NASA Technical Reports Server (NTRS)
Garner, Lesley
2008-01-01
In 2006, NASA's Exploration Systems Mission Directorate (ESMD) launched two new Educational Projects: (1) The ESMID Space Grant Student Project ; and (2) The ESM1D Space Grant Faculty Project. The Student Project consists of three student opportunities: exploration-related internships at NASA Centers or with space-related industry, senior design projects, and system engineering paper competitions. The ESMID Space Grant Faculty Project consists of two faculty opportunities: (1) a summer faculty fellowship; and (2) funding to develop a senior design course.
NASA Technical Reports Server (NTRS)
Miller, Thomas
2007-01-01
The NASA Glenn Research Center (GRC), along with the Goddard Space Flight Center (GSFC), Jet Propulsion Laboratory (JPL), Johnson Space Center (JSC), Marshall Space Flight Center (MSFC), and industry partners, is leading a space-rated lithium-ion advanced development battery effort to support the vision for Exploration. This effort addresses the lithium-ion battery portion of the Energy Storage Project under the Exploration Technology Development Program. Key discussions focus on the lithium-ion cell component development activities, a common lithium-ion battery module, test and demonstration of charge/discharge cycle life performance and safety characterization. A review of the space-rated lithium-ion battery project will be presented highlighting the technical accomplishments during the past year.
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2017-01-01
This report is intended to help NASA program and project managers incorporate Small Business Innovation Research Small Business Technology Transfer (SBIR/STTR) technologies into NASA Human Exploration and Operations Mission Directorate (HEOMD) projects. Other Government and commercial projects managers can also find this useful. Space Transportation; Life Support and Habitation Systems; Extra-Vehicular Activity; High EfficiencySpace Power; Human Exploration and Operations Mission,
Advanced Avionics and Processor Systems for Space and Lunar Exploration
NASA Technical Reports Server (NTRS)
Keys, Andrew S.; Adams, James H.; Ray, Robert E.; Johnson, Michael A.; Cressler, John D.
2009-01-01
NASA's newly named Advanced Avionics and Processor Systems (AAPS) project, formerly known as the Radiation Hardened Electronics for Space Environments (RHESE) project, endeavors to mature and develop the avionic and processor technologies required to fulfill NASA's goals for future space and lunar exploration. Over the past year, multiple advancements have been made within each of the individual AAPS technology development tasks that will facilitate the success of the Constellation program elements. This paper provides a brief review of the project's recent technology advancements, discusses their application to Constellation projects, and addresses the project's plans for the coming year.
TRI-Worthy Projects for the Deep Space Gateway
NASA Astrophysics Data System (ADS)
Wotring, V. E.; Strangman, G. E.; Donoviel, D.
2018-02-01
Preparations for exploration will require exposure to the actual deep space environment. The new TRI for Space Health proposes innovative projects using real space radiation to make medically-relevant measurements affecting human physiology.
High-Performance, Radiation-Hardened Electronics for Space and Lunar Environments
NASA Technical Reports Server (NTRS)
Keys, Andrew S.; Adams, James H.; Cressler, John D.; Darty, Ronald C.; Johnson, Michael A.; Patrick, Marshall C.
2008-01-01
The Radiation Hardened Electronics for Space Environments (RHESE) project develops advanced technologies needed for high performance electronic devices that will be capable of operating within the demanding radiation and thermal extremes of the space, lunar, and Martian environment. The technologies developed under this project enhance and enable avionics within multiple mission elements of NASA's Vision for Space Exploration. including the Constellation program's Orion Crew Exploration Vehicle. the Lunar Lander project, Lunar Outpost elements, and Extra Vehicular Activity (EVA) elements. This paper provides an overview of the RHESE project and its multiple task tasks, their technical approaches, and their targeted benefits as applied to NASA missions.
Project Explorer - Student experiments aboard the Space Shuttle
NASA Technical Reports Server (NTRS)
Buckbee, E.; Dannenberg, K.; Driggers, G.; Orillion, A.
1979-01-01
Project Explorer, a program of high school student experiments in space in a Space Shuttle self-contained payload unit (Getaway Special), sponsored by the Alabama Space and Rocket Center (ASRC) in cooperation with four Alabama universities is presented. Organizations aspects of the project, which is intended to promote public awareness of the space program and encourage space research, are considered, and the proposal selection procedure is outlined. The projects selected for inclusion in the self-contained payload canister purchased in 1977 and expected to be flown on an early shuttle mission include experiments on alloy solidification, electric plating, whisker growth, chick embryo development and human blood freezing, and an amateur radio experiment. Integration support activities planned and underway are summarized, and possible uses for a second payload canister purchased by ASRC are discussed.
2009 ESMD Space Grant Faculty Project Final Report
NASA Technical Reports Server (NTRS)
Murphy, Gloria; Ghanashyam, Joshi; Guo, Jiang; Conrad, James; Bandyopadhyay, Alak; Cross, William
2009-01-01
The Constellation Program is the medium by which we will maintain a presence in low Earth orbit, return to the moon for further exploration and develop procedures for Mars exploration. The foundation for its presence and success is built by the many individuals that have given of their time, talent and even lives to help propel the mission and objectives of NASA. The Exploration Systems Mission Directorate (ESMD) Faculty Fellows Program is a direct contributor to the success of directorate and Constellation Program objectives. It is through programs such as the ESMD Space Grant program that students are inspired and challenged to achieve the technological heights that will propel us to meet the goals and objectives of ESMD and the Constellation Program. It is through ESMD Space Grant programs that future NASA scientists, engineers, and mathematicians begin to dream of taking America to newer heights of space exploration. The ESMD Space Grant program is to be commended for taking the initiative to develop and implement programs that help solidify the mission of NASA. With the concerted efforts of the Kennedy Space Center educational staff, the 2009 ESMD Space Grant Summer Faculty Fellows Program allowed faculty to become more involved with NASA personnel relating to exploration topics for the senior design projects. The 2009 Project was specifically directed towards NASA's Strategic Educational Outcome 1. In-situ placement of Faculty Fellows at the NASA field Centers was essential; this allowed personal interactions with NASA scientists and engineers. In particular, this was critical to better understanding the NASA problems and begin developing a senior design effort to solve the problems. The Faculty Fellows are pleased that the ESMD Space Grant program is taking interest in developing the Senior Design courses at the university level. These courses are needed to help develop the NASA engineers and scientists of the very near future. It has been a pleasure to be part of the evaluation process to help ensure that these courses are developed in such a way that the students' educational objectives are maximized. Ultimately, with NASA-related content used as projects in the course, students will be exposed to space exploration concepts and issues while still in college. This will help to produce NASA engineers and scientists that are knowledgeable of space exploration. By the concerted efforts of these five senior design projects, NASA's ESMD Space Grant Project is making great strides at helping to develop talented engineers and scientists that will continue our exploration into space.
Outreach and capacity building activities for engaging youth and public in Exploration
NASA Astrophysics Data System (ADS)
Foing, Bernard H.
We report to the COSPAR Panel on Education and relevant community on activities, pilot projects and results relevant for outreach and engagement in exploration. Number of activities were developed in the frame of the International Lunar Exploration Working Group (ILEWG) including the participation of students in lunar symposia, space conferences or ICEUM International Conferences on Exploration and Utilisation of the Moon* ILEWG with support from various space agencies, universities and institutions has organized events for young professionals with a wide background (including scientist, engineers, humanistic, law, art students) a Moon academy, lunar and planetary students work-shops, technical training workshops, international observe the Moon sessions. ILEWG has organised or sponsored participants to a series of field training and research campaigns in Utah desert research station, Eifel volcanic park, Iceland, Rio Tinto, La Reunion island. Education and outreach projects used space missions data (SMART-1 views of the Moon, Earth views from space, Mars views, Mars crowdsourcing games, astronomy data analysis) to engage the public in citizen science and exploration. Artistic and sociological projects (e.g. "social lunar telescope, lunar zen garden, Moon academy, MoonLife, MoonLife concept store, Moon republic, artscience projects, space science in the arts, artists in residence, artists in MoonMars base") were also initiated with artists to engage the wide public in exploration. A number of projects have been developed with support from ITACCUS IAF committee. We shall discuss how these pilot projects could be expanded for the benefit of future space projects, young professionals, the space community and the public. Acknowledgements: we thank collaborators from ILEWG community and partner institutes for the different projects mentioned http://sci.esa.int/ilewg/ http://sci.esa.int/ilewg/47170-gluc-iceum11-beijing-2010lunar-declaration/ Foing B., Stoker C., Ehrenfreund P., Astrobiology field research in Moon/Mars , IJA, 10,Special Issue 03 (2011) https://www.google.nl/?gfe_rd=cr&ei=D4MHU5CMB4ve8gfzl4DQCg#q=ilewg+euromoonmars http://www.aliciaframis.com/Moonlife_Concept.html http://www.artscatalyst.org/experiencelearning/detail/itaccus/
Management of Service Projects in Support of Space Flight Research
NASA Technical Reports Server (NTRS)
Love, J.
2009-01-01
Goal:To provide human health and performance countermeasures, knowledge, technologies, and tools to enable safe, reliable, and productive human space exploration . [HRP-47051] Specific Objectives: 1) Develop capabilities, necessary countermeasures, and technologies in support of human space exploration, focusing on mitigating the highest risks to human health and performance. 2) Define and improve human spaceflight medical, environmental, and human factors standards. 3) Develop technologies that serve to reduce medical and environmental risks, to reduce human systems resource requirements (mass, volume, power, data, etc.) and to ensure effective human-system integration across exploration systems. 4) Ensure maintenance of Agency core competencies necessary to enable risk reduction in the following areas: A. Space medicine B. Physiological and behavioral effects of long duration spaceflight on the human body C. Space environmental effects, including radiation, on human health and performance D. Space "human factors" [HRP-47051]. Service projects can form integral parts of research-based project-focused programs to provide specialized functions. Traditional/classic project management methodologies and agile approaches are not mutually exclusive paradigms. Agile strategies can be combined with traditional methods and applied in the management of service projects functioning in changing environments. Creative collaborations afford a mechanism for mitigation of constrained resource limitations.
Advanced Life Support Project Plan
NASA Technical Reports Server (NTRS)
2002-01-01
Life support systems are an enabling technology and have become integral to the success of living and working in space. As NASA embarks on human exploration and development of space to open the space frontier by exploring, using and enabling the development of space and to expand the human experience into the far reaches of space, it becomes imperative, for considerations of safety, cost, and crew health, to minimize consumables and increase the autonomy of the life support system. Utilizing advanced life support technologies increases this autonomy by reducing mass, power, and volume necessary for human support, thus permitting larger payload allocations for science and exploration. Two basic classes of life support systems must be developed, those directed toward applications on transportation/habitation vehicles (e.g., Space Shuttle, International Space Station (ISS), next generation launch vehicles, crew-tended stations/observatories, planetary transit spacecraft, etc.) and those directed toward applications on the planetary surfaces (e.g., lunar or Martian landing spacecraft, planetary habitats and facilities, etc.). In general, it can be viewed as those systems compatible with microgravity and those compatible with hypogravity environments. Part B of the Appendix defines the technology development 'Roadmap' to be followed in providing the necessary systems for these missions. The purpose of this Project Plan is to define the Project objectives, Project-level requirements, the management organizations responsible for the Project throughout its life cycle, and Project-level resources, schedules and controls.
Manned Mission Space Exploration Utilizing a Flexible Universal Module
NASA Astrophysics Data System (ADS)
Humphries, P.; Barez, F.; Gowda, A.
2018-02-01
The proposed ASMS, Inc. "Flexible Universal Module" is in support of NASA's Deep Space Gateway project. The Flexible Universal Module provides a possible habitation or manufacturing environment in support of Manned Mission for Space Exploration.
White, Olivier; Clément, Gilles; Fortrat, Jacques-Olivier; Pavy-LeTraon, Anne; Thonnard, Jean-Louis; Blanc, Stéphane; Wuyts, Floris L; Paloski, William H
2016-01-01
The THESEUS project (Towards Human Exploration of Space: a European Strategy), initiated within the seventh Framework Programme by the European Commission, aimed at providing a cross-cutting, life-science-based roadmap for Europe's strategy towards human exploration of long space missions, and its relevance to applications on Earth. This topic was investigated by experts in the field, in the framework of the THESEUS project whose aim was to develop an integrated life sciences research roadmap regarding human space exploration. In particular, decades of research have shown that altered gravity impairs neurological responses at large, such as perception, sleep, motor control, and cognitive factors. International experts established a list of key issues that should be addressed in that context and provided several recommendations such as a maximal exploitation of currently available resources on Earth and in space.
NASA Technical Reports Server (NTRS)
Cucinotta, Francis; Badhwar, Gautam; Saganti, Premkumar; Schimmerling, Walter; Wilson, John; Peterson, Leif; Dicello, John
2002-01-01
In this paper we discuss expected lifetime excess cancer risks for astronauts returning from exploration class missions. For the first time we make a quantitative assessment of uncertainties in cancer risk projections for space radiation exposures. Late effects from the high charge and energy (HZE) ions present in the galactic cosmic rays including cancer and the poorly understood risks to the central nervous system constitute the major risks. Methods used to project risk in low Earth orbit are seen as highly uncertain for projecting risks on exploration missions because of the limited radiobiology data available for estimating HZE ion risks. Cancer risk projections are described as a product of many biological and physical factors, each of which has a differential range of uncertainty due to lack of data and knowledge. Monte-Carlo sampling from subjective error distributions represents the lack of knowledge in each factor to quantify risk projection overall uncertainty. Cancer risk analysis is applied to several exploration mission scenarios. At solar minimum, the number of days in space where career risk of less than the limiting 3% excess cancer mortality can be assured at a 95% confidence level is found to be only of the order of 100 days.
NASA Technical Reports Server (NTRS)
Chung, Victoria I.; Crues, Edwin Z.; Blum, Mike G.; Alofs, Cathy; Busto, Juan
2007-01-01
This paper describes the architecture and implementation of a distributed launch and ascent simulation of NASA's Orion spacecraft and Ares I launch vehicle. This simulation is one segment of the Distributed Space Exploration Simulation (DSES) Project. The DSES project is a research and development collaboration between NASA centers which investigates technologies and processes for distributed simulation of complex space systems in support of NASA's Exploration Initiative. DSES is developing an integrated end-to-end simulation capability to support NASA development and deployment of new exploration spacecraft and missions. This paper describes the first in a collection of simulation capabilities that DSES will support.
NASA Astrophysics Data System (ADS)
Carmen, C.
2012-11-01
The United States (US) National Aeronautics and Space Administration (NASA) Exploration Systems Mission Directorate (ESMD) provides university faculty fellowships that prepare the faculty to implement engineering design class projects that possess the potential to contribute to NASA ESMD objectives. The goal of the ESMD is to develop new capabilities, support technologies and research that will enable sustained and affordable human and robotic space exploration. In order to create a workforce that will have the desire and skills necessary to achieve these goals, the NASA ESMD faculty fellowship program enables university faculty to work on specific projects at a NASA field center and then implement the project within their capstone engineering design class. This allows the senior - or final year - undergraduate engineering design students, the opportunity to develop critical design experience using methods and design tools specified within NASA's Systems Engineering (SE) Handbook. The faculty fellowship projects focus upon four specific areas critical to the future of space exploration: spacecraft, propulsion, lunar and planetary surface systems and ground operations. As the result of a 2010 fellowship, whereby faculty research was conducted at Marshall Space Flight Center (MSFC) in Huntsville, Alabama (AL), senior design students in the Mechanical and Aerospace Engineering (MAE) department at the University of Alabama in Huntsville (UAH) had the opportunity to complete senior design projects that pertained to current work conducted to support ESMD objectives. Specifically, the UAH MAE students utilized X-TOOLSS (eXploration Toolset for the Optimization Of Launch and Space Systems), an Evolutionary Computing (EC) design optimization software, as well as design, analyze, fabricate and test a lunar regolith burrowing device - referred to as the Lunar Wormbot (LW) - that is aimed at exploring and retrieving samples of lunar regolith. These two projects were implemented during the 2010-2011 academic year at UAH and have proven to significantly motivate and enhance the students understanding of the design, development and optimization of space systems. The current paper provides an overview of the NASA ESMD faculty fellowship program, the 2010 fellowship projects, a detailed description of the means of integrating the X-TOOLSS and LW projects within the UAH MAE senior design class, the MAE student design project results, as well as the learning outcome and impact of the ESMD project had upon the engineering students.
Towards human exploration of space: the THESEUS review series on neurophysiology research priorities
White, Olivier; Clément, Gilles; Fortrat, Jacques-Olivier; Pavy-LeTraon, Anne; Thonnard, Jean-Louis; Blanc, Stéphane; Wuyts, Floris L; Paloski, William H
2016-01-01
The THESEUS project (Towards Human Exploration of Space: a European Strategy), initiated within the seventh Framework Programme by the European Commission, aimed at providing a cross-cutting, life-science-based roadmap for Europe’s strategy towards human exploration of long space missions, and its relevance to applications on Earth. This topic was investigated by experts in the field, in the framework of the THESEUS project whose aim was to develop an integrated life sciences research roadmap regarding human space exploration. In particular, decades of research have shown that altered gravity impairs neurological responses at large, such as perception, sleep, motor control, and cognitive factors. International experts established a list of key issues that should be addressed in that context and provided several recommendations such as a maximal exploitation of currently available resources on Earth and in space. PMID:28725734
NASA Laboratory Analysis for Manned Exploration Missions
NASA Technical Reports Server (NTRS)
Krihak, Michael (Editor); Shaw, Tianna
2014-01-01
The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability Element under the NASA Human Research Program. ELA instrumentation is identified as an essential capability for future exploration missions to diagnose and treat evidence-based medical conditions. However, mission architecture limits the medical equipment, consumables, and procedures that will be available to treat medical conditions during human exploration missions. Allocated resources such as mass, power, volume, and crew time must be used efficiently to optimize the delivery of in-flight medical care. Although commercial instruments can provide the blood and urine based measurements required for exploration missions, these commercial-off-the-shelf devices are prohibitive for deployment in the space environment. The objective of the ELA project is to close the technology gap of current minimally invasive laboratory capabilities and analytical measurements in a manner that the mission architecture constraints impose on exploration missions. Besides micro gravity and radiation tolerances, other principal issues that generally fail to meet NASA requirements include excessive mass, volume, power and consumables, and nominal reagent shelf-life. Though manned exploration missions will not occur for nearly a decade, NASA has already taken strides towards meeting the development of ELA medical diagnostics by developing mission requirements and concepts of operations that are coupled with strategic investments and partnerships towards meeting these challenges. This paper focuses on the remote environment, its challenges, biomedical diagnostics requirements and candidate technologies that may lead to successful blood/urine chemistry and biomolecular measurements in future space exploration missions. SUMMARY The NASA Exploration Laboratory Analysis project seeks to develop capability to diagnose anticipated space exploration medical conditions on future manned missions. To achieve this goal, NASA will leverage existing point-of-care technology to provide clinical laboratory measurements in space. This approach will place the project on a path to minimize sample, reagent consumption, mass, volume and power. For successful use in the space environment, NASA specific conditions such as micro gravity and radiation, for example, will also need to be addressed.
Advanced Exploration Systems Atmosphere Resource Recovery and Environmental Monitoring
NASA Technical Reports Server (NTRS)
Perry, J.; Abney, M.; Conrad, R.; Garber, A.; Howard, D.; Kayatin, M.; Knox, J.; Newton, R.; Parrish, K.; Roman, M.;
2016-01-01
In September 2011, the Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project was commissioned by NASA's Advanced Exploration Systems program to advance Atmosphere Revitalization Subsystem (ARS) and Environmental Monitoring Subsystem (EMS) technologies for enabling future crewed space exploration missions beyond low Earth orbit. The ARREM project's period of performance covered U.S. Government fiscal years 2012-2014. The ARREM project critically assessed the International Space Station (ISS) ARS and EMS architectures and process technologies as the foundation for an architecture suitable for deep space exploration vehicles. The project's technical content included technical tasks focused on improving the reliability and life cycle cost of ARS and EMS technologies as well as reducing future flight project developmental risk and design, development, test, and evaluation costs. Targeted technology development and maturation tasks, including key technical trade assessments, were accomplished and integrated ARS architectures were demonstrated. The ARREM project developed, demonstrated, and tested leading process technology candidates and subsystem architectures that met or exceeded key figures of merit, addressed capability gaps, and significantly improved the efficiency, safety, and reliability over the state-of-the-art ISS figures of merit. Promising EMS instruments were developed and functionally demonstrated in a simulated cabin environment. The project's technical approach and results are described and recommendations for continued development are provided.
Composite Technology for Exploration
NASA Technical Reports Server (NTRS)
Fikes, John
2017-01-01
The CTE (Composite Technology for Exploration) Project will develop and demonstrate critical composites technologies with a focus on joints that utilize NASA expertise and capabilities. The project will advance composite technologies providing lightweight structures to support future NASA exploration missions. The CTE project will demonstrate weight-saving, performance-enhancing bonded joint technology for Space Launch System (SLS)-scale composite hardware.
Extremophiles and Space Exploration
NASA Technical Reports Server (NTRS)
Paulino Lima, Ivan Glaucio
2016-01-01
In this presentation, Dr. Paulino Lima will give a brief introduction of the Universities Space Research Association, and an overview of Dr. Lynn Rothschild's research projects at NASA Ames with emphasis on his research projects.
Space exploration and colonization - Towards a space faring society
NASA Technical Reports Server (NTRS)
Hammond, Walter E.
1990-01-01
Development trends of space exploration and colonization since 1957 are reviewed, and a five-phase evolutionary program planned for the long-term future is described. The International Geosphere-Biosphere program which is intended to provide the database on enviromental changes of the earth as a global system is considered. Evolution encompasses the anticipated advantages of such NASA observation projects as the Hubble Space Telescope, the Gamma Ray Observatory, the Advanced X-Ray Astrophysics Facility, and the Cosmic Background Explorer. Attention is given to requirements for space colonization, including development of artificial gravity and countermeasures to mitigate zero gravity problems; robotics and systems aimed to minimize human exposure to the space environment; the use of nuclear propulsion; and international collaboration on lunar-Mars projects. It is recommended that nuclear energy sources be developed for both propulsion and as extraterrestrial power plants.
Overview of the NASA Advanced In-Space Propulsion Project
NASA Technical Reports Server (NTRS)
LaPointe, Michael
2011-01-01
In FY11, NASA established the Enabling Technologies Development and Demonstration (ETDD) Program, a follow on to the earlier Exploration Technology Development Program (ETDP) within the NASA Exploration Systems Mission Directorate. Objective: Develop, mature and test enabling technologies for human space exploration.
NASA's In-Space Manufacturing Project: A Roadmap for a Multimaterial Fabrication Laboratory in Space
NASA Technical Reports Server (NTRS)
Prater, Tracie; Werkheiser, Niki; Ledbetter, Frank
2017-01-01
Human space exploration to date has been limited to low Earth orbit and the moon. The International Space Station (ISS) provides a unique opportunity for NASA to partner with private industry for development and demonstration of the technologies needed to support exploration initiatives. One challenge that is critical to sustainable and safer exploration is the ability to manufacture and recycle materials in space. This paper provides an overview of NASA's in-space manufacturing (ISM) project, its past and current activities (2014-2017), and how technologies under development will ultimately culminate in a multimaterial fabrication laboratory ("ISM FabLab") to be deployed on the International Space Station in the early 2020s. ISM is a critical capability for the long endurance missions NASA seeks to undertake in the coming decades. An unanticipated failure that can be adapted for in low earth orbit, through a resupply launch or a return to earth, may instead result in a loss of mission while in transit to Mars. To have a suite of functional ISM capabilities that are compatible with NASA's exploration timeline, ISM must be equipped with the resources necessary to develop these technologies and deploy them for testing prior to the scheduled de-orbit of ISS in 2024. The presentation provides a broad overview of ISM projects activities culminating with the Fabrication Laboratory for ISS. In 2017, the in-space manufacturing project issued a broad agency announcement for this capability. Requirements of the Fabrication Laboratory as stated in the solicitation will be discussed. The FabLab will move NASA and private industry significantly closer to changing historical paradigms for human spaceflight where all materials used in space are launched from earth. While the current ISM FabLab will be tested on ISS, future systems are eventually intended for use in a deep space habitat or transit vehicle. The work of commercial companies funded under NASA's Small Business Innovative Research Program (SBIR) is also discussed, as these activities, from development of recyclable packaging for ISS to additive manufacturing capabilities for metals and electronics, could also potentially be infused into future exploration capabilities. Key data from ISM projects to date will also be summarized.
NASA In-Situ Resource Utilization Project-and Seals Challenges
NASA Technical Reports Server (NTRS)
Sacksteder, Kurt; Linne, Diane
2006-01-01
A viewgraph presentation on NASA's In-Situ Resource Utilization Project and Seals Challenges is shown. The topics include: 1) What Are Space Resources?; 2) Space Resource Utilization for Exploration; 3) ISRU Enables Affordable, Sustainable & Flexible Exploration; 4) Propellant from the Moon Could Revolutionize Space Transportation; 5) NASA ISRU Capability Roadmap Study, 2005; 6) Timeline for ISRU Capability Implementation; 7) Lunar ISRU Implementation Approach; 8) ISRU Technical-to-Mission Capability Roadmap; 9) ISRU Resources & Products of Interest; and 10) Challenging Seals Requirements for ISRU.
NASA's In-Situ Resource Utilization Project: Current Accomplishments and Exciting Future Plans
NASA Technical Reports Server (NTRS)
Larson, William E.; Sanders, Gerald B.; Sacksteder, Kurt R.
2010-01-01
The utilization of Space resources has been identified in publications for over 40 years for its potential as a "game changing" technology for the human exploration of Space. It is called "game changing" because of the mass leverage possible when local resources at the exploration destination arc used to reduce or even eliminate resources that are brought from the Earth. NASA, under the Exploration Technology Development Program has made significant investments in the development of Space resource utilization technologies as a part of the In-Situ Resource Utilization (ISRU) project. Over the last four years, the ISRU project has taken what was essentially an academic topic with lots of experimentation but little engineering and produced near-full-scale systems that have been demonstrated. In 2008 & again in early 2010, systems that could produce oxygen from lunar soils (or their terrestrial analogs) were tested at a lunar analog site on a volcano in Hawaii. These demonstrations included collaborations with International Partners that made significant contributions to the tests. The proposed federal budget for Fiscal Year 2011 encourages the continued development and demonstration of ISRU. However it goes beyond what the project is currently doing and directs that the scope of the project be expanded to cover destinations throughout the inner solar system with the potential for night demonstrations. This paper will briefly cover the past accomplishments of the ISRU project then move to a di scussion of the plans for the project's future as NASA moves to explore a new paradigm for Space Exploration that includes orbital fuel depots and even refueling on other planetary bodies in the solar system.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Astronaut Dr. David A. Wolf looks at students science project creating tornados during a visit to Carol City Elementary School, a NASA Explorer School, in Miami, Fla. Wolf is accompanying Center Director Jim Kennedy on a visit to the school to share Americas new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASAs stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-04-12
KENNEDY SPACE CENTER, FLA. - Astronaut Dr. David A. Wolf looks at students’ science project creating tornados during a visit to Carol City Elementary School, a NASA Explorer School, in Miami, Fla. Wolf is accompanying Center Director Jim Kennedy on a visit to the school to share America’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2004-04-12
KENNEDY SPACE CENTER, FLA. - Astronaut Dr. David A. Wolf learns about a science project from students at Carol City Elementary School, a NASA Explorer School, in Miami, Fla. Wolf is accompanying Center Director Jim Kennedy on a visit to the school to share America’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
Support for RESTOR, EMIST, and CHREC Space Processor
NASA Technical Reports Server (NTRS)
Shea, Bradley Franklin
2014-01-01
The goal of this project was to provide support for three different projects including RESTOR, CHREC Space Processor, and EMIST. LabVIEW software was written to verify tags in an excel spreadsheet, testing preparation was accomplished for CHREC, and full payload integration was completed for EMIST. All of these projects will contribute to advanced exploration in space and provide valuable experience.
2007-09-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. In this HD video image, the first stage reentry 1/2% model is undergoing pressure measurements inside the wind tunnel testing facility at MSFC. (Highest resolution available)
Exploration Medical Capability (ExMC) Program
NASA Technical Reports Server (NTRS)
Kalla, Elizabeth
2006-01-01
This document reviews NASA's Exploration Medical Capability (ExMC) program. The new space exploration program, outlined by the President will present new challenges to the crew's health. The project goals are to develop and validate requirements for reliable, efficient, and robust medical systems and treatments for space exploration to maximize crew performance for mission objectives.
NASA Technical Reports Server (NTRS)
Huebner, Lawrence D.; Saiyed, Naseem H.; Swith, Marion Shayne
2005-01-01
When United States President George W. Bush announced the Vision for Space Exploration in January 2004, twelve propulsion and launch system projects were being pursued in the Next Generation Launch Technology (NGLT) Program. These projects underwent a review for near-term relevance to the Vision. Subsequently, five projects were chosen as advanced development projects by NASA s Exploration Systems Mission Directorate (ESMD). These five projects were Auxiliary Propulsion, Integrated Powerhead Demonstrator, Propulsion Technology and Integration, Vehicle Subsystems, and Constellation University Institutes. Recently, an NGLT effort in Vehicle Structures was identified as a gap technology that was executed via the Advanced Development Projects Office within ESMD. For all of these advanced development projects, there is an emphasis on producing specific, near-term technical deliverables related to space transportation that constitute a subset of the promised NGLT capabilities. The purpose of this paper is to provide a brief description of the relevancy review process and provide a status of the aforementioned projects. For each project, the background, objectives, significant technical accomplishments, and future plans will be discussed. In contrast to many of the current ESMD activities, these areas are providing hardware and testing to further develop relevant technologies in support of the Vision for Space Exploration.
Enabling Rapid Naval Architecture Design Space Exploration
NASA Technical Reports Server (NTRS)
Mueller, Michael A.; Dufresne, Stephane; Balestrini-Robinson, Santiago; Mavris, Dimitri
2011-01-01
Well accepted conceptual ship design tools can be used to explore a design space, but more precise results can be found using detailed models in full-feature computer aided design programs. However, defining a detailed model can be a time intensive task and hence there is an incentive for time sensitive projects to use conceptual design tools to explore the design space. In this project, the combination of advanced aerospace systems design methods and an accepted conceptual design tool facilitates the creation of a tool that enables the user to not only visualize ship geometry but also determine design feasibility and estimate the performance of a design.
Geospace exploration project: Arase (ERG)
NASA Astrophysics Data System (ADS)
Miyoshi, Y.; Kasaba, Y.; Shinohara, I.; Takashima, T.; Asamura, K.; Matsumoto, H.; Higashio, N.; Mitani, T.; Kasahara, S.; Yokota, S.; Wang, S.; Kazama, Y.; Kasahara, Y.; Yagitani, S.; Matsuoka, A.; Kojima, H.; Katoh, Y.; Shiokawa, K.; Seki, K.; Fujimoto, M.; Ono, T.; ERG project Group
2017-06-01
The ERG (Exploration of energization and Radiation in Geospace) is Japanese geospace exploration project. The project focuses on relativistic electron acceleration mechanism of the outer belt and dynamics of space storms in the context of the cross-energy coupling via wave-particle interactions. The project consists of the satellite observation team, the ground-based network observation team, and integrated-data analysis/simulation team. The satellite was launched on December 20 2016 and has been nicknamed, “Arase”. This paper describes overview of the project and future plan for observations.
High-Performance, Radiation-Hardened Electronics for Space Environments
NASA Technical Reports Server (NTRS)
Keys, Andrew S.; Watson, Michael D.; Frazier, Donald O.; Adams, James H.; Johnson, Michael A.; Kolawa, Elizabeth A.
2007-01-01
The Radiation Hardened Electronics for Space Environments (RHESE) project endeavors to advance the current state-of-the-art in high-performance, radiation-hardened electronics and processors, ensuring successful performance of space systems required to operate within extreme radiation and temperature environments. Because RHESE is a project within the Exploration Technology Development Program (ETDP), RHESE's primary customers will be the human and robotic missions being developed by NASA's Exploration Systems Mission Directorate (ESMD) in partial fulfillment of the Vision for Space Exploration. Benefits are also anticipated for NASA's science missions to planetary and deep-space destinations. As a technology development effort, RHESE provides a broad-scoped, full spectrum of approaches to environmentally harden space electronics, including new materials, advanced design processes, reconfigurable hardware techniques, and software modeling of the radiation environment. The RHESE sub-project tasks are: SelfReconfigurable Electronics for Extreme Environments, Radiation Effects Predictive Modeling, Radiation Hardened Memory, Single Event Effects (SEE) Immune Reconfigurable Field Programmable Gate Array (FPGA) (SIRF), Radiation Hardening by Software, Radiation Hardened High Performance Processors (HPP), Reconfigurable Computing, Low Temperature Tolerant MEMS by Design, and Silicon-Germanium (SiGe) Integrated Electronics for Extreme Environments. These nine sub-project tasks are managed by technical leads as located across five different NASA field centers, including Ames Research Center, Goddard Space Flight Center, the Jet Propulsion Laboratory, Langley Research Center, and Marshall Space Flight Center. The overall RHESE integrated project management responsibility resides with NASA's Marshall Space Flight Center (MSFC). Initial technology development emphasis within RHESE focuses on the hardening of Field Programmable Gate Arrays (FPGA)s and Field Programmable Analog Arrays (FPAA)s for use in reconfigurable architectures. As these component/chip level technologies mature, the RHESE project emphasis shifts to focus on efforts encompassing total processor hardening techniques and board-level electronic reconfiguration techniques featuring spare and interface modularity. This phased approach to distributing emphasis between technology developments provides hardened FPGA/FPAAs for early mission infusion, then migrates to hardened, board-level, high speed processors with associated memory elements and high density storage for the longer duration missions encountered for Lunar Outpost and Mars Exploration occurring later in the Constellation schedule.
Life sciences space biology project planning
NASA Technical Reports Server (NTRS)
Primeaux, G.; Newkirk, K.; Miller, L.; Lewis, G.; Michaud, R.
1988-01-01
The Life Sciences Space Biology (LSSB) research will explore the effect of microgravity on humans, including the physiological, clinical, and sociological implications of space flight and the readaptations upon return to earth. Physiological anomalies from past U.S. space flights will be used in planning the LSSB project.The planning effort integrates science and engineering. Other goals of the LSSB project include the provision of macroscopic view of the earth's biosphere, and the development of spinoff technology for application on earth.
ERIC Educational Resources Information Center
Waller, Tim
2010-01-01
This paper will explore the role of gender in the construction of shared narratives around outdoor spaces. The paper draws on findings from a long-term project investigating young children's learning and the outdoor curriculum. The project is ongoing and involves children aged 3- to 4-years in a nursery school in England. The children are given…
NASA Desert RATS 2011 Education Pilot Project and Classroom Activities
NASA Technical Reports Server (NTRS)
Gruener, J. E.; McGlone, M.; Allen, J.; Tobola, K.; Graff, P.
2012-01-01
The National Aeronautics and Space Administration's (NASA's) Desert Research and Technology Studies (Desert RATS) is a multi-year series of tests of hardware and operations carried out annually in the high desert of Arizona, as an analog to future exploration activities beyond low Earth orbit [1]. For the past several years, these tests have occurred in the San Francisco Volcanic Field, north of Flagstaff. For the 2011 Desert RATS season, the Exploration Systems Mission Directorate (ESMD) at NASA headquarters provided support to develop an education pilot project that would include student activities to parallel the Desert RATS mission planning and exploration activities in the classroom, and educator training sessions. The development of the pilot project was a joint effort between the NASA Johnson Space Center (JSC) Astromaterials Research and Exploration Science (ARES) Directorate and the Aerospace Education Services Project (AESP), managed at Penn State University.
HDU Deep Space Habitat (DSH) Overview
NASA Technical Reports Server (NTRS)
Kennedy, Kriss J.
2011-01-01
This paper gives an overview of the National Aeronautics and Space Administration (NASA) led multi-center Habitat Demonstration Unit (HDU) project Deep Space Habitat (DSH) analog that will be field-tested during the 2011 Desert Research and Technologies Studies (D-RATS) field tests. The HDU project is a technology pull project that integrates technologies and innovations from multiple NASA centers. This project will repurpose the HDU Pressurized Excursion Module (PEM) that was field tested in the 2010 D-RATS, adding habitation functionality to the prototype unit. The 2010 configuration of the HDU-PEM consisted of a lunar surface laboratory module that was used to bring over 20 habitation-related technologies together in a single platform that could be tested as an advanced habitation analog in the context of mission architectures and surface operations. The 2011 HDU-DSH configuration will build upon the PEM work, and emphasize validity of crew operations (habitation and living, etc), EVA operations, mission operations, logistics operations, and science operations that might be required in a deep space context for Near Earth Object (NEO) exploration mission architectures. The HDU project consists of a multi-center team brought together in a skunkworks approach to quickly build and validate hardware in analog environments. The HDU project is part of the strategic plan from the Exploration Systems Mission Directorate (ESMD) Directorate Integration Office (DIO) and the Exploration Mission Systems Office (EMSO) to test destination elements in analog environments. The 2011 analog field test will include Multi Mission Space Exploration Vehicles (MMSEV) and the DSH among other demonstration elements to be brought together in a mission architecture context. This paper will describe overall objectives, various habitat configurations, strategic plan, and technology integration as it pertains to the 2011 field tests.
2004-04-12
KENNEDY SPACE CENTER, FLA. - Astronaut Dr. David A. Wolf (center) and External Relations Director Lisa Malone (right) learn about these students’ science project during a visit to Carol City Elementary School, a NASA Explorer School, in Miami, Fla. Wolf and Malone accompanied Center Director Jim Kennedy, who is sharing America’s new vision for space exploration with the next generation of explorers. Kennedy is talking with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
2011-07-21
A trio of representatives from Goddard Space Flight Center in Greenbelt, Md., visited Stennis Space Center on July 21-22 to explore opportunities for collaboration. Visitors and hosts included: (seated, l to r) Shahid Habib, chief of the Goddard Office of Applied Sciences; Stennis Director Patrick Scheuermann; Piers Sellers, deputy director of the Goddard Sciences and Exploration Directorate; (standing, l to r) Duane Armstrong, chief of the Stennis Applied Science & Technology Project Office; Fritz Policelli, representative of the Goddard Office of Applied Sciences; Anne Peek, assistant director of the Stennis Project Directorate; and Keith Brock, director of the Stennis Project Directorate.
NASA Technical Reports Server (NTRS)
Dumbacher, Daniel L.
2006-01-01
The U.S. Vision for Space Exploration directs NASA to design and develop a new generation of safe, reliable, and cost-effective transportation systems to hlfill the Nation s strategic goals and objectives. These launch vehicles will provide the capability for astronauts to conduct scientific exploration that yields new knowledge from the unique vantage point of space. American leadership in opening new fi-ontiers will improve the quality of life on Earth for generations to come. The Exploration Launch Projects office is responsible for delivering the Crew Launch Vehicle (CLV) that will loft the Crew Exploration Vehicle (CEV) into low-Earth orbit (LEO) early next decade, and for the heavy lift Cargo Launch Vehicle (CaLV) that will deliver the Lunar Surface Access Module (LSAM) to LEO for astronaut return trips to the Moon by 2020 in preparation for the eventual first human footprint on Mars. Crew travel to the International Space Station will be made available as soon possible after the Space Shuttle retires in 2010.
Development of Life Support System Technologies for Human Lunar Missions
NASA Technical Reports Server (NTRS)
Barta, Daniel J.; Ewert, Michael K.
2009-01-01
With the Preliminary Design Review (PDR) for the Orion Crew Exploration Vehicle planned to be completed in 2009, Exploration Life Support (ELS), a technology development project under the National Aeronautics and Space Administration s (NASA) Exploration Technology Development Program, is focusing its efforts on needs for human lunar missions. The ELS Project s goal is to develop and mature a suite of Environmental Control and Life Support System (ECLSS) technologies for potential use on human spacecraft under development in support of U.S. Space Exploration Policy. ELS technology development is directed at three major vehicle projects within NASA s Constellation Program (CxP): the Orion Crew Exploration Vehicle (CEV), the Altair Lunar Lander and Lunar Surface Systems, including habitats and pressurized rovers. The ELS Project includes four technical elements: Atmosphere Revitalization Systems, Water Recovery Systems, Waste Management Systems and Habitation Engineering, and two cross cutting elements, Systems Integration, Modeling and Analysis, and Validation and Testing. This paper will provide an overview of the ELS Project, connectivity with its customers and an update to content within its technology development portfolio with focus on human lunar missions.
Ares I Upper Stage Pressure Tests in Wind Tunnel
NASA Technical Reports Server (NTRS)
2007-01-01
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. In this HD video image, the first stage reentry 1/2% model is undergoing pressure measurements inside the wind tunnel testing facility at MSFC. (Highest resolution available)
2007-08-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts confidence testing of a manufactured aluminum panel that will fabricate the Ares I upper stage barrel. In this test, bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)
2007-07-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. In this HD video image, an Ares I x-test involves the upper stage separating from the first stage. This particular test was conducted at the NASA Langley Research Center in July 2007. (Highest resolution available)
2007-08-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. In this HD video image, processes for upper stage barrel fabrication are talking place. Aluminum panels are manufacturing process demonstration articles that will undergo testing until perfected. The panels are built by AMRO Manufacturing located in El Monte, California. (Largest resolution available)
2007-08-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts the manufacturing of aluminum panels that will be used to form the Ares I barrel. The panels are manufacturing process demonstration articles that will undergo testing until perfected. The panels are built by AMRO Manufacturing located in El Monte, California. (Highest resolution available)
2007-08-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts a manufactured panel that will be used for the Ares I upper stage barrel fabrication. The aluminum panels are manufacturing process demonstration articles that will undergo testing until perfected. The panels are built by AMRO Manufacturing located in El Monte, California. (Highest resolution available)
Liu, S.; Bremer, P. -T; Jayaraman, J. J.; ...
2016-06-04
Linear projections are one of the most common approaches to visualize high-dimensional data. Since the space of possible projections is large, existing systems usually select a small set of interesting projections by ranking a large set of candidate projections based on a chosen quality measure. However, while highly ranked projections can be informative, some lower ranked ones could offer important complementary information. Therefore, selection based on ranking may miss projections that are important to provide a global picture of the data. Here, the proposed work fills this gap by presenting the Grassmannian Atlas, a framework that captures the global structuresmore » of quality measures in the space of all projections, which enables a systematic exploration of many complementary projections and provides new insights into the properties of existing quality measures.« less
NASA Technical Reports Server (NTRS)
Perry, Jay L.; Abney, Morgan B.; Knox, James C.; Parrish, Keith J.; Roman, Monserrate C.; Jan, Darrell L.
2012-01-01
Exploring the frontiers of deep space continues to be defined by the technological challenges presented by safely transporting a crew to and from destinations of scientific interest. Living and working on that frontier requires highly reliable and efficient life support systems that employ robust, proven process technologies. The International Space Station (ISS), including its environmental control and life support (ECLS) system, is the platform from which humanity's deep space exploration missions begin. The ISS ECLS system Atmosphere Revitalization (AR) subsystem and environmental monitoring (EM) technical architecture aboard the ISS is evaluated as the starting basis for a developmental effort being conducted by the National Aeronautics and Space Administration (NASA) via the Advanced Exploration Systems (AES) Atmosphere Resource Recovery and Environmental Monitoring (ARREM) Project.. An evolutionary approach is employed by the ARREM project to address the strengths and weaknesses of the ISS AR subsystem and EM equipment, core technologies, and operational approaches to reduce developmental risk, improve functional reliability, and lower lifecycle costs of an ISS-derived subsystem architecture suitable for use for crewed deep space exploration missions. The most promising technical approaches to an ISS-derived subsystem design architecture that incorporates promising core process technology upgrades will be matured through a series of integrated tests and architectural trade studies encompassing expected exploration mission requirements and constraints.
Teaching Heliophysics Science to Undergraduates in an Engineering Context
NASA Astrophysics Data System (ADS)
Baker, J. B.; Sweeney, D. G.; Ruohoniemi, J.
2013-12-01
In recent years, space research at Virginia Tech has experienced rapid growth since the initiation of the Center for Space Science and Engineering Research (Space@VT) during the summer of 2007. The Space@VT center resides in the College of Engineering and currently comprises approximately 30-40 faculty and students. Space@VT research encompasses a wide spectrum of science and engineering activities including: magnetosphere-ionosphere data analysis; ground- and space-based instrument development; spacecraft design and environmental interactions; and numerical space plasma simulations. In this presentation, we describe how Space@VT research is being integrated into the Virginia Tech undergraduate engineering curriculum via classroom instruction and hands-on group project work. In particular, we describe our experiences teaching a new sophomore course titled 'Exploration of the Space Environment' which covers a broad range of scientific, engineering, and societal aspects associated with the exploration and technological exploitation of space. Topics covered include: science of the space environment; space weather hazards and societal impacts; elementary orbital mechanics and rocket propulsion; spacecraft engineering subsystems; and applications of space-based technologies. We also describe a high-altitude weather balloon project which has been offered as a 'hands-on' option for fulfilling the course project requirements of the course.
NASA Technical Reports Server (NTRS)
Clinton, R. G., Jr.
2014-01-01
NASA, including each Mission Directorate, is investing in, experimenting with, and/or utilizing AM across a broad spectrum of applications and projects; Centers have created and are continuing to create partnerships with industry, other Government Agencies, other Centers, and Universities; In-house additive manufacturing capability enables rapid iteration of the entire design, development and testing process, increasing innovation and reducing risk and cost to projects; For deep space exploration, AM offers significant reduction to logistics costs and risk by providing ability to create on demand; There are challenges: Overwhelming message from recent JANNAF AM for Propulsion Applications TIM was "certification."; NASA will continue to work with our partners to address this and other challenges to advance the state of the art in AM and incorporate these capabilities into an array of applications from aerospace to science missions to deep space exploration.
2004-04-13
KENNEDY SPACE CENTER, FLA. - A teacher (right) at Ralph Bunche Middle School, a NASA Explorer School, in Atlanta, Ga., shows a science project to astronaut Rick Linnehan (left) and Center Director Jim Kennedy (center). Linnehan and Kennedy were at the school to share America’s new vision for space exploration with the next generation of explorers. The visit is one of many Kennedy has made to NES sites in Florida and Georgia to talk with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space.
NASA Technical Reports Server (NTRS)
Kidd, Luanne; Morris, Kenneth B.; Self, Tim
2006-01-01
The U.S. Vision for Space Exploration directs NASA to retire the Space Shuttle in 2010 and replace it with safe, reliable, and cost-effective space transportation systems for crew and cargo travel to the Moon, Mars, and beyond. Such emerging space transportation initiatives face massive organizational challenges, including building and nurturing an experienced, dedicated team with the right skills for the required tasks; allocating and tracking the fiscal capital invested in achieving technical progress against an integrated master schedule; and turning generated data into usehl knowledge that equips the team to design and develop superior products for customers and stakeholders. This paper discusses how NASA's Exploration Launch Projects Office, which is responsible for delivering these new launch vehicles, integrates these resources to create an engineering business environment that promotes mission success.
NASA Technical Reports Server (NTRS)
McCurdy, Howard E.
1992-01-01
This folder contains working papers collected to date on a NASA-sponsored history project to document the events leading up to the July 20, 1989 speech setting forth the objectives of the Space Exploration Initiative. Included are a chronology of events, briefing papers produced by the NASA Working Group laying out proposal, briefing charts used to present the proposal, a copy of the President's speech, and an essay summarizing the events that led up to the announcement. Additionally, two fo the interviews conducted as part of the project are enclosed.
2007-08-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts friction stir welding used in manufacturing aluminum panels that will fabricate the Ares I upper stage barrel. The aluminum panels are subjected to confidence panel tests during which the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)
2007-08-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts friction stir welding used in manufacturing aluminum panels that will fabricate the Ares I upper stage barrel. The panels are subjected to confidence tests in which the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)
2007-08-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts a manufactured aluminum panel that will be used to fabricate the Ares I upper stage barrel, undergoing a confidence panel test. In this test, the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California.
