesh; Ali, Halima

    2008-12-01

    A new approach to integration of magnetic field lines in divertor tokamaks is proposed. In this approach, an analytic equilibrium generating function (EGF) is constructed in natural canonical coordinates (ψ,θ) from experimental data from a Grad-Shafranov equilibrium solver for a tokamak. ψ is the toroidal magnetic flux and θ is the poloidal angle. Natural canonical coordinates (ψ,θ,φ) can be transformed to physical position (R,Z,φ) using a canonical transformation. (R,Z,φ) are cylindrical coordinates. Another canonical transformation is used to construct a symplectic map for integration of magnetic field lines. Trajectories of field lines calculated from this symplectic map in natural canonical coordinates can be transformed to trajectories in real physical space. Unlike in magnetic coordinates [O. Kerwin, A. Punjabi, and H. Ali, Phys. Plasmas 15, 072504 (2008)], the symplectic map in natural canonical coordinates can integrate trajectories across the separatrix surface, and at the same time, give trajectories in physical space. Unlike symplectic maps in physical coordinates (x,y) or (R,Z), the continuous analog of a symplectic map in natural canonical coordinates does not distort trajectories in toroidal planes intervening the discrete map. This approach is applied to the DIII-D tokamak [J. L. Luxon and L. E. Davis, Fusion Technol. 8, 441 (1985)]. The EGF for the DIII-D gives quite an accurate representation of equilibrium magnetic surfaces close to the separatrix surface. This new approach is applied to demonstrate the sensitivity of stochastic broadening using a set of perturbations that generically approximate the size of the field errors and statistical topological noise expected in a poloidally diverted tokamak. Plans for future application of this approach are discussed.

  8. The International Space Station Evolution Data Book: An Overview and Status

    NASA Technical Reports Server (NTRS)

    Antol, Jeffrey; Jorgensen, Catherine A.

    1999-01-01

    The evolution and enhancement of the International Space Station (ISS) is currently being planned in conjunction with the on-orbit construction of the baseline configuration. Three principal areas have been identified that will contribute to the evolution of ISS: Pre-Planned Program Improvement (P3I), Utilization & Commercialization, and Human Exploration and Development of Space (HEDS) missions. The ISS Evolution Strategy, under development by the Spacecraft and Sensors Branch of NASA Langley Research Center, seeks to coordinate the P3I technology development with Commercialization/Utilization activities and HEDS advanced mission accommodation to provide synergistic technology developments for all three areas. The focal point of this proposed strategy is the ISS Evolution Data Book (EDB), a tool for aiding the evolution and enhancement of ISS beyond Assembly Complete. This paper will discuss the strategy and provide an overview of the EDB, describing the contents of each section. It will also discuss potential applications of the EDB and present an example Design Reference Mission (DRM). The latest status of the EDB and the plans for completing and enhancing the book will also be summarized.

  9. Detumbling control for kinematically redundant space manipulator post-grasping a rotational satellite

    NASA Astrophysics Data System (ADS)

    Wang, Mingming; Luo, Jianjun; Yuan, Jianping; Walter, Ulrich

    2017-12-01

    The objective of this paper is to establish a detumbling strategy and a coordination control scheme for a kinematically redundant space manipulator post-grasping a rotational satellite. First, the dynamics of the kinematically redundant space robot after grasping the target is presented, which lays the foundation for the coordination controller design. Subsequently, optimal detumbling and motion planning strategy for the post-capture phase is proposed based on the quartic Bézier curves and adaptive differential evolution (DE) algorithm subject to the specific constraints. Both detumbling time and control torques are taken into account for the generation of the optimal detumbling strategy. Furthermore, a coordination control scheme is presented to track the designed reference path while regulating the attitude of the chaser to a desired value, which successfully dumps the initial angular velocity of the rotational satellite and controls the base attitude synchronously. Simulation results are presented for detumbling a target with rotational motion using a 7 degree-of-freedom (DOF) redundant space manipulator, which demonstrates the effectiveness of the proposed method.

  10. WWWinda Orchestrator: a mechanism for coordinating distributed flocks of Java Applets

    NASA Astrophysics Data System (ADS)

    Gutfreund, Yechezkal-Shimon; Nicol, John R.

    1997-01-01

    The WWWinda Orchestrator is a simple but powerful tool for coordinating distributed Java applets. Loosely derived from the Linda programming language developed by David Gelernter and Nicholas Carriero of Yale, WWWinda implements a distributed shared object space called TupleSpace where applets can post, read, or permanently store arbitrary Java objects. In this manner, applets can easily share information without being aware of the underlying communication mechanisms. WWWinda is a very useful for orchestrating flocks of distributed Java applets. Coordination event scan be posted to WWWinda TupleSpace and used to orchestrate the actions of remote applets. Applets can easily share information via the TupleSpace. The technology combines several functions in one simple metaphor: distributed web objects, remote messaging between applets, distributed synchronization mechanisms, object- oriented database, and a distributed event signaling mechanisms. WWWinda can be used a s platform for implementing shared VRML environments, shared groupware environments, controlling remote devices such as cameras, distributed Karaoke, distributed gaming, and shared audio and video experiences.

  11. Coordination nano-space as stage of hydrogen ortho–para conversion

    PubMed Central

    Kosone, Takashi; Hori, Akihiro; Nishibori, Eiji; Kubota, Yoshiki; Mishima, Akio; Ohba, Masaaki; Tanaka, Hiroshi; Kato, Kenichi; Kim, Jungeun; Real, José Antonio; Kitagawa, Susumu; Takata, Masaki

    2015-01-01

    The ability to design and control properties of nano-sized space in porous coordination polymers (PCPs) would provide us with an ideal stage for fascinating physical and chemical phenomena. We found an interconversion of nuclear-spin isomers for hydrogen molecule H2 adsorbed in a Hofmann-type PCP, {Fe(pz)[Pd(CN)4]} (pz=pyrazine), by the temperature dependence of Raman spectra. The ortho (o)–para (p) conversion process of H2 is forbidden for an isolated molecule. The charge density study using synchrotron radiation X-ray diffraction reveals the electric field generated in coordination nano-space. The present results corroborate similar findings observed on different systems and confirm that o–p conversion can occur on non-magnetic solids and that electric field can induce the catalytic hydrogen o–p conversion. PMID:26587262

  12. Reaction Rate Theory in Coordination Number Space: An Application to Ion Solvation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Santanu; Baer, Marcel D.; Mundy, Christopher J.

    2016-04-14

    Understanding reaction mechanisms in many chemical and biological processes require application of rare event theories. In these theories, an effective choice of a reaction coordinate to describe a reaction pathway is essential. To this end, we study ion solvation in water using molecular dynamics simulations and explore the utility of coordination number (n = number of water molecules in the first solvation shell) as the reaction coordinate. Here we compute the potential of mean force (W(n)) using umbrella sampling, predicting multiple metastable n-states for both cations and anions. We find with increasing ionic size, these states become more stable andmore » structured for cations when compared to anions. We have extended transition state theory (TST) to calculate transition rates between n-states. TST overestimates the rate constant due to solvent-induced barrier recrossings that are not accounted for. We correct the TST rates by calculating transmission coefficients using the reactive flux method. This approach enables a new way of understanding rare events involving coordination complexes. We gratefully acknowledge Liem Dang and Panos Stinis for useful discussion. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. SR, CJM, and GKS were supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. MDB was supported by MS3 (Materials Synthesis and Simulation Across Scales) Initiative, a Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory (PNNL). PNNL is a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy.« less

  13. Interpersonal coordination tendencies shape 1-vs-1 sub-phase performance outcomes in youth soccer.

    PubMed

    Duarte, Ricardo; Araújo, Duarte; Davids, Keith; Travassos, Bruno; Gazimba, Vítor; Sampaio, Jaime

    2012-05-01

    This study investigated the influence of interpersonal coordination tendencies on performance outcomes of 1-vs-1 sub-phases in youth soccer. Eight male developing soccer players (age: 11.8 ± 0.4 years; training experience: 3.6 ± 1.1 years) performed an in situ simulation of a 1-vs-1 sub-phase of soccer. Data from 82 trials were obtained with motion-analysis techniques, and relative phase used to measure the space-time coordination tendencies of attacker-defender dyads. Approximate entropy (ApEn) was then used to quantify the unpredictability of interpersonal interactions over trials. Results revealed how different modes of interpersonal coordination emerging from attacker-defender dyads influenced the 1-vs-1 performance outcomes. High levels of space-time synchronisation (47%) and unpredictability in interpersonal coordination processes (ApEn: 0.91 ± 0.34) were identified as key features of an attacking player's success. A lead-lag relation attributed to a defending player (34% around -30° values) and a more predictable coordination mode (ApEn: 0.65 ± 0.27, P < 0.001), demonstrated the coordination tendencies underlying the success of defending players in 1-vs-1 sub-phases. These findings revealed how the mutual influence of each player on the behaviour of dyadic systems shaped emergent performance outcomes. More specifically, the findings showed that attacking players should be constrained to exploit the space-time synchrony with defenders in an unpredictable and creative way, while defenders should be encouraged to adopt postures and behaviours that actively constrain the attacker's actions.

  14. Geometrically motivated coordinate system for exploring spacetime dynamics in numerical-relativity simulations using a quasi-Kinnersley tetrad

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Brink, Jeandrew; Szilágyi, Béla; Lovelace, Geoffrey

    2012-10-01

    We investigate the suitability and properties of a quasi-Kinnersley tetrad and a geometrically motivated coordinate system as tools for quantifying both strong-field and wave-zone effects in numerical relativity (NR) simulations. We fix two of the coordinate degrees of freedom of the metric, namely, the radial and latitudinal coordinates, using the Coulomb potential associated with the quasi-Kinnersley transverse frame. These coordinates are invariants of the spacetime and can be used to unambiguously fix the outstanding spin-boost freedom associated with the quasi-Kinnersley frame (and thus can be used to choose a preferred quasi-Kinnersley tetrad). In the limit of small perturbations about a Kerr spacetime, these geometrically motivated coordinates and quasi-Kinnersley tetrad reduce to Boyer-Lindquist coordinates and the Kinnersley tetrad, irrespective of the simulation gauge choice. We explore the properties of this construction both analytically and numerically, and we gain insights regarding the propagation of radiation described by a super-Poynting vector, further motivating the use of this construction in NR simulations. We also quantify in detail the peeling properties of the chosen tetrad and gauge. We argue that these choices are particularly well-suited for a rapidly converging wave-extraction algorithm as the extraction location approaches infinity, and we explore numerically the extent to which this property remains applicable on the interior of a computational domain. Using a number of additional tests, we verify numerically that the prescription behaves as required in the appropriate limits regardless of simulation gauge; these tests could also serve to benchmark other wave extraction methods. We explore the behavior of the geometrically motivated coordinate system in dynamical binary-black-hole NR mergers; while we obtain no unexpected results, we do find that these coordinates turn out to be useful for visualizing NR simulations (for example, for vividly illustrating effects such as the initial burst of spurious junk radiation passing through the computational domain). Finally, we carefully scrutinize the head-on collision of two black holes and, for example, the way in which the extracted waveform changes as it moves through the computational domain.

  15. America's Next Great Ship: Space Launch System Core Stage Transitioning from Design to Manufacturing

    NASA Technical Reports Server (NTRS)

    Birkenstock, Benjamin; Kauer, Roy

    2014-01-01

    The Space Launch System (SLS) Program is essential to achieving the Nation's and NASA's goal of human exploration and scientific investigation of the solar system. As a multi-element program with emphasis on safety, affordability, and sustainability, SLS is becoming America's next great ship of exploration. The SLS Core Stage includes avionics, main propulsion system, pressure vessels, thrust vector control, and structures. Boeing manufactures and assembles the SLS core stage at the Michoud Assembly Facility (MAF) in New Orleans, LA, a historical production center for Saturn V and Space Shuttle programs. As the transition from design to manufacturing progresses, the importance of a well-executed manufacturing, assembly, and operation (MA&O) plan is crucial to meeting performance objectives. Boeing employs classic techniques such as critical path analysis and facility requirements definition as well as innovative approaches such as Constraint Based Scheduling (CBS) and Cirtical Chain Project Management (CCPM) theory to provide a comprehensive suite of project management tools to manage the health of the baseline plan on both a macro (overall project) and micro level (factory areas). These tools coordinate data from multiple business systems and provide a robust network to support Material & Capacity Requirements Planning (MRP/CRP) and priorities. Coupled with these tools and a highly skilled workforce, Boeing is orchestrating the parallel buildup of five major sub assemblies throughout the factory. Boeing and NASA are transforming MAF to host state of the art processes, equipment and tooling, the most prominent of which is the Vertical Assembly Center (VAC), the largest weld tool in the world. In concert, a global supply chain is delivering a range of structural elements and component parts necessary to enable an on-time delivery of the integrated Core Stage. SLS is on plan to launch humanity into the next phase of space exploration.

  16. On the quantization of the massless Bateman system

    NASA Astrophysics Data System (ADS)

    Takahashi, K.

    2018-03-01

    The so-called Bateman system for the damped harmonic oscillator is reduced to a genuine dual dissipation system (DDS) by setting the mass to zero. We explore herein the condition under which the canonical quantization of the DDS is consistently performed. The roles of the observable and auxiliary coordinates are discriminated. The results show that the complete and orthogonal Fock space of states can be constructed on the stable vacuum if an anti-Hermite representation of the canonical Hamiltonian is adopted. The amplitude of the one-particle wavefunction is consistent with the classical solution. The fields can be quantized as bosonic or fermionic. For bosonic systems, the quantum fluctuation of the field is directly associated with the dissipation rate.

  17. Health Care Reform, Care Coordination, and Transformational Leadership.

    PubMed

    Steaban, Robin Lea

    2016-01-01

    This article is meant to spur debate on the role of the professional nurse in care coordination as well as the role of nursing leaders for defining and leading to a future state. This work highlights the opportunity and benefits associated with transformation of professional nursing practice in response to the mandates of the Affordable Care Act of 2010. An understanding of core concepts and the work of care coordination are used to propose a model of care coordination based on the population health pyramid. This maximizes the roles of nurses across the continuum as transformational leaders in the patient/family and nursing relationship. The author explores the role of the nurse in a transactional versus transformational relationship with patients, leading to actualization of the nurse in care coordination. Focusing on the role of the nurse leader, the challenges and necessary actions for optimization of the professional nurse role are explored, using principles of transformational leadership.

  18. Overview of NASA Technology Development for In-Situ Resource Utilization (ISRU)

    NASA Technical Reports Server (NTRS)

    Linne, Diane L.; Sanders, Gerald B.; Starr, Stanley O.; Eisenman, David J.; Suzuki, Nantel H.; Anderson, Molly S.; O'Malley, Terrence F.; Araghi, Koorosh R.

    2017-01-01

    In-Situ Resource Utilization (ISRU) encompasses a broad range of systems that enable the production and use of extraterrestrial resources in support of future exploration missions. It has the potential to greatly reduce the dependency on resources transported from Earth (e.g., propellants, life support consumables), thereby significantly improving the ability to conduct future missions. Recognizing the critical importance of ISRU for the future, NASA is currently conducting technology development projects in two of its four mission directorates. The Advanced Exploration Systems Division in the Agency's Human Exploration and Operations Mission Directorate has initiated a new project for ISRU Technology focused on component, subsystem, and system maturation in the areas of water volatiles resource acquisition, and water volatiles and atmospheric processing into propellants and other consumable products. The Space Technology Mission Directorate is supporting development of ISRU component technologies in the areas of Mars atmosphere acquisition, including dust management, and oxygen production from Mars atmosphere for propellant and life support consumables. Together, these two coordinated projects are working towards a common goal of demonstrating ISRU technology and systems in preparation for future flight applications.

  19. Looking back, looking forward and aiming higher: the next generation's visions of the next 50 years in space

    NASA Astrophysics Data System (ADS)

    Thakore, B.; Frierson, T.; Coderre, K.; Lukaszczyk, A.; Karl, A.

    2009-04-01

    This paper outlines the response of students and young space professionals on the occasion of the 50th Anniversary of the first artificial satellite and the 40th anniversary of the Outer Space Treaty. The contribution has been coordinated by the Space Generation Advisory Council (SGAC) in support of the United Nations Programme on Space Applications. It follows consultation of the SGAC community through a series of meetings, online discussions and online surveys. The first two online surveys collected over 750 different visions from the international community, totaling approximately 276 youth from over 28 countries and builds on previous SGAC policy contributions. A summary of these results was presented as the top 10 visions of today's youth as an invited input to world space leaders gathered at the Symposium on "The future of space exploration: Solutions to earthly problems" held in Boston, USA from April 12-14 2007 and at the United Nations Committee on the Peaceful Uses of Outer Space in May 2007. These key visions suggested the enhancement for humanity's reach beyond this planet - both physically and intellectual. These key visions were themed into three main categories: • Improvement of Human Survival Probability - sustained exploration to become a multi- planet species, humans to Mars, new treaty structures to ensure a secure space environment, etc • Improvement of Human Quality of Life and the Environment - new political systems or astrocracy, benefits of tele-medicine, tele-education, and commercialization of space, new energy and resources: space solar power, etc. • Improvement of Human Knowledge and Understanding - complete survey of extinct and extant life forms, use of space data for advanced environmental monitoring, etc. This paper will summarize the outcomes from a further online survey and represent key recommendations given by international youth advocates on further steps that could be taken by space agencies and organizations to make the top 10 visions a reality. In turn the online discussions that are used to engage the youth audience would be recorded and would help to reflect the confidence of the younger generation in these visions. The categories listed above would also be investigated further from the technology, policy and ethical aspects. Recent activities in development to further disseminate the necessary connections between using of space technology for solving global challenges is discussed.

  20. The International Space Life Sciences Strategic Planning Working Group

    NASA Technical Reports Server (NTRS)

    White, Ronald J.; Rabin, Robert; Lujan, Barbara F.

    1993-01-01

    Throughout the 1980s, ESA and the space agencies of Canada, Germany, France, Japan, and the U.S. have pursued cooperative projects bilaterally and multilaterally to prepare for, and to respond to, opportunities in space life sciences research previously unapproachable in scale and sophistication. To cope effectively with likely future space research opportunities, broad, multilateral, coordinated strategic planning is required. Thus, life scientists from these agencies have allied to form the International Space Life Sciences Strategic Planning Working Group. This Group is formally organized under a charter that specifies the purpose of the Working Group as the development of an international strategic plan for the space life sciences, with periodic revisions as needed to keep the plan current. The plan will be policy-, not operations-oriented. The Working Group also may establish specific implementation teams to coordinate multilateral science policy in specific areas; such teams have been established for space station utilization, and for sharing of flight equipment.

  1. Peaks in Phase Space Density: A Survey of the Van Allen Probes Era

    NASA Astrophysics Data System (ADS)

    Boyd, A. J.; Turner, D. L.; Reeves, G. D.; Spence, H. E.

    2017-12-01

    One of the challenges of radiation belt studies is the differentiation between acceleration mechanisms, particularly local acceleration and radial diffusion. This is often done through careful examination of phase space density profiles in terms of adiabatic coordinates. In particular, local acceleration processes produce growing peaks in phase space density. Many previous studies have shown clear observations of these features for individual events. However, it remains unclear how often and where these growing peaks are observed over a long time period. With the availability of several years of high quality observations from multiple spacecraft, we now have an opportunity to quantify phase space density profiles not only for multiple events, but also across a wide range of energies. In this study, we examine phase space density from more than four years of data from the Van Allen Probes and THEMIS to determine the statistical properties of the observed peaks in phase space density. First, we determine how often growing peaks are observed. Second, we examine where the peaks are located in terms of the adiabatic invariants mu, K and L* and how these locations relate to geomagnetic indices, solar wind conditions and the plasmapause location. Third, we explore how these peaks evolve in time. Together, these results will reveal the relative importance of different acceleration processes and how these affect the various electron populations within the radiation belt.

  2. On the realization of quantum Fisher information

    NASA Astrophysics Data System (ADS)

    Saha, Aparna; Talukdar, B.; Chatterjee, Supriya

    2017-03-01

    With special attention to the role of information theory in physical sciences we present analytical results for the coordinate- and momentum-space Fisher information of some important one-dimensional quantum systems which differ in spacing of their energy levels. The studies envisaged allow us to relate the coordinate-space information ({I}ρ ) with the familiar energy levels of the quantum system. The corresponding momentum-space information ({I}γ ) does not obey such a simple relationship with the energy spectrum. Our results for the product ({I}ρ {I}γ ) depend quadratically on the principal quantum number n and satisfy an appropriate uncertainty relation derived by Dehesa et al (2007 J. Phys. A: Math. Theor. 40 1845)

  3. MoMa: From Molecules to Man: Space Research Applied to the improvement of the Quality of Life of the Ageing Population on Earth. Evolution of a project

    NASA Astrophysics Data System (ADS)

    Zambito, Anna Maria; Curcio, Francesco; Meli, Antonella; Saverio Ambesi-Impiombato, Francesco

    The "MoMa" project: "From Molecules to Man: Space Research Applied to the improvement of the Quality of Life of the Ageing Population on Earth started June 16 2006 and finished right on schedule June 25 2009, has been the biggest of the three projects funded by ASI in the sector "Medicine and Biotechnology. In the last years the scientific community had formed a national chain of biomedical spatial research with different research areas. MoMa responds to the necessity of unification in ASI of the two areas "Radiobiology and Protection" and "Cellular and Molecular Biotechnology" in a line of joint research: "Biotechnological Applications" were the interests of all groups would be combined and unified in a goal of social relevance. MoMa is the largest project ever developed in the biomedical area in Italy, the idea was born thinking about the phenomenon of acceleration of the aging process observed in space, and already described in literature, and the aim of studying the effects of the space environment at cellular, molecular and human organism level. "MoMa" was divided into three primary areas of study: Molecules, Cells and Man with an industrial area alongside. This allowed to optimize the work and information flows within the scientific research more similar and more culturally homogeneous and allowed a perfect industrial integration in a project of great scientific importance. Within three scientific areas 10 scientific lines in total are identified, each of them coordinated by a subcontractor. The rapid and efficient exchange of information between different areas of science and the development of industrial applications in various areas of interest have been assured by a strong work of Scientific Coordination of System Engineering and Quality Control. After three years of intense and coordinated activities within the MoMa project, the objectives achieved are very significant not only as regards the scientific results and the important hardware produced but also as regard of the employment targets with the delivery of approximately 250 scholarships for researchers and doctoral students and financing to industries and SMEs Italian. The scientific and industrial MoMa community is aware that a so important and challenging project can not expire and is now ready to take advantage of the huge potentiality gained to compete successfully at international level in this new phase of space exploration.

