14 CFR 1214.601 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Mementos Aboard Space Shuttle... meters (2 cubic feet) in size, reserved for carrying official mementos of NASA and other organizations aboard Space Shuttle flights. No personal items will be carried in the OFK. (c) Personal Preference Kit...
14 CFR 1214.601 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Mementos Aboard Space Shuttle... meters (2 cubic feet) in size, reserved for carrying official mementos of NASA and other organizations aboard Space Shuttle flights. No personal items will be carried in the OFK. (c) Personal Preference Kit...
14 CFR 1214.601 - Definitions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Mementos Aboard Space Shuttle... meters (2 cubic feet) in size, reserved for carrying official mementos of NASA and other organizations aboard Space Shuttle flights. No personal items will be carried in the OFK. (c) Personal Preference Kit...
14 CFR 1214.601 - Definitions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Mementos Aboard Space Shuttle... meters (2 cubic feet) in size, reserved for carrying official mementos of NASA and other organizations aboard Space Shuttle flights. No personal items will be carried in the OFK. (c) Personal Preference Kit...
SPACE STATION CREW MEMBER DISCUSSES LIFE IN SPACE WITH GEORGIA STUDENTS
2017-06-19
Aboard the International Space Station, Flight Engineer Jack Fischer of NASA discussed life and research aboard the orbital laboratory June 19 with students gathered at the Fayette County Public Library in Fayette, Georgia during an educational in-flight event.
Astronaut Discusses Life in Space with West Virginia Students
2018-01-25
Aboard the International Space Station, Expedition 54 Flight Engineer Joe Acaba of NASA discussed life and scientific studies aboard the orbital complex during an in-flight educational event Jan. 25 with students gathered at the West Virginia Wesleyan College in Buckhannon, West Virginia. Acaba is in the final month of a five-and-a-half month mission aboard the outpost.
Ohio Senator John Glenn sits in the orbiter Columbia's flight deck
NASA Technical Reports Server (NTRS)
1998-01-01
Ohio Senator John Glenn sits in the flight deck looking at equipment in the orbiter Columbia at the Orbiter Processing Facility 3 at Kennedy Space Center. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.
Ohio Senator John Glenn sits in the orbiter Columbia's flight deck
NASA Technical Reports Server (NTRS)
1998-01-01
Ohio Senator John Glenn enjoys a tour of the flight deck in the orbiter Columbia at the Orbiter Processing Facility 3 at Kennedy Space Center. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.
Ohio Senator John Glenn sits in the orbiter Columbia's flight deck
NASA Technical Reports Server (NTRS)
1998-01-01
Ohio Senator John Glenn, at left, sits in the flight deck of the orbiter Columbia as astronaut Stephen Oswald explains some of the flight equipment to the senator at the Orbiter Processing Facility 3 at Kennedy Space Center. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.
Expedition54_Education_in-Flight-New_Mexico_Museum_Space_History_052_1600_620942_hires
2018-02-21
Aboard the International Space Station, Expedition 54 Flight Engineer Scott Tingle of NASA discussed life and work aboard the orbital outpost with New Mexico students during an in-flight education event Feb. 21 at the New Mexico Museum of Space History in Alamogordo, New Mexico. Tingle is in the midst of a five-and-a-half-month mission on the station. He is scheduled to return to Earth in early June.
Space Station Crew Member Discusses Life in Space with the Media
2018-01-04
Aboard the International Space Station, Expedition 54 Flight Engineer Scott Tingle of NASA discussed the initial days of his planned six-month mission on the outpost in an in-flight interview Jan. 4 with the Boston Globe. Tingle, who is a native of Massachusetts, arrived aboard the station Dec. 19 and is scheduled to remain in orbit through early June.
Space Station Crew Members Discuss Life in Space with Military Media
2017-11-22
Aboard the International Space Station, Expedition 53 Commander Randy Bresnik and Flight Engineers Mark Vande Hei and Joe Acaba of NASA discussed life and research aboard the orbital outpost during a pair of in-flight interviews Nov. 22 with the Soldiers TV Network and Marines Media organization. Bresnik, who is a retired Marine Colonel, is in the final weeks of his five-and-a-half-month mission on the station, while Vande Hei, a former Army Colonel, and Acaba, a former Marine reservist, will remain aboard the complex until late February.
Ohio Senator John Glenn sits in the orbiter Columbia's flight deck
NASA Technical Reports Server (NTRS)
1998-01-01
Ohio Senator John Glenn, at left, enjoys a tour of the flight deck in the orbiter Columbia with Astronaut Stephen Oswald at the Orbiter Processing Facility 3 at Kennedy Space Center. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.
1998-01-21
Ohio Senator John Glenn, at left, sits in the flight deck of the orbiter Columbia as astronaut Stephen Oswald explains some of the flight equipment to the senator at the Orbiter Processing Facility 3 at Kennedy Space Center. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95
Ohio Senator John Glenn tours the orbiter Columbia's middeck
NASA Technical Reports Server (NTRS)
1998-01-01
Ohio Senator John Glenn, at right, sits in the flight deck of the orbiter Columbia as astronaut Stephen Oswald listens to his questions regarding some of the flight equipment at the Orbiter Processing Facility 3 at Kennedy Space Center. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.
Space Station Crew Discusses Life in Space with West Point Cadets
2017-11-27
Aboard the International Space Station, Expedition 53 Commander Randy Bresnik and Flight Engineers Mark Vande Hei and Joe Acaba of NASA discussed life and research aboard the orbital outpost during an in-flight event Nov. 27 with cadets at the U.S. Military Academy in West Point, New York. Bresnik, who is a retired Marine Colonel, is in the final weeks of his five-and-a-half-month mission on the station, while Vande Hei, a former Army Colonel, and Acaba, a former Marine reservist, will remain aboard the complex until late February.
Space Station Crew Discusses Life in Space with Georgia Students
2017-10-23
Aboard the International Space Station, Expedition 53 Commander Randy Bresnik and Flight Engineers Joe Acaba and Mark Vande Hei of NASA discussed life and research aboard the orbital outpost during an in-flight educational event Oct. 23 with students at the New Prospect Elementary School in Alpharetta, Georgia. The crew members are in various stages of their five and a half month missions on the orbital complex.
Space Station Astronauts Discuss Life in Space with Virginia Students
2017-11-08
Aboard the International Space Station, Expedition 53 Commander Randy Bresnik and Flight Engineers Joe Acaba and Mark Vande Hei of NASA discussed life and scientific research aboard the orbital laboratory during an in-flight educational event Nov. 8 with students at the Pole Green Elementary School in Mechanicsville, Virginia. The three NASA astronauts are in various stages of their respective five-and-a-half-month missions on the complex.
Space Station Crew Member Discusses Life in Space with the Media
2018-01-02
Aboard the International Space Station, Expedition 54 Flight Engineer Scott Tingle of NASA discussed the initial days of his planned six-month mission on the outpost in a pair of in-flight interviews Jan. 2 with WTTV-TV, Indianapolis, and WFXT-TV, Boston. Tingle, who is a native of Massachusetts, arrived aboard the station Dec. 19 and is scheduled to remain in orbit through early June.
1997-01-16
KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility make final adjustments to the Flight Support System (FSS) for STS-82, the second Hubble Space Telescope servicing mission. The FSS is reusable flight hardware that provides the mechanical, structural and electrical interfaces between HST, the space support equipment and the orbiter for payload retrieval and on-orbit servicing. Liftoff aboard Discovery is targeted Feb. 11 with a crew of seven.
Boeing Unveils New Suit for Commercial Crew Astronauts
2017-01-23
Boeing unveiled its spacesuit design Wednesday as the company continues to move toward flight tests and crew rotation missions of its Starliner spacecraft and launch systems that will fly astronauts to the International Space Station. Astronauts heading into orbit for the station aboard the Starliner will wear Boeing’s new spacesuits. The suits are custom-designed to fit each astronaut, lighter and more comfortable than earlier versions and meet NASA requirements for safety and functionality. NASA's commercial crew astronauts Eric Boe and Suni Williams tried on the suits at Boeing’s Commercial Crew and Cargo Facility at NASA’s Kennedy Space Center. Boe, Williams, Bob Behnken, and Doug Hurley were selected by NASA in July 2015 to train for commercial crew test flights aboard the Starliner and SpaceX’s Crew Dragon spacecraft. The flight assignments have not been set, so all four of the astronauts are rehearsingheavily for flights aboard both vehicles.
PAO Event with Newsweek 3119_624023_hires
2018-03-02
SPACE STATION CREW MEMBERS DISCUSS LIFE IN SPACE WITH NEWSWEEK MAGAZINE ------------------------------------------------------------------ Aboard the International Space Station, Expedition 55 Flight Engineers Scott Tingle of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed life and research aboard the orbital outpost during an in-flight question and answer session March 1 with Newsweek Magazine. Tingle and Kanai are in the midst of a five-and-a-half-month mission on the station.
International Space Station (ISS)
2001-08-12
In this photograph, Astronaut Susan Helms, Expedition Two flight engineer, is positioned near a large amount of water temporarily stored in the Unity Node aboard the International Space Station (ISS). Astronaut Helms accompanied the STS-105 crew back to Earth after having spent five months with two crewmates aboard the ISS. The 11th ISS assembly flight, the Space Shuttle Orbiter Discovery STS-105 mission was launched on August 10, 2001, and landed on August 22, 2001 at the Kennedy Space Center after the completion of the successful 12-day mission.
Space Station Crew Member Discusses Live in Space with Italian Prime Minister
2017-11-06
Aboard the International Space Station, Expedition 53 Flight Engineer Paolo Nespoli of Italy and ESA (the European Space Agency) discussed the accomplishments of his mission during an in-flight conversation Nov. 6 with Italian Prime Minister Paolo Gentiloni. Nespoli is in the final month of a five-and-a-half-month mission aboard the orbiting laboratory. The crew is scheduled to return to Earth in a Russian Soyuz spacecraft Dec. 14, landing in south central Kazakhstan.
Space Station Crew Marks the 10th Anniversary of the Launching of the European Columbus Module
2018-02-07
Aboard the International Space Station, Expedition 54 Flight Engineers Joe Acaba and Mark Vande Hei of NASA took time to commemorate the 10th anniversary of the launching of the European Columbus module during an in-flight event Feb. 7 with European Space Agency officials gathered in Noordwijk, Netherlands. The Columbus science laboratory was launched on Feb. 7, 2008 aboard the space shuttle Atlantis on the STS-122 mission commanded by former NASA astronaut Stephen Frick.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. In the Training Auditorium, James Hattaway Jr., KSC associate director, presents a framed graphic to astronaut Mike Foale representing his stay aboard the International Space Station as commander of the Expedition 8 crew. .Foale spoke to the audience of employees about his experiences aboard the Space Station. Foale and Flight Engineer Alexander Kaleri spent 194 days, 18 hours and 35 minutes in space, the second longest expedition to be completed aboard the Station. In February Foale and Kaleri conducted the first spacewalk ever performed from the complex by a two-person crew. Foale has accumulated more time in space than any U.S. astronaut, amassing a total of 374 days, 11 hours and 19 minutes in space from his Expedition 8 mission, a 1997 flight to the Russian Mir Space Station, and four Space Shuttle missions.
NASA Space Station Astronaut Discusses Life in Space with Washington State Students
2017-12-12
Aboard the International Space Station, Expedition 53 Flight Engineer Mark Vande Hei of NASA discussed life and work aboard the complex during an in-flight question and answer session Dec. 12 with a variety of students representing schools in Washington, including students from the Steve Luther Elementary School in Lakebay, Washington. Vande Hei is in the midst of a five-month mission on the station, conducting research involving hundreds of experiments from international investigators.
Stability of Dosage Forms in the Pharmaceutical Payload Aboard Space Missions
NASA Technical Reports Server (NTRS)
Du, Brian J.; Daniels, Vernie; Boyd, Jason L.; Crady, Camille; Satterfield, Rick; Younker, Diane R.; Putcha, Lakshmi
2009-01-01
Efficacious pharmaceuticals with adequate shelf lives are essential for successful space medical operations. Stability of pharmaceuticals, therefore, is of paramount importance for assuring the health and wellness of astronauts on future space exploration missions. Unique physical and environmental factors of space missions may contribute to the instability of pharmaceuticals, e.g., radiation, humidity and temperature variations. Degradation of pharmaceutical formulations can result in inadequate efficacy and/or untoward toxic effects, which could compromise astronaut safety and health. Methods: Four identical pharmaceutical payload kits containing 31 medications in different dosage forms (liquid, tablet, capsule, ointment and suppository) were transported to the International Space Station aboard the Space Shuttle (STS-121). One of the 4 kits was stored on the Shuttle and the other 3 were stored on the International Space Station (ISS) for return to Earth at 6-month interval aboard a pre-designated Shuttle flight for each kit. The kit stored on the Shuttle was returned to Earth aboard STS-121 and 2 kits from ISS were returned on STS 117 and STS-122. Results: Analysis of standard physical and chemical parameters of degradation was completed for pharmaceuticals returned by STS-121 after14 days, STS - 117 after11 months and STS 122 after 19 months storage aboard ISS. Analysis of all flight samples along with ground-based matching controls was completed and results were compiled. Conclusion: Evaluation of results from the shuttle (1) and ISS increments (2) indicate that the number of formulations degraded in space increased with duration of storage in space and was higher in space compared to their ground-based counterparts. Rate of degradation for some of the formulations tested was faster in space than on Earth. Additionally, some of the formulations included in the medical kits were unstable, more so in space than on the ground. These results indicate that the space flight environment may adversely affect the shelf life of pharmaceuticals aboard space missions.
Expedition_55_Education_Event_HL_Suverkrup_Elementary_2018_061_1530_624314
2018-03-02
SPACE STATION CREW MEMBERS DISCUSS LIFE IN SPACE WITH ARIZONA STUDENTS------ Aboard the International Space Station, Expedition 55 Flight Engineers Scott Tingle of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed life and research aboard the orbital outpost during an in-flight educational event March 2 with students at the HL Suverkrup Elementary School in Yuma, Arizona. Tingle and Kanai are in the midst of a five-and-a-half-month mission on the station.
Expedition_55_Education_Event_Monta_Loma_Elementary_2018_061_1715_624334
2018-03-02
SPACE STATION CREW MEMBERS DISCUSS LIFE IN SPACE WITH CALIFORNIA STUDENTS----- Aboard the International Space Station, Expedition 55 Flight Engineers Scott Tingle of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed life and research aboard the orbital outpost during an in-flight educational event March 2 with students at the Monta Loma Elementary School in Mountain View, California. Tingle and Kanai are in the midst of a five-and-a-half-month mission on the station.
Code of Federal Regulations, 2010 CFR
2010-01-01
... § 1214.1700 Scope. This subpart establishes NASA policy and selection procedures for accommodation of space flight participants aboard flights of the Space Shuttle. [56 FR 47148, Sept. 18, 1991] ...
Code of Federal Regulations, 2011 CFR
2011-01-01
... § 1214.1700 Scope. This subpart establishes NASA policy and selection procedures for accommodation of space flight participants aboard flights of the Space Shuttle. [56 FR 47148, Sept. 18, 1991] ...
Code of Federal Regulations, 2013 CFR
2013-01-01
... § 1214.1700 Scope. This subpart establishes NASA policy and selection procedures for accommodation of space flight participants aboard flights of the Space Shuttle. [56 FR 47148, Sept. 18, 1991] ...
Code of Federal Regulations, 2012 CFR
2012-01-01
... § 1214.1700 Scope. This subpart establishes NASA policy and selection procedures for accommodation of space flight participants aboard flights of the Space Shuttle. [56 FR 47148, Sept. 18, 1991] ...
Protein crystallization aboard the Space Shuttle and the Mir space station
NASA Technical Reports Server (NTRS)
Delbaere, Louis T. J.; Vandonselaar, Margaret; Prasad, Lata; Quail, J. W.; Birnbaum, George I.; Delucas, Lawrence J.; Moore, Karen; Bugg, Charles E.
1993-01-01
Two different protein crystallizations, namely ,the free Fab fragment of the Je142 monoclonal antibody and the complex of Fab fragment/HPr with antigen, were performed aboard the Discovery Space Shuttle flights and the Mir space station, respectively. Medium sized crystals of the Je142 Fab fragment were obtained. The Je142 Fab fragment/Hpr complex produced two medium-sized crystals after two months aboard the Mir space station. Microgravity was found to eliminate the tendency of these crystals to form clusters.
International Space Station (ISS)
2000-07-01
The 45-foot, port-side (P1) truss segment flight article for the International Space Station is being transported to the Redstone Airfield, Marshall Space Flight Center. The truss will be loaded aboard NASA's Super Guppy cargo plane for shipment to the Kennedy Space Center.
2018-04-25
SPACE STATION CREW MEMBERS DISCUSS LIFE IN SPACE WITH STUDENT SCIENTISTS---- Aboard the International Space Station, Expedition 55 Flight Engineers Drew Feustel and Ricky Arnold of NASA discussed life and research on the orbital outpost during an in-flight educational event April 25 with students gathered at the Fairchild Botanic Gardens in Coral Gables, Florida. Using equipment that mimics the environmental conditions aboard the International Space Station, students conducted plant experiments to test factors that may influence plant growth, flavor, and nutrition. NASA will use students’ data to determine which plants they should begin growing in space on the Veggie facility. Feustel and Arnold arrived at the station in late March for a six-month mission on the complex.
Code of Federal Regulations, 2014 CFR
2014-01-01
... § 1214.1700 Scope. This subpart establishes NASA policy and selection procedures for accommodation of space flight participants aboard flights of the Space Shuttle. [56 FR 47148, Sept. 18, 1991] ...
Stability of Formulations Contained in the Pharmaceutical Payload Aboard Space Missions
NASA Technical Reports Server (NTRS)
Putcha, Lakshmi; Du, Brian; Daniels, Vernie; Boyd, Jason L.; Crady, Camille; Satterfield, Rick
2008-01-01
Efficacious pharmaceuticals with adequate shelf life are essential for successful space medical operations in support of space exploration missions. Physical and environmental factors unique to space missions such as vibration, G forces and ionizing radiation may adversely affect stability of pharmaceuticals intended for standard care of astronauts aboard space missions. Stable pharmaceuticals, therefore, are of paramount importance for assuring health and wellness of astronauts in space. Preliminary examination of stability of formulations from Shuttle and International Space Station (ISS) medical kits revealed that some of these medications showed physical and chemical degradation after flight raising concern of reduced therapeutic effectiveness with these medications in space. A research payload experiment was conducted with a select set of formulations stowed aboard a shuttle flight and on ISS. The payload consisted of four identical pharmaceutical kits containing 31 medications in different dosage forms that were transported to the International Space Station (ISS) aboard the Space Shuttle, STS 121. One of the four kits was stored on the shuttle and the other three were stored on the ISS for return to Earth at six months intervals on a pre-designated Shuttle flight for each kit; the shuttle kit was returned to Earth on the same flight. Standard stability indicating physical and chemical parameters were measured for all pharmaceuticals returned from the shuttle and from the first ISS increment payload along with ground-based matching controls. Results were compared between shuttle, ISS and ground controls. Evaluation of data from the three paradigms indicates that some of the formulations exhibited significant degradation in space compared to respective ground controls; a few formulations were unstable both on the ground and in space. An increase in the number of pharmaceuticals from ISS failing USP standards was noticed compared to those from the shuttle flight. A comprehensive evaluation of results is in progress.
International Space Station (ISS)
2001-10-23
Carrying out a flight program for the French Space Agency (CNES) under a commerial contract with the Russian Aviation and Space Agency, a Russian Soyuz spacecraft approaches the International Space Station (ISS) delivering a crew of three for an eight-day stay. Aboard the craft are Commander Victor Afanasyev, Flight Engineer Konstantin Kozeev, both representing Rosaviakosmos, and French Flight Engineer Claudie Haignere.
International Space Station (ISS)
2001-10-23
Carrying out a flight program for the French Space Agency (CNES) under a commercial contract with the Russian Aviation and Space Agency, a Russian Soyuz spacecraft approaches the International Space Station (ISS), delivering a crew of three for an eight-day stay. Aboard the craft are Commander Victor Afanasyev, Flight Engineer Konstantin Kozeev, both representing Rosaviakosmos, and French Flight Engineer Claudie Haignere.
Station Crew Member Discusses Life in Space with Media
2018-01-18
Aboard the International Space Station, Expedition 54 Flight Engineer Scott Tingle of NASA discussed life and research on the orbital complex during an in-flight interview session Jan. 18 with the ABC Digital Network and Space.com.
Expedition_55_Vaughn_Next_Century_Learning_Center_2018_142_1500_656685
2018-05-24
SPACE STATION CREW DISCUSSES LIFE IN SPACE WITH CALIFORNIA STUDENTS----- Aboard the International Space Station, Expedition 55 Flight Engineers Ricky Arnold and Scott Tingle of NASA discussed life and research aboard the orbital outpost during an in-flight educational event May 22 with students at the Vaughn Next Century Learning Center in San Fernando, California. Arnold is in the midst of a six-month mission on the station, while Tingle is in the final weeks of his six-month sojourn on the complex, heading for a return to Earth on June 3.
Astronaut Susan Helms in the ISS Unity Node
NASA Technical Reports Server (NTRS)
2001-01-01
In this photograph, Astronaut Susan Helms, Expedition Two flight engineer, is positioned near a large amount of water temporarily stored in the Unity Node aboard the International Space Station (ISS). Astronaut Helms accompanied the STS-105 crew back to Earth after having spent five months with two crewmates aboard the ISS. The 11th ISS assembly flight, the Space Shuttle Orbiter Discovery STS-105 mission was launched on August 10, 2001, and landed on August 22, 2001 at the Kennedy Space Center after the completion of the successful 12-day mission.
14 CFR 1214.1703 - Definitions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... § 1214.1703 Definitions. (a) Space flight participants. All persons whose presence aboard a Space Shuttle... Evaluation Committee, established in NASA Headquarters for the purpose of directing and administering the program for space flight participants. The Committee consists of the following NASA Headquarters officials...
14 CFR 1214.1703 - Definitions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... § 1214.1703 Definitions. (a) Space flight participants. All persons whose presence aboard a Space Shuttle... Evaluation Committee, established in NASA Headquarters for the purpose of directing and administering the program for space flight participants. The Committee consists of the following NASA Headquarters officials...
14 CFR 1214.1703 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... § 1214.1703 Definitions. (a) Space flight participants. All persons whose presence aboard a Space Shuttle... Evaluation Committee, established in NASA Headquarters for the purpose of directing and administering the program for space flight participants. The Committee consists of the following NASA Headquarters officials...
14 CFR 1214.1703 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... § 1214.1703 Definitions. (a) Space flight participants. All persons whose presence aboard a Space Shuttle... Evaluation Committee, established in NASA Headquarters for the purpose of directing and administering the program for space flight participants. The Committee consists of the following NASA Headquarters officials...
2001-08-10
KENNEDY SPACE CENTER, Fla. - Expedition Three crew member Vladimir Dezhurov (left) is ready for his first space flight, under the guidance of STS-105 Commander Scott Horowitz (center). Helping with flight equipment before launch is (right) USA Mechanical Technician Al Schmidt. The payload on the STS-105 mission to the International Space Station includes the third flight of the Italian-built Multi-Purpose Logistics Module Leonardo, delivering additional scientific racks, equipment and supplies for the Space Station, and the Early Ammonia Servicer (EAS) tank. The EAS, which will be attached to the Station during two spacewalks, contains spare ammonia for the Station’s cooling system. Also, the Expedition Three crew is aboard to replace the Expedition Two crew on the International Space Station, who will be returning to Earth aboard Discovery after a five-month stay on the Station
Expedition_55_In-flight_with_Czech_TV_2018_099_1055_637949
2018-04-09
SPACE STATION CREW MEMBER DISCUSSES LIFE IN SPACE WITH CZECH MEDIA---------Aboard the International Space Station, Expedition 55 Flight Engineer Drew Feustel of NASA discussed his mission on the orbital outpost during an in-flight question and answer session April 9 with Czech Television in Prague, Czech Republic. Feustel is in his third flight into space, conducting scientific research and operational support of station systems.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. In the Training Auditorium, astronaut Mike Foale speaks to the audience about his experiences aboard the International Space Station as commander of the Expedition 8 crew. Foale and Flight Engineer Alexander Kaleri spent 194 days, 18 hours and 35 minutes in space, the second longest expedition to be completed aboard the Station. In February Foale and Kaleri conducted the first spacewalk ever performed from the complex by a two-person crew. Foale has accumulated more time in space than any U.S. astronaut, amassing a total of 374 days, 11 hours and 19 minutes in space from his Expedition 8 mission, a 1997 flight to the Russian Mir Space Station, and four Space Shuttle missions.
International Space Station (ISS)
2001-10-23
A Russian Soyuz spacecraft undocks from the International Space Station (ISS) with its crew of three ending an eight-day stay. Aboard the craft are Commander Victor Afanasyev, Flight Engineer Konstantin Kozeev, both representing Rosaviakosmos, and French Flight Engineer Claudie Haignere. Their mission was to carry out a flight program for the French Space Agency (CNES) under a commercial contract with the Russian Aviation and Space Agency.
International Space Station (ISS)
2001-10-23
A Russian Soyuz spacecraft departs from the International Space Station (ISS) with its crew of three ending an eight-day stay. Aboard the craft are Commander Victor Afanasyev, Flight Engineer Konstantin Kozeev, both representing Rosaviakosmos, and French Flight Engineer Claudie Haignere. Their mission was to carry out a flight program for the French Space Agency (CNES) under a commercial contract with the Russian Aviation and Space Agency.
Astronauts McMonagle and Brown on flight deck mockup during training
1994-06-23
S94-40090 (23 June 1994) --- Astronauts Donald R. McMonagle, left, and Curtis L. Brown man the commander's and pilot's stations, respectively, during a rehearsal of ascent and entry phases of their scheduled November 1994 flight aboard Atlantis. Three other NASA astronauts and a European mission specialist joined the two for this training exercise in the Crew Compartment Trainer (CCT) at the Johnson Space Center's (JSC) Shuttle Mockup and Integration Laboratory and will join them aboard the Space Shuttle Atlantis in November. The flight is manifest to support the Atmospheric Laboratory for Applications and Science (ATLAS-3) mission.
NASA Technical Reports Server (NTRS)
Shteyne, B. A.; Nevzgodina, L. V.; Miller, A. T.
1982-01-01
The effects of space flight factors on lettuce seeds aboard the Kosmos-936 and Kosmos-1129 satellites for 20 days were studied. The phytochrome dependent (PD) reaction of light sensitive seeds was a sensitive criterion for evaluating the biological effects of space flight factors. The PD reaction of air dry lettuce seeds was suppressed after space flight, especially if the seeds were exposed to open space during the flight. Space flight affects the physiological activity of both phytochrome forms, and both the phi sub 730 dependent reactions of lettuce seeds were suppressed.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Astronaut Mike Foale, left, joins Center Director Jim Kennedy, right, in the Training Auditorium. Foale spoke to the audience about his experiences aboard the International Space Station as commander of the Expedition 8 crew. Foale and Flight Engineer Alexander Kaleri spent 194 days, 18 hours and 35 minutes in space, the second longest expedition to be completed aboard the Station. In February Foale and Kaleri conducted the first spacewalk ever performed from the complex by a two-person crew. Foale has accumulated more time in space than any U.S. astronaut, amassing a total of 374 days, 11 hours and 19 minutes in space from his Expedition 8 mission, a 1997 flight to the Russian Mir Space Station, and four Space Shuttle missions.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. After his presentation in the Training Auditorium, astronaut Mike Foale greets employees and signs autographs. Foale shared his experiences aboard the International Space Station as commander of the Expedition 8 crew. Foale and Flight Engineer Alexander Kaleri spent 194 days, 18 hours and 35 minutes in space, the second longest expedition to be completed aboard the Station. In February Foale and Kaleri conducted the first spacewalk ever performed from the complex by a two-person crew. Foale has accumulated more time in space than any U.S. astronaut, amassing a total of 374 days, 11 hours and 19 minutes in space from his Expedition 8 mission, a 1997 flight to the Russian Mir Space Station, and four Space Shuttle missions.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. After his presentation in the Training Auditorium, astronaut Mike Foale greets employees and signs autographs. Foale shared his experiences aboard the International Space Station as commander of the Expedition 8 crew. Foale and Flight Engineer Alexander Kaleri spent 194 days, 18 hours and 35 minutes in space, the second longest expedition to be completed aboard the Station. In February Foale and Kaleri conducted the first spacewalk ever performed from the complex by a two-person crew. Foale has accumulated more time in space than any U.S. astronaut, amassing a total of 374 days, 11 hours and 19 minutes in space from his Expedition 8 mission, a 1997 flight to the Russian Mir Space Station, and four Space Shuttle missions.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. In the Training Auditorium, Center Director Jim Kennedy presents a framed photo to astronaut Mike Foale, who spoke to the audience about his experiences aboard the International Space Station as commander of the Expedition 8 crew. Foale and Flight Engineer Alexander Kaleri spent 194 days, 18 hours and 35 minutes in space, the second longest expedition to be completed aboard the Station. In February Foale and Kaleri conducted the first spacewalk ever performed from the complex by a two-person crew. Foale has accumulated more time in space than any U.S. astronaut, amassing a total of 374 days, 11 hours and 19 minutes in space from his Expedition 8 mission, a 1997 flight to the Russian Mir Space Station, and four Space Shuttle missions.
International Space Station (ISS)
1997-06-01
This Boeing photograph shows the Node 1, Unity module, Flight Article (at right) and the U.S. Laboratory module, Destiny, Flight Article for the International Space Station (ISS) being manufactured in the High Bay Clean Room of the Space Station Manufacturing Facility at the Marshall Space Flight Center. The Node 1, or Unity, serves as a cornecting passageway to Space Station modules. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian-built Functional Energy Block (FGB). The U.S. Laboratory (Destiny) module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The U.S. Laboratory/Destiny was launched aboard the orbiter Atlantis (STS-98 mission) on February 7, 2001. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
Results of the Vapor Compression Distillation Flight Experiment (VCD-FE)
NASA Technical Reports Server (NTRS)
Hutchens, Cindy; Graves, Rex
2004-01-01
Vapor Compression Distillation (VCD) is the chosen technology for urine processing aboard the International Space Station (ISS). Key aspects of the VCD design have been verified and significant improvements made throughout the ground;based development history. However, an important element lacking from previous subsystem development efforts was flight-testing. Consequently, the demonstration and validation of the VCD technology and the investigation of subsystem performance in micro-gravity were the primary goals of the VCD-FE. The Vapor Compression Distillation Flight Experiment (VCD-E) was a flight experiment aboard the Space Shuttle Columbia during the STS-107 mission. The VCD-FE was a full-scale developmental version of the Space Station Urine Processor Assembly (UPA) and was designed to test some of the potential micro-gravity issues with the design. This paper summarizes the experiment results.
Electrolysis Performance Improvement Concept Study (EPICS) Flight Experiment-Reflight
NASA Technical Reports Server (NTRS)
Schubert, F. H.
1997-01-01
The Electrolysis Performance Improvement Concept Study (EPICS) is a flight experiment to demonstrate and validate in a microgravity environment the Static Feed Electrolyzer (SFE) concept which was selected for the use aboard the International Space Station (ISS) for oxygen (O2) generation. It also is to investigate the impact of microgravity on electrochemical cell performance. Electrochemical cells are important to the space program because they provide an efficient means of generating O2 and hydrogen (H2) in space. Oxygen and H2 are essential not only for the survival of humans in space but also for the efficient and economical operation of various space systems. Electrochemical cells can reduce the mass, volume and logistical penalties associated with resupply and storage by generating and/or consuming these gases in space. An initial flight of the EPICS was conducted aboard STS-69 from September 7 to 8, 1995. A temperature sensor characteristics shift and a missing line of software code resulted in only partial success of this initial flight. Based on the review and recommendations of a National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) review team a reflight activity was initiated to obtain the remaining desired results, not achieved during the initial flight.
Expedition_56_Education_In-flight_Interview_with_Armstong_Flight_Research_Center_2018_0628
2018-06-28
SPACE STATION CREW MEMBER DISCUSSES LIFE IN SPACE WITH CALIFORNIA STUDENTS--- Aboard the International Space Station, Expedition 56 Flight Engineer Serena Aunon-Chancellor discussed life and research onboard the orbital complex with students gathered at the Armstrong Flight Research Center in Edwards, California during an in-flight educational event June 28. Aunon-Chancellor arrived at the complex on June 8 at the start of a six and a half month mission.
NASA Technical Reports Server (NTRS)
Schonfeld, Julie E.
2015-01-01
Wetlab-2 is a research platform for conducting real-time quantitative gene expression analysis aboard the International Space Station. The system enables spaceflight genomic studies involving a wide variety of biospecimen types in the unique microgravity environment of space. Currently, gene expression analyses of space flown biospecimens must be conducted post flight after living cultures or frozen or chemically fixed samples are returned to Earth from the space station. Post-flight analysis is limited for several reasons. First, changes in gene expression can be transient, changing over a timescale of minutes. The delay between sampling on Earth can range from days to months, and RNA may degrade during this period of time, even in fixed or frozen samples. Second, living organisms that return to Earth may quickly re-adapt to terrestrial conditions. Third, forces exerted on samples during reentry and return to Earth may affect results. Lastly, follow up experiments designed in response to post-flight results must wait for a new flight opportunity to be tested.
Expedition_55_Education_In-flight_Interview_with Boeing_Genes_in Space_2018_130_1615_651411
2018-05-10
SPACE STATION CREW MEMBERS DISCUSS RESEARCH WITH TEXAS STUDENTS------- Aboard the International Space Station, Expedition 55 Flight Engineers Drew Feustel and Scott Tingle of NASA discussed research on the orbital laboratory during an in-flight educational event May 10 with students gathered at Space Center Houston. The in-flight event centered around the Boeing-sponsored Genes in Space experiment which enlisted students in grades 7-12 to submit various ideas for DNA research with an eye to future implications for deep space exploration.
Salvaging of the Final SSMIS Flight Unit for a Future Flight-of-Opportunity
NASA Astrophysics Data System (ADS)
Tratt, D. M.; Boucher, D. J., Jr.; Park, E. S.; Swadley, S. D.; Poe, G.
2017-12-01
The final Special Sensor Microwave Imager/Sounder (SSMIS) that was originally manifested aboard the DMSP F-20 platform became available when that mission was deactivated. The U.S. Naval Research Laboratory and The Aerospace Corporation have secured the de-manifested SSMIS for potential flight on a future mission-of-opportunity. A number of mission options are under consideration, including installation aboard the International Space Station. The intent is for any such deployment to provide a measure of continuity between SSMIS units currently operating aboard DMSP F-16, F-17, and F-18 and whatever equivalent sensor may be selected for the next-generation DoD Weather Satellite Follow-on program. We will describe the current status of SSMIS preparations for flight.
International Space Station (ISS)
2001-02-01
The Payload Operations Center (POC) is the science command post for the International Space Station (ISS). Located at NASA's Marshall Space Flight Center in Huntsville, Alabama, it is the focal point for American and international science activities aboard the ISS. The POC's unique capabilities allow science experts and researchers around the world to perform cutting-edge science in the unique microgravity environment of space. The POC is staffed around the clock by shifts of payload flight controllers. At any given time, 8 to 10 flight controllers are on consoles operating, plarning for, and controlling various systems and payloads. This photograph shows a Payload Rack Officer (PRO) at a work station. The PRO is linked by a computer to all payload racks aboard the ISS. The PRO monitors and configures the resources and environment for science experiments including EXPRESS Racks, multiple-payload racks designed for commercial payloads.