2007-08-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image, depicts a manufactured aluminum panel, that will be used to fabricate the Ares I upper stage barrel, undergoing a confidence panel test. In this test, the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)
2007-08-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts a manufactured aluminum panel, that will fabricate the Ares I upper stage barrel, undergoing a confidence panel test. In this test, the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)
2006-08-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts a manufactured aluminum panel, that will fabricate the Ares I upper stage barrel, undergoing a confidence panel test. In this test, bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)
2006-08-08
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts a manufactured aluminum panel that will be used to fabricate the Ares I upper stage barrel, undergoing a confidence panel test. In this test, the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)
Stir Friction Welding Used in Ares I Upper Stage Fabrication
NASA Technical Reports Server (NTRS)
2007-01-01
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts friction stir welding used in manufacturing aluminum panels that will fabricate the Ares I upper stage barrel. The panels are subjected to confidence tests in which the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)
ESMD Space Grant Faculty Report
NASA Technical Reports Server (NTRS)
Guo, Jiang; Whitmore, Stephen; Radcliff, Roger; Misra, Prabhakar; Prasad, Nadipuram; Conrad, James; Lackey, Ellen; Selby, Gregory; Wersinger, Jean-Marie; Lambright, Jonathan
2008-01-01
The strength of the Exploration Systems Mission Directorate ESMD Faculty Project lies in its ability to meet National Aeronautics Space Administration NASA's Strategic Educational Outcome 1 by developing a sustainable and long-term integration of student involvement at academic institutions with all NASA Centers. This outcome is achieved by a three-fold approach: 1) by collecting Senior Design projects pertaining to Constellation work performed at each of the ten NASA Centers, 2) by engaging students at Minority Serving Institutions in the art of systems engineering and systems design of technologies required for space exploration, and 3) by identifying potential internships at each Center relative to exploration that provide students who are supported by their institutional Space Grant to engage in on-going mission-level and explorative systems designs. The objectives of the ESMD Faculty Project are to: 1. Aid the Centers (both Education Offices and associated technical organizations) in providing relevant opportunities for the ESMD Space Grant Program to support student and faculty in Senior Design projects 2. Enable better matches between the ESMD work required and what the Space Grant Consortia can do to effectively contribute to NASA programs 3. Provide the Space Grant Consortia an opportunity to strengthen relations with the NASA Centers 4. Develop better collective understanding of the U.S. Space Exploration Policy by the Center, Space Grant, faculty, Education Office, and students 5. Enable Space Grant institution faculty to better prepare their students to meet current and future NASA needs 6. Enable the Center Education Offices to strengthen their ties to their technical organizations and Space Grant Consortia 7. Aid KSC in gaining a greater and more detailed understanding of each of the Center activities Senior Design projects are intended to stimulate undergraduate students on current NASA activities related to lunar, Mars, and other planetary missions and to bring out innovative and novel ideas that can be used to complement those currently under development at respective NASA Centers. Additionally, such academic involvement would better the prospects for graduating seniors to pursue graduate studies and to seek careers in the space industry with a strong sense for systems engineering and understanding of design concepts. Internships, on the other hand, are intended to provide hands-on experience to students by engaging them in diverse state-of-the-art technology development, prototype bread-boarding, computer modeling and simulations, hardware and software testing, and other activities that provide students a strong perspective of NASA's vision and mission in enhancing the knowledge of Earth and space planetary sciences. Ten faculty members, each from a Space Grant Consortium-affiliated university, worked at ten NASA Centers for five weeks between June 2 and July 3, 2008. The project objectives listed above were achieved. In addition to collecting data on Senior Design ideas and identifying possible internships that would benefit NASA/ESMD, the faculty fellows promoted and collected data when required for other ESMD-funded programs and helped the Center's Education Office, as,needed. 4
Space Environmental Effects on Materials and Processes
NASA Technical Reports Server (NTRS)
Sabbann, Leslie M.
2009-01-01
The Materials and Processes (M&P) Branch of the Structural Engineering Division at Johnson Space Center (JSC) seeks to uphold the production of dependable space hardware through materials research, which fits into NASA's purpose of advancing human exploration, use, and development of space. The Space Environmental Effects projects fully support these Agency goals. Two tasks were assigned to support M&P. Both assignments were to further the research of material behavior outside of Earth's atmosphere in order to determine which materials are most durable and safe to use in space for mitigating risks. One project, the Materials on International Space Station Experiments (MISSE) task, was to compile data from International Space Station (ISS) experiments to pinpoint beneficial space hardware. The other project was researching the effects on composite materials of exposure to high doses of radiation for a Lunar habitat project.
Managing External Relations: The Lifeblood of Mission Success
NASA Technical Reports Server (NTRS)
Dumbacher, Daniel L.
2007-01-01
The slide presentation examines the role of customer and stakeholder relations in the success of space missions. Topics include agency transformation; an overview of project and program experience with a discussion of positions, technical accomplishments, and management lessons learned; and approaches to project success with emphasis on communication. Projects and programs discussed include the Space Shuttle Main Engine System, DC-XA Flight Demonstrator, X-33 Flight Demonstrator, Space Launch Initiative/2nd Generation Reusable Launch Vehicle, X-37 Flight Demonstrator, Constellation (pre Dr. Griffin), Safety and Mission Assurance, and Exploration Launch Projects.
2007-09-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. The launch vehicle's first stage is a single, five-segment reusable solid rocket booster derived from the Space Shuttle Program's reusable solid rocket motor that burns a specially formulated and shaped solid propellant called polybutadiene acrylonitrile (PBAN). The second or upper stage will be propelled by a J-2X main engine fueled with liquid oxygen and liquid hydrogen. This HD video image depicts a test firing of a 40k subscale J2X injector at MSFC's test stand 115. (Highest resolution available)
NASA's Nuclear Thermal Propulsion Project
NASA Technical Reports Server (NTRS)
Houts, Mike; Mitchell, Sonny; Kim, Tony; Borowski, Stan; Power, Kevin; Scott, John; Belvin, Anthony; Clement, Steve
2015-01-01
HEOMD's (Human Exploration and Operations Mission Directorate) AES (Advanced Exploration Systems) Nuclear Thermal Propulsion (NTP) project is making significant progress. First of four FY 2015 milestones achieved this month. Safety is the highest priority for NTP (as with other space systems). After safety comes affordability. No centralized capability for developing, qualifying, and utilizing an NTP system. Will require a strong, closely integrated team. Tremendous potential benefits from NTP and other space fission systems. No fundamental reason these systems cannot be developed and utilized in a safe, affordable fashion.
NASA/ASEE Summer Faculty Fellowship Program, 1990, volume 2
NASA Technical Reports Server (NTRS)
Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)
1990-01-01
The 1990 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston-University Park and Johnson Space Centers (JSC). A compilation of the final reports on the research projects is presented. The following topics are covered: the Space Shuttle; the Space Station; lunar exploration; mars exploration; spacecraft power supplies; mars rover vehicle; mission planning for the Space Exploration Initiative; instrument calibration standards; a lunar oxygen production plant; optical filters for a hybrid vision system; dynamic structural analysis; lunar bases; pharmacodynamics of scopolamine; planetary spacecraft cost modeling; and others.
ERIC Educational Resources Information Center
Stevenson, Blair
2015-01-01
This paper explores the use of video-stimulated recall as a reflective approach for supporting the development of third spaces in action research. The concept of third spaces is used as a conceptual descriptor of the specific intercultural context and relations between the researcher and participants present within the project. The paper…
Experiences in managing the Prometheus Project
NASA Technical Reports Server (NTRS)
Lehman, David H.; Clark, Karla B.; Cook, Beverly A.; Gavit, Sarah A.; Kayali, Sammy A.; McKinney, John C.; Milkovich, David C.; Reh, Kim R.; Taylor, Randall L.; Casani, John R.
2006-01-01
Congress authorized NASA?s Prometheus Project in February 2003, with the first Prometheus mission slated to explore the icy moons of Jupiter. The Project had two major objectives: (1) to develop a nuclear reactor that would provide unprecedented levels of power and show that it could be processed safely and operated reliably in space for long-duration, deep-space exploration and (2) to explore the three icy moons of Jupiter - Callisto, Ganymede, and Europa - and return science data that would meet the scientific goals as set forth in the Decadal Survey Report of the National Academy of Sciences. Early in Project planning, it was determined that the development of the Prometheus nuclear powered Spaceship would be complex and require the intellectual knowledge residing at numerous organizations across the country. In addition, because of the complex nature of the Project and the multiple partners, approaches beyond those successfully used to manage a typical JPL project would be needed. This paper1 will describe the key experiences in managing Prometheus that should prove useful for future projects of similar scope and magnitude
2012-07-27
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is unloaded at a building at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - A forklift is used at the Kennedy Space Center in Florida to unload NASA's Morpheus lander, a vertical test bed vehicle. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is inspected after unloading at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - Wheels are assembled for transporting NASA's Morpheus lander, a vertical test bed vehicle after its arrival at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is moved into a building at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is uncrated after unloading at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is unloaded at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is moved into a building at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is unloaded at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is unloaded at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - A crane supports unloading of NASA's Morpheus lander, a vertical test bed vehicle, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is unloaded at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
An Overview of the Distributed Space Exploration Simulation (DSES) Project
NASA Technical Reports Server (NTRS)
Crues, Edwin Z.; Chung, Victoria I.; Blum, Michael G.; Bowman, James D.
2007-01-01
This paper describes the Distributed Space Exploration Simulation (DSES) Project, a research and development collaboration between NASA centers which investigates technologies, and processes related to integrated, distributed simulation of complex space systems in support of NASA's Exploration Initiative. In particular, it describes the three major components of DSES: network infrastructure, software infrastructure and simulation development. With regard to network infrastructure, DSES is developing a Distributed Simulation Network for use by all NASA centers. With regard to software, DSES is developing software models, tools and procedures that streamline distributed simulation development and provide an interoperable infrastructure for agency-wide integrated simulation. Finally, with regard to simulation development, DSES is developing an integrated end-to-end simulation capability to support NASA development of new exploration spacecraft and missions. This paper presents the current status and plans for these three areas, including examples of specific simulations.
MW-Class Electric Propulsion System Designs
NASA Technical Reports Server (NTRS)
LaPointe, Michael R.; Oleson, Steven; Pencil, Eric; Mercer, Carolyn; Distefano, Salvador
2011-01-01
Electric propulsion systems are well developed and have been in commercial use for several years. Ion and Hall thrusters have propelled robotic spacecraft to encounters with asteroids, the Moon, and minor planetary bodies within the solar system, while higher power systems are being considered to support even more demanding future space science and exploration missions. Such missions may include orbit raising and station-keeping for large platforms, robotic and human missions to near earth asteroids, cargo transport for sustained lunar or Mars exploration, and at very high-power, fast piloted missions to Mars and the outer planets. The Advanced In-Space Propulsion Project, High Efficiency Space Power Systems Project, and High Power Electric Propulsion Demonstration Project were established within the NASA Exploration Technology Development and Demonstration Program to develop and advance the fundamental technologies required for these long-range, future exploration missions. Under the auspices of the High Efficiency Space Power Systems Project, and supported by the Advanced In-Space Propulsion and High Power Electric Propulsion Projects, the COMPASS design team at the NASA Glenn Research Center performed multiple parametric design analyses to determine solar and nuclear electric power technology requirements for representative 300-kW class and pulsed and steady-state MW-class electric propulsion systems. This paper describes the results of the MW-class electric power and propulsion design analysis. Starting with the representative MW-class vehicle configurations, and using design reference missions bounded by launch dates, several power system technology improvements were introduced into the parametric COMPASS simulations to determine the potential system level benefits such technologies might provide. Those technologies providing quantitative system level benefits were then assessed for technical feasibility, cost, and time to develop. Key assumptions and primary results of the COMPASS MW-class electric propulsion power system study are reported, and discussion is provided on how the analysis might be used to guide future technology investments as NASA moves to more capable high power in-space propulsion systems.
NASA Technical Reports Server (NTRS)
Hoberecht, Mark A.
2010-01-01
NASA s Energy Storage Project is one of many technology development efforts being implemented as part of the Exploration Technology Development Program (ETDP), under the auspices of the Exploration Systems Mission Directorate (ESMD). The Energy Storage Project is a focused technology development effort to advance lithium-ion battery and proton-exchange-membrane fuel cell (PEMFC) technologies to meet the specific power and energy storage needs of NASA Exploration missions. The fuel cell portion of the project has as its focus the development of both primary fuel cell power systems and regenerative fuel cell (RFC) energy storage systems, and is led by the NASA Glenn Research Center (GRC) in partnership with the Johnson Space Center (JSC), the Jet Propulsion Laboratory (JPL), the Kennedy Space Center (KSC), academia, and industrial partners. The development goals are to improve stack electrical performance, reduce system mass and parasitic power requirements, and increase system life and reliability.
Advanced Avionics and Processor Systems for a Flexible Space Exploration Architecture
NASA Technical Reports Server (NTRS)
Keys, Andrew S.; Adams, James H.; Smith, Leigh M.; Johnson, Michael A.; Cressler, John D.
2010-01-01
The Advanced Avionics and Processor Systems (AAPS) project, formerly known as the Radiation Hardened Electronics for Space Environments (RHESE) project, endeavors to develop advanced avionic and processor technologies anticipated to be used by NASA s currently evolving space exploration architectures. The AAPS project is a part of the Exploration Technology Development Program, which funds an entire suite of technologies that are aimed at enabling NASA s ability to explore beyond low earth orbit. NASA s Marshall Space Flight Center (MSFC) manages the AAPS project. AAPS uses a broad-scoped approach to developing avionic and processor systems. Investment areas include advanced electronic designs and technologies capable of providing environmental hardness, reconfigurable computing techniques, software tools for radiation effects assessment, and radiation environment modeling tools. Near-term emphasis within the multiple AAPS tasks focuses on developing prototype components using semiconductor processes and materials (such as Silicon-Germanium (SiGe)) to enhance a device s tolerance to radiation events and low temperature environments. As the SiGe technology will culminate in a delivered prototype this fiscal year, the project emphasis shifts its focus to developing low-power, high efficiency total processor hardening techniques. In addition to processor development, the project endeavors to demonstrate techniques applicable to reconfigurable computing and partially reconfigurable Field Programmable Gate Arrays (FPGAs). This capability enables avionic architectures the ability to develop FPGA-based, radiation tolerant processor boards that can serve in multiple physical locations throughout the spacecraft and perform multiple functions during the course of the mission. The individual tasks that comprise AAPS are diverse, yet united in the common endeavor to develop electronics capable of operating within the harsh environment of space. Specifically, the AAPS tasks for the Federal fiscal year of 2010 are: Silicon-Germanium (SiGe) Integrated Electronics for Extreme Environments, Modeling of Radiation Effects on Electronics, Radiation Hardened High Performance Processors (HPP), and and Reconfigurable Computing.
Exploration Life Support Critical Questions for Future Human Space Missions
NASA Technical Reports Server (NTRS)
Kwert, Michael K.; Barta, Daniel J.; McQuillan, Jeff
2010-01-01
Exploration Life Support (ELS) is a current project under NASA's Exploration Systems Mission Directorate. The ELS Project plans, coordinates and implements the development of advanced life support technologies for human exploration missions in space. Recent work has focused on closed loop atmosphere and water systems for long duration missions, including habitats and pressurized rovers. But, what are the critical questions facing life support system developers for these and other future human missions? This paper explores those questions and how progress in the development of ELS technologies can help answer them. The ELS Project includes the following Elements: Atmosphere Revitalization Systems, Water Recovery Systems, Waste Management Systems, Habitation Engineering, Systems Integration, Modeling and Analysis, and Validation and Testing, which includes the Sub-Elements Flight Experiments and Integrated Testing. Systems engineering analysis by ELS seeks to optimize overall mission architectures by considering all the internal and external interfaces of the life support system and the potential for reduction or reuse of commodities. In particular, various sources and sinks of water and oxygen are considered along with the implications on loop closure and the resulting launch mass requirements. Systems analysis will be validated through the data gathered from integrated testing, which will demonstrate the interfaces of a closed loop life support system. By applying a systematic process for defining, sorting and answering critical life support questions, the ELS project is preparing for a variety of future human space missions
Solar Panel Integration as an Alternate Power Source on Centaur 2 (SPIAPS)
NASA Technical Reports Server (NTRS)
Gebara, Christine A.; Schuetze, Nich A.; Knochel, Aviana M.; Magruder, Darby F.
2011-01-01
The dream of exploration has inspired thousands throughout time. Space exploration, in particular, has taken the past century by storm and caused a great advance in technology. In this project, a retractable solar panel array will be developed for use on the Centaur 2 Rover. Energy generated by the solar panels will go to power the Centaur 2 Robot (C2) or Regolith & Environment Science & Oxygen & Lunar Volatile Extraction (RESOLVE) payload, an in-situ resource utilization project. Such payload is designed to drill into lunar and Martian terrain as well as be able to conduct other geological testing; RESOLVE is slated for testing in 2012. Ultimately, this project will fit into NASA s larger goal of deep space exploration as well as long term presence outside Earth s orbit.
2012-07-19
CAPE CANAVERAL, Fla. - Just north of the Kennedy Space Center’s Shuttle Landing Facility, or SLF, a rock and crater-filled planetary scape has been built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett
2012-07-19
CAPE CANAVERAL, Fla. - Just north of the Kennedy Space Center’s Shuttle Landing Facility runway, a rock and crater-filled planetary scape has been built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett
2012-08-01
CAPE CANAVERAL, Fla. - At a hangar near the Shuttle Landing Facility, or SLF, at NASA’s Kennedy Space Center in Florida, members of the media view the Morpheus prototype lander and speak with Morpheus managers. In front is Gregory Gaddis, Kennedy Project Morpheus/ALHAT site manager. To his left, are Jon Olansen, Johnson Space Center Project Morpheus manager and Chirold Epp, JSC ALHAT project manager. Testing of the prototype lander had been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free-flight test at Kennedy Space Center. The SLF will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett
Space Science Projects. LC Science Tracer Bullet. TB 06-3
ERIC Educational Resources Information Center
Shaw, Loretta, Comp.
2006-01-01
Space science, or the space sciences, are fields of science that are concerned with the study or utilization of outer space. There are several major fields of space science including astronomy, exobiology, space transport, and space exploration and colonization. In addition, space sciences impact or are related to many other fields, from the…
Project Explorer takes its second step: GAS-608 in engineering development
NASA Technical Reports Server (NTRS)
Kitchens, Philip H.
1988-01-01
An a continuation of its Project Explorer series, the Alabama Space and Rocket Center is sponsoring the development of two additional Get Away Special payloads. Details are given of GAS-608, including descriptions of its six experiments in organic crystal growth, roach eggs, yeast, radish seeds, bacterial morphology, and silicon crystals. A brief summary is also presented of GAS-105 and the Space Camp program for stimulating student first hand participation in space flight studies. GAS-608 will carry six student experiments, which will involve biology, crystal growth, and biochemistry in addition to a centralized package for electronics and power supply.
2007-08-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts the preparation and placement of a confidence ring for friction stir welding used in manufacturing aluminum panels that will fabricate the Ares I upper stage barrel. The aluminum panels are manufactured and subjected to confidence tests during which the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)
Stir Friction Welding Used in Ares I Upper Stage Fabrication
NASA Technical Reports Server (NTRS)
2007-01-01
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts the preparation and placement of a confidence ring for friction stir welding used in manufacturing aluminum panels that will fabricate the Ares I upper stage barrel. The aluminum panels are manufactured and subjected to confidence tests during which the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)
Stir Friction Welding Used in Ares I Upper Stage Fabrication
NASA Technical Reports Server (NTRS)
2007-01-01
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts friction stir welding used in manufacturing aluminum panels that will fabricate the Ares I upper stage barrel. The aluminum panels are subjected to confidence panel tests during which the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)
2007-09-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. In this HD video image, the first stage reentry parachute drop test is conducted at the Yuma, Arizona proving ground. The parachute tests demonstrated a three-stage deployment sequence that included the use of an Orbiter drag chute to properly stage the unfurling of the main chute. The parachute recovery system for Orion will be similar to the system used for Apollo command module landings and include two drogue, three pilot, and three main parachutes. (Highest resolution available)
2006-09-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. In this HD video image, the first stage reentry parachute drop test is conducted at the Yuma, Arizona proving ground. The parachute tests demonstrated a three-stage deployment sequence that included the use of an Orbiter drag chute to properly stage the unfurling of the main chute. The parachute recovery system for Orion will be similar to the system used for Apollo command module landings and include two drogue, three pilot, and three main parachutes. (Highest resolution available)
Research and technology of the Lyndon B. Johnson Space Center
NASA Technical Reports Server (NTRS)
1988-01-01
Johnson Space Center accomplishments in new and advanced concepts during 1987 are highlighted. Included are research projects funded by the Office of Aeronautics and Space Technology, Solar System Exploration and Life Sciences research funded by the Office of Space Sciences and Applications, and advanced Programs tasks funded by the Office of Space Flight. Summary sections describing the role of the Johnson Space Center in each program are followed by descriptions of significant projects. Descriptions are suitable for external consumption, free of technical jargon, and illustrated to increase ease of comprehension.
Space market model development project, phase 3
NASA Technical Reports Server (NTRS)
Bishop, Peter C.; Hamel, Gary P.
1989-01-01
The results of a research project investigating information needs for space commercialization is described. The Space Market Model Development Project (SMMDP) was designed to help NASA identify the information needs of the business community and to explore means to meet those needs. The activity of the SMMDP is reviewed and a report of its operation via three sections is presented. The first part contains a brief historical review of the project since inception. The next part reports results of Phase 3, the most recent stage of activity. Finally, overall conclusions and observations based on the SMMDP research results are presented.
Our Future in the Cosmos: Space
NASA Technical Reports Server (NTRS)
Asimov, I.
1985-01-01
The possibility and consequences of the extension of human society into space are addressed. The establishment of space colonies, orbital power plants and factories, and space exploration are discussed. The necessity of world cooperation to realize such projects and the development of a global space-centered society are considered.
International Cooperation and Competition in Civilian Space Activities.
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. Office of Technology Assessment.
This report assesses the state of international competition in civilian space activities, explores United States civilian objectives in space, and suggests alternative options for enhancing the overall U.S. position in space technologies. It also investigated past, present, and projected international cooperative arrangements for space activities…
NASA Technical Reports Server (NTRS)
Mulenburg, Gerald M.
2000-01-01
Study of characteristics and relationships of project managers of complex projects in the National Aeronautics and Space Administration. Study is based on Research Design, Data Collection, Interviews, Case Studies, and Data Analysis across varying disciplines such as biological research, space research, advanced aeronautical test facilities, aeronautic flight demonstrations, and projects at different NASA centers to ensure that findings were not endemic to one type of project management, or to one Center's management philosophies. Each project is treated as a separate case with the primary data collected during semi-structured interviews with the project manager responsible for the overall project. Results of the various efforts show some definite similarities of characteristics and relationships among the project managers in the study. A model for how the project managers formulated and managed their projects is included.
2013-08-30
CAPE CANAVERAL, Fla. - Workers install a flame deflector at the Shuttle Landing Facility, or SLF, at NASA's Kennedy Space Center in Florida for the Project Morpheus lander. The site is adjacent to a hazard field created to support the project at the north end of the SLF. Testing of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for a free flight at Kennedy later this year. The SLF will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst obstacles during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html. Photo credit: NASA/Kim Shiflett
2013-08-30
CAPE CANAVERAL, Fla. - Workers install a flame deflector at the Shuttle Landing Facility, or SLF, at NASA's Kennedy Space Center in Florida for the Project Morpheus lander. The site is adjacent to a hazard field created to support the project at the north end of the SLF. Testing of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for a free flight at Kennedy later this year. The SLF will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst obstacles during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html. Photo credit: NASA/Kim Shiflett
2013-08-30
CAPE CANAVERAL, Fla. - Workers install a flame deflector at the Shuttle Landing Facility, or SLF, at NASA's Kennedy Space Center in Florida for the Project Morpheus lander. The site is adjacent to a hazard field created to support the project at the north end of the SLF. Testing of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for a free flight at Kennedy later this year. The SLF will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst obstacles during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html. Photo credit: NASA/Kim Shiflett
2013-08-30
CAPE CANAVERAL, Fla. - Workers install a flame deflector at the Shuttle Landing Facility, or SLF, at NASA's Kennedy Space Center in Florida for the Project Morpheus lander. The site is adjacent to a hazard field created to support the project at the north end of the SLF. Testing of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for a free flight at Kennedy later this year. The SLF will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst obstacles during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html. Photo credit: NASA/Kim Shiflett
2013-08-30
CAPE CANAVERAL, Fla. - Workers install a flame deflector at the Shuttle Landing Facility, or SLF, at NASA's Kennedy Space Center in Florida for the Project Morpheus lander. The site is adjacent to a hazard field created to support the project at the north end of the SLF. Testing of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for a free flight at Kennedy later this year. The SLF will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst obstacles during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html. Photo credit: NASA/Kim Shiflett
2013-08-30
CAPE CANAVERAL, Fla. - Workers install a flame deflector at the Shuttle Landing Facility, or SLF, at NASA's Kennedy Space Center in Florida for the Project Morpheus lander. The site is adjacent to a hazard field created to support the project at the north end of the SLF. Testing of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for a free flight at Kennedy later this year. The SLF will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst obstacles during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html. Photo credit: NASA/Kim Shiflett
2013-08-30
CAPE CANAVERAL, Fla. - Workers install a flame deflector at the Shuttle Landing Facility, or SLF, at NASA's Kennedy Space Center in Florida for the Project Morpheus lander. The site is adjacent to a hazard field created to support the project at the north end of the SLF. Testing of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for a free flight at Kennedy later this year. The SLF will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst obstacles during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html. Photo credit: NASA/Kim Shiflett
Space Human Factors Engineering Gap Analysis Project Final Report
NASA Technical Reports Server (NTRS)
Hudy, Cynthia; Woolford, Barbara
2006-01-01
Humans perform critical functions throughout each phase of every space mission, beginning with the mission concept and continuing to post-mission analysis (Life Sciences Division, 1996). Space missions present humans with many challenges - the microgravity environment, relative isolation, and inherent dangers of the mission all present unique issues. As mission duration and distance from Earth increases, in-flight crew autonomy will increase along with increased complexity. As efforts for exploring the moon and Mars advance, there is a need for space human factors research and technology development to play a significant role in both on-orbit human-system interaction, as well as the development of mission requirements and needs before and after the mission. As part of the Space Human Factors Engineering (SHFE) Project within the Human Research Program (HRP), a six-month Gap Analysis Project (GAP) was funded to identify any human factors research gaps or knowledge needs. The overall aim of the project was to review the current state of human factors topic areas and requirements to determine what data, processes, or tools are needed to aid in the planning and development of future exploration missions, and also to prioritize proposals for future research and technology development.
2012-08-01
CAPE CANAVERAL, Fla. - At a hangar near the Shuttle Landing Facility, or SLF, at NASA’s Kennedy Space Center in Florida, Chirold Epp, Johnson Space Center Project Manager for ALHAT, speaks to members of the media. In the background is the Morpheus prototype lander, which arrived at Kennedy on July 27. Testing of the prototype lander had been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free-flight test at Kennedy Space Center. The SLF will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett
2012-08-01
CAPE CANAVERAL, Fla. - At a hangar near the Shuttle Landing Facility, or SLF, at NASA’s Kennedy Space Center in Florida, the Johnson Space Center Project Morpheus Manager Jon Olansen speaks to members of the media. In the foreground is the Morpheus prototype lander, which arrived at Kennedy on July 27. Testing of the prototype lander had been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free-flight test at Kennedy Space Center. The SLF will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett
2012-08-01
CAPE CANAVERAL, Fla. - At a hangar near the Shuttle Landing Facility, or SLF, at NASA’s Kennedy Space Center in Florida, the Johnson Space Center Project Morpheus Manager Jon Olansen speaks to members of the media. In the background is the Morpheus prototype lander, which arrived at Kennedy on July 27. Testing of the prototype lander had been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free-flight test at Kennedy Space Center. The SLF will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett
NASA Advanced Life Support Technology Testing and Development
NASA Technical Reports Server (NTRS)
Wheeler, Raymond M.
2012-01-01
Prior to 2010, NASA's advanced life support research and development was carried out primarily under the Exploration Life Support Project of NASA's Exploration Systems Mission Directorate. In 2011, the Exploration Life Support Project was merged with other projects covering Fire Prevention/Suppression, Radiation Protection, Advanced Environmental Monitoring and Control, and Thermal Control Systems. This consolidated project was called Life Support and Habitation Systems, which was managed under the Exploration Systems Mission Directorate. In 2012, NASA re-organized major directorates within the agency, which eliminated the Exploration Systems Mission Directorate and created the Office of the Chief Technologist (OCT). Life support research and development is currently conducted within the Office of the Chief Technologist, under the Next Generation Life Support Project, and within the Human Exploration Operation Missions Directorate under several Advanced Exploration System projects. These Advanced Exploration Systems projects include various themes of life support technology testing, including atmospheric management, water management, logistics and waste management, and habitation systems. Food crop testing is currently conducted as part of the Deep Space Habitation (DSH) project within the Advanced Exploration Systems Program. This testing is focused on growing salad crops that could supplement the crew's diet during near term missions.
In-Space Propulsion for Science and Exploration
NASA Technical Reports Server (NTRS)
Bishop-Behel, Karen; Johnson, Les
2004-01-01
This paper presents viewgraphs on the development of In-Space Propulsion Technologies for Science and Exploration. The topics include: 1) In-Space Propulsion Technology Program Overview; 2) In-Space Propulsion Technology Project Status; 3) Solar Electric Propulsion; 4) Next Generation Electric Propulsion; 5) Aerocapture Technology Alternatives; 6) Aerocapture; 7) Advanced Thermal Protection Systems Developed and Being Tested; 8) Solar Sails; 9) Advanced Chemical Propulsion; 10) Momentum Exchange Tethers; and 11) Momentum-exchange/electrodynamic reboost (MXER) Tether Basic Operation.
Composites for Exploration Upper Stage
NASA Technical Reports Server (NTRS)
Fikes, J. C.; Jackson, J. R.; Richardson, S. W.; Thomas, A. D.; Mann, T. O.; Miller, S. G.
2016-01-01
The Composites for Exploration Upper Stage (CEUS) was a 3-year, level III project within the Technology Demonstration Missions program of the NASA Space Technology Mission Directorate. Studies have shown that composites provide important programmatic enhancements, including reduced weight to increase capability and accelerated expansion of exploration and science mission objectives. The CEUS project was focused on technologies that best advanced innovation, infusion, and broad applications for the inclusion of composites on future large human-rated launch vehicles and spacecraft. The benefits included near- and far-term opportunities for infusion (NASA, industry/commercial, Department of Defense), demonstrated critical technologies and technically implementable evolvable innovations, and sustained Agency experience. The initial scope of the project was to advance technologies for large composite structures applicable to the Space Launch System (SLS) Exploration Upper Stage (EUS) by focusing on the affordability and technical performance of the EUS forward and aft skirts. The project was tasked to develop and demonstrate critical composite technologies with a focus on full-scale materials, design, manufacturing, and test using NASA in-house capabilities. This would have demonstrated a major advancement in confidence and matured the large-scale composite technology to a Technology Readiness Level 6. This project would, therefore, have bridged the gap for providing composite application to SLS upgrades, enabling future exploration missions.
Trash to Gas (TtG) Simulant Analysis
NASA Technical Reports Server (NTRS)
Miles, John D., II; Hintze, Paul E.
2014-01-01
Space exploration in outer earths orbit is a long-term commitment, where the reuse of discarded materials is a critical component for its success. The Logistics Reduction and Repurposing (LRR) project under the NASA Advanced Exploration System Program is a project focused on technologies that reduce the amount of consumables that are needed to be sent into space, repurpose items sent to space, or convert wastes to commodities. In particular, Trash to Gas (TtG), part of the LRR project, is a novel space technology capable of converting raw elements from combustible waste including food waste and packaging, paper, wipes and towels, nitrile gloves, fecal matter, urine brine, maximum absorbency garments, and other organic wastes from human space exploration into useful gases. Trash to gas will ultimately reduce mission cost by producing a portion of important consumables in situ. This paper will discuss results of waste processing by steam reforming. Steam reforming is a thermochemical process developed as part of TtG, where waste is heated in the presence of oxygen and steam to produce carbon dioxide, carbon monoxide, hydrogen, methane and water. The aim of this experiment is to investigate the processing of different waste simulants and their gaseous products. This will lay a foundation for understating and optimizing the production of useful gases for propulsion and recovery of water for life support.
ERIC Educational Resources Information Center
Percy-Smith, Barry; Carney, Clare
2011-01-01
This paper discusses learning from a project that set out to explore how the general public perceived the value of public art in the context of urban regeneration of a city centre space. Whilst not set up explicitly as an action research project, the paper discusses the way in which participatory public art projects of this kind can be understood…
2012-08-01
CAPE CANAVERAL, Fla. - At the Autonomous Landing and Hazard Avoidance Technology, or ALHAT, field at the north end of the Shuttle Landing Facility, or SLF, at NASA’s Kennedy Space Center in Florida, members of the media view the hazard field and speak with Morpheus managers. At far left, in the white shirt is Jon Olansen, Johnson Space Center Project Morpheus Manager. At left, in the blue shirt is Chirold Epp, JSC project manager for ALHAT. Testing of the prototype lander had been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free-flight test at Kennedy Space Center. The SLF will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett
2012-08-01
CAPE CANAVERAL, Fla. - At the Autonomous Landing and Hazard Avoidance Technology, or ALHAT, field at the north end of the Shuttle Landing Facility, or SLF, at NASA’s Kennedy Space Center in Florida, members of the media view the hazard field and speak with Morpheus managers. In the white shirt is Jon Olansen, Johnson Space Center Project Morpheus Manager. Behind Olansen is Gregory Gaddis, Kennedy Project Morpheus/ALHAT site manager. Testing of the prototype lander had been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free-flight test at Kennedy Space Center. The SLF will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett
Ares Launch Vehicles Overview: Space Access Society
NASA Technical Reports Server (NTRS)
Cook, Steve
2007-01-01
America is returning to the Moon in preparation for the first human footprint on Mars, guided by the U.S. Vision for Space Exploration. This presentation will discuss NASA's mission, the reasons for returning to the Moon and going to Mars, and how NASA will accomplish that mission in ways that promote leadership in space and economic expansion on the new frontier. The primary goals of the Vision for Space Exploration are to finish the International Space Station, retire the Space Shuttle, and build the new spacecraft needed to return people to the Moon and go to Mars. The Vision commits NASA and the nation to an agenda of exploration that also includes robotic exploration and technology development, while building on lessons learned over 50 years of hard-won experience. NASA is building on common hardware, shared knowledge, and unique experience derived from the Apollo Saturn, Space Shuttle, and contemporary commercial launch vehicle programs. The journeys to the Moon and Mars will require a variety of vehicles, including the Ares I Crew Launch Vehicle, which transports the Orion Crew Exploration Vehicle, and the Ares V Cargo Launch Vehicle, which transports the Lunar Surface Access Module. The architecture for the lunar missions will use one launch to ferry the crew into orbit, where it will rendezvous with the Lunar Module in the Earth Departure Stage, which will then propel the combination into lunar orbit. The imperative to explore space with the combination of astronauts and robots will be the impetus for inventions such as solar power and water and waste recycling. This next chapter in NASA's history promises to write the next chapter in American history, as well. It will require this nation to provide the talent to develop tools, machines, materials, processes, technologies, and capabilities that can benefit nearly all aspects of life on Earth. Roles and responsibilities are shared between a nationwide Government and industry team. The Exploration Launch Projects Office at the Marshall Space Flight Center manages the design, development, testing, and evaluation of both vehicles and serves as lead systems integrator. A little over a year after it was chartered, the Exploration Launch Projects team is testing engine components, refining vehicle designs, performing wind tunnel tests, and building hardware for the first flight test of Ares I-X, scheduled for spring 2009. The Exploration Launch Projects team conducted the Ares I System Requirements Review (SRR) at the end of 2006. In Ares' first year, extensive trade studies and evaluations were conducted to refine the design initially recommended by the Exploration Systems Architecture Study, conceptual designs were analyzed for fitness, and the contractual framework was assembled to enable a development effort unparalleled in American space flight since the Space Shuttle. Now, the project turns its focus to the Preliminary Design Review (PDR), scheduled for 2008. Taking into consideration the findings of the SRR, the design of the Ares I is being tightened and refined to meet the safety, operability, reliability, and affordability goals outlined by the Constellation Program. The Ares V is in the early design stage, focusing its activities on requirements validation and ways to develop this heavy-lift system so that synergistic hardware commonality between it and the Ares I can reduce the operational footprint and foster sustained exploration across the decades ahead.
NASA Astrophysics Data System (ADS)
Charania, A.
2002-01-01
At the end of the first decade of the 21st century, the International Space Station (ISS) will stand as a testament of the engineering capabilities of the international community. The choices for the next logical step for this community remain vast and conflicting: a Mars mission, moon colonization, Space Solar Power (SSP), etc. This examination focuses on positioning SSP as one such candidate for consideration. A marketing roadmap is presented that reveals the potential benefits of SSP to both the space community and the global populace at large. Recognizing that scientific efficiency itself has no constituency large enough to persuade entities to outlay funds for such projects, a holistic approach is taken to positioning SSP. This includes the scientific, engineering, exploratory, economic, political, and development capabilities of the system. SSP can be seen as both space exploration related and a resource project for undeveloped nations. Coupling these two non-traditional areas yields a broader constituency for the project that each one alone could generate. Space exploration is many times seen as irrelevant to the condition of the populace of the planet from which the money comes for such projects. When in this new century, billions of people on the planet still have never made a phone call or even have access to clean water, the origins of this skepticism can be understandable. An area of concern is the problem of not living up to the claims of overeager program marketers. Just as the ISS may never live up to the claims of its advocates in terms of space research, any SSP program must be careful in not promising utopian global solutions to any future energy starved world. Technically, SSP is a very difficult problem, even harder than creating the ISS, yet the promise it can hold for both space exploration and Earth development can lead to a renaissance of the relevance of space to the lives of the citizens of the world.
Exploration Life Support Technology Development for Lunar Missions
NASA Technical Reports Server (NTRS)
Ewert, Michael K.; Barta, Daniel J.; McQuillan, Jeffrey
2009-01-01
Exploration Life Support (ELS) is one of NASA's Exploration Technology Development Projects. ELS plans, coordinates and implements the development of new life support technologies for human exploration missions as outlined in NASA's Vision for Space Exploration. ELS technology development currently supports three major projects of the Constellation Program - the Orion Crew Exploration Vehicle (CEV), the Altair Lunar Lander and Lunar Surface Systems. ELS content includes Air Revitalization Systems (ARS), Water Recovery Systems (WRS), Waste Management Systems (WMS), Habitation Engineering, Systems Integration, Modeling and Analysis (SIMA), and Validation and Testing. The primary goal of the ELS project is to provide different technology options to Constellation which fill gaps or provide substantial improvements over the state-of-the-art in life support systems. Since the Constellation missions are so challenging, mass, power, and volume must be reduced from Space Shuttle and Space Station technologies. Systems engineering analysis also optimizes the overall architecture by considering all interfaces with the life support system and potential for reduction or reuse of resources. For long duration missions, technologies which aid in closure of air and water loops with increased reliability are essential as well as techniques to minimize or deal with waste. The ELS project utilizes in-house efforts at five NASA centers, aerospace industry contracts, Small Business Innovative Research contracts and other means to develop advanced life support technologies. Testing, analysis and reduced gravity flight experiments are also conducted at the NASA field centers. This paper gives a current status of technologies under development by ELS and relates them to the Constellation customers who will eventually use them.
Intelligent Systems Technologies for Ops
NASA Technical Reports Server (NTRS)
Smith, Ernest E.; Korsmeyer, David J.
2012-01-01
As NASA supports International Space Station assembly complete operations through 2020 (or later) and prepares for future human exploration programs, there is additional emphasis in the manned spaceflight program to find more efficient and effective ways of providing the ground-based mission support. Since 2006 this search for improvement has led to a significant cross-fertilization between the NASA advanced software development community and the manned spaceflight operations community. A variety of mission operations systems and tools have been developed over the past decades as NASA has operated the Mars robotic missions, the Space Shuttle, and the International Space Station. NASA Ames Research Center has been developing and applying its advanced intelligent systems research to mission operations tools for both unmanned Mars missions operations since 2001 and to manned operations with NASA Johnson Space Center since 2006. In particular, the fundamental advanced software development work under the Exploration Technology Program, and the experience and capabilities developed for mission operations systems for the Mars surface missions, (Spirit/Opportunity, Phoenix Lander, and MSL) have enhanced the development and application of advanced mission operation systems for the International Space Station and future spacecraft. This paper provides an update on the status of the development and deployment of a variety of intelligent systems technologies adopted for manned mission operations, and some discussion of the planned work for Autonomous Mission Operations in future human exploration. We discuss several specific projects between the Ames Research Center and the Johnson Space Centers Mission Operations Directorate, and how these technologies and projects are enhancing the mission operations support for the International Space Station, and supporting the current Autonomous Mission Operations Project for the mission operation support of the future human exploration programs.
Automation and robotics for the Space Exploration Initiative: Results from Project Outreach
NASA Technical Reports Server (NTRS)
Gonzales, D.; Criswell, D.; Heer, E.
1991-01-01
A total of 52 submissions were received in the Automation and Robotics (A&R) area during Project Outreach. About half of the submissions (24) contained concepts that were judged to have high utility for the Space Exploration Initiative (SEI) and were analyzed further by the robotics panel. These 24 submissions are analyzed here. Three types of robots were proposed in the high scoring submissions: structured task robots (STRs), teleoperated robots (TORs), and surface exploration robots. Several advanced TOR control interface technologies were proposed in the submissions. Many A&R concepts or potential standards were presented or alluded to by the submitters, but few specific technologies or systems were suggested.
Chinese Manned Space Utility Project
NASA Astrophysics Data System (ADS)
Gu, Y.
Since 1992 China has been carrying out a conspicuous manned space mission A utility project has been defined and created during the same period The Utility Project of the Chinese Manned Space Mission involves wide science areas such as earth observation life science micro-gravity fluid physics and material science astronomy space environment etc In the earth observation area it is focused on the changes of global environments and relevant exploration technologies A Middle Revolution Image Spectrometer and a Multi-model Micro-wave Remote Sensor have been developed The detectors for cirrostratus distribution solar constant earth emission budget earth-atmosphere ultra-violet spectrum and flux have been manufactured and tested All of above equipment was engaged in orbital experiments on-board the Shenzhou series spacecrafts Space life science biotechnologies and micro-gravity science were much concerned with the project A series of experiments has been made both in ground laboratories and spacecraft capsules The environmental effect in different biological bodies in space protein crystallization electrical cell-fusion animal cells cultural research on separation by using free-low electrophoresis a liquid drop Marangoni migration experiment under micro-gravity as well as a set of crystal growth and metal processing was successfully operated in space The Gamma-ray burst and high-energy emission from solar flares have been explored A set of particle detectors and a mass spectrometer measured
NASA Technical Reports Server (NTRS)
Johnson, M.; Label, K.; McCabe, J.; Powell, W.; Bolotin, G.; Kolawa, E.; Ng, T.; Hyde, D.
2007-01-01
Implementation of challenging Exploration Systems Missions Directorate objectives and strategies can be constrained by onboard computing capabilities and power efficiencies. The Radiation Hardened Electronics for Space Environments (RHESE) High Performance Processors for Space Environments project will address this challenge by significantly advancing the sustained throughput and processing efficiency of high-per$ormance radiation-hardened processors, targeting delivery of products by the end of FY12.
NASA Technical Reports Server (NTRS)
Mendell, Wendell W.
1991-01-01
The International Space University (ISU) conducted a study of an international program to support human exploration of Mars as its annual Design Project activity during its 1991 summer session in Toulouse, France. Although an ISU Design Project strives to produce an in-depth analysis during the intense 10-week summer session, the International Mars Mission (IMM) project was conducted in a manner designed to provide a learning experience for young professionals working in an unusual multidisciplinary and multinational environment. The breadth of the IMM study exceeds that of most Mars mission studies of the past, encompassing political organization for long-term commitment, multinational management structure, cost analysis, mission architecture, vehicle configuration, crew health, life support, Mars surface infrastructure, mission operations, technology evaluation, risk assessment, scientific planning, exploration, communication networks, and Martian resource utilization. The IMM Final Report has particular value for those seeking insight into the choices made by a multinational group working in an apolitical environment on the problems of international cooperation in space.
NASA Technical Reports Server (NTRS)
1974-01-01
The San Marco C-2 spacecraft will be launched no earlier than 18 February 1974 from the San Marco Range located off the coast of Kenya, Africa, by a Scout launch vehicle. The launch will be conducted by an Italian crew. The San Marco C-2 is the fourth cooperative satellite project between Italy and the United States. The purpose of the mission is to obtain measurements of the diurnal variations of the equatorial neutral atmosphere density, composition, and temperature and to use these data for correlation with AE-C (Explorer 51) data for studies of the physics and dynamics of the thermosphere. The San Marco C-2 project is a joint undertaking of the National Aeronautics and Space Administration (NASA) and the Italian Space Commission officially initiated with a Memorandum of Understanding in August of 1973. Project management responsibility for the Italian portion of the project has been assigned to the Centro Ricerche Aerospaziali (CRA) while the Goddard Space Flight Center (GSFC) has responsibility for the United States portion.
ERIC Educational Resources Information Center
Social Education, 1986
1986-01-01
Prepared by NASA, this guide contains lessons dealing with space for use in elementary and secondary social studies classes. Activities are many and varied. For example, students analyze the costs and benefits of space travel, develop their own space station, and explore the decision-making processes involved in the shuttle. (RM)
From Concept to Design: Progress on the J-2X Upper Stage Engine for the Ares Launch Vehicles
NASA Technical Reports Server (NTRS)
Byrd, Thomas
2008-01-01
In accordance with national policy and NASA's Global Exploration Strategy, the Ares Projects Office is embarking on development of a new launch vehicle fleet to fulfill the national goals of replacing the space shuttle fleet, returning to the moon, and exploring farther destinations like Mars. These goals are shaped by the decision to retire the shuttle fleet by 2010, budgetary constraints, and the requirement to create a new fleet that is safer, more reliable, operationally more efficient than the shuttle fleet, and capable of supporting long-range exploration goals. The present architecture for the Constellation Program is the result of extensive trades during the Exploration Systems Architecture Study and subsequent refinement by the Ares Projects Office at Marshall Space Flight Center.
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, has been set up at its launch position along the runway at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - A crane is being used to set up NASA's Morpheus lander, a vertical test bed vehicle, at its launch position along the runway at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - Technicians secure connections for a crane which will be used to set up NASA's Morpheus lander, a vertical test bed vehicle, at its launch position along the runway at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - A crane is being used to set up NASA's Morpheus lander, a vertical test bed vehicle, at its launch position along the runway at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being set up at its launch position along the runway at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being set up at its launch position along the runway at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - A crane is being used to set up NASA's Morpheus lander, a vertical test bed vehicle, at its launch position along the runway at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, arrives at its launch position along the runway at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being moved out of its checkout building for a short trip to a launch position at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-27
CAPE CANAVERAL, Fla. - A truck transporting NASA's Morpheus lander, a vertical test bed vehicle, arrives at a building at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida for unloading. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being transported out from its checkout building for a short trip to a launch position at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being moved out of its checkout building for a short trip to a launch position at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being transported out from its checkout building for a short trip to a launch position at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-30
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being checked out in a building at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-27
CAPE CANAVERAL, Fla. - A truck transporting NASA's Morpheus lander, a vertical test bed vehicle, heads towards the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida for unloading. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - Support equipment for NASA's Morpheus lander, a vertical test bed vehicle, is unloaded at a building at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being transported out of its checkout building for a short trip to a launch position at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-27
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, has been moved into a building at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being transported along the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida for a short trip to a launch position along the runway. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-27
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, has been moved into a building at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being transported along the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida for a short trip to a launch position along the runway. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-30
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being checked out in a building at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being transported along the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida for a short trip to a launch position along the runway. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-30
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being checked out in a building at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - Technicians set up NASA's Morpheus lander, a vertical test bed vehicle, at its launch position along the runway at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
NASA Project Constellation Systems Engineering Approach
NASA Technical Reports Server (NTRS)
Dumbacher, Daniel L.
2005-01-01
NASA's Office of Exploration Systems (OExS) is organized to empower the Vision for Space Exploration with transportation systems that result in achievable, affordable, and sustainable human and robotic journeys to the Moon, Mars, and beyond. In the process of delivering these capabilities, the systems engineering function is key to implementing policies, managing mission requirements, and ensuring technical integration and verification of hardware and support systems in a timely, cost-effective manner. The OExS Development Programs Division includes three main areas: (1) human and robotic technology, (2) Project Prometheus for nuclear propulsion development, and (3) Constellation Systems for space transportation systems development, including a Crew Exploration Vehicle (CEV). Constellation Systems include Earth-to-orbit, in-space, and surface transportation systems; maintenance and science instrumentation; and robotic investigators and assistants. In parallel with development of the CEV, robotic explorers will serve as trailblazers to reduce the risk and costs of future human operations on the Moon, as well as missions to other destinations, including Mars. Additional information is included in the original extended abstract.
2018-01-11
Darrell Foster, chief of Project Management in Exploration Ground Systems, speaks to Kennedy Space Center employees about plans for the coming year. The event took place in the Lunar Theater at the Kennedy Space Center Visitor Complex’s Apollo Saturn V Center. The year will be highlighted with NASA's partners preparing test flights for crewed missions to the International Space Station as part of the agency's Commercial Crew Program and six launches by the Launch Services Program. Exploration Ground Systems will be completing facilities to support the Space Launch System rocket and Orion spacecraft. Exploration Research and Technology Programs will continue to provide supplies to the space station launched as part of the Commercial Resupply Services effort.