  4. Transformational Spaceport and Range Concept of Operations: A Vision to Transform Ground and Launch Operations

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The Transformational Concept of Operations (CONOPS) provides a long-term, sustainable vision for future U.S. space transportation infrastructure and operations. This vision presents an interagency concept, developed cooperatively by the Department of Defense (DoD), the Federal Aviation Administration (FAA), and the National Aeronautics and Space Administration (NASA) for the upgrade, integration, and improved operation of major infrastructure elements of the nation s space access systems. The interagency vision described in the Transformational CONOPS would transform today s space launch infrastructure into a shared system that supports worldwide operations for a variety of users. The system concept is sufficiently flexible and adaptable to support new types of missions for exploration, commercial enterprise, and national security, as well as to endure further into the future when space transportation technology may be sufficiently advanced to enable routine public space travel as part of the global transportation system. The vision for future space transportation operations is based on a system-of-systems architecture that integrates the major elements of the future space transportation system - transportation nodes (spaceports), flight vehicles and payloads, tracking and communications assets, and flight traffic coordination centers - into a transportation network that concurrently accommodates multiple types of mission operators, payloads, and vehicle fleets. This system concept also establishes a common framework for defining a detailed CONOPS for the major elements of the future space transportation system. The resulting set of four CONOPS (see Figure 1 below) describes the common vision for a shared future space transportation system (FSTS) infrastructure from a variety of perspectives.

  5. Time takes space: selective effects of multitasking on concurrent spatial processing.

    PubMed

    Mäntylä, Timo; Coni, Valentina; Kubik, Veit; Todorov, Ivo; Del Missier, Fabio

    2017-08-01

    Many everyday activities require coordination and monitoring of complex relations of future goals and deadlines. Cognitive offloading may provide an efficient strategy for reducing control demands by representing future goals and deadlines as a pattern of spatial relations. We tested the hypothesis that multiple-task monitoring involves time-to-space transformational processes, and that these spatial effects are selective with greater demands on coordinate (metric) than categorical (nonmetric) spatial relation processing. Participants completed a multitasking session in which they monitored four series of deadlines, running on different time scales, while making concurrent coordinate or categorical spatial judgments. We expected and found that multitasking taxes concurrent coordinate, but not categorical, spatial processing. Furthermore, males showed a better multitasking performance than females. These findings provide novel experimental evidence for the hypothesis that efficient multitasking involves metric relational processing.

  6. Extracting 3d Semantic Information from Video Surveillance System Using Deep Learning

    NASA Astrophysics Data System (ADS)

    Zhang, J. S.; Cao, J.; Mao, B.; Shen, D. Q.

    2018-04-01

    At present, intelligent video analysis technology has been widely used in various fields. Object tracking is one of the important part of intelligent video surveillance, but the traditional target tracking technology based on the pixel coordinate system in images still exists some unavoidable problems. Target tracking based on pixel can't reflect the real position information of targets, and it is difficult to track objects across scenes. Based on the analysis of Zhengyou Zhang's camera calibration method, this paper presents a method of target tracking based on the target's space coordinate system after converting the 2-D coordinate of the target into 3-D coordinate. It can be seen from the experimental results: Our method can restore the real position change information of targets well, and can also accurately get the trajectory of the target in space.

  7. Network geometry inference using common neighbors

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Fragkiskos; Aldecoa, Rodrigo; Krioukov, Dmitri

    2015-08-01

    We introduce and explore a method for inferring hidden geometric coordinates of nodes in complex networks based on the number of common neighbors between the nodes. We compare this approach to the HyperMap method, which is based only on the connections (and disconnections) between the nodes, i.e., on the links that the nodes have (or do not have). We find that for high degree nodes, the common-neighbors approach yields a more accurate inference than the link-based method, unless heuristic periodic adjustments (or "correction steps") are used in the latter. The common-neighbors approach is computationally intensive, requiring O (t4) running time to map a network of t nodes, versus O (t3) in the link-based method. But we also develop a hybrid method with O (t3) running time, which combines the common-neighbors and link-based approaches, and we explore a heuristic that reduces its running time further to O (t2) , without significant reduction in the mapping accuracy. We apply this method to the autonomous systems (ASs) Internet, and we reveal how soft communities of ASs evolve over time in the similarity space. We further demonstrate the method's predictive power by forecasting future links between ASs. Taken altogether, our results advance our understanding of how to efficiently and accurately map real networks to their latent geometric spaces, which is an important necessary step toward understanding the laws that govern the dynamics of nodes in these spaces, and the fine-grained dynamics of network connections.

  8. Facial and meridional isomers of holmium-nitrate N-tert-butylacetamide complexes

    NASA Astrophysics Data System (ADS)

    Chang, Ye-Di; Xue, Jun-Hui; Kang, Xiao-Yan; Yang, Li-Min; Li, Wei-Hong; Xu, Yi-Zhuang; Zhao, Guo-Zhong; Zhang, Gao-Hui; Liu, Ke-Xin; Chen, Jia-Er; Wu, Jin-Guang

    2018-06-01

    Two Ho(C6H13NO)3(NO3)3 complexes formed by holmium nitrate and N-tert-butylacetamide (NtBA) (Ho-NtBA(I) in a Cc space group, and Ho-NtBA(II) in a P21/c space group) are reported here to investigate the coordination of lanthanide ions with amide groups. Using X-ray single crystal diffraction, FTIR, Raman, FIR and THz methods the structures of the two complexes were identified, in which Ho3+ is 9-coordinated to three carbonyl oxygen atoms provided by three NtBA ligands and three bidentate nitrate ions to form the "facial" and "meridional" isomers. Their FTIR and Raman spectra indicate the formation of two holmium complexes, the variations of NtBA after holmium coordination and the spectra are similar for the isomers in some extent. Their FIR and THz spectroscopic results show the coordination of holmium ions and THz maybe more sensitive to isomers. The results demonstrate the coordination behaviors of holmium ions and NtBA ligand.

  9. Chemical weathering from the CoDA (Compositional Data Analysis) point of view: new insights for the Alpine rivers geochemistry

    NASA Astrophysics Data System (ADS)

    Gozzi, Caterina; Buccianti, Antonella; Frondini, Francesco

    2017-04-01

    The aim of this contribution is to explore the relationship among weathering reactions, the sample space of compositional data and fractals by means of distributional analysis. Weathering reactions represent the transfer of heat and entropy to the environment in geochemical cycles. Chemical weathering is a key process for understanding the global cycle of elements, both on long and short-terms and chemical weathering rates are complex functions of many factors including dissolution kinetics of minerals, mechanical erosion, lithology. Compositional data express the relative (proportional) abundance of chemical elements/species in a given total (i.e. volume or weight) so that compositions pertaining to the peculiar geometry of the simplex sample space. Fractals are temporal or spatial objects with self-similarity and scale invariance, so that internal structures repeat themselves over multiple levels of magnification or scales of measurement. Gibbs's free energy and the application of the Law Mass Action can be used to model weathering reactions, under the hypothesis of chemical equilibrium. Compositional data are obtained in the analytical phase after the determination of the concentrations of chemicals in sampled solid, liquid or gaseous materials. Fractals can be measured by using their fractal dimensions. The presence of fractal structures can be observed when the frequency distribution of isometric log-ratio coordinates is investigated, showing the logarithm of the cumulative number of samples exceeding a certain coordinate value plotted against the coordinate value itself. Isometric log-ratio coordinates (or balances) can be constructed by using the sequential binary partition (SBP) method. The balances can be identified to maintain, as far as possible, the similarity with a corresponding weathering reaction (Buccianti & Zuo, 2016). As an alternative, balances can be derived after the multivariate investigation of the variance-covariance structure of the compositional matrix. In both cases the idea is to probe the behaviour of geochemical processes to be analysed in time or space. An application example is presented for the chemistry of the surficial waters of the Alpine region (Donnini et al., 2016). The emergence of fractal structures indicates the presence of dissipative systems, which require complexity, large numbers of inter-connected elements and stochasticity requiring caution in the use of classical spatial methods to represent geochemical phenomena. Buccianti A. & Zuo R., 2016. Weathering reactions and isometric log-ratio coordinates: Do they speak to each other? Applied Geochemistry, 75, 189-199. Donnini M., Frondini F., Probst J.L., Probst A., Cardellini C., Marchesini I., Guzzetti F., 2016. Chemical weathering and consumption of atmospheric carbon dioxide in the Alpine region. Global and Planetary Change, 136 (2016) 65-81.

  10. Strategy for the International Lunar Decade

    NASA Astrophysics Data System (ADS)

    Beldavs, V.; Dunlop, D.; Foing, B.

    2015-10-01

    LD is a global event and process for international collaboration in space initiated by the International Lunar Exploration Working Group (ILEWG), the National Space Society and the National Science Centre FOTONIKA-LV of the University of Latvia. ILD is planned for launch in 2017, the 60th anniversary of the International Geophysical Year that marked the dawn of the space age with the launch of Sputnik. ILD is envisioned as a decade long process of international collaboration with lunar exploration concurrent with development of policies, key enabling technologies and infrastructures on the Moon and in cislunar space leading towards an eventual goal of industrial development of the Moon and economic activity beyond Earth orbit[1]. This second International Lunar Decade will build on the foundations of the ILD first proposed in by the Planetary Society in 2006 at International Conference on Exploration and Utilisation of the Moon (ICEUM), was endorsed by ICEUM participants[3], and then by ILEWG, COSPAR and other organizations. Starting in 2007, the work plan included a series of recommendations for lunar exploration missions coordinated through the ILEWG agencies and COSPAR. Advances in technology such as CubeSats and 3D printing and fundamental changes in mind-set marked by initiatives such as the Google Lunar-X prize and asteroid mining ventures have made industrial development of the Moon a thinkable proposition. The ILD to be launched in 2017 is intended to set the stage for the Moon to become a wealth generating platform for human expansion into the solar system.ILD is being organized to engage existing organizations involved in space collaboration such as COSPAR, COPUOS, ISECG, technical and scientific organizations and others that address space policy, space law, space security, governance and related concerns. Additional organizations will be involved that deal with structures, ecosystems, financing, economic development and health and life support and related concerns. The Moon Treaty (1979) will be reviewed for its applicability to the development of the international regime that will be required to govern mining, industrial development and commercial activities on the Moon. ILD has already been a significant topic in several international conferences.Through this and many other conferences to follow the initial organizers expect that key organizations will see a role for their activities within the ILD process, endorse it and start to shape implementation plans. This report will focus on overall strategies for the ILD process to fully engage multiple countries and organizations building towards a shared vision through a diversity of scientific, technical and cultural perspectives. Public outreach and involvement of the public, particularly youth and schools will be an important component of the overall strategy. The activities of the International Lunar Decade Working Group can be followed at https://ildwg.wordpress.com .

  11. Asymmetrical booster ascent guidance and control system design study. Volume 2: SSFS math models - Ascent. [space shuttle development

    NASA Technical Reports Server (NTRS)

    Williams, F. E.; Lemon, R. S.

    1974-01-01

    The engineering equations and mathematical models developed for use in the space shuttle functional simulator (SSFS) are presented, and include extensive revisions and additions to earlier documentation. Definitions of coordinate systems used by the SSFS models and coordinate tranformations are given, along with documentation of the flexible body mathematical models. The models were incorporated in the SSFS and are in the checkout stage.

  12. Space-Time Coordinate Metadata for the Virtual Observatory Version 1.33

    NASA Astrophysics Data System (ADS)

    Rots, A. H.; Rots, A. H.

    2007-10-01

    This document provides a complete design description of the Space-Time Coordinate (STC) metadata for the Virtual Observatory. It explains the various components, highlights some implementation considerations, presents a complete set of UML diagrams, and discusses the relation between STC and certain other parts of the Data Model. Two serializations are discussed: XML Schema (STC-X) and String (STC-S); the former is an integral part of this Recommendation.

  13. Analysis of ILRS Site Ties

    NASA Astrophysics Data System (ADS)

    Husson, V. S.; Long, J. L.; Pearlman, M.

    2001-12-01

    By the end of 2000, 94% of ILRS stations had completed station and site information forms (i.e. site logs). These forms contain six types of information. These six categories include site identifiers, contact information, approximate coordinates, system configuration history, system ranging capabilities, and local survey ties. The ILRS Central Bureau, in conjunction with the ILRS Networks and Engineering Working Group, has developed procedures to quality control site log contents. Part of this verification entails data integrity checks of local site ties and is the primary focus of this paper. Local survey ties are critical to the combination of space geodetic network coordinate solutions (i.e. GPS, SLR, VLBI, DORIS) of the International Terrestrial Reference Frame (ITRF). Approximately 90% of active SLR sites are collocated with at least one other space geodetic technique. The process used to verify these SLR ties, at collocated sites, is identical to the approach used in ITRF2000. Local vectors (X, Y, Z) from each ILRS site log are differenced from its corresponding ITRF2000 position vectors (i.e. no transformations). These X, Y, and Z deltas are converted into North, East, and Up. Any deltas, in any component, larger than 5 millimeter is flagged for investigation. In the absence of ITRF2000 SLR positions, CSR positions were used. To further enhance this comparison and to fill gaps in information, local ties contained in site logs from the other space geodetic services (i.e. IGS, IVS, IDS) were used in addition to ITRF2000 ties. Case studies of two collocated sites (McDonald/Ft. Davis and Hartebeeshtoek) will be explored in-depth. Recommendations on how local site surveys should be conducted and how this information should be managed will also be presented.

  14. Exploration of Extended-Area Treatment Effects in FACE-2 Using Satellite Imagery.

    NASA Astrophysics Data System (ADS)

    Meití, José G.; Woodley, William L.; Flueck, John A.

    1984-01-01

    The second phase of the Florida Area Cumulus Experiment (FACE-2) has been completed and an exploratory analysis has been conducted to investigate the possibility that cloud seeding may have affected the rainfall outside the intended target. Rainfall was estimated over a 3.5×105 km2 area centered on the target using geosynchronous, infrared satellite imagery and the Griffith-Woodley rain estimation technique. This technique was derived in South Florida by calibrating infrared images using raingage and radar observations to produce an empirical, diagnostic (a posteriori), satellite rain estimation technique. The satellite rain estimates for the extended area were adjusted based on comparisons of raingage and satellite rainfall estimates for the entire FACE target (1.3×104 km2). All daily rainfall estimates were composited in two ways: 1) in the original coordinate system and 2) in a relative coordinate system that rotates the research area as a function of wind direction. After compositing, seeding effects were sought as a function of space and time.The results show more rainfall (in the mean) on seed than no seed days both in and downwind of the target but lesser rainfall upwind. All differences (averaging 20% downwind and 10% upwind) are confined in space to within 200 km of the center of the FACE target and in time to the 8 h period after initial treatment. In addition, the positive correlation between untreated upwind rainfall and target rainfall is degraded on seed days, suggesting possible intermittent negative effects of seeding upwind. Although the development of these differences in space and time suggests that seeding may have been partially responsible for their generation, the results do not have strong inferential (P-value) support.

  15. ISY Mission to Planet Earth Conference: A planning meeting for the International Space Year

    NASA Technical Reports Server (NTRS)

    Meyerson, Harvey

    1991-01-01

    A major theme was the opportunity offered by the International Space Year (ISY) to initiate a long-term program of Earth observation mission coordination and worldwide data standardization. The challenge is immense and extremely time critical. A recommendation was made to inventory the capabilities of Earth observing spacecraft scheduled during the next decade. The ISY effort to strengthen coordination and standardization should emphasize global issues, and also regional initiatives of particular relevance to developing nations. The concepts of a Global Information System Test (GIST) was accepted and applied to specific issues of immediate concern. The importance of ISY Earth observation initiatives extending beyond research to include immediate and direct applications for social and economic development was stressed. Several specific Mission to Planet Earth proposals were developed during the Conference. A mechanism was set up for coordinating participation of the national space agencies or equivalent bodies.

  16. Voice loops as coordination aids in space shuttle mission control.

    PubMed

    Patterson, E S; Watts-Perotti, J; Woods, D D

    1999-01-01

    Voice loops, an auditory groupware technology, are essential coordination support tools for experienced practitioners in domains such as air traffic management, aircraft carrier operations and space shuttle mission control. They support synchronous communication on multiple channels among groups of people who are spatially distributed. In this paper, we suggest reasons for why the voice loop system is a successful medium for supporting coordination in space shuttle mission control based on over 130 hours of direct observation. Voice loops allow practitioners to listen in on relevant communications without disrupting their own activities or the activities of others. In addition, the voice loop system is structured around the mission control organization, and therefore directly supports the demands of the domain. By understanding how voice loops meet the particular demands of the mission control environment, insight can be gained for the design of groupware tools to support cooperative activity in other event-driven domains.

  17. Voice loops as coordination aids in space shuttle mission control

    NASA Technical Reports Server (NTRS)

    Patterson, E. S.; Watts-Perotti, J.; Woods, D. D.

    1999-01-01

    Voice loops, an auditory groupware technology, are essential coordination support tools for experienced practitioners in domains such as air traffic management, aircraft carrier operations and space shuttle mission control. They support synchronous communication on multiple channels among groups of people who are spatially distributed. In this paper, we suggest reasons for why the voice loop system is a successful medium for supporting coordination in space shuttle mission control based on over 130 hours of direct observation. Voice loops allow practitioners to listen in on relevant communications without disrupting their own activities or the activities of others. In addition, the voice loop system is structured around the mission control organization, and therefore directly supports the demands of the domain. By understanding how voice loops meet the particular demands of the mission control environment, insight can be gained for the design of groupware tools to support cooperative activity in other event-driven domains.

  18. Differential calculus and gauge transformations on a deformed space

    NASA Astrophysics Data System (ADS)

    Wess, Julius

    2007-08-01

    We consider a formalism by which gauge theories can be constructed on noncommutative space time structures. The coordinates are supposed to form an algebra, restricted by certain requirements that allow us to realise the algebra in terms of star products. In this formulation it is useful to define derivatives and to extend the algebra of coordinates by these derivatives. The elements of this extended algebra are deformed differential operators. We then show that there is a morphism between these deformed differential operators and the usual higher order differential operators acting on functions of commuting coordinates. In this way we obtain deformed gauge transformations and a deformed version of the algebra of diffeomorphisms. The deformation of these algebras can be clearly seen in the category of Hopf algebras. The comultiplication will be twisted. These twisted algebras can be realised on noncommutative spaces and allow the construction of deformed gauge theories and deformed gravity theory.

  19. Co-ordination of Mobile Information Agents in TuCSoN.

    ERIC Educational Resources Information Center

    Omicini, Andrea; Zambonelli, Franco

    1998-01-01

    Examines mobile agent coordination and presents TuCSoN, a coordination model for Internet applications based on mobile information agents that uses a tuple centre, a tuple space enhanced with the capability of programming its behavior in response to communication events. Discusses the effectiveness of the TuCSoN model in the contexts of Internet…

  20. Protection coordination of the Kennedy Space Center electric distribution network

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A computer technique is described for visualizing the coordination and protection of any existing system of devices and settings by plotting the tripping characteristics of the involved devices on a common basis. The program determines the optimum settings of a given set of protective devices and configuration in the sense of the best expected coordinated operation of these devices. Subroutines are given for simulating time versus current characteristics of the different relays, circuit breakers, and fuses in the system; coordination index computation; protection checks; plotting; and coordination optimation.

  1. Design of a walking robot

    NASA Technical Reports Server (NTRS)

    Whittaker, William; Dowling, Kevin

    1994-01-01

    Carnegie Mellon University's Autonomous Planetary Exploration Program (APEX) is currently building the Daedalus robot; a system capable of performing extended autonomous planetary exploration missions. Extended autonomy is an important capability because the continued exploration of the Moon, Mars and other solid bodies within the solar system will probably be carried out by autonomous robotic systems. There are a number of reasons for this - the most important of which are the high cost of placing a man in space, the high risk associated with human exploration and communication delays that make teleoperation infeasible. The Daedalus robot represents an evolutionary approach to robot mechanism design and software system architecture. Daedalus incorporates key features from a number of predecessor systems. Using previously proven technologies, the Apex project endeavors to encompass all of the capabilities necessary for robust planetary exploration. The Ambler, a six-legged walking machine was developed by CMU for demonstration of technologies required for planetary exploration. In its five years of life, the Ambler project brought major breakthroughs in various areas of robotic technology. Significant progress was made in: mechanism and control, by introducing a novel gait pattern (circulating gait) and use of orthogonal legs; perception, by developing sophisticated algorithms for map building; and planning, by developing and implementing the Task Control Architecture to coordinate tasks and control complex system functions. The APEX project is the successor of the Ambler project.

  2. Design of a walking robot

    NASA Astrophysics Data System (ADS)

    Whittaker, William; Dowling, Kevin

    1994-03-01

    Carnegie Mellon University's Autonomous Planetary Exploration Program (APEX) is currently building the Daedalus robot; a system capable of performing extended autonomous planetary exploration missions. Extended autonomy is an important capability because the continued exploration of the Moon, Mars and other solid bodies within the solar system will probably be carried out by autonomous robotic systems. There are a number of reasons for this - the most important of which are the high cost of placing a man in space, the high risk associated with human exploration and communication delays that make teleoperation infeasible. The Daedalus robot represents an evolutionary approach to robot mechanism design and software system architecture. Daedalus incorporates key features from a number of predecessor systems. Using previously proven technologies, the Apex project endeavors to encompass all of the capabilities necessary for robust planetary exploration. The Ambler, a six-legged walking machine was developed by CMU for demonstration of technologies required for planetary exploration. In its five years of life, the Ambler project brought major breakthroughs in various areas of robotic technology. Significant progress was made in: mechanism and control, by introducing a novel gait pattern (circulating gait) and use of orthogonal legs; perception, by developing sophisticated algorithms for map building; and planning, by developing and implementing the Task Control Architecture to coordinate tasks and control complex system functions. The APEX project is the successor of the Ambler project.

  3. Stability of hand force production. I. Hand level control variables and multifinger synergies.

    PubMed

    Reschechtko, Sasha; Latash, Mark L

    2017-12-01

    We combined the theory of neural control of movement with referent coordinates and the uncontrolled manifold hypothesis to explore synergies stabilizing the hand action in accurate four-finger pressing tasks. In particular, we tested a hypothesis on two classes of synergies, those among the four fingers and those within a pair of control variables, stabilizing hand action under visual feedback and disappearing without visual feedback. Subjects performed four-finger total force and moment production tasks under visual feedback; the feedback was later partially or completely removed. The "inverse piano" device was used to lift and lower the fingers smoothly at the beginning and at the end of each trial. These data were used to compute pairs of hypothetical control variables. Intertrial analysis of variance within the finger force space was used to quantify multifinger synergies stabilizing both force and moment. A data permutation method was used to quantify synergies among control variables. Under visual feedback, synergies in the spaces of finger forces and hypothetical control variables were found to stabilize total force. Without visual feedback, the subjects showed a force drift to lower magnitudes and a moment drift toward pronation. This was accompanied by disappearance of the four-finger synergies and strong attenuation of the control variable synergies. The indexes of the two types of synergies correlated with each other. The findings are interpreted within the scheme with multiple levels of abundant variables. NEW & NOTEWORTHY We extended the idea of hierarchical control with referent spatial coordinates for the effectors and explored two types of synergies stabilizing multifinger force production tasks. We observed synergies among finger forces and synergies between hypothetical control variables that stabilized performance under visual feedback but failed to stabilize it after visual feedback had been removed. Indexes of two types of synergies correlated with each other. The data suggest the existence of multiple mechanisms stabilizing motor actions. Copyright © 2017 the American Physiological Society.