Teacher in Space Christa McAuliffe on the KC-135 for zero-G training
1986-01-08
S86-25180 (October 1985) --- Sharon Christa McAuliffe, STS-51L citizen observer/payload specialist, representing the Teacher-in-Space Project, floats forward and upward during a few moments of weightlessness aboard a KC-135 aircraft. The flight is part of her training for the scheduled five-day flight aboard the Challenger in January of next year. Barbara R. Morgan, backup payload specialist for STS-51L, is partially visible in the background. The photo was taken by Keith Meyers of the New York Times. Photo credit: NASA
1998-01-20
Ohio Senator John Glenn spoke with the media shortly after he arrived at Kennedy Space Center's (KSC's) Shuttle Landing Facility on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95
1998-01-20
Ohio Senator John Glenn spoke with the media shortly after he arrived at Kennedy Space Center's (KSC's) Shuttle Landing Facility on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95
2004-03-05
KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Soichi Noguchi arrives at KSC aboard a T-38 jet aircraft. He and other crew members are at the Center for familiarization activities with equipment. The mission is Logistics Flight 1, scheduled to deliver the Multi-Purpose Logistics Module carrying supplies and equipment to the Space Station and the external stowage platform.
2004-03-05
KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Stephen Robinson arrives at KSC aboard a T-38 jet aircraft. He and other crew members are at the Center for familiarization activities with equipment. The mission is Logistics Flight 1, scheduled to deliver the Multi-Purpose Logistics Module carrying supplies and equipment to the Space Station and the external stowage platform.
2004-03-05
KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Charles Camarda arrives at KSC aboard a T-38 jet aircraft. He and other crew members are at the Center for familiarization activities with equipment. The mission is Logistics Flight 1, scheduled to deliver the Multi-Purpose Logistics Module carrying supplies and equipment,to the Space Station, and the external stowage platform.
International Space Station (ISS)
2001-02-01
These 10 astronauts and cosmonauts represent the base STS-102 space travelers, as well as the crew members for the station crews switching out turns aboard the outpost. Those astronauts wearing orange represent the STS-102 crew members. In the top photo, from left to right are: James M. Kelly, pilot; Andrew S.W. Thomas, mission specialist; James D. Wetherbee, commander; and Paul W. Richards, mission specialist. The group pictured in the lower right portion of the portrait are STS-members as well as Expedition Two crew members (from left): mission specialist and flight engineer James S. Voss; cosmonaut Yury V. Usachev, Expedition Two Commander; and mission specialist and flight engineer Susan Helms. The lower left inset are the 3 man crew of Expedition One (pictured from left): Cosmonaut Sergei K. Krikalev, flight engineer; astronaut William M. (Bill) Shepherd, commander; and cosmonaut Yuri P. Gidzenko, Soyuz commander. The main objective of the STS-102 mission was the first Expedition Crew rotation and the primary cargo was the Leonardo, the Italian Space Agency-built Multipurpose Logistics Module (MPLM). The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission launched on March 8, 2001 aboard the Space Shuttle Orbiter Discovery.
Expedition_55_Education_In-flight_Interview_Tulsa_Air_&_Space_Museum_2018_134_1435_652763
2018-05-14
SPACE STATION CREW DISCUSSES LIFE IN SPACE WITH OKLAHOMA STUDENTS----- Aboard the International Space Station, Expedition 55 NASA Flight Engineers Drew Feustel and Ricky Arnold discussed life and research on the complex during an in-flight educational event May 14 with students gathered at the Tulsa Air and Space Museum in Tulsa, Oklahoma. Feustel and Arnold are in the midst of a six and a half month mission on the orbital outpost.
Microgravity Science Glovebox Aboard the International Space Station
NASA Technical Reports Server (NTRS)
2003-01-01
In the Destiny laboratory aboard the International Space Station (ISS), European Space Agency (ESA) astronaut Pedro Duque of Spain is seen working at the Microgravity Science Glovebox (MSG). He is working with the PROMISS experiment, which will investigate the growth processes of proteins during weightless conditions. The PROMISS is one of the Cervantes program of tests (consisting of 20 commercial experiments). The MSG is managed by NASA's Marshall Space Flight Center (MSFC).
International Space Station (ISS)
2002-07-10
Expedition Five crewmember and flight engineer Peggy Whitson displays the progress of soybeans growing in the Advanced Astroculture (ADVASC) Experiment aboard the International Space Station (ISS). The ADVASC experiment was one of the several new experiments and science facilities delivered to the ISS by Expedition Five aboard the Space Shuttle Orbiter Endeavor STS-111 mission. An agricultural seed company will grow soybeans in the ADVASC hardware to determine whether soybean plants can produce seeds in a microgravity environment. Secondary objectives include determination of the chemical characteristics of the seed in space and any microgravity impact on the plant growth cycle. Station science will also be conducted by the ever-present ground crew, with a new cadre of controllers for Expedition Five in the ISS Payload Operations Control Center (POCC) at NASA's Marshall Space Flight Center in Huntsville, Alabama. Controllers work in three shifts around the clock, 7 days a week, in the POCC, the world's primary science command post for the Space Station. The POCC links Earth-bound researchers around the world with their experiments and crew aboard the Space Station.
14 CFR § 1214.601 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Space Shuttle Flights § 1214.601 Definitions. (a) Mementos. Flags, patches, insignia, medallions, minor... cubic meters (2 cubic feet) in size, reserved for carrying official mementos of NASA and other organizations aboard Space Shuttle flights. No personal items will be carried in the OFK. (c) Personal...
Astronauts Discuss Life in Space with Tennessee Students
2017-11-20
Aboard the International Space Station, Expedition 53 Commander Randy Bresnik and Flight Engineer Mark Vande Hei of NASA discussed life and research on the orbital laboratory during an in-flight educational event Nov. 20 with students at the Southside Elementary School in Lebanon, Tennessee.
NASA Astrophysics Data System (ADS)
Hoehn, Alex; Chamberlain, Dale J.; Forsyth, Sasha W.; Hanna, David S.; Scovazzo, Paul; Horner, Michael B.; Stodieck, Louis S.; Todd, Paul; Heyenga, A. Gerard; Kliss, Mark H.; Bula, Raymond; Yetka, Robert
1997-01-01
PGBA, a plant growth facility developed for space flight biotechnology research, successfully grew a total of 30 plants in a closed, multi-crop chamber for 10 days aboard the Space Shuttle Endeavor (STS-77). Artemisia annua, Catharanthus roseus, Pinus taeda, Spinacia oleracea and Trifolium repens were the five species studied during this mission. The primary mission objectives were to study the effects of microgravity for commercial and pharmaceutical production purposes. PGBA is a payload that represents a consortium of interests including BioServe Space Technologies (payload sponsor), NASA Ames Research Center (Controlled Ecological Life Support System, CELSS, Flight Program), Wisconsin Center for Space Automation and Robotics (WCSAR), and industrial affiliates (spaceflight effects on plants and formation of plant products such as pharmaceuticals). Although BioServe is responsible for the flight hardware development and integration of PGBA, NASA Ames, WSCAR and industrial affiliates provide significant hardware subsystems and technical biological expertise support.
14 CFR 125.75 - Airplane flight manual.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane flight manual. 125.75 Section 125... Airplane flight manual. (a) Each certificate holder shall keep a current approved Airplane Flight Manual or... approved Airplane Flight Manual or the approved equivalent aboard each airplane it operates. A certificate...
14 CFR 125.75 - Airplane flight manual.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplane flight manual. 125.75 Section 125... Airplane flight manual. (a) Each certificate holder shall keep a current approved Airplane Flight Manual or... approved Airplane Flight Manual or the approved equivalent aboard each airplane it operates. A certificate...
14 CFR 125.75 - Airplane flight manual.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplane flight manual. 125.75 Section 125... Airplane flight manual. (a) Each certificate holder shall keep a current approved Airplane Flight Manual or... approved Airplane Flight Manual or the approved equivalent aboard each airplane it operates. A certificate...
NASA Technical Reports Server (NTRS)
Smith, Scott M.; Zwart, Sara R.; Block, Gladys; Rice, Barbara L.; Davis-Street, Janis E.
2005-01-01
Defining optimal nutrient requirements is critical for ensuring crew health during long-duration space exploration missions. Data pertaining to such nutrient requirements are extremely limited. The primary goal of this study was to better understand nutritional changes that occur during long-duration space flight. We examined body composition, bone metabolism, hematology, general blood chemistry, and blood levels of selected vitamins and minerals in 11 astronauts before and after long-duration (128-195 d) space flight aboard the International Space Station. Dietary intake and limited biochemical measures were assessed during flight. Crew members consumed a mean of 80% of their recommended energy intake, and on landing day their body weight was less (P = 0.051) than before flight. Hematocrit, serum iron, ferritin saturation, and transferrin were decreased and serum ferritin was increased after flight (P < 0.05). The finding that other acute-phase proteins were unchanged after flight suggests that the changes in iron metabolism are not likely to be solely a result of an inflammatory response. Urinary 8-hydroxy-2'-deoxyguanosine concentration was greater and RBC superoxide dismutase was less after flight (P < 0.05), indicating increased oxidative damage. Despite vitamin D supplement use during flight, serum 25-hydroxycholecalciferol was decreased after flight (P < 0.01). Bone resorption was increased after flight, as indicated by several markers. Bone formation, assessed by several markers, did not consistently rise 1 d after landing. These data provide evidence that bone loss, compromised vitamin D status, and oxidative damage are among critical nutritional concerns for long-duration space travelers.
Ohio Senator John Glenn tours the Space Station Processing Facility at KSC
NASA Technical Reports Server (NTRS)
1998-01-01
Ohio Senator John Glenn, at right, enjoys a tour of the Space Station Processing Facility at Kennedy Space Center. With Senator Glenn is Stephen Francois, director, Space Station and Shuttle Payloads, NASA. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plakhuta-Plakutina, G.I.
1978-10-26
In studying the modifying effects of space flight factors on radiosensitivity of various physiological systems of the body, of definite interest is the reaction of critical organs, in particular the testes, which have a high degree of heterogenic sensitivity of spermatogenic epithelium. Impairment of proliferative activity of testicular epithelium is largely related to the radiovulnerability of cells of the stem type, spermatogonia. In determining the modifying effects of weightlessness and other factors of space flights, it is necessary to compare the cytological state and quantitative evaluation of the incidence of spermatogonia, spermatocytes, spermatids, and spermatozoa in order to determine themore » possible injury to specific stages of spectrogenesis, depending on the radiation doses during space flights and in ground-based model experiments. The effects of radiation under weightless conditions on the reproductive glands of 30 male Wistar rats flown aboard Kosmos-690 and submitted to prolonged ..gamma.. radiation on the 10th day of the flight were investigated.« less
International Space Station (ISS)
2003-10-25
Aboard the International Space Station (ISS), European Space Agency astronaut Pedro Duque of Spain watches a water bubble float between a camera and himself. The bubble shows his reflection (reversed). Duque was launched aboard a Russian Soyuz TMA-3 spacecraft from the Baikonur Cosmodrome, Kazakhstan on October 18th, along with expedition-8 crew members Michael C. Foale, Mission Commander and NASA ISS Science Officer, and Cosmonaut Alexander Y. Kaleri, Soyuz Commander and flight engineer.
Space Station Commander Discusses Life in Space with Ukrainian Students
2017-10-25
Aboard the International Space Station, Expedition 53 Commander Randy Bresnik of NASA discussed life and research aboard the orbital laboratory during an in-flight question and answer session Oct. 25 with Ukrainian students gathered at the America House in Kiev, Ukraine and other Ukrainian students tied in to the event from other locations. Participating in the event in Kiev was the U.S. Ambassador to Ukraine, Marie Yovanovitch.
1996-09-26
KENNEDY SPACE CENTER, FLA. -- The drag chute is deployed as the orbiter Atlantis swoops down on Runway 15 of KSC's Shuttle Landing Facility at 8:13:15 a.m. EDT, September 26, bringing to a successful conclusion U.S. astronaut Shannon Lucid's record- setting, 188-day stay in space. Lucid's approximately six-month stay aboard the Russian Space Station Mir establishes a new U.S. record for long-duration spaceflight and also is the longest for a woman, surpassing Russian cosmonaut Elena Kondakovaþs 169-day stay on Mir. Lucid returns to Earth with the flight crew of Mission STS-79: Commander William F. Readdy; Pilot Terrence W. Wilcutt; and Mission Specialists Thomas D. Akers, Jay Apt and Carl E. Walz. Succeeding her aboard Mir for an approximately four-month stay is fellow veteran astronaut John E. Blaha, who traveled to the station with the STS-79 flight crew. The STS-79 mission is part of the NASA/Mir program which is now into the Phase 1B portion, consisting of nine Shuttle-Mir dockings and seven long-duration flights of U.S. astronauts aboard the Russian space station between early 1996 and late 1998
Parin, V V; Gazenko, O G
1963-01-01
Results are given of biological experiments on space ship-satellites II, III, IV and V, and of scientific investigations made during the flights of Cosmonauts Gagarin and Titov aboard space ships Vostok I and Vostok II. Physiological reactions to the action of the flight stress-factors are not of a pathological character. In the post-flight period no alterations in health conditions of either cosmonauts or animals were observed. At the same time some peculiarities which were revealed while analyzing physiological reactions and a number of biological indices require further investigations. The most important tasks remaining are to study the influence of protracted weightlessness, of the biological action of space radiation, of the action of acceleration stresses after prolonged stay under zero-gravity conditions and also to analyze the influence on the organism of the whole combination of spaceflight factors, including emotional strain. In the Soviet Union, a great number of biological experiments have been conducted with a view to elucidating the action of space flight factors on living organisms and the design of systems necessary to ensure healthy activity during flight aboard rocket space vehicles. The first flight experiments with animals were conducted by means of geophysical rockets. The next step in this direction was made by the launching of Sputnik II in 1957 and by experiments on space ship-satellites in 1960-61. The main purpose of flight and laboratory investigations was to obtain the objective scientific criteria essential for ensuring the safety of manned space flight.
2007-04-26
KENNEDY SPACE CENTER, FLA. -- Noted physicist Stephen Hawking (center) returns to the Kennedy Space Center Shuttle Landing Facility after a zero gravity flight. At far left is Peter Diamandis, founder of the Zero Gravity Corp. that provided the flight aboard its modified Boeing 727. Hawking suffers from amyotrophic lateral sclerosis (also known as Lou Gehrig's disease). At the celebration of his 65th birthday on January 8 this year, Hawking announced his plans for a zero-gravity flight to prepare for a sub-orbital space flight in 2009 on Virgin Galactic's space service. Photo credit: NASA/Kim Shiflett
Space Station Crew Members Discuss Life in Space with Country Music Legends
2017-06-29
Aboard the International Space Station, Expedition 52 Flight Engineers Jack Fischer and Peggy Whitson of NASA discussed life and research on the orbital outpost with country music stars Garth Brooks and Trisha Yearwood, during an in-flight chat June 29. Brooks and Yearwood placed the call during a tour of NASA’s Johnson Space Center in Houston in the wake of a social media post Fischer made prior to his launch in April that listed Brooks’ song “The River” as one of his favorites. Fischer and Whitson are scheduled to remain in orbit aboard the station until early September when they will return to Earth in a Russian Soyuz spacecraft for a parachute-assisted landing on the steppe of Kazakhstan.
2004-03-05
KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Soichi Noguchi is happy to be back at KSC after arriving aboard a T-38 jet aircraft. He and other crew members are at the Center for familiarization activities with equipment. The mission is Logistics Flight 1, scheduled to deliver the Multi-Purpose Logistics Module carrying supplies and equipment to the Space Station and the external stowage platform.
2004-03-05
KENNEDY SPACE CENTER, FLA. - STS-114 Mission Commander Eileen Collins is pleased to be back at KSC after arriving aboard a T-38 jet aircraft. She and other crew members are at the Center for familiarization activities with equipment. The mission is Logistics Flight 1, scheduled to deliver to the Space Station the external stowage platform and the Multi-Purpose Logistics Module with supplies and equipment.
2004-03-05
KENNEDY SPACE CENTER, FLA. - STS-114 Pilot Jim Kelly is pleased to be back at KSC after arriving aboard a T-38 jet aircraft. He and other crew members are at the Center for familiarization activities with equipment. The mission is Logistics Flight 1, scheduled to deliver the Multi-Purpose Logistics Module carrying supplies and equipment to the Space Station and the external stowage platform.
2004-03-05
KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Andrew Thomas is pleased to be back at KSC after arriving aboard a T-38 jet aircraft. He and other crew members are at the Center for familiarization activities with equipment. The mission is Logistics Flight 1, scheduled to deliver to the Space Station the external stowage platform and the Multi-Purpose Logistics Module with supplies and equipment.
2004-03-05
KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Wendy Lawrence is pleased to be back at KSC after arriving aboard a T-38 jet aircraft. She and other crew members are at the Center for familiarization activities with equipment. The mission is Logistics Flight 1, scheduled to deliver the Multi-Purpose Logistics Module carrying supplies and equipment to the Space Station and the external stowage platform.
Ohio Senator John Glenn tours the Design Engineering lab at KSC
NASA Technical Reports Server (NTRS)
1998-01-01
Ohio Senator John Glenn enjoys a tour of the Engineering Development Laboratory at Kennedy Space Center. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.
John Glenn arrives to tour KSC facilities and view the STS-89 launch
NASA Technical Reports Server (NTRS)
1998-01-01
Ohio Senator John Glenn spoke with the media shortly after he arrived at Kennedy Space Center's (KSC's) Shuttle Landing Facility on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.
1998-01-20
Ohio Senator John Glenn, at right, walks with Kennedy Space Center (KSC) Director Roy Bridges shortly after Glenn's arrival at KSC's Shuttle Landing Facility on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95
1998-01-20
Ohio Senator John Glenn, at left, shakes hands with Kennedy Space Center (KSC) Director Roy Bridges shortly after Glenn's arrival at KSC's Shuttle Landing Facility on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95
Ohio Senator John Glenn tours the SPACEHAB Payload Processing Facility in Cape Canaveral
NASA Technical Reports Server (NTRS)
1998-01-01
Ohio Senator John Glenn, center, enjoys a tour of the SPACEHAB Payload Processing Facility in Cape Canaveral. On his immediate left is Dale Steffey, SPACEHAB vice president, operations, and at the right of the photograph is Michael Lounge, SPACEHAB vice president, flight systems development. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.
Astronaut Scott Parazynski in hatch of CCT during training
1994-06-23
S94-36628 (23 June 1994) --- Astronaut Scott E. Parazynski poses at the hatch of the crew compartment trainer prior to a rehearsal of launch and entry procedures for a November 1994 flight aboard the Space Shuttle Atlantis. Four other NASA astronauts and a European mission specialist joined the mission specialist for this training exercise in the crew compartment trainer at the Johnson Space Center's (JSC) Shuttle Mockup and Integration Laboratory and will join him aboard Atlantis in November. The flight is manifest to support the Atmospheric Laboratory for Applications and Science (ATLAS-3) mission.
Crewmember in the aft flight deck.
1992-11-01
STS052-24-014 (22 Oct-1 Nov 1992) --- Canadian payload specialist Steven G. MacLean tries out gymnastics in the weightlessness of space on the aft flight deck of the Earth-orbiting Space Shuttle Columbia. MacLean, along with five NASA astronauts, spent ten days aboard Columbia for the STS-52 mission.
Expedition_55_Edwardsville_Education_In-flight_Interview_2018_138_1410_656686
2018-05-23
SPACE STATION CREW DISCUSSES LIFE IN SPACE WITH ILLINOIS STUDENTS----- Aboard the International Space Station, Expedition 55 NASA Flight Engineers Drew Feustel and Ricky Arnold discussed life and research on the complex during an in-flight educational event May 18 with students from the Edwardsville Community Unit School District in Edwardsville, Illinois. Feustel and Arnold are in the midst of a six and a half month mission on the orbital outpost.
Expedition_55_Edwardsville_Education_In-flight_Interview_2018_138_1410_654695
2018-05-18
SPACE STATION CREW DISCUSSES LIFE IN SPACE WITH ILLINOIS STUDENTS----- Aboard the International Space Station, Expedition 55 NASA Flight Engineers Drew Feustel and Ricky Arnold discussed life and research on the complex during an in-flight educational event May 18 with students from the Edwardsville Community Unit School District in Edwardsville, Illinois. Feustel and Arnold are in the midst of a six and a half month mission on the orbital outpost.
Expedition_55_Education_In-flight_NSTA_Conference-Atlanta_075_0940_628903
2018-03-16
SPACE STATION CREWMEMBER DISCUSSES LIFE IN SPACE WITH THE NATION’S SCIENCE TEACHERS------------------------------------------ Aboard the International Space Station, Expedition 55 Flight Engineer Scott Tingle of NASA discussed life and research on the orbital outpost during an in-flight event March 16 with educators gathered in Atlanta at the National Science Teachers Association conference. Tingle is in the midst of a five-and-a-half month mission on the orbital outpost.
Vapor Compression Distillation Flight Experiment
NASA Technical Reports Server (NTRS)
Hutchens, Cindy F.
2002-01-01
One of the major requirements associated with operating the International Space Station is the transportation -- space shuttle and Russian Progress spacecraft launches - necessary to re-supply station crews with food and water. The Vapor Compression Distillation (VCD) Flight Experiment, managed by NASA's Marshall Space Flight Center in Huntsville, Ala., is a full-scale demonstration of technology being developed to recycle crewmember urine and wastewater aboard the International Space Station and thereby reduce the amount of water that must be re-supplied. Based on results of the VCD Flight Experiment, an operational urine processor will be installed in Node 3 of the space station in 2005.
STS-112 Flight Day 10 Highlights
NASA Astrophysics Data System (ADS)
2002-10-01
On Flight Day 10 of the STS-112 mission, its crew (Jeffrey Ashby, Commander; Pamela Melroy, Pilot; David Wolf, Mission Specialist; Piers Sellers, Mission Specialist; Sandra Magnus, Mission Specialist; Fyodor Yurchikhin, Mission Specialist) on the Atlantis and the Expedition 5 crew on the International Space Station (ISS) (Valery Korzun, Commander; Peggy Whitson, Flight Engineer; Sergei Treschev, Flight Engineer) are shown exchanging farewells in the ISS's Destiny Laboratory Module following the completion of a week-long period of docked operations. The Expedition 5 crew is nearing the end of five and a half continuous months aboard the space station. Following the closing of the hatches, the Atlantis Orbiter undocks from the station, and Melroy pilots the shuttle slowly away from the ISS, and engages in a radial fly-around of the station. During the fly-around cameras aboard Atlantis shows ISS from a number of angles. ISS cameras also show Atlantis. There are several shots of each craft with a variety of background settings including the Earth, its limb, and open space. The video concludes with a live interview of Ashby, Melroy and Yurchikhin, still aboard Atlantis, conducted by a reporter on the ground. Questions range from feelings on the conclusion of the mission to the experience of being in space. The primary goal of the mission was the installation of the Integrated Truss Structure S1 on the ISS.
STS-112 Flight Day 10 Highlights
NASA Technical Reports Server (NTRS)
2002-01-01
On Flight Day 10 of the STS-112 mission, its crew (Jeffrey Ashby, Commander; Pamela Melroy, Pilot; David Wolf, Mission Specialist; Piers Sellers, Mission Specialist; Sandra Magnus, Mission Specialist; Fyodor Yurchikhin, Mission Specialist) on the Atlantis and the Expedition 5 crew on the International Space Station (ISS) (Valery Korzun, Commander; Peggy Whitson, Flight Engineer; Sergei Treschev, Flight Engineer) are shown exchanging farewells in the ISS's Destiny Laboratory Module following the completion of a week-long period of docked operations. The Expedition 5 crew is nearing the end of five and a half continuous months aboard the space station. Following the closing of the hatches, the Atlantis Orbiter undocks from the station, and Melroy pilots the shuttle slowly away from the ISS, and engages in a radial fly-around of the station. During the fly-around cameras aboard Atlantis shows ISS from a number of angles. ISS cameras also show Atlantis. There are several shots of each craft with a variety of background settings including the Earth, its limb, and open space. The video concludes with a live interview of Ashby, Melroy and Yurchikhin, still aboard Atlantis, conducted by a reporter on the ground. Questions range from feelings on the conclusion of the mission to the experience of being in space. The primary goal of the mission was the installation of the Integrated Truss Structure S1 on the ISS.
NASA Technical Reports Server (NTRS)
Hurst, Victor; Doerr, Harold K.; Polk, J. D.; Schmid, Josef; Parazynksi, Scott; Kelly, Scott
2007-01-01
This viewgraph presentation reviews the use of telemedicine in a simulated microgravity environment using a patient simulator. For decades, telemedicine techniques have been used in terrestrial environments by many cohorts with varied clinical experience. The success of these techniques has been recently expanded to include microgravity environments aboard the International Space Station (ISS). In order to investigate how an astronaut crew medical officer will execute medical tasks in a microgravity environment, while being remotely guided by a flight surgeon, the Medical Operation Support Team (MOST) used the simulated microgravity environment provided aboard DC-9 aircraft teams of crew medical officers, and remote flight surgeons performed several tasks on a patient simulator.
Camera aboard 'Friendship 7' photographs John Glenn during spaceflight
NASA Technical Reports Server (NTRS)
1962-01-01
A camera aboard the 'Friendship 7' Mercury spacecraft photographs Astronaut John H. Glenn Jr. during the Mercury-Atlas 6 spaceflight (00302-3); Photographs Glenn as he uses a photometer to view the sun during sunsent on the MA-6 space flight (00304).
2010-10-13
ISS025-E-007263 (13 Oct. 2010) --- NASA astronaut Scott Kelly, Expedition 25 flight engineer, is pictured in the Cupola aboard the International Space Station some four days after his arrival and that of two other crew members to bring the population aboard the orbital outpost to six.
STS-103 Crew at Breakfast, Suiting, Departing O&C
NASA Technical Reports Server (NTRS)
1999-01-01
The Hubble Space Telescope (HST) team is preparing for NASA's third scheduled service call to Hubble. This mission, STS-103, will launch from Kennedy Space Center aboard the Space Shuttle Discovery. The seven flight crew members for STS-103 are: Commander Curtis L. Brown (his sixth flight), Pilot Scott J. Kelly and European Space Agency (ESA) astronaut Jean-Francois Clervoy (his third flight) will join space walkers Steven L. Smith (his third flight), C. Michael Foale (his fifth flight), John M. Grunsfeld (his third flight) and ESA astronaut Claude Nicollier (his fourth flight). This current video presents a live footage of the seven STS-103 crewmembers eating breakfast, suiting, and departing the O&C (Operations and Checkout) before the 6:50 p.m. lift-off.
Astronauts Brian Duffy, in commander's seat, and Winston E. Scott discuss their scheduled flight
NASA Technical Reports Server (NTRS)
1996-01-01
STS-72 TRAINING VIEW --- Astronauts Brian Duffy, in commander's seat, and Winston E. Scott discuss their scheduled flight aboard the Space Shuttle Endeavour. The two are on the flight deck of the Johnson Space Center's (JSC) fixed base Shuttle Mission Simulator (SMS). Duffy, mission commander, and Scott, mission specialist, will be joined for the winter flight by three other NASA astronauts and an international mission specialist representing NASDA.
2001-08-31
JOHNSON SPACE CENTER, HOUSTON, TEXAS -- (STS108-5-002)STS-108 CREW PORTRAIT -- These seven astronauts and three cosmonauts share the common denominators of the Space Shuttle Endeavour and the International Space Station (ISS). Standing at rear (from the left) are STS-108 crew members Daniel M. Tani and Linda M. Godwin, both mission specialists; Dominic L. Gorie and Mark E. Kelly, commander and pilot, respectively. Those four will spend approximately ten days in space in late November and early December aboard the Endeavour. In front, from the left, are Daniel W. Bursch, Yuri Onufrienko, Carl E. Walz, Mikhail Tyurin, Frank L. Culbertson and Vladimir N. Dezhurov. Culbertson, Expedition Three commander, as well as flight engineers Tyurin and Dezhurov, will use the Space Shuttle Discovery on STS-105 to reach the station for a lengthy stay and then return to Earth aboard Endeavour. They will be replaced aboard the orbital outpost by Onufrienko, Expedition Four commander, along with Bursch and Walz, both flight engineers. The Expedition Four crew will accompany the STS-108 crew into Earth orbit. Dezhurov, Tyurin and Onufrienko represent Rosaviakosmos
1997-08-07
KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments
1997-08-07
KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments
1997-08-07
KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments
1997-08-07
KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments
1997-08-07
KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments
1997-08-07
KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments
1997-08-07
KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments
1997-08-07
KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments
1997-08-07
KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments
Space Station Crew Member Discusses Life in Space with Reporters
2018-01-05
Aboard the International Space Station, Expedition 54 Flight Engineer Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed life and research on the orbital laboratory during an in-flight question and answer session Jan. 5 with Japanese reporters gathered at JAXA’s offices in Tokyo. Kanai is in the third week of a planned six-month mission on the complex.
Expedition_55_Education_In-flight_South_River_High_School_2018_109_1435__642713_642795
2018-04-18
SPACE STATION CREW MEMBERS DISCUSS LIFE IN SPACE WITH MARYLAND STUDENTS-----Aboard the International Space Station, Expedition 55 Flight Engineers Drew Feustel and Ricky Arnold of NASA fielded questions from students at the South River High School in Edgewater, Maryland during an in-flight educational event April 19. Feustel and Arnold, who is a former educator, launched to the station in late March for their mission on the orbital complex.
Expedition_55_Education_In-flight_UMASS-Dartmouth_2018_065_1730_625583_625583_hires
2018-03-06
SPACE STATION CREW MEMBER DISCUSSES LIFE IN SPACE WITH MASSACHUSETTS STUDENTS--------------------------------------- Aboard the International Space Station, Expedition 55 Flight Engineer Scott Tingle of NASA discussed life and research on the orbital complex during an educational in-flight event March 6 with students at the University of Massachusetts-Dartmouth in North Dartmouth, Massachusetts. Tingle, who is a native of Massachusetts, is in the midst of a five-and-a-half month mission on the station.
Expedition_56_Education_In-flight_Interview_with_Spruce_Street_School_2018_0625
2018-06-25
SPACE STATION CREW MEMBER DISCUSSES LIFE IN SPACE WITH NEW YORK STUDENTS--- Aboard the International Space Station, Expedition 56 Flight Engineer Ricky Arnold of NASA discussed life and research onboard the orbital complex with students at the Spruce Street School in New York, N.Y. during an in-flight educational event June 25. Arnold, a former educator, is in the midst of a six and a half month mission on the station.
Expedition Two Helms and STS-104 MS Kavandi in Destiny module
2001-07-22
STS104-313-016 (12-24 July 2001) --- Astronauts Susan J. Helms (left) and Janet L. Kavandi reunite in the Destiny laboratory aboard the International Space Station (ISS). Kavandi is a mission specialist on the STS-104 Atlantis crew and Helms is a flight engineer for the Expedition Two crew which has been aboard the International Space Station (ISS) for several months.
1997-01-22
KENNEDY SPACE CENTER, FLA. - STS-82 crew members examine part of the Flight Support System during the Crew Equipment Integration Test (CEIT) in KSC's Vertical Processing Facility. From left are Mission Specialists Steven L. Smith and Gregory J. Harbaugh and Payload Commander Mark C. Lee. Liftoff of STS-82, the second Hubble Space Telescope (HST) servicing mission, is scheduled Feb. 11 aboard Discovery with a crew of seven.
14 CFR 1214.604 - Personal Preference Kit (PPK).
Code of Federal Regulations, 2012 CFR
2012-01-01
... Aboard Space Shuttle Flights § 1214.604 Personal Preference Kit (PPK). (a) Purpose. The PPK enables persons accompanying Space Shuttle flights to carry personal items for use as mementos. Only those....13 centimeters (5′′×8′′×2′′) bag provided by NASA. Increases in these limitations will be authorized...
14 CFR 1214.604 - Personal Preference Kit (PPK).
Code of Federal Regulations, 2011 CFR
2011-01-01
... Aboard Space Shuttle Flights § 1214.604 Personal Preference Kit (PPK). (a) Purpose. The PPK enables persons accompanying Space Shuttle flights to carry personal items for use as mementos. Only those....13 centimeters (5′′×8′′×2′′) bag provided by NASA. Increases in these limitations will be authorized...
14 CFR 1214.604 - Personal Preference Kit (PPK).
Code of Federal Regulations, 2010 CFR
2010-01-01
... Aboard Space Shuttle Flights § 1214.604 Personal Preference Kit (PPK). (a) Purpose. The PPK enables persons accompanying Space Shuttle flights to carry personal items for use as mementos. Only those....13 centimeters (5′′×8′′×2′′) bag provided by NASA. Increases in these limitations will be authorized...
14 CFR 1214.604 - Personal Preference Kit (PPK).
Code of Federal Regulations, 2013 CFR
2013-01-01
... Aboard Space Shuttle Flights § 1214.604 Personal Preference Kit (PPK). (a) Purpose. The PPK enables persons accompanying Space Shuttle flights to carry personal items for use as mementos. Only those....13 centimeters (5′′×8′′×2′′) bag provided by NASA. Increases in these limitations will be authorized...
14 CFR § 1214.604 - Personal Preference Kit (PPK).
Code of Federal Regulations, 2014 CFR
2014-01-01
... Mementos Aboard Space Shuttle Flights § 1214.604 Personal Preference Kit (PPK). (a) Purpose. The PPK enables persons accompanying Space Shuttle flights to carry personal items for use as mementos. Only those....13 centimeters (5″×8″×2″) bag provided by NASA. Increases in these limitations will be authorized...
14 CFR 1214.607 - Media and public inquiries.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Media and public inquiries. 1214.607... Aboard Space Shuttle Flights § 1214.607 Media and public inquiries. (a) Official Flight Kit. Information on the contents of OFK's will be routinely released to the media and to the public upon their request...
14 CFR 1214.607 - Media and public inquiries.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Media and public inquiries. 1214.607... Aboard Space Shuttle Flights § 1214.607 Media and public inquiries. (a) Official Flight Kit. Information on the contents of OFK's will be routinely released to the media and to the public upon their request...
14 CFR 1214.607 - Media and public inquiries.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Media and public inquiries. 1214.607... Aboard Space Shuttle Flights § 1214.607 Media and public inquiries. (a) Official Flight Kit. Information on the contents of OFK's will be routinely released to the media and to the public upon their request...
14 CFR 1214.607 - Media and public inquiries.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Media and public inquiries. 1214.607 Section... Aboard Space Shuttle Flights § 1214.607 Media and public inquiries. (a) Official Flight Kit. Information on the contents of OFK's will be routinely released to the media and to the public upon their request...
NASA Technical Reports Server (NTRS)
Sonnenfeld, Gerald
1995-01-01
The purpose of this study is to support Russian space flight experiments carried out on rats flown aboard Space Shuttle Mission SLS-2. The Russian experiments were designed to determine the effects of space flight on immunological parameters. The Russian experiment included the first in-flight dissection of rodents that allowed the determination of kinetics of when space flight affected immune responses. The support given the Russians by this laboratory was to carry out assays for immunologically important cytokines that could not readily be carried out in their home laboratories. These included essays of interleukin-1, interleukin-6, interferon-gamma and possibly other cytokines.