2012-08-03
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, NASA Administrator Charles Bolden, left, joins Dr. Jon Olansen, Morpheus project manager, in the control room at the Shuttle Landing Facility for the first tethered flight of the Morpheus lander. After undergoing testing at Johnson Space Center in Houston for nearly a year, Morpheus arrived at Kennedy on July 27 to begin about three months of tests. A field, replete with boulders, rocks, slopes, craters and hazards to avoid, was created at the north end of Kennedy's runway to provide a realistic landscape for test flights of the lander. Morpheus utilizes autonomous landing and hazard avoidance technology, or ALHAT, to navigate to a safe landing site during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA's Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html. Photo credit: NASA/Kim Shiflett
2012-08-03
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, NASA Administrator Charles Bolden joins Morpheus project manager Dr. Jon Olansen, pointing at monitor, in the control room at the Shuttle Landing Facility for the first tethered flight of the Morpheus lander. After undergoing testing at Johnson Space Center in Houston for nearly a year, Morpheus arrived at Kennedy on July 27 to begin about three months of tests. A field, replete with boulders, rocks, slopes, craters and hazards to avoid, was created at the north end of Kennedy's runway to provide a realistic landscape for test flights of the lander. Morpheus utilizes autonomous landing and hazard avoidance technology, or ALHAT, to navigate to a safe landing site during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA's Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html. Photo credit: NASA/Kim Shiflett
2012-07-19
CAPE CANAVERAL, Fla. – This aerial view shows the 15,000-foot long Shuttle Landing Facility at the Kennedy Space Center, Fla. At the north end of the runway, to the bottom, is a rock and crater-filled planetary scape has been built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett
2012-07-19
CAPE CANAVERAL, Fla. – This aerial view shows the north end of the Kennedy Space Center’s 15,000-foot long Shuttle Landing Facility. On the far left at the end of the runway, a rock and crater-filled planetary scape has been built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett
2012-07-19
CAPE CANAVERAL, Fla. – This aerial view shows a rock and crater-filled planetary scape that has been built at the north end of the Kennedy Space Center’s Shuttle Landing Facility. The site will allow engineers to test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett
2012-07-19
CAPE CANAVERAL, Fla. – This aerial view shows the north end of the Kennedy Space Center’s Shuttle Landing Facility. At the end of the runway, in the upper right, a rock and crater-filled planetary scape has been built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett
2012-07-19
CAPE CANAVERAL, Fla. – This aerial view shows the north end of the Kennedy Space Center’s Shuttle Landing Facility. At the end of the runway, to the right, is a rock and crater-filled planetary scape has been built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett
2012-07-19
CAPE CANAVERAL, Fla. – This aerial view shows the north end of the Kennedy Space Center’s Shuttle Landing Facility. At the end of the runway is a rock and crater-filled planetary scape has been built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett
2012-07-19
CAPE CANAVERAL, Fla. – This aerial view shows the 15,000-foot long Shuttle Landing Facility at the Kennedy Space Center, Fla. At the north end of the runway, to the right, is a rock and crater-filled planetary scape has been built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett
2012-07-19
CAPE CANAVERAL, Fla. – This aerial view shows the north end of the Kennedy Space Center’s Shuttle Landing Facility. At the end of the runway is a rock and crater-filled planetary scape has been built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett
2012-07-19
CAPE CANAVERAL, Fla. –This aerial view shows a rock and crater-filled planetary scape that has been built at the north end of the Kennedy Space Center’s Shuttle Landing Facility. The site will allow engineers to test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett
2012-07-19
CAPE CANAVERAL, Fla. – This aerial view shows the north end of the Kennedy Space Center’s Shuttle Landing Facility. At the end of the runway is a rock and crater-filled planetary scape has been built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett
ERIC Educational Resources Information Center
Lawton-Sticklor, Nastasia; Bodamer, Scott F.
2016-01-01
This article explores a research partnership between a university-based researcher and a middle school science teacher. Our partnership began with project-based inquiry and continued with unstructured thought-partner spaces: meetings with no agenda where we wrestled with problems of practice. Framed as incubation periods, these meetings allowed us…
Performing Home in Barcelona: A Practice-Based Photo Essay
ERIC Educational Resources Information Center
Pons, Esther Belvis
2018-01-01
During the winter of 2016, I carried out an artistic project in Barcelona entitled 'Performing Home' that aimed to explore the affective and social challenges that artists in political asylum or refuge cope with. The project began with a simple question: "where in public spaces do artists in asylum feel 'at home'?" It explored how public…
Project for the Space Science in Moscow State University of Geodesy and Cartography (MIIGAiK)
NASA Astrophysics Data System (ADS)
Semenov, M.; Oberst, J.; Malinnikov, V.; Shingareva, K.; Grechishchev, A.; Karachevtseva, I.; Konopikhin, A.
2012-04-01
Introduction: Based on the proposal call of the Government of Russian Federation 40 of international scientists came to Russia for developing and support-ing research capabilities of national educational institutions. Moscow State University of Geodesy and Cartography (MIIGAiK) and invited scientist Prof. Dr. Jurgen Oberst were awarded a grant to establish a capable research facility concerned with Planetary Geodesy, Cartography and Space Exploration. Objectives: The goals of the project are to build laboratory infrastructure, and suitable capability for MIIGAiK to participate in the planning, execution and analyses of data from future Russian planetary mis-sions and also to integrate into the international science community. Other important tasks are to develop an attractive work place and job opportunities for planetary geodesy and cartography students. For this purposes new MIIGAiK Extraterrestrial Laboratory (MExLab) was organized. We involved professors, researchers, PhD students in to the projects of Moon and planets exploration at the new level of Russian Space Science development. Main results: MExLab team prepare data for upcom-ing Russian space missions, such as LUNA-GLOB and LUNA-RESOURSE. We established cooperation with Russian and international partners (IKI, ESA, DLR, and foreign Universities) and actively participated in international conferences and workshops. Future works: For the future science development we investigated the old Soviet Archives and received the access to the telemetry data of the Moon rovers Lunokhod-1 and Lunokhod-2. That data will be used in education purposes and could be the perfect base for the analysis, development and support in new Russian and international missions and especially Moon exploration projects. MExLab is open to cooperate and make the consortiums for science projects for the Moon and planets exploration. Acknowledgement: Works are funded by the Rus-sian Government (Project name: "Geodesy, cartography and the study of planets and satellites", contract No. 11.G34.31.0021 dd. 30.11.10)
Exploration Life Support Critical Questions for Future Human Space Missions
NASA Technical Reports Server (NTRS)
Ewert, Michael K.; Barta, Daniel J.; McQuillan, Jeff
2009-01-01
Exploration Life Support (ELS) is a project under NASA s Exploration Technology Development Program. The ELS Project plans, coordinates and implements the development of advanced life support technologies for human exploration missions in space. Recent work has focused on closed loop atmosphere and water systems for a lunar outpost, including habitats and pressurized rovers. But, what are the critical questions facing life support system developers for these and other future human missions? This paper explores those questions and discusses how progress in the development of ELS technologies can help answer them. The ELS Project includes Atmosphere Revitalization Systems (ARS), Water Recovery Systems (WRS), Waste Management Systems (WMS), Habitation Engineering, Systems Integration, Modeling and Analysis (SIMA), and Validation and Testing, which includes the sub-elements Flight Experiments and Integrated Testing. Systems engineering analysis by ELS seeks to optimize the overall mission architecture by considering all the internal and external interfaces of the life support system and the potential for reduction or reuse of commodities. In particular, various sources and sinks of water and oxygen are considered along with the implications on loop closure and the resulting launch mass requirements.
Modular Power Standard for Space Explorations Missions
NASA Technical Reports Server (NTRS)
Oeftering, Richard C.; Gardner, Brent G.
2016-01-01
Future human space exploration will most likely be composed of assemblies of multiple modular spacecraft elements with interconnected electrical power systems. An electrical system composed of a standardized set modular building blocks provides significant development, integration, and operational cost advantages. The modular approach can also provide the flexibility to configure power systems to meet the mission needs. A primary goal of the Advanced Exploration Systems (AES) Modular Power System (AMPS) project is to establish a Modular Power Standard that is needed to realize these benefits. This paper is intended to give the space exploration community a "first look" at the evolving Modular Power Standard and invite their comments and technical contributions.
Preparing project managers for faster-better-cheaper robotic planetary missions
NASA Technical Reports Server (NTRS)
Gowler, P.; Atkins, K.
2003-01-01
The authors have developed and implemented a week-long workshop for Jet Propulsion Laboratory Project Managers, designed around the development phases of the JPL Project Life Cycle. The workshop emphasizes the specific activities and deliverables that pertain to JPL managers of NASA robotic space exploration and instrument development projects.
Avionics Architectures for Exploration: Building a Better Approach for (Human) Spaceflight Avionics
NASA Technical Reports Server (NTRS)
Goforth, Montgomery B.; Ratliff, James E.; Hames, Kevin L.; Vitalpur, Sharada V.
2014-01-01
The field of Avionics is advancing far more rapidly in terrestrial applications than in space flight applications. Spaceflight Avionics are not keeping pace with expectations set by terrestrial experience, nor are they keeping pace with the need for increasingly complex automation and crew interfaces as we move beyond Low Earth Orbit. NASA must take advantage of the strides being made by both space-related and terrestrial industries to drive our development and sustaining costs down. This paper describes ongoing efforts by the Avionics Architectures for Exploration (AAE) project chartered by NASA's Advanced Exploration Systems (AES) Program to evaluate new avionic architectures and technologies, provide objective comparisons of them, and mature selected technologies for flight and for use by other AES projects. Results from the AAE project's FY13 efforts are discussed, along with the status of FY14 efforts and future plans.
Distant Operational Care Centre: Design Project Report
NASA Technical Reports Server (NTRS)
1996-01-01
The goal of this project is to outline the design of the Distant Operational Care Centre (DOCC), a modular medical facility to maintain human health and performance in space, that is adaptable to a range of remote human habitats. The purpose of this project is to outline a design, not to go into a complete technical specification of a medical facility for space. This project involves a process to produce a concise set of requirements, addressing the fundamental problems and issues regarding all aspects of a space medical facility for the future. The ideas presented here are at a high level, based on existing, researched, and hypothetical technologies. Given the long development times for space exploration, the outlined concepts from this project embodies a collection of identified problems, and corresponding proposed solutions and ideas, ready to contribute to future space exploration efforts. In order to provide a solid extrapolation and speculation in the context of the future of space medicine, the extent of this project's vision is roughly within the next two decades. The Distant Operational Care Centre (DOCC) is a modular medical facility for space. That is, its function is to maintain human health and performance in space environments, through prevention, diagnosis, and treatment. Furthermore, the DOCC must be adaptable to meet the environmental requirements of different remote human habitats, and support a high quality of human performance. To meet a diverse range of remote human habitats, the DOCC concentrates on a core medical capability that can then be adapted. Adaptation would make use of the DOCC's functional modularity, providing the ability to replace, add, and modify core functions of the DOCC by updating hardware, operations, and procedures. Some of the challenges to be addressed by this project include what constitutes the core medical capability in terms of hardware, operations, and procedures, and how DOCC can be adapted to different remote habitats.
Space research - At a crossroads
NASA Technical Reports Server (NTRS)
Mcdonald, Frank B.
1987-01-01
Efforts which must be expended if U.S. space research is to regain vitality in the next few years are discussed. Small-scale programs are the cornerstone for big science projects, giving both researchers and students a chance to practice the development of space missions and hardware and identify promising goals for larger projects. Small projects can be carried aloft by balloons, sounding rockets, the Shuttle and ELVs. It is recommended that NASA continue the development of remote sensing systems, and join with other government agencies to fund space-based materials science, space biology and medical research. Increased international cooperation in space projects is necessary for affording moderate to large scale missions, for political reasons, and to maximize available space resources. Finally, the establishment and funding of long-range goals in space, particularly the development of the infrastructure and technologies for the exploration and colonization of the planets, must be viewed as the normal outgrowth of the capabilities being developed for LEO operations.
NASA Technical Reports Server (NTRS)
Aaron, John; Gabris, Edward A.; Sulzman, Frank M.; Connors, Mary M.; Pilcher, Carl
1989-01-01
NASA's Office of Aeronautics and Space Technology has undertaken a series of manned space presence-development efforts under the aegis of the Civil Space Technology Initiative (CSTI) and Project Pathfinder. Typical of these CSTI efforts is the Aeroassist Flight Experiment, which will demonstrate techniques suitable in aerobrake design for slow trajectories to Mars and for lunar mission return. Long-duration human operations in space are a major element of Pathfinder, giving attention to such problems as space radiation exposure effects that could be several orders of magnitude greater on interplanetary exploration missions than on typical Space Shuttle flights. Mars Observer and Lunar Observer orbital missions are planned as a steppingstone to manned planetary exploration.
A New Heavy-Lift Capability for Space Exploration: NASA's Ares V Cargo Launch Vehicle
NASA Technical Reports Server (NTRS)
Sumrall, John P.; McArthur, J. Craig
2007-01-01
The National Aeronautics and Space Administration (NASA) is developing new launch systems and preparing to retire the Space Shuttle by 2010, as directed in the United States (U.S.) Vision for Space Exploration. The Ares I Crew Launch Vehicle (CLV) and the Ares V heavy-lift Cargo Launch Vehicle (CaLV) systems will build upon proven, reliable hardware derived from the Apollo-Saturn and Space Shuttle programs to deliver safe, reliable, affordable space transportation solutions. This approach leverages existing aerospace talent and a unique infrastructure, as well as legacy knowledge gained from nearly 50 years' experience developing space hardware. Early next decade, the Ares I will launch the new Orion Crew Exploration Vehicle (CEV) to the International Space Station (ISS) or to low-Earth orbit for trips to the Moon and, ultimately, Mars. Late next decade, the Ares V's Earth Departure Stage will carry larger payloads such as the lunar lander into orbit, and the Crew Exploration Vehicle will dock with it for missions to the Moon, where astronauts will explore new territories and conduct science and technology experiments. Both Ares I and Ares V are being designed to support longer future trips to Mars. The Exploration Launch Projects Office is designing, developing, testing, and evaluating both launch vehicle systems in partnership with other NASA Centers, Government agencies, and industry contractors. This paper provides top-level information regarding the genesis and evolution of the baseline configuration for the Ares V heavy-lift system. It also discusses riskbased, management strategies, such as building on powerful hardware and promoting common features between the Ares I and Ares V systems to reduce technical, schedule, and cost risks, as well as development and operations costs. Finally, it summarizes several notable accomplishments since October 2005, when the Exploration Launch Projects effort officially kicked off, and looks ahead at work planned for 2007 and beyond.
ERIC Educational Resources Information Center
McGinty, Lorna
2013-01-01
This short case study gives insight into a theatre-making project with young lesbian, gay, bisexual and trans-identified people. The author reflects on the capacity of collaborative arts practice to open discussion around identity and allow space to re-imagine lived experience through metaphor and mythology. She focuses on the central role of the…
Eva Physiology, Systems, and Performance (EPSP) Project Overview
NASA Technical Reports Server (NTRS)
Gernhardt, Michael L.
2007-01-01
Extravehicular activity (EVA) is any activity performed by astronauts outside their space vehicle or habitat. EVA may be performed on orbit, such as outside the Space Shuttle or the International Space Station, or on a planetary surface such as Mars or on the moon. Astronauts wear a pressurized suit that provides environmental protection, mobility, life support, and communications while they work in the harsh conditions of a microgravity environment. Exploration missions to the moon and Mars may last many days and will include many types of EVAs; exploration, science, construction and maintenance. The effectiveness and success of these EVA-filled missions is dependent on the ability to perform tasks efficiently. The EVA Physiology, Systems and Performance (EPSP) project will conduct a number of studies to understand human performance during EVA, from a molecular level to full-scale equipment and suit design aspects, with the aim of developing safe and efficient systems for Exploration missions and the Constellation Program. The EPSP project will 1) develop Exploration Mission EVA suit requirements for metabolic and thermal loading, optional center of gravity location, biomedical sensors, hydration, nutrition, and human biomedical interactions; 2) develop validated EVA prebreathe protocols that meet medical, vehicle, and habitat constraints while minimizing crew time and thus increasing EVA work efficiency; and 3) define exploration decompression sickness (DCS) risks, policy, and mission success statistics and develop a DCS risk definition report.
NASA Technical Reports Server (NTRS)
Duke, Michael B. (Editor)
2000-01-01
The HEDS-UP (Human Exploration and Development of Space-University Partners) program has been instituted to build new relationships between university faculty and students and NASA in support of the Human Exploration and Development of Space. The program provides a mechanism whereby university students can explore problems of interest to NASA through student design projects, led by a university professor or mentor, and aided by the HEDSUP staff. HEDS-UP advises on the type of project that is of interest and provides contacts to NASA and industry professionals who may serve as mentors to the student project. Students become acquainted with objectives, strategies, development issues, and technologic characteristics of space exploration programs. In doing so, they are preparing themselves for future engineering challenges and may well find that the program is on their critical path to professional advancement. Many of the ideas are novel and are of interest to NASA. Industry finds in HEDS-UP a mechanism to meet many bright and enthusiastic students who are about to enter the work force. The universities become more involved with space exploration and the students are encouraged to include an outreach element in their work, to bring their efforts and their excitement to others in their universities or in their communities. The climax of the HEDS-UP program each year is the HEDS-UP Forum, held at the Lunar and Planetary Institute. Here, the university teams bring their projects - written reports, oral reports, models, prototypes, and experiment demonstrations - to show to one another and to NASA and industry participants. NASA, industry, and academic professionals present discussions of problems of current interest to space exploration. All meet informally around the posters that each of the teams brings to the Forum. This year the HEDS-UP Forum was held May 4-5 at the Lunar and Planetary Institute in Houston. Thirteen university teams from twelve universities participated. Eleven teams were undergraduate teams; two were composed of graduate students. Each team contributed a 20-page written report, and these reports are reproduced in this volume. The specially invited NASA presenters included Mr. John Connolly, Dr. David McKay and Dr. Donald Henninger of the NASA Johnson Space Center, Dr. Paul Spudis and Dr. Steve Clifford of the Lunar and Planetary Institute, and Dr. Pascal Lee of the NASA Ames Research Center.
NASA Technical Reports Server (NTRS)
Johnson, Kathleen M. (Editor)
2001-01-01
The HEDS-UP (Human Exploration and Development of Space-University Partners) program was instituted to build new relationships between university, faculty, students, and NASA in support of the Human Exploration and Development of Space. The program has provided a mechanism for university students to explore problems of interest to NASA through student engineering design projects, led by a university professor or mentor, and aided by the HEDS-UP staff. HEDS-UP program management advised teams on the selection of projects that were aligned with the goals of the HEDS strategic enterprise, and provided contacts with NASA and industry professionals who served as mentors. Students became acquainted with objectives, strategies, development issues, and technological characteristics of space exploration programs. In doing so, they prepared themselves for future engineering challenges, often discovering that the program was on their critical path to professional advancement. Many of the ideas were innovative and of interest to NASA. Industry benefitted from HEDS-UP as a mechanism to converge with talented students about to enter the work force. In addition, universities became more involved in the teaching of space exploration, and students were encouraged and mentored as they included education outreach as an element in their work. This in turn highlighted their performance to others and universities in their communities.
Xu, Haotong; Zhang, Xiaoming; Christe, Andreas; Ebner, Lukas; Zhang, Shaoxiang; Luo, Zhulin; Wu, Yi; Li, Yin; Tian, Fuzhou
2013-01-01
Background In past reports, researchers have seldom attached importance to achievements in transforming digital anatomy to radiological diagnosis. However, investigators have been able to illustrate communication relationships in the retroperitoneal space by drawing potential routes in computerized tomography (CT) images or a virtual anatomical atlas. We established a new imaging anatomy research method for comparisons of the communication relationships of the retroperitoneal space in combination with the Visible Human Project and CT images. Specifically, the anatomic pathways of peripancreatic fluid extension to the mediastinum that may potentially transform into fistulas were studied. Methods We explored potential pathways to the mediastinum based on American and Chinese Visible Human Project datasets. These drainage pathways to the mediastinum were confirmed or corrected in CT images of 51 patients with recurrent acute pancreatitis in 2011. We also investigated whether additional routes to the mediastinum were displayed in CT images that were not in Visible Human Project images. Principal Findings All hypothesized routes to the mediastinum displayed in Visible Human Project images, except for routes from the retromesenteric plane to the bilateral retrorenal plane across the bilateral fascial trifurcation and further to the retrocrural space via the aortic hiatus, were confirmed in CT images. In addition, route 13 via the narrow space between the left costal and crural diaphragm into the retrocrural space was demonstrated for the first time in CT images. Conclusion This type of exploration model related to imaging anatomy may be used to support research on the communication relationships of abdominal spaces, mediastinal spaces, cervical fascial spaces and other areas of the body. PMID:23614005
China (CNSA) views of the Moon
NASA Astrophysics Data System (ADS)
He, S.
China's lunar objectives have widely attracted the world's attention since China National Space Administration (CNSA) chief Luan Enjie in October 2000 officially affirmed the nation plans to carry out lunar exploration. The success of the Shenzhou-3 mission last April, which indicates that China is on the eve to become the third nation to attain an independent ability to launch humans into space, coupled with Chinese president Jiang Zemin's announcement issued immediately after the launch of SZ-3 that China will develop its own space station, further prompted the mass media in the West to ponder whether "the next footsteps on the Moon will be Chinese." Although China's lunar intention is well publicized, no detail about the project has yet been unveiled in the Western space media because China's space program has been notoriously cloaked in state-imposed secrecy, while the available information is basically unreported by Western observers mainly due to the cultural and language barriers. Based on original research of both the unpublished documents as well as reports in China's space media and professional journals, this paper attempts to piece together the available material gathered from China, providing some insight into China's Moon project, and analyzing the Chinese activities in pursuit of their lunar dream in perspective of space policy. Motivations China's presence on the Moon, in the Chinese leadership's view, could help aggrandize China's international prestige and consolidate the cohesion of the Chinese nation. Lunar exploration, the science community consents, not only helps acquire knowledge about the Moon, but also deepen the understanding of the Earth. A lunar project is believed to be able to accelerate the development of launching and navigating technologies, preparing for future deep space exploration. The emergence of the return to the Moon movement in the world, and the presumption that NASA has plans to return to the Moon, as evidenced by prominent Chinese space scientists' remarks, are also the driving forces for China's determination to reach the Moon. Preliminary Studies Although China did not begin preliminary studies for lunar exploration seriously until the early 1990s, approximately the same time when the human spaceflight Project 921 started, lunar studies have been carried out in the nation for a few decades. The Advancement of Selenology, completed in 1977 by a team led by Ouyang Ziyuan at the CAS Institute of Geochemistry in Guiyang, is probably the most important work on the subject published in China. Under the direction of the Project 863 Experts Committee, a team of scientists led by Ouyang Ziyuan and Zhu Guibo of China Aerospace Industry Corporation in 1993 began to study the feasibility and necessity of lunar exploration by China. Based on a comprehensive survey of the nation's space technology and infrastructures, the feasibility study completed in 1995 believed it was possible to orbit a lunar satellite by 2000. In April 1997, CAS members Yang Jiachi, Wang Daheng and Chen Fangyun issued the "Proposal for Development of Our Nation's Lunar Exploration Technology" as part of the Project 863. The research and development of robotic rovers for lunar exploration began the following year. In May 2000 and January 2001, Tsinghua University organized two symposia on lunar exploration technology. The third lunar conference was held in March 2001 at Beijing University of Aeronautics and Astronautics (BUAA) to discuss China's lunar exploration and human spaceflight in the 21st century. A feasibility study for China's lunar adventure was unveiled at the conference for the first time. Objectives and Scenarios The primary objective of the first stage of lunar exploration, according to the feasibility study, will be a comprehensive survey of the lunar surface through remote sensing. Based on this survey, areas for soft landings will be selected. Lunar rovers will further explore these areas to identify an ideal site for the construction of a lunar base. To achieve this goal, a five-step plan has been developed. Launching orbiting missions to obtain data about the topography and resource distribution of the lunar surface before 2005 will be the task of the first phase; landing rovers on selected areas to test the soft landing technology and survey the target areas before 2010 will be the major operations for the second period of exploration; robotic exploration using rovers to survey lunar surface will be the focus of the third step (2010-2020) and sample return missions will be launched during the fourth phase (2020-2030) of the program. Upon completing these steps, CNSA will concentrate on human missions and the construction of a lunar base after 2030. Chinese scientists are currently pushing for the nation's 1st mission to the Moon, suggesting that CNSA should simplify the design of the short-term plan for lunar exploration, utilizing the existing technology and available resources to start the lunar project as soon as possible. Estimated Costs According to principal scientist of the lunar project Ouyang Ziyuan's estimation last December, CNSA may launch its 1st orbiting mission to the Moon with one billion RMB yuan (US122 million), which approximately doubles the initial estimated costs presented in the 1995 feasibility study. Technological Readiness China has laid solid foundations in the areas of satellite application, launch vehicle, ground control and tracking, astronomical observations and scientific investigations. The conditions for carrying out lunar exploration, according to the feasibility study, have completely matured. Launch vehicles: Three types of Long March 3A rockets with cryogen propellant upper stage are already capable of launching probes weighting 1,600 kg, 2,400 kg and 3,300 kg to lunar transfer orbit respectively, according to a report last January. The human-rated LM 2F, which lofted SZ-3, is also able to launch missions to the Moon. Besides, the LM 3B can be upgraded to send 1.5-ton to 3-ton payloads into lunar orbit. The next generation rockets based on the Long March series currently being developed will meet the requirements for sample return and human missions. The development of the new launchers is expected to be completed within about six years. Launch centers: Two of the three existing centers, in Jiuquan and Xichang, can be used to launch missions to the Moon. In addition, Chinese space experts have been pushing for building the 4th launch center on Hainan island for new exploration missions and commercial satellite launch, which would be the embarkation point for China's future lunar missions. Tracking and control: The existing tracking and control network, including the TT&C stations in Swakopmund, Namibia and on Tarawa Atoll in Kiribati, and the Long View fleet of 4 tracking ships, can be used for lunar missions. However, a deep space tracking station needs to be built in either Kashi, Xinjiang or Beijing to improve efficiency. But the ground stations within China's territory can only track lunar probes for 8 hours daily. The global DSN needs to be utilized in order to ensure 24-hour tracking operation. Therefore, international cooperation is necessary. International Cooperation CNSA hopes to cooperate with foreign space agencies, using NASA's DSN stations in Madrid, Goldstone and Canberra to support its lunar expeditions. As compared to other space activities in LEO, lunar exploration, the Chinese reason, is basically scientific endeavour and is unrelated to military. Therefore, it is likely that other countries would cooperate with China. China has been cooperating with Russia in many areas. CNSA also has been closely working with ESA on the Double Star project. Most recently, NASA administrator Sean O'Keefe expressed that NASA was interested in China's participation in the ISS. If such cooperation materializes, joint efforts in lunar expeditions should be a logical extension, and the prospects for truly global cooperation in peaceful exploration and utilization of space will be promising. References (all in Chinese): Chinese Academy of Sciences Institute of Geochemistry in Guiyang. Advancement of Selenology. Beijing:Science Press, 1977. Project 863 Lunar Exploration Program Team. "A Study of Necessity and Feasibility of Lunar Exploration in Our Country." Project 863 Aerospace Program, 1995. Yang Jiachi, Wang Daheng and Chen Fangyun. "Proposal for the Development of Our Nation's LunarExploration Technology." Project 863 Aerospace Program, 1997. Zi Xiao. "China's Lunar Exploration Plans Emerge." Aeronautics Knowledge, published by Beijing University of Aeronautics and Astronautics, June and July 2001. "To Realize China's Lunar Dream." A special issue on lunar exploration in China Space News, No. 838, 5 January 2002.
Cryogenic Technology Development for Exploration Missions
NASA Technical Reports Server (NTRS)
Chato, David J.
2007-01-01
This paper reports the status and findings of different cryogenic technology research projects in support of the President s Vision for Space Exploration. The exploration systems architecture study is reviewed for cryogenic fluid management needs. It is shown that the exploration architecture is reliant on the cryogenic propellants of liquid hydrogen, liquid oxygen and liquid methane. Needs identified include: the key technologies of liquid acquisition devices, passive thermal and pressure control, low gravity mass gauging, prototype pressure vessel demonstration, active thermal control; as well as feed system testing, and Cryogenic Fluid Management integrated system demonstration. Then five NASA technology projects are reviewed to show how these needs are being addressed by technology research. Projects reviewed include: In-Space Cryogenic Propellant Depot; Experimentation for the Maturation of Deep Space Cryogenic Refueling Technology; Cryogenic Propellant Operations Demonstrator; Zero Boil-Off Technology Experiment; and Propulsion and Cryogenic Advanced Development. Advances are found in the areas of liquid acquisition of liquid oxygen, mass gauging of liquid oxygen via radio frequency techniques, computational modeling of thermal and pressure control, broad area cooling thermal control strategies, flight experiments for resolving low gravity issues of cryogenic fluid management. Promising results are also seen for Joule-Thomson pressure control devices in liquid oxygen and liquid methane and liquid acquisition of methane, although these findings are still preliminary.
ERIC Educational Resources Information Center
Caron, Daniel W.; Fuller, Jeremy; Watson, Janice; St. Hilaire, Katherine
2007-01-01
In May 2005, the International Technology Education Association (ITEA) was funded by the National Aeronautics and Space Administration (NASA) to develop curricular units for Grades K-12 on Space Exploration. The units focus on aspects of the themes that NASA Engineers and Scientists--as well as future generations of explorers--must consider, such…
Habitation Concepts for Human Missions Beyond Low-Earth-Orbit
NASA Technical Reports Server (NTRS)
Smitherman, David V.
2016-01-01
The Advanced Concepts Office at the NASA Marshall Space Flight Center has been engaged for several years in a variety of study activities to help define various options for deep space habitation. This work includes study activities supporting asteroid, lunar and Mars mission activities for the Human spaceflight Architecture Team (HAT), the Deep Space Habitat (DSH) project, and the Exploration Augmentation Module (EAM) project through the NASA Advanced Exploration Systems (AES) Program. The missions under consideration required human habitation beyond low-Earth-orbit (LEO) including deep space habitation in the lunar vicinity to support asteroid retrieval missions, human and robotic lunar surface missions, deep space research facilities, Mars vehicle servicing, and Mars transit missions. Additional considerations included international interest and near term capabilities through the International Space Station (ISS) and Space Launch System (SLS) programs. A variety of habitat layouts have been considered, including those derived from the existing ISS systems, those that could be fabricated from SLS components, and other approaches. This paper presents an overview of several leading designs explored in late fiscal year (FY) 2015 for asteroid, lunar, and Mars mission habitats and identifies some of the known advantages and disadvantages inherent in each. Key findings indicate that module diameters larger than those used for ISS can offer lighter structures per unit volume, and sufficient volume to accommodate consumables for long-duration missions in deep space. The information provided with the findings includes mass and volume data that should be helpful to future exploration mission planning and deep space habitat design efforts.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-15
... by a United States industry. Parties Principal Supplier: Space Exploration Technologies Corp. of Hawthorne, California. Marsh Space Projects, New York, New York. ATK Space Systems Inc., Goleta, California. Obligor: Space-Communication Limited. Guarantor(s): None. Description of Items Being Exported To finance...
2017-07-12
Bryan Onate, Advanced Plant Habitat project manager, with the Exploration Research and Technology Directorate, brainstorms innovative approaches to food production with industry representatives inside a laboratory at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida.
SpaceX CRS-11 "What's on Board?" Science Briefing
2017-05-31
Jason Mitchell, project manager for the Station Explorer for X-ray Timing and Navigation Technology, or SEXTANT, instrument, left, and Keith Gendreau, principle investigator for the Neutron star Interior Composition Explorer, or NICER, speak to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on the purpose of their experiments and instruments to be delivered to the International Space Station on SpaceX CRS-11. A Dragon spacecraft is scheduled to be launched from Kennedy’s Launch Complex 39A on June 1 atop a SpaceX Falcon 9 rocket on the company's 11th Commercial Resupply Services mission to the space station.
A Situation Awareness Assistant for Human Deep Space Exploration
NASA Technical Reports Server (NTRS)
Boy, Guy A.; Platt, Donald
2013-01-01
This paper presents the development and testing of a Virtual Camera (VC) system to improve astronaut and mission operations situation awareness while exploring other planetary bodies. In this embodiment, the VC is implemented using a tablet-based computer system to navigate through inter active database application. It is claimed that the advanced interaction media capability of the VC can improve situation awareness as the distribution of hu man space exploration roles change in deep space exploration. The VC is being developed and tested for usability and capability to improve situation awareness. Work completed thus far as well as what is needed to complete the project will be described. Planned testing will also be described.
A Review of NASA's Radiation-Hardened Electronics for Space Environments Project
NASA Technical Reports Server (NTRS)
Keys, Andrew S.; Adams, James H.; Patrick, Marshall C.; Johnson, Michael A.; Cressler, John D.
2008-01-01
NASA's Radiation Hardened Electronics for Space Exploration (RHESE) project develops the advanced technologies required to produce radiation hardened electronics, processors, and devices in support of the requirements of NASA's Constellation program. Over the past year, multiple advancements have been made within each of the RHESE technology development tasks that will facilitate the success of the Constellation program elements. This paper provides a brief review of these advancements, discusses their application to Constellation projects, and addresses the plans for the coming year.
2012-08-01
CAPE CANAVERAL, Fla. - At the Autonomous Landing and Hazard Avoidance Technology, or ALHAT, field at the north end of the Shuttle Landing Facility, or SLF, at NASA’s Kennedy Space Center in Florida, members of the media view the hazard field and speak with Morpheus managers. At left, in the blue shirt is Gregory Gaddis, Kennedy Project Morpheus/ALHAT site manager. Testing of the prototype lander had been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free-flight test at Kennedy Space Center. The SLF will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett
Surface and borehole neutron probes for the Construction and Resource Utilization eXplorer (CRUX)
NASA Technical Reports Server (NTRS)
Elphic, Richard C.; Hahn, Sangkoo; Lawrence, David J.; Feldman, William C.; Johnson, Jerome B.; Haldemann, Albert F. C.
2006-01-01
The Construction and Resource Utilization eXplorer (CRUX) project aims to develop an integrated, flexible suite of instruments with data fusion software and an executive controller for the purpose of in situ resource assessment and characterization for future space exploration.
Planetary exploration with nanosatellites: a space campus for future technology development
NASA Astrophysics Data System (ADS)
Drossart, P.; Mosser, B.; Segret, B.
2017-09-01
Planetary exploration is at the eve of a revolution through nanosatellites accompanying larger missions, or freely cruising in the solar system, providing a man-made cosmic web for in situ or remote sensing exploration of the Solar System. A first step is to build a specific place dedicated to nanosatellite development. The context of the CCERES PSL space campus presents an environment for nanosatellite testing and integration, a concurrent engineering facility room for project analysis and science environment dedicated to this task.
2012-07-30
CAPE CANAVERAL, Fla. - Russell Romanella, director of Safety and Mission Assurance at NASA's Kennedy Space Center in Florida, right, is briefed on NASA's Morpheus lander, a vertical test bed vehicle. Morpheus is being checked out by technicians and engineers in a building at the Shuttle Landing Facility, or SLF, at Kennedy. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-30
CAPE CANAVERAL, Fla. - Russell Romanella, director of Safety and Mission Assurance at NASA's Kennedy Space Center in Florida, center, is briefed on NASA's Morpheus lander, a vertical test bed vehicle. Morpheus is being checked out by technicians and engineers in a building at the Shuttle Landing Facility, or SLF, at Kennedy. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-30
CAPE CANAVERAL, Fla. - Russell Romanella, director of Safety and Mission Assurance at NASA's Kennedy Space Center in Florida, right-center, is briefed on NASA's Morpheus lander, a vertical test bed vehicle. Morpheus is being checked out by technicians and engineers in a building at the Shuttle Landing Facility, or SLF, at Kennedy. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-30
CAPE CANAVERAL, Fla. - Russell Romanella, director of Safety and Mission Assurance at NASA's Kennedy Space Center in Florida, kneeling on the left, is briefed on NASA's Morpheus lander, a vertical test bed vehicle. Morpheus is being checked out by technicians and engineers in a building at the Shuttle Landing Facility, or SLF, at Kennedy. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-30
CAPE CANAVERAL, Fla. - Russell Romanella, director of Safety and Mission Assurance at NASA's Kennedy Space Center in Florida, left, is briefed on NASA's Morpheus lander, a vertical test bed vehicle. Morpheus is being checked out by technicians and engineers in a building at the Shuttle Landing Facility, or SLF, at Kennedy. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
NASA Technical Reports Server (NTRS)
1991-01-01
This Handbook establishes general safety, reliability, and quality assurance (SR&QA) guidelines for use on flight and ground-based projects conducted at the Ames, Langley, and Lewis Research Centers, hereafter identified as the Office of Aeronautics, Exploration and Technology (OAET) Centers. This document is applicable to all projects and operations conducted at these Centers except for those projects covered by more restrictive provisions such as the Space Shuttle, Space Station, and unmanned spacecraft programs. This Handbook is divided into two parts. The first (Chapters 1 and 2) establishes the SR&QA guidelines applicable to the OAET Centers, and the second (Appendices A, B, C, and D) provides examples and definitions for the total SR&QA program. Each center should implement SR&QA programs using these guidelines with tailoring appropriate to the special projects conducted by each Center. This Handbook is issued in loose-leaf form and will be revised by page changes.
Human support issues and systems for the space exploration initiative: Results from Project Outreach
NASA Technical Reports Server (NTRS)
Aroesty, J.; Zimmerman, R.; Logan, J.
1991-01-01
The analyses and evaluations of the Human Support panel are discussed. The Human Support panel is one of eight panels created by RAND to screen and analyze submissions to the Space Exploration Initiative (SEI) Outreach Program. Submissions to the Human Support panel were in the following areas: radiation protection; microgravity; life support systems; medical care; and human factors (behavior and performance).
2012-07-19
CAPE CANAVERAL, Fla. – This aerial view shows the Shuttle Landing Facility’s air traffic control tower at the Kennedy Space Center in Florida. Just below the tower is the mid-field park site used for runway support vehicles. At the north end of the runway, a rock and crater-filled planetary scape has been built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett
2012-07-19
CAPE CANAVERAL, Fla. – This aerial view shows the launch platform for the Project Morpheus lander at the midfield point of the Shuttle Landing Facility, or SLF, at NASA’s Kennedy Space Center in Florida. At the north end of the runway is a rock and crater-filled planetary scape built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett
2012-07-19
CAPE CANAVERAL, Fla. – This aerial view shows the launch platform for the Project Morpheus lander at the midfield point of the Shuttle Landing Facility, or SLF, at NASA’s Kennedy Space Center in Florida. At the north end of the runway is a rock and crater-filled planetary scape built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett
Power system requirements and concepts for a commercially viable lunar base architecture
NASA Astrophysics Data System (ADS)
Lenard, Roger X.; Binder, Alan B.
1999-01-01
Historically, space exploration has been the province of governments and major agencies within those governmental entities. Recent advances in the state-of-the-art in many subsystem technology areas and the revealed inadequacies of governments to singlehandedly underwrite major exploration ventures present the potential to expand the venue of space exploration to the commercial sector. Further, major international projects such as the International Space Station have revealed weaknesses in both international financing and management of such projects. Cost overruns are the rule and significant schedule slips and/or failures to deliver have resulted in an enormously costly and delayed program. The exorbitant costs have stymied exploration ventures beyond Earth orbit. There are many potential advantages to a commercial operation including cost, schedule and a distinct customer orientation to services. The objective of this paper is to describe the first phase of a phased strawman commercial lunar base concept which operates as a user facility for governmental entities, corporations and companies. The paper will discuss the power system options and conditions under which such a base can be made to become profitable.
NASA Technical Reports Server (NTRS)
Miller, R. H.; Minsky, M. L.; Smith, D. B. S.
1982-01-01
Potential applications of automation, robotics, and machine intelligence systems (ARAMIS) to space activities, and to their related ground support functions are explored. The specific tasks which will be required by future space projects are identified. ARAMIS options which are candidates for those space project tasks and the relative merits of these options are defined and evaluated. Promising applications of ARAMIS and specific areas for further research are identified. The ARAMIS options defined and researched by the study group span the range from fully human to fully machine, including a number of intermediate options (e.g., humans assisted by computers, and various levels of teleoperation). By including this spectrum, the study searches for the optimum mix of humans and machines for space project tasks.
A robotic exploration mission to Mars and Phobos
NASA Technical Reports Server (NTRS)
Kerr, Justin H.; Defosse, Erin; Ho, Quang; Barriga, Ernisto; Davis, Grant; Mccourt, Steve; Smith, Matt
1993-01-01
This report discusses the design of a robotic exploration to Mars and Phobos. It begins with the mission's background and objectives, followed by a detailed explanation of various elements of Project Aeneas, including science, spacecraft, probes, and orbital trajectories. In addition, a description of Argos Space Endeavours, management procedures, and overall project costs are presented. Finally, a list of recommendations for future design activity is included.
NASA Technical Reports Server (NTRS)
Sadin, Stanley R.; Rosen, Robert
1987-01-01
Project Pathfinder is a proposed U.S. Space Research and Technology program intended to enable bold new missions of space exploration. Pathfinder continues the advancement of technological capabilities and extends the foundation established under the Civil Space Technology Initiative, CSTI. By filling critical technological gaps, CSTI enhances access to Earth orbit and supports effective operations and science missions therein. Pathfinder, with a longer-term horizon, looks to a future that builds on Shuttle and Space Station and addresses technologies that support a range of exploration missions including: a return to the Moon to build an outpost; piloted missions to Mars; and continued scientific exploration of Earth and the other planets. The program's objective is to develop, within reasonable time frames, those emerging and innovative technologies that will make possible both new and enhanced missions and system concepts.
Competencies for Information Professionals in Learning Labs and Makerspaces
ERIC Educational Resources Information Center
Koh, Kyungwon; Abbas, June
2015-01-01
An increasing number of libraries and museums provide transformative learning spaces, often called "Learning Labs" and "Makerspaces." These spaces invite users to explore traditional and digital media, interact with mentors and peers, and engage in creative projects. For these spaces and programs to be sustainable, it is…
Project Introduction for SUBSEA: Systematic Underwater Biogeochemical Science and Exploration Analog
NASA Astrophysics Data System (ADS)
Nawotniak, S. E. K.; Lim, D. S. S.; German, C. R.; Shock, E. L.; Huber, J. A.; Breier, J. A.
2018-05-01
NASA SUBSEA studies low T, low P seamounts via integrated volcanology, geochemistry, and microbiology as an analog for Enceladus. Research done in telerobotic space exploration simulation. First cruise is Loihi in August 2018.
Asteroid exploration and utilization
NASA Technical Reports Server (NTRS)
Radovich, Brian M.; Carlson, Alan E.; Date, Medha D.; Duarte, Manny G.; Erian, Neil F.; Gafka, George K.; Kappler, Peter H.; Patano, Scott J.; Perez, Martin; Ponce, Edgar
1992-01-01
The Earth is nearing depletion of its natural resources at a time when human beings are rapidly expanding the frontiers of space. The resources possessed by asteroids have enormous potential for aiding and enhancing human space exploration as well as life on Earth. Project STONER (Systematic Transfer of Near Earth Resources) is based on mining an asteroid and transporting raw materials back to Earth. The asteroid explorer/sample return mission is designed in the context of both scenarios and is the first phase of a long range plan for humans to utilize asteroid resources. Project STONER is divided into two parts: asteroid selection and explorer spacecraft design. The spacecraft design team is responsible for the selection and integration of the subsystems: GNC, communications, automation, propulsion, power, structures, thermal systems, scientific instruments, and mechanisms used on the surface to retrieve and store asteroid regolith. The sample return mission scenario consists of eight primary phases that are critical to the mission.
Orders of Magnitude: A History of NACA and NASA, 1915 - 1980
NASA Technical Reports Server (NTRS)
Anderson, F. W., Jr.
1981-01-01
The history of NACA and NASA from 1915 to 1980 is narrated. The impact of two world wars on aeronautics is reviewed. Research activity before and during World War II is presented. Postwar exploitation of new technologies is summarized. The creation of NASA and a comprehensive space program is discussed. Long range planning for a lunar mission is described. The Gemini project is reviewed. The Apollo project and side effects includng NASA's university and technology transfer programs are presented. Numerous scientific and application satellite projects are reviewed. The impact of budget reductions is explained. The value of space exploration is emphasized. Development of the Space Shuttle is reported.
1994-02-25
This STS-68 patch was designed by artist Sean Collins. Exploration of Earth from space is the focus of the design of the insignia, the second flight of the Space Radar Laboratory (SRL-2). SRL-2 was part of NASA's Mission to Planet Earth (MTPE) project. The world's land masses and oceans dominate the center field, with the Space Shuttle Endeavour circling the globe. The SRL-2 letters span the width and breadth of planet Earth, symbolizing worldwide coverage of the two prime experiments of STS-68: The Shuttle Imaging Radar-C and X-Band Synthetic Aperture Radar (SIR-C/X-SAR) instruments; and the Measurement of Air Pollution from Satellites (MAPS) sensor. The red, blue, and black colors of the insignia represent the three operating wavelengths of SIR-C/X-SAR, and the gold band surrounding the globe symbolizes the atmospheric envelope examined by MAPS. The flags of international partners Germany and Italy are shown opposite Endeavour. The relationship of the Orbiter to Earth highlights the usefulness of human space flights in understanding Earth's environment, and the monitoring of its changing surface and atmosphere. In the words of the crew members, the soaring Orbiter also typifies the excellence of the NASA team in exploring our own world, using the tools which the Space Program developed to explore the other planets in the solar system.
Human Research Program: Space Human Factors and Habitability Element
NASA Technical Reports Server (NTRS)
Russo, Dane M.
2007-01-01
The three project areas of the Space Human Factors and Habitability Element work together to achieve a working and living environment that will keep crews healthy, safe, and productive throughout all missions -- from Earth orbit to Mars expeditions. The Advanced Environmental Health (AEH) Project develops and evaluates advanced habitability systems and establishes requirements and health standards for exploration missions. The Space Human Factors Engineering (SHFE) Project s goal is to ensure a safe and productive environment for humans in space. With missions using new technologies at an ever-increasing rate, it is imperative that these advances enhance crew performance without increasing stress or risk. The ultimate goal of Advanced Food Technology (AFT) Project is to develop and deliver technologies for human centered spacecraft that will support crews on missions to the moon, Mars, and beyond.
A New Heavy-Lift Capability for Space Exploration: NASA's Ares V Cargo Launch Vehicle
NASA Technical Reports Server (NTRS)
Sumrall, John P.
2006-01-01
The National Aeronautics and Space Administration (NASA) is developing new launch systems in preparation for the retirement of the Space Shuttle by 2010, as directed in the United States (U.S.) Vision for Space Exploration. The Ares I Crew Launch Vehicle (CLV) and the Ares V heavy-lift Cargo Launch Vehicle (CaLV) systems will build upon proven, reliable hardware derived from the Apollo Saturn (1961 to 1975) and Space Shuttle (1972 to 2010) programs to deliver safe, reliable, affordable space transportation solutions. This approach leverages existing aerospace talent and a unique infrastructure, as well as the vast amount of legacy knowledge gained from almost a half-century of hard-won experience in the space enterprise. Beginning early next decade, the Ares I will launch the new Crew Exploration Vehicle (CEV) to the International Space Station (ISS) or to low-Earth orbit for trips to the Moon and, ultimately, Mars. Late next decade, the Ares V's Earth Departure Stage will carry larger payloads such as the lunar lander into orbit, and the Crew Exploration Vehicle will dock with it for missions to the Moon, where astronauts will explore new territories and conduct science and technology experiments. Both the Ares I and Ares V systems are being designed to support longer future trips to Mars. The Exploration Launch Projects Office, located at NASA's Marshall Space Flight Center, is designing, developing, testing, and evaluating both launch vehicle systems in partnership with other NASA Centers, Government agencies, and industry contractors. This paper provides top-level information regarding the genesis and evolution of the baseline configuration for the Ares V heavy-lift system. It also touches on risk-based management strategies, such as building on powerful hardware and promoting common features between the Ares I and Ares V systems to reduce technical, schedule, and cost risks, as well as development and operations costs. Finally, it gives a summary of several notable accomplishments over the past year, since the Exploration Launch Projects effort officially kicked off in October 2005, and looks ahead at work planned for 2007 and beyond.