  4. Three-dimensional magnetotelluric inversion in practice—the electrical conductivity structure of the San Andreas Fault in Central California

    NASA Astrophysics Data System (ADS)

    Tietze, Kristina; Ritter, Oliver

    2013-10-01

    3-D inversion techniques have become a widely used tool in magnetotelluric (MT) data interpretation. However, with real data sets, many of the controlling factors for the outcome of 3-D inversion are little explored, such as alignment of the coordinate system, handling and influence of data errors and model regularization. Here we present 3-D inversion results of 169 MT sites from the central San Andreas Fault in California. Previous extensive 2-D inversion and 3-D forward modelling of the data set revealed significant along-strike variation of the electrical conductivity structure. 3-D inversion can recover these features but only if the inversion parameters are tuned in accordance with the particularities of the data set. Based on synthetic 3-D data we explore the model space and test the impacts of a wide range of inversion settings. The tests showed that the recovery of a pronounced regional 2-D structure in inversion of the complete impedance tensor depends on the coordinate system. As interdependencies between data components are not considered in standard 3-D MT inversion codes, 2-D subsurface structures can vanish if data are not aligned with the regional strike direction. A priori models and data weighting, that is, how strongly individual components of the impedance tensor and/or vertical magnetic field transfer functions dominate the solution, are crucial controls for the outcome of 3-D inversion. If deviations from a prior model are heavily penalized, regularization is prone to result in erroneous and misleading 3-D inversion models, particularly in the presence of strong conductivity contrasts. A `good' overall rms misfit is often meaningless or misleading as a huge range of 3-D inversion results exist, all with similarly `acceptable' misfits but producing significantly differing images of the conductivity structures. Reliable and meaningful 3-D inversion models can only be recovered if data misfit is assessed systematically in the frequency-space domain.

  5. AMO EXPRESS: A Command and Control Experiment for Crew Autonomy Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Stetson, Howard K.; Frank, Jeremy; Cornelius, Randy; Haddock, Angie; Wang, Lui; Garner, Larry

    2015-01-01

    NASA is investigating a range of future human spaceflight missions, including both Mars-distance and Near Earth Object (NEO) targets. Of significant importance for these missions is the balance between crew autonomy and vehicle automation. As distance from Earth results in increasing communication delays, future crews need both the capability and authority to independently make decisions. However, small crews cannot take on all functions performed by ground today, and so vehicles must be more automated to reduce the crew workload for such missions. NASA's Advanced Exploration Systems Program funded Autonomous Mission Operations (AMO) project conducted an autonomous command and control experiment on-board the International Space Station that demonstrated single action intelligent procedures for crew command and control. The target problem was to enable crew initialization of a facility class rack with power and thermal interfaces, and involving core and payload command and telemetry processing, without support from ground controllers. This autonomous operations capability is enabling in scenarios such as initialization of a medical facility to respond to a crew medical emergency, and representative of other spacecraft autonomy challenges. The experiment was conducted using the Expedite the Processing of Experiments for Space Station (EXPRESS) rack 7, which was located in the Port 2 location within the U.S Laboratory onboard the International Space Station (ISS). Activation and deactivation of this facility is time consuming and operationally intensive, requiring coordination of three flight control positions, 47 nominal steps, 57 commands, 276 telemetry checks, and coordination of multiple ISS systems (both core and payload). Utilization of Draper Laboratory's Timeliner software, deployed on-board the ISS within the Command and Control (C&C) computers and the Payload computers, allowed development of the automated procedures specific to ISS without having to certify and employ novel software for procedure development and execution. The procedures contained the ground procedure logic and actions as possible to include fault detection and recovery capabilities.

  6. Data Management Coordinators Monitor STS-78 Mission at the Huntsville Operations Support Center

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Launched on June 20, 1996, the STS-78 mission's primary payload was the Life and Microgravity Spacelab (LMS), which was managed by the Marshall Space Flight Center (MSFC). During the 17 day space flight, the crew conducted a diverse slate of experiments divided into a mix of life science and microgravity investigations. In a manner very similar to future International Space Station operations, LMS researchers from the United States and their European counterparts shared resources such as crew time and equipment. Five space agencies (NASA/USA, European Space Agency/Europe (ESA), French Space Agency/France, Canadian Space Agency /Canada, and Italian Space Agency/Italy) along with research scientists from 10 countries worked together on the design, development and construction of the LMS. This photo represents Data Management Coordinators monitoring the progress of the mission at the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at MSFC. Pictured are assistant mission scientist Dr. Dalle Kornfeld, Rick McConnel, and Ann Bathew.

  7. Balancing Exploration, Uncertainty Representation and Computational Time in Many-Objective Reservoir Policy Optimization

    NASA Astrophysics Data System (ADS)

    Zatarain-Salazar, J.; Reed, P. M.; Quinn, J.; Giuliani, M.; Castelletti, A.

    2016-12-01

    As we confront the challenges of managing river basin systems with a large number of reservoirs and increasingly uncertain tradeoffs impacting their operations (due to, e.g. climate change, changing energy markets, population pressures, ecosystem services, etc.), evolutionary many-objective direct policy search (EMODPS) solution strategies will need to address the computational demands associated with simulating more uncertainties and therefore optimizing over increasingly noisy objective evaluations. Diagnostic assessments of state-of-the-art many-objective evolutionary algorithms (MOEAs) to support EMODPS have highlighted that search time (or number of function evaluations) and auto-adaptive search are key features for successful optimization. Furthermore, auto-adaptive MOEA search operators are themselves sensitive to having a sufficient number of function evaluations to learn successful strategies for exploring complex spaces and for escaping from local optima when stagnation is detected. Fortunately, recent parallel developments allow coordinated runs that enhance auto-adaptive algorithmic learning and can handle scalable and reliable search with limited wall-clock time, but at the expense of the total number of function evaluations. In this study, we analyze this tradeoff between parallel coordination and depth of search using different parallelization schemes of the Multi-Master Borg on a many-objective stochastic control problem. We also consider the tradeoff between better representing uncertainty in the stochastic optimization, and simplifying this representation to shorten the function evaluation time and allow for greater search. Our analysis focuses on the Lower Susquehanna River Basin (LSRB) system where multiple competing objectives for hydropower production, urban water supply, recreation and environmental flows need to be balanced. Our results provide guidance for balancing exploration, uncertainty, and computational demands when using the EMODPS framework to discover key tradeoffs within the LSRB system.

  8. BiSet: Semantic Edge Bundling with Biclusters for Sensemaking.

    PubMed

    Sun, Maoyuan; Mi, Peng; North, Chris; Ramakrishnan, Naren

    2016-01-01

    Identifying coordinated relationships is an important task in data analytics. For example, an intelligence analyst might want to discover three suspicious people who all visited the same four cities. Existing techniques that display individual relationships, such as between lists of entities, require repetitious manual selection and significant mental aggregation in cluttered visualizations to find coordinated relationships. In this paper, we present BiSet, a visual analytics technique to support interactive exploration of coordinated relationships. In BiSet, we model coordinated relationships as biclusters and algorithmically mine them from a dataset. Then, we visualize the biclusters in context as bundled edges between sets of related entities. Thus, bundles enable analysts to infer task-oriented semantic insights about potentially coordinated activities. We make bundles as first class objects and add a new layer, "in-between", to contain these bundle objects. Based on this, bundles serve to organize entities represented in lists and visually reveal their membership. Users can interact with edge bundles to organize related entities, and vice versa, for sensemaking purposes. With a usage scenario, we demonstrate how BiSet supports the exploration of coordinated relationships in text analytics.

  9. Modeling and sensory feedback control for space manipulators

    NASA Technical Reports Server (NTRS)

    Masutani, Yasuhiro; Miyazaki, Fumio; Arimoto, Suguru

    1989-01-01

    The positioning control problem of the endtip of space manipulators whose base are uncontrolled is examined. In such a case, the conventional control method for industrial robots based on a local feedback at each joint is not applicable, because a solution of the joint displacements that satisfies a given position and orientation of the endtip is not decided uniquely. A sensory feedback control scheme for space manipulators based on an artificial potential defined in a task-oriented coordinates is proposed. Using this scheme, the controller can easily determine the input torque of each joint from the data of an external sensor such as a visual device. Since the external sensor is mounted on the unfixed base, the manipulator must track the moving image of the target in sensor coordinates. Moreover the dynamics of the base and the manipulator are interactive. However, the endtip is proven to asymptotically approach the stationary target in an inertial coordinate frame by the Liapunov's method. Finally results of computer simulation for a 6-link space manipulator model show the effectiveness of the proposed scheme.

  10. Dynamics Sampling in Transition Pathway Space.

    PubMed

    Zhou, Hongyu; Tao, Peng

    2018-01-09

    The minimum energy pathway contains important information describing the transition between two states on a potential energy surface (PES). Chain-of-states methods were developed to efficiently calculate minimum energy pathways connecting two stable states. In the chain-of-states framework, a series of structures are generated and optimized to represent the minimum energy pathway connecting two states. However, multiple pathways may exist connecting two existing states and should be identified to obtain a full view of the transitions. Therefore, we developed an enhanced sampling method, named as the direct pathway dynamics sampling (DPDS) method, to facilitate exploration of a PES for multiple pathways connecting two stable states as well as addition minima and their associated transition pathways. In the DPDS method, molecular dynamics simulations are carried out on the targeting PES within a chain-of-states framework to directly sample the transition pathway space. The simulations of DPDS could be regulated by two parameters controlling distance among states along the pathway and smoothness of the pathway. One advantage of the chain-of-states framework is that no specific reaction coordinates are necessary to generate the reaction pathway, because such information is implicitly represented by the structures along the pathway. The chain-of-states setup in a DPDS method greatly enhances the sufficient sampling in high-energy space between two end states, such as transition states. By removing the constraint on the end states of the pathway, DPDS will also sample pathways connecting minima on a PES in addition to the end points of the starting pathway. This feature makes DPDS an ideal method to directly explore transition pathway space. Three examples demonstrate the efficiency of DPDS methods in sampling the high-energy area important for reactions on the PES.

  11. GSFC VLBI Analysis Center Annual Report

    NASA Technical Reports Server (NTRS)

    Gordon, David; Ma, Chopo; MacMillan, Dan

    1999-01-01

    The GSFC VLBI group, located at NASA's Goddard Space Flight Center in Greenbelt, MD, is a part of the NASA Space Geodesy Program. Since its inception in the mid 1970's, this group has been involved with and been a leader in most aspects of geodetic and astrometric VLBI. Current major activities include coordination of the international geodetic observing program; coordination and analysis of the CORE program; VLBI technique development; and all types of data processing, analysis, and research activities.

  12. Coordinated Ground and Space Measurements of Auroral Surge over South Pole.

    DTIC Science & Technology

    1988-02-01

    3y V. Coordinated Ground and Space Measurements of co an Auroral Surge over South Pole T. J. ROSENBERG and D. L. DETRICK Institute for Physical...Measurements of an Auroral Surge over South Pole 12. PERSONAL AUTHOR(S) Rosenberg, T. J., and DetrickD. L., University of Maryland; Mizera, Paul F., 13a. TYPE...premidnight auroral surge over Amundsen-Scott South Pole station. The set of near-simultaneous measurements provides an excellent opportunity to gain a

  13. Satellite orbits in Levi-Civita space

    NASA Astrophysics Data System (ADS)

    Humi, Mayer

    2018-03-01

    In this paper we consider satellite orbits in central force field with quadratic drag using two formalisms. The first using polar coordinates in which the satellite angular momentum plays a dominant role. The second is in Levi-Civita coordinates in which the energy plays a central role. We then merge these two formalisms by introducing polar coordinates in Levi-Civita space and derive a new equation for satellite orbits which unifies these two paradigms. In this equation energy and angular momentum appear on equal footing and thus characterize the orbit by its two invariants. Using this formalism we show that equatorial orbits around oblate spheroids can be expressed analytically in terms of Elliptic functions. In the second part of the paper we derive in Levi-Civita coordinates a linearized equation for the relative motion of two spacecrafts whose trajectories are in the same plane. We carry out also a numerical verification of these equations.

  14. KENNEDY SPACE CENTER, FLA. - Japanese girls from Urawa Daiichi Girls High School, Urawa, Japan, pose for a group photo during a visit to the Space Station Processing Facility. They were awarded the trip to Kennedy Space Center when their experiments were chosen to fly on mission STS-107. The girls are accompanied by American students from Melbourne and Jacksonville, Fla. The National Space Development Agency of Japan (NASDA) and the KSC International Space Station/Payload Processing Directorate worked with the NASA KSC Education Programs and University Research Division to coordinate the students’ visit.

    NASA Image and Video Library

    2003-08-20

    KENNEDY SPACE CENTER, FLA. - Japanese girls from Urawa Daiichi Girls High School, Urawa, Japan, pose for a group photo during a visit to the Space Station Processing Facility. They were awarded the trip to Kennedy Space Center when their experiments were chosen to fly on mission STS-107. The girls are accompanied by American students from Melbourne and Jacksonville, Fla. The National Space Development Agency of Japan (NASDA) and the KSC International Space Station/Payload Processing Directorate worked with the NASA KSC Education Programs and University Research Division to coordinate the students’ visit.

  15. Coordination of International Risk-Reduction Investigations by the Multilateral Human Research Panel for Exploration

    NASA Technical Reports Server (NTRS)

    Charles, John B.; Bogomolov, Valery V.

    2015-01-01

    Effective use of the unique capabilities of the International Space Station (ISS) for risk reduction on future deep space missions involves preliminary work in analog environments to identify and evaluate the most promising techniques, interventions and treatments. This entails a consolidated multinational approach to biomedical research both on ISS and in ground analogs. The Multilateral Human Research Panel for Exploration (MHRPE) was chartered by the five ISS partners to recommend the best combination of partner investigations on ISS for risk reduction in the relatively short time available for ISS utilization. MHRPE will also make recommendations to funding agencies for appropriate preparatory analog work. In 2011, NASA's Human Research Program (HRP) and the Institute of Biomedical Problems (IBMP) of the Russian Academy of Science, acting for MHRPE, developed a joint US-Russian biomedical program for the 2015 one-year ISS mission (1YM) of American and Russian crewmembers. This was to evaluate the possibilities for multilateral research on ISS. An overlapping list of 16 HRP, 9 IBMP, 3 Japanese, 3 European and 1 Canadian investigations were selected to address risk-reduction goals in 7 categories: Functional Performance, Behavioral Health, Visual Impairment, Metabolism, Physical Capacity, Microbial and Human Factors. MHRPE intends to build on this bilateral foundation to recommend more fully-integrated multilateral investigations on future ISS missions commencing after the 1YM. MHRPE has also endorsed an on-going program of coordinated research on 6-month, one-year and 6-week missions ISS expeditions that is now under consideration by ISS managers. Preparatory work for these missions will require coordinated and collaborative campaigns especially in the psychological and psychosocial areas using analog isolation facilities in Houston, Köln and Moscow, and possibly elsewhere. The multilateral Human Analogs research working group (HANA) is the focal point of those planning discussions, with MHRPE coordinating between the national programs and then supporting implementation on ISS. Experience gained during preparations for the 1YM has identified improvements in both American and Russian processes to enable well-integrated investigations on all subsequent ISS expeditions. Among those is that the greatest efficiency is to be gained with investigations that are fully integrated from their conception, with co-principal investigators, a consolidated proposal and integrated plans for crewmember time and other flight-related resources. Analog investigations preceding future ISS expeditions will employ these lessons in efficiency to evaluate the techniques and tools to be validated aboard ISS. In this way, the resources and capabilities of ISS can be applied most efficiently to solving the problems facing astronauts of all nations in missions deep into the solar system.

  16. NAAMES Photo Essay

    NASA Image and Video Library

    2017-12-08

    The C130 makes a low altitude turn over its designated research coordinates in the North Atlantic. --- The North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) is a five year investigation to resolve key processes controlling ocean system function, their influences on atmospheric aerosols and clouds and their implications for climate. Michael Starobin joined the NAAMES field campaign on behalf of Earth Expeditions and NASA Goddard Space Flight Center’s Office of Communications. He presented stories about the important, multi-disciplinary research being conducted by the NAAMES team, with an eye towards future missions on the NASA drawing board. This is a NAAMES photo essay put together by Starobin, a collection of 49 photographs and captions. Photo and Caption Credit: Michael Starobin NASA image use policy NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. NASA's Ship-Aircraft Bio-Optical Research (SABOR)

    NASA Image and Video Library

    2017-12-08

    Seaweed and Light A type of seaweed called Sargassum, common in the Sargasso Sea, floats by an instrument deployed here on July 26, 2014, as part of NASA's SABOR experiment. Scientists from the City College of New York use the data to study the way light becomes polarized in various conditions both above and below the surface of the ocean. NASA's Ship-Aircraft Bio-Optical Research (SABOR) experiment is a coordinated ship and aircraft observation campaign off the Atlantic coast of the United States, an effort to advance space-based capabilities for monitoring microscopic plants that form the base of the marine food chain. Read more: 1.usa.gov/WWRVzj Credit: NASA/SABOR/Wayne Slade, Sequoia Scientific .NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. The Efforts of the American Geophysical Union Space Physics and Aeronomy Section Education and Public Outreach Committee to Use NASA Research in Education and Outreach

    NASA Astrophysics Data System (ADS)

    Bering, E. A., III; Dusenbery, P.; Gross, N. A.; Johnson, R.; Lopez, R. E.; Lysak, R. L.; Moldwin, M.; Morrow, C. A.; Nichols-Yehling, M.; Peticolas, L. M.; Reiff, P. H.; Scherrer, D. K.; Thieman, J.; Wawro, M.; Wood, E. L.

    2017-12-01

    The American Geophysical Union Space Physics and Aeronomy Section Education and Public Outreach Committee (AGU SPA-EPO Committee) was established in 1990 to foster the growth of a culture of outreach and community engagement within the SPA Section of the AGU. The SPA was the first AGU Section to establish an EPO Committee. The Committee has initiated several key Section EPO programs that have grown to become Union programs. NASA sponsored research is central to the mission of the SPE-EPO. Programs highlighting NASA research include the Student Paper Competition, Exploration Station, a precursor to the GIFT workshops, the Student mixer, and more. The Committee played a key role in coordinating the AGU's outreach activities relating to the International Heliophysical Year in 2007-2008. This paper will review the triumphs, the failures, and the lessons learned about recruiting colleagues to join with us from the last quarter century of effort.

  19. Planetary Gravity Fields and Their Impact on a Spacecraft Trajectory

    NASA Technical Reports Server (NTRS)

    Weinwurm, G.; Weber, R.

    2005-01-01

    The present work touches an interdisciplinary aspect of space exploration: the improvement of spacecraft navigation by means of enhanced planetary interior model derivation. The better the bodies in our solar system are known and modelled, the more accurately (and safely) a spacecraft can be navigated. In addition, the information about the internal structure of a planet, moon or any other planetary body can be used in arguments for different theories of solar system evolution. The focus of the work lies in a new approach for modelling the gravity field of small planetary bodies: the implementation of complex ellipsoidal coordinates (figure 1, [4]) for irregularly shaped bodies that cannot be represented well by a straightforward spheroidal approach. In order to carry out the required calculations the computer programme GRASP (Gravity Field of a Planetary Body and its Influence on a Spacecraft Trajectory) has been developed [5]. The programme furthermore allows deriving the impact of the body s gravity field on a spacecraft trajectory and thus permits predictions for future space mission flybys.

  20. Obtaining Approximate Values of Exterior Orientation Elements of Multi-Intersection Images Using Particle Swarm Optimization

    NASA Astrophysics Data System (ADS)

    Li, X.; Li, S. W.

    2012-07-01

    In this paper, an efficient global optimization algorithm in the field of artificial intelligence, named Particle Swarm Optimization (PSO), is introduced into close range photogrammetric data processing. PSO can be applied to obtain the approximate values of exterior orientation elements under the condition that multi-intersection photography and a small portable plane control frame are used. PSO, put forward by an American social psychologist J. Kennedy and an electrical engineer R.C. Eberhart, is a stochastic global optimization method based on swarm intelligence, which was inspired by social behavior of bird flocking or fish schooling. The strategy of obtaining the approximate values of exterior orientation elements using PSO is as follows: in terms of image coordinate observed values and space coordinates of few control points, the equations of calculating the image coordinate residual errors can be given. The sum of absolute value of each image coordinate is minimized to be the objective function. The difference between image coordinate observed value and the image coordinate computed through collinear condition equation is defined as the image coordinate residual error. Firstly a gross area of exterior orientation elements is given, and then the adjustment of other parameters is made to get the particles fly in the gross area. After iterative computation for certain times, the satisfied approximate values of exterior orientation elements are obtained. By doing so, the procedures like positioning and measuring space control points in close range photogrammetry can be avoided. Obviously, this method can improve the surveying efficiency greatly and at the same time can decrease the surveying cost. And during such a process, only one small portable control frame with a couple of control points is employed, and there are no strict requirements for the space distribution of control points. In order to verify the effectiveness of this algorithm, two experiments are carried out. In the first experiment, images of a standard grid board are taken according to multi-intersection photography using digital camera. Three points or six points which are located on the left-down corner of the standard grid are regarded as control points respectively, and the exterior orientation elements of each image are computed through PSO, and compared with these elements computed through bundle adjustment. In the second experiment, the exterior orientation elements obtained from the first experiment are used as approximate values in bundle adjustment and then the space coordinates of other grid points on the board can be computed. The coordinate difference of grid points between these computed space coordinates and their known coordinates can be used to compute the accuracy. The point accuracy computed in above experiments are ±0.76mm and ±0.43mm respectively. The above experiments prove the effectiveness of PSO used in close range photogrammetry to compute approximate values of exterior orientation elements, and the algorithm can meet the requirement of higher accuracy. In short, PSO can get better results in a faster, cheaper way compared with other surveying methods in close range photogrammetry.

  1. Enhancing Team Performance for Long-Duration Space Missions

    NASA Technical Reports Server (NTRS)

    Orasanu, Judith M.

    2009-01-01

    Success of exploration missions will depend on skilled performance by a distributed team that includes both the astronauts in space and Mission Control personnel. Coordinated and collaborative teamwork will be required to cope with challenging complex problems in a hostile environment. While thorough preflight training and procedures will equip creW'S to address technical problems that can be anticipated, preparing them to solve novel problems is much more challenging. This presentation will review components of effective team performance, challenges to effective teamwork, and strategies for ensuring effective team performance. Teamwork skills essential for successful team performance include the behaviors involved in developing shared mental models, team situation awareness, collaborative decision making, adaptive coordination behaviors, effective team communication, and team cohesion. Challenges to teamwork include both chronic and acute stressors. Chronic stressors are associated with the isolated and confined environment and include monotony, noise, temperatures, weightlessness, poor sleep and circadian disruptions. Acute stressors include high workload, time pressure, imminent danger, and specific task-related stressors. Of particular concern are social and organizational stressors that can disrupt individual resilience and effective mission performance. Effective team performance can be developed by training teamwork skills, techniques for coping with team conflict, intracrew and intercrew communication, and working in a multicultural team; leadership and teamwork skills can be fostered through outdoor survival training exercises. The presentation will conclude with an evaluation of the special requirements associated with preparing crews to function autonomously in long-duration missions.

