Sample records for space flight control

  1. Integrating Space Flight Resource Management Skills into Technical Lessons for International Space Station Flight Controller Training

    NASA Technical Reports Server (NTRS)

    Baldwin, Evelyn

    2008-01-01

    The Johnson Space Center s (JSC) International Space Station (ISS) Space Flight Resource Management (SFRM) training program is designed to teach the team skills required to be an effective flight controller. It was adapted from the SFRM training given to Shuttle flight controllers to fit the needs of a "24 hours a day/365 days a year" flight controller. More recently, the length reduction of technical training flows for ISS flight controllers impacted the number of opportunities for fully integrated team scenario based training, where most SFRM training occurred. Thus, the ISS SFRM training program is evolving yet again, using a new approach of teaching and evaluating SFRM alongside of technical materials. Because there are very few models in other industries that have successfully tied team and technical skills together, challenges are arising. Despite this, the Mission Operations Directorate of NASA s JSC is committed to implementing this integrated training approach because of the anticipated benefits.

  2. Space Launch System Ascent Flight Control Design

    NASA Technical Reports Server (NTRS)

    VanZwieten, Tannen S.; Orr, Jeb S.; Wall, John H.; Hall, Charles E.

    2014-01-01

    A robust and flexible autopilot architecture for NASA's Space Launch System (SLS) family of launch vehicles is presented. As the SLS configurations represent a potentially significant increase in complexity and performance capability of the integrated flight vehicle, it was recognized early in the program that a new, generalized autopilot design should be formulated to fulfill the needs of this new space launch architecture. The present design concept is intended to leverage existing NASA and industry launch vehicle design experience and maintain the extensibility and modularity necessary to accommodate multiple vehicle configurations while relying on proven and flight-tested control design principles for large boost vehicles. The SLS flight control architecture combines a digital three-axis autopilot with traditional bending filters to support robust active or passive stabilization of the vehicle's bending and sloshing dynamics using optimally blended measurements from multiple rate gyros on the vehicle structure. The algorithm also relies on a pseudo-optimal control allocation scheme to maximize the performance capability of multiple vectored engines while accommodating throttling and engine failure contingencies in real time with negligible impact to stability characteristics. The architecture supports active in-flight load relief through the use of a nonlinear observer driven by acceleration measurements, and envelope expansion and robustness enhancement is obtained through the use of a multiplicative forward gain modulation law based upon a simple model reference adaptive control scheme.

  3. Mentoring SFRM: A New Approach to International Space Station Flight Control Training

    NASA Technical Reports Server (NTRS)

    Huning, Therese; Barshi, Immanuel; Schmidt, Lacey

    2009-01-01

    The Mission Operations Directorate (MOD) of the Johnson Space Center is responsible for providing continuous operations support for the International Space Station (ISS). Operations support requires flight controllers who are skilled in team performance as well as the technical operations of the ISS. Space Flight Resource Management (SFRM), a NASA adapted variant of Crew Resource Management (CRM), is the competency model used in the MOD. ISS flight controller certification has evolved to include a balanced focus on development of SFRM and technical expertise. The latest challenge the MOD faces is how to certify an ISS flight controller (Operator) to a basic level of effectiveness in 1 year. SFRM training uses a twopronged approach to expediting operator certification: 1) imbed SFRM skills training into all Operator technical training and 2) use senior flight controllers as mentors. This paper focuses on how the MOD uses senior flight controllers as mentors to train SFRM skills.

  4. Impact of space flight on cardiovascular autonomic control

    NASA Astrophysics Data System (ADS)

    Beckers, F.; Verheyden, B.; Morukov, B.; Aubert, Ae

    baseline condition. Mean systolic blood pressure did not differ significantly before during and after space flight. In space both LF and HF were decreased compared the standing measurements pre- and post-flight. No evolution was present in BPV after return to Earth. Conclusion: During space flight autonomic modulation is characterised by a vagal predominance. Immediately after return to Earth overall autonomic modulation is extremely depressed. Vasomotor autonomic control is restored rather quickly after space flight, while the restoration of autonomic modulation of heart rate is very slow.

  5. Space Launch System Ascent Flight Control Design

    NASA Technical Reports Server (NTRS)

    Orr, Jeb S.; Wall, John H.; VanZwieten, Tannen S.; Hall, Charles E.

    2014-01-01

    A robust and flexible autopilot architecture for NASA's Space Launch System (SLS) family of launch vehicles is presented. The SLS configurations represent a potentially significant increase in complexity and performance capability when compared with other manned launch vehicles. It was recognized early in the program that a new, generalized autopilot design should be formulated to fulfill the needs of this new space launch architecture. The present design concept is intended to leverage existing NASA and industry launch vehicle design experience and maintain the extensibility and modularity necessary to accommodate multiple vehicle configurations while relying on proven and flight-tested control design principles for large boost vehicles. The SLS flight control architecture combines a digital three-axis autopilot with traditional bending filters to support robust active or passive stabilization of the vehicle's bending and sloshing dynamics using optimally blended measurements from multiple rate gyros on the vehicle structure. The algorithm also relies on a pseudo-optimal control allocation scheme to maximize the performance capability of multiple vectored engines while accommodating throttling and engine failure contingencies in real time with negligible impact to stability characteristics. The architecture supports active in-flight disturbance compensation through the use of nonlinear observers driven by acceleration measurements. Envelope expansion and robustness enhancement is obtained through the use of a multiplicative forward gain modulation law based upon a simple model reference adaptive control scheme.

  6. Space Shuttle stability and control flight test techniques

    NASA Technical Reports Server (NTRS)

    Cooke, D. R.

    1980-01-01

    A unique approach for obtaining vehicle aerodynamic characteristics during entry has been developed for the Space Shuttle. This is due to the high cost of Shuttle testing, the need to open constraints for operational flights, and the fact that all flight regimes are flown starting with the first flight. Because of uncertainties associated with predicted aerodynamic coefficients, nine flight conditions have been identified at which control problems could occur. A detailed test plan has been developed for testing at these conditions and is presented. Due to limited testing, precise computer initiated maneuvers are implemented. These maneuvers are designed to optimize the vehicle motion for determining aerodynamic coefficients. Special sensors and atmospheric measurements are required to provide stability and control flight data during an entire entry. The techniques employed in data reduction are proven programs developed and used at NASA/DFRC.

  7. The Vehicle Control Systems Branch at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Barret, Chris

    1990-01-01

    This paper outlines the responsibility of the Vehicle Control Systems Branch at the Marshall Space Flight Center (MSFC) to analyze, evaluate, define, design, verify, and specify requirements for advanced launch vehicles and related space projects, and to conduct research in advanced flight control concepts. Attention is given to branch responsibilities which include Shuttle-C, Shuttle-C Block II, Shuttle-Z, lunar cargo launch vehicles, Mars cargo launch vehicles, orbital maneuvering vehicle, automatic docking, tethered satellite, aeroassisted flight experiment, and solid rocket booster parachute recovery system design.

  8. Integrated Digital Flight Control System for the Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The objectives of the integrated digital flight control system (DFCS) is to provide rotational and translational control of the space shuttle orbiter in all phases of flight: from launch ascent through orbit to entry and touchdown, and during powered horizontal flights. The program provides a versatile control system structure while maintaining uniform communications with other programs, sensors, and control effectors by using an executive routine/functional subroutine format. The program reads all external variables at a single point, copies them into its dedicated storage, and then calls the required subroutines in the proper sequence. As a result, the flight control program is largely independent of other programs in the computer complex and is equally insensitive to characteristics of the processor configuration. The integrated structure is described of the control system and the DFCS executive routine which embodies that structure. The input and output, including jet selection are included. Specific estimation and control algorithm are shown for the various mission phases: cruise (including horizontal powered flight), entry, on-orbit, and boost. Attitude maneuver routines that interface with the DFCS are included.

  9. Integrated digital flight-control system for the space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The integrated digital flight control system is presented which provides rotational and translational control of the space shuttle orbiter in all phases of flight: from launch ascent through orbit to entry and touchdown, and during powered horizontal flights. The program provides a versatile control system structure while maintaining uniform communications with other programs, sensors, and control effectors by using an executive routine/functional subroutine format. The program reads all external variables at a single point, copies them into its dedicated storage, and then calls the required subroutines in the proper sequence. As a result, the flight control program is largely independent of other programs in the GN&C computer complex and is equally insensitive to the characteristics of the processor configuration. The integrated structure of the control system and the DFCS executive routine which embodies that structure are described along with the input and output. The specific estimation and control algorithms used in the various mission phases are given.

  10. Lateral stability and control derivatives extracted from space shuttle Challenger flight data

    NASA Technical Reports Server (NTRS)

    Schiess, James R.

    1988-01-01

    Flight data taken from six flights of the Space Transportation System shuttle Challenger (STS-6, 7, 8, 11, 13 and 17) during atmospheric entry are analyzed to determine the shuttle lateral aerodynamic characteristics. Maximum likelihood estimation is applied to data derived from accelerometer and rate gyro measurements and trajectory, meteorological and control surface data to estimate lateral-directional stability and control derivatives. The vehicle stability and control surface effectiveness are compared across the flights and to preflight predicted values.

  11. Stability and control flight test results of the space transportation system's orbiter

    NASA Technical Reports Server (NTRS)

    Culp, M. A.; Cooke, D. R.

    1982-01-01

    Flight testing of the Space Shuttle Orbiter is in progress and current results of the post-flight aerodynamic analyses are discussed. The purpose of these analyses is to reduce the pre-flight aerodynamic uncertainties, thereby leading to operational certification of the Orbiter flight envelope relative to the integrated airframe and flight control system. Primary data reduction is accomplished with a well documented maximum likelihood system identification techniques.

  12. Calbindins decreased after space flight

    NASA Technical Reports Server (NTRS)

    Sergeev, I. N.; Rhoten, W. B.; Carney, M. D.

    1996-01-01

    Exposure of the body to microgravity during space flight causes a series of well-documented changes in Ca2+ metabolism, yet the cellular and molecular mechanisms leading to these changes are poorly understood. Calbindins, vitamin D-dependent Ca2+ binding proteins, are believed to have a significant role in maintaining cellular Ca2+ homeostasis. In this study, we used biochemical and immunocytochemical approaches to analyze the expression of calbindin-D28k and calbindin-D9k in kidneys, small intestine, and pancreas of rats flown for 9 d aboard the space shuttle. The effects of microgravity on calbindins in rats from space were compared with synchronous Animal Enclosure Module controls, modeled weightlessness animals (tail suspension), and their controls. Exposure to microgravity resulted in a significant and sustained decrease in calbindin-D28k content in the kidney and calbindin-D9k in the small intestine of flight animals, as measured by enzyme-linked immunosorbent assay (ELISA). Modeled weightlessness animals exhibited a similar decrease in calbindins by ELISA. Immunocytochemistry (ICC) in combination with quantitative computer image analysis was used to measure in situ the expression of calbindins in the kidney and the small intestine, and the expression of insulin in pancreas. There was a large decrease of immunoreactivity in renal distal tubular cell-associated calbindin-D28k and in intestinal absorptive cell-associated calbindin-D9k of space flight and modeled weightlessness animals compared with matched controls. No consistent difference in pancreatic insulin immunoreactivity between space flight, modeled weightlessness, and controls was observed. Regression analysis of results obtained by quantitative ICC and ELISA for space flight, modeled weightlessness animals, and their controls demonstrated a significant correlation. These findings after a short-term exposure to microgravity or modeled weightlessness suggest that a decreased expression of calbindins

  13. Space shuttle on-orbit flight control software requirements, preliminary version

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Software modules associated with various flight control functions for the space shuttle orbiter are described. Data flow, interface requirements, initialization requirements and module sequencing requirements are considered. Block diagrams and tables are included.