NASA Technical Reports Server (NTRS)
Schlagheck, Ronald A.; Sibille, Laurent; Sacksteder, Kurt; Owens, Chuck
2005-01-01
The NASA Microgravity Science program has transitioned research required in support of NASA s Vision for Space Exploration. Research disciplines including the Materials Science, Fluid Physics and Combustion Science are now being applied toward projects with application in the planetary utilization and transformation of space resources. The scientific and engineering competencies and infrastructure in these traditional fields developed at multiple NASA Centers and by external research partners provide essential capabilities to support the agency s new exploration thrusts including In-Situ Resource Utilization (ISRU). Among the technologies essential to human space exploration, the production of life support consumables, especially oxygen and; radiation shielding; and the harvesting of potentially available water are realistically achieved for long-duration crewed missions only through the use of ISRU. Ongoing research in the physical sciences have produced a body of knowledge relevant to the extraction of oxygen from lunar and planetary regolith and associated reduction of metals and silicon for use meeting manufacturing and repair requirements. Activities being conducted and facilities used in support of various ISRU projects at the Glenn Research Center and Marshall Space Flight Center will be described. The presentation will inform the community of these new research capabilities, opportunities, and challenges to utilize their materials, fluids and combustion science expertise and capabilities to support the vision for space exploration.
The In-Situ Resource Utilization Project Under the New Exploration Enterprise
NASA Technical Reports Server (NTRS)
Larson, William E.; Sanders, Gerald B.
2010-01-01
The In Situ Resource Utilization Project under the Exploration Technology Development Program has been investing in technologies to produce Oxygen from the regolith of the moon for the last few years. Much of this work was demonstrated in a lunar analog field demonstration in February of 2010. This paper will provide an overview of the key technologies demonstrated at the field demonstration will be discussed a long with the changes expected in the ISRU project as a result of the new vision for Space Exploration proposed by the President and enacted by the Congress in the NASA Authorization Act of2010.
Elementary school aerospace activities: A resource for teachers
NASA Technical Reports Server (NTRS)
1977-01-01
The chronological development of the story of man and flight, with emphasis on space flight, is presented in 10 units designed as a resource for elementary school teachers. Future exploration of space and the utlization of space flight capabilities are included. Each unit contains an outline, a list of suggested activities for correlation, a bibliography, and a list of selected audiovisual materials. A glossary of aerospace terms is included. Topics cover: earth characteristics that affect flight; flight in atmosphere, rockets, technological advances, unmanned Earth satellites, umanned exploration of the solar system, life support systems; astronauts, man in space, and projections for the future.
A Process for Comparing Dynamics of Distributed Space Systems Simulations
NASA Technical Reports Server (NTRS)
Cures, Edwin Z.; Jackson, Albert A.; Morris, Jeffery C.
2009-01-01
The paper describes a process that was developed for comparing the primary orbital dynamics behavior between space systems distributed simulations. This process is used to characterize and understand the fundamental fidelities and compatibilities of the modeling of orbital dynamics between spacecraft simulations. This is required for high-latency distributed simulations such as NASA s Integrated Mission Simulation and must be understood when reporting results from simulation executions. This paper presents 10 principal comparison tests along with their rationale and examples of the results. The Integrated Mission Simulation (IMSim) (formerly know as the Distributed Space Exploration Simulation (DSES)) is a NASA research and development project focusing on the technologies and processes that are related to the collaborative simulation of complex space systems involved in the exploration of our solar system. Currently, the NASA centers that are actively participating in the IMSim project are the Ames Research Center, the Jet Propulsion Laboratory (JPL), the Johnson Space Center (JSC), the Kennedy Space Center, the Langley Research Center and the Marshall Space Flight Center. In concept, each center participating in IMSim has its own set of simulation models and environment(s). These simulation tools are used to build the various simulation products that are used for scientific investigation, engineering analysis, system design, training, planning, operations and more. Working individually, these production simulations provide important data to various NASA projects.
Microbiological cleanliness of the Mars Exploration Rover spacecraft
NASA Technical Reports Server (NTRS)
Newlin, L.; Barengoltz, J.; Chung, S.; Kirschner, L.; Koukol, R.; Morales, F.
2002-01-01
Planetary protection for Mars missions is described, and the approach being taken by the Mars Exploration Rover Project is discussed. Specific topics include alcohol wiping, dry heat microbial reduction, microbiological assays, and the Kennedy Space center's PHSF clean room.
Power to Explore: A History of the Marshall Space Flight Center, 1960-1990
NASA Technical Reports Server (NTRS)
Dunar, Andrew J.; Waring, Stephen P.
1999-01-01
This scholarly study of NASA's Marshall Space Flight Center places the institution in social, political, scientific and technological context. It traces the evolution of Marshall, located in Huntsville, Alabama, from its origins as an Army missile development organization to its status in 1990 as one of the most diversified of NASA's field Center. Chapters discuss military rocketry programs in Germany and the United States, Apollo-Saturn, Skylab, Space shuttle, Spacelab, the Space Station, and various scientific and technical projects including the Hubble Space Telescope. It sheds light not only on the history of space technology, science and exploration, but also on the Cold War, federal politics and complex organizations.
Enabling technologies for space exploration systems: The STEPS project results and perspectives
NASA Astrophysics Data System (ADS)
Messidoro, Piero; Perino, Maria Antonietta; Boggiatto, Dario
2013-05-01
The project STEPS (Sistemi e Tecnologie per l'EsPlorazione Spaziale) is a joint development of technologies and systems for Space Exploration supported by Regione Piemonte, the European Regional Development Fund (E.R.D.F.) 2007-2013, Thales Alenia Space Italia (TAS-I), SMEs, Universities and public Research Centres belonging to the network "Comitato Distretto Aerospaziale del Piemonte" the Piedmont Aerospace District (PAD) in Italy. The project first part terminated in May 2012 with a final demonstration event that summarizes the technological results of research activities carried-out during a period the three years and half. The project developed virtual and hardware demonstrators for a range of technologies for the descent, soft landing and surface mobility of robotic and manned equipment for Moon and Mars exploration. The two key hardware demonstrators—a Mars Lander and a Lunar Rover—fit in a context of international cooperation for the exploration of Moon and Mars, as envisaged by Space Agencies worldwide. The STEPS project included also the development and utilization of a system of laboratories equipped for technology validation, teleoperations, concurrent design environments, and virtual reality simulation of the Exploration Systems in typical Moon and Mars environments. This paper presents the reached results in several technology domains like: vision-based GNC for the last portion of Mars Entry, Descent and Landing sequence, Hazard avoidance and complete spacecraft autonomy; Autonomous Rover Navigation, based on the determination of the terrain morphology by a stereo camera; Mobility and Mechanisms providing an Integrated Ground Mobility System, Rendezvous and Docking equipment, and protection from Environment effects; innovative Structures such as Inflatable, Smart and Multifunction Structures, an Active Shock Absorber for safe landing, balance restoring and walking; Composite materials Modelling and Monitoring; Human-machine interface features of a predictive Command and Control System; Energy Management systems based on Regenerative Fuel Cells; aerothermodynamic solutions for Atmospheric Re-entry of Commercial Transportation Systems; novel Design and Development Tools, such as a Rover S/W simulator and prototypes of the DEM viewer and of a S/W Rock Creator/visualizator. The paper also provides perspectives on the proposed STEPS 2 project that will likely continue the development of a subset of the above technologies in view of their possible in-flight validation within next five years.
Strategic Research Directions In Microgravity Materials Science
NASA Technical Reports Server (NTRS)
Clinton, Raymond G., Jr.; Wargo, Michael J.; Marzwell, Neville L.; Sanders, Gerald; Schlagheck, Ron; Semmes, Ed; Bassler, Julie; Cook, Beth
2004-01-01
The Office of Biological and Physical Research (OBPR) is moving aggressively to align programs, projects, and products with the vision for space exploration. Research in advanced materials is a critical element in meeting exploration goals. Research in low gravity materials science in OBPR is being focused on top priority needs in support of exploration: 1) Space Radiation Shielding; 2) In Situ Resource Utilization; 3) In Situ Fabrication and Repair; 4) Materials Science for Spacecraft and Propulsion Systems; 5) Materials Science for Advanced Life Support Systems. Roles and responsibilities in low gravity materials research for exploration between OBPR and the Office of Exploration Systems are evolving.
Engineering Innovations for Exploration Challenges
NASA Technical Reports Server (NTRS)
Dumbacher, Daniel L.
2010-01-01
This slide presentation reviews some of the engineering innovations requirements for the challenges of space exploration which NASA has and will be involved in. It reviews some significant successes in space transportation, exploration and science accomplished during 2009, and it reviews some of the places that are available for exploration in the near term and the specific missions that NASA has assigned to Marshall. It also reviews the project lifecycle management model, that is designed to reduce undefined, but known, risks. It also demonstrates the sustainable long-term program of block upgrades that contribute to long-term success of programs.
NASA Technical Reports Server (NTRS)
1959-01-01
The purpose of this staff study, made at the request of the chairman, is to serve members of the Committee on Aeronautical and Space Sciences as a source of basic information on Project Mercury, the man-in-space program of the National Aeronautics and Space Administration. The study is largely derived from unclassified information released by the National Aeronautics and Space Administration and testimony concerning Project Mercury given during hearings before this committee. The program descriptions are based upon current program planning. Since this is a highly advanced research and development program, the project is obviously subject to changes that may result from future developments and accomplishments characteristic of such research activities. Certain information with respect to revised schedules, obtained on a classified basis by the committee during inspection trips, is necessarily omitted. The appendixes to the study include information that may prove helpful on various aspects of space flight and exploration. Included are unofficial comments and observations relating to Russia's manned space flight activities and also a complete chronology of all satellites, lunar probes, and space probes up to the present.
2006-07-14
A model of the new Aries I crew launch vehicle, for which NASA is designing, testing and evaluating hardware and related systems, is seen here on display at the Marshall Space Fight Center (MSFC), in Huntsville, Alabama. The Ares I crew launch vehicle is the rocket that will carry a new generation of space explorers into orbit. Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA’s Constellation Program. These transportation systems will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is led by the Exploration Launch Projects Office at NASA’s MFSC. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module and a launch abort system. The launch vehicle’s first stage is a single, five-segment reusable solid rocket booster derived from the Space Shuttle Program’s reusable solid rocket motor that burns a specially formulated and shaped solid propellant called polybutadiene acrylonitrile (PBAN). The second or upper stage will be propelled by a J-2X main engine fueled with liquid oxygen and liquid hydrogen. In addition to its primary mission of carrying crews of four to six astronauts to Earth orbit, the launch vehicle’s 25-ton payload capacity might be used for delivering cargo to space, bringing resources and supplies to the International Space Station or dropping payloads off in orbit for retrieval and transport to exploration teams on the moon. Crew transportation to the space station is planned to begin no later than 2014. The first lunar excursion is scheduled for the 2020 timeframe.
NASA Space Flight Program and Project Management Handbook
NASA Technical Reports Server (NTRS)
Blythe, Michael P.; Saunders, Mark P.; Pye, David B.; Voss, Linda D.; Moreland, Robert J.; Symons, Kathleen E.; Bromley, Linda K.
2014-01-01
This handbook is a companion to NPR 7120.5E, NASA Space Flight Program and Project Management Requirements and supports the implementation of the requirements by which NASA formulates and implements space flight programs and projects. Its focus is on what the program or project manager needs to know to accomplish the mission, but it also contains guidance that enhances the understanding of the high-level procedural requirements. (See Appendix C for NPR 7120.5E requirements with rationale.) As such, it starts with the same basic concepts but provides context, rationale, guidance, and a greater depth of detail for the fundamental principles of program and project management. This handbook also explores some of the nuances and implications of applying the procedural requirements, for example, how the Agency Baseline Commitment agreement evolves over time as a program or project moves through its life cycle.
Overview of NASA Cryocooler Programs
NASA Technical Reports Server (NTRS)
Boyle, R. F.; Ross, R. G., Jr.; Krebs, Carolyn A. (Technical Monitor)
2001-01-01
Mechanical cryocoolers represent a significant enabling technology for NASA's Earth and Space Science Enterprises, as well as augmenting existing capabilities in space exploration. An over-view is presented of on-going efforts at the Goddard Space Flight Center and the Jet Propulsion Laboratory in support of current flight projects, near-term flight instruments, and long-term technology development.
JSC director's discretionary fund program
NASA Technical Reports Server (NTRS)
1991-01-01
The Johnson Space Center Director's Discretionary Fund Program Annual Report provides a brief review of the status of projects undertaken during the 1990 fiscal year. Three space exploration initiative related issues were focused on: regenerative life support, human spacecraft design, and lunar surface habitat. A viable program of life sciences, space sciences, and engineering research has been maintained.
NASA Technical Reports Server (NTRS)
Magnaye, Romulo; Tan, Weiping; Ramirez-Marquez, Jose; Sauser, Bruce
2010-01-01
The Exploration Systems Mission Directorate of the National Aeronautics and Space Administration (NASA) is currently pursuing the development of the next generation of human spacecraft and exploration systems throughout the Constellation Program. This includes, among others, habitation technologies for supporting lunar and Mars exploration. The key to these systems is the Exploration Life Support (ELS) system that composes several technology development projects related to atmosphere revitalization, water recovery, waste management and habitation. The proper functioning of these technologies is meant to produce sufficient and balanced resources of water, air, and food to maintain a safe and comfortable environment for long-term human habitation and exploration of space.
NASA Technical Reports Server (NTRS)
Barta, Daniel J.
2012-01-01
Next Generation Life Support (NGLS) is one of several technology development projects sponsored by the National Aeronautics and Space Administration s Game Changing Development Program. NGLS is developing life support technologies (including water recovery, and space suit life support technologies) needed for humans to live and work productively in space. NGLS has three project tasks: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, and Alternative Water Processing. The selected technologies within each of these areas are focused on increasing affordability, reliability, and vehicle self sufficiency while decreasing mass and enabling long duration exploration. The RCA and VOR tasks are directed at key technology needs for the Portable Life Support System (PLSS) for an Exploration Extravehicular Mobility Unit (EMU), with focus on prototyping and integrated testing. The focus of the Rapid Cycle Amine (RCA) swing-bed ventilation task is to provide integrated carbon dioxide removal and humidity control that can be regenerated in real time during an EVA. The Variable Oxygen Regulator technology will significantly increase the number of pressure settings available to the space suit. Current spacesuit pressure regulators are limited to only two settings while the adjustability of the advanced regulator will be nearly continuous. The Alternative Water Processor efforts will result in the development of a system capable of recycling wastewater from sources expected in future exploration missions, including hygiene and laundry water, based on natural biological processes and membrane-based post treatment. The technologies will support a capability-driven architecture for extending human presence beyond low Earth orbit to potential destinations such as the Moon, near Earth asteroids and Mars.
Exploration Laboratory Analysis
NASA Technical Reports Server (NTRS)
Krihak, M.; Ronzano, K.; Shaw, T.
2016-01-01
The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability (ExMC) risk to minimize or reduce the risk of adverse health outcomes and decrements in performance due to in-flight medical capabilities on human exploration missions. To mitigate this risk, the availability of inflight laboratory analysis instrumentation has been identified as an essential capability for manned exploration missions. Since a single, compact space-ready laboratory analysis capability to perform all exploration clinical measurements is not commercially available, the ELA project objective is to demonstrate the feasibility of emerging operational and analytical capability as a biomedical diagnostics precursor to long duration manned exploration missions. The initial step towards ground and flight demonstrations in fiscal year (FY) 2015 was the down selection of platform technologies for demonstrations in the space environment. The technologies selected included two Small Business Innovation Research (SBIR) performers: DNA Medicine Institutes rHEALTH X and Intelligent Optical Systems later flow assays combined with Holomics smartphone analyzer. The selection of these technologies were based on their compact size, breadth of analytical capability and favorable ability to process fluids in a space environment, among several factors. These two technologies will be advanced to meet ground and flight demonstration success criteria and requirements that will be finalized in FY16. Also, the down selected performers will continue the technology development phase towards meeting prototype deliverables in either late 2016 or 2017.
Exploration Laboratory Analysis
NASA Technical Reports Server (NTRS)
Krihak, M.; Ronzano, K.; Shaw, T.
2016-01-01
The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability (ExMC) risk to minimize or reduce the risk of adverse health outcomes and decrements in performance due to in-flight medical capabilities on human exploration missions. To mitigate this risk, the availability of inflight laboratory analysis instrumentation has been identified as an essential capability for manned exploration missions. Since a single, compact space-ready laboratory analysis capability to perform all exploration clinical measurements is not commercially available, the ELA project objective is to demonstrate the feasibility of emerging operational and analytical capability as a biomedical diagnostics precursor to long duration manned exploration missions. The initial step towards ground and flight demonstrations in fiscal year (FY) 2015 was the downselection of platform technologies for demonstrations in the space environment. The technologies selected included two Small Business Innovation Research (SBIR) performers: DNA Medicine Institute's rHEALTH X and Intelligent Optical System's lateral flow assays combined with Holomic's smartphone analyzer. The selection of these technologies were based on their compact size, breadth of analytical capability and favorable ability to process fluids in a space environment, among several factors. These two technologies will be advanced to meet ground and flight demonstration success criteria and requirements. The technology demonstrations and metrics for success will be finalized in FY16. Also, the downselected performers will continue the technology development phase towards meeting prototype deliverables in either late 2016 or 2017.
NASA Astrophysics Data System (ADS)
Ng, C.; Thompson, B. J.; Cline, T.; Lewis, E.; Barbier, B.; Odenwald, S.; Spadaccini, J.; James, N.; Stephenson, B.; Davis, H. B.; Major, E. R.; Space Weather Living History
2011-12-01
The Space Weather Living History program will explore and share the breakthrough new science and captivating stories of space environments and space weather by interviewing space physics pioneers and leaders active from the International Geophysical Year (IGY) to the present. Our multi-mission project will capture, document and preserve the living history of space weather utilizing original historical materials (primary sources). The resulting products will allow us to tell the stories of those involved in interactive new media to address important STEM needs, inspire the next generation of explorers, and feature women as role models. The project is divided into several stages, and the first stage, which began in mid-2011, focuses on resource gathering. The goal is to capture not just anecdotes, but the careful analogies and insights of researchers and historians associated with the programs and events. The Space Weather Living History Program has a Scientific Advisory Board, and with the Board's input our team will determine the chronology, key researchers, events, missions and discoveries for interviews. Education activities will be designed to utilize autobiographies, newspapers, interviews, research reports, journal articles, conference proceedings, dissertations, websites, diaries, letters, and artworks. With the help of a multimedia firm, we will use some of these materials to develop an interactive timeline on the web, and as a downloadable application in a kiosk and on tablet computers. In summary, our project augments the existing historical records with education technologies, connect the pioneers, current leaders and the nature and history of space weather with K-12 classrooms and the general public, covering all areas of studies in Heliophysics. The project is supported by NASA award NNX11AJ61G.
Uncertainties in Projecting Risks of Late Effects from Space Radiation
NASA Astrophysics Data System (ADS)
Cucinotta, F.; Schimmerling, W.; Peterson, L.; Wilson, J.; Saganti, P.; Dicello, J.
The health risks faced by astronauts from space radiation include cancer, cataracts, hereditary effects, CNS risks, and non - cancer morbidity and mortality risks related to the diseases of the old age. Methods used to project risks in low -Earth orbit are of questionable merit for exploration missions because of the limited radiobiology data and knowledge of galactic cosmic ray (GCR) heavy ions, which causes estimates of the risk of late effects to be highly uncertain. Risk projections involve a product of many biological and physical factors, each of which has a differential range of uncertainty due to lack of data and knowledge. Within the linear-additivity model, we use Monte-Carlo sampling from subjective uncertainty distributions in each factor to obtain a maximum likelihood estimate of the overall uncertainty in risk projections. The resulting methodology is applied to several human space exploration mission scenarios including ISS, lunar station, deep space outpost, and Mar's missions of duration of 360, 660, and 1000 days. The major results are the quantification of the uncertainties in current risk estimates, the identification of the primary factors that dominate risk projection uncertainties, and the development of a method to quantify candidate approaches to reduce uncertainties or mitigate risks. The large uncertainties in GCR risk projections lead to probability distributions of risk that mask any potential risk reduction using the "optimization" of shielding materials or configurations. In contrast, the design of shielding optimization approaches for solar particle events and trapped protons can be made at this time, and promising technologies can be shown to have merit using our approach. The methods used also make it possible to express risk management objectives in terms of quantitative objectives, i.e., number of days in space without exceeding a given risk level within well defined confidence limits
NASA Astrophysics Data System (ADS)
Preston, L. J.; Barber, S. J.; Grady, M. M.
2012-03-01
The Concepts for Activities in the Field for Exploration (CAFE) project is creating a complete catalogue of terrestrial analogue environments that are appropriate for testing human space exploration-related scientific field activities.
Competition Underway at NASA 2017 Robotic Mining Competition
2017-05-24
NASA’s Eighth Annual Robotic Mining Competition (RMC) began its first of three days of actual competition at Kennedy Space Center in Florida. Forty-five teams of college undergraduate and graduate students – and their uniquely-designed and built mining robots – race against the clock to collect and move the most simulated Martian soil. Students also are judged on how they use their robots to inspire their community about science, technology, engineering and math (STEM). Competition continues through Friday. Managed by, and held annually at Kennedy Space Center, RMC is a NASA Human Exploration and Operations Mission Directorate project designed to engage and retain students in STEM fields by expanding opportunities for student research and design. The project provides a competitive environment to foster innovative ideas and solutions with potential use on NASA’s deep space exploration missions, including to Mars.
Pathways to space: A mission to foster the next generation of scientists and engineers
NASA Astrophysics Data System (ADS)
Dougherty, Kerrie; Oliver, Carol; Fergusson, Jennifer
2014-06-01
The first education project funded under the Australian Government's Australian Space Research Program (ASRP), Pathways to Space was a unique project combining education, science communication research and research in astrobiology and robotics. It drew upon the challenges of space exploration to inspire students to consider study and careers in science and engineering. A multi-faceted program, Pathways to Space provided hands-on opportunities for high school and university students to participate in realistic simulations of a robotic Mars exploration mission for astrobiology. Its development was a collaboration between the Australian Centre for Astrobiology (University of New South Wales), the Australian Centre for Field Robotics (University of Sydney), the Powerhouse Museum and industry partner, Cisco. Focused on students in Years 9-10 (15-16 years of age), this program provided them with the opportunity to engage directly with space engineers and astrobiologists, while carrying out a simulated Mars mission using the digital learning facilities available at the Powerhouse Museum. As a part of their program, the students operated robotic mini-rovers in the Powerhouse Museum's “Mars Yard”, a highly accurate simulation of the Martian surface, where university students also carry out the development and testing of experimental Mars roving vehicles. This aspect of the program has brought real science and engineering research into the public space of the museum. As they undertook the education program, the students participated in a research study aimed at understanding the effectiveness of the project in achieving its key objective - encouraging students to consider space related courses and careers. This paper outlines the development and operation of the Pathways to Space project over its 3-year funding period, during which it met and exceeded all the requirements of its ASRP grant. It will look at the goals of the project, the rationale behind the education and science communications research, the challenges of developing such a multi-faceted education project in collaboration with several partners and the results that have already been achieved within the study.
Developments in Radiation-Hardened Electronics Applicable to the Vision for Space Exploration
NASA Technical Reports Server (NTRS)
Keys, Andrew S.; Frazier, Donald O.; Patrick , Marshall C.; Watson, Michael D.; Johnson, Michael A.; Cressler, John D.; Kolawa, Elizabeth A.
2007-01-01
The Radiation Hardened Electronics for Space Exploration (RHESE) project develops the advanced technologies required to produce radiation hardened electronics, processors, and devices in support of the anticipated requirements of NASA's Constellation program. Methods of protecting and hardening electronics against the encountered space environment are discussed. Critical stages of a spaceflight mission that are vulnerable to radiation-induced interruptions or failures are identified. Solutions to mitigating the risk of radiation events are proposed through the infusion of RHESE technology products and deliverables into the Constellation program's spacecraft designs.
Heavy Ion Carcinogenesis and Human Space Exploration
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Durante, Marco
2008-01-01
Prior to the human exploration of Mars or long duration stays on the Earth s moon, the risk of cancer and other diseases from space radiation must be accurately estimated and mitigated. Space radiation, comprised of energetic protons and heavy nuclei, has been show to produce distinct biological damage compared to radiation on Earth, leading to large uncertainties in the projection of cancer and other health risks, while obscuring evaluation of the effectiveness of possible countermeasures. Here, we describe how research in cancer radiobiology can support human missions to Mars and other planets.
Energy Storage: Batteries and Fuel Cells for Exploration
NASA Technical Reports Server (NTRS)
Manzo, Michelle A.; Miller, Thomas B.; Hoberecht, Mark A.; Baumann, Eric D.
2007-01-01
NASA's Vision for Exploration requires safe, human-rated, energy storage technologies with high energy density, high specific energy and the ability to perform in a variety of unique environments. The Exploration Technology Development Program is currently supporting the development of battery and fuel cell systems that address these critical technology areas. Specific technology efforts that advance these systems and optimize their operation in various space environments are addressed in this overview of the Energy Storage Technology Development Project. These technologies will support a new generation of more affordable, more reliable, and more effective space systems.
2004-05-13
KENNEDY SPACE CENTER, FLA. -- Adm. Craig E. Steidle (center), NASA’s associate administrator, Office of Exploration Systems, tours the Orbiter Processing Facility on a visit to KSC. At right (hands up) is Conrad Nagel, chief of the Shuttle Project Office. They are standing under the orbiter Discovery. The Office of Exploration Systems was established to set priorities and direct the identification, development and validation of exploration systems and related technologies to support the future space vision for America. Steidle’s visit included a tour of KSC to review the facilities and capabilities to be used to support the vision.
Powering Exploration: The Ares I Crew Launch Vehicle and Ares V Cargo Launch Vehicle
NASA Technical Reports Server (NTRS)
Cook, Stephen A.
2008-01-01
The National Aeronautics and Space Administration (NASA)'s Constellation Program is depending on the Ares Projects to deliver the crew and cargo launch capabilities needed to send human explorers to the Moon and beyond. The Ares Projects continue to make progress toward design, component testing, and early flight testing of the Ares I crew launch vehicle, as well as early design work for Ares V cargo launch vehicle. Ares I and Ares V will form the core space launch capabilities the United States needs to continue its pioneering tradition as a spacefaring nation. This paper will discuss programmatic, design, fabrication, and testing progress toward building these new launch vehicles.
Project Explorer's unique experiments: Get Away Special #007
NASA Technical Reports Server (NTRS)
Henderson, A. J., Jr.
1986-01-01
The Project Explorer payload represents the first attempt at broadcasting digitized voice signals via a Space Shuttle flight on amateur radio frequencies. These amateur ham-radio frequencies will be transmitting real time data while the experiments are operating. Experiments 1, 2, and 3 represent the work of students ranging from materials processing to the science of biology. Experiment 1 will study the solidification of two hypereutectic alloys, lead-antimony and aluminum-copper. Experiment 2 will investigate the examination and growth of radish seeds in space. Experiment 3 will examine the electrochemical growth process of potassium tetrocyonoplatinate hydrate crystals and Experiment 4 involves amateur radio transmissions, monitoring and support of the entire Get Away Special (GAS) 007 payload.
New luster for space robots and automation
NASA Technical Reports Server (NTRS)
Heer, E.
1978-01-01
Consideration is given to the potential role of robotics and automation in space transportation systems. Automation development requirements are defined for projects in space exploration, global services, space utilization, and space transport. In each category the potential automation of ground operations, on-board spacecraft operations, and in-space handling is noted. The major developments of space robot technology are noted for the 1967-1978 period. Economic aspects of ground-operation, ground command, and mission operations are noted.
Managing the Right Projects: Best Practices to Align Project and Corporate Strategies
NASA Technical Reports Server (NTRS)
Watkins, Bobby
2012-01-01
If there's a human endeavor that exemplifies teamwork, it is space exploration. And that teamwork absolutely cannot happen effectively if the boots on the ground the people doing the work - don't understand how their work aligns with the larger goal. This presentation will discuss some best management practices from NASA's Marshall Space Flight Center that have succeeded in helping employees become informed, engaged and committed to the space agency's important missions. Specific topics include: Alignment Criteria: Linking Projects To Corporate Strategy. Resource Management: Best Practices For Resource Management. Strategic Analysis: Supporting Decision Making In A Changing Environment. Communication Strategies: Best Practices To Communicate Change. Benefits Achieved And Lessons Learned.
Science on the International Space Station: Stepping Stones for Exploration
NASA Technical Reports Server (NTRS)
Robinson, Julie A.
2007-01-01
This viewgraph presentation reviews the state of science research on the International Space Station (ISS). The shuttle and other missions that have delivered science research facilities to the ISS are shown. The different research facilities provided by both NASA and partner organizations available for use and future facilities are reviewed. The science that has been already completed is discussed. The research facilitates the Vision for Space Exploration, in Human Life Sciences, Biological Sciences, Materials Science, Fluids Science, Combustion Science, and all other sciences. The ISS Focus for NASA involves: Astronaut health and countermeasure, development to protect crews from the space environment during long duration voyages, Testing research and technology developments for future exploration missions, Developing and validating operational procedures for long-duration space missions. The ISS Medical Project (ISSMP) address both space systems and human systems. ISSMP has been developed to maximize the utilization of ISS to obtain solutions to the human health and performance problems and the associated mission risks of exploration class missions. Including complete programmatic review with medical operations (space medicine/flight surgeons) to identify: (1) evidence base on risks (2) gap analysis.
NASA Technical Reports Server (NTRS)
Schmerling, E. R.
1975-01-01
The Space Shuttle will open a new era in the exploration of earth's near-space environment, where the weight and power capabilities of Spacelab and the ability to use man in real time add important new features. The Atmospheric, Magnetospheric, and Plasmas-in-Space project (AMPS) is conceived of as a facility where flexible core instruments can be flown repeatedly to perform different observations and experiments. The twin thrusts of remote sensing of the atmosphere below 120 km and active experiments on the space plasma are the major themes. They have broader implications in increasing our understanding of plasma physics and of energy conversion processes elsewhere in the universe.
NASA Technical Reports Server (NTRS)
Davis, Jeffrey R.
2012-01-01
In May of 2007, The Space Life Sciences Strategy was published, launching a series of efforts aimed at driving human health and performance innovations that both meet space flight needs and benefit life on Earth. These efforts, led by the Space Life Science Directorate (SLSD) at the NASA Johnson Space Center, led to the development and implementation of the NASA Human Health and Performance Center (NHHPC) in October 2010. The NHHPC now has over 100 members including seven NASA centers; other federal agencies; some of the International Space Station partners; industry; academia and non-profits. The NHHPC seeks to share best practices, develop collaborative projects and experiment with open collaboration techniques such as crowdsourcing. Using this approach, the NHHPC collaborative projects are anticipated to be at the earliest possible stage of development utilizing the many possible public-private partnerships in this center. Two workshops have been successfully conducted in 2011 (January and October) with a third workshop planned for the spring of 2012. The challenges of space flight are similar in many respects to providing health care and environmental monitoring in challenging settings on the earth. These challenges to technology development include the need for low power consumption, low weight, in-situ analysis, operator independence (i.e., minimal training), robustness, and limited resupply or maintenance. When similar technology challenges are identified (such as the need to provide and monitor a safe water supply or develop a portable medical diagnostic device for remote use), opportunities arise for public-private partnerships to engage in co-creation of novel approaches for space exploration and health and environmental applications on earth. This approach can enable the use of shared resources to reduce costs, engage other organizations and the public in participatory exploration (solving real-world problems), and provide technologies with multiple uses for space exploration and life on earth. Several examples will be provided that demonstrate the application of a technology to solve a space exploration need and to provide a positive impact to the quality of life on earth.
2012-07-19
CAPE CANAVERAL, Fla. – This aerial view shows a 50,000-square-foot hangar located on the Shuttle Landing Facility at the Kennedy Space Center, Fla., providing shelter and storage for NASA and non-NASA aircraft and maintenance operations. Adjacent to the hangar is an operations building housing personnel who support operations at the 15,000-foot long concrete runway. At the north end of the runway, a rock and crater-filled planetary scape has been built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett
An Experiential Career Exploration Program in Science and Technology.
ERIC Educational Resources Information Center
Burkhalter, Bettye B.; And Others
1983-01-01
Describes the Experimental Career Exploration Program whose goal was to introduce students with no experience with technology to careers in aerospace science and technology at the Alabama Space and Rocket Center. The project involved cooperation from education, industry, and government. (JOW)
Changing the Face of Astronomy Through Authentic Research Experiences
NASA Astrophysics Data System (ADS)
Coble, K. A.; Bell, K'Maja; Jafri, J.; Lyon, G.; Hammergren, M.
2012-05-01
Project Exploration is a Chicago-based science outreach organization that works to ensure communities traditionally overlooked by science, particularly minority youth and girls, have access to personalized experiences with science and scientists. 85% of students participating in Project Exploration come from low-income families, primarily African-American and Latino, and 74% are girls. We particularly target students who may not be academically successful. The results of a recent 10-year retrospective study demonstrate that Project Exploration students are significantly more likely than their peers to graduate from high school (95%), go to college (50%), and major in science (60%); and they attribute their persistence in science and education to their Project Exploration experience. Furthermore, Project Exploration works with the scientists involved (including graduate students and post-docs) to help them understand what it means to do effective educational outreach and how to put the interests of the youth at the center of outreach work. In this poster, we describe the details of the Project Exploration model, as well as several projects in astronomy that our students and scientists have carried out. KB and KC are supported by NASA ROSES E/PO Grant #NNX1OAC89G. KC is also supported by the Illinois Space Grant Consortium.
Challenging Technology, and Technology Infusion into 21st Century
NASA Technical Reports Server (NTRS)
Chau, S. N.; Hunter, D. J.
2001-01-01
In preparing for the space exploration challenges of the next century, the National Aeronautics and Space Administration (NASA) Center for Integrated Space Micro-Systems (CISM) is chartered to develop advanced spacecraft systems that can be adapted for a large spectrum of future space missions. Enabling this task are revolutions in the miniaturization of electrical, mechanical, and computational functions. On the other hand, these revolutionary technologies usually have much lower readiness levels than those required by flight projects. The mission of the Advanced Micro Spacecraft (AMS) task in CISM is to bridge the readiness gap between advanced technologies and flight projects. Additional information is contained in the original extended abstract.
Haughton-Mars Project (HMP)/NASA 2006 Lunar Medical Contingency Simulation: An Overview
NASA Technical Reports Server (NTRS)
Scheuring, R. A.; Jones, J. A.; Lee, P.; Comtois, J. M.; Chappell, S.; Rafiq, A.; Braham, S.; Hodgson, E.; Sullivan, P.; Wilkinson, N.
2006-01-01
Medical requirements are currently being developed for NASA's space exploration program. Lunar surface operations for crews returning to the moon will be performed on a daily basis to conduct scientific research and construct a lunar habitat. Inherent to aggressive surface activities is the potential risk of injury to crew members. To develop an evidence-base for handling medical contingencies on the lunar surface, a simulation project was conducted using the moon-Mars analog environment at Devon Island, Nunavut, high Canadian Arctic. A review of the Apollo lunar surface activities and personal communications with Apollo lunar crew members provided a knowledge base of plausible scenarios that could potentially injure an astronaut during a lunar extravehicular activity. Objectives were established to 1) demonstrate stabilization, field extraction and transfer an injured crew member to the habitat and 2) evaluate audio, visual and biomedical communication capabilities with ground controllers at multiple mission control centers. The simulation project s objectives were achieved. Among these objectives were 1) extracting a crew member from a sloped terrain by a two-member team in a 1-g analog environment, 2) establishing real-time communication to multiple space centers, 3) providing biomedical data to flight controllers and crew members, and 4) establishing a medical diagnosis and treatment plan from a remote site. The simulation project provided evidence for the types of equipment and methods needed for planetary space exploration. During the project, the crew members were confronted with a number of unexpected scenarios including environmental, communications, EVA suit, and navigation challenges. These trials provided insight into the challenges of carrying out a medical contingency in an austere environment. The knowledge gained from completing the objectives of this project will be incorporated into the exploration medical requirements involving an incapacited astronaut on the lunar surface.
The use of virtual reality to reimagine two-dimensional representations of three-dimensional spaces
NASA Astrophysics Data System (ADS)
Fath, Elaine
2015-03-01
A familiar realm in the world of two-dimensional art is the craft of taking a flat canvas and creating, through color, size, and perspective, the illusion of a three-dimensional space. Using well-explored tricks of logic and sight, impossible landscapes such as those by surrealists de Chirico or Salvador Dalí seem to be windows into new and incredible spaces which appear to be simultaneously feasible and utterly nonsensical. As real-time 3D imaging becomes increasingly prevalent as an artistic medium, this process takes on an additional layer of depth: no longer is two-dimensional space restricted to strategies of light, color, line and geometry to create the impression of a three-dimensional space. A digital interactive environment is a space laid out in three dimensions, allowing the user to explore impossible environments in a way that feels very real. In this project, surrealist two-dimensional art was researched and reimagined: what would stepping into a de Chirico or a Magritte look and feel like, if the depth and distance created by light and geometry were not simply single-perspective illusions, but fully formed and explorable spaces? 3D environment-building software is allowing us to step into these impossible spaces in ways that 2D representations leave us yearning for. This art project explores what we gain--and what gets left behind--when these impossible spaces become doors, rather than windows. Using sketching, Maya 3D rendering software, and the Unity Engine, surrealist art was reimagined as a fully navigable real-time digital environment. The surrealist movement and its key artists were researched for their use of color, geometry, texture, and space and how these elements contributed to their work as a whole, which often conveys feelings of unexpectedness or uneasiness. The end goal was to preserve these feelings while allowing the viewer to actively engage with the space.
1984-04-24
The official mission insignia for the 41-D Space Shuttle flight features the Discovery - NASA's third orbital vehicle - as it makes its maiden voyage. The ghost ship represents the orbiter's namesakes which have figured prominently in the history of exploration. The Space Shuttle Discovery heads for new horizons to extend that proud tradition. Surnames for the crewmembers of NASA's eleventh Space Shuttle mission encircle the red, white, and blue scene.
Delay/Disruption Tolerant Networks for Human Space Flight Video Project
NASA Technical Reports Server (NTRS)
Fink, Patrick W.; Ngo, Phong; Schlesinger, Adam
2010-01-01
The movie describes collaboration between NASA and Vint Cerf on the development of Disruption Tolerant Networks (DTN) for use in space exploration. Current evaluation efforts at Johnson Space Center are focused on the use of DTNs in space communications. Tests include the ability of rovers to store data for later display, tracking local and remote habitat inventory using radio-frequency identification tags, and merging networks.
Multicultural Ground Teams in Space Programs
NASA Astrophysics Data System (ADS)
Maier, M.
2012-01-01
In the early years of space flight only two countries had access to space. In the last twenty years, there have been major changes in how we conduct space business. With the fall of the iron curtain and the growing of the European Union, more and more players were able to join the space business and space science. By end of the last century, numerous countries, agencies and companies earned the right to be equal partners in space projects. This paper investigates the impact of multicultural teams in the space arena. Fortunately, in manned spaceflight, especially for long duration missions, there are several studies and simulations reporting on multicultural team impact. These data have not been as well explored on the team interactions within the ground crews. The focus of this paper are the teams working on the ISS project. Hypotheses will be drawn from the results of space crew research to determine parallels and differences for this vital segment of success in space missions. The key source of the data will be drawn from structured interviews with managers and other ground crews on the ISS project.
NASA Astrophysics Data System (ADS)
Howard Myers died in September 2000, at age 72. He had been a member (Planetology) since 1971.Richard E. Ewing has been elected to the Board of Directors for the National Space Biomedical Research Institute, a consortium of research institutions that focuses on research for human exploration of space. Projects concentrate on space health issues such as bone loss, sleep disturbances, nutrition, and radiation exposure.
NASA Astrophysics Data System (ADS)
Chiarini, Paola
2013-11-01
Technological infrastructures in space and on ground provide services on which modern society and economies rely. Space weather related research is funded under the 7th Framework Programme for Research and Innovation (FP7) of the European Union in response to the need of protecting such critical infrastructures from the damage which could be caused by extreme space weather events. The calls for proposals published under the topic "Security of space assets from space weather events" of the FP7 Space Theme aimed to improve forecasts and predictions of disruptive space weather events as well as identify best practices to limit the impacts on space- and ground-based infrastructures and their data provision. Space weather related work was also funded under the topic "Exploitation of space science and exploration data", which aims to add value to space missions and Earth-based observations by contributing to the effective scientific exploitation of collected data. Since 2007 a total of 20 collaborative projects have been funded, covering a variety of physical phenomena associated with space weather, from ionospheric disturbances and scintillation, to geomagnetically induced currents at Earth's surface, to coronal mass ejections and solar energetic particles. This article provides an overview of the funded projects, touching upon some results and referring to specific websites for a more exhaustive description of the projects' outcomes.
NASDA'S activities and roles in promoting satellite utilization experiments
NASA Astrophysics Data System (ADS)
Shigeta, Tsutomu; Miyoshi, Takashi
2004-02-01
While NASDA has been engaged in the development of new satellite missions and the bus technologies, NASDA explores new and attractive applications by promoting the utilization of satellite missions and strengthening the relationships with external parties. Offering opportunities to external parties for conducting application experiments will bring great chances for them in challenging and experimenting new space-based applications. Consequently, it is expected that the outcomes of the space development are returned to general public, research institutes, industries, and that ideas or requirements for new satellite mission could emerge and be materialized. With these objectives in mind, NASDA is presently planning a new space project that is named "i-Space". The i-Space project aims to contribute to the progressing "IT Revolution" by providing new space communication capabilities and to develop practical applications by collaborating with external parties. This paper introduces the activities and roles of NASDA in promoting satellite utilization experiments, particularly focusing on the i-Space project.
NASA Astrophysics Data System (ADS)
Sushkevich, T. A.
2017-11-01
60 years ago, on 4 October 1957, the USSR successfully launched into space the FIRST SPUTNIK (artificial Earth satellite). From this date begins the countdown of the space age. Information and mathematical software is an integral component of any space project. Discusses the history and future of space exploration and the role of mathematics and computers. For illustration, presents a large list of publications. It is important to pay attention to the role of mathematics and computer science in space projects and research, remote sensing problems, the evolution of the Earth's environment and climate, where the theory of radiation transfer plays a key role, and the achievements of Russian scientists at the dawn of the space age.
Space Radiation Organ Doses for Astronauts on Past and Future Missions
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.
2007-01-01
We review methods and data used for determining astronaut organ dose equivalents on past space missions including Apollo, Skylab, Space Shuttle, NASA-Mir, and International Space Station (ISS). Expectations for future lunar missions are also described. Physical measurements of space radiation include the absorbed dose, dose equivalent, and linear energy transfer (LET) spectra, or a related quantity, the lineal energy (y) spectra that is measured by a tissue equivalent proportional counter (TEPC). These data are used in conjunction with space radiation transport models to project organ specific doses used in cancer and other risk projection models. Biodosimetry data from Mir, STS, and ISS missions provide an alternative estimate of organ dose equivalents based on chromosome aberrations. The physical environments inside spacecraft are currently well understood with errors in organ dose projections estimated as less than plus or minus 15%, however understanding the biological risks from space radiation remains a difficult problem because of the many radiation types including protons, heavy ions, and secondary neutrons for which there are no human data to estimate risks. The accuracy of projections of organ dose equivalents described here must be supplemented with research on the health risks of space exposure to properly assess crew safety for exploration missions.
NASA Technical Reports Server (NTRS)
Sawin, Charles F.
1999-01-01
The product of the critical path roadmap project is an integrated strategy for mitigating the risks associated with human exploration class missions. It is an evolving process that will assure the ability to communicate the integrated critical path roadmap. Unlike previous reports, this one will not sit on a shelf - it has the full support of the JSC Space and Life Sciences Directorate (SA) and is already being used as a decision making tool (e.g., budget and investigation planning for Shuttle and Space Station mission). Utility of this product depends on many efforts, namely: providing the required information (completed risk data sheets, critical question information, technology data). It is essential to communicate the results of the critical path roadmap to the scientific community - this meeting is a good opportunity to do so. The web site envisioned for the critical path roadmap will provide the capability to communicate to a broader community and to track and update the system routinely.
The Role of Lunar Development in Human Exploration of the Solar System
NASA Technical Reports Server (NTRS)
Mendell, Wendell W.
1999-01-01
Human exploration of the solar system can be said to have begun with the Apollo landings on the Moon. The Apollo Project was publicly funded with the narrow technical objective of landing human beings on the Moon. The transportation and life support systems were specialized technical designs, developed in a project management environment tailored to that objective. Most scenarios for future human exploration assume a similar long-term commitment of public funds to a narrowly focused project managed by a large, monolithic organization. Advocates of human exploration of space have not yet been successful in generating the political momentum required to initiate such a project to go to the Moon or to Mars. Alternative scenarios of exploration may relax some or all of the parameters of organizational complexity, great expense, narrow technical focus, required public funding, and control by a single organization. Development of the Moon using private investment is quite possibly a necessary condition for alternative scenarios to succeed.
Habitat Demonstration Unit Project Leadership and Management Strategies
NASA Technical Reports Server (NTRS)
Kennedy, Kriss J.
2011-01-01
This paper gives an overview of the National Aeronautics and Space Administration (NASA) led multi-center Habitat Demonstration Unit (HDU) project leadership and management strategies. The HDU project team constructed and tested an analog prototype lunar surface habitat/laboratory called the Pressurized Excursion Module (PEM) during 2010. The prototype unit subsystems were integrated in a short amount of time, utilizing a tiger team approach that brought together over 20 habitation-related technologies and innovations from a variety of NASA centers. This paper describes the leadership and management strategies as well as lessons learned pertaining to leading and managing a multi-center diverse team in a rapid prototype environment. The PEM configuration went from a paper design to an operational surface habitat demonstration unit in less than 12 months. The HDU project is part of the strategic plan from the Exploration Systems Mission Directorate (ESMD) Directorate Integration Office (DIO) and the Exploration Mission Systems Office (EMSO) to test destination elements in analog environments. The 2011 HDU-Deep Space Habitat (DSH) configuration will build upon the PEM work, and emphasize validity of crew operations (remote working and living), EVA operations, mission operations, logistics operations, and science operations that might be required in a deep space context for Near Earth Object (NEO) exploration mission architectures. The 2011 HDU-DSH will be field-tested during the 2011 Desert Research and Technologies Studies (DRaTS) field tests. The HDU project is a "technology-pull" project that integrates technologies and innovations from multiple NASA centers. This project will repurpose the HDU 2010 demo unit that was field tested in the 2010 DRaTS, adding habitation functionality to the prototype unit. This paper will describe the strategy of establishing a multi-center project management team that put in place the key multi-center leadership skills and disciplines to enable a successful tiger team approach. Advocacy was established with key stakeholders and NASA Headquarters (HQ) by defining a strategic vision, mission, goals and objectives for the project and team. As a technology-pull testbed capability the HDU project was able to collaborate and leverage the Exploration Technology Development Program (ETDP) and individual NASA center investments which capitalized on their respective center core competencies and skills. This approach enable the leveraging of over $7.5m of value to create an operational habitat demonstration unit 2010 PEM configuration.
United Nations Human Space Technology Initiative (HSTI)
NASA Astrophysics Data System (ADS)
Ochiai, Mika; Niu, Aimin; Steffens, Heike; Balogh, Werner; Haubold, Hans; Othman, Mazlan; Doi, Takao
2014-11-01
The Human Space Technology Initiative was launched in 2010 within the framework of the United Nations Programme on Space Applications implemented by the Office for Outer Space Affairs of the United Nations. It aims to involve more countries in activities related to human spaceflight and space exploration and to increase the benefits from the outcome of such activities through international cooperation, to make space exploration a truly international effort. The role of the Initiative in these efforts is to provide a platform to exchange information, foster collaboration between partners from spacefaring and non-spacefaring countries, and encourage emerging and developing countries to take part in space research and benefit from space applications. The Initiative organizes expert meetings and workshops annually to raise awareness of the current status of space exploration activities as well as of the benefits of utilizing human space technology and its applications. The Initiative is also carrying out primary science activities including the Zero-Gravity Instrument Project and the Drop Tower Experiment Series aimed at promoting capacity-building activities in microgravity science and education, particularly in developing countries.
ERIC Educational Resources Information Center
Ringrose, Jessica
2011-01-01
This paper explores how Deleuze and Guattari's philosophical concepts extend and elaborate discursive and psychoanalytic interpretations of qualitative research findings. Analyzing data from a UK research project exploring young people's engagements with Social Networking Sites (SNSs), Deleuze and Guattari's schizoanalytic method is drawn upon to…
Managing Space Radiation Risk in the New Era of Space Exploration
NASA Technical Reports Server (NTRS)
2008-01-01
Space exploration is a risky enterprise. Rockets launch astronauts at enormous speeds into a harsh, unforgiving environment. Spacecraft must withstand the bitter cold of space and the blistering heat of reentry. Their skin must be strong enough to keep the inside comfortably pressurized and tough enough to resist damage from micrometeoroids. Spacecraft meant for lunar or planetary landings must survive the jar of landing, tolerate dust, and be able to take off again. For astronauts, however, there is one danger in space that does not end when they step out of their spacecraft. The radiation that permeates space -- unattenuated by Earth s atmosphere and magnetosphere -- may damage or kill cells within astronauts bodies, resulting in cancer or other health consequences years after a mission ends. The National Aeronautics and Space Administration (NASA) has recently embarked on Project Constellation to implement the Vision for Space Exploration -- a program announced by President George W. Bush in 2004 with the goal of returning humans to the Moon and eventually transporting them to Mars. To adequately prepare for the safety of these future space explorers, NASA s Exploration Systems Mission Directorate requested that the Aeronautics and Space Engineering Board of the National Research Council establish a committee to evaluate the radiation shielding requirements for lunar missions and to recommend a strategic plan for developing the radiation mitigation capabilities needed to enable the planned lunar mission architecture
NASA's In Space Manufacturing Initiatives: Conquering the Challenges of In-Space Manufacturing
NASA Technical Reports Server (NTRS)
Clinton, R. G., Jr.