  2. Tidal disruptions by rotating black holes: relativistic hydrodynamics with Newtonian codes

    NASA Astrophysics Data System (ADS)

    Tejeda, Emilio; Gafton, Emanuel; Rosswog, Stephan; Miller, John C.

    2017-08-01

    We propose an approximate approach for studying the relativistic regime of stellar tidal disruptions by rotating massive black holes. It combines an exact relativistic description of the hydrodynamical evolution of a test fluid in a fixed curved space-time with a Newtonian treatment of the fluid's self-gravity. Explicit expressions for the equations of motion are derived for Kerr space-time using two different coordinate systems. We implement the new methodology within an existing Newtonian smoothed particle hydrodynamics code and show that including the additional physics involves very little extra computational cost. We carefully explore the validity of the novel approach by first testing its ability to recover geodesic motion, and then by comparing the outcome of tidal disruption simulations against previous relativistic studies. We further compare simulations in Boyer-Lindquist and Kerr-Schild coordinates and conclude that our approach allows accurate simulation even of tidal disruption events where the star penetrates deeply inside the tidal radius of a rotating black hole. Finally, we use the new method to study the effect of the black hole spin on the morphology and fallback rate of the debris streams resulting from tidal disruptions, finding that while the spin has little effect on the fallback rate, it does imprint heavily on the stream morphology, and can even be a determining factor in the survival or disruption of the star itself. Our methodology is discussed in detail as a reference for future astrophysical applications.

  3. International Space Station Laboratory "Destiny" Hardware Move From MSFC to KSC

    NASA Technical Reports Server (NTRS)

    Welch, Andrew C.

    2003-01-01

    The transportation and handling of space flight hardware always demands the utmost care and planning. This was especially true when it came time to move the International Space Station lab module "Destiny" from its manufacturing facility at the Marshall Space Flight Center (MSFC) to the launch facility at the Kennedy Space Center in Florida. Good logistics management was the key to the coordination of the large team required to move the lab from the MSFC manufacturing facility 12 miles to the Huntsville International Airport. Overhead signs, power lines, and traffic lights had to be removed, law enforcement had to be coordinated and a major highway had to be completely shut down during the transportation phase of the move. The team responded well, and the move was accomplished on time with no major difficulties.

  4. Metrics in Keplerian orbits quotient spaces

    NASA Astrophysics Data System (ADS)

    Milanov, Danila V.

    2018-03-01

    Quotient spaces of Keplerian orbits are important instruments for the modelling of orbit samples of celestial bodies on a large time span. We suppose that variations of the orbital eccentricities, inclinations and semi-major axes remain sufficiently small, while arbitrary perturbations are allowed for the arguments of pericentres or longitudes of the nodes, or both. The distance between orbits or their images in quotient spaces serves as a numerical criterion for such problems of Celestial Mechanics as search for common origin of meteoroid streams, comets, and asteroids, asteroid families identification, and others. In this paper, we consider quotient sets of the non-rectilinear Keplerian orbits space H. Their elements are identified irrespective of the values of pericentre arguments or node longitudes. We prove that distance functions on the quotient sets, introduced in Kholshevnikov et al. (Mon Not R Astron Soc 462:2275-2283, 2016), satisfy metric space axioms and discuss theoretical and practical importance of this result. Isometric embeddings of the quotient spaces into R^n, and a space of compact subsets of H with Hausdorff metric are constructed. The Euclidean representations of the orbits spaces find its applications in a problem of orbit averaging and computational algorithms specific to Euclidean space. We also explore completions of H and its quotient spaces with respect to corresponding metrics and establish a relation between elements of the extended spaces and rectilinear trajectories. Distance between an orbit and subsets of elliptic and hyperbolic orbits is calculated. This quantity provides an upper bound for the metric value in a problem of close orbits identification. Finally the invariance of the equivalence relations in H under coordinates change is discussed.

  5. How the UK Can Lead the Terrestrial Translation of Biomedical Advances Arising from Lunar Exploration Activities

    NASA Astrophysics Data System (ADS)

    Green, David A.

    2010-12-01

    Terrestrial translation of biomedical advances is insufficient justification for lunar exploration. However, terrestrial translation should be viewed as a critical part of the cycle of mission planning, execution and review, both in terms of the progress of space exploration, but also of sustained life on Earth. Thus, both the mission and its potential to benefit mankind are increased by the adoption of human-based exploration of the lunar surface. Whilst European biomedical sciences have grown in stature, there remains a gap between space biomedical science and terrestrial medical application. As such, an opportunity for the UK to take a sustainable leadership role exists by utilising its biomedical science community, socialised health care system (National Health Service) and defined mechanisms to determine the clinical efficacy and cost-effectiveness upon health and wellbeing (i.e. National Institute Clinical Excellence), aiding the difficult process of health care rationing. By focusing upon exploitation of the more scientifically rewarding, potentially long-term and more terrestrially analogous challenge of lunar habitation, the UK would circumnavigate the current impediments to International Space Station utilisation. Early engagement in lunar exploration would promote the UK, and its adoption of a leadership role incorporating a considered approach to the development of space biomedicine with an eye to its terrestrial value. For instance, prolonged lunar habitation could provide an `ideal controlled environment' for investigation of medical interventions, in particular multiple interactions (e.g. between exercise and nutrition), a model of accelerated aging and a number of chronic pathologies, including those related to disuse. Lunar advances could provide a springboard for individualized medicine, insights into occupational and de-centralised medicine (e.g. telemedicine) and act as a stimulus for biomedical innovation and understanding. Leadership in biomedical science activities would retain mission critically (and thus avoid obsolesce) so long as a human is involved (irrespective of specific mission architecture) and could be used to leverage opportunities for UK-based institutions, companies and individuals, most notably current ESA astronaut candidate Major Tim Peake. A combination of ESA engagement and national support for space biomedical sciences via research councils (e.g. Medical Research Council) could facilitate a virtuous circle of investment, advancement and socio-economic return invigorating the NHS, education, and key research initiatives such as ESA Harwell, UK Centre for Medical Research and Innovation, and the newly instigated Academic Health Science Centres. Such a strategy could also boost private space enterprise within the UK including the creation of a space port and could help retain the UK's position as a European aerospace transportation, services and legislative hub. By focusing upon its biomedical strength within a multi-faceted but co-ordinated strategy of engagement, the UK could reap significant socio-economic benefits for the UK and its citizens, be they on the Moon, or the Earth.

  6. NASA deep space network operations planning and preparation

    NASA Technical Reports Server (NTRS)

    Jensen, W. N.

    1982-01-01

    The responsibilities and structural organization of the Operations Planning Group of NASA Deep Space Network (DSN) Operations are outlined. The Operations Planning group establishes an early interface with a user's planning organization to educate the user on DSN capabilities and limitations for deep space tracking support. A team of one or two individuals works through all phases of the spacecraft launch and also provides planning and preparation for specific events such as planetary encounters. Coordinating interface is also provided for nonflight projects such as radio astronomy and VLBI experiments. The group is divided into a Long Range Support Planning element and a Near Term Operations Coordination element.

  7. Penetration rates over 30 years in the space age

    NASA Technical Reports Server (NTRS)

    Mcdonnell, J. A. M.; Baron, J. M.

    1995-01-01

    Experimental data from spacecraft providing impact penetration rates and cratering for metallic targets is reviewed. Data includes NASA Explorers 16 and 23 and the Pegasus series, the second US-UK satellite Ariel 2, Space Shuttle STS-3 (MFE), recovered surfaces on Solar Max Satellite, The Long Duration Exposure Facility (LDEF) and EuReCa TiCCE. Factors concerning exposure to the environment are considered and, especially, material properties which affect the penetration resistance. Reference to a common material, Aluminum alloy 2024-T3, is effected and the data then compared to define firstly an average impact flux over the period. The data is examined, in the context of possible satellite and space debris growth rates, to determine the constancy of the flux. This also provides strong constraints on the current space debris component. It is found that the impact data are consistent with domination by natural meteoroid sources. Growth rates are not evident within the period 1980-1990 and Eureca TiCCE fluxes in 1993, for particles penetrating foils of around 10 microns thickness, supports the constancy of the flux. At larger dimensions the 1993 Eureca TiCCE fluxes show an 8-fold increase but this is considered not inconsistent with the selective exposure to meteoroid streams of a satellite stabilized in heliocentric co-ordinates for an 11 month period.

  8. Fourth-Order Conservative Vlasov-Maxwell Solver for Cartesian and Cylindrical Phase Space Coordinates

    NASA Astrophysics Data System (ADS)

    Vogman, Genia

    Plasmas are made up of charged particles whose short-range and long-range interactions give rise to complex behavior that can be difficult to fully characterize experimentally. One of the most complete theoretical descriptions of a plasma is that of kinetic theory, which treats each particle species as a probability distribution function in a six-dimensional position-velocity phase space. Drawing on statistical mechanics, these distribution functions mathematically represent a system of interacting particles without tracking individual ions and electrons. The evolution of the distribution function(s) is governed by the Boltzmann equation coupled to Maxwell's equations, which together describe the dynamics of the plasma and the associated electromagnetic fields. When collisions can be neglected, the Boltzmann equation is reduced to the Vlasov equation. High-fidelity simulation of the rich physics in even a subset of the full six-dimensional phase space calls for low-noise high-accuracy numerical methods. To that end, this dissertation investigates a fourth-order finite-volume discretization of the Vlasov-Maxwell equation system, and addresses some of the fundamental challenges associated with applying these types of computationally intensive enhanced-accuracy numerical methods to phase space simulations. The governing equations of kinetic theory are described in detail, and their conservation-law weak form is derived for Cartesian and cylindrical phase space coordinates. This formulation is well known when it comes to Cartesian geometries, as it is used in finite-volume and finite-element discretizations to guarantee local conservation for numerical solutions. By contrast, the conservation-law weak form of the Vlasov equation in cylindrical phase space coordinates is largely unexplored, and to the author's knowledge has never previously been solved numerically. Thereby the methods described in this dissertation for simulating plasmas in cylindrical phase space coordinates present a new development in the field of computational plasma physics. A fourth-order finite-volume method for solving the Vlasov-Maxwell equation system is presented first for Cartesian and then for cylindrical phase space coordinates. Special attention is given to the treatment of the discrete primary variables and to the quadrature rule for evaluating the surface and line integrals that appear in the governing equations. The finite-volume treatment of conducting wall and axis boundaries is particularly nuanced when it comes to phase space coordinates, and is described in detail. In addition to the mechanics of each part of the finite-volume discretization in the two different coordinate systems, the complete algorithm is also presented. The Cartesian coordinate discretization is applied to several well-known test problems. Since even linear analysis of kinetic theory governing equations is complicated on account of velocity being an independent coordinate, few analytic or semi-analytic predictions exist. Benchmarks are particularly scarce for configurations that have magnetic fields and involve more than two phase space dimensions. Ensuring that simulations are true to the physics thus presents a difficulty in the development of robust numerical methods. The research described in this dissertation addresses this challenge through the development of more complete physics-based benchmarks based on the Dory-Guest-Harris instability. The instability is a special case of perpendicularly-propagating kinetic electrostatic waves in a warm uniformly magnetized plasma. A complete derivation of the closed-form linear theory dispersion relation for the instability is presented. The electric field growth rates and oscillation frequencies specified by the dispersion relation provide concrete measures against which simulation results can be quantitatively compared. Furthermore, a specialized form of perturbation is shown to strongly excite the fastest growing mode. The fourth-order finite-volume algorithm is benchmarked against the instability, and is demonstrated to have good convergence properties and close agreement with theoretical growth rate and oscillation frequency predictions. The Dory-Guest-Harris instability benchmark extends the scope of standard test problems by providing a substantive means of validating continuum kinetic simulations of warm magnetized plasmas in higher-dimensional 3D ( x,vx,vy) phase space. The linear theory analysis, initial conditions, algorithm description, and comparisons between theoretical predictions and simulation results are presented. The cylindrical coordinate finite-volume discretization is applied to model axisymmetric systems. Since mitigating the prohibitive computational cost of simulating six dimensions is another challenge in phase space simulations, the development of a robust means of exploiting symmetry is a major advance when it comes to numerically solving the Vlasov-Maxwell equation system. The discretization is applied to a uniform distribution function to assess the nature of the singularity at the axis, and is demonstrated to converge at fourth-order accuracy. The numerical method is then applied to simulate electrostatic ion confinement in an axisymmetric Z-pinch configuration. To the author's knowledge this presents the first instance of a conservative finite-volume discretization of the cylindrical coordinate Vlasov equation. The computational framework for the Vlasov-Maxwell solver is described, and an outlook for future research is presented.

  9. New vision solar system mission study: Use of space reactor bimodal system with microspacecraft to determine origin and evolution of the outer plants in the solar system

    NASA Technical Reports Server (NTRS)

    Mondt, Jack F.; Zubrin, Robert M.

    1996-01-01

    The vision for the future of the planetary exploration program includes the capability to deliver 'constellations' or 'fleets' of microspacecraft to a planetary destination. These fleets will act in a coordinated manner to gather science data from a variety of locations on or around the target body, thus providing detailed, global coverage without requiring development of a single large, complex and costly spacecraft. Such constellations of spacecraft, coupled with advanced information processing and visualization techniques and high-rate communications, could provide the basis for development of a 'virtual presence' in the solar system. A goal could be the near real-time delivery of planetary images and video to a wide variety of users in the general public and the science community. This will be a major step in making the solar system accessible to the public and will help make solar system exploration a part of the human experience on Earth.

  10. Can we detect oceanic biodiversity hotspots from space?

    PubMed

    De Monte, Silvia; Soccodato, Alice; Alvain, Séverine; d'Ovidio, Francesco

    2013-10-01

    Understanding the variability of marine biodiversity is a central issue in microbiology. Current observational programs are based on in situ studies, but their implementation at the global scale is particularly challenging, owing to the ocean extent, its temporal variability and the heterogeneity of the data sources on which compilations are built. Here, we explore the possibility of identifying phytoplanktonic biodiversity hotspots from satellite. We define a Shannon entropy index based on patchiness in ocean color bio-optical anomalies. This index provides a high resolution (1 degree) global coverage. It shows a relation to temperature and mid-latitude maxima in accordance with those previously evidenced in microbiological biodiversity model and observational studies. Regional maxima are in remarkable agreement with several known biodiversity hotspots for plankton organisms and even for higher levels of the marine trophic chain, as well as with some in situ planktonic biodiversity estimates (from Atlantic Meridional Transect cruise). These results encourage to explore marine biodiversity with a coordinated effort of the molecular, ecological and remote sensing communities.

  11. NTR-Enhanced Lunar-Base Supply using Existing Launch Fleet Capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John D. Bess; Emily Colvin; Paul G. Cummings

    During the summer of 2006, students at the Center for Space Nuclear Research sought to augment the current NASA lunar exploration architecture with a nuclear thermal rocket (NTR). An additional study investigated the possible use of an NTR with existing launch vehicles to provide 21 metric tons of supplies to the lunar surface in support of a lunar outpost. Current cost estimates show that the complete mission cost for an NTR-enhanced assembly of Delta-IV and Atlas V vehicles may cost 47-86% more than the estimated Ares V launch cost of $1.5B; however, development costs for the current NASA architecture havemore » not been assessed. The additional cost of coordinating the rendezvous of four to six launch vehicles with an in-orbit assembly facility also needs more thorough analysis and review. Future trends in launch vehicle use will also significantly impact the results from this comparison. The utility of multiple launch vehicles allows for the development of a more robust and lower risk exploration architecture.« less

  12. Fast localized orthonormal virtual orbitals which depend smoothly on nuclear coordinates.

    PubMed

    Subotnik, Joseph E; Dutoi, Anthony D; Head-Gordon, Martin

    2005-09-15

    We present here an algorithm for computing stable, well-defined localized orthonormal virtual orbitals which depend smoothly on nuclear coordinates. The algorithm is very fast, limited only by diagonalization of two matrices with dimension the size of the number of virtual orbitals. Furthermore, we require no more than quadratic (in the number of electrons) storage. The basic premise behind our algorithm is that one can decompose any given atomic-orbital (AO) vector space as a minimal basis space (which includes the occupied and valence virtual spaces) and a hard-virtual (HV) space (which includes everything else). The valence virtual space localizes easily with standard methods, while the hard-virtual space is constructed to be atom centered and automatically local. The orbitals presented here may be computed almost as quickly as projecting the AO basis onto the virtual space and are almost as local (according to orbital variance), while our orbitals are orthonormal (rather than redundant and nonorthogonal). We expect this algorithm to find use in local-correlation methods.

  13. An enhanced multi-view vertical line locus matching algorithm of object space ground primitives based on positioning consistency for aerial and space images

    NASA Astrophysics Data System (ADS)

    Zhang, Ka; Sheng, Yehua; Wang, Meizhen; Fu, Suxia

    2018-05-01

    The traditional multi-view vertical line locus (TMVLL) matching method is an object-space-based method that is commonly used to directly acquire spatial 3D coordinates of ground objects in photogrammetry. However, the TMVLL method can only obtain one elevation and lacks an accurate means of validating the matching results. In this paper, we propose an enhanced multi-view vertical line locus (EMVLL) matching algorithm based on positioning consistency for aerial or space images. The algorithm involves three components: confirming candidate pixels of the ground primitive in the base image, multi-view image matching based on the object space constraints for all candidate pixels, and validating the consistency of the object space coordinates with the multi-view matching result. The proposed algorithm was tested using actual aerial images and space images. Experimental results show that the EMVLL method successfully solves the problems associated with the TMVLL method, and has greater reliability, accuracy and computing efficiency.

  14. Finite element analysis of space debris removal by high-power lasers

    NASA Astrophysics Data System (ADS)

    Xue, Li; Jiang, Guanlei; Yu, Shuang; Li, Ming

    2015-08-01

    With the development of space station technologies, irradiation of space debris by space-based high-power lasers, can locally generate high-temperature plasmas and micro momentum, which may achieve the removal of debris through tracking down. Considered typical square-shaped space debris of material Ti with 5cm×5cm size, whose thermal conductivity, density, specific heat capacity and emissivity are 7.62W/(m·°C), 4500kg/m3, 0.52J/(kg·°C) and 0.3,respectively, based on the finite element analysis of ANSYS, each irradiation of space debris by high-power lasers with power density 106W/m2 and weapons-grade lasers with power density 3000W/m2 are simulated under space environment, and the temperature curves due to laser thermal irradiation are obtained and compared. Results show only 2s is needed for high-power lasers to make the debris temperature reach to about 10000K, which is the threshold temperature for plasmas-state conversion. While for weapons-grade lasers, it is 13min needed. Using two line elements (TLE), and combined with the coordinate transformation from celestial coordinate system to site coordinate system, the visible period of space debris is calculated as 5-10min. That is, in order to remove space debris by laser plasmas, the laser power density should be further improved. The article provides an intuitive and visual feasibility analysis method of space debris removal, and the debris material and shape, laser power density and spot characteristics are adjustable. This finite element analysis method is low-cost, repeatable and adaptable, which has an engineering-prospective applications.

  15. Communicating Risk with Parents: Exploring the Methods and Beliefs of Outdoor Education Coordinators in Victoria, Australia

    ERIC Educational Resources Information Center

    Dallat, Clare

    2009-01-01

    This paper examines the risk communication strategies currently being employed by seven outdoor education co-ordinators in Government schools in Victoria, Australia. Of particular interest are the beliefs and assumptions held by these co-ordinators in relation to communicating risk with parents. Current policy stipulates that parents must be…

  16. The virtual mission approach: Empowering earth and space science missions

    NASA Astrophysics Data System (ADS)

    Hansen, Elaine

    1993-08-01

    Future Earth and Space Science missions will address increasingly broad and complex scientific issues. To accomplish this task, we will need to acquire and coordinate data sets from a number of different instrumetns, to make coordinated observations of a given phenomenon, and to coordinate the operation of the many individual instruments making these observations. These instruments will need to be used together as a single ``Virtual Mission.'' This coordinated approach is complicated in that these scientific instruments will generally be on different platforms, in different orbits, from different control centers, at different institutions, and report to different user groups. Before this Virtual Mission approach can be implemented, techniques need to be developed to enable separate instruments to work together harmoniously, to execute observing sequences in a synchronized manner, and to be managed by the Virtual Mission authority during times of these coordinated activities. Enabling technologies include object-oriented designed approaches, extended operations management concepts and distributed computing techniques. Once these technologies are developed and the Virtual Mission concept is available, we believe the concept will provide NASA's Science Program with a new, ``go-as-you-pay,'' flexible, and resilient way of accomplishing its science observing program. The concept will foster the use of smaller and lower cost satellites. It will enable the fleet of scientific satellites to evolve in directions that best meet prevailing science needs. It will empower scientists by enabling them to mix and match various combinations of in-space, ground, and suborbital instruments - combinations which can be called up quickly in response to new events or discoveries. And, it will enable small groups such as universities, Space Grant colleges, and small businesses to participate significantly in the program by developing small components of this evolving scientific fleet.

  17. New concept of aging care architecture landscape design based on sustainable development

    NASA Astrophysics Data System (ADS)

    Xu, Ying

    2017-05-01

    As the aging problem becoming serious in China, Aging care is now one of the top issuer in front of all of us. Lots of private and public aging care architecture and facilities have been built. At present, we only pay attention to the architecture design and interior design scientific, ecological and sustainable design on aged care architecture landscape. Based on the social economy, population resources, mutual coordination and development of the environment, taking the elderly as the special group, this paper follows the principles of the sustainable development, conducts the comprehensive design planning of aged care landscape architecture and makes a deeper understanding and exploration through changing the form of architectural space, ecological landscape planting, new materials and technology, ecological energy utilization.

  18. A comparison of design variables for control theory based airfoil optimization

    NASA Technical Reports Server (NTRS)

    Reuther, James; Jameson, Antony

    1995-01-01

    This paper describes the implementation of optimization techniques based on control theory for airfoil design. In our previous work in the area it was shown that control theory could be employed to devise effective optimization procedures for two-dimensional profiles by using either the potential flow or the Euler equations with either a conformal mapping or a general coordinate system. We have also explored three-dimensional extensions of these formulations recently. The goal of our present work is to demonstrate the versatility of the control theory approach by designing airfoils using both Hicks-Henne functions and B-spline control points as design variables. The research also demonstrates that the parameterization of the design space is an open question in aerodynamic design.

  19. MOLA: The Future of Mars Global Cartography

    NASA Technical Reports Server (NTRS)

    Duxbury, T. C.; Smith, D. E.; Zuber, M. T.; Frey, H. V.; Garvin, J. B.; Head, J. W.; Muhleman, D. O.; Pettengill, G. H.; Phillips, R. J.; Solomon, S. C.

    1999-01-01

    The MGS Orbiter is carrying the high-precision Mars Orbiter Laser Altimeter (MOLA) which, when combined with precision reconstructed orbital data and telemetered attitude data, provides a tie between inertial space and Mars-fixed coordinates to an accuracy of 100 m in latitude / longitude and 10 m in radius (1 sigma), orders of magnitude more accurate than previous global geodetic/ cartographic control data. Over the 2 year MGS mission lifetime, it is expected that over 30,000 MOLA Global Cartographic Control Points will be produced to form the basis for new and re-derived map and geodetic products, key to the analysis of existing and evolving MGS data as well as future Mars exploration. Additional information is contained in the original extended abstract.