  14. Mentoring SFRM: A New Approach to International Space Station Flight Controller Training

    NASA Technical Reports Server (NTRS)

    Huning, Therese; Barshi, Immanuel; Schmidt, Lacey

    2008-01-01

    The Mission Operations Directorate (MOD) of the Johnson Space Center is responsible for providing continuous operations support for the International Space Station (ISS). Operations support requires flight controllers who are skilled in team performance as well as the technical operations of the ISS. Space Flight Resource Management (SFRM), a NASA adapted variant of Crew Resource Management (CRM), is the competency model used in the MOD. ISS flight controller certification has evolved to include a balanced focus on development of SFRM and technical expertise. The latest challenge the MOD faces is how to certify an ISS flight controller (operator) to a basic level of effectiveness in 1 year. SFRM training uses a two-pronged approach to expediting operator certification: 1) imbed SFRM skills training into all operator technical training and 2) use senior flight controllers as mentors. This paper focuses on how the MOD uses senior flight controllers as mentors to train SFRM skills. Methods: A mentor works with an operator throughout the training flow. Inserted into the training flow are guided-discussion sessions and on-the-job observation opportunities focusing on specific SFRM skills, including: situational leadership, conflict management, stress management, cross-cultural awareness, self care and team care while on-console, communication, workload management, and situation awareness. The mentor and operator discuss the science and art behind the skills, cultural effects on skills applications, recognition of good and bad skills applications, recognition of how skills application changes subtly in different situations, and individual goals and techniques for improving skills. Discussion: This mentoring program provides an additional means of transferring SFRM knowledge compared to traditional CRM training programs. Our future endeavors in training SFRM skills (as well as other organization s) may benefit from adding team performance skills mentoring. This paper

  15. Vestibular-Somatosensory Convergence in Head Movement Control During Locomotion after Long-Duration Space Flight

    NASA Technical Reports Server (NTRS)

    Mulavara, Ajitkumar; Ruttley, Tara; Cohen, Helen; Peters, Brian; Miller, Chris; Brady, Rachel; Merkle, Lauren; Bloomberg, Jacob

    2010-01-01

    Exposure to the microgravity conditions of space flight induces adaptive modification in the control of vestibular-mediated reflexive head movement during locomotion after space flight. Space flight causes astronauts to be exposed to somatosensory adaptation in both the vestibular and body load-sensing (BLS) systems. The goal of these studies was to examine the contributions of vestibular and BLS-mediated somatosensory influences on head movement control during locomotion after long-duration space flight. Subjects were asked to walk on a treadmill driven at 1.8 m/s while performing a visual acuity task. Data were collected using the same testing protocol from three independent subject groups; 1) normal subjects before and after exposure to 30 minutes of 40% bodyweight unloaded treadmill walking, 2) bilateral labyrinthine deficient (LD) patients and 3) astronauts who performed the protocol before and after long duration space flight. Motion data from head and trunk segmental motion data were obtained to calculate the angular head pitch (HP) movements during walking trials while subjects performed the visual task, to estimate the contributions of vestibular reflexive mechanisms in HP movements. Results showed that exposure to unloaded locomotion caused a significant increase in HP movements, whereas in the LD patients the HP movements were significantly decreased. Astronaut subjects results showed a heterogeneous response of both increases and decreases in the amplitude of HP movement. We infer that BLS-mediated somatosensory input centrally modulates vestibular input and can adaptively modify head-movement control during locomotion. Thus, space flight may cause a central adaptation mediated by the converging vestibular and body load-sensing somatosensory systems.

  16. NASA Marshall Space Flight Center Controls Systems Design and Analysis Branch

    NASA Technical Reports Server (NTRS)

    Gilligan, Eric

    2014-01-01

    Marshall Space Flight Center maintains a critical national capability in the analysis of launch vehicle flight dynamics and flight certification of GN&C algorithms. MSFC analysts are domain experts in the areas of flexible-body dynamics and control-structure interaction, thrust vector control, sloshing propellant dynamics, and advanced statistical methods. Marshall's modeling and simulation expertise has supported manned spaceflight for over 50 years. Marshall's unparalleled capability in launch vehicle guidance, navigation, and control technology stems from its rich heritage in developing, integrating, and testing launch vehicle GN&C systems dating to the early Mercury-Redstone and Saturn vehicles. The Marshall team is continuously developing novel methods for design, including advanced techniques for large-scale optimization and analysis.

  17. Atmospheric reentry flight test of winged space vehicle

    NASA Astrophysics Data System (ADS)

    Inatani, Yoshifumi; Akiba, Ryojiro; Hinada, Motoki; Nagatomo, Makoto

    A summary of the atmospheric reentry flight experiment of winged space vehicle is presented. The test was conducted and carried out by the Institute of Space and Astronautical Science (ISAS) in Feb. 1992 in Kagoshima Space Center. It is the first Japanese atmospheric reentry flight of the controlled lifting vehicle. A prime objective of the flight is to demonstrate a high speed atmospheric entry flight capability and high-angle-of-attack flight capability in terms of aerodynamics, flight dynamics and flight control of these kind of vehicles. The launch of the winged vehicle was made by balloon and solid propellant rocket booster which was also the first trial in Japan. The vehicle accomplishes the lfight from space-equivalent condition to the atmospheric flight condition where reaction control system (RCS) attitude stabilization and aerodynamic control was used, respectively. In the flight, the vehicle's attitude was measured by both an inertial measurement unit (IMU) and an air data sensor (ADS) which were employed into an auto-pilot flight control loop. After completion of the entry transient flight, the vehicle experienced unexpected instability during the atmospheric decelerating flight; however, it recovered the attitude orientation and completed the transonic flight after that. The latest analysis shows that it is due to the ADS measurement error and the flight control gain scheduling; what happened was all understood. Some details of the test and the brief summary of the current status of the post flight analysis are presented.

  18. In-flight testing of the space shuttle orbiter thermal control system

    NASA Technical Reports Server (NTRS)

    Taylor, J. T.

    1985-01-01

    In-flight thermal control system testing of a complex manned spacecraft such as the space shuttle orbiter and the considerations attendant to the definition of the tests are described. Design concerns, design mission requirements, flight test objectives, crew vehicle and mission risk considerations, instrumentation, data requirements, and real-time mission monitoring are discussed. An overview of the tests results is presented.

  19. Large space structures controls research and development at Marshall Space Flight Center: Status and future plans

    NASA Technical Reports Server (NTRS)

    Buchanan, H. J.

    1983-01-01

    Work performed in Large Space Structures Controls research and development program at Marshall Space Flight Center is described. Studies to develop a multilevel control approach which supports a modular or building block approach to the buildup of space platforms are discussed. A concept has been developed and tested in three-axis computer simulation utilizing a five-body model of a basic space platform module. Analytical efforts have continued to focus on extension of the basic theory and subsequent application. Consideration is also given to specifications to evaluate several algorithms for controlling the shape of Large Space Structures.

  20. Subsonic stability and control flight test results of the Space Shuttle /tail cone off/

    NASA Technical Reports Server (NTRS)

    Cooke, D. R.

    1980-01-01

    The subsonic stability and control testing of the Space Shuttle Orbiter in its two test flights in the tailcone-off configuration is discussed, and test results are presented. Flight test maneuvers were designed to maximize the quality and quantity of stability and control data in the minimal time allotted using the Space Shuttle Functional Simulator and the Modified Maximum Likelihood Estimator (MMLE) programs, and coefficients were determined from standard sensor data sets using the MMLE, despite problems encountered in timing due to the different measurement systems used. Results are included for lateral directional and longitudinal maneuvers as well as the Space Shuttle aerodynamic data base obtained using the results of wind tunnel tests. The flight test data are found to permit greater confidence in the data base since the differences found are well within control system capability. It is suggested that the areas of major differences, including lateral directional data with open speedbrake, roll due to rudder and normal force due to elevon, be investigated in any further subsonic flight testing. Improvements in sensor data and data handling techniques for future orbital test flights are indicated.

  1. The Right Stuff: A Look Back at Three Decades of Flight Controller Training for Space Shuttle Mission Operations

    NASA Technical Reports Server (NTRS)

    Dittemore, Gary D.; Bertels, Christie

    2010-01-01

    This paper will summarize the thirty-year history of Space Shuttle operations from the perspective of training in NASA Johnson Space Center's Mission Control Center. It will focus on training and development of flight controllers and instructors, and how training practices have evolved over the years as flight experience was gained, new technologies developed, and programmatic needs changed. Operations of human spaceflight systems is extremely complex, therefore the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center, in Houston, Texas manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. This paper will give an overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams are trained and certified. The training methodology for developing flight controllers has evolved significantly over the last thirty years, while the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. These changes have been driven by many factors including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. Flight controllers will share their experiences in training and operating the Space Shuttle throughout the Program s history. A primary method used for training Space Shuttle flight control teams is by running mission simulations of the orbit, ascent, and entry phases, to truly "train like you fly." The audience will learn what it is like to perform a simulation as a shuttle flight controller. Finally, we will reflect on the lessons learned in training for the shuttle program, and how those could be applied to future human spaceflight endeavors.

  2. Document handover of ISS Flight Control room to new Flight Control Room in old MCC

    NASA Image and Video Library

    2006-10-06

    JSC2006-E-43860 (6 Oct. 2006)--- International Space Station flight controllers have this area as their new home with increased technical capabilities, more workspace and a long, distinguished history. The newly updated facility is just down the hall from its predecessor at NASA's Johnson Space Center, Houston. Known as Flight Control Room 1, it was first used to control a space flight 38 years ago, the mission of Apollo 7 launched Oct. 11, 1968. It was one of two control rooms for NASA's manned missions. The room it replaces in its new ISS role, designated the Blue Flight Control Room, had been in operation since the first station component was launched in 1998.

  3. The Right Stuff: A Look Back at Three Decades of Flight Controller Training for Space Shuttle Mission Operations

    NASA Technical Reports Server (NTRS)

    Dittemore, Gary D.

    2011-01-01

    Operations of human spaceflight systems is extremely complex, therefore the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center, in Houston, Texas manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. This paper will give an overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams are trained and certified. The training methodology for developing flight controllers has evolved significantly over the last thirty years, while the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. These changes have been driven by many factors including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. Flight controllers will share their experiences in training and operating the Space Shuttle throughout the Program s history. A primary method used for training Space Shuttle flight control teams is by running mission simulations of the orbit, ascent, and entry phases, to truly "train like you fly." The reader will learn what it is like to perform a simulation as a shuttle flight controller. Finally, the paper will reflect on the lessons learned in training for the shuttle program, and how those could be applied to future human spaceflight endeavors. These endeavors could range from going to the moon or to Mars. The lessons learned from operating the space shuttle for over thirty years will help the space industry build the next human transport space vehicle and inspire the next generation of space explorers.

  4. Document handover of ISS Flight Control room to new Flight Control Room in old MCC

    NASA Image and Video Library

    2006-10-06

    JSC2006-E-43863 (6 Oct. 2006)--- International Space Station flight controllers have this area as their new home with increased technical capabilities, more workspace and a long, distinguished history. The newly updated facility is just down the hall from its predecessor at NASA's Johnson Space Center, Houston. This view is toward the rear of the "new" room. Known as Flight Control Room 1, it was first used to control a space flight 38 years ago, the mission of Apollo 7 launched Oct. 11, 1968. It was one of two control rooms for NASA's manned missions. The room it replaces in its new ISS role, designated the Blue Flight Control Room, had been in operation since the first station component was launched in 1998.

  5. Electric sail space flight dynamics and controls

    NASA Astrophysics Data System (ADS)

    Montalvo, Carlos; Wiegmann, Bruce

    2018-07-01

    This paper seeks to investigate the space flight dynamics of a rotating barbell Electric Sail (E-Sail). This E-Sail contains two 6U CubeSats connected to 8 km tethers joined at a central hub. The central hub is designed to be an insulator so that each tether can have differing voltages. An electron gun positively charges each tether which interacts with the solar wind to produce acceleration. If the voltage on each tether is different, the trajectory of the system can be altered. Flapping modes and tension spikes are found during many of these maneuvers and care must be taken to mitigate the magnitude of these oscillations. Using sinusoidal voltage inputs, it is possible to control the trajectory of this two-body E-Sail and propel the system to Near-Earth-Objects or even deep space.

  6. STS-118 Ascent/Entry Flight Control Team in White Flight Control Room (WFCR) with Flight Director Steve Stitch

    NASA Image and Video Library

    2007-07-20

    JSC2007-E-41011 (20 July 2007) --- STS-118 Ascent/Entry flight control team pose for a group portrait in the space shuttle flight control room of Houston's Mission Control Center (MCC). Flight director Steve Stich (center right) and astronaut Tony Antonelli, spacecraft communicator (CAPCOM), hold the STS-118 mission logo.

  7. A representational basis for the development of a distributed expert system for Space Shuttle flight control

    NASA Technical Reports Server (NTRS)

    Helly, J. J., Jr.; Bates, W. V.; Cutler, M.; Kelem, S.

    1984-01-01

    A new representation of malfunction procedure logic which permits the automation of these procedures using Boolean normal forms is presented. This representation is discussed in the context of the development of an expert system for space shuttle flight control including software and hardware implementation modes, and a distributed architecture. The roles and responsibility of the flight control team as well as previous work toward the development of expert systems for flight control support at Johnson Space Center are discussed. The notion of malfunction procedures as graphs is introduced as well as the concept of hardware-equivalence.

  8. STS-131 Flight Control Team in WFCR - Planning - Flight Director: Ginger Kerrick

    NASA Image and Video Library

    2010-04-12

    JSC2010-E-050902 (12 April 2010) --- The members of the STS-131 Planning flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Ginger Kerrick (center) is visible on the second row.

  9. STS-125 Entry flight controllers on console with Flight Director Norman Knight

    NASA Image and Video Library

    2009-05-24

    JSC2009-E-121510 (24 May 2009) --- Flight controllers in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center watch the big screens during the landing of Space Shuttle Atlantis (STS-125) at Edwards Air Force Base in California.