2017-01-01
Current maintenance logistics strategy will not be effective for deep space exploration missions. ISM (In Space Manufacturing) offers the potential to: Significantly reduce maintenance logistics mass requirements; Enable the use of recycled materials and in-situ resources for more dramatic reductions in mass requirements; Enable flexibility, giving systems a broad capability to adapt to unanticipated circumstances; Mitigate risks that are not covered by current approaches to maintainability. Multiple projects are underway currently to develop and validate these capabilities for infusion into ISM exploration systems. ISS is a critical testbed for demonstrating ISM technologies, proving out these capabilities, and performing operational validation of deep space ISM applications. Developing and testing FabLab is a major milestone for springboard to DSG/Cis-lunar Space applications. ISM is a necessary paradigm shift in space operations – design for repair culture must be embraced. ISM team needs to be working with exploration system designers now to identify high-value application areas and influence design.
JSC Director's Discretionary Fund Program
NASA Technical Reports Server (NTRS)
Jenkins, Lyle M. (Editor)
1991-01-01
The JSC Center Director's Discretionary Fund Program 1991 Annual Report provides a brief status of the projects undertaken during the 1991 fiscal year. For this year, four space exploration initiative related issues were focused on: regenerative life support, human spacecraft design, lunar surface habitat, and in situ resource utilization. In this way, a viable program of life sciences, space sciences, and engineering research has been maintained. For additional information on any single project, the individual investigator should be contacted.
Working With Solar System Ambassadors
NASA Astrophysics Data System (ADS)
Ferrari, K.
2001-11-01
The Solar System Ambassadors Program is a public outreach program designed to work with motivated volunteers across the nation. These competitively selected volunteers organize and conduct public events that communicate exciting discoveries and plans in Solar System research, exploration and technology through non-traditional forums; e.g. community service clubs, libraries, museums, planetariums, "star parties," mall displays, etc. Each Ambassador participates in on-line (web-based) training sessions that provide interaction with NASA scientists, engineers and project team members. As such, each Ambassador's experience with the space program becomes personalized. Training sessions provide Ambassadors with general background on each mission and educate them concerning specific mission milestones, such as launches, planetary flybys, first image returns, arrivals, and ongoing key discoveries. Additionally, projects provide limited supplies of videos, slide sets, booklets, pamphlets, posters, postcards, lithographs, on-line materials, resource links and information. In addition to participating in on-line trainings with Ambassadors, scientists will be given the opportunity to interact with, and mentor volunteer Ambassadors at regional, weekend conferences designed to strengthen the Ambassadors' knowledge of space science and exploration, thereby improving the space science message that goes out to the general public through these enthusiastic volunteers. Integrating volunteers across the country in a public-engagement program helps optimize project funding set aside for education and outreach purposes, establishing a nationwide network of regional contacts. At the same time, members of communities across the country become an extended part of each mission's team and an important interface between the space exploration community and the general public at large.
Human Systems Integration (HSI) Case Studies from the NASA Constellation Program
NASA Technical Reports Server (NTRS)
Baggerman, Susan; Berdich, Debbie; Whitmore, Mihriban
2009-01-01
The National Aeronautics and Space Administration (NASA) Constellation Program is responsible for planning and implementing those programs necessary to send human explorers back to the moon, onward to Mars and other destinations in the solar system, and to support missions to the International Space Station. The Constellation Program has the technical management responsibility for all Constellation Projects, including both human rated and non-human rated vehicles such as the Crew Exploration Vehicle, EVA Systems, the Lunar Lander, Lunar Surface Systems, and the Ares I and Ares V rockets. With NASA s new Vision for Space Exploration to send humans beyond Earth orbit, it is critical to consider the human as a system that demands early and continuous user involvement, inclusion in trade offs and analyses, and an iterative "prototype/test/ redesign" process. Personnel at the NASA Johnson Space Center are involved in the Constellation Program at both the Program and Project levels as human system integrators. They ensure that the human is considered as a system, equal to hardware and software vehicle systems. Systems to deliver and support extended human habitation on the moon are extremely complex and unique, presenting new opportunities to employ Human Systems Integration, or HSI practices in the Constellation Program. The purpose of the paper is to show examples of where human systems integration work is successfully employed in the Constellation Program and related Projects, such as in the areas of habitation and early requirements and design concepts.
NASA Design Projects at UC Berkeley for NASA's HEDS-UP Program
NASA Astrophysics Data System (ADS)
Kuznetz, Lawrence
1998-01-01
Missions to Mars have been a topic for study since the advent of the space age. But funding has been largely reserved for the unmanned probes such as Viking, Pathfinder and Global Surveyer. Financial and political constraints have relegated human missions, on the other hand, to backroom efforts such as the Space Exploration Initiative (SEI) of 1989-1990. With the new found enthusiasm from Pathfinder and the meteorite ALH84001, however, there is renewed interest in human exploration of Mars. This is manifest in the new Human Exploration and Development of Space (HEDS) program that NASA has recently initiated. This program, through its University Projects (HEDS-UP) office has taken the unusual step of soliciting creative solutions from universities. For its part in the HEDS-UP program, the University of California at Berkeley was asked to study the issues of Habitat design, Space Suits for Mars, Environmental Control and Life Support Systems, Countermeasures to Hypogravity and Crew Size/Mix. These topics were investigated as design projects in "Mars by 2012", an on-going class for undergraduates and graduate students. The methodology of study was deemed to be as important as the design projects themselves and for that we were asked to create an Interactive Design Environment. The Interactive Design Environment (IDE) is an electronic "office" that allows scientists and engineers, as well as other interested parties, to interact with and critique engineering designs as they progress. It usually takes the form of a website that creates a "virtual office" environment. That environment is a place where NASA and others can interact with and critique the university designs for potential inclusion in the Mars Design Reference Mission.
Kennedy Center Director Opens NASA 2017 Robotic Mining Competition
2017-05-23
NASA’s Eighth Annual Robotic Mining Competition (RMC) officially kicked off at NASA’s Kennedy Space Center in Florida on Tuesday, May 23, with Kennedy Director, Bob Cabana, presiding at the annual event’s opening ceremony. Forty-five teams of college undergraduate and graduate students prepped the unique mining robots they designed and built, then conducted practice runs in their quest against the clock to collect and move the most simulated Martian soil. The actual competition is scheduled for Wednesday through Friday. Managed by, and held annually at Kennedy Space Center, RMC is a NASA Human Exploration and Operations Mission Directorate project designed to engage and retain students in science, technology, engineering and math (STEM) fields by expanding opportunities for student research and design. The project provides a competitive environment to foster innovative ideas and solutions with potential use on NASA’s deep space exploration missions, including to Mars.
Robotic Mining Competition Award Ceremony
2017-05-26
Students from 45 colleges and universities gathered at Kennedy Space Center’s Saturn V Visitor Complex in Florida on Friday, May 26, to celebrate and conclude NASA’s Eight Annual Robotic Mining Competition. Awards were presented to the winning teams in multiple categories. The three-day competition pitted excavator robots designed and built by each team to mine the most simulated Martian soil in a specified amount of time. Students also were judged on how each team used its robot to inspire its respective community about careers in science, technology, engineering and math (STEM). Managed by, and held annually at Kennedy Space Center, RMC is a NASA Human Exploration and Operations Mission Directorate project designed to engage and retain students in STEM fields by expanding opportunities for student research and design. The project provides a competitive environment to foster innovative ideas and solutions with potential use on NASA’s deep space exploration missions, including to Mars.
Concept Design of Cryogenic Propellant Storage and Transfer for Space Exploration
NASA Technical Reports Server (NTRS)
Free, James M.; Motil, Susan M.; Kortes, Trudy F.; Meyer, Michael L.; taylor, William J.
2012-01-01
NASA is in the planning and investigation process of developing innovative paths for human space exploration that strengthen the capability to extend human and robotic presence beyond low Earth orbit and throughout the solar system. NASA is establishing the foundations to enable humans to safely reach multiple potential destinations, including the Moon, asteroids, Lagrange points, and Mars and its environs through technology and capability development. To achieve access to these destinations within a reasonable flight time will require the use of high performance cryogenic propulsion systems. Therefore NASA is examining mission concepts for a Cryogenic Propellant Storage and Transfer (CPST) Flight Demonstration which will test and validate key capabilities and technologies required for future exploration elements such as large cryogenic propulsion stages and propellant depots. The CPST project will perform key ground testing in fiscal year 2012 and execute project formulation and implementation leading to a flight demonstration in 2017.
NASA Technical Reports Server (NTRS)
Parks, R. J.
1979-01-01
Initial, current and planned United States projects for the spacecraft exploration of the outer planets of the solar system are presented. Initial plans were developed in the mid-1960's for the exploration of the outer planets by utilizing the gravity-assist technique during a fortuitous alignment of the outer planets in the Grand Tour Project, however although state-of-the-art space technology could have supported the project, it was considered too expensive, therefore politically infeasible. Subsequently, the Pioneer Project was undertaken to explore the asteroid belt and the environment around Jupiter and the Voyager Project was undertaken to send two spacecraft to fly by Jupiter and utilize its gravity assist to reach Saturn. The successful Pioneer 10 and 11 missions have provided important information on the effects of the asteroid belt and the severe radiation environment around Jupiter, and Voyager 1 has collected information about Jupiter, its magnetic fields and radiation zones, and its satellites. Project Galileo is intended to be launched in January 1982 to conduct an intensive investigation of Jupiter, its satellites and immediate environment and a Saturn Orbiter dual probe mission and a Uranus orbiter are also under consideration.
NASA Technical Reports Server (NTRS)
Burdett, Gerald L. (Editor); Soffen, Gerald A. (Editor)
1987-01-01
Papers are presented on the Space Station, materials processing in space, the status of space remote sensing, the evolution of space infrastructure, and the NASA Teacher Program. Topics discussed include visionary technologies, the effect of intelligent machines on space operations, future information technology, and the role of nuclear power in future space missions. Consideration is given to the role of humans in space exploration; medical problems associated with long-duration space flights; lunar and Martian settlements, and Biosphere II (the closed ecology project).
NASA Technical Reports Server (NTRS)
Nelson, Mark; Hawes, Philip B.; Augustine, Margret
1992-01-01
The Biosphere 2 project is pioneering work on life systems that can serve as a prototype for long-term habitation on the Moon. This project will also facilitate the understanding of the smaller systems that will be needed for initial lunar base life-support functions. In its recommendation for a policy for the next 50 years in space, the National Commission on Space urged, 'To explore and settle the inner Solar System, we must develop biospheres of smaller size, and learn how to build and maintain them' (National Commission on Space, 1986). The Biosphere 2 project, along with its Biospheric Research and Development Center, is a materially closed and informationally and energetically open system capable of supporting a human crew of eight, undertaking work to meet this need. This paper gives an overview of the Space Biospheres Ventures' endeavor and its lunar applications.
1995-03-13
The STS-70 crew patch depicts the Space Shuttle Discovery orbiting Earth in the vast blackness of space. The primary mission of deploying a NASA Tracking and Data Relay Satellite (TDRS) is depicted by three gold stars. They represent the triad composed of spacecraft transmitting data to Earth through the TDRS system. The stylized red, white, and blue ribbon represents the American goal of linking space exploration to the advancement of all humankind.
Uncertainties in Estimates of the Risks of Late Effects from Space Radiation
NASA Technical Reports Server (NTRS)
Cucinotta, F. A.; Schimmerling, W.; Wilson, J. W.; Peterson, L. E.; Saganti, P.; Dicelli, J. F.
2002-01-01
The health risks faced by astronauts from space radiation include cancer, cataracts, hereditary effects, and non-cancer morbidity and mortality risks related to the diseases of the old age. Methods used to project risks in low-Earth orbit are of questionable merit for exploration missions because of the limited radiobiology data and knowledge of galactic cosmic ray (GCR) heavy ions, which causes estimates of the risk of late effects to be highly uncertain. Risk projections involve a product of many biological and physical factors, each of which has a differential range of uncertainty due to lack of data and knowledge. Within the linear-additivity model, we use Monte-Carlo sampling from subjective uncertainty distributions in each factor to obtain a Maximum Likelihood estimate of the overall uncertainty in risk projections. The resulting methodology is applied to several human space exploration mission scenarios including ISS, lunar station, deep space outpost, and Mar's missions of duration of 360, 660, and 1000 days. The major results are the quantification of the uncertainties in current risk estimates, the identification of factors that dominate risk projection uncertainties, and the development of a method to quantify candidate approaches to reduce uncertainties or mitigate risks. The large uncertainties in GCR risk projections lead to probability distributions of risk that mask any potential risk reduction using the "optimization" of shielding materials or configurations. In contrast, the design of shielding optimization approaches for solar particle events and trapped protons can be made at this time, and promising technologies can be shown to have merit using our approach. The methods used also make it possible to express risk management objectives in terms of quantitative objective's, i.e., the number of days in space without exceeding a given risk level within well defined confidence limits.
Imaging X-Ray Polarimetry Explorer (IXPE) Risk Management
NASA Technical Reports Server (NTRS)
Alexander, Cheryl; Deininger, William D.; Baggett, Randy; Primo, Attina; Bowen, Mike; Cowart, Chris; Del Monte, Ettore; Ingram, Lindsey; Kalinowski, William; Kelley, Anthony;
2018-01-01
The Imaging X-ray Polarimetry Explorer (IXPE) project is an international collaboration to build and fly a polarization sensitive X-ray observatory. The IXPE Observatory consists of the spacecraft and payload. The payload is composed of three X-ray telescopes, each consisting of a mirror module optical assembly and a polarization-sensitive X-ray detector assembly; a deployable boom maintains the focal length between the optical assemblies and the detectors. The goal of the IXPE Mission is to provide new information about the origins of cosmic X-rays and their interactions with matter and gravity as they travel through space. IXPE will do this by exploiting its unique capability to measure the polarization of X-rays emitted by cosmic sources. The collaboration for IXPE involves national and international partners during design, fabrication, assembly, integration, test, and operations. The full collaboration includes NASA Marshall Space Flight Center (MSFC), Ball Aerospace, the Italian Space Agency (ASI), the Italian Institute of Astrophysics and Space Planetology (IAPS)/Italian National Institute of Astrophysics (INAF), the Italian National Institute for Nuclear Physics (INFN), the University of Colorado (CU) Laboratory for Atmospheric and Space Physics (LASP), Stanford University, McGill University, and the Massachusetts Institute of Technology. The goal of this paper is to discuss risk management as it applies to the IXPE project. The full IXPE Team participates in risk management providing both unique challenges and advantages for project risk management. Risk management is being employed in all phases of the IXPE Project, but is particularly important during planning and initial execution-the current phase of the IXPE Project. The discussion will address IXPE risk strategies and responsibilities, along with the IXPE management process which includes risk identification, risk assessment, risk response, and risk monitoring, control, and reporting.
NASA Technical Reports Server (NTRS)
Haubold, Hans J. (Editor); Torres, Sergio (Editor)
1994-01-01
The conference primarily covered astrophysical and astronomical topics on stellar and solar modeling and processes, high magnetic field influence on stellar spectra, cosmological topics utilizing Cosmic Background Explorer (COBE) data and radioastronomic mapping as well as cosmic gravitational instability calculations, astrometry of open clusters amd solar gravitational focusing, extremely energetic gamma rays, interacting binaries, and balloon-borne instrumentation. Other papers proposed an active Search for Extraterrestrial Intelligence (SETI) communication scheme to neighboring solar-like systems and more direct involvement of and with the public in astronomy and space exploration projects.
Toys in Space: Exploring Science with the Astronauts.
ERIC Educational Resources Information Center
Sumners, Carolyn
The purpose of the Toys in Space project was to create new ways for children to discover the joy and excitement of science and technology in the world around us. This book describes how familiar toys behave in the space environment where the downward pull of gravity is absent, and clearly documents those principles of physics that explain why the…
Decadal opportunities for space architects
NASA Astrophysics Data System (ADS)
Sherwood, Brent
2012-12-01
A significant challenge for the new field of space architecture is the dearth of project opportunities. Yet every year more young professionals express interest to enter the field. This paper derives projections that bound the number, type, and range of global development opportunities that may be reasonably expected over the next few decades for human space flight (HSF) systems so those interested in the field can benchmark their goals. Four categories of HSF activity are described: human Exploration of solar system bodies; human Servicing of space-based assets; large-scale development of space Resources; and Breakout of self-sustaining human societies into the solar system. A progressive sequence of capabilities for each category starts with its earliest feasible missions and leads toward its full expression. The four sequences are compared in scale, distance from Earth, and readiness. Scenarios hybridize the most synergistic features from the four sequences for comparison to status quo, government-funded HSF program plans. Finally qualitative, decadal, order-of-magnitude estimates are derived for system development needs, and hence opportunities for space architects. Government investment towards human planetary exploration is the weakest generator of space architecture work. Conversely, the strongest generator is a combination of three market drivers: (1) commercial passenger travel in low Earth orbit; (2) in parallel, government extension of HSF capability to GEO; both followed by (3) scale-up demonstration of end-to-end solar power satellites in GEO. The rich end of this scale affords space architecture opportunities which are more diverse, complex, large-scale, and sociologically challenging than traditional exploration vehicle cabins and habitats.
2004-05-13
KENNEDY SPACE CENTER, FLA. -- Adm. Craig E. Steidle (center), NASA’s associate administrator, Office of Exploration Systems, tours the Orbiter Processing Facility on a visit to KSC. At left is Conrad Nagel, chief of the Shuttle Project Office. They are standing under the left wing and wheel well of the orbiter Discovery. The Office of Exploration Systems was established to set priorities and direct the identification, development and validation of exploration systems and related technologies to support the future space vision for America. Steidle’s visit included a tour of KSC to review the facilities and capabilities to be used to support the vision.
2004-05-13
KENNEDY SPACE CENTER, FLA. -- Adm. Craig E. Steidle (center), NASA’s associate administrator, Office of Exploration Systems, listens to Conrad Nagel, chief of the Shuttle Project Office (right), during a tour of the Orbiter Processing Facility on a visit to KSC. They are standing under the orbiter Discovery. The Office of Exploration Systems was established to set priorities and direct the identification, development and validation of exploration systems and related technologies to support the future space vision for America. Steidle’s visit included a tour of KSC to review the facilities and capabilities to be used to support the vision.
2004-05-13
KENNEDY SPACE CENTER, FLA. -- Adm. Craig E. Steidle (center), NASA’s associate administrator, Office of Exploration Systems, listens to Conrad Nagel, chief of the Shuttle Project Office (right), during a tour of the Orbiter Processing Facility on a visit to KSC. They are standing under the orbiter Discovery. The Office of Exploration Systems was established to set priorities and direct the identification, development and validation of exploration systems and related technologies to support the future space vision for America. Steidle’s visit included a tour of KSC to review the facilities and capabilities to be used to support the vision.
NASA Technical Reports Server (NTRS)
Leitgab, Martin; Semones, Edward; Lee, Kerry
2016-01-01
The NASA Space Radiation Analysis Group (SRAG) is developing novel Crew Personal Active Dosimeters (CAPDs) for upcoming crewed space exploration missions and beyond. To reduce the resource footprint of the project a COTS dosimeter base is used for the development of CPADs. This base was identified from evaluations of existing COTS personal dosimeters against the concept of operations of future crewed missions and tests against detection requirements for radiation characteristic of the space environment. CPADs exploit operations efficiencies from novel features for space flight personal dosimeters such as real-time dose feedback, and autonomous measuring and data transmission capabilities. Preliminary CPAD design, results of radiation testing and aspects of operational integration will be presented.
Is a Space Laundry Needed for Exploration?
NASA Technical Reports Server (NTRS)
Ewert, Michael K.; Jeng, Frank F.
2014-01-01
Future human space exploration missions will lengthen to years, and keeping crews clothed without a huge resupply burden is an important consideration for habitation systems. A space laundry system could be the solution; however, the resources it uses must be accounted for and must win out over the very reliable practice of bringing along enough spare underwear. Through NASA's Logistics Reduction and Repurposing project, trade off studies have been conducted to compare current space clothing systems, life extension of that clothing, traditional water based clothes washing and other sanitizing techniques. The best clothing system of course depends on the mission and assumptions, but in general, analysis results indicate that washing clothes on space missions will start to pay off as mission durations push past a year.
NASA Technical Reports Server (NTRS)
Kennedy, Kriss J.; Toup, Larry; Gill, Tracy; Tri, Terry; Howe, Scott; Smitherman, David
2011-01-01
This paper gives an overview of the National Aeronautics and Space Administration (NASA) led multi-center Habitat Demonstration Unit (HDU) project leadership and management strategies being used by the NASA HDU team for a rapid prototyping project. The HDU project team constructed and tested an analog prototype lunar surface habitat/laboratory called the Pressurized Excursion Module (PEM) during 2010. The prototype unit subsystems were integrated in a short amount of time, utilizing a tiger team rapid prototyping approach that brought together over 20 habitation-related technologies and innovations from a variety of NASA centers. This paper describes the leadership and management strategies as well as lessons learned pertaining to leading and managing a multi-center diverse team in a rapid prototype environment. The PEM configuration went from a paper design to an operational surface habitat demonstration unit in less than 12 months. The HDU project is part of the strategic plan from the Exploration Systems Mission Directorate (ESMD) Directorate Integration Office (DIO) and the Exploration Mission Systems Office (EMSO) to test destination elements in analog environments. The 2011 HDU-Deep Space Habitat (DSH) configuration will build upon the PEM work, and emphasize validity of crew operations (remote working and living), EVA operations, mission operations, logistics operations, and science operations that might be required in a deep space context for Near Earth Object (NEO) exploration mission architectures. The 2011 HDU-DSH will be field-tested during the 2011 Desert Research and Technologies Studies (DRaTS) field tests. The HDU project is a "technology-pull" project that integrates technologies and innovations from multiple NASA centers. This project will repurpose the HDU 2010 demo unit that was field tested in the 2010 DRaTS, adding habitation functionality to the prototype unit. This paper will describe the strategy of establishing a multi-center project management team that put in place the key multi-center leadership skills and disciplines to enable a successful tiger team approach. Advocacy was established with key stakeholders and NASA Headquarters (HQ) by defining a strategic vision, mission, goals and objectives for the project and team. As a technology-pull testbed capability the HDU project was able to collaborate and leverage the Exploration Technology Development Program (ETDP) and individual NASA center investments which capitalized on their respective center core competencies and skills. This approach enable the leveraging of over $7.5m of value to create an operational habitat demonstration unit 2010 PEM configuration.
Marshall Space Flight Center Research and Technology Report 2015
NASA Technical Reports Server (NTRS)
Keys, A. S. (Compiler); Tinker, M. L. (Compiler); Sivak, A. D. (Compiler); Morris, H. C. (Compiler)
2015-01-01
The investments in technology development we made in 2015 not only support the Agency's current missions, but they will also enable new missions. Some of these projects will allow us to develop an in-space architecture for human space exploration; Marshall employees are developing and testing cutting-edge propulsion solutions that will propel humans in-space and land them on Mars. Others are working on technologies that could support a deep space habitat, which will be critical to enable humans to live and work in deep space and on other worlds. Still others are maturing technologies that will help new scientific instruments study the outer edge of the universe-instruments that will provide valuable information as we seek to explore the outer planets and search for life.
2012-08-03
CAPE CANAVERAL, Fla. – Inside the Space Life Sciences Laboratory, or SLSL, at NASA’s Kennedy Space Center in Florida, radish plants are being harvested in a plant growth chamber. The plants were grown under red and blue LED lights. The plant experiment at Kennedy is part of the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. This plant experiment studies the effects of different types of lighting on plants such as radishes and leaf lettuce. Results of these studies will help provide information on how to grow food sources for deep space exploration missions. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. Photo credit: NASA/Frank Ochoa-Gonzales
2012-08-03
CAPE CANAVERAL, Fla. – Inside the Space Life Sciences Laboratory, or SLSL, at NASA’s Kennedy Space Center in Florida, radish plants were harvested from a plant growth chamber. The plants were grown under red and blue LED lights. The plant experiment at Kennedy is part of the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. This plant experiment studies the effects of different types of lighting on plants such as radishes and leaf lettuce. Results of these studies will help provide information on how to grow food sources for deep space exploration missions. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. Photo credit: NASA/Frank Ochoa-Gonzales
The 1990-1991 NASA space biology accomplishments
NASA Technical Reports Server (NTRS)
Halstead, Thora W. (Editor)
1993-01-01
This report consists of individual technical summaries of research projects of NASA's Space Biology Program, for research conducted during the period May 1990 through May 1991. This program includes both plant and animal research, and is dedicated to understanding the role of gravity and other environmental factors on biological systems and to using the microgravity of the space environment as a tool to advance fundamental scientific knowledge in the biological sciences to improve the quality of life on Earth and contribute to NASA's goal of manned exploration of space. The summaries for each project include a description of the research, a list of the accomplishments, an explanation of the significance of the accomplishments, and a list of publications.
2001-09-17
KENNEDY SPACE CENTER, Fla. -- An aerial view of the KSC Visitor Complex shows the Astronauts Memorial Space Mirror in the foreground. Names of the 17 American astronauts who gave their lives to the quest to explore space are engraved in the mirror-finished surface. Sunlight projecting through the names appears to emblazon them against a reflection of the sky. Behind the mirror is the Center for Space Education. In the background is the Rocket Garden, exhibiting early rockets from the space program
A fault tolerant spacecraft supercomputer to enable a new class of scientific discovery
NASA Technical Reports Server (NTRS)
Katz, D. S.; McVittie, T. I.; Silliman, A. G., Jr.
2000-01-01
The goal of the Remote Exploration and Experimentation (REE) Project is to move supercomputeing into space in a coste effective manner and to allow the use of inexpensive, state of the art, commercial-off-the-shelf components and subsystems in these space-based supercomputers.
NASA Astrophysics Data System (ADS)
Besse, S.; Vallat, C.; Geiger, B.; Grieger, B.; Costa, M.; Barbarisi, I.
2017-06-01
The Planetary Science Archive (PSA) is the European Space Agency’s (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific datasets through various interfaces at http://psa.esa.int.
EM-1 Countdown Simulation with Charlie Blackwell-Thompson
2018-03-29
Jacobs Test Project Engineer Don Vinton, left and NASA Operations Project Engineer Doug Robertson, monitor operations from his position in Firing Room 1 at the Kennedy Space Center's Launch Control Center during a countdown simulation for Exploration Mission 1. It was the agency's first simulation of a portion of the countdown for the first launch of a Space Launch System rocket and Orion spacecraft that will eventually take astronauts beyond low-Earth orbit to destinations such as the Moon and Mars.
ERIC Educational Resources Information Center
Galley, Michelle
2004-01-01
The National Aeronautics and Space Administration's unmanned mission to Mars has inspired students throughout the United States and abroad to take part in a variety of science lessons and projects. These particular students get to sit down the hall from the Mars Exploration Rover navigational team and work on projects directly related to the…
Advanced life support technology development for the Space Exploration Initiative
NASA Technical Reports Server (NTRS)
Evanich, Peggy L.; Voecks, Gerald E.; Seshan, P. K.
1990-01-01
An overview is presented of NASA's advanced life support technology development strategy for the Space Exploration Initiative. Three basic life support technology areas are discussed in detail: air revitalization, water reclamation, and solid waste management. It is projected that regenerative life support systems will become increasingly more complex as system closure is maximized. Advanced life support technology development will utilize three complementary elements, including the Research and Technology Program, the Regenerative Life Support Program, and the Technology Testbed Validations.
NASA Astrophysics Data System (ADS)
Tavrov, Alexander; Frolov, Pavel; Korablev, Oleg; Vedenkin, Nikolai; Barabanov, Sergey
2017-11-01
Solar System planetology requires a wide use of observing spectroscopy for surface geology to atmosphere climatology. A high-contrast imaging is required to study and to characterize extra-solar planetary systems among other faint astronomical targets observed in the vicinity of bright objects. Two middle class space telescopes projects aimed to observe Solar system planets by a long term monitoring via spectroscopy and polarimetry. Extra solar planets (exoplanets) engineering and scientific explorations are included in science program.
2008-03-01
solar telescope to study solar physics. — Develop technologies for a three-satellite constellation called Kua Fu to study solar activity that will...consist of one satellite to monitor solar activity and two others to study the aurora. • International cooperation. Participate in the Sino...Russian Mars environment exploration plan, the World Space Observatory Ultraviolet Project,50 and the Sino-French Small Satellite Solar Flare Exploration
NASA Technical Reports Server (NTRS)
Meneses, Joseph Chistopher
2012-01-01
NASA's Space Place team publishes engaging content and creates an effective environment to inspire a young audience to dare mighty things. NASA uses the Space Place, Climate Kids, and SciJinks websites to cultivate interest among elementary-school-aged children in both science and technology. During my summer internship at Jet Propulsion Laboratory I used Adobe Flash and ActionScript 3 to develop content for the Space Place, Climate Kids, and SciJinks sites. In addition, I was involved in the development process for ongoing and new projects during my internship. My involvement allowed me to follow a project from concept to design, implementation, and release. I personally worked on three projects this summer, two of which are currently in deployment. The first is a scrambled letter-tile guessing game titled Solar System Scramble. The second, Butterfrog Mix-Up, is a rotating-tile puzzle game. The third project is a unfinished prototype for a maze game.
NASA's Chemical Transfer Propulsion Program for Pathfinder
NASA Technical Reports Server (NTRS)
Hannum, Ned P.; Berkopec, Frank D.; Zurawski, Robert L.
1989-01-01
Pathfinder is a research and technology project, with specific deliverables, initiated by the National Aeronautics and Space Administration (NASA) which will strengthen the technology base of the United States civil space program in preparation for future space exploration missions. Pathfinder begins in Fiscal Year 1989, and is to advance a collection of critical technologies for these missions and ensure technology readiness for future national decisions regarding exploration of the solar system. The four major thrusts of Pathfinder are: surface exploration, in-space operations, humans-in-space, and space transfer. The space transfer thrust will provide the critical technologies needed for transportation to, and return from, the Moon, Mars, and other planets in the solar system, as well as for reliable and cost-effective Earth-orbit operations. A key element of this thrust is the Chemical Transfer Propulsion program which will provide the propulsion technology for high performance, liquid oxygen/liquid hydrogen expander cycle engines which may be operated and maintained in space. Described here are the program overview including the goals and objectives, management, technical plan, and technology transfer for the Chemical Transfer Propulsion element of Pathfinder.
2010 ESMD Faculty Fellowship Project
NASA Technical Reports Server (NTRS)
Carmen, Christina L.; Morris, Tommy; Schmidt, Peter; van Susante, Paul; Zalewski, Janusz; Murphy, Gloria
2010-01-01
This slide presentation reviews is composed of 6 individual sections. The first is a introductory section that explains the Exploration Systems Mission Directorate (ESMD) Faculty Fellowship Project, the purpose of which is to prepare selected university faculty to work with senior design students to complete projects that have potential to contribute to NASA objectives. The following university presentations represent the chosen projects: (1) the use of Exploration Toolset for the Optimization of Launch and Space Systems (X-TOOLSS) to optimize the Lunar Wormbot design; (2) development of Hardware Definition Language (HDL) realization of ITU G.729 for FGPA; (3) cryogenic fluid and electrical quick connect system and a lunar regolith design; (4) Lunar Landing Pad development; and (5) Prognostics for complex systems.
Overview of NASA's Thermal Control System Development for Exploration Project
NASA Technical Reports Server (NTRS)
Stephan, Ryan A.
2010-01-01
NASA's Constellation Program includes the Orion, Altair, and Lunar Surface Systems project offices. The first two elements, Orion and Altair, are manned space vehicles while the third element is broader and includes several sub-elements including Rovers and a Lunar Habitat. The upcoming planned missions involving these systems and vehicles include several risks and design challenges. Due to the unique thermal environment, many of these risks and challenges are associated with the vehicles' thermal control system. NASA's Exploration Systems Mission Directorate (ESMD) includes the Exploration Technology Development Program (ETDP). ETDP consists of several technology development projects. The project chartered with mitigating the aforementioned risks and design challenges is the Thermal Control System Development for Exploration Project. The risks and design challenges are addressed through a rigorous technology development process that culminates with an integrated thermal control system test. The resulting hardware typically has a Technology Readiness Level (TRL) of six. This paper summarizes the development efforts being performed by the technology development project. The development efforts involve heat acquisition and heat rejection hardware including radiators, heat exchangers, and evaporators. The project has also been developing advanced phase change material heat sinks and performing assessments for thermal control system fluids.
Uncertainties in estimates of the risks of late effects from space radiation
NASA Astrophysics Data System (ADS)
Cucinotta, F. A.; Schimmerling, W.; Wilson, J. W.; Peterson, L. E.; Saganti, P. B.; Dicello, J. F.
2004-01-01
Methods used to project risks in low-Earth orbit are of questionable merit for exploration missions because of the limited radiobiology data and knowledge of galactic cosmic ray (GCR) heavy ions, which causes estimates of the risk of late effects to be highly uncertain. Risk projections involve a product of many biological and physical factors, each of which has a differential range of uncertainty due to lack of data and knowledge. Using the linear-additivity model for radiation risks, we use Monte-Carlo sampling from subjective uncertainty distributions in each factor to obtain an estimate of the overall uncertainty in risk projections. The resulting methodology is applied to several human space exploration mission scenarios including a deep space outpost and Mars missions of duration of 360, 660, and 1000 days. The major results are the quantification of the uncertainties in current risk estimates, the identification of factors that dominate risk projection uncertainties, and the development of a method to quantify candidate approaches to reduce uncertainties or mitigate risks. The large uncertainties in GCR risk projections lead to probability distributions of risk that mask any potential risk reduction using the "optimization" of shielding materials or configurations. In contrast, the design of shielding optimization approaches for solar particle events and trapped protons can be made at this time and promising technologies can be shown to have merit using our approach. The methods used also make it possible to express risk management objectives in terms of quantitative metrics, e.g., the number of days in space without exceeding a given risk level within well-defined confidence limits.
Project LAUNCH: Bringing Space into Math and Science Classrooms
NASA Technical Reports Server (NTRS)
Fauerbach, M.; Henry, D. P.; Schmidt, D. L.
2005-01-01
Project LAUNCH is a K-12 teacher professional development program, which has been created in collaboration between the Whitaker Center for Science, Mathematics and Technology Education at Florida Gulf Coast University (FGCU), and the Florida Space Research Institute (FSRI). Utilizing Space as the overarching theme it is designed to improve mathematics and science teaching, using inquiry based, hands-on teaching practices, which are aligned with Florida s Sunshine State Standards. Many students are excited about space exploration and it provides a great venue to get them involved in science and mathematics. The scope of Project LAUNCH however goes beyond just providing competency in the subject area, as pedagogy is also an intricate part of the project. Participants were introduced to the Conceptual Change Model (CCM) [1] as a framework to model good teaching practices. As the CCM closely follows what scientists call the scientific process, this teaching method is also useful to actively engage institute participants ,as well as their students, in real science. Project LAUNCH specifically targets teachers in low performing, high socioeconomic schools, where the need for skilled teachers is most critical.
2007-04-17
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcome the arrival of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module, or JEM, to the Kennedy Space Center. At the podium is Dr. Kichiro Imagawa, project manager of the JEM Development Project Team for JAXA. Seated at right are Russ Romanella, director of International Space Station and Spacecraft Processing; Bill Parsons, director of Kennedy Space Center; Melanie Saunders, associate manager of the International Space Station Program at Johnson Space Center; and Dominic Gorie, commander on mission STS-123 that will deliver the module to the space station. The logistics module will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton
2007-12-12
WASHINGTON, D.C. -- (From left) Brewster Shaw, vice president and genral manager of Boeing Space Exploration; Jeff Hanley, Constellation Program manager; Danny Davis, Upper Stage Element manager; Steve Cook, Ares Project manager; Doug Cooke, deputy associate administrator for Exploration Systems; and Rick Gilbrech, associate administrator for Space Exploration, stand with a model of the Ares I rocket on Dec. 12, 2007, at NASA Headquarters in Washington. NASA has selected The Boeing Company of Huntsville, Ala., as the prime contractor to produce, deliver and install avionics systsems for the Ares I rocket that will launch the Orion crew exploration vehicle into orbit. The selection is the final major contract award for Ares I. Photo credit: NASA/Paul E. Alers
GAS-007: First step in a series of Explorer payloads
NASA Technical Reports Server (NTRS)
Kitchens, Philip H.
1987-01-01
As part of the NASA Get Away Special program for flying small, self-contained payloads onboard the Space Shuttle, the Alabama Space and Rocket Center (ASRC) in Huntsville has sponsored three such payloads for its Project Explorer. One of these is GAS-007, which was carried originally on STS mission 41-G in early October 1984. Due to an operational error it was not turned on and was, therefore, subsequently rescheduled and flown on mission 61-C. This paper will review Explorer's history, outline its experiments, present some preliminary experimental results, and describe future ASRC plans for Get Away Special activities, including follow-on Explorers GAS-105 and GAS-608.
Nuclear Systems Kilopower Overview
NASA Technical Reports Server (NTRS)
Palac, Don; Gibson, Marc; Mason, Lee; Houts, Michael; McClure, Patrick; Robinson, Ross
2016-01-01
The Nuclear Systems Kilopower Project was initiated by NASAs Space Technology Mission Directorate Game Changing Development Program in fiscal year 2015 to demonstrate subsystem-level technology readiness of small space fission power in a relevant environment (Technology Readiness Level 5) for space science and human exploration power needs. The Nuclear Systems Kilopower Project consists of two elements. The primary element is the Kilopower Prototype Test, also called the Kilopower Reactor Using Stirling Technology(KRUSTY) Test. This element consists of the development and testing of a fission ground technology demonstrator of a 1 kWe fission power system. A 1 kWe system matches requirements for some robotic precursor exploration systems and future potential deep space science missions, and also allows a nuclear ground technology demonstration in existing nuclear test facilities at low cost. The second element, the Mars Kilopower Scalability Study, consists of the analysis and design of a scaled-up version of the 1 kWe reference concept to 10 kWe for Mars surface power projected requirements, and validation of the applicability of the KRUSTY experiment to key technology challenges for a 10 kWe system. If successful, these two elements will lead to initiation of planning for a technology demonstration of a 10 kWe fission power capability for Mars surface outpost power.
The Next Giant Leap: NASA's Ares Launch Vehicles Overview
NASA Technical Reports Server (NTRS)
Cook, Stephen A.; Vanhooser, Teresa
2008-01-01
The next chapter in NASA's history also promises to write the next chapter in America's history, as the Agency makes measurable strides toward developing new space transportation capabilities that wi!! put astronauts on course to explore the Moon as the next giant leap toward the first human footprint on Mars. This paper will present top-level plans and progress being made toward fielding the Ares I crew launch vehicle in the 2013 timeframe and the Ares V cargo launch vehicle in the 2018 timeframe. It also gives insight into the objectives for the first test flight, known as the Ares I-X, which is scheduled for April 2009. The U.S. strategy to scientifically explore space will fuel innovations such as solar power and water recycling, as well as yield new knowledge that directly benefits life on Earth. For the Ares launch vehicles, NASA is building on heritage hardware and unique capabilities; as well as almost 50 years of lessons learned from the Apollo Saturn, Space Shuttle, and commercial launch vehicle programs. In the Ares I Project's inaugural year, extensive trade studies and evaluations were conducted to improve upon the designs initially recommended by the Exploration Systems Architecture Study, resulting in significant reduction of near-term and long-range technical and programmatic risks; conceptual designs were analyzed for fitness against requirements; and the contractual framework was assembled to enable a development effort unparalleled in American space flight since the Space Shuttle. The Exploration Launch Projects team completed the Ares I System Requirements Review (SRR) at the end of 2006--the first such engineering milestone for a human-rated space transportation system in over 30 years.
Composite Cryotank Technologies and Demonstration
NASA Technical Reports Server (NTRS)
Vickers, John
2015-01-01
NASA is exploring advanced composite materials and processes to reduce the overall cost and weight of liquid hydrogen (LH2) cryotanks while maintaining the reliability of existing metallic designs. The fundamental goal of the composite cryotank project was to provide new and innovative technologies that enable human space exploration to destinations beyond low-Earth orbit such as the Moon, near-Earth asteroids, and Mars. In September 2011, NASA awarded Boeing the contract to design, manufacture, and test two lightweight composite cryogenic propellant tanks. The all-composite tanks shown iare fabricated with an automated fiber placement machine using a prepreg system of IM7 carbon fiber/CYCOM 5320-1 epoxy resin. This is a resin system developed for out-of-autoclave applications. Switching from metallic to composite construction holds the potential to dramatically increase the performance capabilities of future space systems through a dramatic reduction in weight. Composite Cryotank Technologies and Demonstration testing was an agency-wide effort with NASA Marshall Space Flight Center (MSFC) leading project management, manufacturing, and test; Glenn Research Center leading the materials; and Langley Research Center leading the structures effort for this project. Significant contributions from NASA loads/stress personnel contributed to the understanding of thermal/mechanical strain response while undergoing testing at cryogenic temperatures. The project finalized in September 2014.
Evolving the NASA Near Earth Network for the Next Generation of Human Space Flight
NASA Technical Reports Server (NTRS)
Roberts, Christopher J.; Carter, David L.; Hudiburg, John J.; Tye, Robert N.; Celeste, Peter B.
2014-01-01
The purpose of this paper is to present the planned development and evolution of the NASA Near Earth Network (NEN) launch communications services in support of the next generation of human space flight programs. Following the final space shuttle mission in 2011, the two NEN launch communications stations were decommissioned. Today, NASA is developing the next generation of human space flight systems focused on exploration missions beyond low-earth orbit, and supporting the emerging market for commercial crew and cargo human space flight services. The NEN is leading a major initiative to develop a modern high data rate launch communications ground architecture with support from the Kennedy Space Center Ground Systems Development and Operations Program and in partnership with the U.S. Air Force (USAF) Eastern Range. This initiative, the NEN Launch Communications Stations (LCS) development project, successfully completed its System Requirements Review in November 2013. This paper provides an overview of the LCS project and a summary of its progress. The LCS ground architecture, concept of operations, and driving requirements to support the new heavy-lift Space Launch System and Orion Multi-Purpose Crew Vehicle for Exploration Mission-1 are presented. Finally, potential future extensions to the ground architecture beyond EM-1 are discussed.
NASA Technical Reports Server (NTRS)
Rhodes, Bradley; Meck, Janice
2005-01-01
NASA s National Vision for Space Exploration includes human travel beyond low earth orbit and the ultimate safe return of the crews. Crucial to fulfilling the vision is the successful and timely development of countermeasures for the adverse physiological effects on human systems caused by long term exposure to the microgravity environment. Limited access to in-flight resources for the foreseeable future increases NASA s reliance on ground-based analogs to simulate these effects of microgravity. The primary analog for human based research will be head-down bed rest. By this approach NASA will be able to evaluate countermeasures in large sample sizes, perform preliminary evaluations of proposed in-flight protocols and assess the utility of individual or combined strategies before flight resources are requested. In response to this critical need, NASA has created the Bed Rest Project at the Johnson Space Center. The Project establishes the infrastructure and processes to provide a long term capability for standardized domestic bed rest studies and countermeasure development. The Bed Rest Project design takes a comprehensive, interdisciplinary, integrated approach that reduces the resource overhead of one investigator for one campaign. In addition to integrating studies operationally relevant for exploration, the Project addresses other new Vision objectives, namely: 1) interagency cooperation with the NIH allows for Clinical Research Center (CRC) facility sharing to the benefit of both agencies, 2) collaboration with our International Partners expands countermeasure development opportunities for foreign and domestic investigators as well as promotes consistency in approach and results, 3) to the greatest degree possible, the Project also advances research by clinicians and academia alike to encourage return to earth benefits. This paper will describe the Project s top level goals, organization and relationship to other Exploration Vision Projects, implementation strategy, address Project deliverables, schedules and provide a status of bed rest campaigns presently underway.
Status, Plans, and Initial Results for ARES 1 Crew Launch Vehicle Aerodynamics
NASA Technical Reports Server (NTRS)
Huebner, Lawrence D.; Haynes, Davy A.; Taylor, Terry L.; Hall, Robert M.; Pamadi, Bandu N.; Seaford, C. Mark
2006-01-01
Following the completion of NASA's Exploration Systems Architecture Study in August 2004 for the NASA Exploration Systems Mission Directorate (ESMD), the Exploration Launch Office at the NASA Marshall Space Flight Center was assigned project management responsibilities for the design and development of the first vehicle in the architecture, the Ares I Crew Launch Vehicle (CLV), which will be used to launch astronauts to low earth orbit and rendezvous with either the International Space Station or the ESMD s earth departure stage for lunar or other future missions beyond low Earth orbit. The primary elements of the Ares I CLV project are the first stage, the upper stage, the upper stage engine, and vehicle integration. Within vehicle integration is an effort in integrated design and analysis which is comprised of a number of technical disciplines needed to support vehicle design and development. One of the important disciplines throughout the life of the project is aerodynamics. This paper will present the status, plans, and initial results of Ares I CLV aerodynamics as the project was preparing for the Ares I CLV Systems Requirements Review. Following a discussion of the specific interactions with other technical panels and a status of the current activities, the plans for aerodynamic support of the Ares I CLV until the initial crewed flights will be presented.
2016-02-20
ISS046e043637 (02/20/2016) --- NASA astronaut Scott Kelly tweeted out this image to his followers Feb 20, 2016 with the tag: "This #Saturday morning checked out the @Microsoft #HoloLens aboard @Space_Station! Wow! #YearInSpace ". The device is part of NASA’s project Sidekick which is exploring the use of augmented reality to reduce crew training requirements and increase the efficiency at which astronauts can work in space.
Integrated Medical Model Overview
NASA Technical Reports Server (NTRS)
Myers, J.; Boley, L.; Foy, M.; Goodenow, D.; Griffin, D.; Keenan, A.; Kerstman, E.; Melton, S.; McGuire, K.; Saile, L.;
2015-01-01
The Integrated Medical Model (IMM) Project represents one aspect of NASA's Human Research Program (HRP) to quantitatively assess medical risks to astronauts for existing operational missions as well as missions associated with future exploration and commercial space flight ventures. The IMM takes a probabilistic approach to assessing the likelihood and specific outcomes of one hundred medical conditions within the envelope of accepted space flight standards of care over a selectable range of mission capabilities. A specially developed Integrated Medical Evidence Database (iMED) maintains evidence-based, organizational knowledge across a variety of data sources. Since becoming operational in 2011, version 3.0 of the IMM, the supporting iMED, and the expertise of the IMM project team have contributed to a wide range of decision and informational processes for the space medical and human research community. This presentation provides an overview of the IMM conceptual architecture and range of application through examples of actual space flight community questions posed to the IMM project.
FAST20XX: Achievements On European Suborbital Space Flight
NASA Astrophysics Data System (ADS)
Mack, A.; Steelant, J.; Adirim, H.; Lentsch, A.; Marini, M.; Pilz, N.
2011-05-01
In Europe, the EC co-funded project FAST20XX aims at exploring the borderline between aviation and space by investigating suborbital vehicles. The main focus is the identification and mastering of critical technologies for such vehicles rather than the vehicle development itself. Besides the objectives and overall layout of the project, the paper addresses also the progress made during the first period of the project. Two vehicle concepts are considered. A first one is a space vehicle launched from an airplane providing a low-energy ballistic flight experience using hybrid propulsion. The second is a vertically starting two-stage rocket space vehicle system concept taken as a basis to identify the conditions and constraints experienced during high- energy suborbital ultra-fast transport. The paper mainly discusses the two actual reference vehicles and the technical aspects of prerequisites for commercial operation including safety, human spaceflight, business cases, environmental and legal issues.
Interface Management for a NASA Flight Project Using Model-Based Systems Engineering (MBSE)
NASA Technical Reports Server (NTRS)
Vipavetz, Kevin; Shull, Thomas A.; Infeld, Samatha; Price, Jim
2016-01-01
The goal of interface management is to identify, define, control, and verify interfaces; ensure compatibility; provide an efficient system development; be on time and within budget; while meeting stakeholder requirements. This paper will present a successful seven-step approach to interface management used in several NASA flight projects. The seven-step approach using Model Based Systems Engineering will be illustrated by interface examples from the Materials International Space Station Experiment-X (MISSE-X) project. The MISSE-X was being developed as an International Space Station (ISS) external platform for space environmental studies, designed to advance the technology readiness of materials and devices critical for future space exploration. Emphasis will be given to best practices covering key areas such as interface definition, writing good interface requirements, utilizing interface working groups, developing and controlling interface documents, handling interface agreements, the use of shadow documents, the importance of interface requirement ownership, interface verification, and product transition.