2013-06-24
CAPE CANAVERAL, Fla. –Outredgeous red romaine lettuce plants grow inside the bellows of a prototype VEGGIE flight pillow. U.S. astronauts living and working aboard the International Space Station are going to receive a newly developed Vegetable Production System VEGGIE. VEGGIE is set to launch aboard SpaceX's Dragon capsule on NASA's third Commercial Resupply Services mission targeted to launch Dec. 9 from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Gioia Massa
2012-09-25
CAPE CANAVERAL, Fla. – A 28-day-old Outredgeous red romaine lettuce plant grows in a prototype VEGGIE flight pillow. U.S. astronauts living and working aboard the International Space Station are going to receive a newly developed Vegetable Production System VEGGIE. VEGGIE is set to launch aboard SpaceX's Dragon capsule on NASA's third Commercial Resupply Services mission targeted to launch Dec. 9 from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Gioia Massa
2013-06-06
CAPE CANAVERAL, Fla. – Outredgeous red romaine lettuce plants grow inside the bellows of a prototype VEGGIE flight pillow. U.S. astronauts living and working aboard the International Space Station are going to receive a newly developed Vegetable Production System VEGGIE. VEGGIE is set to launch aboard SpaceX's Dragon capsule on NASA's third Commercial Resupply Services mission targeted to launch Dec. 9 from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Bryan Onate
Ohio Senator John Glenn tours the SPACEHAB Payload Processing Facility in Cape Canaveral
NASA Technical Reports Server (NTRS)
1998-01-01
Ohio Senator John Glenn, at right, enjoys a tour of the SPACEHAB Payload Processing Facility in Cape Canaveral. Joining Senator Glenn are, left to right, David Rossi, SPACEHAB president and chief operating officer (extreme left); Michael Lounge, SPACEHAB vice president, flight systems development; and Dr. Bernard Harris, SPACEHAB vice president, microgravity and life sciences. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.
Rollout - Shuttle Discovery - STS 41D Launch - KSC
1986-11-26
S86-41700 (19 May 1984) --- The Space Shuttle Discovery moves towards Pad A on the crawler transporter for its maiden flight. Discovery will be launched on its first mission no earlier than June 19, 1984. Flight 41-D will carry a crew of six; Commander Henry Hartsfield, Pilot Mike Coats, Mission Specialists Dr. Judith Resnik, Dr. Steven Hawley and Richard Mullane and Payload Specialist Charles Walker. Walker is the first payload specialist to fly aboard a space shuttle. He will be running the materials processing device developed by McDonnell Douglas as part of its Electrophoresis Operations in Space project. Mission 41-D is scheduled to be a seven-day flight and to land at Edwards Air Force Base in California. The Syncom IV-1 (LEASAT) will be deployed from Discovery's cargo bay and the OAST-1, Large Format Camera, IMAX and Cinema 360 cameras will be aboard.
2001-08-10
KENNEDY SPACE CENTER, Fla. -- STS-105 Commander Scott Horowitz sends a message home while preparing to enter Space Shuttle Discovery for launch. Assisting with flight equipment are (left) Orbiter Vehicle Closeout Chief Chris Meinert, (right) USA Mechanical Technician Al Schmidt and (behind) NASA Quality Assurance Specialist Ken Strite. The payload on the STS-105 mission to the International Space Station includes the third flight of the Italian-built Multi-Purpose Logistics Module Leonardo, delivering additional scientific racks, equipment and supplies for the Space Station, and the Early Ammonia Servicer (EAS) tank. The EAS, which will be attached to the Station during two spacewalks, contains spare ammonia for the Station's cooling system. Also, the Expedition Three crew is aboard to replace the Expedition Two crew on the Space Station, who will be returning to Earth aboard Discovery after a five-month stay on the Station
2001-08-10
KENNEDY SPACE CENTER, Fla. - Expedition Three Commander Frank Culbertson sends a greeting home while having his flight equipment checked before he enters Space Shuttle Discovery for launch. Helping him are (front) USA Mechanical Technician Al Schmidt and (back) NASA Quality Assurance Specialist Ken Strite. The payload on the STS-105 mission to the International Space Station includes the third flight of the Italian-built Multi-Purpose Logistics Module Leonardo, delivering additional scientific racks, equipment and supplies for the Space Station, and the Early Ammonia Servicer (EAS) tank. The EAS, which will be attached to the Station during two spacewalks, contains spare ammonia for the Station’s cooling system. Also, the Expedition Three crew is aboard to replace the Expedition Two crew on the International Space Station, who will be returning to Earth aboard Discovery after a five-month stay on the Station
Space Station Crew Member Discusses Life in Space with Japanese Students
2018-01-08
Aboard the International Space Station, Expedition 54 Flight Engineer Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed life and research on the complex during an in-flight educational event Jan. 8 with students gathered at the Hamagin Space Technology Museum in Japan. Kanai launched to the station last month and is in the midst of a six-month mission on the orbital laboratory.
Ohio Senator John Glenn tours the orbiter Columbia's middeck
NASA Technical Reports Server (NTRS)
1998-01-01
Astronaut Stephen Oswald, at left, explains Shuttle operations to Ohio Senator John Glenn on the orbiter Columbia's middeck at the Orbiter Processing Facility 3 at Kennedy Space Center. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.
Ohio Senator John Glenn arrives at KSC to tour operational facilities and view the launch of STS-89
NASA Technical Reports Server (NTRS)
1998-01-01
Ohio Senator John Glenn, at right, walks with Kennedy Space Center (KSC) Director Roy Bridges shortly after Glenn's arrival at KSC's Shuttle Landing Facility on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.
Ohio Senator John Glenn tours the orbiter Columbia's middeck
NASA Technical Reports Server (NTRS)
1998-01-01
Astronaut Stephen Oswald, at right, explains Shuttle operations to Ohio Senator John Glenn on the orbiter Columbia's middeck at the Orbiter Processing Facility 3 at Kennedy Space Center. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.
John Glenn arrives to tour KSC facilities and view the STS-89 launch
NASA Technical Reports Server (NTRS)
1998-01-01
Ohio Senator John Glenn, at left, shakes hands with Kennedy Space Center (KSC) Director Roy Bridges shortly after Glenn's arrival at KSC's Shuttle Landing Facility on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.
1998-01-21
Astronaut Stephen Oswald, at right, explains Shuttle operations to Ohio Senator John Glenn on the orbiter Columbia's middeck at the Orbiter Processing Facility 3 at Kennedy Space Center. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95
NASA Technical Reports Server (NTRS)
Polk, James D.; Parazynski, Scott; Kelly, Scott; Hurst, Victor, IV; Doerr, Harold K.
2007-01-01
Airway management techniques are necessary to establish and maintain a patent airway while treating a patient undergoing respiratory distress. There are situations where such settings are suboptimal, thus causing the caregiver to adapt to these suboptimal conditions. Such occurrences are no exception aboard the International Space Station (ISS). As a result, the NASA flight surgeon (FS) and NASA astronaut cohorts must be ready to adapt their optimal airway management techniques for suboptimal situations. Based on previous work conducted by the Medical Operation Support Team (MOST) and other investigators, the MOST had members of both the FS and astronaut cohorts evaluate two oral airway insertion techniques for the Intubating Laryngeal Mask Airway (ILMA) to determine whether either technique is sufficient to perform in suboptimal conditions within a microgravity environment. Methods All experiments were conducted in a simulated microgravity environment provided by parabolic flight aboard DC-9 aircraft. Each participant acted as a caregiver and was directed to attempt both suboptimal ILMA insertion techniques following a preflight instruction session on the day of the flight and a demonstration of the technique by an anesthesiologist physician in the simulated microgravity environment aboard the aircraft. Results Fourteen participants conducted 46 trials of the suboptimal ILMA insertion techniques. Overall, 43 of 46 trials (94%) conducted were properly performed based on criteria developed by the MOST and other investigators. Discussion The study demonstrated the use of airway management techniques in suboptimal conditions relating to space flight. Use of these techniques will provide a crew with options for using the ILMA to manage airway issues aboard the ISS. Although it is understood that the optimal method for patient care during space flight is to have both patient and caregiver restrained, these techniques provide a needed backup should conditions not present themselves in an ideal manner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yakovleva, V.I.
1978-10-26
This work is part of a comprehensive study of the biological effects of long-term radiation on rats flown aboard Kosmos-690 for 20.5 days. The results of morphological studies of the rat liver irradiated aboard the biosatellite are discussed.
Space Station Discusses Life in Space with the Peace Corps
2018-02-07
Aboard the International Space Station, Expedition 54 Flight Engineers Mark Vande Hei and Joe Acaba of NASA discussed life and research on the complex during an in-flight educational event Feb. 7 with members of the Peace Corps gathered in Washington, D.C. Vande Hei and Acaba are in the final weeks of a five and a half month mission on the orbital laboratory.
Expedition 55 Inflight_Laurel-Public-Schools_121_647538
2018-05-07
SPACE STATION CREW MEMBER DISCUSSES LIFE IN SPACE WITH MONTANA STUDENTS---- Aboard the International Space Station, Expedition 55 Flight Engineer Drew Feustel of NASA discussed life and research on the complex during an in-flight educational event May 1 with students from the Laurel Public School system in Laurel, Montana. Feustel is in the midst of a six and half month mission on the orbital outpost.
Space Station Crew Discusses Life in Space with a Media Outlet
2017-12-26
Aboard the International Space Station, Expedition 54 Flight Engineers Mark Vande Hei, Joe Acaba and Scott Tingle of NASA and Flight Engineer Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed their mission and life and research on orbit during an in-flight interview Dec. 26 with the online media outlet, Mic. Tingle ad Kanai recently arrived at the station for a six-month mission, joining Vande Hei and Acaba, who have lived on the orbital laboratory since September.
Space Station Crew Members Discuss Life in Space with the Media
2018-01-03
Aboard the International Space Station, Expedition 54 Flight Engineers Mark Vande Hei and Scott Tingle of NASA and Flight Engineer Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed life and research on the complex during a pair of in-flight interviews Jan. 3 with KMSP-TV, Minneapolis and the Voice of America. Vande Hei has been on board the station since September, while Tingle and Kanai are in the third week of a planned six-month mission.
Expedition_55_Education_In-Flight_Queens_University_Kingston2018_096_1602_637022
2018-04-18
SPACE STATION CREW MEMBER DISCUSSES LIFE IN SPACE WITH CANADIAN STUDENTS-----Aboard the International Space Station, Expedition 55 Flight Engineer Drew Feustel of NASA discussed the early weeks of his mission on the orbital laboratory during an in-flight question and answer session April 6 with students at Queen’s University in Kingston, Ontario. Feustel received a doctorate in geological sciences from the institution in 1995 and has maintained close ties with the university and its faculty throughout the years.
Expedition54_Education_In-flight_Para_Los_Ninos_053_1755_621343_hires
2018-02-22
SPACE STATION CREW MEMBER DISCUSSES LIFE IN SPACE WITH HISPANIC STUDENTS IN LOS ANGELES:::::::: Aboard the International Space Station, Expedition 54 Flight Engineer Joe Acaba of NASA discussed his mission on the complex and life and research in space with students at the Para Los Ninos School in Los Angeles during an in-flight educational event Feb. 22. Acaba, who has been in orbit since last September, is returning to Earth on a Russian Soyuz spacecraft on Feb. 27 (U.S. time) for a landing in south central Kazakhstan.
2000-01-30
Tim Broach (seen through window) of NASA/Marshall Spce Flight Center (MSFC), demonstrates the working volume inside the Microgravity Sciences Glovebox being developed by the European Space Agency (ESA) for use aboard the U.S. Destiny laboratory module on the International Space Station (ISS). This mockup is the same size as the flight hardware. Observing are Tommy Holloway and Brewster Shaw of The Boeing Co. (center) and John-David Bartoe, ISS research manager at NASA/John Space Center and a payload specialist on Spacelab-2 mission (1985). Photo crdit: NASA/Marshall Space Flight Center (MSFC)
Swanson during Day 2 of CDRA IFM
2014-04-09
ISS039-E-010367 (9 April 2014) --- In the Kibo laboratory aboard the International Space Station, Expedition 39 Flight Engineer Steve Swanson works during in-flight maintenance to mate electrical connectors in Tranquility's Carbon Dioxide Removal Assembly (CDRA). The image was taken during the second day of CDRA in-flight maintenance.
1998-10-30
STS095-E-5065 (30 Oct. 1998) --- Astronaut Stephen K. Robinson, STS-95 mission specialist, looks toward Earth in this electronic still camera's (ESC) image of Flight Day two activity aboard the Space Shuttle Discovery. The scene was recorded on the aft flight deck at 12:02:11 GMT, Oct. 30.
Space Station Crew Member Discusses Life in Space with Educators
2018-02-01
Aboard the International Space Station, Expedition 54 Flight Engineer Joe Acaba discussed life and research on the orbital outpost with several hundred educators gathered at Space Center, Houston during an in-flight question and answer session Feb. 1. The Space Educators Conference was designed to bring teachers together from around the nation to discuss topics of mutual interest. Acaba is in the final month of a five and a half month mission on the complex.
14 CFR § 1214.607 - Media and public inquiries.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Media and public inquiries. § 1214.607... Mementos Aboard Space Shuttle Flights § 1214.607 Media and public inquiries. (a) Official Flight Kit. Information on the contents of OFK's will be routinely released to the media and to the public upon their...
2012-08-22
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, social media participant Evie Marmon asks a question of space station flight engineer Suni Williams. Marmon is among those taking part in a question and answer session with astronauts aboard the International Space Station. The social media gathering at the Florida spaceport took place Aug. 22, 2012 joining a world-wide NASA Social allowing participants to ask questions of NASA astronauts who are living and working aboard the International Space Station. . For more information, visit http://www.nasa.gov/mission_pages/station/main/index.html Photo credit: NASA/ Frankie Martin
NHQ_2018_0627_E56_NASM Inflight
2018-06-27
SPACE STATION CREW MEMBER DISCUSSES LIFE IN SPACE WITH FUTURE ENGINEERS----- Aboard the International Space Station, Expedition 56 Flight Engineer Serena Aunon-Chancellor discussed life and research onboard the orbital complex with future engineers gathered at the Smithsonian Air and Space Museum in Washington, D.C. during an in-flight educational event June 27. Aunon-Chancellor arrived at the complex on June 8 at the start of a six and a half month mission.
E55_Inflight_JAXA_Makuhari_2018_0502_1104_647867
2018-05-03
SPACE STATION CREW MEMBER DISCUSSES LIFE IN SPACE WITH JAPANESE ENTHUSIASTS------- Aboard the International Space Station, Expedition 55 Flight Engineer Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed life and research on the complex during an in-flight event with students and space enthusiasts gathered at a science exposition in Makuhari New City, Japan May 2. Kanai is in the final month of a six-month mission on the orbital outpost.
Payload Operations Support Team Tools
NASA Technical Reports Server (NTRS)
Askew, Bill; Barry, Matthew; Burrows, Gary; Casey, Mike; Charles, Joe; Downing, Nicholas; Jain, Monika; Leopold, Rebecca; Luty, Roger; McDill, David;
2007-01-01
Payload Operations Support Team Tools is a software system that assists in (1) development and testing of software for payloads to be flown aboard the space shuttles and (2) training of payload customers, flight controllers, and flight crews in payload operations
Locomotor behavior of fish hatched from embryos exposed to flight conditions
NASA Technical Reports Server (NTRS)
Kleerekoper, H.
1978-01-01
Embryos of Fundulus heteroclitus in various stages of development were exposed to space flight conditions aboard Apollo spacecraft and Cosmos satellites. The objective of the study was to ascertain whether fish hatched from these embryos displayed locomotor behavior different from that of control fish of the same age. An electronic monitoring technique was used to record behavior. Results indicate no change in locomotor behavior in fish on Apollo Spacecraft, but inexplicable significant changes were noted in fish aboard Cosmos Satellites.
2007-04-26
KENNEDY SPACE CENTER, FLA. -- Noted physicist Stephen Hawking arrives at the Kennedy Space Center Shuttle Landing Facility for his first zero-gravity flight. The flight will be aboard a modified Boeing 727 aircraft owned by Zero Gravity Corp., a commercial company licensed to provide the public with weightless flight experiences. Hawking developed amyotrophic lateral sclerosis disease in the 1960s, a type of motor neuron disease which would cost him the loss of almost all neuromuscular control. At the celebration of his 65th birthday on January 8 this year, Hawking announced his plans for a zero-gravity flight to prepare for a sub-orbital space flight in 2009 on Virgin Galactic's space service. Photo credit: NASA/Kim Shiflett
Hadfield performs regular maintenance on Biolab, in the Columbus Module
2013-02-20
ISS034-E-051715 (20 Feb. 2013) --- Canadian Space Agency astronaut Chris Hadfield, Expedition 34 flight engineer, performs routine maintenance on Biolab in the Columbus Module aboard the International Space Station.
14 CFR 1214.609 - Loss or theft.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Loss or theft. 1214.609 Section 1214.609 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Mementos Aboard Space Shuttle... immediately report the loss to the Johnson Space Center Security Office and the NASA Inspector General. ...
14 CFR 1214.609 - Loss or theft.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Loss or theft. 1214.609 Section 1214.609 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Mementos Aboard Space Shuttle... immediately report the loss to the Johnson Space Center Security Office and the NASA Inspector General. ...
14 CFR 1214.609 - Loss or theft.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Loss or theft. 1214.609 Section 1214.609 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Mementos Aboard Space Shuttle... immediately report the loss to the Johnson Space Center Security Office and the NASA Inspector General. ...
2012-02-18
CAPE CANAVERAL, Fla. -- Mercury astronauts, John Glenn, left, and Scott Carpenter, talk to Mercury Project workers and other guests in the Astronaut Encounter Theater at the Kennedy Space Center Visitor Complex in Florida. The pair participated in 50th anniversary events at the launch site of Glenn's first orbital flight aboard NASA's Friendship 7 capsule, which launched Feb. 20, 1962, aboard an Atlas rocket. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Kim Shiflett
2012-02-18
CAPE CANAVERAL, Fla. -- Mercury astronauts, John Glenn, left, and Scott Carpenter, talk to Mercury Project workers and other guests in the Astronaut Encounter Theater at the Kennedy Space Center Visitor Complex in Florida. The pair participated in 50th anniversary events at the launch site of Glenn's first orbital flight aboard NASA's Friendship 7 capsule, which launched Feb. 20, 1962, aboard an Atlas rocket. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Kim Shiflett
STS-91 Mission Specialist Kavandi visits Pad 39A before launch
NASA Technical Reports Server (NTRS)
1998-01-01
STS-91 Mission Specialist Janet Kavandi, Ph.D., visits Launch Pad 39A from which she is scheduled to be launched aboard Space Shuttle Discovery on June 2 around 6:10 p.m. EDT. In her pocket are flowers intended as gifts for her two children whom she will be seeing shortly. STS-91 will feature the ninth Shuttle docking with the Russian Space Station Mir, the first Mir docking for Discovery, the conclusion of Phase I of the joint U.S.-Russian International Space Station Program, and the first flight of the new Space Shuttle super lightweight external tank. The STS-91 flight crew also includes Commander Charles Precourt; Pilot Dominic Gorie; and Mission Specialists Franklin Chang-Diaz, Ph.D.; Wendy B. Lawrence; and Valery Ryumin, with the Russian Space Agency. Andrew Thomas, Ph.D., will be returning to Earth with the crew after living more than four months aboard Mir.
2007-04-26
KENNEDY SPACE CENTER, FLA. -- Well-wishers greet noted physicist Stephen Hawking (in the wheelchair) at the Kennedy Space Center Shuttle Landing Facility after a zero gravity flight. Next to him at left are Peter Diamandis, founder of the Zero Gravity Corp. that provided the flight aboard its modified Boeing 727, and Nicola O'Brien, a nurse practitioner who is Hawking's aide. Hawking suffers from amyotrophic lateral sclerosis (also known as Lou Gehrig's disease). At the celebration of his 65th birthday on January 8 this year, Hawking announced his plans for a zero-gravity flight to prepare for a sub-orbital space flight in 2009 on Virgin Galactic's space service. Photo credit: NASA/Kim Shiflett
2007-04-26
KENNEDY SPACE CENTER, FLA. -- Well-wishers greet noted physicist Stephen Hawking (in the wheelchair) at the Kennedy Space Center Shuttle Landing Facility after a zero gravity flight. Next to him at left are Peter Diamandis, founder of the Zero Gravity Corp. that provided the flight aboard its modified Boeing 727, and Nicola O'Brien, a nurse practitioner who is Hawking's aide. Hawking suffers from amyotrophic lateral sclerosis (also known as Lou Gehrig's disease). At the celebration of his 65th birthday on January 8 this year, Hawking announced his plans for a zero-gravity flight to prepare for a sub-orbital space flight in 2009 on Virgin Galactic's space service. Photo credit: NASA/Kim Shiflett
STS-72 crew trains in Fixed Base (FB) Shuttle Mission Simulator (SMS)
1995-06-07
S95-12716 (May 1995) --- Astronauts Brian Duffy, in commander's seat, and Winston E. Scott discuss their scheduled flight aboard the Space Shuttle Endeavour. The two are on the flight deck of the Johnson Space Center's (JSC) fixed base Shuttle Mission Simulator (SMS). Duffy, mission commander, and Scott, mission specialist, will be joined for the winter flight by three other NASA astronauts and an international mission specialist representing NASDA.
NASA Technical Reports Server (NTRS)
Holder, Donald W.; Parker, David
2000-01-01
The Volatile Removal Assembly (VRA) is a high temperature catalytic oxidation process that will be used as the final treatment for recycled water aboard the International Space Station (ISS). The multiphase nature of the process had raised concerns as to the performance of the VRA in a microgravity environment. To address these concerns, two experiments were designed. The VRA Flight Experiment (VRAFE) was designed to test a full size VRA under controlled conditions in microgravity aboard the SPACEHAB module and in a 1 -g environment and compare the performance results. The second experiment relied on visualization of two-phase flow through small column packed beds and was designed to fly aboard NASA's microgravity test bed plane (KC-135). The objective of the KC-135 experiment was to understand the two-phase fluid flow distribution in a packed bed in microgravity. On Space Transportation System (STS) flight 96 (May 1999), the VRA FE was successfully operated and in June 1999 the KC-135 packed bed testing was completed. This paper provides an overview of the experiments and a summary of the results and findings.
ASTRONAUT YOUNG, JOHN W. - ZERO-GRAVITY (ZERO-G) - KC-135
1978-12-15
S79-30347 (31 March 1979) --- Taking advantage of a brief period of zero-gravity afforded aboard a KC-135 flying a parabolic curve, the flight crew of the first space shuttle orbital flight test (STS-1) goes through a spacesuit donning exercise. Astronaut John W. Young has just entered the hard-material torso of the shuttle spacesuit by approaching it from below. He is assisted by astronaut Robert L. Crippen. The torso is held in place by a special stand here, simulating the function provided by the airlock wall aboard the actual shuttle craft. The life support system is mated to the torso on Earth and remains so during the flight, requiring this type of donning and doffing exercise. Note Crippen?s suit is the type to be used for intravehicular activity in the shirt sleeve environment to be afforded aboard shuttle. The suit worn by Young is for extravehicular activity (EVA). Young will be STS-1 commander and Crippen, pilot. They will man the space shuttle orbiter 102 Columbia. Photo credit: NASA
Space Station Crew Members Discuss Life in Space with Indiana Students
2018-01-11
Aboard the International Space Station, Expedition 54 Flight Engineers Mark Vande Hei of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed aspects of life and research during an in-flight educational event Jan. 11 with students gathered at the Children’s Museum in Indianapolis. Vande Hei is scheduled to return to Earth in late February, while Kanai will remain on station until early June.
Space Station Crew Member Discusses Life in Space with Houston Students
2018-02-13
Aboard the International Space Station, Expedition 54 Flight Engineer Joe Acaba of NASA discussed his mission and research on the complex during an in-flight educational event Feb. 13 with students at the downtown campus of the University of Houston. Acaba is in the final weeks of a five-and-a-half-month mission on the unique microgravity laboratory, aiming for a return to Earth on Feb. 27.
Space_Station_Crew_Member_Discusses_Life_in_Space_with_Texas_Students
2018-02-14
Aboard the International Space Station, Expedition 54 Flight Engineer Joe Acaba of NASA discussed his mission and research on the complex during an in-flight educational event Feb. 14 with students at the Briarhill Middle School in Highland Village, Texas. Acaba is in the final weeks of a five-and-a-half-month mission on the unique microgravity laboratory, aiming for a return to Earth on Feb. 27.
Expedition_55_Education_Interview_with_Laurel_Public_Schools_2018_121_1555_647539
2018-05-02
SPACE STATION CREW MEMBER DISCUSSES LIFE IN SPACE WITH MONTANA STUDENTS----- Aboard the International Space Station, Expedition 55 Flight Engineer Drew Feustel of NASA discussed life and research on the complex during an in-flight educational event May 1 with students from the Laurel Public School system in Laurel, Montana. Feustel is in the midst of a six and half month mission on the orbital outpost.
JAXA_PAOEvent_KanaiProject_2018_096_1115__636932
2018-04-09
SPACE STATION CREW MEMBER DISCUSSES LIFE IN SPACE WITH JAPANESE STUDENTS---- Aboard the International Space Station, Expedition 55 Flight Engineer Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed life and research on the orbital outpost during an in-flight question and answer session April 2 with students at the Yoshikawa City Child Center in Japan. Kanai is in the midst of a six-month mission on the station.
Ohio Senator John Glenn tours the orbiter Columbia's middeck
NASA Technical Reports Server (NTRS)
1998-01-01
Astronaut Stephen Oswald, at left, listens to Ohio Senator John Glenn on the orbiter Columbia's middeck as the senator asks questions regarding Shuttle operations at the Orbiter Processing Facility 3 at Kennedy Space Center. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.
Ohio Senator John Glenn tours the Design Engineering lab at KSC
NASA Technical Reports Server (NTRS)
1998-01-01
Ohio Senator John Glenn, at left, enjoys a tour of the Engineering Development Laboratory at Kennedy Space Center. Standing with Senator Glenn is Design Engineer David Kruhm of NASA Advanced Development and Shuttle Upgrades. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.
1998-01-21
Astronaut Stephen Oswald, at left, listens to Ohio Senator John Glenn on the orbiter Columbia's middeck as the senator asks questions regarding Shuttle operations at the Orbiter Processing Facility 3 at Kennedy Space Center. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95
STS-96 Astronauts Adjust Unity Hatch
NASA Technical Reports Server (NTRS)
1999-01-01
Aboard the International Space Station (ISS), astronauts Rick D. Husband and Tamara E. Jernigan adjust the hatch for the U.S. built Unity node. The task was part of an overall effort of seven crew members to prepare the existing portion of the International Space Station (ISS). Launched on May 27, 1999, aboard the Orbiter Discovery, the STS-96 mission was the second ISS assembly flight and the first shuttle mission to dock with the station.
Astronaut Pedro Duque Watches A Water Bubble
NASA Technical Reports Server (NTRS)
2003-01-01
Aboard the International Space Station (ISS), European Space Agency astronaut Pedro Duque of Spain watches a water bubble float between a camera and himself. The bubble shows his reflection (reversed). Duque was launched aboard a Russian Soyuz TMA-3 spacecraft from the Baikonur Cosmodrome, Kazakhstan on October 18th, along with expedition-8 crew members Michael C. Foale, Mission Commander and NASA ISS Science Officer, and Cosmonaut Alexander Y. Kaleri, Soyuz Commander and flight engineer.
2012-12-04
NASA Social participants listen as astronaut Joe Acaba answers questions about his time living aboard the International Space Station at NASA Headquarters, Tuesday, Dec. 4, 2012 in Washington. Acaba launched to the International Space Station on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)
STS-56 Commander Cameron uses SAREX on OV-103's aft flight deck
1993-04-17
STS056-30-022 (8-17 April 1993) --- Aboard Discovery, astronaut Kenneth D. Cameron (call letters N5AWP), talks to amateur radio operators on Earth via the Shuttle Amateur Radio Experiment (SAREX). SAREX was established by NASA, the American Radio League\\Amateur Satellite Corporation and the Johnson Space Center Amateur Radio Club to encourage public participation in the space program. It is part of an endeavor to demonstrate the effectiveness of conducting short-wave radio transmissions between the Shuttle and ground-based radio operators at low cost ground stations with amateur and digital techniques. As on several previous missions, SAREX was used on this flight as an educational opportunity for students around the world to learn about space firsthand by speaking directly to astronauts aboard the Shuttle.
STS-56 Pilot Oswald uses SAREX on forward flight deck of Discovery, OV-103
1993-04-17
STS056-04-004 (8-17 April 1993) --- Aboard Discovery, Astronaut Stephen S. Oswald, Pilot, talks to amateur radio operators on Earth via the Shuttle Amateur Radio Experiment (SAREX). SAREX was established by NASA, the American Radio League/Amateur Radio Satellite Corporation and the Johnson Space Center Amateur Radio Club to encourage public participation in the space program through a program to demonstrate the effectiveness of conducting short-wave radio transmissions between the Shuttle and ground-based radio operators at low-cost ground stations with amateur and digital techniques. As on several previous missions, SAREX was used on this flight as an educational opportunity for students around the world to learn about space firsthand by speaking directly to astronauts aboard the Shuttle.
Inflight-Event_JAXA-Fukui-Space-Expo
2018-02-26
SPACE STATION CREW MEMBER DISCUSSES LIFE IN SPACE WITH JAPANESE STUDENTS------ Aboard the International Space Station, Expedition 54 Flight Engineer Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed life and research on the orbital laboratory during an in-flight educational event Feb. 23 with Japanese students attending the International Symposium of Space Technology and Science in Fukui Prefecture, Japan. Kanai, who will remain in orbit through early June, recently became the fourth Japanese astronaut in history to conduct a spacewalk.
NASA Astrophysics Data System (ADS)
Grigoryan, E.; Almeida, E.; Domaratskaya, E.; Tairbekov, M.; Aleinikova, K.; Mitashov, V.
A study on space flight effect upon processes of regeneration is due to the necessity to know their characteristics in animals and human exposed to space and earth conditions shortly after flight Several experiments on the newts performed earlier aboard Russian biosatellites showed that the rate of organ and tissue regeneration in space was greater than that on the ground Space flight effect stimulating regeneration was enduring and apparent not only just after flight but long time later as well This observation found support in studies simulated physiological weightlessness by means of fast-rotating clinostat It was shown also that the higher rate of regeneration was associated with enhanced cell proliferation For instance we found that the number of cells in S-phase in regenerating tissues was significantly greater in space-flown animals than in the ground controls However it was unclear whether cell proliferation stimulation was induced by micro- g per se or by conditions of hyper- g during launching and re-adaptation on the earth Molecular mechanisms underlying the change also remained obscure These issues were addressed by the joint Russian-USA experiment Regeneration performed on Foton-M2 in 2005 In 16- day flight we used two well-known models of regeneration lens regeneration after lensectomy and tail regeneration after amputation in adult newts Pleurodeles walt Urodela In order to evaluate cell proliferative activity in time limits of microgravity influence the original method for in-flight delivering DNA precursor BrdU
Evaluation of prototype air/fluid separator for Space Station Freedom Health Maintenance Facility
NASA Technical Reports Server (NTRS)
Billica, Roger; Smith, Maureen; Murphy, Linda; Kizzee, Victor D.
1991-01-01
A prototype air/fluid separator suction apparatus proposed as a possible design for use with the Health Maintenance Facility aboard Space Station Freedom (SSF) was evaluated. A KC-135 parabolic flight test was performed for this purpose. The flights followed the standard 40 parabola profile with 20 to 25 seconds of near-zero gravity in each parabola. A protocol was prepared to evaluate the prototype device in several regulator modes (or suction force), using three fluids of varying viscosity, and using either continuous or intermittent suction. It was felt that a matrixed approach would best approximate the range of utilization anticipated for medical suction on SSF. The protocols were performed in one-gravity in a lab setting to familiarize the team with procedures and techniques. Identical steps were performed aboard the KC-135 during parabolic flight.
STS-120 crew along with Expedition crew members Dan Tani and Sandra Magnus
2007-08-09
JSC2007-E-41533 (9 Aug. 2007) --- Astronauts Stephanie Wilson (left), STS-120 mission specialist; Sandra Magnus, Expedition 17 flight engineer; and Dan Tani, Expedition 16 flight engineer, use the virtual reality lab at Johnson Space Center to train for their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.
Effects of prolonged space flight on rat skeletal muscle.
Nesterov, V P; Zheludkova, Z P; Kuznetsova, L A
1979-10-01
The effect of a 20-day space flight on water, Na+, K+, Mg2+, Ca2+ and glycogen contents as well as on activities of glycogen metabolism enzymes--glycogen synthetase and glycogen phosphorylase--of rat skeletal muscles was studied. This data is regarded as an integral test characterizing the state of contractile tissue of the animals at the final stage of flight aboard biosatellites. The measurements indicate that there were no significant changes of cations and glycogen contents nor of the enzymic activities in fast-twitch muscles during the 20-day spaceflight. At the same time dehydration in these muscles was observed, which disappeared on the 25th postflight day. In slow-twitch antigravitational skeletal muscle (m. soleus) there was a decrease of K+ and increase of Na+ in the tissue contents. The changes disappeared at the end of the on-earth readaptation period. From the pattern of these observations, we can conclude that the 20-day space flight leads to some reversible biochemical changes of the rat skeletal muscles. A conclusion can be drawn about necessity of creating, aboard the spaceship, an artificial load on antigravitational skeletal muscles.
Investigation of Slosh Dynamics on Flight and Ground Platforms
NASA Astrophysics Data System (ADS)
Vergalla, Michael; Zhou, Ran
The slosh dynamics in cryogenic fuel tanks under microgravity is a problem that severely affects the reliability of spacecraft launching. To investigate slosh dynamics and their effects on space vehicle dynamics three levels of testing are presently in progress. Platforms include a 3-DOF ground testing table, parabolic flights, sounding rockets and finally the International Space Station. Ground tests provide an economically viable platform for investigating rotational, translational, and coupled feed-back modes due to repeatable CNC motions. The parabolic flight campaign has conducted four successful flights aboard multiple aircraft using static and tethered slosh packages. Using the PANTHER II student designed rocket, a slosh package was launched as a payload. Finally with collaboration between Florida Institute of Technology and Massachusetts Institute of Technology SPHERES project, two test sessions investigating feedback using partially and fully filled propellant tanks have been completed aboard the In-ternational Space Station. Motion data from all tests will be input to in house Dynamic Mesh Model to further establish confidence in the versatility and accuracy of the method. The results show that it is necessary to construct additional hardware for slosh studies.
Thirsk cuts his hair in U.S. Lab
2009-07-16
ISS020-E-021772 (17 July 2009) --- Canadian Space Agency astronaut Robert Thirsk, Expedition 20/21 flight engineer, gives himself a haircut and uses a vacuum cleaner to collect floating hairs. Company is en route to the International Space Station, as the six Expedition 20 inhabitants are preparing for seven crewmembers of STS-127 to come aboard on this flight day three.
Expedition 26 Crewmembers in sleeping quarters
2010-12-25
ISS026-E-012167 (25 Dec. 2010) --- Three of the six crew members aboard the International Space Station peek out of their sleeping quarters on Christmas morning to view the station’s decorations and gifts. Shown, from left, are European Space Agency astronaut Paolo Nespoli, Expedition 26 flight engineer, NASA astronaut Scott Kelly, Expedition 26 commander, and NASA astronaut Catherine (Cady) Coleman, flight engineer
Expedition 26 Crewmembers in sleeping quarters
2010-12-25
ISS026-E-012169 (25 Dec. 2010) --- Three of the six crew members aboard the International Space Station peek out of their sleeping quarters on Christmas morning to view the station?s decorations and gifts. Shown, from left, are European Space Agency astronaut Paolo Nespoli, Expedition 26 flight engineer, NASA astronaut Scott Kelly, Expedition 26 commander, and NASA astronaut Catherine (Cady) Coleman, flight engineer.