  10. STS-125 Entry flight controllers on console with Flight Director Norman Knight

    NASA Image and Video Library

    2009-05-24

    JSC2009-E-121511 (24 May 2009) --- Flight controllers in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center watch the big screens during the landing of Space Shuttle Atlantis (STS-125) at Edwards Air Force Base in California.

  11. STS-125 Entry flight controllers on console with Flight Director Norman Knight

    NASA Image and Video Library

    2009-05-24

    JSC2009-E-121512 (24 May 2009) --- Flight controllers in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center watch the big screens during the landing of Space Shuttle Atlantis (STS-125) at Edwards Air Force Base in California.

  12. STS-125 Entry flight controllers on console with Flight Director Norman Knight

    NASA Image and Video Library

    2009-05-24

    JSC2009-E-121509 (24 May 2009) --- Flight controllers in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center watch the big screens during the landing of Space Shuttle Atlantis (STS-125) at Edwards Air Force Base in California.

  13. STS-132 Flight Control Team in WFCR

    NASA Image and Video Library

    2010-05-25

    JSC2010-E-087358 (25 May 2010) --- The members of the STS-132 Entry flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Tony Ceccacci holds the STS-132 mission logo. Photo credit: NASA or National Aeronautics and Space Administration

  14. 14 CFR 29.673 - Primary flight controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Primary flight controls. 29.673 Section 29.673 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... flight controls. Primary flight controls are those used by the pilot for immediate control of pitch, roll...

  15. 14 CFR 29.673 - Primary flight controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Primary flight controls. 29.673 Section 29.673 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... flight controls. Primary flight controls are those used by the pilot for immediate control of pitch, roll...

  16. 14 CFR 27.673 - Primary flight control.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Primary flight control. 27.673 Section 27.673 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... flight control. Primary flight controls are those used by the pilot for immediate control of pitch, roll...

  17. 14 CFR 27.673 - Primary flight control.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Primary flight control. 27.673 Section 27.673 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... flight control. Primary flight controls are those used by the pilot for immediate control of pitch, roll...

  18. The Final Count Down: A Review of Three Decades of Flight Controller Training Methods for Space Shuttle Mission Operations

    NASA Technical Reports Server (NTRS)

    Dittermore, Gary; Bertels, Christie

    2011-01-01

    Operations of human spaceflight systems is extremely complex; therefore, the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center in Houston, Texas, manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. An overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams are trained and certified, reveals that while the training methodology for developing flight controllers has evolved significantly over the last thirty years the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. Changes in methodology and tools have been driven by many factors, including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. Flight controllers share their experiences in training and operating the space shuttle. The primary training method throughout the program has been mission simulations of the orbit, ascent, and entry phases, to truly train like you fly. A review of lessons learned from flight controller training suggests how they could be applied to future human spaceflight endeavors, including missions to the moon or to Mars. The lessons learned from operating the space shuttle for over thirty years will help the space industry build the next human transport space vehicle.

  19. Recovery of postural equilibrium control following space flight

    NASA Technical Reports Server (NTRS)

    Paloski, William H.; Reschke, Millard F.; Black, F. Owen; Dow, R. S.

    1999-01-01

    DSO 605 represents the first large study of balance control following spaceflight. Data collected during DSO 605 confirm the theory that postural ataxia following short duration spaceflight is of vestibular origin. We used the computerized dynamic posturography technique developed by Nashner et al. to study the role of the vestibular system in balance control in astronauts during quiet stance before and after spaceflight. Our results demonstrate unequivocally that balance control is disrupted in all astronauts immediately after return from space. The most severely affected returning crew members performed in the same way as vestibular deficient patients exposed to this test battery. We conclude that otolith mediated spatial reference provided by the terrestrial gravitational force vector is not used by the astronauts balance control systems immediately after spaceflight. Because the postflight ataxia appears to be mediated primarily by CNS adaptation to the altered vestibular inputs caused by loss of gravitational stimulation, we believe that intermittent periods of exposure to artificial gravity may provide an effective in-flight countermeasure. Specifically, we propose that in-flight centrifugation will allow crew members to retain their terrestrial sensory-motor adapted states while simultaneously developing microgravity adapted states. The dual-adapted astronaut should be able to make the transition from microgravity to unit gravity with minimal sensory-motor effects. We have begun a ground based program aimed at developing short arm centrifuge prescriptions designed to optimize adaptation to altered gravitational environments. Results from these experiments are expected to lead directly to in-flight evaluation of the proposed centrifuge countermeasure. Because our computerized dynamic posturography system was able to (1) quantify the postflight postural ataxia reported by crew members and observed by flight surgeons and scientists, (2) track the recovery of

  20. 14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...

  1. 14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...

  2. 14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...

  3. 14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...

  4. 14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...

  5. Human Space Flight

    NASA Technical Reports Server (NTRS)

    Woolford, Barbara; Mount, Frances

    2004-01-01

    The first human space flight, in the early 1960s, was aimed primarily at determining whether humans could indeed survive and function in micro-gravity. Would eating and sleeping be possible? What mental and physical tasks could be performed? Subsequent programs increased the complexity of the tasks the crew performed. Table 1 summarizes the history of U.S. space flight, showing the projects, their dates, crew sizes, and mission durations. With over forty years of experience with human space flight, the emphasis now is on how to design space vehicles, habitats, and missions to produce the greatest returns to human knowledge. What are the roles of the humans in space flight in low earth orbit, on the moon, and in exploring Mars?

  6. STS-119 Flight Control Team in WFCR - Orbit 3 - Flight Director Bryan Lunney

    NASA Image and Video Library

    2009-03-24

    JSC2009-E-061542 (24 March 2009) --- The members of the STS-119 Orbit 3 flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA?s Johnson Space Center. Flight director Bryan Lunney (center) near the front.

  7. Effects of space flight and IGF-1 on immune function

    NASA Astrophysics Data System (ADS)

    1999-01-01

    We tested the hypothesis that insulin-like growth factor-1 (IGF-1) would ameliorate space flight-induced effects on the immune system. Twelve male, Sprague-Dawley rats, surgically implanted with mini osmotic pumps, were subjected to space flight for 10 days on STS-77. Six rats received 10 mg/kg/day of IGF-1 and 6 rats received saline. Flight animals had a lymphocytopenia and granulocytosis which were reversed by IGF-1. Flight animals had significantly higher corticosterone levels than ground controls but IGF-1 did not impact this stress hormone. Therefore, the reversed granulocytosis did not correlate with serum corticosterone. Space flight and IGF-1 also combined to induce a monocytopenia that was not evident in ground control animals treated with IGF-1 or in animals subjected to space flight but given physiological saline. There was a significant increase in spleen weights in vivarium animals treated with IGF-1, however, this change did not occur in flight animals. We observed reduced agonist-induced lymph node cell proliferation by cells from flight animals compared to ground controls. The reduced proliferation was not augmented by IGF-1 treatment. There was enhanced secretion of TNF, IL-6 and NO by flight-animal peritoneal macrophages compared to vivarium controls, however, O2- secretion was not affected. These data suggest that IGF-1 can ameliorate some of the effects of space flight but that space flight can also impact the normal response to IGF-1.

  8. Cardiovascular function in space flight

    NASA Technical Reports Server (NTRS)

    Nicogossian, A. E.; Charles, J. B.; Bungo, M. W.; Leach-Huntoon, C. S.

    1990-01-01

    Postflight orthostatic intolerance and cardiac hemodynamics associated with manned space flight have been investigated on seven STS missions. Orthostatic heart rates appear to be influenced by the mission duration. The rates increase during the first 7-10 days of flight and recover partially after that. Fluid loading is used as a countermeasure to the postflight orthostatic intolerance. The carotid baroreceptor function shows only slight responsiveness to orthostatic stimulation. Plots of the baroreceptor function are presented. It is concluded that an early adaptation to the space flight conditions involves a fluid shift and that the subsequent alterations in the neutral controlling mechanisms contribute to the orthoststic intolerance.

  9. STS-125 Flight Control Team in WFCR - Orbit 1 - Flight Director Tony Ceccacci

    NASA Image and Video Library

    2009-05-20

    JSC2009-E-120813 (20 May 2009) --- The members of the STS-125 Orbit 1 flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Tony Ceccacci holds the STS-125 mission logo.

  10. STS-131 Flight Control Team in WFCR - Orbit 2 - Flight Director Mike Sarafin

    NASA Image and Video Library

    2010-04-14

    JSC2010-E-051978 (14 April 2010) --- The members of the STS-131 Orbit 2 flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Mike Sarafin holds the STS-131 mission logo.

  11. STS-131 Flight Control Team in WFCR - Orbit 1 - Flight Director: Richard Jones

    NASA Image and Video Library

    2010-04-12

    JSC2010-E-050680 (12 April 2010) --- The members of the STS-131 Orbit 1 flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Richard Jones (second left) is on the front row.

  12. Environmental control and life support testing at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Schunk, Richard G.; Humphries, William R.

    1987-01-01

    The Space Station Environmental Control and Life Support System (ECLSS) test program at the Marshall Space Flight Center (MSFC) is addressed. The immediate goals and current activities of the test program are discussed. Also described are the Core Module Integration Facility (CMIF) and the initial ECLSS test configuration. Future plans for the ECLSS test program and the CMIF are summarized.

  13. 14 CFR 27.151 - Flight controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flight controls. 27.151 Section 27.151... STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Flight Characteristics § 27.151 Flight controls. (a) Longitudinal, lateral, directional, and collective controls may not exhibit excessive breakout force, friction...

  14. 14 CFR 29.151 - Flight controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flight controls. 29.151 Section 29.151... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Flight Characteristics § 29.151 Flight controls. (a) Longitudinal, lateral, directional, and collective controls may not exhibit excessive breakout force, friction...

  15. STS-125 Flight Control Team in WFCR - Orbit 3 - Flight Director Paul Dye

    NASA Image and Video Library

    2009-05-20

    JSC2009-E-120846 (20 May 2009) --- The members of the STS-125 Orbit 3 flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Paul Dye (center left) is visible on the front row.

  16. Space Shuttle third flight /STS-3/ entry RCS analysis. [Reaction Control System

    NASA Technical Reports Server (NTRS)

    Scallion, W. I.; Compton, H. R.; Suit, W. T.; Powell, R. W.; Blackstock, T. A.; Bates, B. L.

    1983-01-01

    Flight data obtained from three Space Transportation System orbiter entries (STS-1, 2, and 3) are processed and analyzed to determine the roll interactions caused by the firing of the entry reaction control system (RCS). Comparisons between the flight-derived parameters and the predicted derivatives without interaction effects are made. The flight-derived RCS Plume flow-field interaction effects are independently deduced by direct integration of the incremental changes in the wing upper surface pressures induced by RCS side thruster firings. The separately obtained interaction effects are compared to the predicted values and the differences are discussed.

  17. Flight Testing of the Space Launch System (SLS) Adaptive Augmenting Control (AAC) Algorithm on an F/A-18

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.; VanZwieten, Tannen S.; Hanson, Curtis E.; Wall, John H.; Miller, Chris J.; Gilligan, Eric T.; Orr, Jeb S.

    2014-01-01

    The Marshall Space Flight Center (MSFC) Flight Mechanics and Analysis Division developed an adaptive augmenting control (AAC) algorithm for launch vehicles that improves robustness and performance on an as-needed basis by adapting a classical control algorithm to unexpected environments or variations in vehicle dynamics. This was baselined as part of the Space Launch System (SLS) flight control system. The NASA Engineering and Safety Center (NESC) was asked to partner with the SLS Program and the Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP) to flight test the AAC algorithm on a manned aircraft that can achieve a high level of dynamic similarity to a launch vehicle and raise the technology readiness of the algorithm early in the program. This document reports the outcome of the NESC assessment.

  18. Guidance, Navigation and Control Innovations at the NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ericsson, Aprille Joy

    2002-01-01

    A viewgraph presentation on guidance navigation and control innovations at the NASA Goddard Space Flight Center is presented. The topics include: 1) NASA's vision; 2) NASA's Mission; 3) Earth Science Enterprise (ESE); 4) Guidance, Navigation and Control Division (GN&C); 5) Landsat-7 Earth Observer-1 Co-observing Program; and 6) NASA ESE Vision.

  19. Lateral stability and control derivatives extracted from five early flights of the space shuttle Columbia

    NASA Technical Reports Server (NTRS)

    Schiess, J. R.

    1986-01-01

    Flight data taken from the first five flights (STS-2, 3, 4, 5 and 9) of the Space Transportation System Shuttle Columbia during entry are analyzed to determine the Shuttle lateral aerodynamic characteristics. Maximum likelihood estimation is applied to data derived from accelerometer and rate gyro measurements and trajectory, meteorological and control surface data to estimate lateral-directional stability and control derivatives. The estimated parameters are compared across the five flights and to preflight predicted values.