  20. Telescience at the University of California, Berkeley

    NASA Technical Reports Server (NTRS)

    Chakrabarti, S.; Marchant, W. T.; Kaplan, G. C.; Dobson, C. A.; Jernigan, J. G.; Lampton, M. L.; Malina, R. F.

    1989-01-01

    The University of California at Berkeley (UCB) is a member of a university consortium involved in telescience testbed activities under the sponsorship of NASA. Our Telescience Testbed Project consists of three experiments using flight hardware being developed for the Extreme Ultraviolet Explorer project at UCB's Space Sciences Laboratory. The first one is a teleoperation experiment investigating remote instrument control using a computer network such as the Internet. The second experiment is an effort to develop a system for operation of a network of remote workstations allowing coordinated software development, evaluation, and use by widely dispersed groups. The final experiment concerns simulation as a method to facilitate the concurrent development of instrument hardware and support software. We describe our progress in these areas.

  1. A color coordinate system from a 13th century account of rainbows

    PubMed Central

    Smithson, Hannah E.; Anderson, Philip S.; Dinkova-Bruun, Greti; Fosbury, Robert A. E.; Gasper, Giles E. M.; Laven, Philip; McLeish, Tom C. B.; Panti, Cecilia; Tanner, Brian

    2015-01-01

    We present a new analysis of Robert Grosseteste’s account of color in his treatise De iride, On the Rainbow, dating from the early 13th century. The work explores color within the three-dimensional framework set out in Grosseteste’s De colore (see Smithson et al, 2012, A three-dimensional color space from the 13th century.” Journal of the Optical Society of America (A), 29 (2), A346-A352), but now links the axes of variation to observable properties of rainbows. We combine a modern understanding of the physics of rainbows and of human color perception to resolve the linguistic ambiguities of the medieval text and to interpret Grosseteste’s key terms. PMID:24695192

  2. How to Run FAST Simulations.

    PubMed

    Zimmerman, M I; Bowman, G R

    2016-01-01

    Molecular dynamics (MD) simulations are a powerful tool for understanding enzymes' structures and functions with full atomistic detail. These physics-based simulations model the dynamics of a protein in solution and store snapshots of its atomic coordinates at discrete time intervals. Analysis of the snapshots from these trajectories provides thermodynamic and kinetic properties such as conformational free energies, binding free energies, and transition times. Unfortunately, simulating biologically relevant timescales with brute force MD simulations requires enormous computing resources. In this chapter we detail a goal-oriented sampling algorithm, called fluctuation amplification of specific traits, that quickly generates pertinent thermodynamic and kinetic information by using an iterative series of short MD simulations to explore the vast depths of conformational space. © 2016 Elsevier Inc. All rights reserved.

  3. Bringing Gravity to Space

    NASA Technical Reports Server (NTRS)

    Norsk, P.; Shelhamer, M.

    2016-01-01

    This panel will present NASA's plans for ongoing and future research to define the requirements for Artificial Gravity (AG) as a countermeasure against the negative health effects of long-duration weightlessness. AG could mitigate the gravity-sensitive effects of spaceflight across a host of physiological systems. Bringing gravity to space could mitigate the sensorimotor and neuro-vestibular disturbances induced by G-transitions upon reaching a planetary body, and the cardiovascular deconditioning and musculoskeletal weakness induced by weightlessness. Of particular interest for AG during deep-space missions is mitigation of the Visual Impairment Intracranial Pressure (VIIP) syndrome that the majority of astronauts exhibit in space to varying degrees, and which presumably is associated with weightlessness-induced fluid shift from lower to upper body segments. AG could be very effective for reversing the fluid shift and thus help prevent VIIP. The first presentation by Dr. Charles will summarize some of the ground-based and (very little) space-based research that has been conducted on AG by the various space programs. Dr. Paloski will address the use of AG during deep-space exploration-class missions and describe the different AG scenarios such as intra-vehicular, part-of-vehicle, or whole-vehicle centrifugations. Dr. Clement will discuss currently planned NASA research as well as how to coordinate future activities among NASA's international partners. Dr. Barr will describe some possible future plans for using space- and ground-based partial-G analogs to define the relationship between physiological responses and G levels between 0 and 1. Finally, Dr. Stenger will summarize how the human cardiovascular system could benefit from intermittent short-radius centrifugations during long-duration missions.

  4. Packing Up for the Moon: Human Exploration Project Engineering Design Challenge. Design, Build and Evaluate. A Standards-Based Middle School Unit Guide. Engineering By Design: Advancing Technological Literacy--A Standards-Based Program Series

    ERIC Educational Resources Information Center

    NASA Educator Resource Center at Marshall Space Flight Center, 2007

    2007-01-01

    The Human Exploration Project (HEP) units have several common characteristics. All units: (1) Are based upon the Technological Literacy standards (ITEA, 2000/2002); (2) Coordinate with Science (AAAS, 1993) and Mathematics standards (NCTM, 2000); (3) Utilize a standards-based development approach (ITEA, 2005); (4) Stand alone and coordinate with…

  5. Influences of the coordinate dependent noncommutative space on charged and spin currents

    NASA Astrophysics Data System (ADS)

    Ren, Ya-Jie; Ma, Kai

    2018-06-01

    We study the charged and spin currents on a coordinate dependent noncommutative space. Starting from the noncommutative extended relativistic equation of motion, the nonrelativistic approximation is obtained by using the Foldy-Wouthuysen transformation, and then the charged and spin currents are derived by using the extended Drude model. We find that the charged current is twisted by modifying the off-diagonal elements of the Hall conductivity, however, the spin current is not affected up to leading order of the noncommutative parameter.

  6. National Coordination Office for Space-Based PNT

    NASA Astrophysics Data System (ADS)

    Shaw, M. E.

    2008-12-01

    In December 2004, President Bush issued the US Policy on space-based positioning, navigation, and timing (PNT), providing guidance on the management of the Global Positioning System (GPS) and other space- based PNT systems. The policy established the National Executive Committee (EXCOM) to advise and coordinate federal agencies on matters related to space-based PNT. Chaired jointly by the deputy secretaries of defense and transportation, the EXCOM includes equivalent level officials from the Departments of State, the Interior, Agriculture, Commerce, and Homeland Security, the Joint Chiefs of Staff, and the National Aeronautics and Space Administration (NASA). A National Coordination Office (NCO) supports the EXCOM through an interagency staff. Since establishing the EXCOM and NCO in 2005, the organizations have quickly grown in influence and effectiveness, leading or managing many interagency initiatives including the development of a Five-Year National Space-Based PNT Plan, the Space-Based PNT Interference Detection and Mitigation (IDM) Plan, and other strategic documents. The NCO has also facilitated interagency coordination on numerous policy issues and on external communications intended to spread a consistent, positive US message about space-based PNT. Role of the NCO - The purpose of the EXCOM is to provide top-level guidance to US agencies regarding space-based PNT infrastructure. The president established it at the deputy secretary level to ensure its strategic recommendations effect real change in agency budgets. Recognizing such high-level officials could only meet every few months, the president directed the EXCOM to establish an NCO to carry out its day-to-day business, including overseeing the implementation of EXCOM action items across the member agencies. These range from the resolution of funding issues to the assessment of strategic policy options. They also include the completion of specific tasks and documents requested by the EXCOM co-chairs. The NCO has established several processes for achieving interagency consensus on policy issues, including specialized staff-level working groups and an assistant secretary-level Executive Steering Group. The NCO also established a process for interagency coordination of US government communications related to space-based PNT, including speeches, presentations, and other externally released documents. The goal is to ensure government-wide consistency and accuracy in public and international statements made about space-based PNT. This is particularly important in addressing false or misleading information about GPS in the public arena. Conclusion - In less than three years, the NCO evolved from an idea into a highly active organization with substantial influence within the space-based PNT community. NCO efforts have helped build the EXCOM into an effective mechanism for raising issues to the attention of senior leadership and ensuring their guidance gets implemented. While it is still a work in progress, the NCO has many significant accomplishments. The organization will continue to mature as ongoing US government space-based PNT activities continue to bear fruit.

  7. Genotet: An Interactive Web-based Visual Exploration Framework to Support Validation of Gene Regulatory Networks.

    PubMed

    Yu, Bowen; Doraiswamy, Harish; Chen, Xi; Miraldi, Emily; Arrieta-Ortiz, Mario Luis; Hafemeister, Christoph; Madar, Aviv; Bonneau, Richard; Silva, Cláudio T

    2014-12-01

    Elucidation of transcriptional regulatory networks (TRNs) is a fundamental goal in biology, and one of the most important components of TRNs are transcription factors (TFs), proteins that specifically bind to gene promoter and enhancer regions to alter target gene expression patterns. Advances in genomic technologies as well as advances in computational biology have led to multiple large regulatory network models (directed networks) each with a large corpus of supporting data and gene-annotation. There are multiple possible biological motivations for exploring large regulatory network models, including: validating TF-target gene relationships, figuring out co-regulation patterns, and exploring the coordination of cell processes in response to changes in cell state or environment. Here we focus on queries aimed at validating regulatory network models, and on coordinating visualization of primary data and directed weighted gene regulatory networks. The large size of both the network models and the primary data can make such coordinated queries cumbersome with existing tools and, in particular, inhibits the sharing of results between collaborators. In this work, we develop and demonstrate a web-based framework for coordinating visualization and exploration of expression data (RNA-seq, microarray), network models and gene-binding data (ChIP-seq). Using specialized data structures and multiple coordinated views, we design an efficient querying model to support interactive analysis of the data. Finally, we show the effectiveness of our framework through case studies for the mouse immune system (a dataset focused on a subset of key cellular functions) and a model bacteria (a small genome with high data-completeness).

  8. Linking 1D Transition-Metal Coordination Polymers and Different Inorganic Boron Oxides To Construct a Series of 3D Inorganic-Organic Hybrid Borates.

    PubMed

    Zhi, Shao-Chen; Wang, Yue-Lin; Sun, Li; Cheng, Jian-Wen; Yang, Guo-Yu

    2018-02-05

    Three inorganic-organic hybrid borates, M(1,4-dab)[B 5 O 7 (OH) 3 ] [M = Zn (1), Cd (2), 1,4-dab = 1,4-diaminobutane)] and Co(1,3-dap)[B 4 O 7 ] (3, 1,3-dap = 1,3-diaminopropane), which integrated characteristics of 1D coordination polymers and 1D/3D inorganic boron oxides have been obtained under solvothermal conditions. Compounds 1 and 2 are isostructural and crystallize in a centrosymmetric space group P2 1 /c; the 3D achiral structures of 1 and 2 consist of the nonhelical Zn/Cd-1,4-dap coordination polymers and 1D B-O chains. Compound 3 crystallizes in a chiral space group P4 3 2 1 2; the helical Co-1,3-dap coordination polymer chains are entrained within a 3D B-O network and finally form the chiral framework. Compounds 1-3 represent good examples of using coordination polymers to construct mixed-motif inorganic-organic hybrid borates. Compounds 1 and 2 display blue luminescence when excited with UV light.

  9. Surprising structures hiding in Penrose’s future null infinity

    NASA Astrophysics Data System (ADS)

    Newman, Ezra T.

    2017-07-01

    Since the late1950s, almost all discussions of asymptotically flat (Einstein-Maxwell) space-times have taken place in the context of Penrose’s null infinity, I+. In addition, almost all calculations have used the Bondi coordinate and tetrad systems. Beginning with a known asymptotically flat solution to the Einstein-Maxwell equations, we show first, that there are other natural coordinate systems, near I+, (analogous to light-cones in flat-space) that are based on (asymptotically) shear-free null geodesic congruences (analogous to the flat-space case). Using these new coordinates and their associated tetrad, we define the complex dipole moment, (the mass dipole plus i times angular momentum), from the l  =  1 harmonic coefficient of a component of the asymptotic Weyl tensor. Second, from this definition, from the Bianchi identities and from the Bondi-Sachs mass and linear momentum, we show that there exists a large number of results—identifications and dynamics—identical to those of classical mechanics and electrodynamics. They include, among many others, {P}=M{v}+..., {L}= {r} × {P} , spin, Newton’s second law with the rocket force term (\\dotM v) and radiation reaction, angular momentum conservation and others. All these relations take place in the rather mysterious H-space rather than in space-time. This leads to the enigma: ‘why do these well known relations of classical mechanics take place in H-space?’ and ‘What is the physical meaning of H-space?’

  10. Exploration Clinical Decision Support System: Medical Data Architecture

    NASA Technical Reports Server (NTRS)

    Lindsey, Tony; Shetye, Sandeep; Shaw, Tianna (Editor)

    2016-01-01

    The Exploration Clinical Decision Support (ECDS) System project is intended to enhance the Exploration Medical Capability (ExMC) Element for extended duration, deep-space mission planning in HRP. A major development guideline is the Risk of "Adverse Health Outcomes & Decrements in Performance due to Limitations of In-flight Medical Conditions". ECDS attempts to mitigate that Risk by providing crew-specific health information, actionable insight, crew guidance and advice based on computational algorithmic analysis. The availability of inflight health diagnostic computational methods has been identified as an essential capability for human exploration missions. Inflight electronic health data sources are often heterogeneous, and thus may be isolated or not examined as an aggregate whole. The ECDS System objective provides both a data architecture that collects and manages disparate health data, and an active knowledge system that analyzes health evidence to deliver case-specific advice. A single, cohesive space-ready decision support capability that considers all exploration clinical measurements is not commercially available at present. Hence, this Task is a newly coordinated development effort by which ECDS and its supporting data infrastructure will demonstrate the feasibility of intelligent data mining and predictive modeling as a biomedical diagnostic support mechanism on manned exploration missions. The initial step towards ground and flight demonstrations has been the research and development of both image and clinical text-based computer-aided patient diagnosis. Human anatomical images displaying abnormal/pathological features have been annotated using controlled terminology templates, marked-up, and then stored in compliance with the AIM standard. These images have been filtered and disease characterized based on machine learning of semantic and quantitative feature vectors. The next phase will evaluate disease treatment response via quantitative linear dimension biomarkers that enable image content-based retrieval and criteria assessment. In addition, a data mining engine (DME) is applied to cross-sectional adult surveys for predicting occurrence of renal calculi, ranked by statistical significance of demographics and specific food ingestion. In addition to this precursor space flight algorithm training, the DME will utilize a feature-engineering capability for unstructured clinical text classification health discovery. The ECDS backbone is a proposed multi-tier modular architecture providing data messaging protocols, storage, management and real-time patient data access. Technology demonstrations and success metrics will be finalized in FY16.

  11. Human Exploration Science Office (KX) Overview

    NASA Technical Reports Server (NTRS)

    Calhoun, Tracy A.

    2014-01-01

    The Human Exploration Science Office supports human spaceflight, conducts research, and develops technology in the areas of space orbital debris, hypervelocity impact technology, image science and analysis, remote sensing, imagery integration, and human and robotic exploration science. NASA's Orbital Debris Program Office (ODPO) resides in the Human Exploration Science Office. ODPO provides leadership in orbital debris research and the development of national and international space policy on orbital debris. The office is recognized internationally for its measurement and modeling of the debris environment. It takes the lead in developing technical consensus across U.S. agencies and other space agencies on debris mitigation measures to protect users of the orbital environment. The Hypervelocity Impact Technology (HVIT) project evaluates the risks to spacecraft posed by micrometeoroid and orbital debris (MMOD). HVIT facilities at JSC and White Sands Test Facility (WSTF) use light gas guns, diagnostic tools, and high-speed imagery to quantify the response of spacecraft materials to MMOD impacts. Impact tests, with debris environment data provided by ODPO, are used by HVIT to predict risks to NASA and commercial spacecraft. HVIT directly serves NASA crew safety with MMOD risk assessments for each crewed mission and research into advanced shielding design for future missions. The Image Science and Analysis Group (ISAG) supports the International Space Station (ISS) and commercial spaceflight through the design of imagery acquisition schemes (ground- and vehicle-based) and imagery analyses for vehicle performance assessments and mission anomaly resolution. ISAG assists the Multi-Purpose Crew Vehicle (MPCV) Program in the development of camera systems for the Orion spacecraft that will serve as data sources for flight test objectives that lead to crewed missions. The multi-center Imagery Integration Team is led by the Human Exploration Science Office and provides expertise in the application of engineering imagery to spaceflight. The team links NASA programs and private industry with imagery capabilities developed and honed through decades of human spaceflight, including imagery integration, imaging assets, imagery data management, and photogrammetric analysis. The team is currently supporting several NASA programs, including commercial demonstration missions. The Earth Science and Remote Sensing Team is responsible for integrating the scientific use of Earth-observation assets onboard the ISS, which consist of externally mounted sensors and crew photography capabilities. This team facilitates collaboration on remote sensing and participates in research with academic organizations and other Government agencies, not only in conjunction with ISS science, but also for planetary exploration and regional environmental/geological studies. Human exploration science focuses on science strategies for future human exploration missions to the Moon, Mars, asteroids, and beyond. This function provides communication and coordination between the science community and mission planners. ARES scientists support the operation of robotic missions (i.e., Mars Exploration Rovers and the Mars Science Laboratory), contribute to the interpretation of returned mission data, and translate robotic mission technologies and techniques to human spaceflight.

  12. A hierarchical distributed control model for coordinating intelligent systems

    NASA Technical Reports Server (NTRS)

    Adler, Richard M.

    1991-01-01

    A hierarchical distributed control (HDC) model for coordinating cooperative problem-solving among intelligent systems is described. The model was implemented using SOCIAL, an innovative object-oriented tool for integrating heterogeneous, distributed software systems. SOCIAL embeds applications in 'wrapper' objects called Agents, which supply predefined capabilities for distributed communication, control, data specification, and translation. The HDC model is realized in SOCIAL as a 'Manager'Agent that coordinates interactions among application Agents. The HDC Manager: indexes the capabilities of application Agents; routes request messages to suitable server Agents; and stores results in a commonly accessible 'Bulletin-Board'. This centralized control model is illustrated in a fault diagnosis application for launch operations support of the Space Shuttle fleet at NASA, Kennedy Space Center.

  13. Leadership in Space: Selected Speeches of NASA Administrator Michael Griffin, May 2005 - October 2008

    NASA Technical Reports Server (NTRS)

    Griffin, Michael

    2008-01-01

    Speech topics include: Leadership in Space; Space Exploration: Real and Acceptable Reasons; Why Explore Space?; Space Exploration: Filling up the Canvas; Continuing the Voyage: The Spirit of Endeavour; Incorporating Space into Our Economic Sphere of Influence; The Role of Space Exploration in the Global Economy; Partnership in Space Activities; International Space Cooperation; National Strategy and the Civil Space Program; What the Hubble Space Telescope Teaches Us about Ourselves; The Rocket Team; NASA's Direction; Science and NASA; Science Priorities and Program Management; NASA and the Commercial Space Industry; NASA and the Business of Space; American Competitiveness: NASA's Role & Everyone's Responsibility; Space Exploration: A Frontier for American Collaboration; The Next Generation of Engineers; System Engineering and the "Two Cultures" of Engineering; Generalship of Engineering; NASA and Engineering Integrity; The Constellation Architecture; Then and Now: Fifty Years in Space; The Reality of Tomorrow; and Human Space Exploration: The Next 50 Years.

  14. Heuristic approach to image registration

    NASA Astrophysics Data System (ADS)

    Gertner, Izidor; Maslov, Igor V.

    2000-08-01

    Image registration, i.e. correct mapping of images obtained from different sensor readings onto common reference frame, is a critical part of multi-sensor ATR/AOR systems based on readings from different types of sensors. In order to fuse two different sensor readings of the same object, the readings have to be put into a common coordinate system. This task can be formulated as optimization problem in a space of all possible affine transformations of an image. In this paper, a combination of heuristic methods is explored to register gray- scale images. The modification of Genetic Algorithm is used as the first step in global search for optimal transformation. It covers the entire search space with (randomly or heuristically) scattered probe points and helps significantly reduce the search space to a subspace of potentially most successful transformations. Due to its discrete character, however, Genetic Algorithm in general can not converge while coming close to the optimum. Its termination point can be specified either as some predefined number of generations or as achievement of a certain acceptable convergence level. To refine the search, potential optimal subspaces are searched using more delicate and efficient for local search Taboo and Simulated Annealing methods.

  15. KENNEDY SPACE CENTER, FLA. - Garland V. Stewart Magnet Middle School, a NASA Explorer School (NES) in Tampa, Fla., is the site where Center Director Jim Kennedy and astronaut Kay Hire shared the agency’s new vision for space exploration with the next generation of explorers. Kennedy talked with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.

    NASA Image and Video Library

    2004-02-20

    KENNEDY SPACE CENTER, FLA. - Garland V. Stewart Magnet Middle School, a NASA Explorer School (NES) in Tampa, Fla., is the site where Center Director Jim Kennedy and astronaut Kay Hire shared the agency’s new vision for space exploration with the next generation of explorers. Kennedy talked with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.

  16. IHY - An International Cooperative Program

    NASA Astrophysics Data System (ADS)

    Rabello-Soares, M. Cristina; Davila, J.; Gopalswamy, N.; Thompson, B.

    2007-05-01

    The International Heliophysical Year (IHY) in 2007/2008 involves thousands of scientists representing over 70 nations. It consists of four distinct elements that will be described here. Taking advantage of the large amount of heliophysical data acquired routinely by a vast number of sophisticated instruments aboard space missions and at ground-based observatories, IHY aims to develop the basic science of heliophysics through cross-disciplinary studies of universal processes by means of Coordinated Investigation Programs (CIPs). The second component is in collaboration with the United Nations Basic Space Science Initiative (UNBSSI) and consists of the deployment of arrays of small, inexpensive instruments such as magnetometers, radio antennas, GPS receivers, etc. around the world to provide global measurements. An important aspect of this partnership is to foster the participation of developing nations in heliophysics research. IHY coincides with the commemoration of 50 years of the space age that started with launch of Sputnik on October 4, 1957 and it is on the brink of a new age of space exploration where the Moon, Mars and the outer planets will be the focus of the space programs in the next years. As a result, it presents an excellent opportunity to create interest for science among young people with the excitement of discovery of space. The education and outreach program forms another cornerstone of IHY. Last but not least, an important part of the IHY activities, its forth component, is to preserve the history and memory of IGY 1957.