Maintaining outer space for peaceful purposes through international cooperation
NASA Technical Reports Server (NTRS)
Reese, George E.; Thacher, David J.; Kupperman, Helen S.
1988-01-01
NASA activities in support of international cooperation in space exploration and exploitation are briefly reviewed, with a focus on their compatibility with UN treaties. Particular attention is given to the provisions of the National Aeronautics and Space Act of 1958 and other applicable legislation, the over 1000 bilateral and international agreements NASA has entered into since 1958, international participation in currently ongoing NASA projects (Hubble Space Telescope, Galileo, Ulysses, Rosat, the D-2 Spacelab mission), and plans for the International Space Station.
The Lunar Lander "HabiTank" Concept
NASA Technical Reports Server (NTRS)
Kennedy, Kriss J.
2007-01-01
This paper will summarize the study that was conducted under the auspices of the National Aeronautics and Space Administration (NASA), lead by Johnson Space Center s Engineering Directorate in support of the Lunar Lander Preparatory Study (LLPS) as sponsored by the Constellation Program Office (CxPO), Advanced Projects Office (APO). The lunar lander conceptual design and analysis is intended to provide an understanding of requirements for human space exploration of the Moon using the Advanced Projects Office Pre-Lander Project Office selected "HabiTank" Lander concept. In addition, these analyses help identify system "drivers," or significant sources of cost, performance, risk, and schedule variation along with areas needing technology development. Recommendations, results, and conclusions in this paper do not reflect NASA policy or programmatic decisions. This paper is an executive summary of this study.
The Ares Projects: Building America's Future in Space
NASA Technical Reports Server (NTRS)
Cook, Stephen A.
2009-01-01
NASA's Constellation Program is depending on the Ares Projects to deliver the crew and cargo launch capabilities needed to send human explorers to the Moon and beyond. In 2009, the Ares Projects plan to conduct the first test flight of Ares I, Ares I-X; the first firing of a five-segment development solid rocket motor for the Ares I first stage; building the first integrated Ares I upper stage; continue component testing for the J-2X upper stage engine; and perform more-detailed design studies for the Ares V cargo launch vehicle. Ares I and V will provide the core space launch capabilities needed to continue providing crew and cargo access to the International Space Station (ISS), and to build upon the U.S. history of human spaceflight to the Moon and beyond.
Technical needs and research opportunities provided by projected aeronautical and space systems
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.
1992-01-01
The overall goal of the present task is to identify the enabling and supporting technologies for projected aeronautical and space systems. A detailed examination was made of the technical needs in the structures, dynamics and materials areas required for the realization of these systems. Also, the level of integration required with other disciplines was identified. The aeronautical systems considered cover the broad spectrum of rotorcraft; subsonic, supersonic and hypersonic aircraft; extremely high-altitude aircraft; and transatmospheric vehicles. The space systems considered include space transportation systems; spacecrafts for near-earth observation; spacecrafts for planetary and solar exploration; and large space systems. A monograph is being compiled which summarizes the results of this study. The different chapters of the monograph are being written by leading experts from governmental laboratories, industry and universities.
The First Year in Review: NASA's Ares I Crew Launch Vehicle and Ares V Cargo Launch Vehicle
NASA Technical Reports Server (NTRS)
Dumbacher, Daniel L.; Reuter, James L.
2007-01-01
The U.S. Vision for Space Exploration guides NASA's challenging missions of scientific discovery.' Developing safe, reliable, and affordable space transportation systems for the human and robotic exploration of space is a key component of fulfilling the strategic goals outlined in the Vision, as well as in the U.S. Space Policy. In October 2005, the Exploration Systems Mission Directorate and its Constellation Program chartered the Exploration Launch Projects Office, located at the Marshall Space Flight Center, to design, develop, test, and field a new generation of launch vehicles that would fulfill customer and stakeholder requirements for trips to the Moon, Mars, and beyond. The Ares I crew launch vehicle is slated to loft the Orion crew exploration vehicle to orbit by 2014, while the heavy-lift Ares V cargo launch vehicle will deliver the lunar lander to orbit by 2020 (Fig. 1). These systems are being designed to empower America's return to the Moon to prepare for the first astronaut on Mars. The new launch vehicle designs now under study reflect almost 50 years of hard-won experience gained from the Saturn's missions to the Moon in the late 1960s and early 1970s, and from the venerable Space Shuttle, which is due to be retired by 2010.
STEM Mentor Breakfast at Debus Center
2017-05-25
Barbara Brown, center at the table, strategic implementation manager with the Exploration Research and Technology Programs at NASA's Kennedy Space Center in Florida, talks to students during a Women in STEM breakfast inside the Debus Conference Center at the Kennedy Space Center Visitor Complex. STEM is science, technology, engineering and math. The special event gave students competing in NASA's 8th Annual Robotic Mining Competition the chance to learn from female NASA scientists, engineers and professionals about their careers and the paths they took to working at Kennedy. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.
Exploring Primary Children's Views and Experiences of the School Ground: The Case of a Greek School
ERIC Educational Resources Information Center
Christidou, Vasilia; Tsevreni, Irida; Epitropou, Maria; Kittas, Constantinos
2013-01-01
The present study explores the use of a conventional school ground of a primary school and its potential as a space for creative play and environmental learning. Children's play behavior and views of the school ground are explored, as well as their vision for its improvement. The research constitutes part of a wider school ground project and was…
NASA Technical Reports Server (NTRS)
Garber, T.; Hiland, J.; Orletsky, D.; Augenstein, B.; Miller, M.
1991-01-01
A number of transportation and propulsion options for Mars exploration missions are analyzed. As part of Project Outreach, RAND received and evaluated 350 submissions in the launch vehicle, space transportation, and propulsion areas. After screening submissions, aggregating those that proposed identical or nearly identical concepts, and eliminating from further consideration those that violated known physical princples, we had reduced the total number of viable submissions to 213. In order to avoid comparing such disparate things as launch vehicles and electric propulsion systems, six broad technical areas were selected to categorize the submissions: space transportation systems; earth-to-orbit (ETO) launch systems; chemical propulsion; nuclear propulsion; low-thrust propulsion; and other. To provide an appropriate background for analyzing the submissions, an extensive survey was made of the various technologies relevant to the six broad areas listed above. We discuss these technologies with the intent of providing the reader with an indication of the current state of the art, as well as the advances that might be expected within the next 10 to 20 years.
ROBOTIC MINING COMPETITORS BREAKFAST WITH NASA WOMEN ENGINEERS AND SCIENTISTS
2017-05-25
More than 40 female NASA engineers and scientists shared insights into their successful careers with several hundred students at NASA’s Women in STEM Mentoring Breakfast on Thursday, May 25, at Kennedy Space Center’s Debus Center in Florida. The students, members of the 45 teams in the 2017 NASA Robotic Mining Competition, sat alongside the female mentors and, between bites, learned of what paths the women took to establish their own careers in a field of science, technology, engineering and math, also known as STEM. Managed by, and held annually at Kennedy Space Center, the Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to engage and retain students in STEM fields by expanding opportunities for student research and design. The project provides a competitive environment to foster innovative ideas and solutions with potential use on NASA’s deep space exploration missions, including to Mars. SOTs (In order of appearance): Janet Petro, Deputy Director, NASA Kennedy Space Center Camille Stimpson, Melbourne Central Catholic High School (Florida), Observer of Event Lynette Sugatan, Oakton Comminity College (Illinois), “Oaktobotics”
Development of Electronics for Low-Temperature Space Missions
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Hammoud, Ahmad; Dickman, John E.; Gerber, Scott S.; Overton, Eric
2001-01-01
Electronic systems that are capable of operating at cryogenic temperatures will be needed for many future NASA space missions, including deep space probes and spacecraft for planetary surface exploration. In addition to being able to survive the harsh deep space environment, low-temperature electronics would help improve circuit performance, increase system efficiency, and reduce payload development and launch costs. Terrestrial applications where components and systems must operate in low-temperature environments include cryogenic instrumentation, superconducting magnetic energy storage, magnetic levitation transportation systems, and arctic exploration. An ongoing research and development project for the design, fabrication, and characterization of low-temperature electronics and supporting technologies at NASA Glenn Research Center focuses on efficient power systems capable of surviving in and exploiting the advantages of low-temperature environments. Supporting technologies include dielectric and insulating materials, semiconductor devices, passive power components, optoelectronic devices, and packaging and integration of the developed components into prototype flight hardware. An overview of the project is presented, including a description of the test facilities, a discussion of selected data from component testing, and a presentation of ongoing research activities being performed in collaboration with various organizations.
NASA Astrophysics Data System (ADS)
Sanders, Gerald B.; Larson, William E.
2015-05-01
A key aspect of enabling an affordable and sustainable program of human exploration beyond low Earth orbit is the ability to locate, extract, and harness the resources found in space to reduce what needs to be launched from Earth's deep gravity well and to minimize the risk of dependence on Earth for survival. Known as In Situ Resource Utilization or ISRU, the ability to convert space resources into useful and mission critical products has been shown in numerous studies to be mission and architecture enhancing or enabling. However at the time of the release of the US Vision for Space Exploration in 2004, only concept feasibility hardware for ISRU technologies and capabilities had been built and tested in the laboratory; no ISRU hardware had ever flown in a mission to the Moon or Mars. As a result, an ISRU development project was established with phased development of multiple generations of hardware and systems. To bridge the gap between past ISRU feasibility hardware and future hardware needed for space missions, and to increase confidence in mission and architecture planners that ISRU capabilities would meet exploration needs, the ISRU development project incorporated extensive ground and analog site testing to mature hardware, operations, and interconnectivity with other exploration systems linked to ISRU products. This report documents the series of analog test activities performed from 2008 to 2012, the stepwise progress achieved, and the end-to-end system and mission demonstrations accomplished in this test program.
NASA Technical Reports Server (NTRS)
Stoffel, Wilhelm; Mendell, Wendell W.
1991-01-01
An international Mars mission aimed at designing a long term, multinational program for conducting scientific exploration of Mars and developing and/or validating technology enabling the eventual human settlement on the planet is discussed. Emphasis is placed on political and legal issues of the project.
ERIC Educational Resources Information Center
O'Brien, William E.
2007-01-01
This article discusses a class project on residential segregation in Florida's metropolitan areas for which students analyzed trends regarding African Americans relative to white populations using data from 1980 to 2000. The project provided a means of teaching the importance of geographical perspectives to nongeography students in an…
Thirty years together: A chronology of U.S.-Soviet space cooperation
NASA Technical Reports Server (NTRS)
Portree, David S. F.
1993-01-01
The chronology covers 30 years of cooperation between the U.S. and the Soviet Union (and its successor, the Commonwealth of Independent States, of which the Russian Federation is the leading space power). It tracks successful cooperative projects and failed attempts at space cooperation. Included are the Dryden-Blagonravov talks; the UN Space Treaties; the Apollo Soyuz Test Project; COSPAS-SARSAT; the abortive Shuttle-Salyut discussions; widespread calls for joint manned and unmanned exploration of Mars; conjectural plans to use Energia and other Russian space hardware in ambitious future joint missions; and contemporary plans involving the U.S. Shuttle, Russian Mir, and Soyuz-TM. The chronology also includes events not directly related to space cooperation to provide context. A bibliography lists works and individuals consulted in compiling the chronology, plus works not used but relevant to the topic of space cooperation.
US Cosmic Visions: New Ideas in Dark Matter 2017 : Community Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, J.; Fox, P.; Dawson, W. A.
This white paper summarizes the workshop “U.S. Cosmic Visions: New Ideas in Dark Matter” held at University of Maryland from March 23-25. The flagships of the US Dark Matter search program are the G2 experiments ADMX, LZ, and SuperCDMS, which will cover well-motivated axion and WIMP dark matter over a range of masses. The workshop assumes that a complete exploration of this parameter space remains the highest priority of the dark matter community, and focuses instead on the science case for additional new small-scale projects in dark matter science that complement the G2 program (and other ongoing projects worldwide). Itmore » therefore concentrates on exploring distinct, well-motivated parameter space that will not be covered by the existing program; on surveying ideas for such projects (i.e. projects costing ~$10M or less); and on placing these ideas in a global context. The workshop included over 100 presentations of new ideas, proposals and recent science and R&D results from the US and international scientific community.« less
The 2015-2016 SEPMAP Program at NASA JSC: Science, Engineering, and Program Management Training
NASA Technical Reports Server (NTRS)
Graham, L.; Archer, D.; Bakalyar, J.; Berger, E.; Blome, E.; Brown, R.; Cox, S.; Curiel, P.; Eid, R.; Eppler, D.;
2017-01-01
The Systems Engineering Project Management Advancement Program (SEPMAP) at NASA Johnson Space Center (JSC) is an employee development program designed to provide graduate level training in project management and systems engineering. The program includes an applied learning project with engineering and integrated science goals requirements. The teams were presented with a task: Collect a representative sample set from a field site using a hexacopter platform, as if performing a scientific reconnaissance to assess whether the site is of sufficient scientific interest to justify exploration by astronauts. Four teams worked through the eighteen-month course to design customized sampling payloads integrated with the hexacopter, and then operate the aircraft to meet sampling requirements of number (= 5) and mass (= 5g each). The "Mars Yard" at JSC was utilized for this purpose. This project activity closely parallels NASA plans for the future exploration of Mars, where remote sites will be reconnoitered ahead of crewed exploration.
Perspectives from space: NASA classroom information and activities
NASA Technical Reports Server (NTRS)
1992-01-01
This booklet contains the information and classroom activities included on the backs of the eight poster series, 'Perspectives From Space'. The first series, Earth, An Integrated System, contains information on global ecology, remote sensing from space, data products, earth modeling, and international environmental treaties. The second series, Patterns Among Planets, contains information on the solar system, planetary processes, impacts and atmospheres, and a classroom activity on Jupiter's satellite system. The third series, Our Place In The Cosmos, contains information on the scale of the universe, origins of the universe, mission to the universe, and three classroom activities. The fourth series, Our Sun, The Nearest Star, contains information on the Sun. The fifth series, Oasis Of Life, contains information on the development of life, chemical and biological evolution on Earth and the search for other life in the universe. The sixth series, The Influence Of Gravity, contains information on Newton's Law of Gravity, space and microgravity, microgravity environment, and classroom activities on gravity. The seventh series, The Spirit Of Exploration, contains information on space exploration, the Apollo Program, future exploration activities, and two classroom activities. The eighth series, Global Cooperation, contains information on rocketry, the space race, and multi-nation exploration projects.
2012-08-03
CAPE CANAVERAL, Fla. – Inside the Space Life Sciences Laboratory, or SLSL, at NASA’s Kennedy Space Center in Florida, red leaf lettuce plants were harvested from a plant growth chamber. The plants were grown under red and blue LED lights. The plant experiment at Kennedy is part of the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. This plant experiment studies the effects of different types of lighting on plants such as radishes and leaf lettuce. Results of these studies will help provide information on how to grow food sources for deep space exploration missions. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. Photo credit: NASA/Frank Ochoa-Gonzales
Destination Deimos: A Design Reference Architecture for Initial Human Exploration of the Mars System
NASA Technical Reports Server (NTRS)
Logan, James S.; Adamo, D. R.
2011-01-01
The two biggest challenges to successful human operations in interplanetary space are flight dynamics, constrained by the cold hard physics of the rocket equation, and bioastronautics, the psychophysiological realities of human adaptation, or lack thereof, to the deep space environment. Without substantial innovation in project/mission architecture and vehicle design, human exploration of the Mars system could be problematic for decades. Although a human landing on Mars is inevitable, humans-in-the-loop telerobotic exploration from the outer Martian moon Deimos is the best way to begin. Precursor robotic missions for reconnaissance and local site preparation will be required.
Engineering America's Future in Space: Systems Engineering Innovations for Sustainable Exploration
NASA Technical Reports Server (NTRS)
Dumbacher, Daniel L.; Caruso, Pamela W.; Jones, Carl P.
2008-01-01
This viewgraph presentation reviews systems engineering innovations for Ares I and Ares V launch vehicles. The contents include: 1) NASA's Exploratoin Roadmap; 2) Launch Vehicle Comparisons; 3) Designing the Ares I and Ares V in House; 4) Exploring the Moon; and 5) Systems Engineering Adds Value Throughout the Project Lifecycle.
Carter Revises the Science Budget
ERIC Educational Resources Information Center
Science News, 1977
1977-01-01
Reviews budget changes made by President Carter in the following science areas: basic science research; fusion research and breeder reactor projects; oil and gas recovery; coal conversion techniques; and space exploration. (CS)
Exploration of the Chemical Space of Public Genomic Databases
The current project aims to chemically index the content of public genomic databases to make these data accessible in relation to other publicly available, chemically-indexed toxicological information.
2008-02-01
KENNEDY SPACE CENTER, FLA. -- At the NASA's Kennedy Space Center Visitor Complex, NASA Administrator Michael Griffin (left) and Indian Space Research Organization Chairman G. Madhavan Nair show their pleasure after signing a framework agreement establishing the terms for future cooperation between the two agencies in the exploration and use of outer space for peaceful purposes. According to the framework agreement, the two agencies will identify areas of mutual interest and seek to develop cooperative programs or projects in Earth and space science, exploration, human space flight and other activities. In addition to a long history of cooperation in Earth science, NASA and the Indian Space Research Organization also are cooperating on India's first, mission to the moon, Chandrayaan-1, which will be launched later this year. NASA is providing two of the 11 instruments on the spacecraft: the moon mineralogy mapper instrument and the miniature synthetic aperture radar instrument. Photo credit: NASA/Kim Shiflett
2008-02-01
KENNEDY SPACE CENTER, FLA. -- At a ceremony at the NASA's Kennedy Space Center Visitor Complex, NASA Administrator Michael Griffin (left) and Indian Space Research Organization Chairman G. Madhavan Nair sign a framework agreement establishing the terms for future cooperation between the two agencies in the exploration and use of outer space for peaceful purposes. According to the framework agreement, the two agencies will identify areas of mutual interest and seek to develop cooperative programs or projects in Earth and space science, exploration, human space flight and other activities. In addition to a long history of cooperation in Earth science, NASA and the Indian Space Research Organization also are cooperating on India's first, mission to the moon, Chandrayaan-1, which will be launched later this year. NASA is providing two of the 11 instruments on the spacecraft: the moon mineralogy mapper instrument and the miniature synthetic aperture radar instrument. Photo credit: NASA/Kim Shiflett
Research and technology, Lyndon B. Johnson Space Center
NASA Technical Reports Server (NTRS)
1984-01-01
Johnson Space Center accomplishments in new and advanced concepts during 1984 are highlighted. Included are research funded by the Office of Aeronautics and Space Technology; Advanced Programs tasks funded by the Office of Space Flight; and Solar System Exploration and Life Sciences research funded by the Office of Space Sciences and Applications. Summary sections describing the role of the Johnson Space Center in each program are followed by one page descriptions of significant projects. Descriptions are suitable for external consumption, free of technical jargon, and illustrated to increase ease of comprehension.
SpaceX CRS-11 "What's on Board?" Science Briefing
2017-05-31
Miriam Sargusingh, project lead for the Capillary Structures for Exploration Life Support, or CSELS, experiment, speaks to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on experiments and instruments to be delivered to the International Space Station on SpaceX CRS-11. A Dragon spacecraft is scheduled to be launched from Kennedy’s Launch Complex 39A on June 1 atop a SpaceX Falcon 9 rocket on the company's 11th Commercial Resupply Services mission to the space station.
Commercial Contributions to the Success of the HEDS Enterprise: A Working Model
NASA Technical Reports Server (NTRS)
Nall, Mark; Askew, Ray
2000-01-01
The future of NASA involves the exploration of space beyond the confines of orbit about the Earth. This includes robotic investigations and Human Exploration and Development of Space (HEDS). The HEDS Strategic Plan states: "HEDS will join with the private sector to stimulate opportunities for commercial development in space as a key to future settlement. Near-term efforts will emphasize joint pilot projects that provide clear benefit to Earth from the development of near-Earth space." In support of this endeavor, NASA has established the Commercial Development of Space as a prime goal and is exploring all the ways in which NASA might make contributions to this development. NASA has long supported the development of space for commercial use. In 1985 it formally established and provided funds to support a program which created a number of joint ventures between universities and industry for this purpose. These were known as Centers for the Commercial Development of Space (CCDS). In 1999 NASA established a broader policy on commercialization with the aim of encouraging near-term commercial investment in conjunction with the International Space Station. Joint pilot projects will be initiated to stimulate this near-term investment. The long-term development of commercial concepts utilizing space access continues through the activities of the Commercial Space Centers (CSC), a sub-set of the original CCDS group. These Centers primarily require access to space for the conduct of their work. The remainder of the initial Centers focus on the development of tools and infrastructure to support users of the space environment. It is in this arena that long term development for commercial use and infrastructure development will occur. This paper will provide a retrospective examination of the Commercial Centers, the variety of models employed, the lessons learned, and the progress to date. This review will provide the bases for how successful models can be employed to accelerate private investment in the development of the infrastructure necessary for the success of the HEDS enterprise.
Expanding Public Outreach: The Solar System Ambassadors Program
NASA Astrophysics Data System (ADS)
Ferrari, K.
2001-12-01
The Solar System Ambassadors Program is a public outreach program designed to work with motivated volunteers across the nation. These competitively selected volunteers organize and conduct public events that communicate exciting discoveries and plans in Solar System research, exploration and technology through non-traditional forums. In 2001, 206 Ambassadors from almost all 50 states bring the excitement of space to the public. Ambassadors are space enthusiasts, who come from all walks of life. Last year, Ambassadors conducted almost 600 events that reached more than one-half million people in communities across the United States. The Solar System Ambassadors Program is sponsored by the Jet Propulsion Laboratory (JPL) in Pasadena, California, an operating division of the California Institute of Technology (Caltech) and a lead research and development center for the National Aeronautics and Space Administration (NASA). Participating JPL organizations include Cassini, Galileo, STARDUST, Outer Planets mission, Genesis, Ulysses, Voyager, Mars missions, Discovery missions NEAR and Deep Impact, Deep Space Network, Solar System Exploration Forum and the Education and Public Outreach Office. Each Ambassador participates in on-line (web-based) training sessions that provide interaction with NASA scientists, engineers and project team members. As such, each Ambassador's experience with the space program becomes personalized. Training sessions provide Ambassadors with general background on each mission and educate them concerning specific mission milestones, such as launches, planetary flybys, first image returns, arrivals, and ongoing key discoveries. Additionally, projects provide limited supplies of materials, online resource links and information. Integrating volunteers across the country in a public-engagement program helps optimize project funding set aside for education and outreach purposes, establishing a nationwide network of regional contacts. At the same time, members of communities across the country become an extended part of each mission's team and an important interface between the space exploration community and the general public at large. >http://www.jpl.nasa.gov/ambassador/front.html
NASA Technical Reports Server (NTRS)
Nowakowski, Barbara S.; Palmer, Wesley F.
1985-01-01
This document catalogs Space Shuttle hand-held Earth observations photography which was collected on the Space Transportation System (STS) 41-G mission of October 1984. The catalog includes the following data for each of 2480 frames: geographical name, feature description, latitude and longitude, percentage of cloud cover, look direction and tilt, lens focal length, exposure evaluation, stereopairs, and orbit number. The catalog is a product of the Space Shuttle Earth Observations Project, Solar System Exploration Division, Space and Life Sciences Directorate, of the National Aeronautics and Space Administration, Lyndon B. Johnson Space Center.
Space Radiation and Exploration - Information for the Augustine Committee Review
NASA Technical Reports Server (NTRS)
Cucinotta, Francis; Semones, Edward; Kim, Myung-Hee; Jackson, Lori
2009-01-01
Space radiation presents significant health risks including mortality for Exploration missions: a) Galactic cosmic ray (GCR) heavy ions are distinct from radiation that occurs on Earth leading to different biological impacts. b) Large uncertainties in GCR risk projections impact ability to design and assess mitigation approaches and select crew. c) Solar Proton Events (SPEs) require new operational and shielding approaches and new biological data on risks. Risk estimates are changing as new scientific knowledge is gained: a) Research on biological effects of space radiation show qualitative and quantitative differences with X- or gamma-rays. b) Expert recommendations and regulatory policy are changing. c) New knowledge leads to changes in estimates for the number of days in space to stay below Permissible Exposure Limits (PELS).
German activities in optical space instrumentation
NASA Astrophysics Data System (ADS)
Hartmann, G.
2018-04-01
In the years of space exploration since the mid-sixties, a wide experience in optical space instrumentation has developed in Germany. This experience ranges from large telescopes in the 1 m and larger category with the accompanying focal plane detectors and spectrometers for all regimes of the electromagnetic spectrum (infrared, visible, ultraviolet, x-rays), to miniature cameras for cometary and planetary explorations. The technologies originally developed for space science. are now also utilized in the fields of earth observation and even optical telecommunication. The presentation will cover all these areas, with examples for specific technological or scientific highlights. Special emphasis will be given to the current state-of-the-art instrumentation technologies in scientific institutions and industry, and to the future perspective in approved and planned projects.
NASA Technical Reports Server (NTRS)
Lundebjerg, Kristen
2016-01-01
The STEM on Station team is part of Education which is part of the External Relations organization (ERO). ERO has traditional goals based around BHAG (Big Hairy Audacious Goal). The BHAG model is simplified to a saying: Everything we do stimulates actions by others to advance human space exploration. The STEM on Station education initiate is a project focused on bringing off the earth research and learning into classrooms. Educational resources such as lesson plans, activities to connect with the space station and STEM related contests are available and hosted by the STEM on Station team along with their partners such as Texas Instruments. These educational activities engage teachers and students in the current happenings aboard the international space station, inspiring the next generation of space explorers.
NASA Technical Reports Server (NTRS)
Grigor'ev, A. I. (Editor); Klein, K. E. (Editor); Nicogossian, A. (Editor)
1991-01-01
The present conference on findings from space life science investigations relevant to long-term earth orbit and planetary exploration missions, as well as considerations for future research projects on these issues, discusses the cardiovascular system and countermeasures against its deterioration in the microgravity environment, cerebral and sensorimotor functions, findings to date in endocrinology and immunology, the musculoskeletal system, and health maintenance and medical care. Also discussed are radiation hazards and protective systems, life-support and habitability factors, and such methodologies and equipment for long space mission research as the use of animal models, novel noninvasive techniques for space crew health monitoring, and an integrated international aerospace medical information system.
High-Power Hall Propulsion Development at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Kamhawi, Hani; Manzella, David H.; Smith, Timothy D.; Schmidt, George R.
2014-01-01
The NASA Office of the Chief Technologist Game Changing Division is sponsoring the development and testing of enabling technologies to achieve efficient and reliable human space exploration. High-power solar electric propulsion has been proposed by NASA's Human Exploration Framework Team as an option to achieve these ambitious missions to near Earth objects. NASA Glenn Research Center (NASA Glenn) is leading the development of mission concepts for a solar electric propulsion Technical Demonstration Mission. The mission concepts are highlighted in this paper but are detailed in a companion paper. There are also multiple projects that are developing technologies to support a demonstration mission and are also extensible to NASA's goals of human space exploration. Specifically, the In-Space Propulsion technology development project at NASA Glenn has a number of tasks related to high-power Hall thrusters including performance evaluation of existing Hall thrusters; performing detailed internal discharge chamber, near-field, and far-field plasma measurements; performing detailed physics-based modeling with the NASA Jet Propulsion Laboratory's Hall2De code; performing thermal and structural modeling; and developing high-power efficient discharge modules for power processing. This paper summarizes the various technology development tasks and progress made to date
High-Power Hall Propulsion Development at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Kamhawi, Hani; Manzella, David H.; Smith, Timothy D.; Schmidt, George R.
2012-01-01
The NASA Office of the Chief Technologist Game Changing Division is sponsoring the development and testing of enabling technologies to achieve efficient and reliable human space exploration. High-power solar electric propulsion has been proposed by NASA's Human Exploration Framework Team as an option to achieve these ambitious missions to near Earth objects. NASA Glenn Research Center is leading the development of mission concepts for a solar electric propulsion Technical Demonstration Mission. The mission concepts are highlighted in this paper but are detailed in a companion paper. There are also multiple projects that are developing technologies to support a demonstration mission and are also extensible to NASA's goals of human space exploration. Specifically, the In-Space Propulsion technology development project at the NASA Glenn has a number of tasks related to high-power Hall thrusters including performance evaluation of existing Hall thrusters; performing detailed internal discharge chamber, near-field, and far-field plasma measurements; performing detailed physics-based modeling with the NASA Jet Propulsion Laboratory's Hall2De code; performing thermal and structural modeling; and developing high-power efficient discharge modules for power processing. This paper summarizes the various technology development tasks and progress made to date.
On the Organisation of World Ships and Other Gigascale Interstellar Space Exploration Projects
NASA Astrophysics Data System (ADS)
Ceyssens, F.; Driesen, M.; Wouters, K.
The development and deployment of world ships or other feats of interstellar exploration will without doubt require orders of magnitude more resources than needed for current or past megaprojects (Apollo, Iter, LHC,...). Question is how enough resources for such gigaprojects can be found in a scenario assuming limited, moderate economic growth throughout the next centuries, i.e. without human population and productivity continuing to grow exponentially, and without extreme events such as economic collapse or singularity.Three defining features of gigascale space projects are identified, which should be recognized to the fullest: their almost absolute nonprofit character, their massive cost in terms of time and resources and their non-urgency leading to procrastina- tion. It will be argued that the best chance of getting a world ship or another interstellar project started in this generation is to establish an international network of non governmental organizations (NGOs) focused on private and public fundraising for interstellar exploration and supporting a bottom-up societal movement, similar to e.g. the WWF. It will be shown that this path can reduce the massive barriers to entry as well as the level of governmental support needed.
Modular Software Interfaces for Revolutionary Flexibility in Space Operations
NASA Technical Reports Server (NTRS)
Glass, Brian; Braham, Stephen; Pollack, Jay
2005-01-01
To make revolutionary improvements in exploration, space systems need to be flexible, realtime reconfigurable, and able to trade data transparently among themselves and mission operations. Onboard operations systems, space assembly coordination and EVA systems in exploration and construction all require real-time modular reconfigurability and data sharing. But NASA's current exploration systems are still largely legacies from hastily-developed, one-off Apollo-era practices. Today's rovers, vehicles, spacesuits, space stations, and instruments are not able to plug-and-play, Lego-like: into different combinations. Point-to-point dominates - individual suit to individual vehicle, individual instrument to rover. All are locally optimized, all unique, each of the data interfaces has been recoded for each possible combination. This will be an operations and maintenance nightmare in the much larger Project Constellation system of systems. This legacy approach does not scale to the hundreds of networked space components needed for space construction and for new, space-based approaches to Earth-Moon operations. By comparison, battlefield information management systems, which are considered critical to military force projection, have long since abandoned a point-to-point approach to systems integration. From a system-of-systems viewpoint, a clean-sheet redesign of the interfaces of all exploration systems is a necessary prerequisite before designing the interfaces of the individual exploration systems. Existing communications and Global Information Grid and middleware technologies are probably sufficient for command and control and information interfaces, with some hardware and time-delay modifications for space environments. NASA's future advanced space operations must also be information and data compatible with aerospace operations and surveillance systems being developed by other US Government agencies such as the Department of Homeland Security, Federal Aviation Administration and Department of Defense. This paper discusses fundamental system-of-systems infrastructure: approaches and architectures for modular plug-and-play software interfaces for revolutionary improvements in flexibility, modularity, robustness, ease of maintenance, reconfigurability, safety and productivity. Starting with middleware, databases, and mobile communications technologies, our technical challenges will be to apply these ideas to the requirements of constellations of space systems and to implement them initially on prototype space hardware. This is necessary to demonstrate an integrated information sharing architecture and services. It is a bottom-up approach, one that solves the problem of space operations data integration. Exploration demands uniform software mechanisms for application information interchange, and the corresponding uniformly available software services to enhance these mechanisms. We will examine the issues in plug-and-play, real-time-configurable systems, including common definition and management and tracking of data and information among many different space systems. Different field test approaches are discussed, including the use of the International Space Station and terrestrial analog mission operations at field sites.
2012-07-16
CAPE CANAVERAL, Fla. –This panoramic view shows a rock and crater-filled planetary scape has been built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prot otype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett
Nanophotonic biosensor for space exploration (PBSA instrument)
NASA Astrophysics Data System (ADS)
Pantoja, S.; Parro, V.; Nestler, J.; Geidel, S.; Martins, R.; Cuesta, F.; Elvira, J. G.; Sousa, A.
2017-11-01
One of the biggest challenges of Astrobiology is the search for clear signs of present or past life on other planetary bodies. Thus, this poster will describe the project "Photonic Biosensor for Space Application" (PBSA, www.pbsa-fp7.eu) founded by the Directorate-General for Enterprise and Industry (DG ENTR) within the European Commission and managed by the Unit S2 (Space Research) of the Research European Agency (REA).
JAXA_PAOEvent_KanaiProject_2018_096_1115__636932
2018-04-09
SPACE STATION CREW MEMBER DISCUSSES LIFE IN SPACE WITH JAPANESE STUDENTS---- Aboard the International Space Station, Expedition 55 Flight Engineer Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed life and research on the orbital outpost during an in-flight question and answer session April 2 with students at the Yoshikawa City Child Center in Japan. Kanai is in the midst of a six-month mission on the station.
The Distributed Space Exploration Simulation (DSES)
NASA Technical Reports Server (NTRS)
Crues, Edwin Z.; Chung, Victoria I.; Blum, Mike G.; Bowman, James D.
2007-01-01
The paper describes the Distributed Space Exploration Simulation (DSES) Project, a research and development collaboration between NASA centers which focuses on the investigation and development of technologies, processes and integrated simulations related to the collaborative distributed simulation of complex space systems in support of NASA's Exploration Initiative. This paper describes the three major components of DSES: network infrastructure, software infrastructure and simulation development. In the network work area, DSES is developing a Distributed Simulation Network that will provide agency wide support for distributed simulation between all NASA centers. In the software work area, DSES is developing a collection of software models, tool and procedures that ease the burden of developing distributed simulations and provides a consistent interoperability infrastructure for agency wide participation in integrated simulation. Finally, for simulation development, DSES is developing an integrated end-to-end simulation capability to support NASA development of new exploration spacecraft and missions. This paper will present current status and plans for each of these work areas with specific examples of simulations that support NASA's exploration initiatives.
Goddard's Astrophysics Science Divsion Annual Report 2014
NASA Technical Reports Server (NTRS)
Weaver, Kimberly (Editor); Reddy, Francis (Editor); Tyler, Pat (Editor)
2015-01-01
The Astrophysics Science Division (ASD, Code 660) is one of the world's largest and most diverse astronomical organizations. Space flight missions are conceived, built and launched to observe the entire range of the electromagnetic spectrum, from gamma rays to centimeter waves. In addition, experiments are flown to gather data on high-energy cosmic rays, and plans are being made to detect gravitational radiation from space-borne missions. To enable these missions, we have vigorous programs of instrument and detector development. Division scientists also carry out preparatory theoretical work and subsequent data analysis and modeling. In addition to space flight missions, we have a vibrant suborbital program with numerous sounding rocket and balloon payloads in development or operation. The ASD is organized into five labs: the Astroparticle Physics Lab, the X-ray Astrophysics Lab, the Gravitational Astrophysics Lab, the Observational Cosmology Lab, and the Exoplanets and Stellar Astrophysics Lab. The High Energy Astrophysics Science Archive Research Center (HEASARC) is an Office at the Division level. Approximately 400 scientists and engineers work in ASD. Of these, 80 are civil servant scientists, while the rest are resident university-based scientists, contractors, postdoctoral fellows, graduate students, and administrative staff. We currently operate the Swift Explorer mission and the Fermi Gamma-ray Space Telescope. In addition, we provide data archiving and operational support for the XMM mission (jointly with ESA) and the Suzaku mission (with JAXA). We are also a partner with Caltech on the NuSTAR mission. The Hubble Space Telescope Project is headquartered at Goddard, and ASD provides Project Scientists to oversee operations at the Space Telescope Science Institute. Projects in development include the Neutron Interior Composition Explorer (NICER) mission, an X-ray timing experiment for the International Space Station; the Transiting Exoplanet Sky Survey (TESS) Explorer mission, in collaboration with MIT (Ricker, PI); the Soft X-ray Spectrometer (SXS) for the Astro-H mission in collaboration with JAXA, and the James Webb Space Telescope (JWST). The Wide-Field Infrared Survey Telescope (WFIRST), the highest ranked mission in the 2010 decadal survey, is in a pre-phase A study, and we are supplying study scientists for that mission.
Deep Space Network-Wide Portal Development: Planning Service Pilot Project
NASA Technical Reports Server (NTRS)
Doneva, Silviya
2011-01-01
The Deep Space Network (DSN) is an international network of antennas that supports interplanetary spacecraft missions and radio and radar astronomy observations for the exploration of the solar system and the universe. DSN provides the vital two-way communications link that guides and controls planetary explorers, and brings back the images and new scientific information they collect. In an attempt to streamline operations and improve overall services provided by the Deep Space Network a DSN-wide portal is under development. The project is one step in a larger effort to centralize the data collected from current missions including user input parameters for spacecraft to be tracked. This information will be placed into a principal repository where all operations related to the DSN are stored. Furthermore, providing statistical characterization of data volumes will help identify technically feasible tracking opportunities and more precise mission planning by providing upfront scheduling proposals. Business intelligence tools are to be incorporated in the output to deliver data visualization.
NASA Advanced Explorations Systems: Advancements in Life Support Systems
NASA Technical Reports Server (NTRS)
Shull, Sarah A.; Schneider, Walter F.
2016-01-01
The NASA Advanced Exploration Systems (AES) Life Support Systems (LSS) project strives to develop reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support systems (ECLSS) critical to enabling long duration human missions beyond low Earth orbit (LEO). Highly reliable, closed-loop life support systems are among the capabilities required for the longer duration human space exploration missions assessed by NASA's Habitability Architecture Team (HAT). The LSS project is focused on four areas: architecture and systems engineering for life support systems, environmental monitoring, air revitalization, and wastewater processing and water management. Starting with the international space station (ISS) LSS systems as a point of departure (where applicable), the mission of the LSS project is three-fold: 1. Address discrete LSS technology gaps 2. Improve the reliability of LSS systems 3. Advance LSS systems towards integrated testing on the ISS. This paper summarized the work being done in the four areas listed above to meet these objectives. Details will be given on the following focus areas: Systems Engineering and Architecture- With so many complex systems comprising life support in space, it is important to understand the overall system requirements to define life support system architectures for different space mission classes, ensure that all the components integrate well together and verify that testing is as representative of destination environments as possible. Environmental Monitoring- In an enclosed spacecraft that is constantly operating complex machinery for its own basic functionality as well as science experiments and technology demonstrations, it's possible for the environment to become compromised. While current environmental monitors aboard the ISS will alert crew members and mission control if there is an emergency, long-duration environmental monitoring cannot be done in-orbit as current methodologies rely largely on sending environmental samples back to Earth. The LSS project is developing onboard analysis capabilities that will replace the need to return air and water samples from space for ground analysis. Air Revitalization- The air revitalization task is comprised of work in carbon dioxide removal, oxygen generation and recovery and trace contamination and particulate control. The CO2 Removal and associated air drying development efforts under the LSS project are focused both on improving the current SOA technology on the ISS and assessing and examining the viability of other sorbents and technologies available in academia and industry. The Oxygen Generation and Recovery technology development area encompasses several sub-tasks in an effort to supply O2 to the crew at the required conditions, to recover O2 from metabolic CO2, and to recycle recovered O2 back to the cabin environment. Current state-of-the-art oxygen generation systems aboard space station are capable of generating or recovering approximately 40% of required oxygen; for exploration missions this percentage needs to be greatly increased. A spacecraft cabin trace contaminant and particulate control system serves to keep the environment below the spacecraft maximum allowable concentration (SMAC) for chemicals and particulates. Both passive (filters) and active (scrubbers) methods contribute to the overall TC & PC design. Work in the area of trace contamination and particulate control under the LSS project is focused on making improvements to the SOA TC & PC systems on ISS to improve performance and reduce consumables. Wastewater Processing and Water Management- A major goal of the LSS project is the development of water recovery systems to support long duration human exploration beyond LEO. Current space station wastewater processing and water management systems distill urine and wastewater to recover water from urine and humidity condensate in the spacecraft at a approximately 74% recovery rate. For longer, farther missions into deep space, that recovery rate must be greatly increased so that astronauts can journey for months without resupply cargo ships from Earth.
Product Assurance Targeted to Meet Mission Objectives
NASA Technical Reports Server (NTRS)
Mclaughlin, Diane
1991-01-01
Topics concerning the Common Lunar Lander for the Space Exploration Initiative are covered and include the following: product assurance tools and supports; project goals; and product assurance structured for optimal payback.
Recommendations for Exploration Space Medicine from the Apollo Medical Operations Project
NASA Technical Reports Server (NTRS)
Scheuring, R. a.; Davis, J. R.; Duncan, J. M.; Polk, J. D.; Jones, J. A.; Gillis, D. B.
2007-01-01
Introduction: A study was requested in December, 2005 by the Space Medicine Division at the NASA-Johnson Space Center (JSC) to identify Apollo mission issues relevant to medical operations that had impact to crew health and/or performance. The objective was to use this new information to develop medical requirements for the future Crew Exploration Vehicle (CEV), Lunar Surface Access Module (LSAM), Lunar Habitat, and Advanced Extravehicular Activity (EVA) suits that are currently being developed within the exploration architecture. Methods: Available resources pertaining to medical operations on the Apollo 7 through 17 missions were reviewed. Ten categories of hardware, systems, or crew factors were identified in the background research, generating 655 data records in a database. A review of the records resulted in 280 questions that were then posed to surviving Apollo crewmembers by mail, face-to-face meetings, or online interaction. Response analysis to these questions formed the basis of recommendations to items in each of the categories. Results: Thirteen of 22 surviving Apollo astronauts (59%) participated in the project. Approximately 236 pages of responses to the questions were captured, resulting in 107 recommendations offered for medical consideration in the design of future vehicles and EVA suits based on the Apollo experience. Discussion: The goals of this project included: 1) Develop or modify medical requirements for new vehicles; 2) create a centralized database for future access; and 3) take this new knowledge and educate the various directorates at NASA-JSC who are participating in the exploration effort. To date, the Apollo Medical Operations recommendations are being incorporated into the exploration mission architecture at various levels and a centralized database has been developed. The Apollo crewmembers input has proved to be an invaluable resource, prompting ongoing collaboration as the requirements for the future exploration missions continue to evolve and be refined.
Teaching, learning, and planetary exploration
NASA Technical Reports Server (NTRS)
Brown, Robert A.
1992-01-01
The progress accomplished in the first five months of the three-year grant period of Teaching, Learning, and Planetary Exploration is presented. The objectives of this project are to discover new education products and services based on space science, particularly planetary exploration. An Exploration in Education is the umbrella name for the education projects as they are seen by teachers and the interested public. As described in the proposal, our approach consists of: (1) increasing practical understanding of the potential role and capabilities of the research community to contribute to basic education using new discoveries; (2) developing an intellectual framework for these contributions by supplying criteria and templates for the teacher's stories; (3) attracting astronomers, engineers, and technical staff to the project and helping them form productive education partnerships for the future, (4) exploring relevant technologies and networks for authoring and communicating the teacher's stories; (5) enlisting the participation of potential user's of the teacher's stories in defining the products; (6) actually producing and delivering many educationally useful teacher's stories; and (7) reporting the pilot study results with critical evaluation. Technical progress was made by assembling our electronic publishing stations, designing electronic publications based on space science, and developing distribution approaches for electronic products. Progress was made addressing critical issues by developing policies and procedures for securing intellectual property rights and assembling a focus group of teachers to test our ideas and assure the quality of our products. The following useful materials are being produced: the TOPS report; three electronic 'PictureBooks'; one 'ElectronicArticle'; three 'ElectronicReports'; ten 'PrinterPosters'; and the 'FaxForum' with an initial complement of printed materials. We have coordinated with planetary scientists and astronomers both at the technical and policy level to assure the efficiency and ultimate utility of these efforts to derive educational benefits from the space science and exploration program as a whole.
2014 Overview of NASA GRC Electrochemical Power and Energy Storage Technology
NASA Technical Reports Server (NTRS)
Reid, Concha M.
2014-01-01
Overview presentation to the IAPG Chemical Working Group meeting, discussing current electrochemical power and energy storage R and D at NASA GRC including missions, demonstrations, and reserch projects. Activities such as ISS Lithium-Ion Battery Replacements, the Advanced Exploration Systems Modular Power Systems project, Enabling Electric Aviation with Ultra-High Energy Litium Metal Batteries, Advanced Space Power Systems project, and SBIR STTR work, will be discussed.
A new metaphor for projection-based visual analysis and data exploration
NASA Astrophysics Data System (ADS)
Schreck, Tobias; Panse, Christian
2007-01-01
In many important application domains such as Business and Finance, Process Monitoring, and Security, huge and quickly increasing volumes of complex data are collected. Strong efforts are underway developing automatic and interactive analysis tools for mining useful information from these data repositories. Many data analysis algorithms require an appropriate definition of similarity (or distance) between data instances to allow meaningful clustering, classification, and retrieval, among other analysis tasks. Projection-based data visualization is highly interesting (a) for visual discrimination analysis of a data set within a given similarity definition, and (b) for comparative analysis of similarity characteristics of a given data set represented by different similarity definitions. We introduce an intuitive and effective novel approach for projection-based similarity visualization for interactive discrimination analysis, data exploration, and visual evaluation of metric space effectiveness. The approach is based on the convex hull metaphor for visually aggregating sets of points in projected space, and it can be used with a variety of different projection techniques. The effectiveness of the approach is demonstrated by application on two well-known data sets. Statistical evidence supporting the validity of the hull metaphor is presented. We advocate the hull-based approach over the standard symbol-based approach to projection visualization, as it allows a more effective perception of similarity relationships and class distribution characteristics.
Mars Science Laboratory Press Conference
2011-07-22
Michael Watkins (third from left), mission manager and project engineer, Mars Science Laboratory (MSL), Jet Propulsion Lab, Pasadena, Calif., speaks at a press conference at the Smithsonian's National Air and Space Museum on Friday, July 22, 2011 in Washington. From left to right, Watkins is joined by Dwayne Brown, NASA Headquarters public affairs officer; Michael Meyer, lead scientist Mars Exploration Program, NASA Headquarters; Watkins; John Grant, geologist, Smithsonian National Air and Space Museum in Washington; Dawn Sumner, geologist, University of California, Davis and John Grotzinger, MSL project scientist, JPL. Photo Credit: (NASA/Carla Cioffi)
Advanced Materials for Exploration Task Research Results
NASA Technical Reports Server (NTRS)
Cook, M. B. (Compiler); Murphy, K. L.; Schneider, T.
2008-01-01
The Advanced Materials for Exploration (AME) Activity in Marshall Space Flight Center s (MSFC s) Exploration Science and Technology Directorate coordinated activities from 2001 to 2006 to support in-space propulsion technologies for future missions. Working together, materials scientists and mission planners identified materials shortfalls that are limiting the performance of long-term missions. The goal of the AME project was to deliver improved materials in targeted areas to meet technology development milestones of NASA s exploration-dedicated activities. Materials research tasks were targeted in five areas: (1) Thermal management materials, (2) propulsion materials, (3) materials characterization, (4) vehicle health monitoring materials, and (5) structural materials. Selected tasks were scheduled for completion such that these new materials could be incorporated into customer development plans.
NASA Technical Reports Server (NTRS)
Beisert, Susan; Rodriggs, Michael; Moreno, Francisco; Korth, David; Gibson, Stephen; Lee, Young H.; Eagles, Donald E.
2013-01-01
Now that major assembly of the International Space Station (ISS) is complete, NASA's focus has turned to using this high fidelity in-space research testbed to not only advance fundamental science research, but also demonstrate and mature technologies and develop operational concepts that will enable future human exploration missions beyond low Earth orbit. The ISS as a Testbed for Analog Research (ISTAR) project was established to reduce risks for manned missions to exploration destinations by utilizing ISS as a high fidelity micro-g laboratory to demonstrate technologies, operations concepts, and techniques associated with crew autonomous operations. One of these focus areas is the development and execution of ISS Testbed for Analog Research (ISTAR) autonomous flight crew procedures intended to increase crew autonomy that will be required for long duration human exploration missions. Due to increasing communications delays and reduced logistics resupply, autonomous procedures are expected to help reduce crew reliance on the ground flight control team, increase crew performance, and enable the crew to become more subject-matter experts on both the exploration space vehicle systems and the scientific investigation operations that will be conducted on a long duration human space exploration mission. These tests make use of previous or ongoing projects tested in ground analogs such as Research and Technology Studies (RATS) and NASA Extreme Environment Mission Operations (NEEMO). Since the latter half of 2012, selected non-critical ISS systems crew procedures have been used to develop techniques for building ISTAR autonomous procedures, and ISS flight crews have successfully executed them without flight controller involvement. Although the main focus has been preparing for exploration, the ISS has been a beneficiary of this synergistic effort and is considering modifying additional standard ISS procedures that may increase crew efficiency, reduce operational costs, and raise the amount of crew time available for scientific research. The next phase of autonomous procedure development is expected to include payload science and human research investigations. Additionally, ISS International Partners have expressed interest in participating in this effort. The recently approved one-year crew expedition starting in 2015, consisting of one Russian and one U.S. Operating Segment (USOS) crewmember, will be used not only for long duration human research investigations but also for the testing of exploration operations concepts, including crew autonomy.