  20. The Final Count Down: A Review of Three Decades of Flight Controller Training Methods for Space Shuttle Mission Operations

    NASA Technical Reports Server (NTRS)

    Dittemore, Gary D.; Bertels, Christie

    2011-01-01

    Operations of human spaceflight systems is extremely complex, therefore the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center, in Houston, Texas manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. As the space shuttle program ends in 2011, a review of how training for STS-1 was conducted compared to STS-134 will show multiple changes in training of shuttle flight controller over a thirty year period. This paper will additionally give an overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams have been trained certified over the life span of the space shuttle. The training methods for developing flight controllers have evolved significantly over the last thirty years, while the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. These changes have been driven by many factors including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. A primary method used for training Space Shuttle flight control teams is by running mission simulations of the orbit, ascent, and entry phases, to truly "train like you fly." The reader will learn what it is like to perform a simulation as a shuttle flight controller. Finally, the paper will reflect on the lessons learned in training for the shuttle program, and how those could be applied to future human spaceflight endeavors.

  1. Vestibular-somatosensory convergence in head movement control during locomotion after long-duration space flight.

    PubMed

    Mulavara, A P; Ruttley, T; Cohen, H S; Peters, B T; Miller, C; Brady, R; Merkle, L; Bloomberg, J J

    2012-01-01

    Space flight causes astronauts to be exposed to adaptation in both the vestibular and body load-sensing somatosensory systems. The goal of these studies was to examine the contributions of vestibular and body load-sensing somatosensory influences on vestibular mediated head movement control during locomotion after long-duration space flight. Subjects walked on a motor driven treadmill while performing a gaze stabilization task. Data were collected from three independent subject groups that included bilateral labyrinthine deficient (LD) patients, normal subjects before and after 30 minutes of 40% bodyweight unloaded treadmill walking, and astronauts before and after long-duration space flight. Motion data from the head and trunk segments were used to calculate the amplitude of angular head pitch and trunk vertical translation movement while subjects performed a gaze stabilization task, to estimate the contributions of vestibular reflexive mechanisms in head pitch movements. Exposure to unloaded locomotion caused a significant increase in head pitch movements in normal subjects, whereas the head pitch movements of LD patients were significantly decreased. This is the first evidence of adaptation of vestibular mediated head movement responses to unloaded treadmill walking. Astronaut subjects showed a heterogeneous response of both increases and decreases in the amplitude of head pitch movement. We infer that body load-sensing somatosensory input centrally modulates vestibular input and can adaptively modify vestibularly mediated head-movement control during locomotion. Thus, space flight may cause central adaptation of the converging vestibular and body load-sensing somatosensory systems leading to alterations in head movement control.

  2. STS-125 Flight Controllers on Console - (Orbit Shift 2). Flight Director: Richard LaBrode

    NASA Image and Video Library

    2009-05-12

    JSC2009-E-119382 (12 May 2009) --- Flight director Rick LaBrode monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-125 flight day two activities. Flight director Chris Edelen is at right.

  3. Flight Planning Branch Space Shuttle Lessons Learned

    NASA Technical Reports Server (NTRS)

    Price, Jennifer B.; Scott, Tracy A.; Hyde, Crystal M.

    2011-01-01

    Planning products and procedures that allow the mission flight control teams and the astronaut crews to plan, train and fly every Space Shuttle mission have been developed by the Flight Planning Branch at the NASA Johnson Space Center. As the Space Shuttle Program ends, lessons learned have been collected from each phase of the successful execution of these Shuttle missions. Specific examples of how roles and responsibilities of console positions that develop the crew and vehicle attitude timelines will be discussed, as well as techniques and methods used to solve complex spacecraft and instrument orientation problems. Additionally, the relationships and procedural hurdles experienced through international collaboration have molded operations. These facets will be explored and related to current and future operations with the International Space Station and future vehicles. Along with these important aspects, the evolution of technology and continual improvement of data transfer tools between the shuttle and ground team has also defined specific lessons used in the improving the control teams effectiveness. Methodologies to communicate and transmit messages, images, and files from Mission Control to the Orbiter evolved over several years. These lessons have been vital in shaping the effectiveness of safe and successful mission planning that have been applied to current mission planning work in addition to being incorporated into future space flight planning. The critical lessons from all aspects of previous plan, train, and fly phases of shuttle flight missions are not only documented in this paper, but are also discussed as how they pertain to changes in process and consideration for future space flight planning.

  4. Skylab rescue space vehicle flight readiness test

    NASA Technical Reports Server (NTRS)

    Jevitt, S. J.

    1973-01-01

    A Skylab Rescue Space Vehicle flight readiness test is described which ensures that space vehicle systems are in a state of flight readiness and are compatible with associated ground support equipment. The functions of propellant loading, umbilical ejection, ignition, holddown arm release, liftoff, and service arm and tail service mast retraction are simulated. The test outline is presented along with a list of references, intercommunications information, operations interface control chart, and flight test.

  5. NASA Flight Planning Branch Space Shuttle Lessons Learned

    NASA Technical Reports Server (NTRS)

    Clevenger, Jennifer D.; Bristol, Douglas J.; Whitney, Gregory R.; Blanton, Mark R.; Reynolds, F. Fisher, III

    2011-01-01

    Planning products and procedures that allowed the mission Flight Control Teams and the Astronaut crews to plan, train and fly every Space Shuttle mission were developed by the Flight Planning Branch at the NASA Johnson Space Center in Houston, Texas. As the Space Shuttle Program came to a close, lessons learned were collected from each phase of the successful execution of these Space Shuttle missions. Specific examples of how roles and responsibilities of console positions that develop the crew and vehicle attitude timelines have been analyzed and will be discussed. Additionally, the relationships and procedural hurdles experienced through international collaboration have molded operations. These facets will be explored and related to current and future operations with the International Space Station and future vehicles. Along with these important aspects, the evolution of technology and continual improvement of data transfer tools between the Space Shuttle and ground team has also defined specific lessons used in improving the control team s effectiveness. Methodologies to communicate and transmit messages, images, and files from the Mission Control Center to the Orbiter evolved over several years. These lessons were vital in shaping the effectiveness of safe and successful mission planning and have been applied to current mission planning work in addition to being incorporated into future space flight planning. The critical lessons from all aspects of previous plan, train, and fly phases of Space Shuttle flight missions are not only documented in this paper, but are also discussed regarding how they pertain to changes in process and consideration for future space flight planning.

  6. STS-125 Flight Controllers on Console - (Orbit Shift 2). Flight Director: Richard LaBrode

    NASA Image and Video Library

    2009-05-12

    JSC2009-E-119390 (12 May 2009) --- Flight director Rick LaBrode monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-125 flight day two activities.

  7. NASA Tests 2nd RS-25 Flight Engine for Space Launch System

    NASA Image and Video Library

    2018-01-16

    On Jan. 16, 2018, engineers at NASA’s Stennis Space Center in Mississippi conducted a certification test of another RS-25 engine flight controller on the A-1 Test Stand at Stennis Space Center. The 365-second, full-duration test came a month after the space agency capped a year of RS-25 testing with a flight controller test in mid-December. For the “green run” test the flight controller was installed on RS-25 developmental engine E0528 and fired just as during an actual launch. Once certified, the flight controller will be removed and installed on a flight engine for use by NASA’s new deep-space rocket, the Space Launch System (SLS).

  8. Using Web 2.0 (and Beyond?) in Space Flight Operations Control Centers

    NASA Technical Reports Server (NTRS)

    Scott, David W.

    2010-01-01

    Word processing was one of the earliest uses for small workstations, but we quickly learned that desktop computers were far more than e-typewriters. Similarly, "Web 2.0" capabilities, particularly advanced search engines, chats, wikis, blogs, social networking, and the like, offer tools that could significantly improve our efficiency at managing the avalanche of information and decisions needed to operate space vehicles in realtime. However, could does not necessarily equal should. We must wield two-edged swords carefully to avoid stabbing ourselves. This paper examines some Web 2.0 tools, with an emphasis on social media, and suggests which ones might be useful or harmful in real-time space operations co rnotl environments, based on the author s experience as a Payload Crew Communicator (PAYCOM) at Marshall Space Flight Center s (MSFC) Payload Operations Integration Center (POIC) for the International Space Station (ISS) and on discussions with other space flight operations control organizations and centers. There is also some discussion of an offering or two that may come from beyond the current cyber-horizon.

  9. Semantic definitions of space flight control center languages using the hierarchical graph technique

    NASA Technical Reports Server (NTRS)

    Zaghloul, M. E.; Truszkowski, W.

    1981-01-01

    In this paper a method is described by which the semantic definitions of the Goddard Space Flight Control Center Command Languages can be specified. The semantic modeling facility used is an extension of the hierarchical graph technique, which has a major benefit of supporting a variety of data structures and a variety of control structures. It is particularly suited for the semantic descriptions of such types of languages where the detailed separation between the underlying operating system and the command language system is system dependent. These definitions were used in the definition of the Systems Test and Operation Language (STOL) of the Goddard Space Flight Center which is a command language that provides means for the user to communicate with payloads, application programs, and other ground system elements.

  10. STS-125 Flight Control Team in WFCR - Orbit 2 - Flight Director Richard LaBrode

    NASA Image and Video Library

    2009-05-20

    JSC2009-E-120845 (20 May 2009) --- The members of the STS-125 Orbit 2 flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Rick LaBrode (right) is visible on the front row.

  11. STS-125 Flight Controllers on Console - (Orbit Shift 2). Flight Director: Richard LaBrode

    NASA Image and Video Library

    2009-05-12

    JSC2009-E-119397 (12 May 2009) --- Flight directors Rick LaBrode (left) and Chris Edelen monitor data at their console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-125 flight day two activities.

  12. Growth-rate periodicity of Streptomyces levoris during space flight.

    PubMed

    Rogers, T D; Brower, M E; Taylor, G R

    1977-01-01

    Streptomyces levoris Kras was used is an experimental test micro-organism during the Apollo Soyuz Test Project to study alternating vegetative mycelial and spore ring periodicity during space flight. Four cultures were launched in each of the spacecrafts (Apollo and Soyuz). During the joint space-flight activities, two cultures from each spacecraft were exchanged. Selected duplicate cultures were maintained as controls in both the USA and the USSR. Spore ring morphology was periodically documented by photographing the specimens at approximately 12-hr intervals during the pre-, in-, and post-flight periods of the experiment. A decreased growth-rate periodicity in all but one of the eight space-flight cultures was in part attributed to the reduced temperature in the spacecraft. One of the eight cultures grew at a faster rate in the reduced temperature environment of Apollo than did the ground controls. Three of the space-flight cultures developed double spore rings during the immediate post-flight period. This anomaly was attributed to re-entry into the earth's gravity. The absence of spores in portions of one ring formed during space flight may have been caused by nutritional defects or media abnormality. Extensive studies will be required to elucidate the cause of this detect with certainty. There was no visible evidence of wedges in the cultures which would suggest naturally occurring or radiation-induced mutagenic alteration during space flight.

  13. Space Flight and Manual Control: Implications for Sensorimotor Function on Future Missions

    NASA Technical Reports Server (NTRS)

    Reschke, Millard F.; Kornilova, Ludmila; Tomilovskaya, Elena; Parker, Donald E.; Leigh, R. John; Kozlovskaya, Inessa

    2009-01-01

    Control of vehicles, and other complex mechanical motion systems, is a high-level integrative function of the central nervous system (CNS) that requires good visual acuity, eye-hand coordination, spatial (and, in some cases, geographic) orientation perception, and cognitive function. Existing evidence from space flight research (Paloski et.al., 2008, Clement and Reschke 2008, Reschke et al., 2007) demonstrates that the function of each of these systems is altered by removing (and subsequently by reintroducing) a gravitational field that can be sensed by vestibular, proprioceptive, and haptic receptors and used by the CNS for spatial orientation, navigation, and coordination of movements. Furthermore, much of the operational performance data collected as a function of space flight has not been available for independent analysis, and those data that have been reviewed are equivocal owing to uncontrolled environmental and/or engineering factors. Thus, our current understanding, when it comes to manual control, is limited primarily to a review of those situations where manual control has been a factor. One of the simplest approaches to the manual control problem is to review shuttle landing data. See the Figure below for those landing for which we have Shuttle velocities over the runway threshold.