2018-05-18
This week in space news, college students converge on the Kennedy Space Center Visitor Complex for the 9th annual Robotic Mining Competition, and the Advanced Plant Habitat base is readied for its flight to the International Space Station aboard the Orbital ATK Cygnus spacecraft.
2018-05-03
SPACE STATION CREW MEMBERS DISCUSS LIFE IN SPACE WITH VERMONT STUDENTS------Aboard the International Space Station, Expedition 55 Flight Engineers Drew Feustel and Scott Tingle of NASA discussed life and research on the orbital laboratory during an in-flight educational event May 2 with students from the Champlain Valley School District in Hinesburg, Vermont. Tingle is in the final month of a six-month mission on the station while Feustel is in the midst of a six and a half month journey on the complex.
[Protein turnover during and after extended space flight
NASA Technical Reports Server (NTRS)
Stein, T. P.; Larina, I. M.; Leskiv, M. J.; Schluter, M. D.
2000-01-01
A 15N-glycine tracer technique was used to study protein turnover in four Russian cosmonauts and two U.S. astronauts who had spent long time aboard the Russian orbital station MIR. As was shown, in space flight protein synthesis falls by 46% on the average, which substantially exceeds estimations made on the basis of data about bed-rested human subjects. Reduction in protein synthesis during space flight is connected with the negative energy balance; therefore, it appears imperative to keep balance between energy intake (foodstuffs) and expenditure by cosmonauts on long-term mission.
1998-06-02
STS-91 Mission Specialist Janet Lynn Kavandi gives a smile and a thumbs-up as two technicians help her with her flight suit in the Operations and Checkout (O&C) Building. The final fitting takes place prior to the crew walkout and transport to Launch Pad 39A. She is on her first Shuttle flight. Kavandi was selected as an astronaut candidate in 1994. She holds a doctorate in analytical chemistry and has received two patents. On this mission, she will be responsible for the SPACEHAB module aboard Discovery which will be used to transport supplies to Mir and bring back U.S. experiment hardware that has been in operation aboard the space station. She will also assist Chang-Diaz with AMS operations. STS-91 is scheduled to be launched on June 2 with a launch window opening around 6:10 p.m. EDT. The mission will feature the ninth and final Shuttle docking with the Russian space station Mir, the first Mir docking for Discovery, the first on-orbit test of the Alpha Magnetic Spectrometer (AMS), and the first flight of the new Space Shuttle super lightweight external tank. Astronaut Andrew S. W. Thomas will return to Earth as a STS-91 crew member after living more than four months aboard Mir
2012-11-28
At the Gagarin Cosmonaut Training Center in Star City, Russia, Expedition 34/35 Soyuz Commander Roman Romanenko listens to a question from reporters during the second of two days of flight qualification exams Nov. 28, 2012. He and his crewmates, Flight Engineer Chris Hadfield of the Canadian Space Agency and NASA Flight Engineer Tom Marshburn are preparing for launch Dec. 19 to the International Space Station from the Baikonur Cosmodrome in Kazakhstan aboard the Soyuz TMA-07M spacecraft. NASA/Stephanie Stoll
Space Station Crew Discusses Life in Space with Idaho Students
2018-02-08
Aboard the International Space Station, Expedition 54 Flight Engineers Mark Vande Hei, Joe Acaba and Scott Tingle of NASA discussed life and research on the orbital laboratory during an in-flight educational event Feb. 8 with students from Boise State University in Idaho. Vande Hei and Acaba are in the final weeks of a five and a half month mission on the complex while Tingle will remain in orbit until early June.
Exp55_Inflight_KYW-TV_2018_072_1355_627718
2018-03-13
SPACE STATION CREW MEMBERS DISCUSS LIFE IN SPACE WITH PHILADELPHIA MEDIA----- Aboard the International Space Station, Expedition 55 Flight Engineers Scott Tingle of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed life and research on the complex during an in-flight interview March 13 with KYW-TV in Philadelphia. Tingle and Kanai are in the midst of a five-and-a-half month mission on the orbital outpost.
Space Station Crew Members Discuss Life in Space with Media
2017-11-03
Aboard the International Space Station, Expedition 53 Commander Randy Bresnik and Flight Engineers Joe Acaba and Mark Vande Hei of NASA discussed life and research on the orbital laboratory during in-flight interviews Nov. 3 with KARE-TV in Minneapolis and the “Fox and Friends” morning talk program on the Fox Network. The astronauts are in various stages of their respective five-and-a-half-month missions on the orbital outpost.
Space Station Crew Discusses Life in Space with Ohio Students
2017-11-01
Aboard the International Space Station, Expedition 53 Flight Engineers Mark Vande Hei and Joe Acaba of NASA discussed life and research on the outpost during an in-flight educational event Nov. 1 with students at the Shaker Heights School in Cleveland, Ohio. Vande Hei and Acaba, who launched to the station together in September, are in the midst of a five-and-a-half-month mission on the orbital laboratory.
Space Station Crew Discusses Life in Space with California Students
2017-10-30
Aboard the International Space Station, Expedition 53 Commander Randy Bresnik and Flight Engineer Joe Acaba of NASA discussed life and research on the outpost during an in-flight educational event Oct. 30 with students at the Santa Monica High School in Santa Monica, California. Acaba, who is a native of southern California, and Bresnik are in various stages of their respective five-and-a half-month missions on the orbital laboratory.
2014-11-24
Expedition 42 Flight Engineer Samantha Cristoforetti, of the European Space Agency (ESA), top, Flight Engineer Terry Virts of NASA, center, and Soyuz Commander Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos), bottom, wave farewell prior to boarding the Soyuz TMA-15M spacecraft for launch, Monday, Nov. 24, 2014 at the Baikonur Cosmodrome in Kazakhstan. Cristoforetti, Virts, and Shkaplerov will spend the next five and a half months aboard the International Space Station. Photo Credit: (NASA/Aubrey Gemignani)
2014-08-05
ISS040-E-088798 (5 Aug. 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, removes hardware for the combustion experiment known as the Burning and Suppression of Solids (BASS-II) from the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station. The experiment seeks to provide insight on how flames burn in space compared to Earth which may provide fire safety benefits aboard future spacecraft. NASA astronaut Reid Wiseman, flight engineer, looks on.
2014-08-05
ISS040-E-088800 (5 Aug. 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, removes hardware for the combustion experiment known as the Burning and Suppression of Solids (BASS-II) from the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station. The experiment seeks to provide insight on how flames burn in space compared to Earth which may provide fire safety benefits aboard future spacecraft. NASA astronaut Reid Wiseman, flight engineer, looks on.
2014-08-05
ISS040-E-088801 (5 Aug. 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, removes hardware for the combustion experiment known as the Burning and Suppression of Solids (BASS-II) from the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station. The experiment seeks to provide insight on how flames burn in space compared to Earth which may provide fire safety benefits aboard future spacecraft. NASA astronaut Reid Wiseman, flight engineer, looks on.
2007-04-26
KENNEDY SPACE CENTER, FLA. — Noted physicist Stephen Hawking greets the media after his arrival at the Kennedy Space Center Shuttle Landing Facility for his first zero-gravity flight. The flight will be aboard a modified Boeing 727 aircraft owned by Zero Gravity Corp., a commercial company licensed to provide the public with weightless flight experiences. Hawking developed amyotrophic lateral sclerosis disease in the 1960s, a type of motor neuron disease which would cost him the loss of almost all neuromuscular control. At the celebration of his 65th birthday on January 8 this year, Hawking announced his plans for a zero-gravity flight to prepare for a sub-orbital space flight in 2009 on Virgin Galactic's space service. Photo credit: NASA/Kim Shiflett
2007-04-26
KENNEDY SPACE CENTER, FLA. -- At the Kennedy Space Center Shuttle Landing Facility, Peter Diamandis, founder of the Zero Gravity Corp., talks to the media about physicist Stephen Hawking's (in the wheelchair) first zero-gravity flight. The flight will be aboard a modified Boeing 727 aircraft owned by Zero Gravity Corp., a commercial company licensed to provide the public with weightless flight experiences. Hawking developed amyotrophic lateral sclerosis disease in the 1960s, a type of motor neuron disease which would cost him the loss of almost all neuromuscular control. At the celebration of his 65th birthday on January 8 this year, Hawking announced his plans for a zero-gravity flight to prepare for a sub-orbital space flight in 2009 on Virgin Galactic's space service. Photo credit: NASA/Kim Shiflett
STS-40 orbital acceleration research experiment flight results during a typical sleep period
NASA Technical Reports Server (NTRS)
Blanchard, R. C.; Nicholson, J. Y.; Ritter, J. R.
1992-01-01
The Orbital Acceleration Research Experiment (OARE), an electrostatic accelerometer package with complete on-orbit calibration capabilities, was flown for the first time aboard the Space Shuttle on STS-40. This is also the first time an accelerometer package with nano-g sensitivity and a calibration facility has flown aboard the Space Shuttle. The instrument is designed to measure and record the Space Shuttle aerodynamic acceleration environment from the free molecule flow regime through the rarified flow transition into the hypersonic continuum regime. Because of its sensitivity, the OARE instrument defects aerodynamic behavior of the Space Shuttle while in low-earth orbit. A 2-hour orbital time period on day seven of the mission, when the crew was asleep and other spacecraft activities were at a minimum, was examined. During the flight, a 'trimmed-mean' filter was used to produce high quality, low frequency data which was successfully stored aboard the Space Shuttle in the OARE data storage system. Initial review of the data indicated that, although the expected precision was achieved, some equipment problems occurred resulting in uncertain accuracy. An acceleration model which includes aerodynamic, gravity-gradient, and rotational effects was constructed and compared with flight data. Examination of the model with the flight data shows the instrument to be sensitive to all major expected low frequency acceleration phenomena; however, some erratic instrument bias behavior persists in two axes. In these axes, the OARE data can be made to match a comprehensive atmospheric-aerodynamic model by making bias adjustments and slight linear corrections for drift. The other axis does not exhibit these difficulties and gives good agreement with the acceleration model.
Astronaut Voss Works in the Destiny Laboratory
NASA Technical Reports Server (NTRS)
2001-01-01
In this photograph, Astronaut James Voss, flight engineer of Expedition Two, performs a task at a work station in the International Space Station (ISS) Destiny Laboratory, or U.S. Laboratory, as Astronaut Scott Horowitz, STS-105 mission commander, floats through the hatchway leading to the Unity node. After spending five months aboard the orbital outpost, the ISS Expedition Two crew was replaced by Expedition Three and returned to Earth aboard the STS-105 Space Shuttle Discovery on August 22, 2001. The Orbiter Discovery was launched from the Kennedy Space Center on August 10, 2001.
Space Station Commander Talks to South Carolina Students
2017-10-02
Aboard the International Space Station, Expedition 53 Commander Randy Bresnik of NASA discussed life and work aboard the orbital laboratory during an in-flight educational event Oct. 2 with students at The Citadel STEM Center at the Laing Middle School near Charleston, South Carolina. Bresnik holds a Bachelor of Arts degree in mathematics and an honorary doctorate in aeronautics from The Citadel. He launched to the station in July and will remain on board through mid-December.
STS-120 crew along with Expedition crew members Dan Tani and Sandra Magnus
2007-08-09
JSC2007-E-41538 (9 Aug. 2007) --- Astronauts Stephanie Wilson, STS-120 mission specialist; Sandra Magnus, Expedition 17 flight engineer; and Dan Tani, Expedition 16 flight engineer, use the virtual reality lab at Johnson Space Center to train for their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements. A computer display is visible in the foreground.
Animals and spaceflight: from survival to understanding.
Morey-Holton, E R; Hill, E L; Souza, K A
2007-01-01
Animals have been a critical component of the spaceflight program since its inception. The Russians orbited a dog one month after the Sputnik satellite was launched. The dog mission spurred U.S. interest in animal flights. The animal missions proved that individuals aboard a spacecraft not only could survive, but also could carry out tasks during launch, near-weightlessness, and re-entry; humans were launched into space only after the early animal flights demonstrated that spaceflight was safe and survivable. After these humble beginnings when animals preceded humans in space as pioneers, a dynamic research program was begun using animals as human surrogates aboard manned and unmanned space platforms to understand how the unique environment of space alters life. In this review article, the following questions have been addressed: How did animal research in space evolve? What happened to animal development when gravity decreased? How have animal experiments in space contributed to our understanding of musculoskeletal changes and fracture repair during exposure to reduced gravity?
2007-04-26
KENNEDY SPACE CENTER, FLA. -- Noted physicist Stephen Hawking (center) returns to the Kennedy Space Center Shuttle Landing Facility after a zero gravity flight. At his side is Nicola O'Brien, a nurse practitioner who is Hawking's aide. At far left on the truck's tail gate is Peter Diamandis, founder of the Zero Gravity Corp. that provided the flight aboard its modified Boeing 727. Hawking suffers from amyotrophic lateral sclerosis (also known as Lou Gehrig's disease). At the celebration of his 65th birthday on January 8 this year, Hawking announced his plans for a zero-gravity flight to prepare for a sub-orbital space flight in 2009 on Virgin Galactic's space service. Photo credit: NASA/Kim Shiflett
Ohio Senator John Glenn tours the Design Engineering lab at KSC
NASA Technical Reports Server (NTRS)
1998-01-01
Ohio Senator John Glenn, at left, enjoys a tour of the Engineering Development Laboratory at Kennedy Space Center. Standing with Senator Glenn are, left to right, Chief Engineer Hugo Delgado and Design Engineer David Kruhm, both of NASA Advanced Development and Shuttle Upgrades. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five- hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.
Effects of microgravity on circadian rhythms in insects
NASA Technical Reports Server (NTRS)
Alpatov, A. M.; Hoban-Higgins, T. M.; Fuller, C. A.; Lazarev, A. O.; Rietveld, W. J.; Tschernyshev, V. B.; Tumurova, E. G.; Wassmer, G.; Zotov, V. A.
1998-01-01
The desert beetle Trigonoscelis gigas Reitt. was used as a biological model in studies that examined the effects of space flight on the circadian timing system. Results from studies aboard the Bion-10, Bion-11, and Photon-11 missions are reported. The control study is an ongoing Mir experiment. The studies indicate that the free-running period in beetles may be longer during space flight.
The space flight of the Soviet-Indian crew
NASA Technical Reports Server (NTRS)
Nikitin, S. A.
1985-01-01
After a brief discussion of the Indian space program, the paper examines the flight of the Soyuz T-11, which included an Indian crew member. Particular attention is given to experiments conducted aboard Soyuz T-11, including the Optokinez vestibular experiment, the Vektor cardiac bioelectricity experiment, the yoga experiment for the counteraction of the negative effects of weightlessness, a supercooling experiment, and the Terra remote sensing experiment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livshits, N.N.; Apanasenko, Z.I.; Kuznetsova, M.A.
1978-10-26
It was previously demonstrated that radiobiological effects can change appreciably in space flights. However, there is no information in the known literature concerning the effects of inflight radiation on higher nervous activity (HNA). Yet this is an important question, since mental efficiency depends largely on the state of HNA. It was established in model laboratory experiments that dynamic factors (acceleration and vibration) modify the effect of radiation on HNA. For this reason, it was necessary to investigate the effect on HNA of radiation combined with the factors occurring in space flights.
Teacher in Space Christa McAuliffe on the KC-135 for zero-G training
1986-01-08
S86-25196 (January 1986) --- Sharon Christa McAuliffe, STS-51L citizen observer/payload specialist, gets a preview of microgravity during a special flight aboard NASA?s KC-135 ?zero gravity? aircraft. McAuliffe will represent the Teacher-in-Space Project aboard the space shuttle Challenger when it launches later this month. This photograph was taken by Keith Meyers of the New York Times. EDITOR?S NOTE: The STS-51L crew members lost their lives in the space shuttle Challenger accident moments after launch on Jan. 28, 1986 from the Kennedy Space Center (KSC). Photo credit: NASA
The joint US-USSR biological satellite program
NASA Technical Reports Server (NTRS)
Souza, K. A.
1979-01-01
The joint US-USSR biological satellite missions carried out in 1975 and 1977 using Cosmos 782 and Cosmos 936 spacecraft, respectively, is reviewed. The experimental equipment and the biological specimens aboard the aircraft are considered, and it is noted that Cosmos 782, unlike Cosmos 936, carried no centrifuges for rats, although it did contain a centrifuge where a variety of biological specimens, including carrot tissue and fruit flies, were subjected to artificial gravity during space flight. The ground control groups, designed for biological experiments under simulated space-conditions, are taken into account. The U.S. experiments aboard the aircraft are described, with attention given to the experiments with rats, fish embryos, plants, and insects. Results of the experiments are noted, including the finding that space flight factors, especially weightlessness, have a measurable effect on the erythropoietic and musculoskeletal systems of rats
STS-56 MS1 Foale uses SAREX on forward flight deck of Discovery, OV-103
1993-04-17
STS056-30-001 (8-17 April 1993) --- Aboard Discovery, astronaut C. Michael Foale, (call letters KB5UAC), talks to amateur radio operators on Earth via the Shuttle Amateur Radio Experiment (SAREX). SAREX was established by NASA, the American Radio League/Amateur Radio Satellite Corporation and the Johnson Space Center Amateur Radio Club to encourage public participation in the space program through an endeavor to demonstrate the effectiveness of conducting short-wave radio transmissions. These transmissions occur between the Shuttle and ground-based radio operators at low cost ground stations with amateur and digital techniques. As on several previous missions, SAREX was used on this flight as an educational opportunity for students around the world to learn about space firsthand by speaking directly to astronauts aboard the Shuttle.
First flight test results of the Simplified Aid For EVA Rescue (SAFER) propulsion unit
NASA Technical Reports Server (NTRS)
Meade, Carl J.
1995-01-01
The Simplified Aid for EVA Rescue (SAFER) is a small, self-contained, propulsive-backpack system that provides free-flying mobility for an astronaut engaged in a space walk, also known as extravehicular activity (EVA.) SAFER contains no redundant systems and is intended for contingency use only. In essence, it is a small, simplified version of the Manned Maneuvering Unit (MMU) last flown aboard the Space Shuttle in 1985. The operational SAFER unit will only be used to return an adrift EVA astronaut to the spacecraft. Currently, if an EVA crew member inadvertently becomes separated from the Space Shuttle, the Orbiter will maneuver to within the crew member's reach envelope, allowing the astronaut to regain contact with the Orbiter. However, with the advent of operations aboard the Russian MIR Space Station and the International Space Station, the Space Shuttle will not be available to effect a timely rescue. Under these conditions, a SAFER unit would be worn by each EVA crew member. Flight test of the pre-production model of SAFER occurred in September 1994. The crew of Space Shuttle Mission STS-64 flew a 6.9 hour test flight which included performance, flying qualities, systems, and operational utility evaluations. We found that the unit offers adequate propellant and control authority to stabilize and enable the return of a tumbling/separating crew member. With certain modifications, production model of SAFER can provide self-rescue capability to a separated crew member. This paper will present the program background, explain the flight test results and provide some insight into the complex operations of flight test in space.
2013-02-27
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett
2013-02-27
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett
2013-02-27
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett
2013-02-27
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett
2013-02-27
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett
2013-02-27
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett
2013-02-27
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett
2013-02-27
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett
2013-02-27
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett
2013-02-27
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
1995-01-01
A full-scale mockup of Russia's Space Station serves as one of the several training aids for cosmonaut flights aboard the orbiting laboratory. The core module - called Mir, for world of space - was launched in February 1986 and now serves as the main livi
2012-11-28
At the Gagarin Cosmonaut Training Center in Star City, Russia, Expedition 34/35 Flight Engineer Tom Marshburn of NASA signs in for the second of two days of flight qualification exams Nov. 28, 2012. He and his crewmates are preparing for launch Dec. 19 to the International Space Station from the Baikonur Cosmodrome in Kazakhstan aboard the Soyuz TMA-07M spacecraft. Looking on behind Marshburn are Soyuz Commander Roman Romanenko (left) and Flight Engineer Chris Hadfield of the Canadian Space Agency (partially hidden). NASA/Stephanie Stoll
2012-11-28
At the Gagarin Cosmonaut Training Center in Star City, Russia, Expedition 34/35 Flight Engineer Chris Hadfield of the Canadian Space Agency signs in for the second of two days of flight qualification exams Nov. 28, 2012. He and his crewmates are preparing for launch Dec. 19 to the International Space Station from the Baikonur Cosmodrome in Kazakhstan aboard the Soyuz TMA-07M spacecraft. Looking on behind Hadfield are NASA Flight Engineer Tom Marshburn (left) and Soyuz Commander Roman Romanenko (right). NASA/Stephanie Stoll
Space Station Crew Discusses Life in Space with Massachusetts Media
2018-02-05
Aboard the International Space Station, Expedition 54 Flight Engineers Mark Vande Hei and Scott Tingle of NASA discussed life and research on the orbital outpost during a pair of in-flight interviews Feb. 5 with WHDH-TV, Boston and Bloomberg Bay State Radio. Vande Hei is in the final weeks of his five and a half month mission on the station, while Tingle, a Massachusetts native, will remain on the complex until early June.
E55_Inflight_JAXA_Tenku_2018_0426_1159_645182
2018-04-26
SPACE STATION CREW MEMBER DISCUSSES LIFE IN SPACE WITH JAPANESE STUDENTS-----Aboard the International Space Station, Expedition 55 Flight Engineer Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed life and research on the orbital outpost during an in-flight event April 26 with students gathered in Tokyo at an engineering and science exposition. Kanai arrived on the station for a six-month mission last December and is scheduled to return to Earth on June 3.
E55_Inflight_JAXA_Gifu_Prefecture__2018_0529_1112_659069
2018-05-30
SPACE STATION CREW MEMBER DISCUSSES LIFE IN SPACE WITH JAPANESE STUDENTS--- Aboard the International Space Station, Expedition 55 Flight Engineer Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed life and space on the orbital outpost during an in-flight educational event May 29 with students gathered at the Gifu Prefecture Air and Space Museum in Japan. Kanai is in the final week of his six month mission on the complex, headed for a landing in a Russian Soyuz spacecraft June 3 on the south central steppe of Kazakhstan.
JAXA PAO VIP Event 3318_624493_hires
2018-03-05
SPACE STATION CREW DISCUSSES LIFE IN SPACE WITH JAPANESE OFFICIALS --------------------------------------------------------- Aboard the International Space Station, Expedition 55 Commander Anton Shkaplerov of Roscosmos and Flight Engineers Scott Tingle of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed life and research on the orbital laboratory during an in-flight question and answer session March 3 with Japanese space officials and policy ministers attending the International Space Explorers Forum (ISEF-2) in Tokyo. The trio is in the midst of a five-and-a-half-month mission on the station.
Vice President Pence Visits NASA's Marshall Space Flight Center
2017-09-25
Vice President Mike Pence offered his thanks Monday to employees working on NASA’s human spaceflight programs during a tour of the agency’s Marshall Space Flight Center in Huntsville, Alabama. The Vice President saw the progress being made on NASA’s Space Launch System (SLS), the world’s most powerful deep space rocket, that will send astronauts on missions around the Moon and ultimately to Mars. He also visited Marshall’s Payload Operations Integration Center, where the agency manages all research aboard the International Space Station.
Cosmonauts Solovyev and Dezhurov exchange information on Mir
1995-07-10
STS071-118-007 (27 June - 7 July 1995) --- Onboard the Russia?s Mir Space Station Mir Base Block, cosmonauts Anatoly Y. Solovyev (left) and Vladimir N. Dezhurov, Mir 19 and 18 commanders, respectively, exchange information about their research tasks. The two represent a change of guard aboard Mir, as Dezhurov prepares to come back to Earth with the STS-71 crew aboard Space Shuttle Atlantis. Nikolai M. Budarin and Gennadiy M. Strekalov - cosmonaut/flight engineers making the same exchange -- are out of frame.
1999-07-27
A Memphis student working at the University of Alabama in Huntsville prepares samples for the first protein crystal growth experiments plarned to be performed aboard the International Space Station (ISS). The proteins are placed in plastic tubing that is heat-sealed at the ends, then flash-frozen and preserved in a liquid nitrogen Dewar. Aboard the ISS, the nitrogen will be allowed to evaporated so the samples thaw and then slowly crystallize. They will be analyzed after return to Earth. Photo credit: NASA/Marshall Space Flight Center (MSFC)
1999-07-27
Memphis students working at the University of Alabama in Huntsville prepare samples for the first protein crystal growth experiments plarned to be performed aboard the International Space Station (ISS). The proteins are placed in plastic tubing that is heat-sealed at the ends, then flash-frozen and preserved in a liquid nitrogen Dewar. Aboard the ISS, the nitrogen will be allowed to evaporated so the samples thaw and then slowly crystallize. They will be analyzed after return to Earth. Photo credit: NASA/Marshall Space Flight Center (MSFC)
1972-02-01
The Apollo Telescope Mount (ATM) was designed and developed by the Marshall Space Flight Center and served as the primary scientific instrument unit aboard Skylab (1973-1979). This photograph shows the spar unit, which housed major solar instruments, being lowered into the rack, the outer octagonal complex frame of the ATM flight unit.
2004-03-10
KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities near KSC, NASA’s MESSENGER spacecraft from NASA’s Goddard Space Flight Center in Greenbelt, Md., is offloaded. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be taken into a high bay clean room and employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
2004-03-10
KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities near KSC, a lift helps offload NASA’s MESSENGER spacecraft shipped from NASA’s Goddard Space Flight Center in Greenbelt, Md. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be taken into a high bay clean room and employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
2012-02-18
CAPE CANAVERAL, Fla. -- Mercury astronauts, John Glenn, left, and Scott Carpenter, talk to Mercury Project workers and other guests in the Astronaut Encounter Theater at the Kennedy Space Center Visitor Complex in Florida. The pair participated in 50th anniversary events at the launch site of Glenn's first orbital flight aboard NASA's Friendship 7 capsule, which launched Feb. 20, 1962, aboard an Atlas rocket. At right, is Jack King, who was chief of Kennedy's Public Information Office during Project Mercury. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Kim Shiflett
2012-02-18
CAPE CANAVERAL, Fla. -- Mercury astronauts, John Glenn, left, and Scott Carpenter, talk to Mercury Project workers and other guests in the Astronaut Encounter Theater at the Kennedy Space Center Visitor Complex in Florida. The pair participated in 50th anniversary events at the launch site of Glenn's first orbital flight aboard NASA's Friendship 7 capsule, which launched Feb. 20, 1962, aboard an Atlas rocket. At right, is Jack King, who was chief of Kennedy's Public Information Office during Project Mercury. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Kim Shiflett
2012-02-18
CAPE CANAVERAL, Fla. -- Mercury astronauts, John Glenn, left, and Scott Carpenter, talk to Mercury Project workers and other guests in the Astronaut Encounter Theater at the Kennedy Space Center Visitor Complex in Florida. The pair participated in 50th anniversary events at the launch site of Glenn's first orbital flight aboard NASA's Friendship 7 capsule, which launched Feb. 20, 1962, aboard an Atlas rocket. At right, is Jack King, who was chief of Kennedy's Public Information Office during Project Mercury. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Kim Shiflett
Survey of cell biology experiments in reduced gravity
NASA Technical Reports Server (NTRS)
Taylor, G. R.
1977-01-01
The effects of spaceflight on terrestrial cell systems are discussed. With some important exceptions, static cell systems carried aboard U.S.A. and U.S.S.R. space flights have failed to reveal space related anomalies. Some sophisticated devices which were developed for viewing directly, or continuously recording, the growth of cells, tissue cultures and eggs in flight, are described and the results summarized. The unique presence of high energy, multicharged (HZE) particles and full-range ultraviolet irradiation in space prompted evaluation of the response of single cells to these factors. Summary results and general conclusions are presented. Potential areas of research in future space flights are identified.
2007-04-26
KENNEDY SPACE CENTER, FLA. -- At the Kennedy Space Center Shuttle Landing Facility, Space Florida president Steve Kohler (left) talks to the media about physicist Stephen Hawking's (in the wheelchair) first zero-gravity flight. The flight will be aboard a modified Boeing 727 aircraft owned by Zero Gravity Corp., a commercial company licensed to provide the public with weightless flight experiences. At right is Peter Diamandis, founder of the Zero Gravity Corp. Hawking developed amyotrophic lateral sclerosis disease in the 1960s, a type of motor neuron disease which would cost him the loss of almost all neuromuscular control. At the celebration of his 65th birthday on January 8 this year, Hawking announced his plans for a zero-gravity flight to prepare for a sub-orbital space flight in 2009 on Virgin Galactic's space service. Photo credit: NASA/Kim Shiflett
2007-04-26
KENNEDY SPACE CENTER, FLA. -- The media surround noted wheelchair-bound physicist Stephen Hawking after his arrival at the Kennedy Space Center Shuttle Landing Facility for his first zero-gravity flight. Behind Hawking, at left, are Zero Gravity Corporation founder Peter Diamandis and Space Florida president Steve Kohler. The flight will be aboard a modified Boeing 727 aircraft owned by Zero G, a commercial company licensed to provide the public with weightless flight experiences. Hawking developed amyotrophic lateral sclerosis disease in the 1960s, a type of motor neuron disease which would cost him the loss of almost all neuromuscular control. At the celebration of his 65th birthday on January 8 this year, Hawking announced his plans for a zero-gravity flight to prepare for a sub-orbital space flight in 2009 on Virgin Galactic's space service. Photo credit: NASA/Kim Shiflett
Expedition_55_Education_In-Flight_Oakland_CC_Lake_Orion_HS_2018_107_1025_641759
2018-04-18
SPACE STATION CREW MEMBERS DISCUSS LIFE IN SPACE WITH MICHIGAN STUDENTS----- Aboard the International Space Station, Expedition 55 Flight Engineers Drew Feustel and Ricky Arnold of NASA discussed life and research on the orbital outpost during an in-flight educational event April 17 with students from the Lake Orion (pron: OH-ree-on) High School and the Oakland Community College in Lake Orion, Michigan. Feustel, who is a native of Lake Orion, and Arnold, who is a former educator, launched to the station in late March for their mission on the orbital outpost.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Preparing for Return to Flight, workers at KSC walk the grounds around Launch Pad 39B looking for Foreign Object Debris, or FOD. The pad was recently refurbished and any possible debris left behind must be removed from the area prior to launch. Foreign objects that are alien to flight systems may cause material damage or may make the system or equipment inoperable, unsafe or less efficient. The Return to Flight mission STS-114 aboard Space Shuttle Discovery will carry supplies and equipment to the International Space Station. Discovery is scheduled for launch in a window from May 15 to June 3.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Preparing for Return to Flight, workers at KSC walk the grounds around Launch Pad 39B looking for Foreign Object Debris, or FOD. The pad was recently refurbished and any possible debris left behind must be removed from the area prior to launch. Foreign objects that are alien to flight systems may cause material damage or may make the system or equipment inoperable, unsafe or less efficient. The Return to Flight mission STS-114 aboard Space Shuttle Discovery will carry supplies and equipment to the International Space Station. Discovery is scheduled for launch in a window from May 15 to June 3.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Preparing for Return to Flight, workers at KSC walk the grounds around Launch Pad 39B looking for Foreign Object Debris, or FOD. The pad was recently refurbished and any possible debris left behind must be removed from the area prior to launch. Foreign objects that are alien to flight systems may cause material damage or may make the system or equipment inoperable, unsafe or less efficient. The Return to Flight mission STS-114 aboard Space Shuttle Discovery will carry supplies and equipment to the International Space Station. Discovery is scheduled for launch in a window from May 15 to June 3.
Nespolia moving the Neurospat Hardware in the Columbus Module during Expedition 26
2010-12-20
ISS026-E-012919 (20 Dec. 2010) --- European Space Agency astronaut Paolo Nespoli, Expedition 26 flight engineer, moves the Neurospat hardware (including light shield and frame) used for the Bodies in the Space Environment (BISE) experiment, in the Columbus Module aboard the International Space Station.
International Space Station (ISS)
2001-03-01
One of the astronauts aboard the Space Shuttle Discovery took this photograph, from the aft flight deck of the Discovery, of the International Space Station (ISS) in orbit. The photo was taken after separation of the orbiter Discovery from the ISS after several days of joint activities and an important crew exchange.
Senator Doug Jones (D-AL) Tour of MSFC Facilities
2018-02-22
Senator Doug Jones (D-AL.) and wife, Louise, tour Marshall Space Flight facilities. Steve Doering, manager, Stages Element, Space Launch System (SLS) program at MSFC, also tour the Payload Operations Integration Center (POIC) where Marshall controllers oversee stowage requirements aboard the International Space Station (ISS) as well as scientific experiments.
1997-03-11
The Microgravity Science Glovebox (MSG) is being developed by the European Space Agency (ESA) and NASA for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC
1971-10-01
The Apollo Telescope Mount (ATM) was designed and developed by the Marshall Space Flight Center (MSFC) and served as the primary scientific instrument unit aboard Skylab (1973-1979). The ATM consisted of eight scientific instruments as well as a number of smaller experiments. This image is of the ATM flight unit sun end canister in MSFC's building 4755.
Cmdr Halsell on forward flight deck
2016-08-12
STS083-450-012 (4-8 April 1997) --- Astronaut James D. Halsell, Jr., commander, mans the commander's station aboard the Space Shuttle Columbia. Designed as a 16-day Microgravity Science Laboratory 1 (MSL-1) mission, the flight was cut short when one of three fuel cells did not function properly.
Characterization of the Protein Crystal Growth Apparatus for Microgravity Aboard the Space Station
NASA Technical Reports Server (NTRS)
Kundrot, Craig E.; Roeber, D.; Achari, A.; Stinson, Thomas N. (Technical Monitor)
2002-01-01
We have conducted experiments to determine the equilibration rates of some major precipitants used in protein crystallography aboard the International Space Station (ISS). The solutions were placed in the Protein Crystallization Apparatus for Microgravity (PCAM) which mimic Cryschem sitting drop trays. The trays were placed in cylinders. These cylinders were placed inside a Single locker Thermal Enclosure System (STES), and were activated for different durations during the flight. Bumpers pressed against elastomers seal drops in a deactivated state during pre-flight and prior to transfer to the ISS. Activation occurs while in flight on the ISS by releasing the bumpers allowing the drops to be exposed to the reservoir. PCAM was flown to the ISS on STS 100, Flight 6A, on April 19, 2001. Six series of equilibration experiments were tested for each precipitant with a small amount of Green Fluorescent Protein (GFP). Cylinder 10 was never activated, 7 was activated for 40 days, 8 was activated for 20 days, 9 was activated for 10 days, 11 was activated for 4 days and 12 was activated for 2 days. Upon the return to Earth by STS 104 on July 24,2001 the samples were transferred to Marshall Space Flight Center. The samples were then brought to the lab and the volumes of each sample were measured.
NASA Technical Reports Server (NTRS)
Billica, Roger D.