  17. Integrated Extravehicular Activity Human Research Plan: 2017

    NASA Technical Reports Server (NTRS)

    Abercromby, Andrew

    2017-01-01

    Multiple organizations within NASA as well as industry and academia fund and participate in research related to extravehicular activity (EVA). In October 2015, representatives of the EVA Office, the Crew and Thermal Systems Division (CTSD), and the Human Research Program (HRP) at NASA Johnson Space Center agreed on a formal framework to improve multi-year coordination and collaboration in EVA research. At the core of the framework is an Integrated EVA Human Research Plan and a process by which it will be annually reviewed and updated. The over-arching objective of the collaborative framework is to conduct multi-disciplinary cost-effective research that will enable humans to perform EVAs safely, effectively, comfortably, and efficiently, as needed to enable and enhance human space exploration missions. Research activities must be defined, prioritized, planned and executed to comprehensively address the right questions, avoid duplication, leverage other complementary activities where possible, and ultimately provide actionable evidence-based results in time to inform subsequent tests, developments and/or research activities. Representation of all appropriate stakeholders in the definition, prioritization, planning and execution of research activities is essential to accomplishing the over-arching objective. A formal review of the Integrated EVA Human Research Plan will be conducted annually. Coordination with stakeholders outside of the EVA Office, CTSD, and HRP is already in effect on a study-by-study basis; closer coordination on multi-year planning with other EVA stakeholders including academia is being actively pursued. Details of the preliminary Integrated EVA Human Research Plan are presented including description of ongoing and planned research activities in the areas of: physiological and performance capabilities; suit design parameters; EVA human health and performance modeling; EVA tasks and concepts of operations; EVA informatics; human-suit sensors; suit sizing and fit; and EVA injury risk and mitigation. This paper represents the 2017 update to the Integrated EVA Human Research Plan.

  18. Space strategy for Europe and the International Lunar Decade

    NASA Astrophysics Data System (ADS)

    Beldavs, VZ

    2017-09-01

    The 2020-2030 decade offers extraordinary opportunity for the European space sector that is largely not recognized in present space strategy which does not recognize commercial space activities beyond communications satellites, launchers, and earth observation and navigation and downstream activities. Lunar and cislunar development can draw on the extensive experience of Europe in mining, clean energy, ecological systems as well as deep experience in managing the development of technologies through TRL1 through commercial sale via Horizon 2020 and previous Framework programs. The EU has unrivalled experience in coordinating research and advanced technology development from research centers, major firms and SMEs across multiple sovereign states. This capacity to coordinate across national boundaries can be a significant contribution to a global cooperative program like the International Lunar Decade. This paper will present a European space strategy for beyond 2020 and how this can mesh with the International Lunar Decade.

  19. Mass effects and internal space geometry in triatomic reaction dynamics

    NASA Astrophysics Data System (ADS)

    Yanao, Tomohiro; Koon, Wang S.; Marsden, Jerrold E.

    2006-05-01

    The effect of the distribution of mass in triatomic reaction dynamics is analyzed using the geometry of the associated internal space. Atomic masses are appropriately incorporated into internal coordinates as well as the associated non-Euclidean internal space metric tensor after a separation of the rotational degrees of freedom. Because of the non-Euclidean nature of the metric in the internal space, terms such as connection coefficients arise in the internal equations of motion, which act as velocity-dependent forces in a coordinate chart. By statistically averaging these terms, an effective force field is deduced, which accounts for the statistical tendency of geodesics in the internal space. This force field is shown to play a crucial role in determining mass-related branching ratios of isomerization and dissociation dynamics of a triatomic molecule. The methodology presented can be useful for qualitatively predicting branching ratios in general triatomic reactions, and may be applied to the study of isotope effects.

  20. An integrated control scheme for space robot after capturing non-cooperative target

    NASA Astrophysics Data System (ADS)

    Wang, Mingming; Luo, Jianjun; Yuan, Jianping; Walter, Ulrich

    2018-06-01

    How to identify the mass properties and eliminate the unknown angular momentum of space robotic system after capturing a non-cooperative target is of great challenge. This paper focuses on designing an integrated control framework which includes detumbling strategy, coordination control and parameter identification. Firstly, inverted and forward chain approaches are synthesized for space robot to obtain dynamic equation in operational space. Secondly, a detumbling strategy is introduced using elementary functions with normalized time, while the imposed end-effector constraints are considered. Next, a coordination control scheme for stabilizing both base and end-effector based on impedance control is implemented with the target's parameter uncertainty. With the measurements of the forces and torques exerted on the target, its mass properties are estimated during the detumbling process accordingly. Simulation results are presented using a 7 degree-of-freedom kinematically redundant space manipulator, which verifies the performance and effectiveness of the proposed method.

  1. Office of Exploration: Exploration studies technical report. Volume 2: Studies approach and results

    NASA Technical Reports Server (NTRS)

    Roberts, Barney B.; Bland, Dan

    1988-01-01

    The NASA Office of Exploration has been tasked with defining and recommending alternatives for an early 1990's national decision on a focused program of human exploration of the solar system. The Mission Analysis and System Engineering (MASE) group, which is managed by the Exploration Studies Office at the Johnson Space Center, is responsible for coordinating the technical studies necessary for accomplishing such a task. This technical report describes the process that has been developed in a case study approach. The four case studies that were developed in FY88 include: (1) human expedition to Phobos; (2) human expeditions to Mars; (3) lunar observatory; and (4) lunar outpost to early Mars evolution. The final outcome of this effort is a set of programmatic and technical conclusions and recommendations for the following year's work. Volume 2 describes the case study process, the technical results of each of the case studies, and opportunities for additional study. Included in the discussion of each case study is a description of the mission key features and profile. Mission definition and manifesting are detailed, followed by a description of the mission architecture and infrastructure. Systems concepts for the required orbital nodes, transportation systems, and planetary surface systems are discussed. Prerequisite implementation plans resulting from the synthesized case studies are described and in-depth assessments are presented.

  2. Real-time deformations of organ based on structural mechanics for surgical simulators

    NASA Astrophysics Data System (ADS)

    Nakaguchi, Toshiya; Tagaya, Masashi; Tamura, Nobuhiko; Tsumura, Norimichi; Miyake, Yoichi

    2006-03-01

    This research proposes the deformation model of organs for the development of the medical training system using Virtual Reality (VR) technology. First, the proposed model calculates the strains of coordinate axis. Secondly, the deformation is obtained by mapping the coordinate of the object to the strained coordinate. We assume the beams in the coordinate space to calculate the strain of the coordinate axis. The forces acting on the object are converted to the forces applied to the beams. The bend and the twist of the beams are calculated based on the theory of structural mechanics. The bend is derived by the finite element method. We propose two deformation methods which differ in the position of the beams in the coordinate space. One method locates the beams along the three orthogonal axes (x, y, z). Another method locates the beam in the area where the deformation is large. In addition, the strain of the coordinate axis is attenuated in proportion to the distance from the point of action to consider the attenuation of the stress which is a viscoelastic feature of the organs. The proposed model needs less computational cost compared to the conventional deformation method since our model does not need to divide the object into the elasticity element. The proposed model was implemented in the laparoscopic surgery training system, and a real-time deformation can be realized.

  3. Unraveling the Dyad: Using Recurrence Analysis to Explore Patterns of Syntactic Coordination between Children and Caregivers in Conversation

    ERIC Educational Resources Information Center

    Dale, Rick; Spivey, Michael J.

    2006-01-01

    Recurrence analysis is introduced as a means to investigate syntactic coordination between child and caregiver. Three CHILDES ( MacWhinney, 2000) corpora are analyzed and demonstrate coordination between children and their caregivers in terms of word-class n-gram sequences. Results further indicate that trade-offs in leading or following this…

  4. KENNEDY SPACE CENTER, FLA. - Japanese girls from Urawa Daiichi Girls High School, Urawa, Japan, pose for a group photo during a visit to the Orbiter Processing Facility. They were awarded the trip to Kennedy Space Center when their experiments were chosen to fly on mission STS-107. The girls are accompanied by American students from Melbourne and Jacksonville, Fla. The National Space Development Agency of Japan (NASDA) and the KSC International Space Station/Payload Processing Directorate worked with the NASA KSC Education Programs and University Research Division to coordinate the students’ visit.

    NASA Image and Video Library

    2003-08-20

    KENNEDY SPACE CENTER, FLA. - Japanese girls from Urawa Daiichi Girls High School, Urawa, Japan, pose for a group photo during a visit to the Orbiter Processing Facility. They were awarded the trip to Kennedy Space Center when their experiments were chosen to fly on mission STS-107. The girls are accompanied by American students from Melbourne and Jacksonville, Fla. The National Space Development Agency of Japan (NASDA) and the KSC International Space Station/Payload Processing Directorate worked with the NASA KSC Education Programs and University Research Division to coordinate the students’ visit.

  5. Elucidating the ensemble of functionally-relevant transitions in protein systems with a robotics-inspired method

    PubMed Central

    2013-01-01

    Background Many proteins tune their biological function by transitioning between different functional states, effectively acting as dynamic molecular machines. Detailed structural characterization of transition trajectories is central to understanding the relationship between protein dynamics and function. Computational approaches that build on the Molecular Dynamics framework are in principle able to model transition trajectories at great detail but also at considerable computational cost. Methods that delay consideration of dynamics and focus instead on elucidating energetically-credible conformational paths connecting two functionally-relevant structures provide a complementary approach. Effective sampling-based path planning methods originating in robotics have been recently proposed to produce conformational paths. These methods largely model short peptides or address large proteins by simplifying conformational space. Methods We propose a robotics-inspired method that connects two given structures of a protein by sampling conformational paths. The method focuses on small- to medium-size proteins, efficiently modeling structural deformations through the use of the molecular fragment replacement technique. In particular, the method grows a tree in conformational space rooted at the start structure, steering the tree to a goal region defined around the goal structure. We investigate various bias schemes over a progress coordinate for balance between coverage of conformational space and progress towards the goal. A geometric projection layer promotes path diversity. A reactive temperature scheme allows sampling of rare paths that cross energy barriers. Results and conclusions Experiments are conducted on small- to medium-size proteins of length up to 214 amino acids and with multiple known functionally-relevant states, some of which are more than 13Å apart of each-other. Analysis reveals that the method effectively obtains conformational paths connecting structural states that are significantly different. A detailed analysis on the depth and breadth of the tree suggests that a soft global bias over the progress coordinate enhances sampling and results in higher path diversity. The explicit geometric projection layer that biases the exploration away from over-sampled regions further increases coverage, often improving proximity to the goal by forcing the exploration to find new paths. The reactive temperature scheme is shown effective in increasing path diversity, particularly in difficult structural transitions with known high-energy barriers. PMID:24565158

  6. Imagined Steps: Mental Simulation of Coordinated Rhythmic Movements Effects on Pro-sociality

    PubMed Central

    Cross, Liam; Atherton, Gray; Wilson, Andrew D.; Golonka, Sabrina

    2017-01-01

    Rhythmically coordinating with a partner can increase pro-sociality, but pro-sociality does not appear to change in proportion to coordination success, or particular classes of coordination. Pro-social benefits may have more to do with simply coordinating in a social context than the details of the actual coordination (Cross et al., 2016). This begs the question, how stripped down can a coordination task be and still affect pro-sociality? Would it be sufficient simply to imagine coordinating with others? Imagining a social interaction can lead to many of the same effects as actual interaction (Crisp and Turner, 2009). We report the first experiments to explore whether imagined coordination affects pro-sociality similarly to actual coordination. Across two experiments and over 450 participants, mentally simulated coordination is shown to promote some, but not all, of the pro-social consequences of actual coordination. Imagined coordination significantly increased group cohesion and de-individuation, but did not consistently affect cooperation. PMID:29081761

  7. Internationally coordinated multi-mission planning is now critical to sustain the space-based rainfall observations needed for managing floods globally

    NASA Astrophysics Data System (ADS)

    Reed, Patrick M.; Chaney, Nathaniel W.; Herman, Jonathan D.; Ferringer, Matthew P.; Wood, Eric F.

    2015-02-01

    At present 4 of 10 dedicated rainfall observing satellite systems have exceeded their design life, some by more than a decade. Here, we show operational implications for flood management of a ‘collapse’ of space-based rainfall observing infrastructure as well as the high-value opportunities for a globally coordinated portfolio of satellite missions and data services. Results show that the current portfolio of rainfall missions fails to meet operational data needs for flood management, even when assuming a perfectly coordinated data product from all current rainfall-focused missions (i.e., the full portfolio). In the full portfolio, satellite-based rainfall data deficits vary across the globe and may preclude climate adaptation in locations vulnerable to increasing flood risks. Moreover, removing satellites that are currently beyond their design life (i.e., the reduced portfolio) dramatically increases data deficits globally and could cause entire high intensity flood events to be unobserved. Recovery from the reduced portfolio is possible with internationally coordinated replenishment of as few as 2 of the 4 satellite systems beyond their design life, yielding rainfall data coverages that outperform the current full portfolio (i.e., an optimized portfolio of eight satellites can outperform ten satellites). This work demonstrates the potential for internationally coordinated satellite replenishment and data services to substantially enhance the cost-effectiveness, sustainability and operational value of space-based rainfall observations in managing evolving flood risks.

  8. Asymptotically stable phase synchronization revealed by autoregressive circle maps

    NASA Astrophysics Data System (ADS)

    Drepper, F. R.

    2000-11-01

    A specially designed of nonlinear time series analysis is introduced based on phases, which are defined as polar angles in spaces spanned by a finite number of delayed coordinates. A canonical choice of the polar axis and a related implicit estimation scheme for the potentially underlying autoregressive circle map (next phase map) guarantee the invertibility of reconstructed phase space trajectories to the original coordinates. The resulting Fourier approximated, invertibility enforcing phase space map allows us to detect conditional asymptotic stability of coupled phases. This comparatively general synchronization criterion unites two existing generalizations of the old concept and can successfully be applied, e.g., to phases obtained from electrocardiogram and airflow recordings characterizing cardiorespiratory interaction.

  9. STS-87 Mission Specialist Doi with EVA coordinator Laws participates in the CEIT for his mission

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 Mission Specialist Takao Doi , Ph.D., of the National Space Development Agency of Japan, participates in the Crew Equipment Integration Test (CEIT) at Kennedy Space Center (KSC). Glenda Laws, the extravehicular activity (EVA) coordinator, Johnson Space Center, stands behind Dr. Doi. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. STS-87 will be the fourth United States Microgravity Payload and flight of the Spartan-201 deployable satellite. During the mission, Dr. Doi will be the first Japanese astronaut to perform a spacewalk. STS- 87 is scheduled for a Nov. 19 liftoff from KSC.

  10. STS-87 Mission Specialists Scott and Doi with EVA coordinator Laws participate in the CEIT for their

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Participating in the Crew Equipment Integration Test (CEIT) at Kennedy Space Center are STS-87 crew members, assisted by Glenda Laws, extravehicular activity (EVA) coordinator, Johnson Space Center, at left. Next to Laws is Mission Specialist Takao Doi, Ph.D., of the National Space Development Agency of Japan, who is looking on as Mission Specialist Winston Scott gets a hands-on look at some of the equipment. The STS-87 mission will be the fourth United States Microgravity Payload and flight of the Spartan-201 deployable satellite. During the mission, scheduled for a Nov. 19 liftoff from KSC, Dr. Doi and Scott will both perform spacewalks.

  11. 48 CFR 1852.228-78 - Cross-waiver of liability for science or space exploration activities unrelated to the...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... for science or space exploration activities unrelated to the International Space Station. 1852.228-78... Cross-waiver of liability for science or space exploration activities unrelated to the International... Liability for Science or Space Exploration Activities Unrelated to the International Space Station (OCT 2012...

  12. 48 CFR 1852.228-78 - Cross-waiver of liability for science or space exploration activities unrelated to the...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... for science or space exploration activities unrelated to the International Space Station. 1852.228-78... Cross-waiver of liability for science or space exploration activities unrelated to the International... Liability for Science or Space Exploration Activities Unrelated to the International Space Station (OCT 2012...

  13. Biomorphic Explorers

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita

    1999-01-01

    This paper presents, in viewgraph form, the first NASA/JPL workshop on Biomorphic Explorers for future missions. The topics include: 1) Biomorphic Explorers: Classification (Based on Mobility and Ambient Environment); 2) Biomorphic Flight Systems: Vision; 3) Biomorphic Explorer: Conceptual Design; 4) Biomorphic Gliders; 5) Summary and Roadmap; 6) Coordinated/Cooperative Exploration Scenario; and 7) Applications. This paper also presents illustrations of the various biomorphic explorers.

  14. A fresh look at dense hydrogen under pressure. IV. Two structural models on the road from paired to monatomic hydrogen, via a possible non-crystalline phase

    NASA Astrophysics Data System (ADS)

    Labet, Vanessa; Hoffmann, Roald; Ashcroft, N. W.

    2012-02-01

    In this paper, we examine the transition from a molecular to monatomic solid in hydrogen over a wide pressure range. This is achieved by setting up two models in which a single parameter δ allows the evolution from a molecular structure to a monatomic one of high coordination. Both models are based on a cubic Bravais lattice with eight atoms in the unit cell; one belongs to space group Pabar 3, the other to space group Rbar 3m. In Pabar 3 one moves from effective 1-coordination, a molecule, to a simple cubic 6-coordinated structure but through a very special point (the golden mean is involved) of 7-coordination. In Rbar 3m, the evolution is from 1 to 4 and then to 3 to 6-coordinate. If one studies the enthalpy as a function of pressure as these two structures evolve (δ increases), one sees the expected stabilization of minima with increased coordination (moving from 1 to 6 to 7 in the Pabar 3 structure, for instance). Interestingly, at some specific pressures, there are in both structures relatively large regions of phase space where the enthalpy remains roughly the same. Although the structures studied are always higher in enthalpy than the computationally best structures for solid hydrogen - those emerging from the Pickard and Needs or McMahon and Ceperley numerical laboratories - this result is suggestive of the possibility of a microscopically non-crystalline or "soft" phase of hydrogen at elevated pressures, one in which there is a substantial range of roughly equi-enthalpic geometries available to the system. A scaling argument for potential dynamic stabilization of such a phase is presented.

  15. KENNEDY SPACE CENTER, FLA. - Center Director Jim Kennedy talks to students in Garland V. Stewart Magnet Middle School, a NASA Explorer School (NES) in Tampa, Fla. Kennedy made the trip with NASA astronaut Kay Hire to share the agency’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.

    NASA Image and Video Library

    2004-02-20

    KENNEDY SPACE CENTER, FLA. - Center Director Jim Kennedy talks to students in Garland V. Stewart Magnet Middle School, a NASA Explorer School (NES) in Tampa, Fla. Kennedy made the trip with NASA astronaut Kay Hire to share the agency’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.

  16. KENNEDY SPACE CENTER, FLA. - Astronaut Kay Hire talks to students in Garland V. Stewart Magnet Middle School, a NASA Explorer School (NES) in Tampa, Fla. She joined Center Director Jim Kennedy in sharing the agency’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.

    NASA Image and Video Library

    2004-02-20

    KENNEDY SPACE CENTER, FLA. - Astronaut Kay Hire talks to students in Garland V. Stewart Magnet Middle School, a NASA Explorer School (NES) in Tampa, Fla. She joined Center Director Jim Kennedy in sharing the agency’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.

  17. KENNEDY SPACE CENTER, FLA. - Students at Garland V. Stewart Magnet Middle School, a NASA Explorer School (NES) in Tampa, Fla., listen attentively to astronaut Kay Hire. She and Center Director Jim Kennedy were at the school to share the agency’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.

    NASA Image and Video Library

    2004-02-20

    KENNEDY SPACE CENTER, FLA. - Students at Garland V. Stewart Magnet Middle School, a NASA Explorer School (NES) in Tampa, Fla., listen attentively to astronaut Kay Hire. She and Center Director Jim Kennedy were at the school to share the agency’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.

  18. Coordinate Families for the Schwarzschild Geometry Based on Radial Timelike Geodesics

    NASA Technical Reports Server (NTRS)

    Finch, Tehani K.

    2015-01-01

    We explore the connections between various coordinate systems associated with observersmoving inwardly along radial geodesics in the Schwarzschild geometry. Painleve-Gullstrand (PG) time is adapted to freely falling observers dropped from rest from infinity; Lake-Martel-Poisson (LMP) time coordinates are adapted to observers who start at infinity with non-zero initial inward velocity; Gautreau-Hoffmann time coordinates are adapted to observers dropped from rest from a finite distance from the black hole horizon.We construct from these an LMP family and a proper-time family of time coordinates, the intersection of which is PG time. We demonstrate that these coordinate families are distinct, but related, one-parameter generalizations of PG time, and show linkage to Lemaître coordinates as well.

  19. Modular control of endothelial sheet migration

    PubMed Central

    Vitorino, Philip; Meyer, Tobias

    2008-01-01

    Growth factor-induced migration of endothelial cell monolayers enables embryonic development, wound healing, and angiogenesis. Although collective migration is widespread and therapeutically relevant, the underlying mechanism by which cell monolayers respond to growth factor, sense directional signals, induce motility, and coordinate individual cell movements is only partially understood. Here we used RNAi to identify 100 regulatory proteins that enhance or suppress endothelial sheet migration into cell-free space. We measured multiple live-cell migration parameters for all siRNA perturbations and found that each targeted protein primarily regulates one of four functional outputs: cell motility, directed migration, cell–cell coordination, or cell density. We demonstrate that cell motility regulators drive random, growth factor-independent motility in the presence or absence of open space. In contrast, directed migration regulators selectively transduce growth factor signals to direct cells along the monolayer boundary toward open space. Lastly, we found that regulators of cell–cell coordination are growth factor-independent and reorient randomly migrating cells inside the sheet when boundary cells begin to migrate. Thus, cells transition from random to collective migration through a modular control system, whereby growth factor signals convert boundary cells into pioneers, while cells inside the monolayer reorient and follow pioneers through growth factor-independent migration and cell–cell coordination. PMID:19056882

  20. Linear magnetic spring and spring/motor combination

    NASA Technical Reports Server (NTRS)

    Patt, Paul J. (Inventor); Stolfi, Fred R. (Inventor)

    1991-01-01

    A magnetic spring, or a spring and motor combination, providing a linear spring force characteristic in each direction from a neutral position, in which the spring action may occur for any desired coordinate of a typical orthogonal coordinate system. A set of magnets are disposed, preferably symmetrically about a coordinate axis, poled orthogonally to the desired force direction. A second set of magnets, respectively poled opposite the first set, are arranged on the sprung article. The magnets of one of the sets are spaced a greater distance apart than those of the other, such that an end magnet from each set forms a pair having preferably planar faces parallel to the direction of spring force, the faces being offset so that in a neutral position the outer edge of the closer spaced magnet set is aligned with the inner edge of the greater spaced magnet set. For use as a motor, a coil can be arranged with conductors orthogonal to both the magnet pole directions and the direction of desired spring force, located across from the magnets of one set and fixed with respect to the magnets of the other set. In a cylindrical coordinate system having axial spring force, the magnets are radially poled and motor coils are concentric with the cylinder axis.

  1. Avenues for Scientist Involvement in Earth and Space Science Education and Public Outreach (Invited)

    NASA Astrophysics Data System (ADS)

    Peticolas, L. M.; Gross, N. A.; Hsu, B. C.; Shipp, S. S.; Buxner, S.; Schwerin, T. G.; Smith, D.; Meinke, B. K.