  14. Space Flight. Teacher Resources.

    ERIC Educational Resources Information Center

    2001

    This teacher's guide contains information, lesson plans, and diverse student learning activities focusing on space flight. The guide is divided into seven sections: (1) "Drawing Activities" (Future Flight; Space Fun; Mission: Draw); (2) "Geography" (Space Places); (3) "History" (Space and Time); (4)…

  15. STS-134 Orbit 2 flight controllers on consoles

    NASA Image and Video Library

    2011-05-17

    JSC2011-E-045475 (17 May 2011) --- Flight director Paul Dye monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-134 flight day two activities. Photo credit: NASA

  16. ACES: Space shuttle flight software analysis expert system

    NASA Technical Reports Server (NTRS)

    Satterwhite, R. Scott

    1990-01-01

    The Analysis Criteria Evaluation System (ACES) is a knowledge based expert system that automates the final certification of the Space Shuttle onboard flight software. Guidance, navigation and control of the Space Shuttle through all its flight phases are accomplished by a complex onboard flight software system. This software is reconfigured for each flight to allow thousands of mission-specific parameters to be introduced and must therefore be thoroughly certified prior to each flight. This certification is performed in ground simulations by executing the software in the flight computers. Flight trajectories from liftoff to landing, including abort scenarios, are simulated and the results are stored for analysis. The current methodology of performing this analysis is repetitive and requires many man-hours. The ultimate goals of ACES are to capture the knowledge of the current experts and improve the quality and reduce the manpower required to certify the Space Shuttle onboard flight software.

  17. International Space Station Mechanisms and Maintenance Flight Control Documentation and Training Development

    NASA Technical Reports Server (NTRS)

    Daugherty, Colin C.

    2010-01-01

    International Space Station (ISS) crew and flight controller training documentation is used to aid in training operations. The Generic Simulations References SharePoint (Gen Sim) site is a database used as an aid during flight simulations. The Gen Sim site is used to make individual mission segment timelines, data, and flight information easily accessible to instructors. The Waste and Hygiene Compartment (WHC) training schematic includes simple and complex fluid schematics, as well as overall hardware locations. It is used as a teaching aid during WHC lessons for both ISS crew and flight controllers. ISS flight control documentation is used to support all aspects of ISS mission operations. The Quick Look Database and Consolidated Tool Page are imagery-based references used in real-time to help the Operations Support Officer (OSO) find data faster and improve discussions with the Flight Director and Capsule Communicator (CAPCOM). A Quick Look page was created for the Permanent Multipurpose Module (PMM) by locating photos of the module interior, labeling specific hardware, and organizing them in schematic form to match the layout of the PMM interior. A Tool Page was created for the Maintenance Work Area (MWA) by gathering images, detailed drawings, safety information, procedures, certifications, demonstration videos, and general facts of each MWA component and displaying them in an easily accessible and consistent format. Participation in ISS mechanisms and maintenance lessons, mission simulation On-the-Job Training (OJT), and real-time flight OJT was used as an opportunity to train for day-to-day operations as an OSO, as well as learn how to effectively respond to failures and emergencies during mission simulations and real-time flight operations.

  18. STS-125 Flight Control Team in WFCR - Ascent/Entry with Flight Director Norman Knight

    NASA Image and Video Library

    2009-05-21

    JSC2009-E-121353 (21 May 2009) --- The members of the STS-125 Ascent and Entry flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Norm Knight (left) and astronaut Gregory H. Johnson, spacecraft communicator (CAPCOM), hold the STS-125 mission logo.

  19. STS-132/ULF4 Flight Controllers on Console

    NASA Image and Video Library

    2010-05-18

    JSC2010-E-081946 (18 May 2010) --- ISS flight director Emily Nelson monitors data at her console in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-132/ULF-4 mission flight day five activities.

  20. STS-132/ULF4 Flight Controllers on Console

    NASA Image and Video Library

    2010-05-18

    JSC2010-E-081914 (18 May 2010) --- ISS flight director Holly Ridings reviews data at her console in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-132/ULF-4 mission flight day five activities.

  1. Cardiovascular function in space flight

    NASA Astrophysics Data System (ADS)

    Nicgossian, A. E.; Charles, J. B.; Bungo, M. W.; Leach-Huntoon, C. S.

    Changes in orthostatic heart rate have been noted universally in Soviet and U.S. crewmembers post space flight. The magnitude of these changes appears to be influenced by mission duration, with increasing orthostatic intolerance for the first 7-10 days of flight and then a partial recovery in the orthostatic heart rate response. Fluid loading has been used as a countermeasure to this postflight orthostatic intolerance. Previous reports have documented the effectiveness of this technique, but it has also been noted that the effectiveness of volume expansion diminishes as flight duration exceeds one week. The response of carotid baroreceptor function was investigated utilizing a commercially available neck collar which could apply positive and negative pressure to effect receptor stimulation. Bedrest studies had validated the usefulness and validity of the device. In these studies it was shown that carotid baroreceptor function curves demonstrated less responsiveness to orthostatic stimulation than control individuals. Twelve Space Shuttle crewmembers were examined pre- and postflight from flights lasting from 4-5 days. Plots of baroreceptor function were constructed and plotted as change in R-R interval vs. carotid distending pressure (an orthostatic stimulus). Typical sigmoidal curves were obtained. Postflight the resting heart rate was higher (smaller R-R interval) and the range of R-R value and the slope of the carotid sigmoidal response were both depressed. These changes were not significant immediately postflight (L+O), but did become significant by the second day postflight (L+2), and remained suppressed for several days thereafter. It is hypothesized that the early adaptation to space flight involves a central fluid shift during the initial days of flight, but subsequent alterations in neural controlling mechanisms (such as carotid baroreceptor function) contribute to orthostatic intolerance.

  2. Cardiovascular function in space flight

    NASA Technical Reports Server (NTRS)

    Nicogossian, A. E.; Charles, J. B.; Bungo, M. W.; Leach-Huntoon, C. S.; Nicgossian, A. E.

    1991-01-01

    Changes in orthostatic heart rate have been noted universally in Soviet and U.S. crewmembers post space flight. The magnitude of these changes appears to be influenced by mission duration, with increasing orthostatic intolerance for the first 7-10 days of flight and then a partial recovery in the orthostatic heart rate response. Fluid loading has been used as a countermeasure to this postflight orthostatic intolerance. Previous reports have documented the effectiveness of this technique, but it has also been noted that the effectiveness of volume expansion diminishes as flight duration exceeds one week. The response of carotid baroreceptor function was investigated utilizing a commercially available neck collar which could apply positive and negative pressure to effect receptor stimulation. Bedrest studies had validated the usefulness and validity of the device. In these studies it was shown that carotid baroreceptor function curves demonstrated less responsiveness to orthostatic stimulation than control individuals. Twelve Space Shuttle crewmembers were examined pre- and postflight from flights lasting from 4-5 days. Plots of baroreceptor function were constructed and plotted as change in R-R interval vs. carotid distending pressure (an orthostatic stimulus). Typical sigmoidal curves were obtained. Postflight the resting heart rate was higher (smaller R-R interval) and the range of R-R value and the slope of the carotid sigmoidal response were both depressed. These changes were not significant immediately postflight (L + O), but did become significant by the second day postflight (L + 2), and remained suppressed for several days thereafter. It is hypothesized that the early adaptation to space flight involves a central fluid shift during the initial days of flight, but subsequent alterations in neural controlling mechanisms (such as carotid baroreceptor function) contribute to orthostatic intolerance.

  3. STS-125 Flight Controllers on Console - (Orbit Shift 1). Flight Director: Anthony Ceccacci

    NASA Image and Video Library

    2009-05-14

    JSC2009-E-120480 (14 May 2009) --- Tomas Gonzalez-Torres, STS-125 lead spacewalk officer, monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during flight day four activities.

  4. STS-125 Flight Controllers on Console - (Orbit Shift 1). Flight Director: Anthony Ceccacci

    NASA Image and Video Library

    2009-05-14

    JSC2009-E-120486 (14 May 2009) --- Tomas Gonzalez-Torres, STS-125 lead spacewalk officer, monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during flight day four activities.

  5. STS-125 Flight Controllers on Console - (Orbit Shift 1). Flight Director: Anthony Ceccacci

    NASA Image and Video Library

    2009-05-14

    JSC2009-E-120489 (14 May 2009) --- Astronaut Dan Burbank, STS-125 spacecraft communicator (CAPCOM), monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during flight day four activities.

  6. STS-125 Flight Controllers on Console During HST Grapple - Orbit 1. Flight Director: Tony Ceccacci

    NASA Image and Video Library

    2009-05-13

    JSC2009-E-119745 (13 May 2009) --- Flight director Tony Ceccacci (left) and astronaut Dan Burbank, STS-125 spacecraft communicator (CAPCOM), monitor data at their consoles in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during flight day three activities. The Hubble Space Telescope, grappled by Space Shuttle Atlantis? remote manipulator system (RMS), is visible on one of the big screens.

  7. STS-125 Flight Controllers on Console During HST Grapple - Orbit 1. Flight Director: Tony Ceccacci

    NASA Image and Video Library

    2009-05-13

    JSC2009-E-119746 (13 May 2009) --- Flight director Tony Ceccacci (left) and astronaut Dan Burbank, STS-125 spacecraft communicator (CAPCOM), monitor data at their consoles in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during flight day three activities. The Hubble Space Telescope, grappled by Space Shuttle Atlantis? remote manipulator system (RMS), is visible on one of the big screens.

  8. Conceptual Inquiry of the Space Shuttle and International Space Station GNC Flight Controllers

    NASA Technical Reports Server (NTRS)

    Kranzusch, Kara

    2007-01-01

    The concept of Mission Control was envisioned by Christopher Columbus Kraft in the 1960's. Instructed to figure out how to operate human space flight safely, Kraft envisioned a room of sub-system experts troubleshooting problems and supporting nominal flight activities under the guidance of one Flight Director who is responsible for the success of the mission. To facilitate clear communication, MCC communicates with the crew through a Capsule Communicator (CAPCOM) who is an astronaut themselves. Gemini 4 was the first mission to be supported by such a MCC and successfully completed the first American EVA. The MCC seen on television is called the Flight Control Room (FCR, pronounced ficker) or otherwise known as the front room. While this room is the most visible aspect, it is a very small component of the entire control center. The Shuttle FCR is known as the White FCR (WFCR) and Station's as FCR-1. (FCR-1 was actually the first FCR built at JSC which was used through the Gemini, Apollo and Shuttle programs until the WFCR was completed in 1992. Afterwards FCR-1 was refurbished first for the Life Sciences Center and then for the ISS in 2006.) Along with supporting the Flight Director, each FCR operator is also the supervisor for usually two or three support personnel in a back room called the Multi-Purpose Support Room (MPSR, pronounced mipser). MPSR operators are more deeply focused on their specific subsystems and have the responsible to analyze patterns, and diagnose and assess consequences of faults. The White MPSR (WMPSR) operators are always present for Shuttle operations; however, ISS FCR controllers only have support from their Blue MPSR (BMPSR) while the Shuttle is docked and during critical operations. Since ISS operates 24-7, the FCR team reduces to a much smaller Gemini team of 4-5 operators for night and weekend shifts when the crew is off-duty. The FCR is also supported by the Mission Evaluation Room (MER) which is a collection of contractor engineers

  9. ISS15A Flight Control Team in FCR-1 Orbit 1 - Flight Director Kwatsi Alibaruho

    NASA Image and Video Library

    2009-03-20

    JSC2009-E-060959 (20 March 2009) --- The members of the STS-119/15A ISS Orbit 1 flight control team pose for a group portrait in the space station flight control room in the Mission Control Center at NASA’s Johnson Space Center. Flight director Kwatsi Alibaruho (right) is visible on the front row.

  10. ISS ULF2 Flight Control Team in FCR-1 - Orbit 3 - Flight Director David Korth

    NASA Image and Video Library

    2009-03-20

    JSC2009-E-061164 (20 March 2009) --- The members of the STS-119/15A ISS Orbit 3 flight control team pose for a group portrait in the space station flight control room in the Mission Control Center at NASA’s Johnson Space Center. Flight director David Korth (right) is visible on the front row.

  11. Flight Approach to Adaptive Control Research

    NASA Technical Reports Server (NTRS)

    Pavlock, Kate Maureen; Less, James L.; Larson, David Nils

    2011-01-01

    The National Aeronautics and Space Administration's Dryden Flight Research Center completed flight testing of adaptive controls research on a full-scale F-18 testbed. The testbed served as a full-scale vehicle to test and validate adaptive flight control research addressing technical challenges involved with reducing risk to enable safe flight in the presence of adverse conditions such as structural damage or control surface failures. This paper describes the research interface architecture, risk mitigations, flight test approach and lessons learned of adaptive controls research.

  12. Lytic Replication of Epstein-Barr Virus During Space Flight

    NASA Technical Reports Server (NTRS)

    Stowe, R. P.; Pierson, D. L.; Barrett, A. D. T.

    1999-01-01

    Reactivation of latent Epstein-Barr virus (EBV) may be an important threat to crew health during extended space missions. Cellular immunity, which is decreased during and after space flight, is responsible for controlling EBV replication in vivo. In this study, we investigated the effects of short-term space flight on latent EBV reactivation.