1992-01-01
Crew health concerns for Space Station Freedom are numerous due to medical hazards from isolation and confinement, internal and external environments, zero gravity effects, occupational exposures, and possible endogenous medical events. The operational crew health program will evolve from existing programs and from life sciences investigations aboard Space Station Freedom to include medical monitoring and certification, medical intervention, health maintenance and countermeasures, psychosocial support, and environmental health monitoring. The knowledge and experience gained regarding crew health issues and needs aboard Space Station Freedom will be used not only to verify requirements and programs for long duration space flight, but also in planning and preparation for Lunar and Mars exploration and colonization.
Accomplishments in Bioastronautics Research Aboard International Space Station
NASA Technical Reports Server (NTRS)
Uri, John J.
2003-01-01
The seventh long-duration expedition crew is currently in residence aboard International Space Station (ISS), continuing a permanent human presence in space that began in October 2000. During that time, expedition crews have been operators and subjects for 16 Human Life Sciences investigations, to gain a better understanding of the effects of long-duration space flight on the crew members and of the environment in which they live. Investigations have been conducted to study the radiation environment in the station as well as during extravehicular activity (EVA); bone demineralization and muscle deconditioning; changes in neuromuscular reflexes, muscle forces and postflight mobility; causes and possible treatment of postflight orthostatic intolerance; risk of developing kidney stones; changes in pulmonary function caused by long-duration flight as well as EVA; crew and crew-ground interactions; and changes in immune function. The experiment mix has included some conducted in flight aboard ISS as well as several which collected data only pre- and postflight. The conduct of these investigations has been facilitated by the Human Research Facility (HRF). HRF Rack 1 became the first research rack on ISS when it was installed in the US laboratory module Destiny in March 2001. The rack provides a core set of experiment hardware to support investigations, as well as power, data and commanding capability, and stowage. The second HRF rack, to complement the first with additional hardware and stowage capability, will be launched once Shuttle flights resume. Future years will see additional capability to conduct human research on ISS as International Partner modules and facility racks are added to ISS . Crew availability, both as a subject count and time, will remain a major challenge to maximizing the science return from the bioastronautics research program.
EXP55_Inflight_NPR_1A_2018_072_1720_627775
2018-03-14
SPACE STATION CREW MEMBERS DISCUSS LIFE IN SPACE WITH NPR------------------------- Aboard the International Space Station, Expedition 55 Flight Engineers Scott Tingle of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed life and research on the complex during an in-flight interview March 13 with National Public Radio’s 1A Program that is broadcast on WAMU-FM, Washington, D.C. Tingle and Kanai are in the midst of a five-and-a-half month mission on the orbital outpost.
Six Month Report on Tissue Cultured Avian Skeletal Myofibers in the STL/A Module Aboard STS-77
NASA Technical Reports Server (NTRS)
Vandenburgh, Herman H.
1997-01-01
Space travel is know to effect skeletal muscle, causing rapid and pronounced atrophy in humans and animals, even when strenuous exercise is used as a countermeasure. The cellular and molecular bases of this atrophy are unknown. Space travel may cause muscle atrophy by a direct effect on the muscle fibers and/or indirectly by reducing circulating levels of growth factors such as growth hormone. The recent development of a tissue culture incubator system for Shuttle Middeck basic science experiments [Space Tissue Loss (STL) Module] by the Walter Reed Army Institute of Research (WRAIR) allows the study of the effects of space travel directly on isolated skeletal myofibers. Avian bioartificial skeletal muscle 'organoids' containing differentiated skeletal myofibers and connective tissue fibroblasts were flown aboard the Space Shuttle (Space Transportation System, STS) on Flight STS-77, a repeat of a similar experiment flown on STS-66. The results from these two flight experiments show for the first time that space travel has a direct effect on skeletal muscle cells separate from any systemic effects resulting from altered circulating growth factors.
1969-07-16
Aboard a Saturn V launch vehicle, the Apollo 11 mission launched from The Kennedy Space Center, Florida on July 16, 1969 and safely returned to Earth on July 24, 1969. The space vehicle is shown here during the rollout for launch preparation. The 3-man crew aboard the flight consisted of Neil A. Armstrong, commander; Michael Collins, Command Module pilot; and Edwin E. Aldrin Jr., Lunar Module pilot. Armstrong was the first human to ever stand on the lunar surface, followed by Edwin (Buzz) Aldrin. The crew collected 47 pounds of lunar surface material which was returned to Earth for analysis. The surface exploration was concluded in 2½ hours. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished. The Saturn V launch vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun.
International Space Station (ISS)
2002-07-10
This is a photo of soybeans growing in the Advanced Astroculture (ADVASC) Experiment aboard the International Space Station (ISS). The ADVASC experiment was one of the several new experiments and science facilities delivered to the ISS by Expedition Five aboard the Space Shuttle Orbiter Endeavor STS-111 mission. An agricultural seed company will grow soybeans in the ADVASC hardware to determine whether soybean plants can produce seeds in a microgravity environment. Secondary objectives include determination of the chemical characteristics of the seed in space and any microgravity impact on the plant growth cycle. Station science will also be conducted by the ever-present ground crew, with a new cadre of controllers for Expedition Five in the ISS Payload Operations Control Center (POCC) at NASA's Marshall Space Flight Center in Huntsville, Alabama. Controllers work in three shifts around the clock, 7 days a week, in the POCC, the world's primary science command post for the Space Station. The POCC links Earth-bound researchers around the world with their experiments and crew aboard the Space Station.
STS-116 and Expedition 12 Preflight Training, VR Lab Bldg. 9.
2005-05-06
JSC2005-E-18147 (6 May 2005) --- Astronauts Sunita L. Williams (left), Expedition 14 flight engineer, and Joan E. Higginbotham, STS-116 mission specialist, use the virtual reality lab at the Johnson Space Center to train for their duties aboard the space shuttle. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements. Williams will join Expedition 14 in progress and serve as a flight engineer after traveling to the station on space shuttle mission STS-116.
Expedition 40 Press Conference
2014-05-27
Expedition 40 Soyuz Commander Maxim Suraev of the Russian Federal Space Agency, Roscosmos, center, takes a picture with his cell phone during a press conference, Tuesday, May 27, 2014, at the Cosmonaut Hotel in Baikonur, Kazakhstan. Expedition 40 Soyuz Commander Maxim Suraev of the Russian Federal Space Agency, Roscosmos, Flight Engineer Alexander Gerst of the European Space Agency, ESA, and Flight Engineer Reid Wiseman of NASA will launch aboard their Soyuz TMA-13M spacecraft on their mission to the International Space Station in the early hours of May 29. Photo Credit: (NASA/Joel Kowsky)
2012-02-18
CAPE CANAVERAL, Fla. -- NASA Kennedy Space Center Director Bob Cabana talks to guests in Orbiter Processing Facility-1 OPF-1 where space shuttle Discovery is being prepared for public display during a 50th anniversary celebration of the first orbital flight of an American. The astronaut who made that first flight, John Glenn, is at the space center to commemorate that achievement. Glenn orbited the Earth three times in the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. He later returned to space in October 1998 as a payload specialist aboard Discovery's STS-95 mission. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Shuttle Discovery currently is being prepared for display at Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. Photo credit: Cory Huston
NASA Technical Reports Server (NTRS)
Steinberg, F. S.
1980-01-01
Livability aboard the space shuttle orbiter makes it possible for men and women scientists and technicians in reasonably good health to join superbly healthy astronauts as space travelers and workers. Features of the flight deck, the mid-deck living quarters, and the subfloor life support and house-keeping equipment are illustrated as well as the provisions for food preparation, eating, sleeping, exercising, and medical care. Operation of the personal hygiene equipment and of the air revitalization system for maintaining sea level atmosphere in space is described. Capabilities of Spacelab, the purpose and use of the remote manipulator arm, and the design of a permanent space operations center assembled on-orbit by shuttle personnel are also depicted.
[Bone metabolism in human space flight and bed rest study].
Ohshima, Hiroshi; Mukai, Chiaki
2008-09-01
Japanese Experiment Module "KIBO" is Japan's first manned space facility and will be operated as part of the international space station (ISS) . KIBO operations will be monitored and controlled from Tsukuba Space Center. In Japan, after the KIBO element components are fully assembled and activated aboard the ISS, Japanese astronauts will stay on the ISS for three or more months, and full-scale experiment operations will begin. Bone loss and renal stone are significant medical concerns for long duration human space flight. This paper will summarize the results of bone loss, calcium balance obtained from the American and Russian space programs, and ground-base analog bedrest studies. Current in-flight training program, nutritional recommendations and future countermeasure plans for station astronauts are also described.
2008-08-29
CAPE CANAVERAL, Fla. – Experiments are placed inside the FASTRACK Space Experiment Platform viewed in the Life Science Building at NASA's Kennedy Space Center. The space experiment rack is under development for flight aboard NASA's first commercially-provided research flights on Zero Gravity Corporation's reduced gravity aircraft. It is being developed jointly by Kennedy and Space Florida to facilitate NASA and commercial use of reusable U.S. suborbital flight vehicles currently under development. FASTRACK will enable investigators to test experiments, apparatus and analytical techniques in hardware compatible with the International Space Station, and to perform science that can be carried out during the reduced gravity available for brief periods during aircraft parabolas. Flight testing of the FASTRACK will be performed on four consecutive days between September 9-12 from Ellington Field near NASA's Johnson Space Center, Houston. Photo credit: NASA/Troy Cryder
2008-08-29
CAPE CANAVERAL, Fla. – Experiments are placed inside the FASTRACK Space Experiment Platform viewed in the Life Science Building at NASA's Kennedy Space Center. The space experiment rack is under development for flight aboard NASA's first commercially-provided research flights on Zero Gravity Corporation's reduced gravity aircraft. It is being developed jointly by Kennedy and Space Florida to facilitate NASA and commercial use of reusable U.S. suborbital flight vehicles currently under development. FASTRACK will enable investigators to test experiments, apparatus and analytical techniques in hardware compatible with the International Space Station, and to perform science that can be carried out during the reduced gravity available for brief periods during aircraft parabolas. Flight testing of the FASTRACK will be performed on four consecutive days between September 9-12 from Ellington Field near NASA's Johnson Space Center, Houston. Photo credit: NASA/Troy Cryder
2007-04-26
KENNEDY SPACE CENTER, FLA. -- The media surround noted wheelchair-bound physicist Stephen Hawking after his arrival at the Kennedy Space Center Shuttle Landing Facility for his first zero-gravity flight. Behind Hawking, at left, is Space Florida president Steve Kohler. In the center, striding toward Hawking, is Zero Gravity Corp. founder Peter Diamandis. The flight will be aboard a modified Boeing 727 aircraft owned by Zero Gravity, a commercial company licensed to provide the public with weightless flight experiences. Hawking developed amyotrophic lateral sclerosis disease in the 1960s, a type of motor neuron disease which would cost him the loss of almost all neuromuscular control. At the celebration of his 65th birthday on January 8 this year, Hawking announced his plans for a zero-gravity flight to prepare for a sub-orbital space flight in 2009 on Virgin Galactic's space service. Photo credit: NASA/Kim Shiflett
STS-26 crew trains in JSC fixed-based (FB) shuttle mission simulator (SMS)
1987-10-20
S87-46304 (20 Oct 1987) --- Astronauts Frederick H. (Rick) Hauck, left, STS-26 commander, and Richard O. Covey, pilot, man their respective stations in the Shuttle mission simulator (fixed base) at the Johnson Space Center. A simulation for their anticipated June 1988 flight aboard the space shuttle Discovery began Oct. 20. Astronaut David C. Hilmers, one of three mission specialists for the flight, is partially visible in the foreground.
2013-06-14
ISS036-E-008126 (14 June 2013) --- Expedition 36 Flight Engineer Karen Nyberg of NASA puts together a meal in the Unity node of the International Space Station on the eve of a special but busy day for the six person crew aboard the outpost. The European Space Agency's Automated Transfer Vehicle-4 (ATV-4) “Albert Einstein” is scheduled to dock to the orbital outpost June 15, 2013, following a ten-day period of free-flight.
1971-11-01
The Apollo Telescope Mount (ATM) was designed and developed by the Marshall Space Flight Center and served as the primary scientific instrument unit aboard Skylab (1973-1979). The ATM consisted of eight scientific instruments as well as a number of smaller experiments. This is a photograph of the assembly of an ATM flight unit rack. The flight unit rack was an octagonal shaped complex outer frame that housed the canister containing the solar instruments.
1971-10-01
The Apollo Telescope Mount (ATM) was designed and developed by the Marshall Space Flight Center and served as the primary scientific instrument unit aboard Skylab (1973-1979). The ATM consisted of eight scientific instruments as well as a number of smaller experiments. This is a photograph of the assembly of an ATM flight unit rack. The flight unit rack was an octagonal shaped complex outer frame that housed the canister containing the solar instruments.
NASA Technical Reports Server (NTRS)
2001-01-01
The Microgravity Science Glovebox is being developed by the European Space Agency and NASA to provide a large working volume for hands-on experiments aboard the International Space Station. Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center. (Credit: NASA/Marshall)
Astro Academy: Principia--A Suite of Physical Science Demonstrations Conducted Aboard the ISS
ERIC Educational Resources Information Center
McMurray, Andy
2016-01-01
Astro Academy: Principia is an education programme developed by the UK National Space Academy for the UK Space Agency (UKSA) and the European Space Agency (ESA). The Academy designed, constructed, flight-qualified and developed experimental procedures for a suite of physics and chemistry demonstration experiments that were conducted by ESA…
2001-05-31
The Microgravity Science Glovebox is being developed by the European Space Agency and NASA to provide a large working volume for hands-on experiments aboard the International Space Station. Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center. (Credit: NASA/Marshall)
2008-08-29
CAPE CANAVERAL, Fla. – In the Life Science Building at NASA's Kennedy Space Center, a space experiment rack is under development for flight aboard NASA's first commercially-provided research flights on Zero Gravity Corporation's reduced gravity aircraft. Known as the FASTRACK Space Experiment Platform, the rack is designed to support two standard lockers that fit inside the space shuttle's crew middeck. It is being developed jointly by Kennedy and Space Florida to facilitate NASA and commercial use of reusable U.S. suborbital flight vehicles currently under development. FASTRACK will enable investigators to test experiments, apparatus and analytical techniques in hardware compatible with the International Space Station, and to perform science that can be carried out during the reduced gravity available for brief periods during aircraft parabolas. Flight testing of the FASTRACK will be performed on four consecutive days between September 9-12 from Ellington Field near NASA's Johnson Space Center, Houston. Photo credit: NASA/Troy Cryder
2008-08-29
CAPE CANAVERAL, Fla. – In the Life Science Building at NASA's Kennedy Space Center, this space experiment rack is under development for flight aboard NASA's first commercially-provided research flights on Zero Gravity Corporation's reduced gravity aircraft. Known as the FASTRACK Space Experiment Platform, the rack is designed to support two standard lockers that fit inside the space shuttle's crew middeck. It is being developed jointly by Kennedy and Space Florida to facilitate NASA and commercial use of reusable U.S. suborbital flight vehicles currently under development. FASTRACK will enable investigators to test experiments, apparatus and analytical techniques in hardware compatible with the International Space Station, and to perform science that can be carried out during the reduced gravity available for brief periods during aircraft parabolas. Flight testing of the FASTRACK will be performed on four consecutive days between September 9-12 from Ellington Field near NASA's Johnson Space Center, Houston. Photo credit: NASA/Troy Cryder
NASA Technical Reports Server (NTRS)
Nelson, T. E.; Peterson, J. R.
1982-01-01
The flight responses of common houseflies, velvetbean caterpillar moths, and worker honeybees were observed and filmed for a period of about 25 minutes in a zero-g environment during the third flight of the Space Shuttle Vehicle (flight number STS-3; March 22-30, 1982). Twelve fly puparia, 24 adult moths, 24 moth pupae, and 14 adult bees were loaded into an insect flight box, which was then stowed aboard the Shuttle Orbiter, the night before the STS-3 launch at NASA's Kennedy Space Center (KSC). The main purpose of the experiment was to observe and compare the flight responses of the three species of insects, which have somewhat different flight control mechanisms, under zero-g conditions.
Voss retrieves a small tool from a tool kit in ISS Node 1/Unity
2001-08-13
STS105-E-5175 (13 August 2001) --- Astronaut James S. Voss, retrieves a small tool from a tool case in the U.S.-built Unity node aboard the International Space Station (ISS). The Expedition Two flight engineer is only days away from returning to Earth following five months aboard the orbital outpost. The image was recorded with a digital still camera.
2013-05-29
ISS036-E-004795 (29 May 2013) --- NASA astronaut Chris Cassidy, Expedition 36 flight engineer, gives himself a "serious" haircut in the Harmony node onboard the Earth-orbiting International Space Station. Cassidy, who has displayed his sense of humor more than once since coming aboard the orbital outpost in late March, ended up with a completely bald pate when this task was done. The three crew members due to come aboard the station later on this day include one -- Luca Parmitano of the European Space Agency -- who sports a similarly hairless head.
STS-85 crew Tryggvason and Robinson during TCDT
NASA Technical Reports Server (NTRS)
1997-01-01
STS-85 Payload Specialist Bjarni V. Tryggvason and Mission Specialist Stephen K. Robinson go through countdown procedures aboard the Space Shuttle orbiter Discovery during Terminal Countdown Demonstration Test (TCDT) activities for that mission. The TCDT includes a simulation of the final launch countdown. The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-2 (CRISTA-SPAS- 2). Other STS-85 payloads include the Manipulator Flight Demonstration (MFD), and Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments.
2004-03-10
KENNEDY SPACE CENTER, FLA. - Doors are open on the air-conditioned transportation van that carried NASA’s MESSENGER spacecraft from NASA’s Goddard Space Flight Center in Greenbelt, Md., to the Astrotech Space Operations processing facilities near KSC. After offloading, MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be taken into a high bay clean room and employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Preparing for Return to Flight, workers at KSC walk the grounds around Launch Pad 39B looking for and picking up Foreign Object Debris, or FOD. The pad was recently refurbished and any possible debris left behind must be removed from the area prior to launch. Foreign objects that are alien to flight systems may cause material damage or may make the system or equipment inoperable, unsafe or less efficient. The Return to Flight mission STS-114 aboard Space Shuttle Discovery will carry supplies and equipment to the International Space Station. Discovery is scheduled for launch in a window from May 15 to June 3.
1999-06-29
Chemist Arna Holmes, left, from the University of Alabama in Huntsville, teaches NaLonda Moorer, center, and Maricar Bana, right, both from Terry Parker High School in Jacksonville, Fl, procedures for preparing protein crystal growth samples for flight aboard the International Space Station (ISS). NASA/Marshall Space Flight Center in Huntsville, AL, is a sponsor for this educational activity. The proteins are placed in plastic tubing that is heat-sealed at the ends, then flash-frozen and preserved in a liquid nitrogen Dewar. Aborad the ISS, the nitrogen will be allowed to evaporated so the samples thaw and then slowly crystallize. They will be analyzed after return to Earth. Photo credit: NASA/Marshall Space Flight Center (MSFC)
Crew Medical Restraint System Inspection
2013-05-22
ISS036-E-003301 (22 May 2013) --- In the Destiny lab aboard the International Space Station, NASA astronaut Chris Cassidy, Expedition 36 flight engineer, participates in a Crew Medical Restraint System (CMRS) checkout.
Thermal control surfaces experiment: Initial flight data analysis
NASA Technical Reports Server (NTRS)
Wilkes, Donald R.; Hummer, Leigh L.
1991-01-01
The behavior of materials in the space environment continues to be a limiting technology for spacecraft and experiments. The thermal control surfaces experiment (TCSE) aboard the Long Duration Exposure Facility (LDEF) is the most comprehensive experiment flown to study the effects of the space environment on thermal control surfaces. Selected thermal control surfaces were exposed to the LDEF orbital environment and the effects of this exposure were measured. The TCSE combined in-space orbital measurements with pre and post-flight analyses of flight materials to determine the effects of long term space exposure. The TCSE experiment objective, method, and measurements are described along with the results of the initial materials analysis. The TCSE flight system and its excellent performance on the LDEF mission is described. A few operational anomalies were encountered and are discussed.
Status of the National Space Transportation System
NASA Technical Reports Server (NTRS)
Abrahamson, J. A.
1984-01-01
The National Space Transportation System is a national resources serving the government, Department of Defense and commercial needs of the USA and others. Four orbital flight tests were completed July 4, 1982, and the first Operational Flight (STS-5) which placed two commercial communications into orbit was conducted November 11, 1982. February 1983 marked the first flight of the newest orbiter, Challenger. Planned firsts in 1983 include: use of higher performance main engines and solid rocket boosters, around-the-clock crew operations, a night landing, extra-vehicular activity, a dedicated DOD mission, and the first flight of a woman crew member. By the end of 1983, five commercial payloads and two tracking and data relay satellites should be deployed and thirty-seven crew members should have made flights aboard the space shuttle.
2006-07-21
KENNEDY SPACE CENTER, FLA. - STS116-S-002 (21 July 2006) --- These seven astronauts take a break from training to pose for the STS-116 crew portrait. Scheduled to launch aboard the Space Shuttle Discovery are, front row (from the left), astronauts William A. Oefelein, pilot; Joan E. Higginbotham, mission specialist; and Mark L. Polansky, commander. On the back row (from the left) are astronauts Robert L. Curbeam, Nicholas J.M. Patrick, Sunita L. Williams and the European Space Agency's Christer Fuglesang, all mission specialists. Williams will join Expedition 14 in progress to serve as a flight engineer aboard the International Space Station. The crewmembers are attired in training versions of their shuttle launch and entry suits.
2010-07-04
ISS024-E-007376 (3 July 2010) --- NASA astronauts Shannon Walker and Doug Wheelock, both Expedition 24 flight engineers, pose for a photo with an American flag while aboard the International Space Station.
Job Well Done aboard the Space Station
2017-09-02
Expedition 52 Commander Fyodor Yurchikhin of Roscosmos and Flight Engineers Peggy Whitson and Jack Fischer of NASA, bid farewell to the crew remaining on the orbital outpost, including NASA’s Randy Bresnik.
2013-06-14
CAPE CANAVERAL, Fla. –Outredgeous red romaine lettuce plants grow inside in a prototype VEGGIE flight pillow. The bellows of the hardware have been lowered to better observe the plants. A small temperature and relative humidity data logger is placed between the pillows small white box, central. U.S. astronauts living and working aboard the International Space Station are going to receive a newly developed Vegetable Production System VEGGIE. VEGGIE is set to launch aboard SpaceX's Dragon capsule on NASA's third Commercial Resupply Services mission targeted to launch Dec. 9 from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Gioia Massa
2006-07-21
STS116-S-002 (21 July 2006) --- These seven astronauts take a break from training to pose for the STS-116 crew portrait. Scheduled to launch aboard the Space Shuttle Discovery are, front row (from the left), astronauts William A. Oefelein, pilot; Joan E. Higginbotham, mission specialist; and Mark L. Polansky, commander. On the back row (from the left) are astronauts Robert L. Curbeam, Nicholas J.M. Patrick, Sunita L. Williams and the European Space Agency's Christer Fuglesang, all mission specialists. Williams will join Expedition 14 in progress to serve as a flight engineer aboard the International Space Station. The crewmembers are attired in training versions of their shuttle launch and entry suits.
STS-107 Flight Day 5 Highlights
NASA Technical Reports Server (NTRS)
2003-01-01
The fifth day of the STS-107 space mission begins with a presentation of The Six Space Technology and Research Students (STARS) program experiments aboard the Space Shuttle Columbia. Students from Australia, China, Israel, Japan, Lichtenstein and The United States send scientific experiments into space. The video includes the progress of experiments with various insects including silkworms, carpenter bees, ants, fish, and spiders.
2006-06-29
KENNEDY SPACE CENTER, FLA. - In the Operations and Checkout Building, Michele Perchonok packs the meals that the STS-121 crew will eat on the 12-day mission. Perchonok is a NASA Subsystem manager for Shuttle Food Systems from Johnson Space Center. Astronauts select their own menus from a large array of food items. Astronauts are supplied with three balanced meals, plus snacks. Diets are designed to supply each astronaut with 100 percent of the daily value of vitamins and minerals necessary for the environment of space. Foods flown on space missions are researched and developed at the Space Food Systems Laboratory at the Johnson Space Center (JSC) in Houston, which is staffed by food scientists, dietitians and engineers. Foods are analyzed through nutritional analysis, sensory evaluation, storage studies, packaging evaluations and many other methods. Each astronaut’s food is stored aboard the space shuttle and is identified by a colored dot affixed to each package. A supplementary food supply (pantry) consisting of two extra days per person is stowed aboard the space shuttle for each flight. Pantry items are flown in addition to the menu in case the flight is unexpectedly extended because of bad weather at the landing site or for some other unforeseen reason. Photo credit: NASA/Kim Shiflett
2006-06-29
KENNEDY SPACE CENTER, FLA. - In the Operations and Checkout Building, Michele Perchonok packs the meals that the STS-121 crew will eat on the 12-day mission. Perchonok is a NASA Subsystem manager for Shuttle Food Systems from Johnson Space Center. Astronauts select their own menus from a large array of food items. Astronauts are supplied with three balanced meals, plus snacks. Diets are designed to supply each astronaut with 100 percent of the daily value of vitamins and minerals necessary for the environment of space. Foods flown on space missions are researched and developed at the Space Food Systems Laboratory at the Johnson Space Center (JSC) in Houston, which is staffed by food scientists, dietitians and engineers. Foods are analyzed through nutritional analysis, sensory evaluation, storage studies, packaging evaluations and many other methods. Each astronaut’s food is stored aboard the space shuttle and is identified by a colored dot affixed to each package. A supplementary food supply (pantry) consisting of two extra days per person is stowed aboard the space shuttle for each flight. Pantry items are flown in addition to the menu in case the flight is unexpectedly extended because of bad weather at the landing site or for some other unforeseen reason. Photo credit: NASA/Kim Shiflett
MS Linenger in sleep restraint
1997-01-12
STS081-E-5006 (12 Jan. 1997) --- Aboard the Space Shuttle Atlantis on its first day in orbit for the mission, astronaut Jerry M. Linenger, mission specialist, has arranged his sleep station to his liking and prepares for his first rest period. Linenger and five crew mates are flying the Spacehab Double Module (DM), replete with supplies for the three-man crew aboard Russia's Mir Space Station with which Atlantis will be docking later in the week. Linenger will trade places with John E. Blaha marking the second such exchange of American astronaut - cosmonaut guest researcher's aboard Mir. Blaha had replaced Shannon W. Lucid in September of 1996. The scene was recorded with an Electronic Still Camera (ESC) and later downlinked to flight controllers in Houston, Texas.
Gene, Immune and Cellular Responses to Single and Combined Space Flight Conditions-B (TripleLux-B):
2015-03-31
ISS043E070945 (03/31/2015) --- ESA (European Space Agency) astronaut Samantha Cristoforetti, Expedition 43 flight engineer aboard the International Space Station, is seen working on a science experiment that includes photographic documentation of Cellular Responses to Single and Combined Space Flight Conditions. Some effects of the space environment level appear to act at the cellular level and it is important to understand the underlying mechanisms of these effects. This science project uses invertebrate hemocytes to focus on two aspects of cellular function which may have medical importance. The synergy between the effects of the space radiation environment and microgravity on cellular function is the goal of this experiment along with studying the impairment of immune functions under spaceflight conditions.
Exp.55_Facebook_Live_2018_106_1657_641445
2018-04-17
SPACE STATION CREW MEMBERS DISCUSS THE VIEW OF EARTH FROM ORBIT-------------- Aboard the International Space Station, Expedition 55 Flight Engineers Drew Feustel of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed the view of Earth from orbit and other Earth observation topics for Earth Day as part of a Facebook Live in-flight event April 16. Kanai has been in orbit since last December while Feustel arrived on the station a month ago.
Metabolic consequences of fluid shifts induced by microgravity
NASA Technical Reports Server (NTRS)
Cintron, N. M.; Lane, H. W.; Leach, C. S.
1990-01-01
The effects of fluid redistribution induced by weightlessness on the fluid and electrolyte regulation, the maintenance of optimum nutritional status, and on pharmacodynamics (i.e., the absorption, distribution, and elimination of pharmacologic agents) are examined on the basis of published data on flights aboard Skylab and Space Shuttle. Data are presented on changes in plasma osmolarity and the content of antinuclear factor, serum glucose, and the salivary scopolamine concentrations after oral administration before and during space flights.
STS-72 crew trains in Fixed Base (FB) Shuttle Mission Simulator (SMS)
1995-06-07
S95-12706 (May 1995) --- Astronaut Koichi Wakata, representing Japan's National Space Development Agency (NASDA) and assigned as mission specialist for the STS-72 mission, checks over a copy of the flight plan. Wakata is on the flight deck of the fixed base Shuttle Mission Simulator (SMS) at the Johnson Space Center (JSC). He will join five NASA astronauts aboard Endeavour for a scheduled nine-day mission, now set for the winter of this year.
The Marshall Space Flight Center KC-135 zero gravity test program for FY 1982
NASA Technical Reports Server (NTRS)
Shurney, R. E. (Editor)
1983-01-01
During FY-82, researchers and experimenters from Marshall Space Flight Center (MSFC) conducted 11 separate investigations during 26.3 hr of testing aboard the KC-135 zero-gravity aircraft, based at Ellington Air force Base, Texas. Although this represented fewer hours than initially projected, all experiment and test objectives were met or exceeded. This Technical Memorandum compiles all results achieved by MSFC users during FY-82, a year considered to be highly productive.
NASA Technical Reports Server (NTRS)
1994-01-01
This is an overview of the White Sands Test Facility's role in ensuring the safety and reliability of materials and hardware slated for launch aboard the Space Shuttle. Engine firings, orbital flights debris impact tests, and propulsion tests are featured as well as illustrating how they provide flight safety testing for the Johnson Space Center, other NASA centers, and various government agencies. It also contains a historical perspective and highlights of major programs that have been participated in as part of NASA.
Expedition 33 Crew Waves Farewell
2012-10-23
Expedition 33/34 crew members, Soyuz Commander Oleg Novitskiy, bottom, Flight Engineer Kevin Ford of NASA, and Flight Engineer Evgeny Tarelkin of ROSCOSMOS, top, wave farewell before boarding their Soyuz rocket just a few hours before their launch to the International Space Station on Tuesday, October 23, 2012, in Baikonur, Kazakhstan. Launch of a Soyuz rocket later in the afternoon will send Ford, Novitskiy and Tarelkin on a five-month mission aboard the International Space Station. Photo Credit: (NASA/Bill Ingalls)
Space Station Crew Member Discusses Robotics with Puerto Rican Students
2018-01-12
Aboard the International Space Station, Expedition 54 Flight Engineer Joe Acaba of NASA discussed various elements of robotic hardware and robotic work on the orbital laboratory during an in-flight educational event Jan. 12 with students gathered at the Puerto Rico Institute of Robotics in San Juan, Puerto Rico. Acaba, who has roots in Puerto Rico, is scheduled to return to Earth in late February to complete a five-and-a-half month mission.
2012-10-21
Expedition 33 Flight Engineer Kevin Ford gets his hair cut at the Cosmonaut Hotel, on Sunday, October 21, 2012, at the Baikonur Cosmodrome in Kazakhstan. Launch of the Soyuz rocket is scheduled for October 23 and will send Expedition 33/34 Flight Engineer Kevin Ford of NASA, Soyuz Commander Oleg Novitskiy and Flight Engineer Evgeny Tarelkin of ROSCOSMOS on a five-month mission aboard the International Space Station. Photo Credit: (NASA/Bill Ingalls)
2012-10-21
Expedition 33 Flight Engineer Evgeny Tarelkin gets his hair cut at the Cosmonaut Hotel, on Sunday, October 21, 2012, at the Baikonur Cosmodrome in Kazakhstan. Launch of the Soyuz rocket is scheduled for October 23 and will send Expedition 33/34 Flight Engineer Kevin Ford of NASA, Soyuz Commander Oleg Novitskiy and Flight Engineer Engineer Evgeny Tarelkin of ROSCOSMOS on a five-month mission aboard the International Space Station. Photo Credit: (NASA/Bill Ingalls)
Launch of Space Shuttle Atlantis / STS-129 Mission
2009-11-16
CAPE CANAVERAL, Fla. - Like a phoenix rising from the flames, space shuttle Atlantis takes flight from Launch Pad 39A at NASA's Kennedy Space Center in Florida. Liftoff on its STS-129 mission came at 2:28 p.m. EST Nov. 16. Aboard are crew members Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; and Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr. On STS-129, the crew will deliver two Express Logistics Carriers to the International Space Station, the largest of the shuttle's cargo carriers, containing 15 spare pieces of equipment including two gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. Atlantis will return to Earth a station crew member, Nicole Stott, who has spent more than two months aboard the orbiting laboratory. STS-129 is slated to be the final space shuttle Expedition crew rotation flight. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Jim Grossmann
STS-79 crew watches from aft flight deck during undocking from Mir
1997-03-26
STS079-S-097 (16-26 Sept. 1996) --- Left to right, Terrence W. (Terry) Wilcutt, pilot; Shannon W. Lucid, mission specialist; and William F. Readdy, mission commander, are pictured on the space shuttle Atlantis' aft flight deck during undocking operations with Russia's Mir Space Station. Mir had served as both work and home for Lucid for over six months before greeting her American colleagues upon docking of Mir and Atlantis last week. Following her lengthy stay aboard Mir and several days on Atlantis, Lucid went on to spend 188 consecutive days in space before returning to Earth with the STS-79 crew. During the STS-79 mission, the crew used an IMAX camera to document activities aboard the Space Shuttle Atlantis and the various Mir modules. A hand-held version of the 65mm camera system accompanied the STS-79 crew into space in Atlantis' crew cabin. NASA has flown IMAX camera systems on many Shuttle missions, including a special cargo bay camera's coverage of other recent Shuttle-Mir rendezvous and/or docking missions.
Student Pave Way for First Microgravity Experiments on International Space Station
NASA Technical Reports Server (NTRS)
1999-01-01
Christiane Gumera, right, a student at Stanton College Preparatory High School in Jacksonville, AL, examines a protein sample while preparing an experiment for flight on the International Space Station (ISS). Merle Myers, left, a University of California, Irvine, researcher, prepares to quick-freeze protein samples in nitrogen. The proteins are in a liquid nitrogen Dewar. Aboard the ISS, the nitrogen will be allowed to evaporated so the samples thaw and then slowly crystallize. They will be anlyzed after return to Earth. Photo credit: NASA/Marshall Space Flight Center (MSFC)
Space Station Crew Members Discuss Life in Space with Massachusetts Students
2018-01-19
Aboard the International Space Station, Expedition 54 Flight Engineers Joe Acaba and Scott Tingle of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed life and research on the complex during an in-flight educational event Jan. 19 with students gathered at the Christa McAuliffe Challenger Center at Framingham State University in Massachusetts. Acaba is scheduled to return to Earth in late February to wrap up a five-and-a-half month mission, while Tingle and Kanai will remain on the station until early June.
STS-72 crew trains in Fixed Base (FB) Shuttle Mission Simulator (SMS)
1995-06-07
S95-12725 (May 1995) --- Astronaut Koichi Wakata, representing Japan's National Space Development Agency (NASDA) and assigned as mission specialist for the STS-72 mission, checks over a copy of the flight plan. Wakata is on the flight deck of the fixed base Shuttle Mission Simulator (SMS) at the Johnson Space Center (JSC). In the background is astronaut Brent W. Jett, pilot. The two will join four NASA astronauts aboard Space Shuttle Endeavour for a scheduled nine-day mission, now set for the winter of this year.