    2013-12-01

    NASA's Science Mission Directorate (SMD) Science Education and Public Outreach (E/PO) Forums are charged with engaging, extending, supporting, and coordinating the community of E/PO professionals and scientists involved in Earth and space science education activities. This work is undertaken to maximize the effectiveness and efficiency of the overall national NASA science education and outreach effort made up of individual efforts run by these education professionals. This includes facilitating scientist engagement in education and outreach. A number of resources and opportunities for involvement are available for scientists involved in - or interested in being involved in - education or outreach. The Forums provide opportunities for earth and space scientists to stay informed, communicate, collaborate, leverage existing programs and partnerships, and become more skilled education practitioners. Interested scientists can receive newsletters, participate in monthly calls, interact through an online community workspace, and attend E/PO strategic meetings. The Forums also provide professional development opportunities on a myriad of topics, from common pre-conceptions in science, to program evaluation, to delivering effective workshops. Thematic approaches, such as Earth Science Week (http://www.earthsciweek.org), and the Year of the Solar System (http://solarsystem.nasa.gov/yss) are coordinated by the Forums; through these efforts resources are presented topically, in a manner that can be easily ported into diverse learning environments. Information about the needs of audiences with which scientists interact - higher education, K-12 education, informal education, and public - are provided by SMD's Audience-Based Working Groups. Their findings and recommendations are made available to inform the activities and products of E/PO providers so they are able to better serve these audiences. Also available is a 'one-stop shop' of SMD E/PO products and resources that can be used in conjunction with E/PO activities, NASA Wavelength (http://nasawavelength.org). Further supporting higher-education efforts, the Forums coordinate a network of science faculty, bringing them together at science conferences to share resources and experiences and to discuss pertinent education research. An online higher education clearinghouse, EarthSpace (http://www.lpi.usra.edu/earthspace), has been developed to provide faculty with news and funding information, the latest education research and resources for teaching undergraduates, and undergraduate course materials, including lectures, labs, and homework. This presentation will explore the Science E/PO Forums' pathways and tools available to support scientists involved in - or interested in being involved in - E/PO.

  2. A timely rationale for space exploration

    NASA Technical Reports Server (NTRS)

    Peterson, Douglas D.; Walters, Larry D.

    1992-01-01

    Space exploration is shown to be useful for enhancing a country's education, technology, and economic competitiveness. Technologies required for the Space Exploration Initiative are compared to emerging technologies identified by the U.S. Department of Commerce. The impact of previous space ventures on specific technologies are illustrated with examples such as miniaturized electronics, computers and software, and high-strength materials. The case for educational advancement as a by-product of space exploration is made by discussing the high-level requirements of the programs and describing the inspirational effect of space exploration on young students. Invigorating space exploration is argued to generate near- and long-term economic opportunities for key sectors of the national economy by means of technology transfer, space-resource utilization, and the commercialization of space.

  3. Solvent-assisted multistage nonequilibrium electron transfer in rigid supramolecular systems: Diabatic free energy surfaces and algorithms for numerical simulations

    NASA Astrophysics Data System (ADS)

    Feskov, Serguei V.; Ivanov, Anatoly I.

    2018-03-01

    An approach to the construction of diabatic free energy surfaces (FESs) for ultrafast electron transfer (ET) in a supramolecule with an arbitrary number of electron localization centers (redox sites) is developed, supposing that the reorganization energies for the charge transfers and shifts between all these centers are known. Dimensionality of the coordinate space required for the description of multistage ET in this supramolecular system is shown to be equal to N - 1, where N is the number of the molecular centers involved in the reaction. The proposed algorithm of FES construction employs metric properties of the coordinate space, namely, relation between the solvent reorganization energy and the distance between the two FES minima. In this space, the ET reaction coordinate zn n' associated with electron transfer between the nth and n'th centers is calculated through the projection to the direction, connecting the FES minima. The energy-gap reaction coordinates zn n' corresponding to different ET processes are not in general orthogonal so that ET between two molecular centers can create nonequilibrium distribution, not only along its own reaction coordinate but along other reaction coordinates too. This results in the influence of the preceding ET steps on the kinetics of the ensuing ET. It is important for the ensuing reaction to be ultrafast to proceed in parallel with relaxation along the ET reaction coordinates. Efficient algorithms for numerical simulation of multistage ET within the stochastic point-transition model are developed. The algorithms are based on the Brownian simulation technique with the recrossing-event detection procedure. The main advantages of the numerical method are (i) its computational complexity is linear with respect to the number of electronic states involved and (ii) calculations can be naturally parallelized up to the level of individual trajectories. The efficiency of the proposed approach is demonstrated for a model supramolecular system involving four redox centers.

  4. NASA In-Situ Resource Utilization (ISRU) Technology and Development Project Overview

    NASA Technical Reports Server (NTRS)

    Sanders, Gerald B.; Lason, William E.; Sacksteder, Kurt R.; Mclemore, Carole; Johnson, Kenneth

    2008-01-01

    Since the Vision for Space Exploration (VSE) was released in 2004, NASA, in conjunction with international space agencies, industry, and academia, has continued to define and refine plans for sustained and affordable robotic and human exploration of the Moon and beyond. With the goal of establishing a lunar Outpost on the Moon to extend human presence, pursue scientific activities, use the Moon to prepare for future human missions to Mars, and expand Earth s economic sphere, a change in how space exploration is performed is required. One area that opens up the possibility for the first time of breaking our reliance on Earth supplied consumables and learn to live off the land is In-Situ Resource Utilization (ISRU). ISRU, which involves the extraction and processing of space resources into useful products, can have a substantial impact on mission and architecture concepts. In particular, the ability to make propellants, life support consumables, and fuel cell reagents can significantly reduce the cost, mass, and risk of sustained human activities beyond Earth. However, ISRU is an unproven capability for human lunar exploration and can not be put in the critical path of lunar Outpost success until it has been proven. Therefore, ISRU development and deployment needs to take incremental steps toward the desired end state. To ensure ISRU capabilities are available for pre-Outpost and Outpost deployment by 2020, and mission and architecture planners are confident that ISRU can meet initial and long term mission requirements, the ISRU Project is developing technologies and systems in three critical areas: (1) Regolith Excavation, Handling and Material Transportation; (2) Oxygen Extraction from Regolith; and (3) Volatile Extraction and Resource Prospecting, and in four development stages: (I) Demonstrate feasibility; (II) Evolve system w/ improved technologies; (III) Develop one or more systems to TRL 6 before start of flight development; and (IV) Flight development for Outpost. To minimize cost and ensure that ISRU technologies, systems, and functions are integrated properly into the Outpost, technology development efforts are being coordinated with other development areas such as Surface Mobility, Surface Power, Life Support, EVA, and Propulsion. Lastly, laboratory and field system-level tests and demonstrations will be performed as often as possible to demonstrate improvements in: Capabilities (ex. digging deeper); Performance (ex. lower power); and Duration (ex. more autonomy or more robustness). This presentation will provide the status of work performed to date within the NASA ISRU project with respect to technology and system development and field demonstration activities, as well as the current strategy to implement ISRU in future robotic and human lunar exploration missions.

  5. Nanocubes for real-time exploration of spatiotemporal datasets.

    PubMed

    Lins, Lauro; Klosowski, James T; Scheidegger, Carlos

    2013-12-01

    Consider real-time exploration of large multidimensional spatiotemporal datasets with billions of entries, each defined by a location, a time, and other attributes. Are certain attributes correlated spatially or temporally? Are there trends or outliers in the data? Answering these questions requires aggregation over arbitrary regions of the domain and attributes of the data. Many relational databases implement the well-known data cube aggregation operation, which in a sense precomputes every possible aggregate query over the database. Data cubes are sometimes assumed to take a prohibitively large amount of space, and to consequently require disk storage. In contrast, we show how to construct a data cube that fits in a modern laptop's main memory, even for billions of entries; we call this data structure a nanocube. We present algorithms to compute and query a nanocube, and show how it can be used to generate well-known visual encodings such as heatmaps, histograms, and parallel coordinate plots. When compared to exact visualizations created by scanning an entire dataset, nanocube plots have bounded screen error across a variety of scales, thanks to a hierarchical structure in space and time. We demonstrate the effectiveness of our technique on a variety of real-world datasets, and present memory, timing, and network bandwidth measurements. We find that the timings for the queries in our examples are dominated by network and user-interaction latencies.

  6. AppEEARS: A Simple Tool that Eases Complex Data Integration and Visualization Challenges for Users

    NASA Astrophysics Data System (ADS)

    Maiersperger, T.

    2017-12-01

    The Application for Extracting and Exploring Analysis-Ready Samples (AppEEARS) offers a simple and efficient way to perform discovery, processing, visualization, and acquisition across large quantities and varieties of Earth science data. AppEEARS brings significant value to a very broad array of user communities by 1) significantly reducing data volumes, at-archive, based on user-defined space-time-variable subsets, 2) promoting interoperability across a wide variety of datasets via format and coordinate reference system harmonization, 3) increasing the velocity of both data analysis and insight by providing analysis-ready data packages and by allowing interactive visual exploration of those packages, and 4) ensuring veracity by making data quality measures more apparent and usable and by providing standards-based metadata and processing provenance. Development and operation of AppEEARS is led by the National Aeronautics and Space Administration (NASA) Land Processes Distributed Active Archive Center (LP DAAC). The LP DAAC also partners with several other archives to extend the capability across a larger federation of geospatial data providers. Over one hundred datasets are currently available, covering a diversity of variables including land cover, population, elevation, vegetation indices, and land surface temperature. Many hundreds of users have already used this new web-based capability to make the complex tasks of data integration and visualization much simpler and more efficient.

  7. Fluctuations, noise, and numerical methods in gyrokinetic particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas Grant

    In this thesis, the role of the "marker weight" (or "particle weight") used in gyrokinetic particle-in-cell (PIC) simulations is explored. Following a review of the foundations and major developments of gyrokinetic theory, key concepts of the Monte Carlo methods which form the basis for PIC simulations are set forth. Consistent with these methods, a Klimontovich representation for the set of simulation markers is developed in the extended phase space {R, v||, v ⊥, W, P} (with the additional coordinates representing weight fields); clear distinctions are consequently established between the marker distribution function and various physical distribution functions (arising from diverse moments of the marker distribution). Equations describing transport in the simulation are shown to be easily derivable using the formalism. The necessity of a two-weight model for nonequilibrium simulations is demonstrated, and a simple method for calculating the second (background-related) weight is presented. Procedures for arbitrary marker loading schemes in gyrokinetic PIC simulations are outlined; various initialization methods for simulations are compared. Possible effects of inadequate velocity-space resolution in gyrokinetic continuum simulations are explored. The "partial-f" simulation method is developed and its limitations indicated. A quasilinear treatment of electrostatic drift waves is shown to correctly predict nonlinear saturation amplitudes, and the relevance of the gyrokinetic fluctuation-dissipation theorem in assessing the effects of discrete-marker-induced statistical noise on the resulting marginally stable states is demonstrated.

  8. Jet Propulsion Laboratory: Annual Report 2005

    NASA Technical Reports Server (NTRS)

    2006-01-01

    What an amazing host of new sights 2005 brought us. With impeccable choreography, one spacecraft sent an impactor slamming into a comet, reversing the traditional view of these space wayfarers by revealing it to be buried in deep drifts of a fine talcum-like powder. Another spacecraft delivered a probe from our European partners to the surface of Saturn's haze-shrouded moon Titan, disclosing a landscape eerily like Earth's, if we had methane rivers cascading down hillsides of ice. An orbiting observatory for the first time showed us the light from planets circling other stars, which astronomers previously knew to exist only from indirect clues. Throughout the year we also amassed continually expanding views of Earth as well as Mars, by far the most-explored planet after our own. In all, 18 spacecraft and five instruments were stationed across the solar system, studying our own world, other planets, comets and the deeper universe. These missions were enabled by the efforts of everyone at JPL. The Deep Space Network of communications complexes across three continents continued to experience a period of remarkable activity. Others were at work creating technologies both for NASA missions and other uses. JPL's contingent of scientific researchers was equally busy coordinating the science activities of our missions or pursuing independent investigations. None of this would be possible without the support of world-class business and administrative teams. All of our missions in one way or another support our nations Vision for Space Exploration, which envisages a gradually widening robotic and human presence across the solar system in the years ahead. The year was not without its challenges. NASA set forth to implement the Vision for Space Exploration, which resulted in some flight projects and technology efforts being terminated. To adjust to this new direction, it was necessary for us to reduce the JPL workforce by about five percent. Taking steps like this is painful, but we tried to make the process as orderly as possible. In the end, the adjustments made have left JPL on a healthy footing for the years ahead.

  9. KENNEDY SPACE CENTER, FLA. - Center Director Jim Kennedy (center) shares the kudos for Spaceport Super Safety and Health Day with members of the coordinating committee. Astronaut Barry E. Wilmore (at right) presented the award to Kennedy. Next to Wilmore at right is Dr. Woodrow Whitlow, KSC’s deputy director.

    NASA Image and Video Library

    2003-10-15

    KENNEDY SPACE CENTER, FLA. - Center Director Jim Kennedy (center) shares the kudos for Spaceport Super Safety and Health Day with members of the coordinating committee. Astronaut Barry E. Wilmore (at right) presented the award to Kennedy. Next to Wilmore at right is Dr. Woodrow Whitlow, KSC’s deputy director.

  10. On the enhanced sampling over energy barriers in molecular dynamics simulations.

    PubMed

    Gao, Yi Qin; Yang, Lijiang

    2006-09-21

    We present here calculations of free energies of multidimensional systems using an efficient sampling method. The method uses a transformed potential energy surface, which allows an efficient sampling of both low and high energy spaces and accelerates transitions over barriers. It allows efficient sampling of the configuration space over and only over the desired energy range(s). It does not require predetermined or selected reaction coordinate(s). We apply this method to study the dynamics of slow barrier crossing processes in a disaccharide and a dipeptide system.

  11. Multimodal Perception and Multicriterion Control of Nested Systems. 2; Constraints on Crew Members During Space Vehicle Abort, Entry, and Landing

    NASA Technical Reports Server (NTRS)

    Riccio, Gary E.; McDonald, P. Vernon; Irvin, Gregg E.; Bloomberg, Jacob J.

    1998-01-01

    This report reviews the operational demands made of a Shuttle pilot or commander within the context of a proven empirical methodology for describing human sensorimotor performance and whole-body coordination in mechanically and perceptually complex environments. The conclusions of this review pertain to a) methods for improving our understanding of the psychophysics and biomechanics of visual/manual control and whole-body coordination in space vehicle cockpits; b) the application of scientific knowledge about human perception and performance in dynamic inertial conditions to the development of technology, procedures, and training for personnel in space vehicle cockpits; c) recommendations for mitigation of safety and reliability concerns about human performance in space vehicle cockpits; and d) in-flight evaluation of flight crew performance during nominal and off-nominal launch and reentry scenarios.

  12. Remote Infrared Imaging of the Space Shuttle During Hypersonic Flight: HYTHIRM Mission Operations and Coordination

    NASA Technical Reports Server (NTRS)

    Schwartz, Richard J.; McCrea, Andrew C.; Gruber, Jennifer R.; Hensley, Doyle W.; Verstynen, Harry A.; Oram, Timothy D.; Berger, Karen T.; Splinter, Scott C.; Horvath, Thomas J.; Kerns, Robert V.

    2011-01-01

    The Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) project has been responsible for obtaining spatially resolved, scientifically calibrated in-flight thermal imagery of the Space Shuttle Orbiter during reentry. Starting with STS-119 in March of 2009 and continuing through to the majority of final flights of the Space Shuttle, the HYTHIRM team has to date deployed during seven Shuttle missions with a mix of airborne and ground based imaging platforms. Each deployment of the HYTHIRM team has resulted in obtaining imagery suitable for processing and comparison with computational models and wind tunnel data at Mach numbers ranging from over 18 to under Mach 5. This paper will discuss the detailed mission planning and coordination with the NASA Johnson Space Center Mission Control Center that the HYTHIRM team undergoes to prepare for and execute each mission.

  13. Strengthening the Connection Between Space and Society: A Comparative Analysis of Supernovae Distribution in the Andromeda Galaxy for Secondary School Students

    NASA Astrophysics Data System (ADS)

    Borders, Kareen; Mendez, B.; Borders, K.; Thaller, M.; Plecki, M.; Usuda, K.

    2011-05-01

    In order to prepare students in grades 4-12 for a global workforce, NASA supports science, technology, engineering, and math (STEM) immersion education for secondary students. Secondary schools, through the NASA Explorer School program, the Spitzer Space Telescope, the National Optical Astronomy Observatory, and the WISE (Wide Field Infrared Survey Explorer) Telescope Teacher Ambassador program, offer authentic research opportunities for students. Spitzer and WISE studied the sky in infrared light. Among the objects WISE studied are asteroids, the coolest and dimmest stars, and the most luminous galaxies. The lessons learned from the NASA Explorer School program and Spitzer and WISE teacher and student programs can be applied to other programs, engaging students in authentic research experiences by using data from space-borne and earth-based observatories such Kitt Peak Observatory. Several ground based telescopes at Kitt Peak Observatory study visible light from objects such as supernovae. Utilizing a student research immersion philosophy along with data analysis skills learned from the Spitzer and WISE student research programs, an analysis of supernovae distribution with respect to location in the Andromeda galaxy was conducted using images of the Andromeda galaxy taken from the WIYN 0.9 meter telescope on Kitt Peak. A comparison was made between the 12 outer fields (spiral arms) and the 4 inner fields (central bulge). Novae were found by "blinking” images of each field throughout 100 epochs of data. Blinking is a technique used to compare images of fields and noting brightness (via x,y coordinates) in one field that is not visible in the same field during a different epoch. Although the central bulge was expected to contain more supernovae due to stellar density and proximity of stars to each other, analysis of data indicates that the there is also a concentration of supernovae that appeared in outer regions. WISE Telescope funding is gratefully acknowledged.

  14. Optical technologies for space sensor

    NASA Astrophysics Data System (ADS)

    Wang, Hu; Liu, Jie; Xue, Yaoke; Liu, Yang; Liu, Meiying; Wang, Lingguang; Yang, Shaodong; Lin, Shangmin; Chen, Su; Luo, Jianjun

    2015-10-01

    Space sensors are used in navigation sensor fields. The sun, the earth, the moon and other planets are used as frame of reference to obtain stellar position coordinates, and then to control the attitude of an aircraft. Being the "eyes" of the space sensors, Optical sensor system makes images of the infinite far stars and other celestial bodies. It directly affects measurement accuracy of the space sensor, indirectly affecting the data updating rate. Star sensor technology is the pilot for Space sensors. At present more and more attention is paid on all-day star sensor technology. By day and night measurements of the stars, the aircraft's attitude in the inertial coordinate system can be provided. Facing the requirements of ultra-high-precision, large field of view, wide spectral range, long life and high reliability, multi-functional optical system, we integration, integration optical sensors will be future space technology trends. In the meantime, optical technologies for space-sensitive research leads to the development of ultra-precision optical processing, optical and precision test machine alignment technology. It also promotes the development of long-life optical materials and applications. We have achieved such absolute distortion better than ±1um, Space life of at least 15years of space-sensitive optical system.

  15. Orbit transfer rocket engine technology program: Advanced engine study

    NASA Technical Reports Server (NTRS)

    Erickson, C. M.

    1992-01-01

    In Task D.6 of the Advanced Engine Study, three primary subtasks were accomplished: (1) design of parametric data; (2) engine requirement variation studies; and (3) vehicle study/engine study coordination. Parametric data were generated for vacuum thrusts ranging from 7500 lbf to 50,000 lbf, nozzle expansion ratios from 600 to 1200, and engine mixture ratios from 5:1 to 7:1. Failure Modes and Effects Analysis (FMEA) was used as a departure point for these parametric analyses. These data are intended to assist in definition and trade studies. In the Engine Requirements Variation Studies, the individual effects of increasing the throttling ratio from 10:1 to 20:1 and requiring the engine to operate at a maximum mixture ratio of 12:1 were determined. Off design engine balances were generated at these extreme conditions and individual component operating requirements analyzed in detail. Potential problems were identified and possible solutions generated. In the Vehicle Study/Engine Study coordination subtask, vehicle contractor support was provided as needed, addressing a variety of issues uncovered during vehicle trade studies. This support was primarily provided during Technical Interchange Meetings (TIM) in which Space Exploration Initiative (SEI) studies were addressed.

  16. Synthesis and Structural Characterization of Magnesium Based Coordination Networks in Different Solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D Banerjee; J Finkelstein; A Smirnov

    2011-12-31

    Three magnesium based metal-organic frameworks, Mg{sub 3}(3,5-PDC){sub 3}(DMF){sub 3} {center_dot} DMF [1], Mg(3,5-PDC)(H{sub 2}O) {center_dot} (H{sub 2}O) [3], and Mg{sub 4}(3,5-PDC){sub 4}(DMF){sub 2}(H{sub 2}O){sub 2} {center_dot} 2DMF {center_dot} 4.5H{sub 2}O [4], and a 2-D coordination polymer, [Mg(3,5-PDC)(H{sub 2}O){sub 2}] [2] [PDC = pyridinedicarboxylate], were synthesized using a combination of DMF, methanol, ethanol, and water. Compound 1 [space group P2{sub 1}/n, a = 12.3475(5) {angstrom}, b = 11.1929(5) {angstrom}, c = 28.6734(12) {angstrom}, {beta} = 98.8160(10){sup o}, V = 3916.0(3) {angstrom}{sup 3}] consists of a combination of isolated and corner-sharing magnesium octahedra connected by the organic linkers to form a 3-Dmore » network with a 12.2 {angstrom} x 4.6 {angstrom} 1-D channel. The channel contains coordinated and free DMF molecules. In compound 2 [space group C2/c, a = 9.964(5) {angstrom}, b = 12.0694(6) {angstrom}, c = 7.2763(4) {angstrom}, {beta} = 106.4970(6){sup o}, V = 836.70(6) {angstrom}{sup 3}], PDC connects isolated seven coordinated magnesium polyhedra into a layered structure. Compound 3 [space group P6{sub 1}22, a = 11.479(1) {angstrom}, c = 14.735(3) {angstrom}, V = 1681.7(4) {angstrom}{sup 3}] (previously reported) contains isolated magnesium octahedra connected by the organic linker with each other forming a 3D network. Compound 4 [space group P2{sub 1}/c, a = 13.7442(14) {angstrom}, b = 14.2887(15) {angstrom}, c = 14.1178(14) {angstrom}, {beta} = 104.912(2){sup o}, V = 2679.2(5) {angstrom}{sup 3}] also exhibits a 3D network based on isolated magnesium octahedra with square cavities containing both disordered DMF and water molecules. The structural topologies originate due to the variable coordination ability of solvent molecules with the metal center. Water molecules coordinate with the magnesium metal centers preferably over other polar solvents (DMF, methanol, ethanol) used to synthesize the coordination networks. Despite testing multiple desolvation routes, we were unable to measure BET surface areas greater than 51.9 m{sup 2}/g for compound 1.« less

  17. Synthesis and Structural Characterization of Magnesium Based Coordination Networks in Different Solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Debasis; Finkelstein, Jeffrey; Smirnov, A.