NASA's First Year Progress with Fuel Cell Advanced Development in Support of the Exploration Vision
NASA Technical Reports Server (NTRS)
Hoberecht, Mark
2007-01-01
NASA Glenn Research Center (GRC), in collaboration with Johnson Space Center (JSC), the Jet Propulsion Laboratory (JPL), Kennedy Space Center (KSC), and industry partners, is leading a proton-exchange-membrane fuel cell (PEMFC) advanced development effort to support the vision for Exploration. This effort encompasses the fuel cell portion of the Energy Storage Project under the Exploration Technology Development Program, and is directed at multiple power levels for both primary and regenerative fuel cell systems. The major emphasis is the replacement of active mechanical ancillary components with passive components in order to reduce mass and parasitic power requirements, and to improve system reliability. A dual approach directed at both flow-through and non flow-through PEMFC system technologies is underway. A brief overview of the overall PEMFC project and its constituent tasks will be presented, along with in-depth technical accomplishments for the past year. Future potential technology development paths will also be discussed.
2012-06-12
CAPE CANAVERAL, Fla. – NASA In Situ Resource Utilization Project Manager William Larson, back to camera, discusses the design and operation of the prototype rover Artemis Jr. for NASA’s Regolith and Environment Science and Oxygen and Lunar Volatile Extraction, or RESOLVE, project with media representatives during a rover demonstration in a field beside the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida. The rover and its drill are provided by the Canadian Space Agency and work in concert with NASA science instruments to prospect for water, ice and other lunar resources. RESOLVE also will demonstrate how future explorers can take advantage of resources at potential landing sites by manufacturing oxygen from soil. NASA will conduct field tests in July outside of Hilo, Hawaii, with equipment and concept vehicles that demonstrate how explorers might prospect for resources and make their own oxygen for survival while on other planetary bodies. For more information, visit http://www.nasa.gov/exploration/analogs/index.html. Photo credit: NASA/Dimitri Gerondidakis
2012-06-12
CAPE CANAVERAL, Fla. – NASA In Situ Resource Utilization Project Manager William Larson, back to rover, discusses the design and operation of the prototype rover Artemis Jr. for NASA’s Regolith and Environment Science and Oxygen and Lunar Volatile Extraction, or RESOLVE, project with media representatives during a rover demonstration in a field beside the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida. The rover and its drill are provided by the Canadian Space Agency and work in concert with NASA science instruments to prospect for water, ice and other lunar resources. RESOLVE also will demonstrate how future explorers can take advantage of resources at potential landing sites by manufacturing oxygen from soil. NASA will conduct field tests in July outside of Hilo, Hawaii, with equipment and concept vehicles that demonstrate how explorers might prospect for resources and make their own oxygen for survival while on other planetary bodies. For more information, visit http://www.nasa.gov/exploration/analogs/index.html. Photo credit: NASA/Dimitri Gerondidakis
2012-06-12
CAPE CANAVERAL, Fla. – Media representatives discuss the design and operation of the prototype rover Artemis Jr. for NASA’s Regolith and Environment Science and Oxygen and Lunar Volatile Extraction, or RESOLVE, project with NASA In Situ Resource Utilization Project Manager William Larson, facing the rover, in a field beside the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida. The rover and its drill are provided by the Canadian Space Agency and work in concert with NASA science instruments to prospect for water, ice and other lunar resources. RESOLVE also will demonstrate how future explorers can take advantage of resources at potential landing sites by manufacturing oxygen from soil. NASA will conduct field tests in July outside of Hilo, Hawaii, with equipment and concept vehicles that demonstrate how explorers might prospect for resources and make their own oxygen for survival while on other planetary bodies. For more information, visit http://www.nasa.gov/exploration/analogs/index.html. Photo credit: NASA/Dimitri Gerondidakis
2012-06-12
CAPE CANAVERAL, Fla. – NASA In Situ Resource Utilization Project Manager William Larson discusses the design and operation of the prototype rover Artemis Jr. for NASA’s Regolith and Environment Science and Oxygen and Lunar Volatile Extraction, or RESOLVE, project with media representatives during a rover demonstration for media representatives in a field beside the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida. The rover and its drill are provided by the Canadian Space Agency and work in concert with NASA science instruments to prospect for water, ice and other lunar resources. RESOLVE also will demonstrate how future explorers can take advantage of resources at potential landing sites by manufacturing oxygen from soil. NASA will conduct field tests in July outside of Hilo, Hawaii, with equipment and concept vehicles that demonstrate how explorers might prospect for resources and make their own oxygen for survival while on other planetary bodies. For more information, visit http://www.nasa.gov/exploration/analogs/index.html. Photo credit: NASA/Dimitri Gerondidakis
The Space Elevator and Its Promise for Next Generation Exploration
NASA Technical Reports Server (NTRS)
Laubscher, Bryan E.
2006-01-01
Bryan E. Laubscher received his Ph.D. in physics in 1994 from the University of New Mexico with a concentration in astrophysics. He is currently on entrepreneurial leave from Los Alamos National Laboratory where he is a project leader and he has worked in various capacities for 16 years. His past projects include LANL's portion of the Sloan Digital Sky Survey, Magdalena Ridge Observatory and a project developing concepts and technologies for space situational awareness. Over the years Bryan has participated in research in astronomy, lidar, non-linear optics, space mission design, space-borne instrumentation design and construction, spacecraft design, novel electromagnetic detection concepts and technologies, detector/receiver system development, spectrometer development, interferometry and participated in many field experiments. Bryan led space elevator development at LANL until going on entrepreneurial leave in 2006. On entrepreneurial leave, Bryan is starting a company to build the strongest materials ever created. These materials are based upon carbon nanotubes, the strongest structures known in nature and the first material identified with sufficient strength-to-weight properties to build a space elevator.
Reengineering the project design process
NASA Astrophysics Data System (ADS)
Kane Casani, E.; Metzger, Robert M.
1995-01-01
In response to the National Aeronautics and Space Administration's goal of working faster, better, and cheaper, the Jet Propulsion Laboratory (JPL) has developed extensive plans to minimize cost, maximize customer and employee satisfaction, and implement small- and moderate-size missions. These plans include improved management structures and processes, enhanced technical design processes, the incorporation of new technology, and the development of more economical space- and ground-system designs. The Laboratory's new Flight Projects Implementation Development Office has been chartered to oversee these innovations and the reengineering of JPL's project design process, including establishment of the Project Design Center (PDC) and the Flight System Testbed (FST). Reengineering at JPL implies a cultural change whereby the character of the Laboratory's design process will change from sequential to concurrent and from hierarchical to parallel. The Project Design Center will support missions offering high science return, design to cost, demonstrations of new technology, and rapid development. Its computer-supported environment will foster high-fidelity project life-cycle development and more accurate cost estimating. These improvements signal JPL's commitment to meeting the challenges of space exploration in the next century.
Uncertainties in estimates of the risks of late effects from space radiation
NASA Technical Reports Server (NTRS)
Cucinotta, F. A.; Schimmerling, W.; Wilson, J. W.; Peterson, L. E.; Saganti, P. B.; Dicello, J. F.
2004-01-01
Methods used to project risks in low-Earth orbit are of questionable merit for exploration missions because of the limited radiobiology data and knowledge of galactic cosmic ray (GCR) heavy ions, which causes estimates of the risk of late effects to be highly uncertain. Risk projections involve a product of many biological and physical factors, each of which has a differential range of uncertainty due to lack of data and knowledge. Using the linear-additivity model for radiation risks, we use Monte-Carlo sampling from subjective uncertainty distributions in each factor to obtain an estimate of the overall uncertainty in risk projections. The resulting methodology is applied to several human space exploration mission scenarios including a deep space outpost and Mars missions of duration of 360, 660, and 1000 days. The major results are the quantification of the uncertainties in current risk estimates, the identification of factors that dominate risk projection uncertainties, and the development of a method to quantify candidate approaches to reduce uncertainties or mitigate risks. The large uncertainties in GCR risk projections lead to probability distributions of risk that mask any potential risk reduction using the "optimization" of shielding materials or configurations. In contrast, the design of shielding optimization approaches for solar particle events and trapped protons can be made at this time and promising technologies can be shown to have merit using our approach. The methods used also make it possible to express risk management objectives in terms of quantitative metrics, e.g., the number of days in space without exceeding a given risk level within well-defined confidence limits. Published by Elsevier Ltd on behalf of COSPAR.
Advanced Solid State Lighting for Human Evaluation Project
NASA Technical Reports Server (NTRS)
Zeitlin, Nancy; Holbert, Eirik
2015-01-01
Lighting intensity and color have a significant impact on human circadian rhythms. Advanced solid state lighting was developed for the Advanced Exploration System (AES) Deep Space Habitat(DSH) concept demonstrator. The latest generation of assemblies using the latest commercially available LED lights were designed for use in the Bigelow Aerospace Environmental Control and Life Support System (ECLSS) simulator and the University of Hawaii's Hawaii Space Exploration Analog and Simulation (Hi-SEAS) habitat. Agreements with both these organizations will allow the government to receive feedback on the lights and lighting algorithms from long term human interaction.
Multimegawatt electric propulsion system design considerations
NASA Technical Reports Server (NTRS)
Gilland, J. H.; Myers, Roger M.; Patterson, Michael J.
1991-01-01
Piloted Mars Mission Requirements of relatively short trip times and low initial mass in Earth orbit as identified by the NASA Space Exploration Initiative, indicate the need for multimegawatt electric propulsion systems. The design considerations and results for two thruster types, the argon ion, and hydrogen magnetoplasmadynamic thrusters, are addressed in terms of configuration, performance, and mass projections. Preliminary estimates of power management and distribution for these systems are given. Some assessment of these systems' performance in a reference Space Exploration Initiative piloted mission are discussed. Research and development requirements of these systems are also described.
NASA Technical Reports Server (NTRS)
Prater, T.; Werkheiser, N.; Bean, Q.; Ledbetter, F.; Soohoo, H.; Wilkerson, M.; Hipp, B.
2017-01-01
NASA's long term goal is to send humans to Mars. Over the next two decades, NASA will work with private industry to develop and demonstrate the technologies and capabilities needed to support exploration of the red planet by humans and ensure their safe return to earth. To accomplish this goal, NASA is employing a capability driven approach to its human spaceflight strategy. This approach will develop a suite of evolving capabilities which provide specific functions to solve exploration challenges. One challenge that is critical to sustainable and safer exploration is the ability to manufacture and recycle materials in space. This paper provides an overview of NASA's in-space manufacturing project, its past and current activities, and how technologies under development will ultimately culminate in a multimaterial, multiprocess fabrication laboratory ('FabLab') to be deployed on the International Space Station in the early 2020s. ISM is a critical capability for the long endurance missions NASA seeks to undertake in the coming decades. An unanticipated failure that can be adapted for in low earth orbit may result in a loss of mission in transit to Mars. In order to have a suite of functional ISM capabilities that are compatible with NASA's exploration timeline, ISM must be equipped with the resources necessary to develop these technologies and deploy them for testing prior to the scheduled de-orbit of ISS in 2024. The paper will discuss the phased approach to FabLab development, desired capabilities, and requirements for the hardware. The FabLab will move NASA and private industry significantly closer to changing historical paradigms for human spaceflight where all materials used in space are launched from earth. While the FabLab will be tested on ISS, the system is ultimately intended for use in a deep space habitat or transit vehicle.
NASA Technical Reports Server (NTRS)
Singer, Christopher E.; Dumbacher, Daniel L.; Lyles, Gary M.; Onken, Jay F.
2008-01-01
The United States (U.S.) is charting a renewed course for lunar exploration, with the fielding of a new human-rated space transportation system to replace the venerable Space Shuttle, which will be retired after it completes its missions of building the International Space Station (ISS) and servicing the Hubble Space Telescope. Powering the future of space-based scientific exploration will be the Ares I Crew Launch Vehicle, which will transport the Orion Crew Exploration Vehicle to orbit where it will rendezvous with the Altair Lunar Lander, which will be delivered by the Ares V Cargo Launch Vehicle (fig. 1). This configuration will empower rekindled investigation of Earth's natural satellite in the not too distant future. This new exploration infrastructure, developed by the National Aeronautics and Space Administration (NASA), will allow astronauts to leave low-Earth orbit (LEO) for extended lunar missions and preparation for the first long-distance journeys to Mars. All space-based operations - to LEO and beyond - are controlled from Earth. NASA's philosophy is to deliver safe, reliable, and cost-effective architecture solutions to sustain this multi-billion-dollar program across several decades. Leveraging SO years of lessons learned, NASA is partnering with private industry and academia, while building on proven hardware experience. This paper outlines a few ways that the Engineering Directorate at NASA's Marshall Space Flight Center is working with the Constellation Program and its project offices to streamline ground operations concepts by designing for operability, which reduces lifecycle costs and promotes sustainable space exploration.
NASA Advanced Exploration Systems: Advancements in Life Support Systems
NASA Technical Reports Server (NTRS)
Shull, Sarah A.; Schneider, Walter F.
2016-01-01
The NASA Advanced Exploration Systems (AES) Life Support Systems (LSS) project strives to develop reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support systems (ECLSS) critical to enabling long duration human missions beyond low Earth orbit (LEO). Highly reliable, closed-loop life support systems are among the capabilities required for the longer duration human space exploration missions assessed by NASA’s Habitability Architecture Team.
Architectural considerations for lunar long duration habitat
NASA Astrophysics Data System (ADS)
Bahrami, Payam
The future of space exploration science and technology is expected to move toward long duration missions. During this long duration missions the most important factor to success will be the habitation system, the place that crew will live and work. The broad range of future space exploration, new advances in technology and increasing demand for space travel and space tourism will create great opportunities for architects to use their special abilities and skills in the realm of space. The lunar habitat is defined as a multidisciplinary task and cannot be considered an independent project from the main module. Therefore, habitability will become the most important aspect of future human exploration. A successful design strategy should integrate architecture, structure and other disciplines and should bring in elements such as psychological and physiological factors, human interfaces, and privacy. The current research provides "Habitat Architectural Design System (HADS)" in order to evaluate lunar habitat concepts based on habitability, functional optimization, and human factors. HADS helps to promote parametric studied and evaluation of habitat concepts. It will provide a guideline dependent upon mission objectives to standardize architectural needs within the engineering applications and scientific demands. The significance of this research is the process of developing lunar habitat concepts using an architectural system to evaluate the quality of each concept via habitability aspects. This process can be employed during the early stage of design development and is flexible enough to be adjusted by different parameters according to the objectives of lunar mission, limitations, and cost. It also emphasizes the importance of architecture involvement in space projects, especially habitats.
NASA Technical Reports Server (NTRS)
Mavris, Dimitri; Osburg, Jan
2005-01-01
An important enabler of the new national Vision for Space Exploration is the ability to rapidly and efficiently develop optimized concepts for the manifold future space missions that this effort calls for. The design of such complex systems requires a tight integration of all the engineering disciplines involved, in an environment that fosters interaction and collaboration. The research performed under this grant explored areas where the space systems design process can be enhanced: by integrating risk models into the early stages of the design process, and by including rapid-turnaround variable-fidelity tools for key disciplines. Enabling early assessment of mission risk will allow designers to perform trades between risk and design performance during the initial design space exploration. Entry into planetary atmospheres will require an increased emphasis of the critical disciplines of aero- and thermodynamics. This necessitates the pulling forward of EDL disciplinary expertise into the early stage of the design process. Radiation can have a large potential impact on overall mission designs, in particular for the planned nuclear-powered robotic missions under Project Prometheus and for long-duration manned missions to the Moon, Mars and beyond under Project Constellation. This requires that radiation and associated risk and hazards be assessed and mitigated at the earliest stages of the design process. Hence, RPS is another discipline needed to enhance the engineering competencies of conceptual design teams. Researchers collaborated closely with NASA experts in those disciplines, and in overall space systems design, at Langley Research Center and at the Jet Propulsion Laboratory. This report documents the results of this initial effort.
NASA Astrophysics Data System (ADS)
Pearson, V. K.; Greenwood, R. C.; Bridges, J.; Watson, J.; Brooks, V.
The Rocks From Space outreach initiative and The Space Safari: the development of virtual learning environments for planetary science outreach in the UK. V.K. Pearson (1), R.C. Greenwood (1), J. Bridges (1), J. Watson (2) and V. Brooks (2) (1) Plantetary and Space Sciences Research Institute (PSSRI), The Open University, Milton Keynes, MK7 6AA. (2) Stockton-on-Tees City Learning Centre, Marsh House Avenue, Billingham, TS23 3QJ. (v.k.pearson@open.ac.uk Fax: +44 (0) 858022 Phone: +44 (0) 1908652814 The Rocks From Space (RFS) project is a PPARC and Open University supported planetary science outreach initiative. It capitalises on the successes of Open University involvement in recent space missions such as Genesis and Stardust which have brought planetary science to the forefront of public attention.Our traditional methods of planetary science outreach have focussed on activities such as informal school visits and public presentations. However, these traditional methods are often limited to a local area to fit within time and budget constraints and therefore RFS looks to new technologies to reach geographically dispersed audiences. In collaboration with Stockton-on-Tees City Learning Centre, we have conducted a pilot study into the use of Virtual Learning Environments (VLEs) for planetary science outreach. The pilot study was undertaken under the guise of a "Space Safari" in which pupils dispersed across the Teesside region of the UK could collaboratively explore the Solar System. Over 300 students took part in the pilot from 11 primary schools (ages 6-10). Resources for their exploration were provided by Open University scientists in Milton Keynes and hosted on the VLE. Students were encouraged to post their findings, ideas and questions via wikis and a VLE forum. This combination of contributions from students, teachers and scientists encouraged a collaborative learning environment. These asynchronous activities were complemented by synchronous virtual classroom activities using Elluminate Live! facilities where students could attend "drop-in" sessions with scientists to discuss their exploration. Following these activities, schools were asked to produce a collaborative piece of work about their exploration that could be hosted on the Rocks From Space website (www.rocksfromspace.open.ac.uk; designed by Milton Keynes HE college students) as a resource for future projects and wider public access. Submissions included powerpoint presentations, animations, poems and murals and illustrates the cross curriculum nature of this project. We present the outcomes and evaluation of this pilot study with recommendations for the future use of VLEs in planetary science outreach.
2012-11-05
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a space shuttle era mobile launcher platform, on the left, sits on pedestals outside the Vehicle Assembly Building. To the right is the mobile launcher that will support the space agency's Space Launch System heavy-lift rocket and Orion spacecraft. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles projects to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Jim Grossmann
NASA Technical Reports Server (NTRS)
1975-01-01
Pioneer 10's encounter with Jupiter is discussed along with the interplanetary space beyond the orbit of Mars. Other topics discussed include the size of Jupiter, the Galilean satellites, the magnetic field of Jupiter, radiation belts, Jupiter's weather and interior, and future exploration possibilities. Educational projects are also included.
2014-01-24
2013 was a big year for Ames Research Center's space exploration programs, including several new launches, and continuing a long history of cutting-edge innovations. Projects listed include: LADEE, IRIS, Kepler, PhoneSat, TechEdSat, NLAS, K10 Rover, Seedling Growth-1, Cell Biology Tech Demonstration, ADEPT, Spaceloft 7 and 8, CheMin, MSL, MRO, Bion-M1, Pioneer 11.
Invisible Culture: Taking Art Education to the Streets
ERIC Educational Resources Information Center
Darts, David
2011-01-01
Art educators and administrators allowed a project to evolve based on the "street life" experiences of ordinarily invisible people. The goal was to create a space or number of spaces for celebrating the human spirit through art, music, dance, poetry, theater, and story while also providing a forum for exploring some of the social issues affecting…
Purposes, Pedagogies and Practices in Lifewide Adult Education in New Zealand: A Preview
ERIC Educational Resources Information Center
Zepke, Nick
2015-01-01
This paper is interested in projecting the likely purposes, pedagogies and practices influencing lifewide adult education in New Zealand ten years from now. It first identifies learning spaces in which lifewide adult education takes place. It explores formal, non-formal and informal spaces which conform to or oppose dominant ideological policies,…
2012-11-05
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the mobile launcher is being prepared to support the space agency's Space Launch System heavy-lift rocket and Orion spacecraft. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles projects to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Jim Grossmann
2012-11-05
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida the mobile launcher is being prepared to support the space agency's Space Launch System heavy-lift rocket and Orion spacecraft. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles projects to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Jim Grossmann
Developing a Musical Vocabulary to Communicate, Perceive and Analyze Space Physics Data
NASA Astrophysics Data System (ADS)
Quinn, M. S.
2008-12-01
"Light Runners" is a touring E/PO program that provides unprecedented access to STEREO space mission imagery data to the blind and visually handicapped, as well as sighted populations across the country. The program builds on the successful implementation of the innovative science museum exhibit "Walk on the Sun", developed under NASA Ideas Grant ID05-049. The exhibit uses advanced sonification methods to present image pixel data as highly differentiated music, and visually tracks the explorer's physical movements to select those pixels. Musical feedback is generated in real-time based on selections of subsets of the image by the explorer's hands, arms and body movements. Initial indications suggest people not only enjoy the musical effects produced as they explore the imagery using their body movements, spending an average of 2 minutes on the exhibit, but also use the feedback to analyze and compare subsequent images. Blind students, for example, who spent 1 ½ to 3 hours on the exhibit, have reported being able to scan images of the Sun, find its edges and hot spots and control the playback and rewind of movies of the images as they explore imagery from up to 8 cameras on board each spacecraft. Explorers have access to over a million images, comprising more than a years worth of data from the mission and kept up to date as new images are received. The musical sonification vocabulary for this project is compared to two other space physics sonification projects.
The astronaut of 1988. [training and selection
NASA Technical Reports Server (NTRS)
Slayton, D. K.
1973-01-01
Past space exploration history is reviewed for a projection of requirements in astronaut training and selection in 1988. The categories of talent required for those space missions are listed as test pilots and operational pilots for the test phase of programs; flight engineers and mechanics for Space Shuttle and Space Stations; medical doctors as experimentators and crew members; medical technicians and nurses for support medical service; veterinarians and veterinary technicians; physisits, chemists and geologists; and military men and administrators. Multinational crews and participation of both sexes are anticipated.
Scientific uses of the space shuttle
NASA Technical Reports Server (NTRS)
1974-01-01
A survey was conducted to determine the possible missions which could be accomplished by the space shuttle. The areas of scientific endeavor which were considered are as follows: (1) atmospheric and space physics, (2) high energy astrophysics, (3) infrared astronomy, (4) optical and ultraviolet astronomy, (5) solar physics, (6) life sciences, and (7) planetary exploration. Specific projects to be conducted in these broader areas are defined. The modes of operation of the space shuttle are analyzed. Instruments and equipment required for conducting the experiments are identified.
2004-06-17
KENNEDY SPACE CENTER, FLA. - In the KSC Space Life Sciences Lab’s Resource Recovery lab, bioengineer Tony Rector checks the ARMS reactor vessel. ARMS, or Aerobic Rotational Membrane System, is a wastewater processing project being tested for use on the International Space Station to collect, clean and reuse wastewater. It could be adapted for use on the Moon and Mars. The Lab is exploring various aspects of a bioregenerative life support system. Such research and technology development will be crucial to long-term habitation of space by humans.
2004-06-17
KENNEDY SPACE CENTER, FLA. - In the KSC Space Life Sciences Lab’s Resource Recovery lab, bioengineer Tony Rector checks the clear plexiglass ARMS reactor vessel. ARMS, or Aerobic Rotational Membrane System, is a wastewater processing project being tested for use on the International Space Station to collect, clean and reuse wastewater. It could be adapted for use on the Moon and Mars. The Lab is exploring various aspects of a bioregenerative life support system. Such research and technology development will be crucial to long-term habitation of space by humans.
Space Station Live: Everythings Coming up Veggie
2016-04-13
NASA Commentator Lori Meggs at the Marshall Space Flight Center talks about the latest work of the Veggie experiment on board the International Space Station with Gioia Massa, the Veggie project scientist. The experimental compact greenhouse has been used successfully to grow two crops of lettuce and a crop of zinnias, demonstrating an ability to grow crops in space that could be very useful for future exploration missions out into the solar systems. More tests are on the agenda as specialists improve the capabilities of the system.
NASA Composite Cryotank Technology Project Game Changing Program
NASA Technical Reports Server (NTRS)
Fikes, John
2015-01-01
The fundamental goal of this project was to provide new and innovative cryotank technologies that enable human space exploration to destinations beyond low earth orbit such as the moon, near-earth asteroids, and Mars. The goal ... to mature technologies in preparation for potential system level flight demonstrations through significant ground-based testing and/or laboratory experimentation
Novice Supervisors' Practices and Dilemmatic Space in Supervision of Student Research Projects
ERIC Educational Resources Information Center
Vereijken, Mayke W. C.; van der Rijst, Roeland M.; van Driel, Jan H.; Dekker, Friedo W.
2018-01-01
Growing interest in student research projects in higher education has led to an emphasis on research supervision. We focus in this study on novice supervisors' approaches to research supervision as they explore their practices and experience difficulties supervising medical-students. Teacher noticing was used as a sensitising concept and relations…
NASA Technical Reports Server (NTRS)
Russell, Yvonne; Falsetti, Christine M.
1991-01-01
Customer requirements are presented through three viewgraphs. One graph presents the range of services, which include requirements management, network engineering, operations, and applications support. Another viewgraph presents the project planning process. The third viewgraph presents the programs and/or projects actively supported including life sciences, earth science and applications, solar system exploration, shuttle flight engineering, microgravity science, space physics, and astrophysics.
Lunar impact: A history of Project Ranger
NASA Technical Reports Server (NTRS)
Hall, R. C.
1977-01-01
Complete history of the Ranger project is provided as a tool for understanding the evolution and operational form of NASA's continuing progress of unmanned space exploration. Basic management techniques, flight operating procedures and technology for NASA's later unmanned lunar and planetary missions were reviewed. Methods for selecting experiments and integrating them with the spacecraft were also investigated.
Critical Perspectives on TEL: Art and Design Education, Theory, Communities and Space
ERIC Educational Resources Information Center
Sclater, Madeleine; Lally, Vic
2016-01-01
This paper explores three themes, emerging from the Inter-Life project, an Art and Design education and social skills project set in a virtual world. We argue that they connect with the concerns raised by critical Technology-Enhanced Learning (TEL) researchers at the Alpine Rendezvous workshop entitled "TEL: the Crisis and the Response."…
What's Growing on Here? Garden-Based Pedagogy in a Concrete Jungle
ERIC Educational Resources Information Center
Jagger, Susan; Sperling, Erin; Inwood, Hilary
2016-01-01
This study explores experiences of a learning garden project at an urban faculty of education. The project opens a space for the theoretical and practical consideration of garden-based pedagogies and their influence on university students, educators, and the community as a whole. The learning garden was created by a small group of initial teacher…
Growing Beyond Earth; Students Exploring Plant Varieties for Future Space Exploration
NASA Technical Reports Server (NTRS)
Litzinger, Marion; Massa, Gioia
2017-01-01
Future space exploration and long duration space flight will pose an array of challenges to the health and wellbeing of astronauts. Since 2015, Fairchild Tropical Botanic Garden (FTBG), in partnership with NASA's Veggie team, has been testing edible crops for space flight potential through a series of citizen science experiments. FTBG's interest in classroom-based science projects, along with NASA's successful operation of the Veggie system aboard the International Space Station (ISS), led to a NASA-FTBG partnership that gave rise to the Growing Beyond Earth STEM Initiative (GBE). Established in 2015, GBE now involves 131 middle and high school classrooms in South Florida, all conducting simultaneous plant science experiments. The results of those experiments (both numeric and visual) are directly shared with the space food production researchers at KSC. Through this session, we will explore the successful classroom implementation and integration into the curriculum, how the data is being used and the impact of the project on participating researchers, teachers, and students. Participating schools were supplied with specialized LED-lit growth chambers, mimicking the Veggie system on ISS, for growing edible plants under similar physical and environmental constraints. Research protocols were provided by KSC scientists, while edible plant varieties were selected mainly by the botanists at FTBG. In a jointly-led professional development workshop, participating teachers were trained to conduct GBE experiments in their classrooms. Teachers were instructed to not only teach basic botany concepts, but to also demonstrate practical applications of math, physics and chemistry. As experiments were underway, students shared data on plant germination, growth, and health in an online spreadsheet. Results from the students research show a promising selection of new plant candidates for possible further testing. Over a two year period, more than 5000 South Florida students, ages 11 to 18, participated in GBE. Evaluation of the program shows an increased knowledge of and interest in science and science careers among students. The program has also boosted the demand for summer high school internships at FTBG, further developing expertise in plant research and science related to space exploration. Supported by a grant from NASA (NNX16AM32G) to Fairchild Tropical Botanic Garden.
A Day in the Life of the Laser Communications Relay Demonstration Project
NASA Technical Reports Server (NTRS)
Edwards, Bernard; Israel, David; Caroglanian, Armen; Spero, James; Roberts, Tom; Moores, John
2016-01-01
This paper provides an overview of the planned concept of operations for the Laser Communications Relay Demonstration Project (LCRD), a joint project among NASA's Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory, California Institute of Technology (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT/LL). LCRD will provide at least two years of bi-directional optical communications at user data rates of up to 1.244 Gbps in an operational environment. The project lays the groundwork for establishing communications architecture and protocols, and developing the communications hardware and support infrastructure, concluding in a demonstration of optical communications' potential to meet NASA's growing need for higher data rates for future science and exploration missions. A pair of flight optical communications terminals will reside on a single commercial communications satellite in geostationary orbit; the two ground optical communications terminals will be located in Southern California and Hawaii. This paper summarizes the current LCRD architecture and key systems for the demonstration, focusing on what it will take to operate an optical communications relay that can support space-to-space, space-to-air, and space-to-ground optical links.
A Day in the Life of the Laser Communications Relay Demonstration (LCRD) Project.
NASA Technical Reports Server (NTRS)
Israel, David; Caroglanian, Armen; Edwards, Bernard; Spero, James; Roberts, Tom; Moores, John
2016-01-01
This presentation provides an overview of the planned concept of operations for the Laser Communications Relay Demonstration Project (LCRD), a joint project among NASA's Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory, California Institute of Technology (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MITLL). LCRD will provide at least two years of bi-directional optical communications at user data rates of up to 1.244 Gbps in an operational environment. The project lays the ground work for establishing communications architecture and protocols, and developing the communications hardware and support infrastructure, concluding in a demonstration of optical communications potential to meet NASAs growing need for higher data rates for future science and exploration missions. A pair of flight optical communications terminals will reside on a single commercial communications satellite in geostationary orbit; the two ground optical communications terminals will be located in Southern California and Hawaii. This paper summarizes the current LCRD architecture and key systems for the demonstration, focusing on what it will take to operate an optical communications relay that can support space-to-space, space-to-air, and space-to-ground optical links.
The NASA Advanced Space Power Systems Project
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Hoberecht, Mark A.; Bennett, William R.; Lvovich, Vadim F.; Bugga, Ratnakumar
2015-01-01
The goal of the NASA Advanced Space Power Systems Project is to develop advanced, game changing technologies that will provide future NASA space exploration missions with safe, reliable, light weight and compact power generation and energy storage systems. The development effort is focused on maturing the technologies from a technology readiness level of approximately 23 to approximately 56 as defined in the NASA Procedural Requirement 7123.1B. Currently, the project is working on two critical technology areas: High specific energy batteries, and regenerative fuel cell systems with passive fluid management. Examples of target applications for these technologies are: extending the duration of extravehicular activities (EVA) with high specific energy and energy density batteries; providing reliable, long-life power for rovers with passive fuel cell and regenerative fuel cell systems that enable reduced system complexity. Recent results from the high energy battery and regenerative fuel cell technology development efforts will be presented. The technical approach, the key performance parameters and the technical results achieved to date in each of these new elements will be included. The Advanced Space Power Systems Project is part of the Game Changing Development Program under NASAs Space Technology Mission Directorate.
The NASA/DOE/DOD nuclear rocket propulsion project - FY 1991 status
NASA Technical Reports Server (NTRS)
Clark, John S.; Miller, Thomas J.
1991-01-01
NASA has initiated planning and critical technology development for nuclear rocket propulsion systems for Space Exploration Initiative missions to the moon and to Mars. Interagency agreements are being negotiated between NASA, the Department of Energy, and the Department of Defense for joint technology development activities. This paper summarizes the activities of the NASA project planning team in FY 1990 that led to the draft Nuclear Propulsion Project Plan, outlines the FY 1991 Interagency activities, and describes the current status of the project plan.
Issues of exploration: human health and wellbeing during a mission to Mars.
White, R J; Bassingthwaighte, J B; Charles, J B; Kushmerick, M J; Newman, D J
2003-01-01
Today, the tools are in our hands to enable us to travel away from our home planet and become citizens of the solar system. Even now, we are seriously beginning to develop the robust infrastructure that will make the 21st century the Century of Space Travel. But this bold step must be taken with due concern for the health, safety and wellbeing of future space explorers. Our long experience with space biomedical research convinces us that, if we are to deal effectively with the medical and biomedical issues of exploration, then dramatic and bold steps are also necessary in this field. We can no longer treat the human body as if it were composed of muscles, bones, heart and brain acting independently. Instead, we must lead the effort to develop a fully integrated view of the body, with all parts connected and fully interacting in a realistic way. This paper will present the status of current (2000) plans by the National Space Biomedical Research Institute to initiate research in this area of integrative physiology and medicine. Specifically, three example projects are discussed as potential stepping stones towards the ultimate goal of producing a digital human. These projects relate to developing a functional model of the human musculoskeletal system and the heart. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
Issues of exploration: human health and wellbeing during a mission to Mars
NASA Technical Reports Server (NTRS)
White, R. J.; Bassingthwaighte, J. B.; Charles, J. B.; Kushmerick, M. J.; Newman, D. J.
2003-01-01
Today, the tools are in our hands to enable us to travel away from our home planet and become citizens of the solar system. Even now, we are seriously beginning to develop the robust infrastructure that will make the 21st century the Century of Space Travel. But this bold step must be taken with due concern for the health, safety and wellbeing of future space explorers. Our long experience with space biomedical research convinces us that, if we are to deal effectively with the medical and biomedical issues of exploration, then dramatic and bold steps are also necessary in this field. We can no longer treat the human body as if it were composed of muscles, bones, heart and brain acting independently. Instead, we must lead the effort to develop a fully integrated view of the body, with all parts connected and fully interacting in a realistic way. This paper will present the status of current (2000) plans by the National Space Biomedical Research Institute to initiate research in this area of integrative physiology and medicine. Specifically, three example projects are discussed as potential stepping stones towards the ultimate goal of producing a digital human. These projects relate to developing a functional model of the human musculoskeletal system and the heart. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
2013-01-09
CAPE CANAVERAL, Fla. -- At a news conference NASA officials and industry partners discuss progress of the agency's Commercial Crew Program CCP. Participating in the briefing, from the left are, Mike Curie, NASA Public Affairs, Ed Mango, NASA Commercial Crew Program manager, Phil McAlister, NASA Commercial Spaceflight Development director, Rob Meyerson, Blue Origin president and program manager, John Mulholland, The Boeing Company Commercial Programs Space Exploration vice president and program manager, Mark Sirangelo, Sierra Nevada Corp. vice president and SNC Space Systems chairman and Garrett Reisman, Space Exploration Technologies SpaceX Commercial Crew project manager. Through CCP, NASA is facilitating the development of U.S. commercial crew space transportation capabilities to achieve safe, reliable and cost-effective access to and from low-Earth orbit for potential future government and commercial customers. For more information, visit http://www.nasa.gov/commercialcrew Photo credit: NASA/Kim Shiflett
A new day: Challenger and space flight thereafter
NASA Technical Reports Server (NTRS)
Vonputtkamer, Jesco
1986-01-01
On January 28, 1986, at an altitude of 14 kilometers, the Space Shuttle Challenger was torn apart by an explosion of the external tank. The effects of the accident are undoubtedly far-reaching; they have broad repercussions that affect NASA's international partner organizations. The effects of the postponed shuttle flights on European space programs are discussed. A review of the German participation in the American space program is presented. The need to continue the future projects such as the space station is examined in light of its importance as a springboard for further exploration.
NASA Human Health and Performance Center: Open innovation successes and collaborative projects
NASA Astrophysics Data System (ADS)
Richard, Elizabeth E.; Davis, Jeffrey R.
2014-11-01
In May 2007, what was then the Space Life Sciences Directorate published the 2007 Space Life Sciences Strategy for Human Space Exploration, setting the course for development and implementation of new business models and significant advances in external collaboration over the next five years. The strategy was updated on the basis of these accomplishments and reissued as the NASA Human Health and Performance Strategy in 2012, and continues to drive new approaches to innovation for the directorate. This short paper describes the successful execution of the strategy, driving organizational change through open innovation efforts and collaborative projects, including efforts of the NASA Human Health and Performance Center (NHHPC).
NASA Astrophysics Data System (ADS)
Degnan, Frank
1993-12-01
The Comet Rendezvous Asteroid Flyby (CRAF)/Cassini program was first funded by the Congress in fiscal year 1990. Since then, it has encountered difficulties that resulted in the cancellation of CRAF, reduction of Cassini's original scientific capabilities, and extension of its launch date. At the request of the former Chairman of the Investigations and Oversight Subcommittee, House Committee on Science, Space, and Technology, GAO reviewed the program to identify the factors that led to the cancellation of the CRAF project and the prospects for continuation of the Cassini project.
Proceedings of the 8th Annual Summer Conference: NASA/USRA Advanced Design Program
NASA Technical Reports Server (NTRS)
1992-01-01
Papers presented at the 8th Annual Summer Conference are categorized as Space Projects and Aeronautics projects. Topics covered include: Systematic Propulsion Optimization Tools (SPOT), Assured Crew Return Vehicle Post Landing Configuration Design and Test, Autonomous Support for Microorganism Research in Space, Bioregenerative System Components for Microgravity, The Extended Mission Rover (EMR), Planetary Surface Exploration MESUR/Autonomous Lunar Rover, Automation of Closed Environments in Space for Human Comfort and Safety, Walking Robot Design, Extraterrestrial Surface Propulsion Systems, The Design of Four Hypersonic Reconnaissance Aircraft, Design of a Refueling Tanker Delivering Liquid Hydrogen, The Design of a Long-Range Megatransport Aircraft, and Solar Powered Multipurpose Remotely Powered Aircraft.
X-37 Flight Demonstrator Project: Capabilities for Future Space Transportation System Development
NASA Technical Reports Server (NTRS)
Dumbacher, Daniel L.
2004-01-01
The X-37 Approach and Landing Vehicle (ALTV) is an automated (unmanned) spacecraft designed to reduce technical risk in the descent and landing phases of flight. ALTV mission requirements and Orbital Vehicle (OV) technology research and development (R&D) goals are formulated to validate and mature high-payoff ground and flight technologies such as Thermal Protection Systems (TPS). It has been more than three decades since the Space Shuttle was designed and built. Real-world hardware experience gained through the multitude of X-37 Project activities has expanded both Government and industry knowledge of the challenges involved in developing new generations of spacecraft that can fulfill the Vision for Space Exploration.
The International Planetary Data Alliance
NASA Astrophysics Data System (ADS)
Stein, T.; Arviset, C.; Crichton, D. J.
2017-12-01
The International Planetary Data Alliance (IPDA) is an association of partners with the aim of improving the quality of planetary science data and services to the end users of space based instrumentation. The specific mission of the IPDA is to facilitate global access to, and exchange of, high quality scientific data products managed across international boundaries. Ensuring proper capture, accessibility and availability of the data is the task of the individual member space agencies. The IPDA was formed in 2006 with the purpose of adopting standards and developing collaborations across agencies to ensure data is captured in common formats. Member agencies include: Armenian Astronomical Society, China National Space Agency (CNSA), European Space Agency (ESA), German Aerospace Center (DLR), Indian Space Research Organization (ISRO), Italian Space Agency (ASI), Japanese Aerospace Exploration Agency (JAXA), National Air and Space Administration (NASA), National Centre for Space Studies (CNES), Space Research Institute (IKI), UAE Space Agency, and UK Space Agency. The IPDA Steering Committee oversees the execution of projects and coordinates international collaboration. The IPDA conducts a number of focused projects to enable interoperability, construction of compatible archives, and the operation of the IPDA as a whole. These projects have helped to establish the IPDA and to move the collaboration forward. A key project that is currently underway is the implementation of the PDS4 data standard. Given the international focus, it has been critical that the PDS and the IPDA collaborate on its development. Also, other projects have been conducted successfully, including developing the IPDA architecture and corresponding requirements, developing shared registries for data and tools across international boundaries, and common templates for supporting agreements for archiving and sharing data for international missions. Several projects demonstrating interoperability across systems have been applied to specific missions and data sets. IPDA membership is open to space agencies and scientific research institutes. Representatives who are interested in joining the IPDA should contact the author or use the contact form on the web page http://www.planetarydata.org.
Human Centered Autonomous and Assistant Systems Testbed for Exploration Operations
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Mount, Frances; Carreon, Patricia; Torney, Susan E.
2001-01-01
The Engineering and Mission Operations Directorates at NASA Johnson Space Center are combining laboratories and expertise to establish the Human Centered Autonomous and Assistant Systems Testbed for Exploration Operations. This is a testbed for human centered design, development and evaluation of intelligent autonomous and assistant systems that will be needed for human exploration and development of space. This project will improve human-centered analysis, design and evaluation methods for developing intelligent software. This software will support human-machine cognitive and collaborative activities in future interplanetary work environments where distributed computer and human agents cooperate. We are developing and evaluating prototype intelligent systems for distributed multi-agent mixed-initiative operations. The primary target domain is control of life support systems in a planetary base. Technical approaches will be evaluated for use during extended manned tests in the target domain, the Bioregenerative Advanced Life Support Systems Test Complex (BIO-Plex). A spinoff target domain is the International Space Station (ISS) Mission Control Center (MCC). Prodl}cts of this project include human-centered intelligent software technology, innovative human interface designs, and human-centered software development processes, methods and products. The testbed uses adjustable autonomy software and life support systems simulation models from the Adjustable Autonomy Testbed, to represent operations on the remote planet. Ground operations prototypes and concepts will be evaluated in the Exploration Planning and Operations Center (ExPOC) and Jupiter Facility.
Composite Crew Module: Primary Structure
NASA Technical Reports Server (NTRS)
Kirsch, Michael T.
2011-01-01
In January 2007, the NASA Administrator and Associate Administrator for the Exploration Systems Mission Directorate chartered the NASA Engineering and Safety Center to design, build, and test a full-scale crew module primary structure, using carbon fiber reinforced epoxy based composite materials. The overall goal of the Composite Crew Module project was to develop a team from the NASA family with hands-on experience in composite design, manufacturing, and testing in anticipation of future space exploration systems being made of composite materials. The CCM project was planned to run concurrently with the Orion project's baseline metallic design within the Constellation Program so that features could be compared and discussed without inducing risk to the overall Program. This report discusses the project management aspects of the project including team organization, decision making, independent technical reviews, and cost and schedule management approach.
Officials welcome the arrival of the Japanese Experiment Module
2007-04-17
In the Space Station Processing Facility, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcome the arrival of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module, or JEM, to the Kennedy Space Center. At the podium is Russ Romanella, director of International Space Station and Spacecraft Processing. Seated at right are Bill Parsons, director of Kennedy Space Center; Dr. Kichiro Imagawa, project manager of the JEM Development Project Team for JAXA; Melanie Saunders, associate manager of the International Space Station Program at Johnson Space Center; and Dominic Gorie, commander on mission STS-123 that will deliver the module to the space station. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module.
Officials welcome the arrival of the Japanese Experiment Module
2007-04-17
In the Space Station Processing Facility, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcome the arrival of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module, or JEM, to the Kennedy Space Center. At the podium is Bill Parsons, director of Kennedy Space Center. Seated at right are Russ Romanella, director of International Space Station and Spacecraft Processing; Dr. Kichiro Imagawa, project manager of the JEM Development Project Team for JAXA; Melanie Saunders, associate manager of the International Space Station Program at Johnson Space Center; and Dominic Gorie, commander on mission STS-123 that will deliver the module to the space station. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module.
NASA Technical Reports Server (NTRS)
1975-01-01
Formalized technical reporting is described and indexed, which resulted from scientific and engineering work performed, or managed, by the Jet Propulsion Laboratory. The five classes of publications included are technical reports, technical memorandums, articles from the bimonthly Deep Space Network Progress Report, special publications, and articles published in the open literature. The publications are indexed by author, subject, and publication type and number.
1954-01-01
Marshall Center Director Dr. Wernher Von Braun is pictured with Walt Disney during a visit to the Marshall Space Flight Center in 1954. In the 1950s, Dr. Von Braun while working in California on the Saturn project, also worked with Disney studios as a technical director in making three films about Space Exploration for television. Disney's tour of Marshall in 1965 was Von Braun's hope for a renewed public interest in the future of the Space Program at NASA.
Solar Power Generation in Extreme Space Environments
NASA Technical Reports Server (NTRS)
Elliott, Frederick W.; Piszczor, Michael F.
2016-01-01
The exploration of space requires power for guidance, navigation, and control; instrumentation; thermal control; communications and data handling; and many subsystems and activities. Generating sufficient and reliable power in deep space through the use of solar arrays becomes even more challenging as solar intensity decreases and high radiation levels begin to degrade the performance of photovoltaic devices. The Extreme Environments Solar Power (EESP) project goal is to develop advanced photovoltaic technology to address these challenges.
NASA Technical Reports Server (NTRS)
Gore, Brian F.
2016-01-01
Human space exploration has never been more exciting than it is today. Human presence to outer worlds is becoming a reality as humans are leveraging much of our prior knowledge to the new mission of going to Mars. Exploring the solar system at greater distances from Earth than ever before will possess some unique challenges, which can be overcome thanks to the advances in modeling and simulation technologies. The National Aeronautics and Space Administration (NASA) is at the forefront of exploring our solar system. NASA's Human Research Program (HRP) focuses on discovering the best methods and technologies that support safe and productive human space travel in the extreme and harsh space environment. HRP uses various methods and approaches to answer questions about the impact of long duration missions on the human in space including: gravity's impact on the human body, isolation and confinement on the human, hostile environments impact on the human, space radiation, and how the distance is likely to impact the human. Predictive models are included in the HRP research portfolio as these models provide valuable insights into human-system operations. This paper will provide an overview of NASA's HRP and will present a number of projects that have used modeling and simulation to provide insights into human-system issues (e.g. automation, habitat design, schedules) in anticipation of space exploration.
Building Operations Efficiencies into NASA's Ares I Crew Launch Vehicle Design
NASA Technical Reports Server (NTRS)
Dumbacher, Daniel
2006-01-01
The U.S. Vision for Space Exploration guides the National Aeronautics and Space Administration s (NASA's) challenging missions that expand humanity s boundaries and open new routes to the space frontier. With the Agency's commitment to complete the International Space Station (ISS) and to retire the venerable Space Shuttle by 2010, the NASA Administrator commissioned the Exploration Systems Architecture Study (ESAS) in mid 2005 to analyze options for safe, simple, cost-efficient launch solutions that could deliver human-rated space transportation capabilities in a timely manner within fixed budget guidelines. The Exploration Launch Projects Office, chartered in October 2005, has been conducting systems engineering studies and business planning over the past few months to successively refine the design configurations and better align vehicle concepts with customer and stakeholder requirements, such as significantly reduced life-cycle costs. As the Agency begins the process of replacing the Shuttle with a new generation of spacecraft destined for missions beyond low-Earth orbit to the Moon and Mars, NASA is designing the follow-on crew and cargo launch systems for maximum operational efficiencies. To sustain the long-term exploration of space, it is imperative to reduce the $4.5 billion NASA typically spends on space transportation each year. This paper gives top-level information about how the follow-on Ares I Crew Launch Vehicle (CLV) is being designed for improved safety and reliability, coupled with reduced operations costs.
Lunar Industry & Research Base Concept
NASA Astrophysics Data System (ADS)
Lysenko, J.; Kaliapin, M.; Osinovyy, G.