2010-12-08
The Dragon capsule that launched from Launch Complex-40 at Cape Canaveral Air Force Station aboard a SpaceX Falcon 9 rocket is recovered in the Pacific Ocean about 500 miles west of the coast of Mexico. The rocket lifted off at 10:43 a.m. EST. The spacecraft went through several maneuvers before it re-entered the atmosphere and splashed down at about 2 p.m. EST. This is first demonstration flight for NASA's Commercial Orbital Transportation Services (COTS) program, which will provide cargo flights to the International Space Station in the future. Photo credit: Courtesy SpaceX
2009-11-06
CAPE CANAVERAL, Fla. – In Orbiter Processing Facility-3 at NASA's Kennedy Space Center in Florida, STS-130 Commander George Zamka dressed in clean-room attire, known as a "bunny suit," gets the feel of the cockpit of space shuttle Endeavour. The crew is at Kennedy for a crew equipment interface test, or CEIT, which provides hands-on training and observation of shuttle and flight hardware. The STS-130 flight will carry the Tranquility pressurized module with a built-in cupola to the International Space Station aboard Endeavour. Launch is targeted for Feb. 4, 2010. Photo credit: NASA/Kim Shiflett
Yurchikhin and Parmitano in U.S. Laboratory
2013-09-18
ISS037-E-001901 (18 Sept. 2013) --- In the International Space Station’s Destiny laboratory, Russian cosmonaut Fyodor Yurchikhin (right), Expedition 37 commander; and European Space Agency astronaut Luca Parmitano, flight engineer, watch the launch of the Orbital Sciences Corporation Antares rocket, with the Cygnus cargo spacecraft aboard, from Pad-0A of the Mid-Atlantic Regional Spaceport (MARS) NASA Wallops Flight Facility, Virginia. Cygnus is on its way to rendezvous with the space station and will deliver about 1,300 pounds (589 kilograms) of cargo, including food and clothing, to the Expedition 37 crew.
Opportunities for research in space life sciences aboard commercial suborbital flights.
Wagner, Erika B; Charles, John B; Cuttino, Charles Marsh
2009-11-01
The emergence of commercial suborbital spaceflight offers a wide range of new research and development opportunities for those in the space life sciences. Large numbers of diverse flyers, frequent re-flights, and flexible operations provide a fertile ground for both basic and applied science, as well as technology demonstrations. This commentary explores some of the unique features available to the space life science community and encourages engagement with commercial developers and operators during the design phase to help optimize platform designs and operations for future research.
2005-04-24
Russian flight suits lie on the ground outside the inflatable medical tent, Monday, April 25, 2005, Arkalyk, Kazakhstan. Expedition 10 Commander Leroy Chiao, Flight Engineer Salizhan Sharipov and European Space Agency astronaut Roberto Vittori brought their Soyuz TMA-5 capsule to a pre-dawn landing April 25 northeast of the town of Arkalyk in Kazakhstan to wrap up a six-month mission aboard the International Space Station for Chiao and Sharipov, and a ten-day mission for Vittori, who flew under a commercial contract between ESA and the Russian Federal Space Agency. Photo Credit: (NASA/Bill Ingalls)
Crewmember activity in the flight deck and middeck
1996-12-30
STS080-375-023 (19 Nov.-7 Dec. 1996) --- Astronauts Kenneth D. Cockrell, STS-80 mission commander, and Tamara E. Jernigan, payload commander, share a moment of off-duty time with astronaut Story Musgrave on the middeck of the Earth-orbiting space shuttle Columbia. Musgrave was making his sixth flight aboard the Space Shuttle as a mission specialist. His fellow crewmembers presented him with a patch that reads, "Master of Space." Before and during his 30 years with NASA, Musgrave obtained several academic degrees, including several Masters, a medical doctorate and several Ph.D.
Results of the Stable Microgravity Vibration Isolation Flight Experiment
NASA Technical Reports Server (NTRS)
Edberg, Donald; Boucher, Robert; Schenck, David; Nurre, Gerald; Whorton, Mark; Kim, Young; Alhorn, Dean
1996-01-01
This paper presents an overview of the STABLE microgravity isolation system developed and successfully flight tested in October 1995. A description of the hardware design and operational principles is given. A sample of the measured flight data is presented, including an evaluation of attenuation performance provided by the actively controlled electromagnetic isolation system. Preliminary analyses of flight data show that the acceleration environment aboard STABLE's isolated platform was attenuated by a factor of more than 25 between 0.1 and 100 Hz. STABLE was developed under a cooperative agreement between National Aeronautics and Space Administration, Marshall Space Flight Center, and McDonnell Douglas Aerospace. The flight hardware was designed, fabricated, integrated, tested, and delivered to the Cape during a five month period.
Expedition_55_Education_Interview_with_Aransas_County_ISD_and_Port_Aransas_ISD_2018_117_1450_645746
2018-04-27
SPACE STATION CREW MEMBERS DISCUSS LIFE IN SPACE WITH TEXAS STUDENTS----- Aboard the International Space Station, Expedition 55 Flight Engineers Drew Feustel and Scott Tingle of NASA discussed life and research on the orbital laboratory during an in-flight educational event April 27 with students from the Aransas County Independent School District and the Port Aransas County Independent School District in Aransas Pass, Texas. Feustel is in the second month of a six-month mission on the station, while Tingle is scheduled to return to Earth June 3 to complete his half-year in space.
ESA Astronaut Discusses Life in Space with Aspiring Students
2017-11-29
Aboard the International Space Station, Expedition 53 Flight Engineer Paolo Nespoli of ESA (European Space Agency) discussed how students can aspire to be astronauts and engineers during a “Mission X” competition in-flight event Nov. 29. Mission X is an international educational challenge, focusing on fitness and nutrition that encourages students to train like an astronaut. Teams of primary school-aged students (8-12 years old) learn the principles of healthy eating and exercise, compete for points by finishing training modules, and learn about the world's future in space and educational possibilities for their own future.
Astronaut Donald McMonagle checks drainage hose on his life raft in training
1994-06-28
S94-37521 (28 June 1994) --- Astronaut Donald R. McMonagle, mission commander, checks the drainage hose on his rapidly fashioned life raft during an emergency bailout training exercise in the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Making his third flight in space covering 343 hours, McMonagle will be joined by four other NASA astronauts and a European mission specialist for a week and a half in space aboard the Space Shuttle Atlantis. The flight will support the Atmospheric Laboratory for Applications and Science (ATLAS-3) mission.
International Space Station (ISS)
2001-12-01
This is the official STS-110 crew portrait. In front, from the left, are astronauts Stephen N. Frick, pilot; Ellen Ochoa, flight engineer; and Michael J. Bloomfield, mission commander; In the back, from left, are astronauts Steven L. Smith, Rex J. Walheim, Jerry L. Ross and Lee M.E. Morin, all mission specialists. Launched aboard the Space Shuttle Orbiter Atlantis on April 8, 2002, the STS-110 mission crew prepared the International Space Station (ISS) for future space walks by installing and outfitting a 43-foot-long Starboard side S0 truss and preparing the Mobile Transporter. The mission served as the 8th ISS assembly flight.
Earth observation taken by the Expedition 46 crew
2016-02-11
ISS046e040049 (02/12/2016) --- NASA astronaut Tim Kopra captured this image of the US state of Florida aboard the International Space Station. He made this comment while sending this picture out via Twitter "Flying over #Florida reminded me of the Space Shuttle flights that helped build this amazing #ISS -- thanks, #KSC ! (Kennedy Space Center Florida).
A decade on board America's Space Shuttle
NASA Technical Reports Server (NTRS)
1991-01-01
Spectacular moments from a decade (1981-1991) of Space Shuttle missions, captured on film by the astronauts who flew the missions, are presented. First hand accounts of astronauts' experiences aboard the Shuttle are given. A Space Shuttle mission chronology featuring flight number, vehicle name, crew, launch and landing dates, and mission highlights is given in tabular form.
1997-03-11
This photo shows the interior reach in the Microgravity Science Glovebox (MSG) being developed by the European Space Agency (ESA) and NASA for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC
STS-88 crew members and technicians participate in their CEIT in the SSPF
NASA Technical Reports Server (NTRS)
1997-01-01
Pilot Rick Sturckow and Mission Specialist Jerry Ross, both members of the STS-88 crew, participate with technicians in the Crew Equipment Interface Test for that mission in KSC's Space Station Processing Facility. STS-88, the first International Space Station assembly flight, is targeted for launch in July 1998 aboard Space Shuttle Endeavour.
High Energy Astronomy Observatory (HEAO)
1977-01-01
Managed by the Marshall Space Flight Center and designed by TRW, the first High Energy Astronomy Observatory was launched August 12, 1977 aboard an Atlas Centaur rocket. HEAO-1, devoted to the study of X-rays in space, carried four instruments all used primarily in a scarning mode. The mission lasted seventeen months.
STS-116 Flight Controllers on console during mission - STS-116 Orbit 2
2006-12-20
JSC2006-E-54743 (20 Dec. 2006) --- Astronaut K. Megan McArthur, STS-116 Orbit 2 spacecraft communicator (CAPCOM), talks with the astronauts aboard the Space Shuttle Discovery as they wind down toward the final 48 hours of an almost two-week mission in space.
2017-11-07
iss053e210425 (Nov. 7, 2017) --- Flight Engineer Joe Acaba holds a children's book that he is reading from as part of the Story Time From Space program. Astronauts read aloud from a STEM-related children's book while being videotaped and demonstrate simple science concepts and experiments aboard the International Space Station.
STS-99 crewmembers train in orbiter mock-up
1999-08-24
S99-10568 (24 August 1999) --- Astronaut Janet L. Kavandi, mission specialist, participates in a training exercise in preparation for her upcoming flight aboard the Space Shuttle Endeavour. She is on the mid deck of one of the shuttle trainers in the Johnson Space Center's Systems Integration Facility.
Human Immune Function and Microbial Pathogenesis in Human Spaceflight
NASA Technical Reports Server (NTRS)
Pierson, Duane J.; Ott, M.
2006-01-01
This oral presentation was requested by Conference conveners. The requested subject is microbial risk assessment considering changes in the human immune system during flight and microbial diversity of environmental samples aboard the International Space Station (ISS). The presentation will begin with an introduction discussing the goals and limitations of microbial risk assessment during flight. The main portion of the presentation will include changes in the immune system that have been published, historical data from microbial analyses, and initial modeling of the environmental flora aboard ISS. The presentation will conclude with future goals and techniques to enhance our ability to perform microbial risk assessment on long duration missions.
2007-04-26
KENNEDY SPACE CENTER, FLA. -- At the Kennedy Space Center Shuttle Landing Facility, noted physicist Stephen Hawking, in the wheelchair, arrives at the runway for his first zero-gravity flight. The flight will be aboard a modified Boeing 727 aircraft owned by Zero Gravity Corp., a commercial company licensed to provide the public with weightless flight experiences. At left is Peter Diamandis, founder of the Zero Gravity Corp. Behind Hawking is Nicola O'Brien, a nurse practitioner who is Hawking's aide. Hawking developed amyotrophic lateral sclerosis disease in the 1960s, a type of motor neuron disease which would cost him the loss of almost all neuromuscular control. At the celebration of his 65th birthday on January 8 this year, Hawking announced his plans for a zero-gravity flight to prepare for a sub-orbital space flight in 2009 on Virgin Galactic's space service. Photo credit: NASA/Kim Shiflett
2007-04-26
KENNEDY SPACE CENTER, FLA. -- At the Kennedy Space Center Shuttle Landing Facility, noted physicist Stephen Hawking, in the wheelchair, arrives at the runway for his first zero-gravity flight. The flight will be aboard a modified Boeing 727 aircraft owned by Zero Gravity Corp., a commercial company licensed to provide the public with weightless flight experiences. At left is Peter Diamandis, founder of the Zero Gravity Corp. At center is Nicola O'Brien, a nurse practitioner who is Hawking's aide. Hawking developed amyotrophic lateral sclerosis disease in the 1960s, a type of motor neuron disease which would cost him the loss of almost all neuromuscular control. At the celebration of his 65th birthday on January 8 this year, Hawking announced his plans for a zero-gravity flight to prepare for a sub-orbital space flight in 2009 on Virgin Galactic's space service. Photo credit: NASA/Kim Shiflett
2007-04-26
KENNEDY SPACE CENTER, FLA. -- At the Kennedy Space Center Shuttle Landing Facility, noted physicist Stephen Hawking, in the wheelchair, arrives at the runway for his first zero-gravity flight. The flight will be aboard a modified Boeing 727 aircraft owned by Zero Gravity Corp., a commercial company licensed to provide the public with weightless flight experiences. At left is Peter Diamandis, founder of the Zero Gravity Corp. At center is Nicola O'Brien, a nurse practitioner who is Hawking's aide. Hawking developed amyotrophic lateral sclerosis disease in the 1960s, a type of motor neuron disease which would cost him the loss of almost all neuromuscular control. At the celebration of his 65th birthday on January 8 this year, Hawking announced his plans for a zero-gravity flight to prepare for a sub-orbital space flight in 2009 on Virgin Galactic's space service. Photo credit: NASA/Kim Shiflett
1969-03-13
ABOARD THE USS GUADALCANAL -- Bearded Apollo 9 commander James A. McDivitt speaks to personnel aboard the USS Guadalcanal, prime recovery ship, an hour after he and astronauts David R. Scott and Russell L. Schweickart splashed down today in the Atlantic Ocean, 780 nautical miles southeast of Cape Kennedy. Their 10-day Earth orbital flight verified a lunar landing later this year. The National Aeronautics and Space Administration directs the Apollo program.
Wilson, J. W.; Ott, C. M.; zu Bentrup, K. Höner; Ramamurthy, R.; Quick, L.; Porwollik, S.; Cheng, P.; McClelland, M.; Tsaprailis, G.; Radabaugh, T.; Hunt, A.; Fernandez, D.; Richter, E.; Shah, M.; Kilcoyne, M.; Joshi, L.; Nelman-Gonzalez, M.; Hing, S.; Parra, M.; Dumars, P.; Norwood, K.; Bober, R.; Devich, J.; Ruggles, A.; Goulart, C.; Rupert, M.; Stodieck, L.; Stafford, P.; Catella, L.; Schurr, M. J.; Buchanan, K.; Morici, L.; McCracken, J.; Allen, P.; Baker-Coleman, C.; Hammond, T.; Vogel, J.; Nelson, R.; Pierson, D. L.; Stefanyshyn-Piper, H. M.; Nickerson, C. A.
2007-01-01
A comprehensive analysis of both the molecular genetic and phenotypic responses of any organism to the space flight environment has never been accomplished because of significant technological and logistical hurdles. Moreover, the effects of space flight on microbial pathogenicity and associated infectious disease risks have not been studied. The bacterial pathogen Salmonella typhimurium was grown aboard Space Shuttle mission STS-115 and compared with identical ground control cultures. Global microarray and proteomic analyses revealed that 167 transcripts and 73 proteins changed expression with the conserved RNA-binding protein Hfq identified as a likely global regulator involved in the response to this environment. Hfq involvement was confirmed with a ground-based microgravity culture model. Space flight samples exhibited enhanced virulence in a murine infection model and extracellular matrix accumulation consistent with a biofilm. Strategies to target Hfq and related regulators could potentially decrease infectious disease risks during space flight missions and provide novel therapeutic options on Earth. PMID:17901201
NASA Technical Reports Server (NTRS)
Hatton, J. P.; Lewis, M. L.; Roquefeuil, S. B.; Chaput, D.; Cazenave, J. P.; Schmitt, D. A.
1998-01-01
The results of experiments performed in recent years on board facilities such as the Space Shuttle/Spacelab have demonstrated that many cell systems, ranging from simple bacteria to mammalian cells, are sensitive to the microgravity environment, suggesting gravity affects fundamental cellular processes. However, performing well-controlled experiments aboard spacecraft offers unique challenges to the cell biologist. Although systems such as the European 'Biorack' provide generic experiment facilities including an incubator, on-board 1-g reference centrifuge, and contained area for manipulations, the experimenter must still establish a system for performing cell culture experiments that is compatible with the constraints of spaceflight. Two different cell culture kits developed by the French Space Agency, CNES, were recently used to perform a series of experiments during four flights of the 'Biorack' facility aboard the Space Shuttle. The first unit, Generic Cell Activation Kit 1 (GCAK-1), contains six separate culture units per cassette, each consisting of a culture chamber, activator chamber, filtration system (permitting separation of cells from supernatant in-flight), injection port, and supernatant collection chamber. The second unit (GCAK-2) also contains six separate culture units, including a culture, activator, and fixation chambers. Both hardware units permit relatively complex cell culture manipulations without extensive use of spacecraft resources (crew time, volume, mass, power), or the need for excessive safety measures. Possible operations include stimulation of cultures with activators, separation of cells from supernatant, fixation/lysis, manipulation of radiolabelled reagents, and medium exchange. Investigations performed aboard the Space Shuttle in six different experiments used Jurkat, purified T-cells or U937 cells, the results of which are reported separately. We report here the behaviour of Jurkat and U937 cells in the GCAK hardware in ground-based investigations simulating the conditions expected in the flight experiment. Several parameters including cell concentration, time between cell loading and activation, and storage temperature on cell survival were examined to characterise cell response and optimise the experiments to be flown aboard the Space Shuttle. Results indicate that the objectives of the experiments could be met with delays up to 5 days between cell loading into the hardware and initial in flight experiment activation, without the need for medium exchange. Experiment hardware of this kind, which is adaptable to a wide range of cell types and can be easily interfaced to different spacecraft facilities, offers the possibility for a wide range of experimenters successfully and easily to utilise future flight opportunities.
Space Shuttle Atlantis Landing / STS-129 Mission
2009-11-27
PHOTO CREDIT: NASA or National Aeronautics and Space Administration CAPE CANAVERAL, Fla. - With landing gear down, space shuttle Atlantis approaches landing on Runway 33 at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida after 11 days in space, completing the 4.5-million mile STS-129 mission on orbit 171. Main gear touchdown was at 9:44:23 a.m. EDT. Nose gear touchdown was at 9:44:36 a.m., and wheels stop was at 9:45:05 a.m. Aboard Atlantis are Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr.; and Expedition 20 and 21 Flight Engineer Nicole Stott who spent 87 days aboard the International Space Station. STS-129 is the final space shuttle Expedition crew rotation flight on the manifest. On STS-129, the crew delivered 14 tons of cargo to the orbiting laboratory, including two ExPRESS Logistics Carriers containing spare parts to sustain station operations after the shuttles are retired next year. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Kim Shiflett
Space Shuttle Atlantis Landing / STS-129 Mission
2009-11-27
PHOTO CREDIT: NASA or National Aeronautics and Space Administration CAPE CANAVERAL, Fla. - With drag chute unfurled, space shuttle Atlantis lands on Runway 33 at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida after 11 days in space, completing the 4.5-million mile STS-129 mission on orbit 171. Main gear touchdown was at 9:44:23 a.m. EDT. Nose gear touchdown was at 9:44:36 a.m., and wheels stop was at 9:45:05 a.m. Aboard Atlantis are Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr.; and Expedition 20 and 21 Flight Engineer Nicole Stott who spent 87 days aboard the International Space Station. STS-129 is the final space shuttle Expedition crew rotation flight on the manifest. On STS-129, the crew delivered 14 tons of cargo to the orbiting laboratory, including two ExPRESS Logistics Carriers containing spare parts to sustain station operations after the shuttles are retired next year. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Kim Shiflett
Space Shuttle Atlantis Landing / STS-129 Mission
2009-11-27
PHOTO CREDIT: NASA or National Aeronautics and Space Administration CAPE CANAVERAL, Fla. - The drag chute unfurls to slow space shuttle Atlantis for landing on Runway 33 at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida after 11 days in space, completing the 4.5-million mile STS-129 mission on orbit 171. Main gear touchdown was at 9:44:23 a.m. EDT. Nose gear touchdown was at 9:44:36 a.m., and wheels stop was at 9:45:05 a.m. Aboard Atlantis are Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr.; and Expedition 20 and 21 Flight Engineer Nicole Stott who spent 87 days aboard the International Space Station. STS-129 is the final space shuttle Expedition crew rotation flight on the manifest. On STS-129, the crew delivered 14 tons of cargo to the orbiting laboratory, including two ExPRESS Logistics Carriers containing spare parts to sustain station operations after the shuttles are retired next year. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Sandra Joseph
Space Shuttle Atlantis Landing / STS-129 Mission
2009-11-27
PHOTO CREDIT: NASA or National Aeronautics and Space Administration CAPE CANAVERAL, Fla. - The drag chute unfurls as space shuttle Atlantis lands on Runway 33 at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida after 11 days in space, completing the 4.5-million mile STS-129 mission on orbit 171. Main gear touchdown was at 9:44:23 a.m. EDT. Nose gear touchdown was at 9:44:36 a.m., and wheels stop was at 9:45:05 a.m. Aboard Atlantis are Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr.; and Expedition 20 and 21 Flight Engineer Nicole Stott who spent 87 days aboard the International Space Station. STS-129 is the final space shuttle Expedition crew rotation flight on the manifest. On STS-129, the crew delivered 14 tons of cargo to the orbiting laboratory, including two ExPRESS Logistics Carriers containing spare parts to sustain station operations after the shuttles are retired next year. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Kim Shiflett
Space Shuttle Atlantis Landing / STS-129 Mission
2009-11-27
PHOTO CREDIT: NASA or National Aeronautics and Space Administration CAPE CANAVERAL, Fla. - Space shuttle Atlantis touches down on Runway 33 at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida after 11 days in space, completing the 4.5-million mile STS-129 mission on orbit 171. Main gear touchdown was at 9:44:23 a.m. EDT. Nose gear touchdown was at 9:44:36 a.m., and wheels stop was at 9:45:05 a.m. Aboard Atlantis are Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr.; and Expedition 20 and 21 Flight Engineer Nicole Stott who spent 87 days aboard the International Space Station. STS-129 is the final space shuttle Expedition crew rotation flight on the manifest. On STS-129, the crew delivered 14 tons of cargo to the orbiting laboratory, including two ExPRESS Logistics Carriers containing spare parts to sustain station operations after the shuttles are retired next year. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Jim Grossmann
Space Shuttle Atlantis Landing / STS-129 Mission
2009-11-27
PHOTO CREDIT: NASA or National Aeronautics and Space Administration CAPE CANAVERAL, Fla. - The drag chute unfurls to slow space shuttle Atlantis for landing on Runway 33 at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida after 11 days in space, completing the 4.5-million mile STS-129 mission on orbit 171. Main gear touchdown was at 9:44:23 a.m. EDT. Nose gear touchdown was at 9:44:36 a.m., and wheels stop was at 9:45:05 a.m. Aboard Atlantis are Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr.; and Expedition 20 and 21 Flight Engineer Nicole Stott who spent 87 days aboard the International Space Station. STS-129 is the final space shuttle Expedition crew rotation flight on the manifest. On STS-129, the crew delivered 14 tons of cargo to the orbiting laboratory, including two ExPRESS Logistics Carriers containing spare parts to sustain station operations after the shuttles are retired next year. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Jim Grossmann
Space Shuttle Atlantis Landing / STS-129 Mission
2009-11-27
PHOTO CREDIT: NASA or National Aeronautics and Space Administration CAPE CANAVERAL, Fla. - Space shuttle Atlantis kicks up dust as it touches down on Runway 33 at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida after 11 days in space, completing the 4.5-million mile STS-129 mission on orbit 171. Main gear touchdown was at 9:44:23 a.m. EDT. Nose gear touchdown was at 9:44:36 a.m., and wheels stop was at 9:45:05 a.m. Aboard Atlantis are Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr.; and Expedition 20 and 21 Flight Engineer Nicole Stott who spent 87 days aboard the International Space Station. STS-129 is the final space shuttle Expedition crew rotation flight on the manifest. On STS-129, the crew delivered 14 tons of cargo to the orbiting laboratory, including two ExPRESS Logistics Carriers containing spare parts to sustain station operations after the shuttles are retired next year. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Kim Shiflett
Space Shuttle Atlantis Landing / STS-129 Mission
2009-11-27
PHOTO CREDIT: NASA or National Aeronautics and Space Administration CAPE CANAVERAL, Fla. - Streams of smoke trail from the main landing gear tires as space shuttle Atlantis touches down on Runway 33 at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida after 11 days in space, completing the 4.5-million-mile STS-129 mission on orbit 171. Main gear touchdown was at 9:44:23 a.m. EDT. Nose gear touchdown was at 9:44:36 a.m., and wheels stop was at 9:45:05 a.m. Aboard Atlantis are Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr.; and Expedition 20 and 21 Flight Engineer Nicole Stott who spent 87 days aboard the International Space Station. STS-129 is the final space shuttle Expedition crew rotation flight on the manifest. On STS-129, the crew delivered 14 tons of cargo to the orbiting laboratory, including two ExPRESS Logistics Carriers containing spare parts to sustain station operations after the shuttles are retired next year. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Jim Grossmann
Development of the Two Phase Flow Separator Experiment for a Reduced Gravity Aircraft Flight
NASA Technical Reports Server (NTRS)
Golliher, Eric; Gotti, Daniel; Owens, Jay; Gilkey, Kelly; Pham, Nang; Stehno, Philip
2016-01-01
The recent hardware development and testing of a reduced gravity aircraft flight experiment has provided valuable insights for the future design of the Two Phase Flow Separator Experiment (TPFSE). The TPFSE is scheduled to fly within the Fluids Integration Rack (FIR) aboard the International Space Station (ISS) in 2020. The TPFSE studies the operational limits of gas and liquid separation of passive cyclonic separators. A passive cyclonic separator utilizes only the inertia of the incoming flow to accomplish the liquid-gas separation. Efficient phase separation is critical for environmental control and life support systems, such as recovery of clean water from bioreactors, for long duration human spaceflight missions. The final low gravity aircraft flight took place in December 2015 aboard NASA's C9 airplane.
Student Pave Way for First Microgravity Experiments on International Space Station
NASA Technical Reports Server (NTRS)
1999-01-01
Chemist Arna Holmes, left, from the University of Alabama in Huntsville, teaches NaLonda Moorer, center, and Maricar Bana, right, both from Terry Parker High School in Jacksonville, Fl, procedures for preparing protein crystal growth samples for flight aboard the International Space Station (ISS). NASA/Marshall Space Flight Center in Huntsville, AL, is a sponsor for this educational activity. The proteins are placed in plastic tubing that is heat-sealed at the ends, then flash-frozen and preserved in a liquid nitrogen Dewar. Aborad the ISS, the nitrogen will be allowed to evaporated so the samples thaw and then slowly crystallize. They will be analyzed after return to Earth. Photo credit: NASA/Marshall Space Flight Center (MSFC)
First intramuscular administration in the U.S. space program. [of motion sickness drugs
NASA Technical Reports Server (NTRS)
Bagian, James P.
1991-01-01
In the past, the only kind of medicines used for symptomatic treatment of space motion sickness (SMS) in space had been oral, transdermal, or suppositories. This paper describes the effect of the first intramuscular (IM) administration of Phenergan (50-mg in single dose) on SMS in one subject who exhibited grade-3 symptoms and signs which persisted unabated throughout the first and the second flight days aboard the Space Shuttle. Thirty minutes after the injection, the subject had completely recovered. His symptoms were gone, his appetite was back, and he had no recurrences for the remainder of the flight. Since that experiment, intramuscular injections have been given nine more times on subsequent flights, with similar results.
NASA Technical Reports Server (NTRS)
Scott, Graham B. I.; Charles, John; Kundrot, Craig; Shelhamer, Mark
2016-01-01
This opportunity has emerged from NASA's decision to fly veteran NASA astronaut Scott Kelly aboard the International Space Station (ISS) for a period of one year commencing in March 2015, while his identical twin brother, retired NASA astronaut Mark Kelly, remains on Earth. Scott Kelly, a veteran of two Space Shuttle flights as well as a six-month ISS mission, will have a cumulative duration of 540 days in low Earth orbit at the conclusion of the one-year flight, while Mark Kelly, a veteran of four Space Shuttle flights, has a cumulative duration of 54 days ( 2 hours and 4 minutes) in low Earth orbit. This opportunity originated at the initiative of the twin astronauts themselves
1992-05-14
STS-49, the first flight of the Space Shuttle Orbiter Endeavour, lifted off from launch pad 39B on May 7, 1992 at 6:40 pm CDT. The STS-49 mission was the first U.S. orbital flight to feature 4 extravehicular activities (EVAs), and the first flight to involve 3 crew members working simultaneously outside of the spacecraft. The primary objective was the capture and redeployment of the INTELSAT VI (F-3), a communication satellite for the International Telecommunication Satellite organization, which was stranded in an unusable orbit since its launch aboard the Titan rocket in March 1990. This onboard photo captures the free flying INTELSAT IV.
Scientists Inspect Plant Grown onboard the ISS in 2002
NASA Technical Reports Server (NTRS)
2003-01-01
The Advanced Astroculture (tm) unit is growing plants on its second flight on the International Space Station. Dr. Weijia Zhou (left), director of the Wisconsin Center for Space Automation and Robotics at the University of Wisconsin-Madison, inspects soybeans grown in the plant growth unit aboard ISS in 2002. Coating technology is used inside the miniature plant greenhouse to remove ethylene, a chemical produced by plant leaves that can cause plants to mature too quickly. This same coating technology is used in a new anthrax-killing device. The Space Station experiment is managed by the Space Partnership Development Program at NASA's Marshall Space Flight Center in Huntsville, Ala.
14 CFR § 1214.608 - Safety requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Aboard Space Shuttle Flights § 1214.608 Safety requirements. The contents of OFK's and PPK's must meet the requirements set forth in NASA Handbook 1700.7, “Safety Policy and Requirements for Payloads Using...
Astronaut Curtis Brown on flight deck mockup during training
1994-06-23
S94-40091 (23 June 1994) --- Astronaut Curtis L. Brown mans the pilot's station of a Shuttle trainer during a rehearsal of procedures to be followed during launch and entry phases of the scheduled November flight of STS-66. This rehearsal, held in the Crew Compartment Trainer (CCT) of the Johnson Space Center's (JSC) Shuttle Mockup and Integration Laboratory, was followed by a training session on emergency egress procedures. Making his second flight in space, Brown will join four other NASA astronauts and a European mission specialist for a week and a half aboard the Space Shuttle Atlantis in Earth-orbit in support of the Atmospheric Laboratory for Applications and Science (ATLAS-3).
1992-05-14
STS-49, the first flight of the Space Shuttle Orbiter Endeavour, lifted off from launch pad 39B on May 7, 1992 at 6:40 pm CDT. The STS-49 mission was the first U.S. orbital flight to feature 4 extravehicular activities (EVAs), and the first flight to involve 3 crew members working simultaneously outside of the spacecraft. The primary objective was the capture and redeployment of the INTELSAT VI (F-3), a communication satellite for the International Telecommunication Satellite organization, which was stranded in an unusable orbit since its launch aboard the Titan rocket in March 1990. After securing the satellite with the Remote Manipulator System (RMS), the crew proceeded with preparing the satellite for its release into space.
2000-07-29
Paul Luz (right), an aerospace flight system engineer at NASA's Marshall Space Flight Center (MSFC), discusses microgravity research with a visitor at AirVenture 2000. Part of the NASA exhibits included demonstration of knowledge gained from micorgravity research aboard the Space Shuttle. These include liquid metal (Liquid metal demonstrator is three plastic drop tubes at center) and dendritic growth (in front of Luz), both leading to improvements in processes on Earth. The exhibit was part of the NASA outreach activity at AirVenture 2000 sponsored by the Experimental Aircraft Association in Oshkosh, WI.
Expedition 36 Soyuz TMA-08M Landing
2013-09-11
Russian search and rescue personnel arrive within seconds after the landing of the Soyuz TMA-08M spacecraft with Expedition 36 Commander Pavel Vinogradov of the Russian Federal Space Agency (Roscosmos), Flight Engineer Alexander Misurkin of Roscosmos and Flight Engineer Chris Cassidy of NASA aboard, in a remote area near the town of Zhezkazgan, Kazakhstan, on Wednesday, Sept. 11, 2013. Vinogradov, Misurkin and Cassidy returned to Earth after five and a half months on the International Space Station. Photo Credit: (NASA/Bill Ingalls)
2013-09-06
At the Kremlin Wall at Red Square in Moscow, Expedition 37/38 Flight Engineer Michael Hopkins of NASA (left), Soyuz Commander Oleg Kotov (center) and Flight Engineer Sergey Ryazanskiy (right) pose for pictures Sept. 6 during the traditional visit to lay flowers at the wall where Russian space icons are interred. Hopkins, Kotov and Ryazanskiy are preparing for their launch to the International Space Station from the Baikonur Cosmodrome in Kazakhstan on Sept. 26, Kazakh time, aboard the Soyuz TMA-10M spacecraft. NASA/Stephanie Stoll
1999-06-29
Christiane Gumera, right, a student at Stanton College Preparatory High School in Jacksonville, AL, examines a protein sample while preparing an experiment for flight on the International Space Station (ISS). Merle Myers, left, a University of California, Irvine, researcher, prepares to quick-freeze protein samples in nitrogen. The proteins are in a liquid nitrogen Dewar. Aboard the ISS, the nitrogen will be allowed to evaporated so the samples thaw and then slowly crystallize. They will be anlyzed after return to Earth. Photo credit: NASA/Marshall Space Flight Center (MSFC)
Space Station Crew Discusses Their Mission with Michigan Students
2017-10-06
Aboard the International Space Station, Expedition 53 Commander Randy Bresnik and Flight Engineer Joe Acaba of NASA discussed life and research on the orbital outpost during an in-flight educational event Oct. 6 with students at the Gaylord St. Mary Cathedral School in Gaylord, Michigan. Bresnik launched to the station in July and is scheduled to be on station through mid-December, while Acaba is in the first month of a planned five-and-a-half month mission on the laboratory.
2014-03-28
A view of the Russian Mission Control Center in Korolev, Russia on Friday, March 28, 2014 prior to the docking of Soyuz TMA-12M. The Soyuz TMA-12M spacecraft docked to the International Space Station at 7:53 p.m. EDT bringing Expedition 39 Soyuz Commander Alexander Skvortsov of the Russian Federal Space Agency, Roscosmos, Flight Engineer Steve Swanson of NASA and Flight Engineer Oleg Artemyev of Roscosmos to the ISS for their six month stay aboard the orbiting labratory. Photo Credit: (NASA/Joel Kowsky)
2004-03-10
KENNEDY SPACE CENTER, FLA. - Shipped in an air-conditioned transportation van from NASA’s Goddard Space Flight Center in Greenbelt, Md., NASA’s MESSENGER spacecraft, the first Mercury orbiter, arrives at the Astrotech Space Operations processing facilities near KSC. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be offloaded and taken into a high bay clean room. After the spacecraft is removed from its shipping container, employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
STS-79 Liftoff of Shuttle Atlantis (front view portrait)
NASA Technical Reports Server (NTRS)
1996-01-01
The Space Shuttle Atlantis roars into the night from Launch Pad 39A. Liftoff on the 79th Shuttle mission occurred on time at 4:54:49 a.m. EDT, Sept. 16. The 10-day spaceflight will be highlighted by the fourth docking between the U.S. Space Shuttle and Russian Space Station Mir and the first in a series of crew exchanges aboard the station. Leading the STS-79 crew is Commander William F. Readdy. The pilot is Terrence W. Wilcutt, and the four mission specialists making the trip to Mir are Jay Apt, Thomas D. Akers, Carl E. Walz and John E. Blaha. Blaha will exchange places on Mir with U.S. astronaut Shannon W. Lucid, who will return to Earth with the STS-79 flight crew after a record- setting stay on the Russian station. STS-79 is the second Shuttle-Mir mission to carry a SPACEHAB module on board and the first to carry a double module. The STS-79 mission is part of the NASA/Mir program which is now into the Phase 1B portion, consisting of nine Shuttle-Mir docking flights and seven long- duration flights of U.S. astronauts aboard the station between early 1996 and late 1998.