  13. STS-132/ULF4 Flight Controllers on Console

    NASA Image and Video Library

    2010-05-18

    JSC2010-E-081916 (18 May 2010) --- ISS flight directors Holly Ridings (seated) and Emily Nelson monitor data at their console in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-132/ULF-4 mission flight day five activities.

  14. Energy requirements for space flight

    NASA Technical Reports Server (NTRS)

    Lane, Helen W.

    1992-01-01

    Both the United States and the Soviet Union perform human space research. This paper reviews data available on energy metabolism in the microgravity of space flight. The level of energy utilization in space seems to be similar to that on earth, as does energy availability. However, despite adequate intake of energy and protein and in-flight exercise, lean body mass was catabolized, as indicated by negative nitrogen balance. Metabolic studies during simulated microgravity (bed rest) and true microgravity in flight have shown changes in blood glucose, fatty acids and insulin concentrations, suggesting that energy metabolism may be altered during space flight. Future research should focus on the interactions of lean body mass, diet and exercise in space, and their roles in energy metabolism during space flight.

  15. Immune responses in space flight

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, G.

    1998-01-01

    Space flight has been shown to have profound effects on immunological parameters of humans, monkeys and rodents. These studies have been carried out by a number of different laboratories. Among the parameters affected are leukocyte blastogenesis, natural killer cell activity, leukocyte subset distribution, cytokine production - including interferons and interleukins, and macrophage maturation and activity. These changes start to occur only after a few days space flight, and some changes continue throughout long-term space flight. Antibody responses have received only very limited study, and total antibody levels have been shown to be increased after long-term space flight. Several factors could be involved in inducing these changes. These factors could include microgravity, lack of load-bearing, stress, acceleration forces, and radiation. The mechanism(s) for space flight-induced changes in immune responses remain(s) to be established. Certainly, there can be direct effects of microgravity, or other factors, on cells that play a fundamental role in immune responses. However, it is now clear that there are interactions between the immune system and other physiological systems that could play a major role. For example, changes occurring in calcium use in the musculoskeletal system induced by microgravity or lack of use could have great impact on the immune system. Most of the changes in immune responses have been observed using samples taken immediately after return from space flight. However, there have been two recent studies that have used in-flight testing. Delayed-type hypersensitivity responses to common recall antigens of astronauts and cosmonauts have been shown to be decreased when tested during space flights. Additionally, natural killer cell and blastogenic activities are inhibited in samples taken from rats during space flight. Therefore, it is now clear that events occurring during space flight itself can affect immune responses. The biological

  16. Proceedings of the Second Manned Space Flight Meeting

    NASA Technical Reports Server (NTRS)

    1964-01-01

    The papers presented in this report represent the classified portion of the Second Manned Space Flight Meeting which was held in Dallas, TX, on April 22-24, 1963. The meeting was co-sponsored by the American Institute of Aeronautics and Astronautics and the National Aeronautics and Space Administration. The following subjects are discussed in the report: Manned Space Flight Programs, Launch Vehicles, Spacecraft Design, and Guidance and Control.

  17. Motion Perception and Manual Control Performance During Passive Tilt and Translation Following Space Flight

    NASA Technical Reports Server (NTRS)

    Clement, Gilles; Wood, Scott J.

    2010-01-01

    This joint ESA-NASA study is examining changes in motion perception following Space Shuttle flights and the operational implications of post-flight tilt-translation ambiguity for manual control performance. Vibrotactile feedback of tilt orientation is also being evaluated as a countermeasure to improve performance during a closed-loop nulling task. METHODS. Data has been collected on 5 astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation (216 deg/s) combined with body translation (12-22 cm, peak-to-peak) is utilized to elicit roll-tilt perception (equivalent to 20 deg, peak-to-peak). A forward-backward moving sled (24-390 cm, peak-to-peak) with or without chair tilting in pitch is utilized to elicit pitch tilt perception (equivalent to 20 deg, peak-to-peak). These combinations are elicited at 0.15, 0.3, and 0.6 Hz for evaluating the effect of motion frequency on tilt-translation ambiguity. In both devices, a closed-loop nulling task is also performed during pseudorandom motion with and without vibrotactile feedback of tilt. All tests are performed in complete darkness. PRELIMINARY RESULTS. Data collection is currently ongoing. Results to date suggest there is a trend for translation motion perception to be increased at the low and medium frequencies on landing day compared to pre-flight. Manual control performance is improved with vibrotactile feedback. DISCUSSION. The results of this study indicate that post-flight recovery of motion perception and manual control performance is complete within 8 days following short-duration space missions. Vibrotactile feedback of tilt improves manual control performance both before and after flight.

  18. 14 CFR 27.673 - Primary flight control.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Primary flight control. 27.673 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Control Systems § 27.673 Primary flight control. Primary flight controls are those used by the pilot for immediate control of pitch, roll...

  19. 14 CFR 29.673 - Primary flight controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Primary flight controls. 29.673 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Control Systems § 29.673 Primary flight controls. Primary flight controls are those used by the pilot for immediate control of pitch, roll...

  20. 14 CFR 29.673 - Primary flight controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Primary flight controls. 29.673 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Control Systems § 29.673 Primary flight controls. Primary flight controls are those used by the pilot for immediate control of pitch, roll...

  1. 14 CFR 27.673 - Primary flight control.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Primary flight control. 27.673 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Control Systems § 27.673 Primary flight control. Primary flight controls are those used by the pilot for immediate control of pitch, roll...

  2. 14 CFR 27.673 - Primary flight control.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Control Systems § 27.673 Primary flight control. Primary flight controls are those used by the pilot for immediate control of pitch, roll... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Primary flight control. 27.673 Section 27...

  3. 14 CFR 29.673 - Primary flight controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Control Systems § 29.673 Primary flight controls. Primary flight controls are those used by the pilot for immediate control of pitch, roll... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Primary flight controls. 29.673 Section 29...

  4. STS-125 Flight Controllers on Console During HST Grapple - Orbit 1. Flight Director: Tony Ceccacci

    NASA Image and Video Library

    2009-05-13

    JSC2009-E-119632 (13 May 2009) --- Flight director Tony Ceccacci and astronaut Dan Burbank (background), STS-125 spacecraft communicator (CAPCOM), monitor data at their consoles in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during flight day three activities.

  5. 14 CFR 23.673 - Primary flight controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Primary flight controls. 23.673 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.673 Primary flight controls. Primary flight controls are those used by the pilot for...

  6. 14 CFR 23.673 - Primary flight controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Primary flight controls. 23.673 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.673 Primary flight controls. Primary flight controls are those used by the pilot for...

  7. 14 CFR 23.673 - Primary flight controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Primary flight controls. 23.673 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.673 Primary flight controls. Primary flight controls are those used by the pilot for...

  8. 14 CFR 23.673 - Primary flight controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Primary flight controls. 23.673 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.673 Primary flight controls. Primary flight controls are those used by the pilot for...

  9. 14 CFR 23.673 - Primary flight controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Primary flight controls. 23.673 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.673 Primary flight controls. Primary flight controls are those used by the pilot for...

  10. STS-132/ULF4 Flight Controllers on Console

    NASA Image and Video Library

    2010-05-18

    JSC2010-E-081909 (18 May 2010) --- Flight director Mike Sarafin (left) and NASA astronaut Chris Cassidy, spacecraft communicator (CAPCOM) for the STS-132 mission, are pictured at their consoles in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during flight day five activities.

  11. Growth-rate periodicity of Streptomyces levoris during space flight

    NASA Technical Reports Server (NTRS)

    Rogers, T. D.; Brower, M. E.; Taylor, G. R.

    1977-01-01

    Streptomyces levoris provides a suitable biological test system to investigate the effects of space flight on the rhythms of vegetative and spore phase characteristics of both growth-rate periodicity and culture morphology during the pre-, in-, and post-flight periods of the Apollo-Soyuz Test Project. The objectives of the American participation were to study the effects of space flight on the biorhythms of Streptomyces levoris based on a comparison of the growth-rate periodicity of the vegetative and spore phase within each culture, to examine the possible alteration of spore morphology and development by SEM, and to compare the effects of a 12-hr phase shift on the periodic growth characteristics of this microorganism in cultures which were exchanged during the joint activities of the space flight. No uniform differences in the biorhythm of Streptomyces levoris during space flight were observed. It appears that the single most variable factor related to the experiment was the lack of temperature control for the space-flight specimens.

  12. Magnesium and Space Flight.

    PubMed

    Smith, Scott M; Zwart, Sara R

    2015-12-08

    Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD) before, during, and after 4-6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female), 35 ± 7 years old). We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4-6-month space missions.

  13. STS-132 Flight Control Team in WFCR - Orbit 1

    NASA Image and Video Library

    2010-05-22

    JSC2010-E-086698 (22 May 2010) --- The members of the STS-132 Orbit 1 flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Mike Sarafin (center) is visible on the front row.

  14. STS-125 Flight Controllers on Console - (Orbit Shift 2). Flight Director: Richard LaBrode

    NASA Image and Video Library

    2009-05-12

    JSC2009-E-119378 (12 May 2009) --- Tomas Gonzalez-Torres, STS-125 lead spacewalk officer, monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during flight day two activities.

  15. STS-125 Flight Controllers on Console - (Orbit Shift 2). Flight Director: Richard LaBrode

    NASA Image and Video Library

    2009-05-12

    JSC2009-E-119391 (12 May 2009) --- Astronaut Alan Poindexter, STS-125 spacecraft communicator (CAPCOM), monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during flight day two activities.

  16. 14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fire protection of flight controls, engine...

  17. 14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fire protection of flight controls, engine...

  18. 14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire protection of flight controls, engine...

  19. 14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fire protection of flight controls, engine...

  20. 14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fire protection of flight controls, engine...

  1. STS-131/19A Flight Control Team in FCR-1 - Orbit 1- Flight Director Ron Spencer

    NASA Image and Video Library

    2010-04-14

    JSC2010-E-052008 (14 April 2010) --- The members of the STS-131/19A ISS Orbit 2 flight control team pose for a group portrait in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Ron Spencer (right) holds the STS-131 mission logo.

  2. Blood and clonogenic hemopoietic cells of newts after the space flight

    NASA Astrophysics Data System (ADS)

    Michurina, T. V.; Domaratskaya, E. I.; Nikonova, T. M.; Khrushchov, N. G.

    Ribbed newts were used for studying the effect of space flight on board of the biosatellite (Cosmos-2229) on blood and clonogenic hemopoietic cells. In blood of newts of the flight group, the relative proportion of neutrophils increased, whereas that of lymphocytes and eosinophils decreased. Space flight did not result in loss of the ability of newt blood cells to incorporate H^3-thymidine. Analysis of clonogenic hemopoietic cells was performed using the method of hemopoietic colony formation on cellulose acetate membranes implanted into the peritoneal cavity of irradiated newts. To analyze reconstitution of hemopoiesis after irradiation donor hemopoietic cells from flight or control newts were transplanted into irradiated newts whose hemopoietic organs were investigated. The newt can be considered an adequate model for studying hemopoiesis under the conditions of the space flight. Previous studies on rats subjected to 5- to 19-day space flights revealed a decrease in the number of clonogenic cells in their hemopoietic organs accompanied by specific changes in the precursor cell compartment and in blood /1,2/. Hence, it was interesting to analyze blood and hemopoietic tissue of lower vertebrates after a space flight and to compare the response to it of animals belonging to different taxonomic groups. We analyzed blood and clonogenic hemopoietic cells of ribbed newts, Pleurodeles waltl (age one year, weight 20-28 g) subjected to a 12-day space flight on board of a Cosmos-2229 biosatellite. The same animals were used in studies on limb and lens regeneration. The results were compared with those obtained with control groups of newts: (1) basic control, operated newts sacrificed on the day of biosatellite launching (BC); (2) synchronous control, operated newts kept in the laboratory under simulated space flight conditions (SC); and (3) intact newts (IC).

  3. Space Station Environmental Control and Life Support System Test Facility at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Springer, Darlene

    1989-01-01

    Different aspects of Space Station Environmental Control and Life Support System (ECLSS) testing are currently taking place at Marshall Space Flight Center (MSFC). Unique to this testing is the variety of test areas and the fact that all are located in one building. The north high bay of building 4755, the Core Module Integration Facility (CMIF), contains the following test areas: the Subsystem Test Area, the Comparative Test Area, the Process Material Management System (PMMS), the Core Module Simulator (CMS), the End-use Equipment Facility (EEF), and the Pre-development Operational System Test (POST) Area. This paper addresses the facility that supports these test areas and briefly describes the testing in each area. Future plans for the building and Space Station module configurations will also be discussed.