2017-09-01
Currently, all main space industry players, such as Europe, USA, Russia, China, etc., are looking back again at the idea of Moon exploration building there a manned lunar base. Alongside with other world spacefaring nations, Yuzhnoye State Design Office with its long-time development experience, technological and intellectual potential, organized its own conceptual work on development of the Lunar Industry & Research Base. In the frames of conceptual project "Lunar Industrial & Research Base" were formed its appearance, preliminary configuration and infrastructure at different stages of operation, trajectory and flight scheme to the Moon, as well as terms of the project's realization, and main technical characteristics of the systems under development, such as space transportation system for crew and cargo delivery to lunar surface and return to Earth, standardized designs of lunar modules, lunar surface vehicles, etc. The "Lunar Industrial & Research Base" project's preliminary risk assessment has shown a high value of its overall risk due to the lack of reliable information about the Moon, technical risks, long-term development of its elements, very high financial costs and dependence on state support. This points to the fact that it is reasonable to create such a global project in cooperation with other countries. International cooperation will expand the capabilities of any nation, reduce risks and increase the success probability of automated or manned space missions. It is necessary to create and bring into operation practical mechanisms for long-term space exploration on a global scale. One of the ways to do this is to create a multinational agency which would include both state enterprises and private companies.
QIPS: quantum information and quantum physics in space
NASA Astrophysics Data System (ADS)
Schmitt-Manderbach, Tobias; Scheidl, Thomas; Ursin, Rupert; Tiefenbacher, Felix; Weier, Henning; Fürst, Martin; Jennewein, T.; Perdigues, J.; Sodnik, Z.; Rarity, J.; Zeilinger, Anton; Weinfurter, Harald
2017-11-01
The aim of the QIPS project (financed by ESA) is to explore quantum phenomena and to demonstrate quantum communication over long distances. Based on the current state-of-the-art a first study investigating the feasibility of space based quantum communication has to establish goals for mid-term and long-term missions, but also has to test the feasibility of key issues in a long distance ground-to-ground experiment. We have therefore designed a proof-of-concept demonstration for establishing single photon links over a distance of 144 km between the Canary Islands of La Palma and Tenerife to evaluate main limitations for future space experiments. Here we report on the progress of this project and present first measurements of crucial parameters of the optical free space link.
The 1992-1993 NASA Space Biology Accomplishments
NASA Technical Reports Server (NTRS)
Halstead, Thora W. (Editor)
1994-01-01
This report consists of individual technical summaries of research projects of NASA's Space Biology Program, for research conducted during the calendar years of 1992 and 1993. This program includes both plant and animal research, and is dedicated to understanding the role of gravity and the effects of microgravity on biological processes; determining the effects of the interaction of gravity and other environmental factors on biological systems; and using the microgravity of the space environment as a tool to advance fundamental scientific knowledge in the biological sciences to improve the quality of life on Earth and contribute to NASA's goal of manned exploration of space. The summaries for each project include a description of the research, a list of the accomplishments, an explanation of the significance of the accomplishments, and a list of publications.
An Introduction to Flight Software Development: FSW Today, FSW 2010
NASA Technical Reports Server (NTRS)
Gouvela, John
2004-01-01
Experience and knowledge gained from ongoing maintenance of Space Shuttle Flight Software and new development projects including Cockpit Avionics Upgrade are applied to projected needs of the National Space Exploration Vision through Spiral 2. Lessons learned from these current activities are applied to create a sustainable, reliable model for development of critical software to support Project Constellation. This presentation introduces the technologies, methodologies, and infrastructure needed to produce and sustain high quality software. It will propose what is needed to support a Vision for Space Exploration that places demands on the innovation and productivity needed to support future space exploration. The technologies in use today within FSW development include tools that provide requirements tracking, integrated change management, modeling and simulation software. Specific challenges that have been met include the introduction and integration of Commercial Off the Shelf (COTS) Real Time Operating System for critical functions. Though technology prediction has proved to be imprecise, Project Constellation requirements will need continued integration of new technology with evolving methodologies and changing project infrastructure. Targets for continued technology investment are integrated health monitoring and management, self healing software, standard payload interfaces, autonomous operation, and improvements in training. Emulation of the target hardware will also allow significant streamlining of development and testing. The methodologies in use today for FSW development are object oriented UML design, iterative development using independent components, as well as rapid prototyping . In addition, Lean Six Sigma and CMMI play a critical role in the quality and efficiency of the workforce processes. Over the next six years, we expect these methodologies to merge with other improvements into a consolidated office culture with all processes being guided by automated office assistants. The infrastructure in use today includes strict software development and configuration management procedures, including strong control of resource management and critical skills coverage. This will evolve to a fully integrated staff organization with efficient and effective communication throughout all levels guided by a Mission-Systems Architecture framework with focus on risk management and attention toward inevitable product obsolescence. This infrastructure of computing equipment, software and processes will itself be subject to technological change and need for management of change and improvement,
NASA Laboratory Analysis for Manned Exploration Missions
NASA Technical Reports Server (NTRS)
Krihak, Michael K.; Shaw, Tianna E.
2014-01-01
The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability Element under the NASA Human Research Program. ELA instrumentation is identified as an essential capability for future exploration missions to diagnose and treat evidence-based medical conditions. However, mission architecture limits the medical equipment, consumables, and procedures that will be available to treat medical conditions during human exploration missions. Allocated resources such as mass, power, volume, and crew time must be used efficiently to optimize the delivery of in-flight medical care. Although commercial instruments can provide the blood and urine based measurements required for exploration missions, these commercial-off-the-shelf devices are prohibitive for deployment in the space environment. The objective of the ELA project is to close the technology gap of current minimally invasive laboratory capabilities and analytical measurements in a manner that the mission architecture constraints impose on exploration missions. Besides micro gravity and radiation tolerances, other principal issues that generally fail to meet NASA requirements include excessive mass, volume, power and consumables, and nominal reagent shelf-life. Though manned exploration missions will not occur for nearly a decade, NASA has already taken strides towards meeting the development of ELA medical diagnostics by developing mission requirements and concepts of operations that are coupled with strategic investments and partnerships towards meeting these challenges. This paper focuses on the remote environment, its challenges, biomedical diagnostics requirements and candidate technologies that may lead to successful blood-urine chemistry and biomolecular measurements in future space exploration missions.
2008-02-01
KENNEDY SPACE CENTER, FLA. -- After signing a framework agreement establishing the terms for future cooperation between NASA and the Indian Space Research Organization, Chairman G. Madhavan Nair (center) is given a tour of the Space Station Processing Facility at NASA's Kennedy Space Center. The agreement establishes the terms for future cooperation between the two agencies in the exploration and use of outer space for peaceful purposes. According to the framework agreement, the two agencies will identify areas of mutual interest and seek to develop cooperative programs or projects in Earth and space science, exploration, human space flight and other activities. In addition to a long history of cooperation in Earth science, NASA and the Indian Space Research Organization also are cooperating on India's first, mission to the moon, Chandrayaan-1, which will be launched later this year. NASA is providing two of the 11 instruments on the spacecraft: the moon mineralogy mapper instrument and the miniature synthetic aperture radar instrument. Photo credit: NASA/Kim Shiflett
2008-02-01
KENNEDY SPACE CENTER, FLA. -- After signing a framework agreement establishing the terms for future cooperation between NASA and the Indian Space Research Organization, Chairman G. Madhavan Nair (center) and other members are given a tour of the Space Station Processing Facility at NASA's Kennedy Space Center. The agreement establishes the terms for future cooperation between the two agencies in the exploration and use of outer space for peaceful purposes. According to the framework agreement, the two agencies will identify areas of mutual interest and seek to develop cooperative programs or projects in Earth and space science, exploration, human space flight and other activities. In addition to a long history of cooperation in Earth science, NASA and the Indian Space Research Organization also are cooperating on India's first, mission to the moon, Chandrayaan-1, which will be launched later this year. NASA is providing two of the 11 instruments on the spacecraft: the moon mineralogy mapper instrument and the miniature synthetic aperture radar instrument. Photo credit: NASA/Kim Shiflett
2008-02-01
KENNEDY SPACE CENTER, FLA. -- After signing a framework agreement establishing the terms for future cooperation between NASA and the Indian Space Research Organization, Chairman G. Madhavan Nair (center) and other members are given a tour of the Space Station Processing Facility at NASA's Kennedy Space Center. The agreement establishes the terms for future cooperation between the two agencies in the exploration and use of outer space for peaceful purposes. According to the framework agreement, the two agencies will identify areas of mutual interest and seek to develop cooperative programs or projects in Earth and space science, exploration, human space flight and other activities. In addition to a long history of cooperation in Earth science, NASA and the Indian Space Research Organization also are cooperating on India's first, mission to the moon, Chandrayaan-1, which will be launched later this year. NASA is providing two of the 11 instruments on the spacecraft: the moon mineralogy mapper instrument and the miniature synthetic aperture radar instrument. Photo credit: NASA/Kim Shiflett
2008-02-01
KENNEDY SPACE CENTER, FLA. -- After signing a framework agreement establishing the terms for future cooperation between NASA and the Indian Space Research Organization, Chairman G. Madhavan Nair (center) and other members are given a tour of the Space Station Processing Facility at NASA's Kennedy Space Center. The agreement establishes the terms for future cooperation between the two agencies in the exploration and use of outer space for peaceful purposes. According to the framework agreement, the two agencies will identify areas of mutual interest and seek to develop cooperative programs or projects in Earth and space science, exploration, human space flight and other activities. In addition to a long history of cooperation in Earth science, NASA and the Indian Space Research Organization also are cooperating on India's first, mission to the moon, Chandrayaan-1, which will be launched later this year. NASA is providing two of the 11 instruments on the spacecraft: the moon mineralogy mapper instrument and the miniature synthetic aperture radar instrument. Photo credit: NASA/Kim Shiflett
Russian Planetary Program: Phobos and the Moon
NASA Astrophysics Data System (ADS)
Galimov, E. M.; Marov, M. Ya.; Politshuk, G. M.; Zeleniy, L. M.
2006-08-01
Planetary exploration is a cornerstone of space science and technology development. Russia has a great legacy of the world recognized former space missions to the Moon and planets. Strategy of the Russian Federal Space Agency and the Russian Academy of Sciences planetary program for the coming decade is focused on space vehicle of new generation. The basic concept of this spacecraft development is the modern technology utilization, significant cost reduction and meeting objectives of the important science return. The bottom line is the use of middle class Soyuz-type launcher, which places the principal constraint on mass of the vehicle and mission profile. Flexibility in the design of space vehicle, including a possibility of SEP technology utilization, facilitates its adaptability for extended program of the solar system exploration. As the first step, the project is optimized around sample return mission from satellite of Mars Phobos ("Phobos-Grunt" or PSR) which is in the list of the Russian Federal Space Program for 2006 to 2015. It is to be launched in 2009 and completed in 2012. The experience gained from the former Russian "Phobos 88" serves as a clue to provide an important basis for the mission concept enabling solution of many problems of the project design and its implementation. There is a challenge to return relic matter from such small body like Phobos for the ground labs comprehensive study. The payload is also targeted for in-flight and extended remote sensing and in situ measurements using the capable instrument packages. The project is addressed as a milestone in the Russian program of the solar system study, with a potential for future ambitious missions to asteroids and comets pooling international efforts. Also endorsed by the Russian Federal Space Program is "Luna-Glob" mission to the Moon tentatively scheduled for 2011. The goal is to advance lunar science with the well instrumented orbiter, lander, and the network of penetrators. Return back to the Moon with the new modern technology utilization is a great challenge in the current phase of the solar system exploration.
Lunar exploration and the advancement of biomedical research: a physiologist's view.
Piantadosi, Claude A
2006-10-01
Over the next few years, it will become apparent just how important lunar exploration is to biomedical research and vice versa, and how critical both are to the future of human spaceflight. NASA's Project Constellation should put a new lunar-capable vehicle into service by 2014 that will rely on proven Space Shuttle components and allow four astronauts to spend 7 d on the lunar surface. A modern space transportation system opens up a unique opportunity in the space sciences--the establishment of a permanent lunar laboratory for the physical and life sciences. This commentary presents a rationale for focusing American efforts in space on such a Moon base in order to promote understanding of the long-term physiological effects of living on a planetary body outside the Van Allen belts.
Presidential Leadership in the Development of the U.S. Space Program
NASA Technical Reports Server (NTRS)
Launius, Roger D. (Editor); Mccurdy, Howard E. (Editor)
1994-01-01
Papers presented at a historical symposium on Presidential leadership in the space program include the following: 'The Imperial Presidency in the History of Space Exploration'; 'The Reluctant Racer: Dwight D. Eisenhower and United States Space Policy'; 'Kennedy and the Decision to Go to the Moon'; 'Johnson, Project Apollo, and the Politics of Space Program Planning'; 'The Presidency, Congress, and the Deceleration of the U.S. Space Program in the 1970s'; 'Politics not Science: The U.S. Space Program in the Reagan and Bush Years'; 'Presidential Leadership and International Aspects of the Space Program'; 'National Leadership and Presidential Power'; and 'Epilogue: Beyond NASA Exceptionalism'.
Research and technology: 1986 annual report of the Lyndon B. Johnson Space Center
NASA Technical Reports Server (NTRS)
1986-01-01
Johnson Space Center accomplishments in new and advanced concepts during 1986 are highlighted. Included are research funded by the Office of Aeronautics and Space Technology; Solar System Exploration and Life Sciences research funded by the Office of Space Sciences and Applications; and Advanced Programs tasks funded by the Office of Space Flight. Summary sections describing the role of the Johnson Space Center in each program are followed by one-page descriptions of significant projects. Descriptions are suitable for external consumption, free of technical jargon, and illustrated to increase ease of comprehension.
Research and technology at the Lyndon B. Johnson Space Center
NASA Technical Reports Server (NTRS)
1983-01-01
Johnson Space Center accomplishments in new and advanced concepts during 1983 are highlighted. Included are research funded by the Office of Aeronautics and Space Technology; Advanced Programs tasks funded by the Office of Space Flight; and Solar System Explorations, Life Sciences, and Earth Sciences and Applications research funded by the Office of Space Sciences and Applications. Summary sections describing the role of the Johnson Space Center in each program are followed by one-page descriptions of significant projects. Descriptions are suitable for external consumption, free of technical jargon, and illustrated to increase ease of comprehension.
Research and technology: 1985 annual report of the Lyndon B. Johnson Space Center
NASA Technical Reports Server (NTRS)
1985-01-01
Johnson Space Center accomplishments in new and advanced concepts during 1985 are highlighted. Included are research funded by the Office of Aeronautics and Space Technology; Solar System Exploration and Life Sciences research funded by the Office of Space Sciences and Applications; and Advanced Programs tasks funded by the Office of Space Flight. Summary sections describing the role of the Johnson Space Center in each program are followed by one-page descriptions of significant projects. Descriptions are suitable for external consumption, free of technical jargon, and illustrated to increase ease of comprehension.
NASA Astrophysics Data System (ADS)
Martin, Annie; Sullivan, Patrick; Beaudry, Catherine; Kuyumjian, Raffi; Comtois, Jean-Marc
2012-12-01
Medical care on the International Space Station (ISS) is provided using real-time communication with limited medical data transmission. In the occurrence of an off-nominal medical event, the medical care paradigm employed is 'stabilization and transportation', involving real-time management from ground and immediate return to Earth in the event that the medical contingency could not be resolved in due time in space. In preparation for future missions beyond Low-Earth orbit (LEO), medical concepts of operations are being developed to ensure adequate support for the new mission profiles: increased distance, duration and communication delays, as well as impossibility of emergency returns and limitations in terms of medical equipment availability. The current ISS paradigm of medical care would no longer be adequate due to these new constraints. The Operational Space Medicine group at the Canadian Space Agency (CSA) is looking towards synergies between terrestrial and space medicine concepts for the delivery of medical care to deal with the new challenges of human space exploration as well as to provide benefits to the Canadian population. Remote and rural communities on Earth are, in fact, facing similar problems such as isolation, remoteness to tertiary care centers, resource scarcity, difficult (and expensive) emergency transfers, limited access to physicians and specialists and limited training of medical and nursing staff. There are a number of researchers and organizations, outside the space communities, working in the area of telehealth. They are designing and implementing terrestrial telehealth programs using real-time and store-and-forward techniques to provide isolated populations access to medical care. The cross-fertilization of space-Earth research could provide support for increased spin-off and spin-in effects and stimulate telehealth and space medicine innovations to engage in the new era of human space exploration. This paper will discuss the benefits of space-Earth research projects for the advancement of both terrestrial and space medicine and will use examples of operational space medicine projects conducted at the CSA in areas such as remote training, tele-mentoring and remote control of an ultrasound.
Pioneers in Space: The Story of the Pioneer Missions (Part II).
ERIC Educational Resources Information Center
Montoya, Earl J.; Fimmel, Richard O.
1988-01-01
Discusses the Pioneer satellites' explorations of Jupiter and Saturn. Includes discussions of engineering, the messenger program, and future projects. Provides pictures, diagrams, and a description of the Pioneer "message" plaques. (YP)
Report from ILEWG and Cape Canaveral Lunar Declaration 2008
NASA Astrophysics Data System (ADS)
Foing, B. H.
2009-04-01
We shall report on the ILEWG charter, goals and activities, on ICEUM "lunar declarations" and follow-up activities, with focus on societal questions, and the Cape Canaveral Lunar Declaration 2008. ILEWG charter: ILEWG , the International Lunar Exploration Working Group is a public forum created in 1994, sponsored by the world's space agencies to support "international cooperation towards a world strategy for the exploration and utilization of the Moon - our natural satellite". The charter of ILEWG is: - To develop an international strategy for the exploration of the Moon - To establish a forum and mechanisms for the communication and coordination of activities - To implement international coordination and cooperation - In order to facilitate communication among all interested parties ILEWG agrees to establish an electronic communication network for exchange of science, technology and programmatic information related to lunar activities ILEWG meets regularly, at least, once a year, and leads the organization of an International Conference in order to discuss the state of lunar exploration. Formal reports are given at COSPAR meetings and to space agencies. ILEWG is sponsored by the world's space agencies and is intended to serve three relevant groups: - actual members of the ILEWG, ie delegates and repre-sentatives of the participating Space Agencies and organizations - allowing them to discuss and possibly harmonize their draft concepts and plans - team members of the relevant space projects - allowing them to coordinate their internal work according to the guidelines provided by the Charter of the ILEWG - members of the general public and of the Lunar Explorer's Society who are interested and wish to be informed on the progress of the Moon projects and possibly contribute their own ideas ILEWG activities and working groups: ILEWG task groups include science, technology, human aspects, socio-economics, young explorers and outreach, programmatics, roadmaps and synergies with Mars exploration. Users can obtain information on how to participate, as well as details on the latest news and events regarding lunar exploration, forthcoming meetings, relevant reports and documents of importance for the work of the ILEWG, summary descriptions of current lunar exploration projects (such as SMART-1, Chang'E1, Selene, Chandrayaan-1, LRO, LCROSS) funded by various space agencies, and basic data on the Moon itself. Activities of the related space agencies and organizations can also be found. ILEWG has been organising International Conferences on Exploration and Utilisation of the Moon (ICEUM) since 1994, whose proceedings are published. It has also sponsored a number of activities, workshops, tasks groups and publications in collabora-tions with other organisations: COSPAR, space agencies, IAA, IAF, EGU (see references below). In accor-dance with its charter, ILEWG reports to COSPAR, and a summary was given at Montreal COSPAR2008 on ILEWG activities conducted since the previous COSPAR2006 assembly in Beijing. The recent ILEWG International Conference on Exploration and Utilisation of the Moon, were held respectively in Udaipur, India (ICEUM6, 2004), in Toronto, Canada (ICEUM7, 2005), in Beijing (ICEUM8, 2006), Sorrento (ICEUM9, 2007) and Port Canaveral (ICEUM10/LEAG/SRR, 2008 in conjunction with the NASA Lunar Exploration Analysis Groups and Space Resources Roundtable annual meetings). We'll report on the Cape Canaveral Lunar Declaration and on follow-up activities, in particular in coordination with space agencies, COSPAR and IAF. References: [1] 1st International Lunar Workshop, Balsiger H. et al., Editors, European Space Agency, 1994. ESA-SP-1170. [2] 2nd International Lunar Workshop, Kyoto, H. Mizutani, editor, Japan Space Forum Publisher, 1997. [3] 3rd International Lunar Workshop, Moscow 1998, E. Galimov, editor. [4] ICEUM4, ESTEC, 2000, ESA SP-462, B.H. Foing & M. Perry, editors. [5] ICEUM5, Hawaii Nov 2003, Durst S.M. et al, Editors, Vol 108, 1-576 pp, Science and Technology Series, American Astronautical Society, 2004. [6] ICEUM6, Udaipur 2004, Bhandari N., Editor, Journal Earth System Science, India, 114, No6, Dec 2005, pp. 573-841. [7] ICEUM7, Toronto Sept 2005, sci.esa.int/ilewg. [8] ICEUM8, Beijing July 2006, Journal of Chinese Society of Astronautics, Vol. 28 Sup., 2007, Ji W., Editor. [9] ICEUM9, Sorrento, Italy, Foing B., Espinasse S., Kosters G., Editors. http://sci.esa.int/iceum9, Dec. 2007), [11] Ehrenfreund, P., Foing, B.H., Cellino, A. Editors, The Moon and Near Earth Objects, ASR Vol 37, 1, 2006. [12] Foing, B.H. et al editors, 'Astronomy and Space Science from the Moon', ASR 14, 6, 1994. [13] Foing, B.H. et al, editor, Lunar Exploration, Planetary and Space Science, Vol 50, 14-15, 2002. [14] Foing, B.H., Heather, D. editors, 'Lunar Exploration 2000', ASR Vol 30, Nr 8, 2002. [15] Hunt-ress, W. et al 'The next steps in exploring deep space - A cosmic study by the IAA', Acta Astronautica, Vol 58, Issues 6-7, 2006, p302-377. [16] Ip W.-H., Foing, B.H., Masson Ph.L., editors, The Moon and Mars, ASR Vol 23, 11, 1999.
In-space assembly and servicing infrastructures for the Evolvable Space Telescope (EST)
NASA Astrophysics Data System (ADS)
Lillie, Charles F.; MacEwen, Howard A.
2016-07-01
The concept for EST presented in past SPIE forums will benefit significantly from the current efforts of DARPA, NASA and several commercial organizations to develop an in-space infrastructure that will enable on-orbit assembly, servicing, repair and repurposing of space vehicles. Two documents provide particularly relevant discussions: "NASA's Journey to Mars: Pioneering Next Steps in Space Exploration" provides a recent (2015) outline of NASA's thoughts on human deep space exploration and the tools that will enable it, while the "On-Orbit Satellite Servicing Study: Project Report" details a number of the concepts and technologies that must be developed. In this paper we examine the concepts in these and related documents to explore how systems such as EST will shape and support the infrastructure needed by future space vehicles. In so doing, we address previous examples of on-orbit assembly and servicing of space vehicles; the lessons learned from these efforts and the existing systems and facilities available to execute servicing missions; the EST concept for an LUVOIR telescope designed for in-orbit assembly and servicing and the resulting requirements for a servicing vehicle; the use of heavy lift launch vehicles, including the SLS and Exploration Upper Stage to co-manifest other large payloads along with a crewed Orion mission; Deep Space Habitats (DSHs) in cislunar space as a site for assembly and servicing spacecraft vehicles, and a base for Maneuverable Servicing Vehicles; and how space vehicles need to be designed for in-space assembly and servicing (i.e., commonality of parts, systems, modularity, accessibility, and stable maneuverability).
Expanding Public Outreach: The Solar System Ambassadors Program
NASA Astrophysics Data System (ADS)
Ferrari, K. A.
2000-12-01
The Solar System Ambassadors Program is a public outreach program designed to work with motivated volunteers across the nation. Those volunteers organize and conduct public events that communicate exciting discoveries and plans in Solar System research, exploration and technology through non-traditional forums, e.g. community service clubs, libraries, museums, planetariums, ``star parties," mall displays, etc. In 2001, 200 Ambassadors from almost all 50 states bring the excitement of space to the public. Ambassadors are space enthusiasts, K-12 in-service educators, retirees, community college teachers, and other members of the general public interested in providing greater service and inspiration to the community at large. Last year, Ambassadors conducted approximately 600 events that directly reached more than one-half million people in communities across the United States. The Solar System Ambassadors Program is sponsored by the Jet Propulsion Laboratory (JPL) in Pasadena, California, an operating division of the California Institute of Technology (Caltech) and a lead research and development center for the National Aeronautics and Space Administration (NASA). Participating JPL projects include Cassini, Galileo, STARDUST, Outer Planets mission, Solar Probe, Genesis, Ulysses, Voyager, Mars missions, Discovery missions NEAR-Shoemaker and Deep Impact, and the Deep Space Network. Each Ambassador participates in on-line (web-based) training sessions that provide interaction with NASA scientists, engineers and project team members. As such, each Ambassador's experience with the space program becomes personalized. Training sessions provide Ambassadors with general background on each mission and educate concerning specific mission milestones, such as launches, planetary flybys, first image returns, arrivals, and ongoing key discoveries. Additionally, projects provide videos, slide sets, booklets, pamphlets, posters, postcards, lithographs, on-line materials, resource links and information. Integrating nation-wide volunteers in a public-engagement program helps optimize project funding set aside for education and outreach purposes. At the same time, members of communities across the country become an extended part of each mission's team and an important interface between the space exploration community and the general public at large.
NASA Technical Reports Server (NTRS)
Otte, Neil E.; Lyles, Garry; Reuter, James L.; Davis, Daniel J.
2008-01-01
Fielding an integrated launch vehicle system entails many challenges, not the least of which is the fact that it has been over 30 years since the United States has developed a human-rated vehicle - the venerable Space Shuttle. Over time, whole generations of rocket scientists have passed through the aerospace community without the opportunity to perform such exacting, demanding, and rewarding work. However, with almost 50 years of experience leading the design, development, and end-to-end systems engineering and integration of complex launch vehicles, the National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center offers the in-house talent - both junior- and senior-level personnel - to shape a new national asset to meet the requirements for safe, reliable, and affordable space exploration solutions. The technical personnel are housed primarily in Marshall's Engineering Directorate and are matrixed into the programs and projects that reside at the rocket center. Fortunately, many Apollo-era and Shuttle engineers, as well as those who gained valuable hands-on experience in the 1990s by conducting technology demonstrator projects such as the Delta-Clipper Experimental Advanced, X-33, X-34, and X-37, as well as the short-lived Orbital Space Plane, work closely with industry partners to advance the nation's strategic capability for human access to space. The Ares Projects Office, resident at Marshall, is managing the design and development of America's new space fleet, including the Ares I, which will loft the Orion crew capsule for its first test flight in the 2013 timeframe, as well as the heavy-lift Ares V, which will round out the capability to leave low-Earth orbit once again, when it delivers the Altair lunar lander to orbit late next decade. This paper provides information about the approach to integrating the Ares I stack and designing the upper stage in house, using unique facilities and an expert workforce to revitalize the nation's space exploration resources.
Silenced, Silence, Silent: Motherhood in the Margins
ERIC Educational Resources Information Center
Carpenter, Lorelei; Austin, Helena
2007-01-01
This project explores the experiences of women who mother children with ADHD. The authors use the metaphor of the text and the margin. The text is the "motherhood myth" that describes a particular sort of "good" mothering. The margin is the space beyond that text. This marginal space is inhabited by some or all of the mothers they spoke with, some…
ERIC Educational Resources Information Center
Karlsson, Jenni
2004-01-01
In setting out to understand how South African school space was harnessed to the political project of apartheid, the author explores memory accounts from several adults who attended school during the apartheid era. Her analysis of their reminiscences found that non-pedagogic areas of the school and public domain beyond school premises were places…
Cryogenic Fluid Technologies for Long Duration In-Space Operations
NASA Technical Reports Server (NTRS)
Motil, Susan M.; Tramel, Terri L.
2008-01-01
Reliable knowledge of low-gravity cryogenic fluid management behavior is lacking and yet is critical in the areas of storage, distribution, and low-gravity propellant management. The Vision for Space Exploration mission objectives will require the use of high performance cryogenic propellants (hydrogen, oxygen, and methane). Additionally, lunar missions will require success in storing and transferring liquid and gas commodities on the surface. The fundamental challenges associated with the in-space use of cryogens are their susceptibility to environmental heat, their complex thermodynamic and fluid dynamic behavior in low gravity and the uncertainty of the position of the liquid-vapor interface if the propellants are not settled. The Cryogenic Fluid Management (CFM) project is addressing these issues through ground testing and analytical model development, and has crosscutting applications and benefits to virtually all missions requiring in-space operations with cryogens. Such knowledge can significantly reduce or even eliminate tank fluid boil-off losses for long term missions, reduce propellant launch mass and on-orbit margins, and simplify vehicle operations. The Cryogenic Fluid Management (CFM) Project is conducting testing and performing analytical evaluation of several areas to enable NASA s Exploration Vision. This paper discusses the content and progress of the technology focus areas within CFM.
Autonomous Agents and Intelligent Assistants for Exploration Operations
NASA Technical Reports Server (NTRS)
Malin, Jane T.
2000-01-01
Human exploration of space will involve remote autonomous crew and systems in long missions. Data to earth will be delayed and limited. Earth control centers will not receive continuous real-time telemetry data, and there will be communication round trips of up to one hour. There will be reduced human monitoring on the planet and earth. When crews are present on the planet, they will be occupied with other activities, and system management will be a low priority task. Earth control centers will use multi-tasking "night shift" and on-call specialists. A new project at Johnson Space Center is developing software to support teamwork between distributed human and software agents in future interplanetary work environments. The Engineering and Mission Operations Directorates at Johnson Space Center (JSC) are combining laboratories and expertise to carry out this project, by establishing a testbed for hWl1an centered design, development and evaluation of intelligent autonomous and assistant systems. Intelligent autonomous systems for managing systems on planetary bases will commuicate their knowledge to support distributed multi-agent mixed-initiative operations. Intelligent assistant agents will respond to events by developing briefings and responses according to instructions from human agents on earth and in space.
Spread and SpreadRecorder An Architecture for Data Distribution
NASA Technical Reports Server (NTRS)
Wright, Ted
2006-01-01
The Space Acceleration Measurement System (SAMS) project at the NASA Glenn Research Center (GRC) has been measuring the microgravity environment of the space shuttle, the International Space Station, MIR, sounding rockets, drop towers, and aircraft since 1991. The Principle Investigator Microgravity Services (PIMS) project at NASA GRC has been collecting, analyzing, reducing, and disseminating over 3 terabytes of collected SAMS and other microgravity sensor data to scientists so they can understand the disturbances that affect their microgravity science experiments. The years of experience with space flight data generation, telemetry, operations, analysis, and distribution give the SAMS/ PIMS team a unique perspective on space data systems. In 2005, the SAMS/PIMS team was asked to look into generalizing their data system and combining it with the nascent medical instrumentation data systems being proposed for ISS and beyond, specifically the Medical Computer Interface Adapter (MCIA) project. The SpreadRecorder software is a prototype system developed by SAMS/PIMS to explore ways of meeting the needs of both the medical and microgravity measurement communities. It is hoped that the system is general enough to be used for many other purposes.
Interrupting Everyday Life: Public Interventionist Art as Critical Public Pedagogy
ERIC Educational Resources Information Center
Desai, Dipti; Darts, David
2016-01-01
In this article we explore two urban interventions art projects in the public sphere designed by our Masters' students at New York University as they set the stage for a discussion on how urban art interventions can function as a form of critical public pedagogy. We argue that these kinds of public art projects provided a space for dialogue with…
2013-12-10
CAPE CANAVERAL, Fla. – Preparations are underway to prepare the Project Morpheus prototype lander for its first free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to asteroids and other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett
2013-12-17
CAPE CANAVERAL, Fla. -- A technician prepares the Project Morpheus prototype lander for a second free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Dimitri Gerondidakis
2013-12-17
CAPE CANAVERAL, Fla. -- Preparations are underway to prepare the Project Morpheus prototype lander for a second free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Dimitri Gerondidakis
2013-12-17
CAPE CANAVERAL, Fla. -- Engineers and technicians prepare the Project Morpheus prototype lander for a second free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Dimitri Gerondidakis
2013-12-10
CAPE CANAVERAL, Fla. – The first free flight of the Project Morpheus prototype lander begins as the lander’s engine fires at the north of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to asteroids and other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett
2013-12-10
CAPE CANAVERAL, Fla. – Preparations are underway to prepare the Project Morpheus prototype lander for its first free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to asteroids and other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett
2013-12-17
CAPE CANAVERAL, Fla. -- A technician prepares the Project Morpheus prototype lander for a second free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Dimitri Gerondidakis
2013-12-10
CAPE CANAVERAL, Fla. – The first free flight of the Project Morpheus prototype lander begins as the lander’s engine fires at the north of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to asteroids and other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett
2013-12-17
CAPE CANAVERAL, Fla. -- Preparations are underway to prepare the Project Morpheus prototype lander for a second free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Dimitri Gerondidakis
2013-12-10
CAPE CANAVERAL, Fla. – The first free flight of the Project Morpheus prototype lander begins as the lander’s engine fires at the north of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to asteroids and other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett
2013-12-10
CAPE CANAVERAL, Fla. – Technicians and engineers prepare the Project Morpheus prototype lander for its first free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to asteroids and other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett
Towards human exploration of space: The THESEUS review series on immunology research priorities
Frippiat, Jean-Pol; Crucian, Brian E; de Quervain, Dominique J-F; Grimm, Daniela; Montano, Nicola; Praun, Siegfried; Roozendaal, Benno; Schelling, Gustav; Thiel, Manfred; Ullrich, Oliver; Choukèr, Alexander
2016-01-01
Dysregulation of the immune system occurs during spaceflight and may represent a crew health risk during exploration missions because astronauts are challenged by many stressors. Therefore, it is crucial to understand the biology of immune modulation under spaceflight conditions in order to be able to maintain immune homeostasis under such challenges. In the framework of the THESEUS project whose aim was to develop an integrated life sciences research roadmap regarding human space exploration, experts working in the field of space immunology, and related disciplines, established a questionnaire sent to scientists around the world. From the review of collected answers, they deduced a list of key issues and provided several recommendations such as a maximal exploitation of currently available resources on Earth and in space, and to increase increments duration for some ISS crew members to 12 months or longer. These recommendations should contribute to improve our knowledge about spaceflight effects on the immune system and the development of countermeasures that, beyond astronauts, could have a societal impact. PMID:28725745
Towards human exploration of space: The THESEUS review series on immunology research priorities.
Frippiat, Jean-Pol; Crucian, Brian E; de Quervain, Dominique J-F; Grimm, Daniela; Montano, Nicola; Praun, Siegfried; Roozendaal, Benno; Schelling, Gustav; Thiel, Manfred; Ullrich, Oliver; Choukèr, Alexander
2016-01-01
Dysregulation of the immune system occurs during spaceflight and may represent a crew health risk during exploration missions because astronauts are challenged by many stressors. Therefore, it is crucial to understand the biology of immune modulation under spaceflight conditions in order to be able to maintain immune homeostasis under such challenges. In the framework of the THESEUS project whose aim was to develop an integrated life sciences research roadmap regarding human space exploration, experts working in the field of space immunology, and related disciplines, established a questionnaire sent to scientists around the world. From the review of collected answers, they deduced a list of key issues and provided several recommendations such as a maximal exploitation of currently available resources on Earth and in space, and to increase increments duration for some ISS crew members to 12 months or longer. These recommendations should contribute to improve our knowledge about spaceflight effects on the immune system and the development of countermeasures that, beyond astronauts, could have a societal impact.
Purposes, pedagogies and practices in lifewide adult education in New Zealand: A preview
NASA Astrophysics Data System (ADS)
Zepke, Nick
2015-02-01
This paper is interested in projecting the likely purposes, pedagogies and practices influencing lifewide adult education in New Zealand ten years from now. It first identifies learning spaces in which lifewide adult education takes place. It explores formal, non-formal and informal spaces which conform to or oppose dominant ideological policies, trends and discourses. Second, it discusses current purposes, pedagogies and practices in lifewide adult education. The official purposes are seen as adult education contributing to New Zealand's success in a global marketplace. While lifewide adult education provides spaces to achieve such official purposes, it also creates spaces of neutrality and opposition. In the third section, the paper uses causal layered analysis (CLA) to project the likely future of lifewide adult education. The paper concludes that that while neoliberal purposes, pedagogies and practices will remain dominant, what will be flourishing in diverse spaces is counter-learning.
2012-11-05
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 has been undergoing modifications inside high bay 2 of the Vehicle Assembly Building in preparation to carry the space agency's Space Launch System heavy-lift rocket to the launch pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles projects to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Jim Grossmann
2012-11-05
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 is parked outside of the Vehicle Assembly Building. The Crawler-transporter has been undergoing modifications to ensure its ability to carry the space agency's Space Launch System heavy-lift rocket to the launch pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles projects to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Jim Grossmann
2012-11-06
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 moves along the crawler way toward Launch Pad 39A following modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the launch pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles projects to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Jim Grossmann
2012-11-06
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles projects to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Ben Smegelsky
2012-11-06
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles projects to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Ben Smegelsky
2012-11-06
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles projects to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Ben Smegelsky
Autism and Comedy: Using Theatre Workshops to Explore Humour with Adolescents on the Spectrum
ERIC Educational Resources Information Center
May, Shaun
2017-01-01
This paper discusses a project that used comedy workshops to explore the humour of autistic teenagers, focusing the discussion around three traits often -- and negatively -- associated with autism. The paper will then point to ways of rethinking these traits, and argue that doing so opens up a space for considering the aesthetics of comedy on the…
Inclusion and Art Education: "Welcome to the Big Room, Everything's Alright"
ERIC Educational Resources Information Center
Penketh, Claire
2017-01-01
This article offers an exploration of the art room as part of a broader project to consider the ways in which normative practices in art and design education can include and exclude students. The art classroom is explored here as a "disrupted space" and one that can promote movement between the structures and boundaries that affect our…
OSIRIS-REx Prelaunch News Conference
2016-09-06
In the Kennedy Space Center’s Press Site auditorium, Scott Messer, program manager for NASA missions at United Launch Alliance in Centennial, Colorado; Michael Donnelly, OSIRIS-REx project manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland; and Rich Kuhns, OSIRIS-REx program manager for Lockheed Martin Space Systems in Denver; speak to members of the media at a prelaunch news conference for the agency’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft.
Wernher von Braun: Reflections on His Contributions to Space Exploration
NASA Technical Reports Server (NTRS)
Goldman, Arthur E.
2012-01-01
In 1950, Dr. Wernher von Braun and approximately 100 of his team members came to Huntsville, Alabama, to begin work with the Army on what would later become America's historic space program. He would later serve as the first director of the Marshall Space Flight Center and led the development of the Saturn V launch vehicle that launched seven crewed American mission to the moon, as well as America s first space station, Skylab. Von Braun is best known for his team s technical achievements. He realized his dream of exploring outer space by helping place humans on the moon. His engineering and managerial talent during the Apollo era had contributed to a technological revolution. He was by all accounts a good engineer, but he was only one among many. What set Von Braun apart were his charisma, his vision, and his leadership skills. He inspired loyalty and dedication in the people around him. He understood the importance of communicating his vision to his team, to political and business leaders and the public. Today, the Marshall Center continues his vision by pursuing engineering and scientific projects that will continue to open space to exploration. This presentation will discuss Von Braun's impact on Huntsville, the Marshall Center, the nation and the world and look at his contributions in context of where world space exploration is today.
NASA Technical Reports Server (NTRS)
Gore, Brian F.
2017-01-01
Human space exploration has never been more exciting than it is today. Human presence to outer worlds is becoming a reality as humans are leveraging much of our prior knowledge to the new mission of going to Mars. Exploring the solar system at greater distances from Earth than ever before will possess some unique challenges, which can be overcome thanks to the advances in modeling and simulation technologies. The National Aeronautics and Space Administration (NASA) is at the forefront of exploring our solar system. NASA's Human Research Program (HRP) focuses on discovering the best methods and technologies that support safe and productive human space travel in the extreme and harsh space environment. HRP uses various methods and approaches to answer questions about the impact of long duration missions on the human in space including: gravitys impact on the human body, isolation and confinement on the human, hostile environments impact on the human, space radiation, and how the distance is likely to impact the human. Predictive models are included in the HRP research portfolio as these models provide valuable insights into human-system operations. This paper will provide an overview of NASA's HRP and will present a number of projects that have used modeling and simulation to provide insights into human-system issues (e.g. automation, habitat design, schedules) in anticipation of space exploration.
NASA's International Lunar Network Anchor Nodes and Robotic Lunar Lander Project Update
NASA Technical Reports Server (NTRS)
Cohen, Barbara A.; Bassler, Julie A.; Ballard, Benjamin; Chavers, Greg; Eng, Doug S.; Hammond, Monica S.; Hill, Larry A.; Harris, Danny W.; Hollaway, Todd A.; Kubota, Sanae;
2010-01-01
NASA Marshall Space Flight Center and The Johns Hopkins University Applied Physics Laboratory have been conducting mission studies and performing risk reduction activities for NASA's robotic lunar lander flight projects. Additional mission studies have been conducted to support other objectives of the lunar science and exploration community and extensive risk reduction design and testing has been performed to advance the design of the lander system and reduce development risk for flight projects.
Artistic Research on Freedom in Space and Science
NASA Astrophysics Data System (ADS)
Foing, Bernard H.; Schelfhout, Ronald; Gelfand, Dmitry; Van der Heide, Edwin; Preusterink, Jolanda; Domnitch, Evelina
ArtScience ESTEC: Space science in the arts. Since the earliest scientific preparations for extra-terrestrial travel at the beginning of the 20th century, the exploration of outer space has become a quintessential framework of the human condition and its creative manifestations. Although the artistic pursuit of space science is still in its infancy, an accelerated evolution is currently underway. Perspective: With the current state of the planet and the development of technology, humankind has the ability to look from a greater distance to the damage that has been done. This offers potential in the form of early detection and prevention of disasters. Meanwhile our aim seems to be directed away from the earth into the universe. In the Space science in the arts project I tried to encapsulate these two viewpoints that tend to avoid each other. We are still earthbound and that is our basis. A tree cannot grow tall without strong roots. Space, a promise of freedom. Line of thought: Space sounds like freedom but to actually send people out there they have to be strapped tightly on top of a giant missile to reach a habitat of interconnecting tubes with very little space. It is impossible to escape protocol with- out risking your life and the lives of astronauts have been fixed years in advance. This is the human predicament which does not apply to the telescopes and other devices used to reach far into the universe. Providing information instantly the various forms of light allow us to travel without moving. Description of the installation: The research on freedom in space and science led to the development of an installation that reflects the dualistic aspect which clings to the exploration of the universe. The installation is a model on multiple scales. You can look at the material or the feeling it evokes as well as at the constantly changing projections. The image is light. Inside this glass circle there is a broken dome placed over a dark and reflective surface on which light manipulating machines continuously alter the projected image. Development: In order to delve deeper into the subject of freedom in space and science this setup can serve as a vantage point. And it can offer an interactive environment to explore notions of freedom in space and science. The addition of a specific environment around and above the installation, referring to the fabric of space would highly increase the impact it has on an audience. You would then be able to immerse yourself in the world of this settlement, somewhere in outer space. Sound, light and projection screens will orbit the table changing the projections even more. Triggering the imagination with every movement. Results: Freedome has been exhibited at TecArt in Rotterdam, at ILEWG/Artscience day and the Lunar conference at ESTEC in February 2014. The images underneath (courtesy J. Preusterink BH Foing) depict the installation in some ways it can be experienced http://www.youtube.com/watch?v=Qn8DHARrlU (images: Jolanda Preusterink and Bernard Foing, from ILEWG/ESTEC/ArtScience-The Hague workshop Space Science in the Arts) Authors: Ronald Schelfhout, Bernard Foing, Evelina Domnitch, Dmitry Gelfand, Edwin van der Heide, Jolanda Preusterink
NASA Advanced Explorations Systems: 2017 Advancements in Life Support Systems
NASA Technical Reports Server (NTRS)
Schneider, Walter F.; Shull, Sarah A.
2017-01-01
The NASA Advanced Exploration Systems (AES) Life Support Systems (LSS) project strives to develop reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support systems (ECLSS) critical to enabling long duration human missions beyond low Earth orbit (LEO). Highly reliable, closed-loop life support systems are among the capabilities required for the longer duration human space exploration missions planned in the mid-2020s and beyond. The LSS Project is focused on four are-as-architecture and systems engineering for life support systems, environmental monitoring, air revitalization, and wastewater processing and water management. Starting with the International Space Station (ISS) LSS systems as a point of departure where applicable, the three-fold mission of the LSS Project is to address discrete LSS technology gaps, to improve the reliability of LSS systems, and to advance LSS systems toward integrated testing aboard the ISS. This paper is a follow on to the AES LSS development status reported in 2016 and provides additional details on the progress made since that paper was published with specific attention to the status of the Aerosol Sampler ISS Flight Experiment, the Spacecraft Atmosphere Monitor (SAM) Flight Experiment, the Brine Processor Assembly (BPA) Flight Experiment, the CO2 removal technology development tasks, and the work investigating the impacts of dormancy on LSS systems.
Two-Phase Flow Technology Developed and Demonstrated for the Vision for Exploration
NASA Technical Reports Server (NTRS)
Sankovic, John M.; McQuillen, John B.; Lekan, Jack F.
2005-01-01
NASA s vision for exploration will once again expand the bounds of human presence in the universe with planned missions to the Moon and Mars. To attain the numerous goals of this vision, NASA will need to develop technologies in several areas, including advanced power-generation and thermal-control systems for spacecraft and life support. The development of these systems will have to be demonstrated prior to implementation to ensure safe and reliable operation in reduced-gravity environments. The Two-Phase Flow Facility (T(PHI) FFy) Project will provide the path to these enabling technologies for critical multiphase fluid products. The safety and reliability of future systems will be enhanced by addressing focused microgravity fluid physics issues associated with flow boiling, condensation, phase separation, and system stability, all of which are essential to exploration technology. The project--a multiyear effort initiated in 2004--will include concept development, normal-gravity testing (laboratories), reduced gravity aircraft flight campaigns (NASA s KC-135 and C-9 aircraft), space-flight experimentation (International Space Station), and model development. This project will be implemented by a team from the NASA Glenn Research Center, QSS Group, Inc., ZIN Technologies, Inc., and the Extramural Strategic Research Team composed of experts from academia.
Human Research Program Exploration Medical Capability
NASA Technical Reports Server (NTRS)
Barsten, Kristina
2010-01-01
NASA s Human Research Program (HRP) conducts and coordinates research projects that provide human health and performance countermeasures, knowledge, technologies, and tools to enable safe, reliable, and productive human space exploration. The Program is divided into 6 major elements, which a) Provide the Program s knowledge and capabilities to conduct research, addressing the human health and performance risks. b) Advance the readiness levels of technology and countermeasures to the point of transfer to the customer programs and organizations. The National Space Biomedical Research Institute (NSBRI) is a partner with the HRP in developing a successful research program. 3
NASA Technical Reports Server (NTRS)
Kidd, Luanne; Morris, Kenneth B.; Self, Timothy A.
2007-01-01
The U.S. Vision for Space Exploration directs NASA to retire the Space Shuttle in 2010 and replace it with safe, reliable, and cost-effective space transportation systems for crew and cargo travel to the Moon, Mars, and beyond. Such emerging space transportation initiatives face massive organizational challenges, including building and nurturing an experienced, dedicated team with the right skills for the required tasks; allocating and tracking the fiscal capital invested in achieving technical progress against an integrated master schedule; and turning generated data into useful knowledge that equips the team to design and develop superior products for customers and stakeholders. It has been more than 30 years since the Space Shuttle was designed; therefore, the current aerospace workforce has limited experience with developing new designs for human-rated spaceflight hardware. To accomplish these activities, NASA is using a wide range of state-of-the-art information technology tools that connect its diverse, decentralized teams and provide timely, accurate information for decision makers. In addition, business professionals are assisting technical managers with planning, tracking, and forecasting resource use against an integrated master schedule that horizontally and vertically interlinks hardware elements and milestone events. Furthermore, NASA is employing a wide variety of strategies to ensure that it has the motivated and qualified staff it needs for the tasks ahead. This paper discusses how NASA's Exploration Launch Projects Office, which is responsible for delivering these new launch vehicles, integrates its resources to create an engineering business environment that promotes mission success, which is defined by replacing the Space Shuttle by 2014 and returning to the Moon by 2020.
NASA Technical Reports Server (NTRS)
Duke, Michael B. (Editor)
1999-01-01
HEDS-UP (Human Exploration and Development of Space-University Partners) conducted its second annual forum on May 6-7, 1999, at the Lunar and Planetary Institute in Houston. This year, the topics focused on human exploration of Mars, including considerations ranging from systems analysis of the transportation and surface architecture to very detailed considerations of surface elements such as greenhouses, rovers, and EVA suits. Ten undergraduate projects and four graduate level projects were presented with a total of 13 universities from around the country. Over 200 students participated on the study teams and nearly 100 students attended the forum meeting.