STS-79 Liftoff of Shuttle Atlantis (below SRB)
NASA Technical Reports Server (NTRS)
1996-01-01
The Space Shuttle Atlantis roars into the night from Launch Pad 39A. Liftoff on the 79th Shuttle mission occurred on time at 4:54:49 a.m. EDT, Sept. 16. The 10-day spaceflight will be highlighted by the fourth docking between the U.S. Space Shuttle and Russian Space Station Mir and the first in a series of crew exchanges aboard the station. Leading the STS-79 crew is Commander William F. Readdy. The pilot is Terrence W. Wilcutt, and the four mission specialists making the trip to Mir are Jay Apt, Thomas D. Akers, Carl E. Walz and John E. Blaha. Blaha will exchange places on Mir with U.S. astronaut Shannon W. Lucid, who will return to Earth with the STS-79 flight crew after a record- setting stay on the Russian station. STS-79 is the second Shuttle-Mir mission to carry a SPACEHAB module on board and the first to carry a double module. The STS-79 mission is part of the NASA/Mir program which is now into the Phase 1B portion, consisting of nine Shuttle-Mir docking flights and seven long- duration flights of U.S. astronauts aboard the station between early 1996 and late 1998.
STS-79 Liftoff of Shuttle Atlantis (side view portrait)
NASA Technical Reports Server (NTRS)
1996-01-01
The Space Shuttle Atlantis roars into the night from Launch Pad 39A. Liftoff on the 79th Shuttle mission occurred on time at 4:54:49 a.m. EDT, Sept. 16. The 10-day spaceflight will be highlighted by the fourth docking between the U.S. Space Shuttle and Russian Space Station Mir and the first in a series of crew exchanges aboard the station. Leading the STS-79 crew is Commander William F. Readdy. The pilot is Terrence W. Wilcutt, and the four mission specialists making the trip to Mir are Jay Apt, Thomas D. Akers, Carl E. Walz and John E. Blaha. Blaha will exchange places on Mir with U.S. astronaut Shannon W. Lucid, who will return to Earth with the STS-79 flight crew after a record- setting stay on the Russian station. STS-79 is the second Shuttle-Mir mission to carry a SPACEHAB module on board and the first to carry a double module. The STS-79 mission is part of the NASA/Mir program which is now into the Phase 1B portion, consisting of nine Shuttle-Mir docking flights and seven long- duration flights of U.S. astronauts aboard the station between early 1996 and late 1998.
STS-79 Liftoff of Shuttle Atlantis (front view landscape)
NASA Technical Reports Server (NTRS)
1996-01-01
The Space Shuttle Atlantis roars into the night from Launch Pad 39A. Liftoff on the 79th Shuttle mission occurred on time at 4:54:49 a.m. EDT, Sept. 16. The 10-day spaceflight will be highlighted by the fourth docking between the U.S. Space Shuttle and Russian Space Station Mir and the first in a series of crew exchanges aboard the station. Leading the STS-79 crew is Commander William F. Readdy. The pilot is Terrence W. Wilcutt, and the four mission specialists making the trip to Mir are Jay Apt, Thomas D. Akers, Carl E. Walz and John E. Blaha. Blaha will exchange places on Mir with U.S. astronaut Shannon W. Lucid, who will return to Earth with the STS-79 flight crew after a record- setting stay on the Russian station. STS-79 is the second Shuttle-Mir mission to carry a SPACEHAB module on board and the first to carry a double module. The STS-79 mission is part of the NASA/Mir program which is now into the Phase 1B portion, consisting of nine Shuttle-Mir docking flights and seven long- duration flights of U.S. astronauts aboard the station between early 1996 and late 1998.
NASA Technical Reports Server (NTRS)
1996-01-01
The Space Shuttle Atlantis roars into the night from Launch Pad 39A. Liftoff on the 79th Shuttle mission occurred on time at 4:54:49 a.m. EDT, Sept. 16. The 10-day spaceflight will be highlighted by the fourth docking between the U.S. Space Shuttle and Russian Space Station Mir and the first in a series of crew exchanges aboard the station. Leading the STS-79 crew is Commander William F. Readdy. The pilot is Terrence W. Wilcutt, and the four mission specialists making the trip to Mir are Jay Apt, Thomas D. Akers, Carl E. Walz and John E. Blaha. Blaha will exchange places on Mir with U.S. astronaut Shannon W. Lucid, who will return to Earth with the STS-79 flight crew after a record- setting stay on the Russian station. STS-79 is the second Shuttle-Mir mission to carry a SPACEHAB module on board and the first to carry a double module. The STS- 79 mission is part of the NASA/Mir program which is now into the Phase 1B portion, consisting of nine Shuttle-Mir docking flights and seven long- duration flights of U.S. astronauts aboard the station between early 1996 and late 1998.
STS-86 Mission Specialist David Wolf suits up
NASA Technical Reports Server (NTRS)
1997-01-01
STS-86 Mission Specialist David A. Wolf gets assistance from a suit technician while donning his orange launch and entry suit in the Operations and Checkout Building. This will be Wolfs second flight. He and the six other crew members will depart shortly for Launch Pad 39A, where the Space Shuttle Atlantis awaits liftoff on a 10-day mission slated to be the seventh docking of the Space Shuttle with the Russian Space Station Mir. Wolf will transfer to the Mir 24 crew, replacing U.S. astronaut C. Michael Foale, who will return to Earth aboard Atlantis with the rest of the STS-86 crew. Wolf is expected to live and work aboard the Russian space station for about four months.
Expedition 52-52 Launches to the Space Station on This Week @NASA - April 21, 2017
2017-04-21
On April 20, Expedition 51-52 Flight Engineer Jack Fischer of NASA and Soyuz Commander Fyodor Yurchikhin of the Russian Space Agency, Roscosmos launched to the International Space Station aboard a Soyuz spacecraft, from the Baikonur Cosmodrome in Kazakhstan. About six-hours later, the pair arrived at the orbital outpost and were greeted by station Commander Peggy Whitson of NASA and other members of the crew. Fischer and Yurchikhin will spend four and a half months conducting research aboard the station. Also, U.S. Resupply Mission Heads to the Space Station, Time Magazine Recognizes Planet-Hunting Scientists, Landslides on Ceres Reflect Ice Content, Mars Rover Opportunity Leaves 'Tribulation', and Earth Day in the Nation’s Capital!
1997-03-11
This photo shows one of three arrays of air filters inside the Microgravity Science Glovebox (MSG) being developed by the European Space Agency (ESA) and NASA for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC
Microgravity Science Glovebox - Glove
NASA Technical Reports Server (NTRS)
1997-01-01
This photo shows a rubber glove and its attachment ring for the Microgravity Science Glovebox (MSG) being developed by the European Space Agency (ESA) and NASA for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC
Microgravity Science Glovebox - Interior Reach
NASA Technical Reports Server (NTRS)
1997-01-01
This photo shows the interior reach in the Microgravity Science Glovebox (MSG) being developed by the European Space Agency (ESA) and NASA for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC
1997-03-11
Interior lights give the Microgravity Science Glovebox (MSG) the appearance of a high-tech juke box. The European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC
1997-03-11
This photo shows a rubber glove and its attachment ring for the Microgravity Science Glovebox (MSG) being developed by the European Space Agency (ESA) and NASA for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC
1997-03-11
This photo shows the access through the internal airlock (bottom right) on the Microgravity Science Glovebox (MSG) being developed by the European Space Agency (ESA) and NASA for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC
2012-12-04
A participant at a NASA Social in Washington listens to astronaut Joe Acaba answer questions about his time living aboard the International Space Station, Tuesday, Dec. 4, 2012 at NASA Headquarters. NASA astronaut Acaba launched to the ISS on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)
STS-91 Commander Precourt talks to Cosmonauts Kondakova and Ryumin at SLF
NASA Technical Reports Server (NTRS)
1998-01-01
STS-91 Mission Commander Charles Precourt (left) talks to Elena V. Kondakova and her husband, Valery Ryumin, a cosmonaut with the Russian Space Agency (RSA) and STS-91 mission specialist, at Kennedy Space Center's Shuttle Landing Facility (SLF). The STS-91 crew had just arrived at the SLF aboard T-38 jets in preparation for launch. Kondakova, also a cosmonaut with the RSA, flew with Commander Precourt as a mission specialist on STS-84 which launched on May 15, 1997. STS-91 is scheduled to be launched on June 2 on Space Shuttle Discovery with a launch window opening around 6:10 p.m. EDT. The mission will feature the ninth Shuttle docking with the Russian Space Station Mir, the first Mir docking for Discovery, the conclusion of Phase I of the joint U.S.- Russian International Space Station Program, and the first flight of the new Space Shuttle super lightweight external tank. The STS-91 flight crew also includes Pilot Dominic Gorie and Mission Specialists Wendy B. Lawrence; Franklin Chang-Diaz, Ph.D.; and Janet Kavandi, Ph.D. Andrew Thomas, Ph.D., will be returning to Earth with the crew after living more than four months aboard Mir.
2012-02-18
CAPE CANAVERAL, Fla. -- John Glenn and NASA astronaut Stephen Robinson sit in the flight deck of space shuttle Discovery in Orbiter Processing Facility-1 OPF-1 at NASA's Kennedy Space Center in Florida. Glenn is at the space center to mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard Discovery's STS-95 mission. Robinson was the payload commander of STS-95. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Shuttle Discovery currently is being prepared for display at Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. Photo credit: Cory Huston
2012-02-18
CAPE CANAVERAL, Fla. -- John Glenn and NASA Kennedy Space Center Director Bob Cabana sit in the flight deck of space shuttle Discovery in Orbiter Processing Facility-1 OPF-1. Glenn is at the space center to mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard Discovery's STS-95 mission. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Shuttle Discovery currently is being prepared for display at Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. Photo credit: Cory Huston
2012-02-18
CAPE CANAVERAL, Fla. -- NASA Kennedy Space Center Director Bob Cabana sits at the controls in the flight deck of space shuttle Discovery in Orbiter Processing Facility-1 OPF-1. At the space center in Florida, Cabana is helping John Glenn mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard Discovery's STS-95 mission. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Shuttle Discovery currently is being prepared for display at Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. Photo credit: Cory Huston
Ohio Senator John Glenn tours the SPACEHAB Payload Processing Facility in Cape Canaveral
NASA Technical Reports Server (NTRS)
1998-01-01
Ohio Senator John Glenn, second from right, enjoys a tour of the SPACEHAB Payload Processing Facility in Cape Canaveral. Joining Senator Glenn are, left to right, Dr. Bernard Harris, SPACEHAB vice president, microgravity and life sciences, and Dale Steffey, SPACEHAB vice president, operations. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.
2013-09-06
At the Kremlin Wall at Red Square in Moscow, Five of the six Expedition 37/38 prime and backup crewmembers pose for pictures Sept. 6 during the traditional visit to lay flowers at the wall where Russian space icons are interred. With the onion domed spires of St. Basil’s Cathedral in the background, from left to right are backup NASA Flight Engineer Steve Swanson, prime Flight Engineer Michael Hopkins of NASA, prime Soyuz Commander Oleg Kotov, prime Flight Engineer Sergey Ryazanskiy and backup Flight Engineer Oleg Artemyev. Hopkins, Kotov and Ryazanskiy are preparing for their launch to the International Space Station from the Baikonur Cosmodrome in Kazakhstan on Sept. 26, Kazakh time, aboard the Soyuz TMA-10M spacecraft. NASA/Stephanie Stoll
NASA Technical Reports Server (NTRS)
Witte, W. G., Jr.
1985-01-01
One of the experiments aboard the NASA Long Duration Exposure Facility (LDEF) consists of a tray of approximately one hundred tensile specimens of several candidate space structure composite materials. During the LDEF flight the materials will be subjected to the space environment and to possible contamination during launch and recovery. Tensile tests of representative samples were made before the LDEF flight to obtain baseline data. Similar tests will be made on control specimens stored on earth for the length of the LDEF flight and on recovered flight specimens. This manual codifies the details of testing, data acquisition, and handling used in obtaining the baseline data so that the same procedures and equipment will be used on the subsequent tests.
1971-12-01
The Apollo Telescope Mount (ATM) was designed and constructed at the Marshall Space Flight Center and served as the primary scientific instrument unit aboard Skylab. The ATM consisted of eight scientific instruments as well as a number of smaller experiments. This photograph shows the flight unit solar shield for the ATM that formed the base for the rack, a complex frame, and the canister that contained the instruments.
Former President George H. W. Bush and Mrs. Bush visit with Mission Control Center personnel.
2003-02-03
JSC2003-E-05202 (3 February 2003) --- In the Station Flight Control Room of JSC's Mission Control Center, former President George H.W. Bush learns about current activity aboard the Earth-orbiting International Space Station (ISS) from Flight Director Sally Davis. The former Chief Executive and First Lady visited the Houston facility on Feb. 3, 2003.
2013-03-28
Expedition 35 Soyuz Commander Pavel Vinogradov and Russian Flight Engineer Alexander Misurkin share a laugh after having their Sokol suits pressure checked, Thursday, March 28, 2013, at the Baikonur Cosmodrome in Kazakhstan. Launch of the Soyuz rocket will send Vinogradov, Misurkin and NASA Flight Engineer Chris Cassidy on a five and a half-month mission aboard the International Space Station. Photo Credit: (NASA/Carla Cioffi)
SpaceX leading investigation of mishap on This Week @NASA – July 3, 2015
2015-07-03
SpaceX, with Federal Aviation Administration oversight, is leading the investigation of what caused the June 28 mishap shortly after the company’s Falcon 9 rocket and Dragon cargo spacecraft launched from Cape Canaveral Air Force Station in Florida. The flight was SpaceX’s seventh contracted resupply mission to the International Space Station. Although important supplies and cargo were lost aboard the Dragon, the station crew has sufficient supplies into the Fall. Also, Progress on crew access tower at Cape, New Horizons’ final flight path, Forever Remembered exhibit, Health and Safety Fair and NASA Week and the Essence Festival!
Astronauts McMonagle and Brown float in one-man life rafts during training
1994-06-28
S94-37526 (28 June 1994) --- In separate life rafts, astronauts Donald R. McMonagle (right), mission commander, and Curtis L. Brown, pilot, are assisted by several SCUBA-equipped divers during an emergency bailout training exercise in the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Making their third and second flights in space, respectively, McMonagle and Brown will be joined by three other NASA astronauts and a European mission specialist for a week and a half in space aboard the Space Shuttle Atlantis. The flight will support the Atmospheric Laboratory for Applications and Science (ATLAS-3) mission.
A survey of spacecraft thermal design solutions
NASA Technical Reports Server (NTRS)
Humphries, R.; Wegrich, R.; Pierce, E.; Patterson, W.
1991-01-01
A review of activities at the NASA/Marshall Space Flight Center in the heat transfer and thermodynamics disciplines as well as attendant fluid mechanics, transport phenomena, and computer science applications is presented. Attention is focused on recent activities including the Hubble Space Telescope, and large space instruments, particularly telescope thermal control systems such as those flown aboard Spacelab 2 and the Astro missions. Emphasis is placed on defining the thermal control features, unique design schemes, and performance of selected programs. Results obtained both by ground testing and analytical means, as well as flight and postflight data are presented.
2005-04-15
Expedition 11 Commander Sergei Krikalev, Flight Engineer and NASA Science Officer John Phillips and European Space Agency astronaut Roberto Vittori of Italy blast off aboard the Soyuz TMA-6 spacecraft from the Baikonur Cosmodrome in Kazakhstan, Friday, April 15, 2005, for a two-day trip to the International Space Station. Krikalev and Phillips will spend six months on the Station, replacing Expedition 10 Commander Leroy Chiao and Flight Engineer Salizhan Sharipov, while Vittori will spend eight days on the Station under a commerical contract between ESA and the Russian Federal Space Agency, returning to Earth with Chiao and Sharipov on April 25. Photo Credit: (NASA/Bill Ingalls)
2005-04-15
Expedition 11 Commander Sergei Krikalev, Flight Engineer and NASA Science Officer John Phillips and European Space Agency astronaut Roberto Vittori, of Italy, blast off aboard the Soyuz TMA-6 spacecraft from the Baikonur Cosmodrome in Kazakhstan, Friday, April 15, 2005, for a two-day trip to the International Space Station. Krikalev and Phillips will spend six months on the Station, replacing Expedition 10 Commander Leroy Chiao and Flight Engineer Salizhan Sharipov, while Vittori will spend eight days on the Station under a commerical contract between ESA and the Russian Federal Space Agency, returning to Earth with Chiao and Sharipov on April 25. Photo Credit: (NASA/Bill Ingalls)
2010-12-08
CAPE CANAVERAL, Fla. -- The Dragon capsule that launched from Launch Complex-40 at Cape Canaveral Air Force Station aboard a SpaceX Falcon 9 rocket is recovered in the Pacific Ocean about 500 miles west of the coast of Mexico. The rocket lifted off at 10:43 a.m. EST. The spacecraft went through several maneuvers before it re-entered the atmosphere and splashed down at about 2 p.m. EST. This is first demonstration flight for NASA's Commercial Orbital Transportation Services (COTS) program, which will provide cargo flights to the International Space Station in the future. Photo credit: Courtesy SpaceX
STS safety approval process for small self-contained payloads
NASA Technical Reports Server (NTRS)
Gum, Mary A.
1988-01-01
The safety approval process established by the National Aeronautics and Space Administration for Get Away Special (GAS) payloads is described. Although the designing organization is ultimately responsible for the safe operation of its payload, the Get Away Special team at the Goddard Space Flight Center will act as advisors while iterative safety analyses are performed and the Safety Data Package inputs are submitted. This four phase communications process will ultimately give NASA confidence that the GAS payload is safe, and successful completion of the Phase 3 package and review will clear the way for flight aboard the Space Transportation System orbiter.
2005-04-24
Expedition 10 Flight Engineer Salizhan Sharipov, on bus, looks out at well wishers after arriving back at Star City, Russia from Kazakhstan, Monday, April 25, 2005. Expedition 10 Commander Leroy Chiao, Flight Engineer Salizhan Sharipov and European Space Agency astronaut Roberto Vittori brought their Soyuz TMA-5 capsule to a pre-dawn landing April 25 northeast of the town of Arkalyk to wrap up a six-month mission aboard the International Space Station for Chiao and Sharipov, and a ten-day mission for Vittori, who flew under a commercial contract between ESA and the Russian Federal Space Agency. Photo Credit: (NASA/Bill Ingalls)
E55_Inflight_WBFF-TV_2018_117_1259_645702
2018-04-27
SPACE STATION CREW MEMBERS DISCUSS LIFE IN SPACE WITH MARYLAND MEDIA Aboard the International Space Station, Expedition 55 Flight Engineers Ricky Arnold of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed their respective missions on the orbital complex during an in-flight interview April 27 with WBFF-TV in Baltimore, Maryland. Arnold, who is a Maryland native, arrived on the station a month ago for a six-month mission, while Kanai, who arrived on the outpost last December, is scheduled to return to Earth June 3 to complete his half-year in orbit.
2010-09-28
CAPE CANAVERAL, Fla. -- To commemorate the history of the Space Shuttle Program's last external fuel tank, its intertank door is emblazoned with an ET-122 insignia. The tank is in the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida after traveling 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. It eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the shuttle program. The tank, which is the largest element of the space shuttle stack, was completed in 2002, modified during Return to Flight operations in 2003 and 2004, damaged during Hurricane Katrina in 2005, and then restored to flight configuration by Lockheed Martin Space Systems Company employees in 2008 at NASA's Marshall Space Flight Center in Alabama. Photo credit: NASA/Jack Pfaller
2010-09-28
CAPE CANAVERAL, Fla. -- To commemorate the history of the Space Shuttle Program's last external fuel tank, its intertank door is emblazoned with an ET-122 insignia. The tank is in the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida after traveling 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. It eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the shuttle program. The tank, which is the largest element of the space shuttle stack, was completed in 2002, modified during Return to Flight operations in 2003 and 2004, damaged during Hurricane Katrina in 2005, and then restored to flight configuration by Lockheed Martin Space Systems Company employees in 2008 at NASA's Marshall Space Flight Center in Alabama. Photo credit: NASA/Jack Pfaller
Science in orbit: The shuttle and spacelab experience, 1981-1986
NASA Technical Reports Server (NTRS)
1988-01-01
Significant achievements across all scientific disciplines and missions for the first six years of Shuttle flights are presented. Topics covered include science on the Space Shuttle and Spacelab, living and working in space, studying materials and processes in microgravity, observing the sun and earth, space plasma physics, atmospheric science, astronony and astrophysics, and testing new technology in space. Future research aboard the Shuttle/Spacelab is also briefly mentioned.
NASA Technical Reports Server (NTRS)
Boehm, Emma
2017-01-01
A closed-loop food production system will be important to gain autonomy on long duration space missions. Crop growth experiments in the Veggie plant chamber aboard the International Space Station (ISS) are helping to identify methods and limitations of food production in space. Prior to flight, seeds are surface sterilized to reduce environmental and crew contamination risks.
International Space Station (ISS)
2003-10-20
In the Destiny laboratory aboard the International Space Station (ISS), European Space Agency (ESA) astronaut Pedro Duque of Spain is seen working at the Microgravity Science Glovebox (MSG). He is working with the PROMISS experiment, which will investigate the growth processes of proteins during weightless conditions. The PROMISS is one of the Cervantes program of tests (consisting of 20 commercial experiments). The MSG is managed by NASA's Marshall Space Flight Center (MSFC).
NASA STS-132 Air and Space Museum
2010-07-26
Dr. John Mather, NASA Goddard Space Flight Center scientist and Nobel Laureate, center, presents Gen. John R. “Jack” Dailey, director of the Smithsonian National Air and Space Museum, left, with a a replica of Mather’s Nobel Prize medal that flew in space aboard STS-132, as astronaut Piers Sellers looks on, during a ceremony at the museum, Tuesday, July 27, 2010, in Washington. Photo Credit: (NASA/Paul E. Alers)
2006-06-29
KENNEDY SPACE CENTER, FLA. - In the Operations and Checkout Building, Michele Perchonok stows packages of food that the STS-121 crew will eat on the 12-day mission. Perchonok is a NASA Subsystem manager for Shuttle Food Systems from Johnson Space Center. Astronauts select their own menus from a large array of food items. Astronauts are supplied with three balanced meals, plus snacks. Diets are designed to supply each astronaut with 100 percent of the daily value of vitamins and minerals necessary for the environment of space. Foods flown on space missions are researched and developed at the Space Food Systems Laboratory at the Johnson Space Center (JSC) in Houston, which is staffed by food scientists, dietitians and engineers. Foods are analyzed through nutritional analysis, sensory evaluation, storage studies, packaging evaluations and many other methods. Each astronaut’s food is stored aboard the space shuttle and is identified by a colored dot affixed to each package. A supplementary food supply (pantry) consisting of two extra days per person is stowed aboard the space shuttle for each flight. Pantry items are flown in addition to the menu in case the flight is unexpectedly extended because of bad weather at the landing site or for some other unforeseen reason. Photo credit: NASA/Kim Shiflett
2006-06-29
KENNEDY SPACE CENTER, FLA. - In the Operations and Checkout Building, Michele Perchonok closes a container of food packages that the STS-121 crew will eat on the 12-day mission. Perchonok is a NASA Subsystem manager for Shuttle Food Systems from Johnson Space Center. Astronauts select their own menus from a large array of food items. Astronauts are supplied with three balanced meals, plus snacks. Diets are designed to supply each astronaut with 100 percent of the daily value of vitamins and minerals necessary for the environment of space. Foods flown on space missions are researched and developed at the Space Food Systems Laboratory at the Johnson Space Center (JSC) in Houston, which is staffed by food scientists, dietitians and engineers. Foods are analyzed through nutritional analysis, sensory evaluation, storage studies, packaging evaluations and many other methods. Each astronaut’s food is stored aboard the space shuttle and is identified by a colored dot affixed to each package. A supplementary food supply (pantry) consisting of two extra days per person is stowed aboard the space shuttle for each flight. Pantry items are flown in addition to the menu in case the flight is unexpectedly extended because of bad weather at the landing site or for some other unforeseen reason. Photo credit: NASA/Kim Shiflett
2006-06-29
KENNEDY SPACE CENTER, FLA. - In the Operations and Checkout Building, Michele Perchonok stows packages of food that the STS-121 crew will eat on the 12-day mission. Perchonok is a NASA Subsystem manager for Shuttle Food Systems from Johnson Space Center. Astronauts select their own menus from a large array of food items. Astronauts are supplied with three balanced meals, plus snacks. Diets are designed to supply each astronaut with 100 percent of the daily value of vitamins and minerals necessary for the environment of space. Foods flown on space missions are researched and developed at the Space Food Systems Laboratory at the Johnson Space Center (JSC) in Houston, which is staffed by food scientists, dietitians and engineers. Foods are analyzed through nutritional analysis, sensory evaluation, storage studies, packaging evaluations and many other methods. Each astronaut’s food is stored aboard the space shuttle and is identified by a colored dot affixed to each package. A supplementary food supply (pantry) consisting of two extra days per person is stowed aboard the space shuttle for each flight. Pantry items are flown in addition to the menu in case the flight is unexpectedly extended because of bad weather at the landing site or for some other unforeseen reason. Photo credit: NASA/Kim Shiflett
Expedition 33 Press Conference
2012-10-22
Expedition 33 Flight Engineer Evgeny Tarelkin waves hello as he is introduced at the start of a press conference held at the Cosmonaut Hotel, on Monday, October 22, 2012, in Baikonur, Kazakhstan. Launch of the Soyuz rocket is scheduled for October 23 and will send Expedition 33/34 Flight Engineer Kevin Ford of NASA, Soyuz Commander Oleg Novitskiy and Flight Engineer Evgeny Tarelkin of ROSCOSMOS on a five-month mission aboard the International Space Station. Photo Credit: (NASA/Bill Ingalls)
STS-46 aft flight deck payload station "Marsha's workstation" aboard OV-104
2012-11-19
STS046-01-024 (31 July-8 Aug 1992) --- This area on the Space Shuttle Atlantis' flight deck forward port side was referred to as "Marsha's (Ivins) work station" by fellow crew members who good-naturedly kidded the mission specialist and who usually added various descriptive modifiers such as "messy" or "cluttered". Food, cameras, camera gear, cassettes, cable, flight text material and other paraphernalia can be seen in the area, just behind the commander's station.
STS-65 Commander Cabana with SAREX-II on Columbia's, OV-102's, flight deck
1994-07-23
STS065-44-014 (8-23 July 1994) --- Astronaut Robert D. Cabana, mission commander, is seen on the Space Shuttle Columbia's flight deck with the Shuttle Amateur Radio Experiment (SAREX). SAREX was established by NASA, the American Radio League/Amateur Radio Satellite Corporation and the Johnson Space Center (JSC) Amateur Radio Club to encourage public participation in the space program through a project to demonstrate the effectiveness of conducting short-wave radio transmissions between the Shuttle and ground-based radio operators at low-cost ground stations with amateur and digital techniques. As on several previous missions, SAREX was used on this flight as an educational opportunity for students around the world to learn about space firsthand by speaking directly to astronauts aboard the Shuttle.
International Space Station (ISS)
2001-02-01
The Payload Operations Center (POC) is the science command post for the International Space Station (ISS). Located at NASA's Marshall Space Flight Center in Huntsville, Alabama, it is the focal point for American and international science activities aboard the ISS. The POC's unique capabilities allow science experts and researchers around the world to perform cutting-edge science in the unique microgravity environment of space. The POC is staffed around the clock by shifts of payload flight controllers. At any given time, 8 to 10 flight controllers are on consoles operating, plarning for, and controlling various systems and payloads. This photograph shows the Operations Controllers (OC) at their work stations. The OC coordinates the configuration of resources to enable science operations, such as power, cooling, commanding, and the availability of items like tools and laboratory equipment.
Main medical results of extended flights on space station Mir in 1986-1990
NASA Astrophysics Data System (ADS)
Grigoriev, A. I.; Bugrov, S. A.; Bogomolov, V. V.; Egorov, A. D.; Polyakov, V. V.; Tarasov, I. K.; Shulzhenko, E. B.
During 1986-1990 seven prime spacecrews (16 cosmonauts) have flow on-board the Mir orbital complex. The longest space mission duration was 366 days. The principal objectives of the medical tasks were the maintenance of good health and performance of the spacecrews and conducting medical research programs which included study of the cardiovascular, motor, endocrine, blood, immune, and metabolic systems. Results obtained point to the ability of humans to readily adapt to a year-long stay in space and maintain good health and performance. Readaptation had a similar course as after other previous long-term space flights of up to 8 months in duration. Primary body system changes were not qualitatively different from findings after flights aboard the Salyut 6 and 7 space stations. In this case, during and after an 11-12 month flight, body system alterations were even less severe which was a result of adequate countermeasure use, their systematic and creative employment and maintenance of required environments to support life and work in space.
Wakata eats an apple in Node 2 Harmony
2009-03-20
S119-E-006810 (20 March 2009) --- Japan Aerospace Exploration Agency's Koichi Wakata, pictured here on the International Space Station, changes over from STS-119 mission specialist to an ISS flight engineer for a tour aboard the orbital outpost.
BRIC - Brown with canisters on middeck
1998-11-02
STS095-E-5171 (2 Nov. 1998) --- Astronaut Curtis L. Brown, STS-95 commander, during Flight Day 3 activity aboard the Space Shuttle Discovery. The photo was taken with an electronic still camera (ESC) at 05:57:03 GMT, Nov. 2.
Gift exchange between crews in ISS Node 1/Unity
2001-08-12
STS105-E-5152 (12 August 2001) --- Astronaut Susan J. Helms, Expedition Two flight engineer, is positioned near a large amount of water temporarily stored in the Unity node aboard the International Space Station (ISS). The photo was taken with a digital still camera by one of the STS-105 crew members currently visiting the ISS. Helms will accompany the shuttle crew back to Earth after having spent five months with two crew mates aboard the orbital outpost.
2012-12-04
A participant at a NASA Social in Washington tweets as he listens to astronaut Joe Acaba answer questions about his time living aboard the International Space Station, Tuesday, Dec. 4, 2012 at NASA Headquarters. NASA astronaut Joe Acaba launched to the ISS on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)
1992-05-13
STS-49, the first flight of the Space Shuttle Orbiter Endeavour, lifted off from launch pad 39B on May 7, 1992 at 6:40 pm CDT. The STS-49 mission was the first U.S. orbital flight to feature 4 extravehicular activities (EVAs), and the first flight to involve 3 crew members working simultaneously outside of the spacecraft. The primary objective was the capture and redeployment of the INTELSAT VI (F-3), a communication satellite for the International Telecommunication Satellite organization, which was stranded in an unusable orbit since its launch aboard the Titan rocket in March 1990. In this onboard photo, astronauts Hieb, Akers, and Thuot have handholds on the satellite.
1992-05-14
STS-49, the first flight of the Space Shuttle Orbiter Endeavour, lifted off from launch pad 39B on May 7, 1992 at 6:40 pm CDT. The STS-49 mission was the first U.S. orbital flight to feature 4 extravehicular activities (EVAs), and the first flight to involve 3 crew members working simultaneously outside of the spacecraft. The primary objective was the capture and redeployment of the INTELSAT VI (F-3), a communication satellite for the International Telecommunication Satellite organization, which was stranded in an unusable orbit since its launch aboard the Titan rocket in March 1990. A view through Endeavour’s busy airlock reveals astronauts Thomas Akers and Kathryn Thornton.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komolova, G.S.; Makeeva, V.F.; Egorov, I.A.
1978-10-26
A prime role is attributed to disturbances in DNA structure of nuclear chromatin as the mechanisms of radiation lesions in living cells. For this reason, it may be assumed that a change in the biological effectiveness of radiation delivered to animals under conditions that are extreme for vital functions, including space flight, may occur via modification of radiolesions in chromatin DNA. For this reason, the DNA of rats exposed to radiation from an onboard gamma source in the course of an actual space flight in the Kosmos-690 biosatellite was examined.
1992-05-14
STS-49, the first flight of the Space Shuttle Orbiter Endeavour, lifted off from launch pad 39B on May 7, 1992 at 6:40 pm CDT. The STS-49 mission was the first U.S. orbital flight to feature 4 extravehicular activities (EVAs), and the first flight to involve 3 crew members working simultaneously outside of the spacecraft. The primary objective was the capture and redeployment of the INTELSAT VI (F-3) which was stranded in an unusable orbit since its launch aboard the Titan rocket in March 1990. In this STS-49 onboard photo, Astronaut Kathryn Thornton joins three struts together during her Extra Vehicular Activity (EVA).
2012-02-18
CAPE CANAVERAL, Fla. -- NASA astronaut Stephen Robinson sits at the controls in the flight deck of space shuttle Discovery in Orbiter Processing Facility-1 OPF-1 at NASA's Kennedy Space Center in Florida. Robinson is helping John Glenn mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard Discovery's STS-95 mission. Robinson was the payload commander of STS-95. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Shuttle Discovery currently is being prepared for display at Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. Photo credit: Cory Huston
NASA Technical Reports Server (NTRS)
2006-01-01
This is the STS-116 Crew Portrait. Pictured on the front row from left to right are: William Oefelein, pilot; Joan Higginbotham, mission specialist; and Mark Polansky, commander. On the back row, left to right, are: Robert Curbeam, Nicholas Patrick, Sunita Williams, and the European Space Agency's Christer Fuglesang, all mission specialists. Williams joined Expedition 14 in progress to serve as flight engineer aboard the International Space Station (ISS). Launched aboard the Space Shuttle Discovery on December 9, 2006, the seven delivered two high profile Marshall Space Flight Center (MSFC') payloads: The Lab-On-A Chip Application Development Portable Test System (LOCAD-PTS) and the Water Delivery System, a vital component of the Station's Oxygen Generation System. The primary mission objective was to deliver and install the P5 truss element. The P5 installation was conducted during the first of three space walks, and involved use of both the shuttle and station's robotic arms. The remainder of the mission included a major reconfiguration and activation of the ISS electrical and thermal control systems, as well as delivery of Zvezda Service Module debris panels, which will increase ISS protection from potential impacts of micro-meteorites and orbital debris.
Overview of a Proposed Flight Validation of Aerocapture System Technology for Planetary Missions
NASA Technical Reports Server (NTRS)
Keys, Andrew S.; Hall, Jeffery L.; Oh, David; Munk, Michelle M.
2006-01-01
Aerocapture System Technology for Planetary Missions is being proposed to NASA's New Millennium Program for flight aboard the Space Technology 9 (ST9) flight opportunity. The proposed ST9 aerocapture mission is a system-level flight validation of the aerocapture maneuver as performed by an instrumented, high-fidelity flight vehicle within a true in-space and atmospheric environment. Successful validation of the aerocapture maneuver will be enabled through the flight validation of an advanced guidance, navigation, and control system as developed by Ball Aerospace and two advanced Thermal Protection System (TPS) materials, Silicon Refined Ablative Material-20 (SRAM-20) and SRAM-14, as developed by Applied Research Associates (ARA) Ablatives Laboratory. The ST9 aerocapture flight validation will be sufficient for immediate infusion of these technologies into NASA science missions being proposed for flight to a variety of Solar System destinations possessing a significant planetary atmosphere.