  4. STS-132 Flight Control Team in WFCR - Orbit 2

    NASA Image and Video Library

    2010-05-20

    JSC2010-E-086451 (20 May 2010) --- The members of the STS-132 Orbit 2 flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Chris Edelen (second left) is visible on the front row.

  5. Long-Duration Space Flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Session WA1 includes short reports concerning: (1) Medical and Physiological Studies During 438-Day Space Flights: (2) Human Performance During a 14 Month Space Mission: (3) Homeostasis in Long-Term Microgravity Conditions; (4) Strategy of Preservation of Health of Cosmonauts in Prolonged and Superprolonged Space Flights; (5) Rehabilitation of Cosmonauts Health Following Long-Term Space Missions; and (6) Perfect Cosmonauts: Some Features of Bio-Portrait.

  6. STS-134 Flight Controllers on Console - Landing

    NASA Image and Video Library

    2011-06-01

    JSC2011-E-050168 (1 June 2011) --- An overall view of the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center photographed during STS-134/ULF-6 landing day activities. Flight directors Richard Jones (left) and Tony Ceccacci are visible in the foreground. Photo credit: NASA

  7. STS-134 Flight Controllers on Console - Launch.

    NASA Image and Video Library

    2011-05-16

    JSC2011-E-044228 (16 May 2011) --- Flight director Tony Ceccacci is pictured at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Endeavour's STS-134 launch. Liftoff was at 8:56 a.m. (EDT) on May 16, 2011, from Launch Pad 39A at NASA's Kennedy Space Center. Photo credit: NASA

  8. Magnesium and Space Flight

    PubMed Central

    Smith, Scott M.; Zwart, Sara R.

    2015-01-01

    Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD) before, during, and after 4–6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female), 35 ± 7 years old). We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4–6-month space missions. PMID:26670248

  9. The Space Technology-7 Disturbance Reduction System Precision Control Flight Validation Experiment Control System Design

    NASA Technical Reports Server (NTRS)

    O'Donnell, James R.; Hsu, Oscar C.; Maghami, Peirman G.; Markley, F. Landis

    2006-01-01

    As originally proposed, the Space Technology-7 Disturbance Reduction System (DRS) project, managed out of the Jet Propulsion Laboratory, was designed to validate technologies required for future missions such as the Laser Interferometer Space Antenna (LISA). The two technologies to be demonstrated by DRS were Gravitational Reference Sensors (GRSs) and Colloidal MicroNewton Thrusters (CMNTs). Control algorithms being designed by the Dynamic Control System (DCS) team at the Goddard Space Flight Center would control the spacecraft so that it flew about a freely-floating GRS test mass, keeping it centered within its housing. For programmatic reasons, the GRSs were descoped from DRS. The primary goals of the new mission are to validate the performance of the CMNTs and to demonstrate precise spacecraft position control. DRS will fly as a part of the European Space Agency (ESA) LISA Pathfinder (LPF) spacecraft along with a similar ESA experiment, the LISA Technology Package (LTP). With no GRS, the DCS attitude and drag-free control systems make use of the sensor being developed by ESA as a part of the LTP. The control system is designed to maintain the spacecraft s position with respect to the test mass, to within 10 nm/the square root of Hz over the DRS science frequency band of 1 to 30 mHz.

  10. Investigation of periodontal tissue during a long space flights

    NASA Astrophysics Data System (ADS)

    Solovyeva, Zoya; Viacheslav, Ilyin; Skedina, Marina

    Previous studies conducted on the International Space Station found that upon completion of the space flight there are significant changes in the local immunity and periodontal microflora of astronauts. Also research in ground-based experiments that simulate space flight factors showed that prolonged hypokinesia antiorthostatic leads to impaired functional indicators of the periodontal vascular system, an unidirectional change from the microbiota and the immune system. That results in the appearance and progressive increase of the parodontial pathogenic bacteria and increase of the content of immunoglobulins in the oral fluid. All these changes are classified as risk factors for the development of inflammatory periodontal diseases in astronauts. However, the studies were unable to determine whether the changes result from a long space flight and the peculiarities of formation the local immunity and periodontal microbiota during the space flight, or they are one of the specific manifestations of the readaptationary post-flight condition of the body. In this regard, the planned research in a long space flight suggests: to use the means of microbial control, which can retain of the anaerobes periodontal microbiota sampling directly in the space flight; to assess the specificity of changes of the periodontal immune status under the influence of the space flight factors, and to assess the state of microcirculation of periodontal tissue in astronauts. A comprehensive study of the reaction of dentition during the space flight will make it possible to study the pathogenesis of changes for developing an adequate prevention aimed at optimizing the state of dentition of the astronauts.

  11. Movable Ground Based Recovery System for Reuseable Space Flight Hardware

    NASA Technical Reports Server (NTRS)

    Sarver, George L. (Inventor)

    2013-01-01

    A reusable space flight launch system is configured to eliminate complex descent and landing systems from the space flight hardware and move them to maneuverable ground based systems. Precision landing of the reusable space flight hardware is enabled using a simple, light weight aerodynamic device on board the flight hardware such as a parachute, and one or more translating ground based vehicles such as a hovercraft that include active speed, orientation and directional control. The ground based vehicle maneuvers itself into position beneath the descending flight hardware, matching its speed and direction and captures the flight hardware. The ground based vehicle will contain propulsion, command and GN&C functionality as well as space flight hardware landing cushioning and retaining hardware. The ground based vehicle propulsion system enables longitudinal and transverse maneuverability independent of its physical heading.

  12. Nutritional Biochemistry of Space Flight

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.

    2000-01-01

    Adequate nutrition is critical for maintenance of crew health during and after extended-duration space flight. The impact of weightlessness on human physiology is profound, with effects on many systems related to nutrition, including bone, muscle, hematology, fluid and electrolyte regulation. Additionally, we have much to learn regarding the impact of weightlessness on absorption, mtabolism , and excretion of nutrients, and this will ultimately determine the nutrient requirements for extended-duration space flight. Existing nutritional requirements for extended-duration space flight have been formulated based on limited flight research, and extrapolation from ground-based research. NASA's Nutritional Biochemistry Laboratory is charged with defining the nutritional requirements for space flight. This is accomplished through both operational and research projects. A nutritional status assessment program is included operationally for all International Space Station astronauts. This medical requirement includes biochemical and dietary assessments, and is completed before, during, and after the missions. This program will provide information about crew health and nutritional status, and will also provide assessments of countermeasure efficacy. Ongoing research projects include studies of calcium and bone metabolism, and iron absorption and metabolism. The calcium studies include measurements of endocrine regulation of calcium homeostasis, biochemical marker of bone metabolism, and tracer kinetic studies of calcium movement in the body. These calcium kinetic studies allow for estimation of intestinal absorption, urinary excretion, and perhaps most importantly - deposition and resorption of calcium from bone. The Calcium Kinetics experiment is currently being prepared for flight on the Space Shuttle in 2001, and potentially for subsequent Shuttle and International Space Station missions. The iron study is intended to assess whether iron absorption is down-regulated dUl1ng

  13. STS-125 Flight Controllers on Console - (Orbit Shift)

    NASA Image and Video Library

    2009-05-11

    JSC2009-E-118817 (11 May 2009) --- Flight controller Mark McDonald monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch countdown activities a few hundred miles away in Florida, site of Space Shuttle Atlantis? scheduled STS-125 launch to service the Hubble Space Telescope. Liftoff was on time at 2:01 p.m. (EDT) on May 11, 2009 from launch pad 39A at NASA's Kennedy Space Center.

  14. STS-132/ULF4 WFCR Flight Controllers on Console

    NASA Image and Video Library

    2010-05-14

    JSC2010-E-080460 (14 May 2010) --- Brent Jett, director, flight crew operations; and flight director Norm Knight (foreground) watch a monitor in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during the launch of space shuttle Atlantis a few hundred miles away in Florida. Liftoff was on time at 2:20 p.m. (EDT) on May 14, 2010 from launch pad 39A at NASA's Kennedy Space Center.

  15. STS-132/ULF4 Flight Controllers on Console

    NASA Image and Video Library

    2010-05-18

    JSC2010-E-081929 (18 May 2010) --- Kyle Herring, Public Affairs Office (PAO) commentator, monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-132 mission flight day five activities.

  16. STS-125 Flight Controllers on Console During HST Grapple - Orbit 1. Flight Director: Tony Ceccacci

    NASA Image and Video Library

    2009-05-13

    JSC2009-E-119633 (13 May 2009) --- Astronaut Dan Burbank, STS-125 spacecraft communicator (CAPCOM), monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during flight day three activities.

  17. STS-131/19A Flight Control Team in FCR-1 - Orbit 1- Flight Director Courtney McMillan

    NASA Image and Video Library

    2010-04-14

    JSC2010-E-052979 (14 April 2010) --- The members of the STS-131/19A ISS Orbit 1 flight control team pose for a group portrait in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Courtenay McMillan (center) stands on the front row.

  18. STS-131/19A Flight Control Team in FCR-1 - Orbit 3- Flight Director Ed Van Cise

    NASA Image and Video Library

    2010-04-14

    JSC2010-E-052556 (14 April 2010) --- The members of the STS-131/19A ISS Orbit 3 flight control team pose for a group portrait in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Ed Van Cise holds the STS-131 mission logo.

  19. Marshall Space Flight Center CFD overview

    NASA Technical Reports Server (NTRS)

    Schutzenhofer, Luke A.

    1989-01-01

    Computational Fluid Dynamics (CFD) activities at Marshall Space Flight Center (MSFC) have been focused on hardware specific and research applications with strong emphasis upon benchmark validation. The purpose here is to provide insight into the MSFC CFD related goals, objectives, current hardware related CFD activities, propulsion CFD research efforts and validation program, future near-term CFD hardware related programs, and CFD expectations. The current hardware programs where CFD has been successfully applied are the Space Shuttle Main Engines (SSME), Alternate Turbopump Development (ATD), and Aeroassist Flight Experiment (AFE). For the future near-term CFD hardware related activities, plans are being developed that address the implementation of CFD into the early design stages of the Space Transportation Main Engine (STME), Space Transportation Booster Engine (STBE), and the Environmental Control and Life Support System (ECLSS) for the Space Station. Finally, CFD expectations in the design environment will be delineated.

  20. 14 CFR 435.8 - Human space flight.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Human space flight. 435.8 Section 435.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Human space flight. An applicant for a license to conduct a reentry with flight crew or a space flight...

  1. 14 CFR 435.8 - Human space flight.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Human space flight. 435.8 Section 435.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Human space flight. An applicant for a license to conduct a reentry with flight crew or a space flight...

  2. 14 CFR 435.8 - Human space flight.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Human space flight. 435.8 Section 435.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Human space flight. An applicant for a license to conduct a reentry with flight crew or a space flight...

  3. 14 CFR 435.8 - Human space flight.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Human space flight. 435.8 Section 435.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Human space flight. An applicant for a license to conduct a reentry with flight crew or a space flight...

  4. 14 CFR 435.8 - Human space flight.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Human space flight. 435.8 Section 435.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Human space flight. An applicant for a license to conduct a reentry with flight crew or a space flight...

  5. Calcium Kinetics During Space Flight

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; OBrien, K. O.; Abrams, S. A.; Wastney, M. E.

    2005-01-01

    Bone loss during space flight is one of the most critical challenges to astronaut health on space exploration missions. Defining the time course and mechanism of these changes will aid in developing means to counteract bone loss during space flight, and will have relevance for other clinical situations that impair weight-bearing activity. Bone health is a product of the balance between bone formation and bone resorption. Early space research could not clearly identify which of these was the main process altered in bone loss, but identification of the collagen crosslinks in the 1990s made possible a clear understanding that the impact of space flight was greater on bone resorption, with bone formation being unchanged or only slightly decreased. Calcium kinetics data showed that bone resorption was greater during flight than before flight (668 plus or minus 130 vs. 427 plus or minus 153 mg/d, p less than 0.001), and clearly documented that true intestinal calcium absorption was lower during flight than before flight (233 plus or minus 87 vs. 460 plus or minus 47 mg/d, p less than 0.01). Weightlessness had a detrimental effect on the balance in bone turnover: the difference between daily calcium balance during flight (-234 plus or minus 102 mg/d) and calcium balance before flight (63 plus or minus 75 mg/d) approached 300 mg/d (p less than 0.01). These data demonstrate that the bone loss that occurs during space flight is a consequence of increased bone resorption and decreased intestinal calcium absorption. Examining the changes in bone and calcium homeostasis in the initial days and weeks of space flight, as well as at later times on missions longer than 6 months, is critical to understanding the nature of bone adaptation to weightlessness. To increase knowledge of these changes, we studied bone adaptation to space flight on the 16-day Space Shuttle Columbia (STS-107) mission. When the brave and talented crew of Columbia were lost during reentry on the tragic morning

  6. Cosmonaut Dezhurov Talks With Flight Controllers

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Aboard the International Space Station (ISS), Cosmonaut and Expedition Three flight engineer Vladimir N. Dezhurov, representing Rosaviakosmos, talks with flight controllers from the Zvezda Service Module. Russian-built Zvezda is linked to the Functional Cargo Block (FGB), or Zarya, the first component of the ISS. Zarya was launched on a Russian Proton rocket prior to the launch of Unity. The third component of the ISS, Zvezda (Russian word for star), the primary Russian contribution to the ISS, was launched by a three-stage Proton rocket on July 12, 2000. Zvezda serves as the cornerstone for early human habitation of the Station, providing living quarters, a life support system, electrical power distribution, a data processing system, flight control system, and propulsion system. It also provides a communications system that includes remote command capabilities from ground flight controllers. The 42,000-pound module measures 43 feet in length and has a wing span of 98 feet. Similar in layout to the core module of Russia's Mir space station, it contains 3 pressurized compartments and 13 windows that allow ultimate viewing of Earth and space.