    2015-10-15

    Three magnesium based metal-organic frameworks, Mg{sub 3}(3,5-PDC){sub 3}(DMF){sub 3} {center_dot} DMF [1], Mg(3,5-PDC)(H{sub 2}O) {center_dot} (H{sub 2}O) [3], and Mg4(3,5-PDC)4(DMF){sub 2}(H{sub 2}O){sub 2} {center_dot} 2DMF {center_dot} 4.5H{sub 2}O [4], and a 2-D coordination polymer, [Mg(3,5-PDC)(H{sub 2}O){sub 2}] [2] [PDC = pyridinedicarboxylate], were synthesized using a combination of DMF, methanol, ethanol, and water. Compound 1 [space group P2{sub 1}/n, a = 12.3475(5) {angstrom}, b = 11.1929(5) {angstrom}, c = 28.6734(12) {angstrom}, {beta} = 98.8160(10){sup o}, V = 3916.0(3) {angstrom}{sup 3}] consists of a combination of isolated and corner-sharing magnesium octahedra connected by the organic linkers to form a 3-D network withmore » a 12.2 {angstrom} x 4.6 {angstrom} 1-D channel. The channel contains coordinated and free DMF molecules. In compound 2 [space group C2/c, a = 9.964(5) {angstrom}, b = 12.0694(6) {angstrom}, c = 7.2763(4) {angstrom}, {beta} = 106.4970(6){sup o}, V = 836.70(6) {angstrom}{sup 3}], PDC connects isolated seven coordinated magnesium polyhedra into a layered structure. Compound 3 [space group P6{sub 1}22, a = 11.479(1) {angstrom}, c = 14.735(3) {angstrom}, V = 1681.7(4) {angstrom}{sup 3}] (previously reported) contains isolated magnesium octahedra connected by the organic linker with each other forming a 3D network. Compound 4 [space group P2{sub 1}/c, a = 13.7442(14) {angstrom}, b = 14.2887(15) {angstrom}, c = 14.1178(14) {angstrom}, {beta} = 104.912(2){sup o}, V = 2679.2(5) {angstrom}{sup 3}] also exhibits a 3D network based on isolated magnesium octahedra with square cavities containing both disordered DMF and water molecules. The structural topologies originate due to the variable coordination ability of solvent molecules with the metal center. Water molecules coordinate with the magnesium metal centers preferably over other polar solvents (DMF, methanol, ethanol) used to synthesize the coordination networks. Despite testing multiple desolvation routes, we were unable to measure BET surface areas greater than 51.9 m{sup 2}/g for compound 1.« less

  18. Middle Level SS&C Energy Series.

    ERIC Educational Resources Information Center

    Crow, Linda W.; Aldridge, Bill G.

    The project on Scope Sequence and Coordination of Secondary School Science (SS&C) was initiated by the National Science Teachers Association (NSTA) and recommends that all students study science every year and advocates carefully sequenced, well-coordinated instruction in biology, chemistry, earth/space science, and physics. This document…

  19. Joint Space Forces in Theater: Coordination is No Longer Sufficient

    DTIC Science & Technology

    2007-04-01

    importantly, I am indebted to my wife, Caroline , and twin boys Joshua and Justin for their encouragement and constant reminders about what is truly...of GPS guided JDAMs fundamentally changed the American way of war. Lieutenant General Daniel Leaf , Air Component Coordination Element Commander

  20. Control Coordination of Large Scale Hereditary Systems.

    DTIC Science & Technology

    1985-07-01

    Theory - A Hilbert Space Approach, (Academic Press, New York, 1982). [4] W. Findeisen , F. N. Bailey, M. Brdys, K Malinowski, P. Tatjewski and A. Wozniak... Findeisen et al. (1980), in the sense that local models are used in the design of component control laws and a higher level coordination problem is...Vol. 1, pp. 590-591, 1985. 3. W. Findeisen , F.N. Bailley, M. Brdys, K. Malinowski, P. Tatjewski and A. Wozniak, Control Coordination in Hierarchical

  1. Information and communication technology needs for distributed communication and coordination during expedition-class spaceflight.

    PubMed

    Caldwell, B S

    2000-09-01

    AO-lU. Expedition-class missions are distinct from historical human presence in space in ways that significantly affect information flow and information technology designs for such missions. The centrality of Mission Control in these missions is challenged by the distances, associated communication delays, and durations of expeditions, all of which require crews to have more local resources available to manage on-board situations. The author's current research investigates how ground controllers effectively allocate communications bandwidth, cognitive resources, and knowledge sharing skills during time critical routine and non-routine situations. The research focus is on team-based information and communication technology (ICT) use to provide recommendations for improvements to support adaptive bandwidth allocations and improved sharing of data and knowledge in Mission Control contexts. In order to further improve communication and coordination between controllers and crew, additional ICT support resources will be needed to provide shared context knowledge and dynamic assessment of costs and benefits for accessing local information vs. remote expertise. Crew members will have critical needs to understand the goals, intentions, and situational constraints associated with mission information resources in order to use them most effectively in conditions where ground-based expertise is insufficient or requires more time to access and coordinate than local task demands permit. Results of this research will serve to improve the design and implementation of ICT systems to improve human performance capabilities and system operating tolerances for exploration missions. (Specific research data were not available at the time of publication.)

  2. Egocentric and allocentric representations in auditory cortex

    PubMed Central

    Brimijoin, W. Owen; Bizley, Jennifer K.

    2017-01-01

    A key function of the brain is to provide a stable representation of an object’s location in the world. In hearing, sound azimuth and elevation are encoded by neurons throughout the auditory system, and auditory cortex is necessary for sound localization. However, the coordinate frame in which neurons represent sound space remains undefined: classical spatial receptive fields in head-fixed subjects can be explained either by sensitivity to sound source location relative to the head (egocentric) or relative to the world (allocentric encoding). This coordinate frame ambiguity can be resolved by studying freely moving subjects; here we recorded spatial receptive fields in the auditory cortex of freely moving ferrets. We found that most spatially tuned neurons represented sound source location relative to the head across changes in head position and direction. In addition, we also recorded a small number of neurons in which sound location was represented in a world-centered coordinate frame. We used measurements of spatial tuning across changes in head position and direction to explore the influence of sound source distance and speed of head movement on auditory cortical activity and spatial tuning. Modulation depth of spatial tuning increased with distance for egocentric but not allocentric units, whereas, for both populations, modulation was stronger at faster movement speeds. Our findings suggest that early auditory cortex primarily represents sound source location relative to ourselves but that a minority of cells can represent sound location in the world independent of our own position. PMID:28617796

  3. 14 CFR 1266.104 - Cross-waiver of liability for launch agreements for science or space exploration activities...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... agreements for science or space exploration activities unrelated to the International Space Station. 1266.104... LIABILITY § 1266.104 Cross-waiver of liability for launch agreements for science or space exploration... cross-waiver of liability between the parties to agreements for NASA's science or space exploration...

  4. 14 CFR 1266.104 - Cross-waiver of liability for launch agreements for science or space exploration activities...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... agreements for science or space exploration activities unrelated to the International Space Station. 1266.104... LIABILITY § 1266.104 Cross-waiver of liability for launch agreements for science or space exploration... cross-waiver of liability between the parties to agreements for NASA's science or space exploration...

  5. 14 CFR 1266.104 - Cross-waiver of liability for launch agreements for science or space exploration activities...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... agreements for science or space exploration activities unrelated to the International Space Station. 1266.104... LIABILITY § 1266.104 Cross-waiver of liability for launch agreements for science or space exploration... cross-waiver of liability between the parties to agreements for NASA's science or space exploration...

  6. 48 CFR 1828.371 - Clauses incorporating cross-waivers of liability for International Space Station activities and...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... cross-waivers of liability for International Space Station activities and Science or Space Exploration... Station activities and Science or Space Exploration activities unrelated to the International Space Station. (a) In contracts covering International Space Station activities, or Science or Space Exploration...

  7. 48 CFR 1828.371 - Clauses incorporating cross-waivers of liability for International Space Station activities and...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... cross-waivers of liability for International Space Station activities and Science or Space Exploration... Station activities and Science or Space Exploration activities unrelated to the International Space Station. (a) In contracts covering International Space Station activities, or Science or Space Exploration...

  8. A 3D, finite element model for baroclinic circulation on the Vancouver Island continental shelf

    USGS Publications Warehouse

    Walters, R.A.; Foreman, M.G.G.

    1992-01-01

    This paper describes the development and application of a 3-dimensional model of the barotropic and baroclinic circulation on the continental shelf west of Vancouver Island, Canada. A previous study with a 2D barotropic model and field data revealed that several tidal constituents have a significant baroclinic component (the K1 in particular). Thus we embarked on another study with a 3D model to study the baroclinic effects on the residual and several selected tidal constituents. The 3D model uses a harmonic expansion in time and a finite element discretization in space. All nonlinear terms are retained, including quadratic bottom stress, advection and wave transport (continuity nonlinearity). The equations are solved as a global and a local problem, where the global problem is the solution of the wave equation formulation of the shallow water equations, and the local problem is the solution of the momentum equation for the vertical velocity profile. These equations are coupled to the advection-diffusion equation for density so that density gradient forcing is included in the momentum equations. However, the study presented here describes diagnostic calculations for the baroclinic residual circulation only. The model is sufficiently efficient that it encourages sensitivity testing with a large number of model runs. In this sense, the model is akin to an extension of analytical solutions to the domain of irregular geometry and bottom topography where this parameter space can be explored in some detail. In particular, the consequences of the sigma coordinate system used by the model are explored. Test cases using an idealized representation of the continental shelf, shelf break and shelf slope, lead to an estimation of the velocity errors caused by interpolation errors inherent in the sigma coordinate system. On the basis of these estimates, the computational grid used in the 2D model is found to have inadequate resolution. Thus a new grid is generated with increased accuracy in the region of the shelf break. However, even with increased resolution, spurious baroclinic circulation seaward of the shelf break and in the vicinity of Juan de Fuca canyon remained a significant problem when the pressure gradient terms were evaluated using the ?? coordinate system and using a realistic density profile. With the new grid, diagnostic calculations of the barotropic and baroclinic residual circulation are performed using forcing from the observed ??t (density) field and from the gradient of this field. ?? 1992.

  9. Latest Community Coordinated Modeling Center (CCMC) services and innovative tools supporting the space weather research and operational communities.

    NASA Astrophysics Data System (ADS)

    Mendoza, A. M. M.; Rastaetter, L.; Kuznetsova, M. M.; Mays, M. L.; Chulaki, A.; Shim, J. S.; MacNeice, P. J.; Taktakishvili, A.; Collado-Vega, Y. M.; Weigand, C.; Zheng, Y.; Mullinix, R.; Patel, K.; Pembroke, A. D.; Pulkkinen, A. A.; Boblitt, J. M.; Bakshi, S. S.; Tsui, T.

    2017-12-01

    The Community Coordinated Modeling Center (CCMC), with the fundamental goal of aiding the transition of modern space science models into space weather forecasting while supporting space science research, has been serving as an integral hub for over 15 years, providing invaluable resources to both space weather scientific and operational communities. CCMC has developed and provided innovative web-based point of access tools varying from: Runs-On-Request System - providing unprecedented global access to the largest collection of state-of-the-art solar and space physics models, Integrated Space Weather Analysis (iSWA) - a powerful dissemination system for space weather information, Advanced Online Visualization and Analysis tools for more accurate interpretation of model results, Standard Data formats for Simulation Data downloads, and Mobile apps to view space weather data anywhere to the scientific community. In addition to supporting research and performing model evaluations, CCMC also supports space science education by hosting summer students through local universities. In this poster, we will showcase CCMC's latest innovative tools and services, and CCMC's tools that revolutionized the way we do research and improve our operational space weather capabilities. CCMC's free tools and resources are all publicly available online (http://ccmc.gsfc.nasa.gov).

  10. New Strategy for Exploration Technology Development: The Human Exploration and Development of Space (HEDS) Exploration/Commercialization Technology Initiative

    NASA Technical Reports Server (NTRS)

    Mankins, John C.

    2000-01-01

    In FY 2001, NASA will undertake a new research and technology program supporting the goals of human exploration: the Human Exploration and Development of Space (HEDS) Exploration/Commercialization Technology Initiative (HTCI). The HTCI represents a new strategic approach to exploration technology, in which an emphasis will be placed on identifying and developing technologies for systems and infrastructures that may be common among exploration and commercial development of space objectives. A family of preliminary strategic research and technology (R&T) road maps have been formulated that address "technology for human exploration and development of space (THREADS). These road maps frame and bound the likely content of the HTCL Notional technology themes for the initiative include: (1) space resources development, (2) space utilities and power, (3) habitation and bioastronautics, (4) space assembly, inspection and maintenance, (5) exploration and expeditions, and (6) space transportation. This paper will summarize the results of the THREADS road mapping process and describe the current status and content of the HTCI within that framework. The paper will highlight the space resources development theme within the Initiative and will summarize plans for the coming year.

  11. KENNEDY SPACE CENTER, FLA. - Astronaut Kay Hire poses with 8th grader Kristy Wiggins at Garland V. Stewart Magnet Middle School, a NASA Explorer School (NES) in Tampa, Fla. Hire joined Center Director Jim Kennedy at the school in sharing the agency’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.

    NASA Image and Video Library

    2004-02-20

    KENNEDY SPACE CENTER, FLA. - Astronaut Kay Hire poses with 8th grader Kristy Wiggins at Garland V. Stewart Magnet Middle School, a NASA Explorer School (NES) in Tampa, Fla. Hire joined Center Director Jim Kennedy at the school in sharing the agency’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.

  12. KENNEDY SPACE CENTER, FLA. - Warren Elly (left), with WTVT-TV, Fox News, talks with Center Director Jim Kennedy at Garland V. Stewart Magnet Middle School, a NASA Explorer School (NES) in Tampa, Fla. Kennedy was joined by astronaut Kay Hire in sharing the agency’s new vision for space exploration with the next generation of explorers. Kennedy talked with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.

    NASA Image and Video Library

    2004-02-20

    KENNEDY SPACE CENTER, FLA. - Warren Elly (left), with WTVT-TV, Fox News, talks with Center Director Jim Kennedy at Garland V. Stewart Magnet Middle School, a NASA Explorer School (NES) in Tampa, Fla. Kennedy was joined by astronaut Kay Hire in sharing the agency’s new vision for space exploration with the next generation of explorers. Kennedy talked with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.

  13. KENNEDY SPACE CENTER, FLA. - Center Director Jim Kennedy talks to WTSP-ABC News about his trip to Garland V. Stewart Magnet Middle School, a NASA Explorer School (NES) in Tampa, Fla. Kennedy made the trip with NASA astronaut Kay Hire to share the agency’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.

    NASA Image and Video Library

    2004-02-20

    KENNEDY SPACE CENTER, FLA. - Center Director Jim Kennedy talks to WTSP-ABC News about his trip to Garland V. Stewart Magnet Middle School, a NASA Explorer School (NES) in Tampa, Fla. Kennedy made the trip with NASA astronaut Kay Hire to share the agency’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.

  14. The Behavioural Contexts of Red Langur (Presbytis rubicunda) Loud Calls in the Wehea Forest, East Kalimantan, Indonesia.

    PubMed

    D'Agostino, Justin; Spehar, Stephanie N; Delgado, Roberto

    2016-01-01

    Researchers hypothesize that male loud calls play several roles in primate societies including in the context of intergroup spacing and spatial coordination. Field studies examining the behavioural correlates of vocalizations are essential to evaluate the function of these calls. This preliminary study, from July 2011 to January 2012, explores the behavioural contexts and correlates of male loud calls in a habituated group of red langurs (Presbytis rubicunda) in the Wehea Forest, East Kalimantan, Indonesia. In analysing 418 h of data collection, we find a total of 87 vocal behaviours, including bouts of multiple calls in rapid succession (i.e. calling events) and individual loud calls. In this sample, most vocal behaviour takes place in the morning with 59% of calling events occurring before 8.00 h. The mean rate of calling events is 0.12 events/h, and the mean rate of individual loud calls is 0.20 calls/h. The mean number of calling events per day is 1.31 (range: 0-4), and the mean number of individual loud calls per day is 2.81 (range: 0-13). The rate of calling events is highest in the context of intragroup conflict, followed by intergroup encounters, predator threat, group travel, and the highest number of individual loud calls occurred during intergroup encounters. Although these results are preliminary, they suggest that adult male loud calls among red langurs at Wehea may play a role in both intergroup spacing and social coordination, supporting the hypothesis that these calls can serve different functions. © 2016 S. Karger AG, Basel.

  15. Development of highly accurate approximate scheme for computing the charge transfer integral

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pershin, Anton; Szalay, Péter G.

    The charge transfer integral is a key parameter required by various theoretical models to describe charge transport properties, e.g., in organic semiconductors. The accuracy of this important property depends on several factors, which include the level of electronic structure theory and internal simplifications of the applied formalism. The goal of this paper is to identify the performance of various approximate approaches of the latter category, while using the high level equation-of-motion coupled cluster theory for the electronic structure. The calculations have been performed on the ethylene dimer as one of the simplest model systems. By studying different spatial perturbations, itmore » was shown that while both energy split in dimer and fragment charge difference methods are equivalent with the exact formulation for symmetrical displacements, they are less efficient when describing transfer integral along the asymmetric alteration coordinate. Since the “exact” scheme was found computationally expensive, we examine the possibility to obtain the asymmetric fluctuation of the transfer integral by a Taylor expansion along the coordinate space. By exploring the efficiency of this novel approach, we show that the Taylor expansion scheme represents an attractive alternative to the “exact” calculations due to a substantial reduction of computational costs, when a considerably large region of the potential energy surface is of interest. Moreover, we show that the Taylor expansion scheme, irrespective of the dimer symmetry, is very accurate for the entire range of geometry fluctuations that cover the space the molecule accesses at room temperature.« less

  16. The surgical ensemble: choreography as a simulation and training tool.

    PubMed

    Satava, Richard M; Hunter, Anne Marie

    2011-09-01

    Team training and interprofessional training have recently emerged as critical new simulations that enhance performance by coordinating communication, leadership, professional, and, to a certain extent, technical skills. In describing these new training tools, the term choreography has been loosely used, but no critical appraisal of the role of the science of choreography has been applied to a surgical procedure. By analogy, the surgical team, including anesthetists, surgeons, nurses, and technicians, constitutes a complete ensemble, whose physical actions and interactions constitute the "performance of surgery." There are very specific "elements" (tools) that are basic to choreography, such as space, timing, rhythm, energy, cues, transitions, and especially rehearsal. This review explores whether such a metaphor is appropriate and the possibility of applying the science of choreography to the surgical team in the operating theater.

  17. Nuclear electric propulsion stage requirements and description

    NASA Technical Reports Server (NTRS)

    Mondt, J. F.; Peelgren, M. L.; Nakashima, A. M.; Nsieh, T. M.; Phillips, W. M.; Kikin, G. M.

    1974-01-01

    The application of a nuclear electric propulsion (NEP) stage in the exploration of near-earth, cometary, and planetary space was discussed. The NEP stage is powered by a liquid-metal-cooled, fast spectrum thermionic reactor capable of providing 120 kWe for 20,000 hours. This power is used to drive a number of mercury ion bombardment thrusters with specific impulse in the range of 4000-5000 seconds. The NEP description, characteristics, and functional requirements are discussed. These requirements are based on a set of five coordinate missions, which are described in detail. These five missions are a representative part of a larger set of missions used as a basic for an advanced propulsion comparison study. Additionally, the NEP stage development plan and test program is outlined and a schedule presented.

  18. Probing neutron-skin thickness with total reaction cross sections

    NASA Astrophysics Data System (ADS)

    Horiuchi, W.; Suzuki, Y.; Inakura, T.

    2014-01-01

    We analyze total reaction cross sections, σR, to explore their sensitivity to the neutron-skin thickness of nuclei. We cover 91 nuclei of O, Ne, Mg, Si, S, Ca, and Ni isotopes. The cross sections are calculated in the Glauber theory using the density distributions obtained with the Skyrme-Hartree-Fock method in three-dimensional coordinate space. Defining a reaction radius, aR=√σR/π , to characterize the nuclear size and target (proton or 12C) dependence, we find an empirical formula for expressing aR with the point matter radius and the skin thickness, and assess two practical ways of determining the skin thickness from proton-nucleus σR values measured at different energies or from σR values measured for different targets.

  19. Autonomous Multi-Sensor Coordination: The Science Goal Monitor

    NASA Technical Reports Server (NTRS)

    Koratkar, Anuradha; Grosvenor, Sandy; Jung, John; Hess, Melissa; Jones, Jeremy

    2004-01-01

    Many dramatic earth phenomena are dynamic and coupled. In order to fully understand them, we need to obtain timely coordinated multi-sensor observations from widely dispersed instruments. Such a dynamic observing system must include the ability to Schedule flexibly and react autonomously to sciencehser driven events; Understand higher-level goals of a sciencehser defined campaign; Coordinate various space-based and ground-based resources/sensors effectively and efficiently to achieve goals. In order to capture transient events, such a 'sensor web' system must have an automated reactive capability built into its scientific operations. To do this, we must overcome a number of challenges inherent in infusing autonomy. The Science Goal Monitor (SGM) is a prototype software tool being developed to explore the nature of automation necessary to enable dynamic observing. The tools being developed in SGM improve our ability to autonomously monitor multiple independent sensors and coordinate reactions to better observe dynamic phenomena. The SGM system enables users to specify what to look for and how to react in descriptive rather than technical terms. The system monitors streams of data to identify occurrences of the key events previously specified by the scientisther. When an event occurs, the system autonomously coordinates the execution of the users' desired reactions between different sensors. The information can be used to rapidly respond to a variety of fast temporal events. Investigators will no longer have to rely on after-the-fact data analysis to determine what happened. Our paper describes a series of prototype demonstrations that we have developed using SGM and NASA's Earth Observing-1 (EO-1) satellite and Earth Observing Systems' Aqua/Terra spacecrafts' MODIS instrument. Our demonstrations show the promise of coordinating data from different sources, analyzing the data for a relevant event, autonomously updating and rapidly obtaining a follow-on relevant image. SGM was used to investigate forest fires, floods and volcanic eruptions. We are now identifying new Earth science scenarios that will have more complex SGM reasoning. By developing and testing a prototype in an operational environment, we are also establishing and gathering metrics to gauge the success of automating science campaigns.

  20. Boundary-fitted coordinate systems for numerical solution of partial differential equations - A review

    NASA Technical Reports Server (NTRS)

    Thompson, J. F.; Warsi, Z. U. A.; Mastin, C. W.

    1982-01-01

    A comprehensive review of methods of numerically generating curvilinear coordinate systems with coordinate lines coincident with all boundary segments is given. Some general mathematical framework and error analysis common to such coordinate systems is also included. The general categories of generating systems are those based on conformal mapping, orthogonal systems, nearly orthogonal systems, systems produced as the solution of elliptic and hyperbolic partial differential equations, and systems generated algebraically by interpolation among the boundaries. Also covered are the control of coordinate line spacing by functions embedded in the partial differential operators of the generating system and by subsequent stretching transformation. Dynamically adaptive coordinate systems, coupled with the physical solution, and time-dependent systems that follow moving boundaries are treated. References reporting experience using such coordinate systems are reviewed as well as those covering the system development.

Top