Microgravity Science Glovebox - Airlock
NASA Technical Reports Server (NTRS)
1997-01-01
This photo shows the access through the internal airlock (bottom right) on the Microgravity Science Glovebox (MSG) being developed by the European Space Agency (ESA) and NASA for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC
Microgravity Science Glovebox - Working Volume
NASA Technical Reports Server (NTRS)
1997-01-01
Interior lights give the Microgravity Science Glovebox (MSG) the appearance of a high-tech juke box. The European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC
Microgravity Science Glovebox - Labels
NASA Technical Reports Server (NTRS)
1997-01-01
Labels are overlaid on a photo (0003837) of the Microgravity Science Glovebox (MSG). The MSG is being developed by the European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC
Senator Doug Jones (D-AL) Tour of MSFC Facilities
2018-02-22
Senator Doug Jones (D-AL.) and wife, Louise, tour Marshall Space Flight facilities. Steve Doering, manager, Stages Element, Space Launch System (SLS) program at MSFC, also tour the Payload Operations Integration Center (POIC) where Marshall controllers oversee stowage requirements aboard the International Space Station (ISS) as well as scientific experiments. Different positions in the room are explained to Senator Jones by MSFC controller Beau Simpson.
1997-03-11
An array of miniature lamps will provide illumination to help scientists as they conduct experiments inside the Microgravity Science Glovebox (MSG). The European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC
1995-02-22
S95-04319 (22 Feb 1995) --- The neutral buoyancy facility at the Gagarin Cosmonaut Training Center in Star City, Russia, is used for underwater training for missions aboard the Russian Mir Space Station. The facility is similar to NASA's Weightless Environment Training Facility (WET-F) at the Johnson Space Center (JSC) in Houston, Texas, and the Neutral Buoyancy Simulator (NBS) at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama.
USDA-ARS?s Scientific Manuscript database
In order to answer the question, what effects would microgravity have on the growth, differentiation, and function on liver stem cells, the ARS-PICM-19 pig liver stem cell line was cultured in space aboard space shuttle Endeavor for the 16 days of mission STS-126. The liver is among the few organs ...
2012-02-18
CAPE CANAVERAL, Fla. -- NASA Kennedy Space Center Director Bob Cabana, right, talks to guests in Orbiter Processing Facility-1 OPF-1 where space shuttle Discovery is being prepared for public display during a 50th anniversary celebration of the first orbital flight of an American. The astronaut who made that first flight, John Glenn, is at the space center to commemorate that achievement. Glenn orbited the Earth three times in the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. He later returned to space in October 1998 as a payload specialist aboard Discovery's STS-95 mission. Also in the photo are Glenn's wife, Annie, NASA astronaut Stephen Robinson, and Bob Sieck, a former shuttle launch director. Robinson was the payload commander of STS-95. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Shuttle Discovery currently is being prepared for display at Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. Photo credit: Cory Huston
NASA Technical Reports Server (NTRS)
Mandy, Christophe P.; Sakamoto, Hiraku; Saenz-Otero, Alvar; Miller, David W.
2007-01-01
The MIT's Space Systems Laboratory developed the Synchronized Position Hold Engage and Reorient Experimental Satellites (SPHERES) as a risk-tolerant spaceborne facility to develop and mature control, estimation, and autonomy algorithms for distributed satellite systems for applications such as satellite formation flight. Tests performed study interferometric mission-type formation flight maneuvers in deep space. These tests consist of having the satellites trace a coordinated trajectory under tight control that would allow simulated apertures to constructively interfere observed light and measure the resulting increase in angular resolution. This paper focuses on formation initialization (establishment of a formation using limited field of view relative sensors), formation coordination (synchronization of the different satellite s motion) and fuel-balancing among the different satellites.
Peculiarities of ultrastructure of Chlorella cells growing aboard the Bion-10 during 12 days
NASA Astrophysics Data System (ADS)
Popova, A. F.; Sytnik, K. M.
The ultrastructure of Chlorella cells grown in darkness on a solid agar medium with organic additions aboard the Bion-1O biosatellite was studied. Certain differences in submicroscopic organization of organelles in the experimental cells were revealed compared to the Earth control. The changes are registered mainly in ultrastructure of energetic organelles - mitochondria and plastids of the experimental cells, in particular, an increase of mitochondria and their cristae size, as well as an increase of the total volume of mitochondrion per cell were established. The decrease of the starch amount in the plastid stroma and the electron density of the latter was also observed. In many experimental cells, the increase of condensed chromatin in the nuclei has been noted. Ultrastructural rearrangements in cells after laboratory experiment realized according to the thermogram registered aboard the Bion-10 were insignificant compared to the flight experiment. Data obtained are compared to results of space flight experiments carried out aboard the Bion-9 (polycomponent aquatic system) and the orbital station Mir (solid agar medium).
Expedition 54 Press Conference
2017-12-16
Expedition 54 flight engineer Scott Tingle is seen in quarantine, behind glass, during a press conference, Saturday, Dec. 16, 2017 at the Cosmonaut Hotel in Baikonur, Kazakhstan. Tingle, Soyuz Commander Anton Shkaplerov of Roscosmos, and flight engineer Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) are scheduled to launch to the International Space Station aboard the Soyuz spacecraft from the Baikonur Cosmodrome on December 17. Photo Credit: (NASA/Joel Kowsky)
Expedition 55 Press Conference
2018-03-20
Expedition 55 flight engineer Ricky Arnold is seen in quarantine, behind glass, during a press conference, Tuesday, March 20, 2018 a the Cosmonaut Hotel in Baikonur, Kazakhstan. Arnold and his fellow Expedition 55 crew members Oleg Artemyev of Roscosmos and flight engineer Drew Feustel of NASA are scheduled to launch to the International Space Station aboard the Soyuz MS-08 spacecraft on Wednesday, March, 21. Photo Credit: (NASA/Joel Kowsky)
NASA Technical Reports Server (NTRS)
Galibert, G.
1978-01-01
Aerial and ground photographs of Wallis mountains and of Dolomiti di Cortina d'Ampezzo in Italy were made using spectrozonal emulsions and optical multichannel filters. A metric camera was used in the perspective of the first Spacelab flight aboard the space shuttle. Elementary forms of alpine geomorphology and ice or snow phenomena are detectable on these metric scenes.
Expedition 22 Change of Command in the U.S. Laboratory
2010-03-17
ISS022-E-100364 (17 March 2010) --- Crew members aboard the International Space Station are pictured in the Destiny laboratory during the ceremony of Changing-of-Command from Expedition 22 to Expedition 23. Pictured from the right are NASA astronauts Jeffrey Williams, Expedition 22 commander; and T.J. Creamer, Expedition 22/23 flight engineer; Russian cosmonauts Oleg Kotov, Expedition 22 flight engineer and Expedition 23 commander; and Maxim Suraev, Expedition 22 flight engineer. Not pictured is Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi, Expedition 22/23 flight engineer.
Senator John Glenn training in Single Systems Trainer
1998-03-30
S98-08642 (30 March 1998) --- U.S. Sen. John H. Glenn Jr. (D.-Ohio) is briefed on the usage of the single systems trainer at the Johnson Space Center (JSC). Glenn is in training for payload specialist duties for a scheduled late October flight aboard the Space Shuttle Discovery. Photo by Joe McNally, National Geographic, for NASA
Effect of weightlessness and centrifugation on red cell survival in rats subjected to space flight
NASA Technical Reports Server (NTRS)
Leon, H. A.; Serova, L. V.; Landaw, S. A.
1980-01-01
Rats were flown aboard the Soviet biosatellite Cosmos 936 for 18.5 d during August, 1977. Five rats were subjected to near-weightless space flight, as with Cosmos 782, and five rats were subjected to a 1-G force via an on-board centrifuge. These rats and three control groups were injected with 2-(C-14) glycine 19 d preflight. The flight rats were recovered from orbit after 18.5 d of space flight. Erythrocyte hemolysis and lifespan were evaluated in the five groups of rats by quantitation of radioactive carbon monoxide exhaled in the breath which arises from the breakdown of the previously labeled hemoglobin. The results support the previous findings wherein hemolysis was found to increase as a result of weightless space flight. A comparison to the centrifuged animals indicates that artificial gravity attenuates the effect of weightlessness on hemolysis and appears to normalize the hemolytic rate in the early postflight period.
Space Shuttle Atlantis Landing / STS-129 Mission
2009-11-27
PHOTO CREDIT: NASA or National Aeronautics and Space Administration CAPE CANAVERAL, Fla. - A fire and rescue truck is in place beside Runway 33 if needed to support the landing of space shuttle Atlantis at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. After 11 days in space, Atlantis completed the 4.5-million mile STS-129 mission on orbit 171. Main gear touchdown was at 9:44:23 a.m. EDT. Nose gear touchdown was at 9:44:36 a.m., and wheels stop was at 9:45:05 a.m. Aboard Atlantis are Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr.; and Expedition 20 and 21 Flight Engineer Nicole Stott who spent 87 days aboard the International Space Station. STS-129 is the final space shuttle Expedition crew rotation flight on the manifest. On STS-129, the crew delivered 14 tons of cargo to the orbiting laboratory, including two ExPRESS Logistics Carriers containing spare parts to sustain station operations after the shuttles are retired next year. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Jack Pfaller
Stability of Pharmaceuticals in Space
NASA Technical Reports Server (NTRS)
Nguyen, Y-Uyen
2009-01-01
Stability testing is a tool used to access shelf life and effects of storage conditions for pharmaceutical formulations. Early research from the International Space Station (ISS) revealed that some medications may have degraded while in space. This potential loss of medication efficacy would be very dangerous to Crew health. The aim of this research project, Stability of Pharmacotherapeutic Compounds, is to study how the stability of pharmaceutical compounds is affected by environmental conditions in space. Four identical pharmaceutical payload kits containing medications in different dosage forms (liquid for injection, tablet, capsule, ointment and suppository) were transported to the ISS aboard a Space Shuttle. One of the four kits was stored on that Shuttle and the other three were stored on the ISS for return to Earth at various time intervals aboard a pre-designated Shuttle flight. The Pharmacotherapeutics laboratory used stability test as defined by the United States Pharmacopeia (USP), to access the degree of degradation to the Payload kit medications that may have occurred during space flight. Once these medications returned, the results of stability test performed on them were compared to those from the matching ground controls stored on Earth. Analyses of the results obtained from physical and chemical stability assessments on these payload medications will provide researchers additional tools to promote safe and efficacious medications for space exploration.
2012-08-22
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, social media participants take part in a question and answer session with astronauts aboard the International Space Station. At the podium, Ranz Adams asks a question of space station flight engineer Joe Acaba. Leading the activity from the desk at the front of the room are, from the left, Laurel Lichtenberger of NASA Public Affairs, Jason Townsend of the NASA Social Media Team and Kerri Beisser of the Johns Hopkins University Applied Physics Laboratory. The social media gathering at the Florida spaceport took place Aug. 22, 2012 joining a world-wide NASA Social allowing participants to ask questions of NASA astronauts who are living and working aboard the International Space Station. . For more information, visit http://www.nasa.gov/mission_pages/station/main/index.html Photo credit: NASA/ Frankie Martin
A Year of Education on the Space Station Highlighted During In-Fight Event
2017-10-16
Aboard the International Space Station, Expedition 53 Flight Engineers Joe Acaba of NASA, a former educator, and Paolo Nespoli of the European Space Agency discussed the value of education aboard the orbital complex during a Facebook Live question and answer session Oct. 16. Joined by ISS Program Manager Kirk Shireman on the ground from the Johnson Space Center in Houston, Acaba and Nespoli fielded questions about their life and work in orbit and how it can stimulate students to pursue careers in mathematics, science and engineering. Acaba and another former educator, NASA astronaut Ricky Arnold who will launch to the station next March, are conducting back-to-back missions on the station to contribute their educator skills in a year’s worth of interaction with students around the world.
2010-10-31
INTERNATIONAL SPACE STATION -- ISS025-E-10716 -- This image of the southeast United States from the International Space Station on Halloween night is anything but frightening. From 220 miles above Earth, an Expedition 25 crew member aboard the orbiting laboratory took the image, which shows the Gulf and Atlantic coasts, the Florida panhandle and part of the Georgia coast. The Expedition 25 crew members are NASA astronaut and Commander Doug Wheelock, NASA astronauts Scott Kelly and Shannon Walker, and Russian cosmonauts Oleg Skripochka, Fyodor Yurchikhin and Alexander Kaleri, all flight engineers. Two days later, NASA and its international partners will celebrate 10 years of continuous human presence aboard the station. Image credit: NASA
Ohio Senator John Glenn tours the SPACEHAB Payload Processing Facility in Cape Canaveral
NASA Technical Reports Server (NTRS)
1998-01-01
Ohio Senator John Glenn, second from right, enjoys a tour of the SPACEHAB Payload Processing Facility in Cape Canaveral. Joining Senator Glenn are, left to right, Dr. Bernard Harris, SPACEHAB vice president, microgravity and life sciences; Dale Steffey, SPACEHAB vice president, operations; and Dr. Shelley Harrison, SPACEHAB chairman and chief executive officer. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.
Ohio Senator John Glenn tours the SPACEHAB Payload Processing Facility in Cape Canaveral
NASA Technical Reports Server (NTRS)
1998-01-01
Ohio Senator John Glenn, at left, enjoys a tour of the SPACEHAB Payload Processing Facility in Cape Canaveral. Joining Senator Glenn are, left to right, Dale Steffey, SPACEHAB vice president, operations; Dr. Shelley Harrison, SPACEHAB chairman and chief executive officer; and Dr. Bernard Harris, SPACEHAB vice president, microgravity and life sciences. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.
Ohio Senator John Glenn tours the SPACEHAB Payload Processing Facility in Cape Canaveral
NASA Technical Reports Server (NTRS)
1998-01-01
Ohio Senator John Glenn, second from left, enjoys a tour of the SPACEHAB Payload Processing Facility in Cape Canaveral. Joining Senator Glenn are, left to right, Dale Steffey, SPACEHAB vice president, operations; Dr. Shelley Harrison, SPACEHAB chairman and chief executive officer; and Dr. Bernard Harris, SPACEHAB vice president, microgravity and life sciences. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.
2012-08-07
TITUSVILLE, Fla. - Inside the Astrotech payload processing facility in Titusville, Fla. near NASA’s Kennedy Space Center, the two Radiation Belt Storm Probes, or RBSP, spacecraft are being encapsulated in the payload faring. The fairing will house and protect the RBSP during liftoff and flight through the atmosphere aboard an Atlas V rocket. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/ Kim Shiflett
2012-08-07
TITUSVILLE, Fla. - Inside the Astrotech payload processing facility in Titusville, Fla. near NASA’s Kennedy Space Center, the two Radiation Belt Storm Probes, or RBSP, spacecraft are being encapsulated in the payload faring. The fairing will house and protect the RBSP during liftoff and flight through the atmosphere aboard an Atlas V rocket. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/ Kim Shiflett
Expedition 50/51 Launches to Space Station on This Week @NASA – November 18, 2016
2016-11-18
The Expedition 50/51 crew, including NASA astronaut Peggy Whitson, launched aboard a Soyuz spacecraft from the Baikonur Cosmodrome in Kazakhstan Nov. 17 eastern time, to begin a two-day flight to the International Space Station. Whitson, Oleg Novitskiy of the Russian space agency Roscosmos and Thomas Pesquet of ESA (European Space Agency) are scheduled to join Expedition 50 commander Shane Kimbrough of NASA and Roscosmos cosmonauts Sergey Ryzhikov and Andrey Borisenko, who all have been aboard the orbiting laboratory since October. Whitson will assume command of the station in February – making her the first woman to command the space station twice. Whitson and her Expedition 50 crewmates are scheduled to return to Earth next spring. Also, Supermoon Shines Bright, Newman Participates in Operation IceBridge, and Advanced Weather Satellite Mission Previewed!
2012-10-23
Expedition 33/34 Russian Cosmonaut and Soyuz Commander Oleg Novitskiy is escorted to the Soyuz rocket by President of the S.P. Korolev Rocket and Space Corporation Energia Vitaly Lopota, prior to his launch onboard a Soyuz TMA-06M spacecraft with fellow crew members, NASA Astronaut and Flight Engineer Kevin Ford, and, Russian Cosmonaut and Flight Engineer Evgeny Tarelkin, Tuesday, October 23, 2012, in Baikonur, Kazakhstan. Launch of the Soyuz rocket will send Ford, Novitskiy and Tarelkin on a five-month mission aboard the International Space Station. Photo Credit: (NASA/Bill Ingalls)
E55_Inflight_IndyStar_Off_Track_2018_0517_1330_654170
2018-05-21
SPACE STATION CREW DISCUSSES AUTO RACING FROM ORBIT------- Aboard the International Space Station, Expedition 55 NASA Flight Engineers Drew Feustel and Scott Tingle discussed their thoughts on the upcoming Indianapolis “500” auto race during in-flight interviews May 17 with the USA Today Network and the “Off Track with Hinch and Rossi” podcast. Feustel, in particular, is an enormous auto racing aficionado. The crew plans to have the televised May 27 race uplinked to them on orbit during an off-duty day.
Candid views of the STS-81 and Mir 22 crews on the orbiter's middeck
1997-01-16
STS081-E-05498 (16 Jan. 1997) --- Supplies and equipment transfer are the topic of the day, as the Space Shuttle Atlantis and Russia's Mir Space Station respective commanders have a discussion aboard the Orbiter. Left to right are cosmonauts Valeri G. Korzun and Aleksandr Y. Kaleri, Mir-22 commander and flight engineer respectively; along with astronaut Michael A. Baker, mission commander. The photograph was recorded with an Electronic Still Camera (ESC) and later was downlinked to flight controllers in Houston, Texas.
2000-07-29
Paul Luz (right), an aerospace flight systems engineer at NASA's Marshall Space Flight Center (MSFC), takes a question from a visitor as they discuss microgravity research at AirVenture 2000. Part of the NASA exhibits included demonstrations of knowledge gained from microgravity research aboard the Space Shuttle. These include liquid metal (liquid metal demonstrator is three plastic drop tubes at center) and dendritic growth (in front of Luz), both leading to improvements in processes of Earth. The exhibit was part of the NASA outreach activity at AirVenture 2000 sponsored by the Experimental Aircraft Association in Oshkosh, WI.
Astronaut Shane Kimbrough Visits Marshall Space Flight Center
2017-08-31
NASA astronaut Shane Kimbrough presents highlights from his Expedition 49-50 mission aboard the International Space Station Sept. 19 to students from theU.S. Space & Rocket Center's Space Camp and team members at NASA's Marshall Space Flight Center. While serving as commander of the station, Kimbrough conducted four spacewalks, during which he installed new batteries and relay boxes, and helped move a pressurized mating adapter for future commercial crew spacecraft visiting the outpost. He also contributed to hundreds of experiments in biology, biotechnology, physical science and Earthobservations. One of these experiments was the Microgravity Expanded Stem Cells investigation, results of which could lead to the treatment of diseases andinjury in space and provide a way to improve stem cell production for medical therapies on Earth.
1998-11-13
KENNEDY SPACE CENTER, FLA. -- NASA's "Super Guppy" aircraft arrives in KSC air space escorted by two T-38 aircraft after leaving Marshall Space Flight Center in Huntsville, Ala. The whale-like airplane carries the U.S. Laboratory module, considered the centerpiece of the International Space Station. The module will undergo final pre-launch preparations at KSC's Space Station Processing Facility. Scheduled for launch aboard the Shuttle Endeavour on mission STS-98, the laboratory comprises three cylindrical sections with two end cones. Each end-cone contains a hatch opening for entering and exiting the lab. The lab will provide a shirtsleeve environment for research in such areas as life science, microgravity science, Earth science and space science. Designated Flight 5A, this mission is targeted for launch in early 2000
2006-06-30
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility at NASA's Kennedy Space Center, flight crew systems technician Troy Mann and flight crew systems manager Jim Blake store the food containers that will be stowed on Space Shuttle Discovery for the flight of mission STS-121. The containers hold meals prepared for the mission crew. Mann and Blake are with United Space Alliance ground operations. Astronauts select their own menus from a large array of food items. Astronauts are supplied with three balanced meals, plus snacks. Foods flown on space missions are researched and developed at the Space Food Systems Laboratory at the Johnson Space Center (JSC) in Houston, which is staffed by food scientists, dietitians and engineers. Foods are analyzed through nutritional analysis, sensory evaluation, storage studies, packaging evaluations and many other methods. Each astronaut’s food is stored aboard the space shuttle and is identified by a colored dot affixed to each package. Launch of Space Shuttle Discovery on mission STS-121 is scheduled for July 1. Photo credit: NASA/Jack Pfaller
2017-12-07
Exercise is an integral part of the astronauts’ daily routine aboard the International Space Station. In this STEMonstration, Expedition 53/54 Flight Engineer Joe Acaba stresses the importance of exercising in orbit, and dives into the science behind what happens to bones and muscles in microgravity.
2010-12-25
ISS026-E-012158 (25 Dec. 2010) --- NASA astronaut Catherine (Cady) Coleman, Expedition 26 flight engineer, and one of six crew members currently aboard the International Space Station, peeks out of her sleeping quarters on Christmas morning to view the station’s decorations and gifts.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Center Director Jim Kennedy (right) greets STS-114 Mission Commander Eileen Collins after her arrival at NASA Kennedy Space Center aboard a T-38 jet aircraft. The Return to Flight STS-114 crew has returned to KSC to get ready for a second launch attempt aboard Space Shuttle Discovery. Collins later told the media who waited nearby that since the scrub on July 13, the crew has focused on the on-orbit part of the mission and training for night landings using the Shuttle Training Aircraft. She praised the engineers and technicians who have been troubleshooting the elusive sensor problem and thanked them. STS-114 is scheduled to launch July 26 at 10:39 a.m. EDT from Launch Pad 39B.
2017-02-15
Charles Spern, at right, project manager on the Engineering Services Contract (ESC), and Glenn Washington, ESC quality assurance specialist, perform final inspections of the Veggie Series 1 plant experiment inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The Series 1 experiment is being readied for flight aboard Orbital ATK's Cygnus module on its seventh (OA-7) Commercial Resupply Services mission to the International Space Station. The Veggie system is on the space station.
STS-120 crew along with Expedition crew members Dan Tani and Sandra Magnus
2007-08-09
JSC2007-E-41541 (9 Aug. 2007) --- Astronauts Stephanie Wilson, STS-120 mission specialist, and Dan Tani, Expedition 16 flight engineer, use the virtual reality lab at Johnson Space Center to train for their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.
Stowage bags in FGB/Zarya module
2005-07-31
S114-E-5945 (31 July 2005) --- This scene in Zarya, the functional cargo block for the International Space Station, serves witness to the primary current emphasis onboard the orbital outpost. Transfers of additional water and supplies to the International Space Station continues on this Sunday as the crew aboard Space Shuttle Discovery begins Flight Day 6. Cosmonaut Sergei Krikalev of Russia's Federal Space Agency can be seen at the far end of the cluttered hallway.
2013-03-07
S84-27204 (3-11 Feb 1984) --- Astronaut Ronald E. McNair, STS 41-B mission specialist, prepares to assemble meal items aboard the Earth-orbiting Space Shuttle Challenger. The galley is located in the mid deck. The number of items in the area signals how busy it is. Later Dr. McNair died on January 28, 1986 on his next space flight STS 51-L when the Space Shuttle Challenger exploded after launch from the Kennedy Space Center, Florida.
SpaceX's Environmental Control and Life Support System (ECLSS)
2016-11-09
The ECLSS module inside SpaceX’s headquarters and factory in Hawthorne, California. The module is the same size as the company’s Crew Dragon spacecraft and is built to test the Environmental Control and Life Support System, or ECLSS, that is being built for missions aboard the Crew Dragon including those by astronauts flying to the International Space Station on flights for NASA’s Commercial Crew Program. Photo credit: SpaceX
2003-09-08
KENNEDY SPACE CENTER, FLA. - The Window Observational Research Facility (WORF), seen in the Space Station Processing Facility, was designed and built by the Boeing Co. at NASA’s Marshall Space Flight Center in Huntsville, Ala. WORF will be delivered to the International Space Station and placed in the rack position in front of the Destiny lab window, providing locations for attaching cameras, multi-spectral scanners and other instruments. WORF will support a variety of scientific and commercial experiments in areas of Earth systems and processes, global ecological changes in Earth’s biosphere, lithosphere, hydrosphere and climate system, Earth resources, natural hazards, and education. After installation, it will become a permanent focal point for Earth Science research aboard the space station.
2003-09-08
KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility check out the Window Observational Research Facility (WORF), designed and built by the Boeing Co. at NASA’s Marshall Space Flight Center in Huntsville, Ala. WORF will be delivered to the International Space Station and placed in the rack position in front of the Destiny lab window, providing locations for attaching cameras, multi-spectral scanners and other instruments. WORF will support a variety of scientific and commercial experiments in areas of Earth systems and processes, global ecological changes in Earth’s biosphere, lithosphere, hydrosphere and climate system, Earth resources, natural hazards, and education. After installation, it will become a permanent focal point for Earth Science research aboard the space station.
Mir 18 post flight presentation
NASA Astrophysics Data System (ADS)
1995-07-01
The post flight presentation for the Mir 18 Mission is featured on this video, with both the American astronauts and Russian Cosmonauts present for the press conference. They included: Gibson; Precourt; Baker; Harbough; Dunbar; Strekalov; Dezhurov; and Thagard. Film footage and photographic slides of the various activities performed aboard the Mir Space Station and the spaceborne experiments accomplished during the flight mission are presented. Each of the operations are explained by the cosmonauts, with brief views of the Atlantis-Mir Earth orbital rendezvous over the Red Sea included.
Mir 18 Post Flight Presentation
NASA Technical Reports Server (NTRS)
1995-01-01
The post flight presentation for the Mir 18 Mission is featured on this video, with both the American astronauts and Russian Cosmonauts present for the press conference. They included: Gibson; Precourt; Baker; Harbough; Dunbar; Strekalov; Dezhurov; and Thagard. Film footage and photographic slides of the various activities performed aboard the Mir Space Station and the spaceborne experiments accomplished during the flight mission are presented. Each of the operations are explained by the cosmonauts, with brief views of the Atlantis-Mir Earth orbital rendezvous over the Red Sea included.
2006-09-08
KENNEDY SPACE CENTER, FLA. - In the Operations and Checkout Building at NASA Kennedy Space Center, STS-115 Pilot Christopher Ferguson dons his launch and re-entry suit before heading to the launch pad. Ferguson is making his first shuttle flight on this mission to the International Space Station aboard Space Shuttle Atlantis. On its second attempt for launch, Atlantis is scheduled to lift off at 11:41 a.m. EDT today from Launch Pad 39B. During the STS-115 mission, Atlantis' astronauts will deliver and install the 17.5-ton, bus-sized P3/P4 integrated truss segment on the station. The girder-like truss includes a set of giant solar arrays, batteries and associated electronics and will provide one-fourth of the total power-generation capability for the completed station. This mission is the 116th space shuttle flight, the 27th flight for orbiter Atlantis, and the 19th U.S. flight to the ISS. STS-115 is scheduled to last 11 days with a planned landing at KSC. Photo credit: NASA/Kim Shiflett
2006-09-08
KENNEDY SPACE CENTER, FLA. - In the Operations and Checkout Building at NASA Kennedy Space Center, STS-115 Commander Brent Jett dons his launch and re-entry suit before heading to the launch pad. Jett is making his fourth shuttle flight on this mission to the International Space Station aboard Space Shuttle Atlantis. On its second attempt for launch, Atlantis is scheduled to lift off at 11:41 a.m. EDT today from Launch Pad 39B. During the STS-115 mission, Atlantis' astronauts will deliver and install the 17.5-ton, bus-sized P3/P4 integrated truss segment on the station. The girder-like truss includes a set of giant solar arrays, batteries and associated electronics and will provide one-fourth of the total power-generation capability for the completed station. This mission is the 116th space shuttle flight, the 27th flight for orbiter Atlantis, and the 19th U.S. flight to the ISS. STS-115 is scheduled to last 11 days with a planned landing at KSC. Photo credit: NASA/Kim Shiflett
2006-09-08
KENNEDY SPACE CENTER, FLA. - In the Operations and Checkout Building at NASA Kennedy Space Center, STS-115 Mission Specialist Joseph Tanner dons his launch and re-entry suit before heading to the launch pad. Tanner is making his fourth shuttle flight on this mission to the International Space Station aboard Space Shuttle Atlantis. On its second attempt for launch, Atlantis is scheduled to lift off at 11:41 a.m. EDT today from Launch Pad 39B. During the STS-115 mission, Atlantis' astronauts will deliver and install the 17.5-ton, bus-sized P3/P4 integrated truss segment on the station. The girder-like truss includes a set of giant solar arrays, batteries and associated electronics and will provide one-fourth of the total power-generation capability for the completed station. This mission is the 116th space shuttle flight, the 27th flight for orbiter Atlantis, and the 19th U.S. flight to the ISS. STS-115 is scheduled to last 11 days with a planned landing at KSC. Photo credit: NASA/Kim Shiflett
Mukai, Glenn and Robinson in flight seats during TCDT
NASA Technical Reports Server (NTRS)
1998-01-01
In their flight seats aboard Space Shuttle Discovery are (front to back) STS-95 Payload Specialists Chiaki Mukai (M.D., Ph.D.), representing the National Space Development Agency of Japan (NASDA), and John H. Glenn Jr., senator from Ohio, and Mission Specialist Stephen K. Robinson. Mukai, Glenn and Robinson, along with other crew members are at KSC to participate in the Terminal Countdown Demonstration Test (TCDT) which includes mission familiarization activities, emergency egress training, and a simulated main engine cutoff. Not shown are Pilot Steven W. Lindsey, Mission Specialist Scott E. Parazynski, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Commander Curtis L. Brown. The STS-95 mission, targeted for liftoff on Oct. 29, includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Following the TCDT, the crew will be returning to Houston for final flight preparations.
Marshall Space Flight Center's role in EASE/ACCESS mission management
NASA Technical Reports Server (NTRS)
Hawkins, Gerald W.
1987-01-01
The Marshall Space Flight Center (MSFC) Spacelab Payload Project Office was responsible for the mission management and development of several successful payloads. Two recent space construction experiments, the Experimental Assembly of Structures in Extravehicular Activity (EASE) and the Assembly Concept for Construction of Erectable Space Structures (ACCESS), were combined into a payload managed by the center. The Ease/ACCESS was flown aboard the Space Shuttle Mission 61-B. The EASE/ACCESS experiments were the first structures assembled in space, and the method used to manage this successful effort will be useful for future space construction missions. The MSFC mission management responsibilities for the EASE/ACCESS mission are addressed and how the lessons learned from the mission can be applied to future space construction projects are discussed.
1998-12-01
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, STS-98 crew members Pilot Mark Polansky, Mission Specialist Marsha Ivins and Commander Ken Cockrell pose underneath the banner revealing the name Destiny given to the U.S. Lab module. They are part of the five-member crew scheduled to carry the lab into space aboard Space Shuttle Endeavour early in the year 2000 where it will become the centerpiece of scientific research on the International Space Station. The Shuttle will spend six days docked to the station while the laboratory is attached and three space walks are conducted to complete its assembly. The laboratory will be launched with five equipment racks aboard, which will provide essential functions for station systems, including high data-rate communications, and maintain the station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights
NASA Technical Reports Server (NTRS)
2001-01-01
Computer-generated drawing shows the relative scale and working space for the Microgravity Science Glovebox (MSG) being developed by NASA and the European Space Agency for science experiments aboard the International Space Station (ISS). The person at the glovebox repesents a 95th percentile American male. The MSG will be deployed first to the Destiny laboratory module and later will be moved to ESA's Columbus Attached Payload Module. Each module will be filled with International Standard Payload Racks (green) attached to standoff fittings (yellow) that hold the racks in position. Destiny is six racks in length. The MSG is being developed by the European Space Agency and NASA to provide a large working volume for hands-on experiments aboard the International Space Station. Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center. (Credit: NASA/Marshall)
Experiment "Regeneration" Performed Aboard the Russian Spacecraft Foton-M2 in 2005
NASA Technical Reports Server (NTRS)
Grigoryan, Elonora; Almeida, Eduardo; Domaratskaya, Elena; Poplinskaya, Valentina; Aleinikova, Karina; Tairbekov, Murad; Mitashov, Victor
2006-01-01
The experiments on the newts performed earlier aboard Russian biosate llites showed that the rate of lens and tail regeneration in space wa s greater than on the ground. In parallel it was found that the numbe r of cells in S-phase was greater in space-flown animals than in the ground controls. However, it was unclear whether cell proliferation stimulation was induced by micro-g per se. Molecular mechanisms under lying the change also remained obscure. These issues were addressed b y the joint Russian-American experiment "Regeneration" flown on Foton -M2 in 2005. The method for in-flight delivering DNA precursor BrdU was developed. The experiment showed that during the flight the numbe r of S-phase cells in the regenerating eyes and tails increased. Thes e data together with those obtained earlier suggest that cell prolife ration increases in response to the effects of both micro-g and 1-g a fter return to Earth. The expression of bFGF in regenerating tissues of "flown" newts and ground controls was examined using immuno-histo chemistry. Obtained results suggest that this growth factor is a part icipant of the promotional effect of space flight upon cell prolifera tion in lens and tail regenerates.
2006-06-30
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility at NASA's Kennedy Space Center, flight crew systems technician Troy Mann and flight crew systems manager Jim Blake secure the storage boxes holding the food containers that will be stowed on Space Shuttle Discovery for the flight of mission STS-121. The containers hold meals prepared for the mission crew. Astronauts select their own menus from a large array of food items. Astronauts are supplied with three balanced meals, plus snacks. Foods flown on space missions are researched and developed at the Space Food Systems Laboratory at the Johnson Space Center (JSC) in Houston, which is staffed by food scientists, dietitians and engineers. Foods are analyzed through nutritional analysis, sensory evaluation, storage studies, packaging evaluations and many other methods. Each astronaut’s food is stored aboard the space shuttle and is identified by a colored dot affixed to each package. Launch of Space Shuttle Discovery on mission STS-121 is scheduled for July 1. Photo credit: NASA/Jack Pfaller
STS-106 orbiter Atlantis rolls over to the VAB
NASA Technical Reports Server (NTRS)
2000-01-01
The orbiter Atlantis is moved aboard an orbiter transporter from the Orbiter Processing Facility (OPF) bay 3 over to the Vehicle Assembly Building (VAB). In the background (right) are OPF bays 1 and 2. In the VAB it will be lifted to vertical and placed aboard the mobile launcher platform (MLP) for stacking with the solid rocket boosters and external tank. Atlantis is scheduled to launch Sept. 8 on mission STS-106, the fourth construction flight to the International Space Station, with a crew of seven.
2018-03-21
Expedition 55 Soyuz Commander Oleg Artemyev of Roscosmos takes a picture with a cell phone after having his Russian Sokol suit pressure checked in preparation for launch aboard the Soyuz MS-08 spacecraft, Wednesday, March 21, 2018 at the Baikonur Cosmodrome in Kazakhstan. Artemyev and flight engineers Ricky Arnold and Drew Feustel of NASA launched aboard the Soyuz MS-08 spacecraft at 1:44 p.m. Eastern time (11:44 p.m. Baikonur time) on March 21 to begin their journey to the International Space Station. Photo Credit: (NASA/Joel Kowsky)