  7. STS-134 Orbit 2 flight controllers on consoles

    NASA Image and Video Library

    2011-05-17

    JSC2011-E-045468 (17 May 2011) --- Public Affairs Office (PAO) mission commentator Brandi Dean monitors data at her console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-134 flight day two activities. Photo credit: NASA

  8. STS-134 Orbit 3 Flight Controllers on Console

    NASA Image and Video Library

    2011-05-19

    JSC2011-E-046428 (19 May 2011) --- NASA astronaut Shannon Lucid, STS-134 spacecraft communicator (CAPCOM), is pictured at her console in the space shuttle flight control room in the Mission Control Center at NASA?s Johnson Space Center during flight day four activities. Photo credit: NASA

  9. STS-134 Orbit 2 flight controllers on consoles

    NASA Image and Video Library

    2011-05-17

    JSC2011-E-045467 (17 May 2011) --- Public Affairs Office (PAO) mission commentator Brandi Dean is pictured at her console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-134 flight day two activities. Photo credit: NASA

  10. STS-132/ULF4 Flight Controllers on Console - Orbit 2

    NASA Image and Video Library

    2010-05-17

    JSC2010-E-084363 (17 May 2010) --- Flight director Chris Edelen monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-132 flight day four activities.

  11. STS-132/ULF4 WFCR Flight Controllers on Console

    NASA Image and Video Library

    2010-05-14

    JSC2010-E-080409 (14 May 2010) --- Brent Jett (left), director, flight crew operations; and flight director Norm Knight are pictured in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Atlantis' scheduled STS-132 launch. Liftoff was on time at 2:20 p.m. (EDT) on May 14, 2010 from launch pad 39A at NASA's Kennedy Space Center.

  12. Immune function during space flight

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald; Shearer, William T.

    2002-01-01

    It is very likely that the human immune system will be altered in astronauts exposed to the conditions of long-term space flight: isolation, containment, microgravity, radiation, microbial contamination, sleep disruption, and insufficient nutrition. In human and animal subjects flown in space, there is evidence of immune compromise, reactivation of latent virus infection, and possible development of a premalignant or malignant condition. Moreover, in ground-based space flight model investigations, there is evidence of immune compromise and reactivation of latent virus infection. All of these observations in space flight itself or in ground-based models of space flight have a strong resonance in a wealth of human pathologic conditions involving the immune system where reactivated virus infections and cancer appear as natural consequences. The clinical conditions of Epstein-Barr-driven lymphomas in transplant patients and Kaposi's sarcoma in patients with autoimmune deficiency virus come easily to mind in trying to identify these conditions. With these thoughts in mind, it is highly appropriate, indeed imperative, that careful investigations of human immunity, infection, and cancer be made by space flight researchers.

  13. Young PHD's in Human Space Flight

    NASA Technical Reports Server (NTRS)

    Wilson, Eleanor

    2002-01-01

    The Cooperating Hampton Roads Organizations for Minorities in Engineering (CHROME) in cooperation with the NASA Office of Space Flight, Human Exploration and Development of Space Enterprise sponsored a summer institute, Young PHD#s (Persons Having Dreams) in Human Space Flight. This 3-day institute used the curriculum of a workshop designed for space professionals, 'Human Space Flight-Analysis and Design: An Integrated, Systematic Approach.' The content was tailored to a high school audience. This institute seeks to stimulate the interest of pre-college students in space flight and motivate them to pursue further experiences in this field. Additionally, this institute will serve as a pilot model for a pre- collegiate training program that can be replicated throughout the country. The institute was complemented with a trip to the Goddard Space Flight Center.

  14. STS-120 Orbit 2 Flight Control Team Photo

    NASA Image and Video Library

    2007-10-31

    JSC2007-E-095908 (31 Oct. 2007) --- The members of the STS-120 Orbit 2 flight control team pose for a group portrait in the space shuttle flight control room of Houston's Mission Control Center (MCC). Flight director Mike Moses holds the STS-120 mission logo.

  15. 14 CFR 121.543 - Flight crewmembers at controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight crewmembers at controls. 121.543... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.543 Flight crewmembers at controls. (a) Except as provided in paragraph (b) of this section, each required flight crewmember on...

  16. 14 CFR 121.543 - Flight crewmembers at controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight crewmembers at controls. 121.543... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.543 Flight crewmembers at controls. (a) Except as provided in paragraph (b) of this section, each required flight crewmember on...

  17. 14 CFR 121.543 - Flight crewmembers at controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight crewmembers at controls. 121.543... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.543 Flight crewmembers at controls. (a) Except as provided in paragraph (b) of this section, each required flight crewmember on...

  18. 14 CFR 121.543 - Flight crewmembers at controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight crewmembers at controls. 121.543... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.543 Flight crewmembers at controls. (a) Except as provided in paragraph (b) of this section, each required flight crewmember on...

  19. 14 CFR 121.543 - Flight crewmembers at controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight crewmembers at controls. 121.543... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.543 Flight crewmembers at controls. (a) Except as provided in paragraph (b) of this section, each required flight crewmember on...

  20. STS-132/ULF-4 Flight Control Team in FCR-1

    NASA Image and Video Library

    2010-05-20

    JSC2010-E-085365 (20 May 2010) --- The members of the STS-132/ULF-4 ISS Orbit 2 flight control team pose for a group portrait in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Emily Nelson holds the Expedition 23 mission logo.

  1. STS-132/ULF-4 Flight Control Team in FCR-1

    NASA Image and Video Library

    2010-05-19

    JSC2010-E-086277 (19 May 2010) --- The members of the STS-132/ULF-4 ISS Orbit 1 flight control team pose for a group portrait in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Holly Ridings holds the STS-132 mission logo.

  2. STS-132/ULF-4 Flight Control Team in FCR-1

    NASA Image and Video Library

    2010-05-20

    JSC2010-E-086504 (20 May 2010) --- The members of the STS-132/ULF-4 ISS Orbit 3 flight control team pose for a group portrait in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Scott Stover holds the Expedition 23 mission logo.

  3. STS-125 Flight Controllers on Console - (Orbit Shift)

    NASA Image and Video Library

    2009-05-11

    JSC2009-E-118888 (11 May 2009) --- Flight director Bryan Lunney monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch countdown activities a few hundred miles away in Florida, site of Space Shuttle Atlantis? scheduled STS-125 launch to service the Hubble Space Telescope. Liftoff was on time at 2:01 p.m. (EDT) on May 11, 2009 from launch pad 39A at NASA's Kennedy Space Center.

  4. STS-125 Flight Controllers on Console - (Orbit Shift)

    NASA Image and Video Library

    2009-05-11

    JSC2009-E-118822 (11 May 2009) --- Flight director Norm Knight is pictured in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch countdown activities a few hundred miles away in Florida, site of Space Shuttle Atlantis? scheduled STS-125 launch to service the Hubble Space Telescope. Liftoff was on time at 2:01 p.m. (EDT) on May 11, 2009 from launch pad 39A at NASA's Kennedy Space Center.

  5. STS-125 Flight Controllers on Console - (Orbit Shift)

    NASA Image and Video Library

    2009-05-11

    JSC2009-E-118883 (11 May 2009) --- Flight director Tony Ceccacci is pictured in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch countdown activities a few hundred miles away in Florida, site of Space Shuttle Atlantis? scheduled STS-125 launch to service the Hubble Space Telescope. Liftoff was on time at 2:01 p.m. (EDT) on May 11, 2009 from launch pad 39A at NASA's Kennedy Space Center.

  6. STS-125 Flight Controllers on Console - (Orbit Shift)

    NASA Image and Video Library

    2009-05-11

    JSC2009-E-118882 (11 May 2009) --- Flight director Norm Knight is pictured in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch countdown activities a few hundred miles away in Florida, site of Space Shuttle Atlantis? scheduled STS-125 launch to service the Hubble Space Telescope. Liftoff was on time at 2:01 p.m. (EDT) on May 11, 2009 from launch pad 39A at NASA's Kennedy Space Center.

  7. Flight Test Approach to Adaptive Control Research

    NASA Technical Reports Server (NTRS)

    Pavlock, Kate Maureen; Less, James L.; Larson, David Nils

    2011-01-01

    The National Aeronautics and Space Administration s Dryden Flight Research Center completed flight testing of adaptive controls research on a full-scale F-18 testbed. The validation of adaptive controls has the potential to enhance safety in the presence of adverse conditions such as structural damage or control surface failures. This paper describes the research interface architecture, risk mitigations, flight test approach and lessons learned of adaptive controls research.

  8. In-Flight Suppression of an Unstable F/A-18 Structural Mode Using the Space Launch System Adaptive Augmenting Control System

    NASA Technical Reports Server (NTRS)

    VanZwieten, Tannen S.; Gilligan, Eric T.; Wall, John H.; Miller, Christopher J.; Hanson, Curtis E.; Orr, Jeb S.

    2015-01-01

    NASA's Space Launch System (SLS) Flight Control System (FCS) includes an Adaptive Augmenting Control (AAC) component which employs a multiplicative gain update law to enhance the performance and robustness of the baseline control system for extreme off-nominal scenarios. The SLS FCS algorithm including AAC has been flight tested utilizing a specially outfitted F/A-18 fighter jet in which the pitch axis control of the aircraft was performed by a Non-linear Dynamic Inversion (NDI) controller, SLS reference models, and the SLS flight software prototype. This paper describes test cases from the research flight campaign in which the fundamental F/A-18 airframe structural mode was identified using post-flight frequency-domain reconstruction, amplified to result in closed loop instability, and suppressed in-flight by the SLS adaptive control system.

  9. In-Flight Suppression of a Destabilized F/A-18 Structural Mode Using the Space Launch System Adaptive Augmenting Control System

    NASA Technical Reports Server (NTRS)

    Wall, John H.; VanZwieten, Tannen S.; Gilligan, Eric T.; Miller, Christopher J.; Hanson, Curtis E.; Orr, Jeb S.

    2015-01-01

    NASA's Space Launch System (SLS) Flight Control System (FCS) includes an Adaptive Augmenting Control (AAC) component which employs a multiplicative gain update law to enhance the performance and robustness of the baseline control system for extreme off nominal scenarios. The SLS FCS algorithm including AAC has been flight tested utilizing a specially outfitted F/A-18 fighter jet in which the pitch axis control of the aircraft was performed by a Non-linear Dynamic Inversion (NDI) controller, SLS reference models, and the SLS flight software prototype. This paper describes test cases from the research flight campaign in which the fundamental F/A-18 airframe structural mode was identified using frequency-domain reconstruction of flight data, amplified to result in closed loop instability, and suppressed in-flight by the SLS adaptive control system.

  10. STS-122 flight controllers in WFCR during launch

    NASA Image and Video Library

    2008-02-07

    JSC2008-E-010344 (7 Feb. 2008) --- Flight directors Norm Knight (left), Bryan Lunney and Richard Jones monitor data at their consoles in the space shuttle flight control room of Johnson Space Center's Mission Control Center (MCC) during launch countdown activities a few hundred miles away in Florida, site of Space Shuttle Atlantis' scheduled STS-122 launch. Liftoff occurred at 2:45 p.m. (EST) on Feb. 7, 2008 from launch pad 39A at Kennedy Space Center.

  11. Design and implementation of robust decentralized control laws for the ACES structure at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Collins, Emmanuel G., Jr.; Phillips, Douglas J.; Hyland, David C.

    1990-01-01

    Many large space system concepts will require active vibration control to satisfy critical performance requirements such as line-of-sight accuracy. In order for these concepts to become operational it is imperative that the benefits of active vibration control be practically demonstrated in ground based experiments. The results of the experiment successfully demonstrate active vibration control for a flexible structure. The testbed is the Active Control Technique Evaluation for Spacecraft (ACES) structure at NASA Marshall Space Flight Center. The ACES structure is dynamically traceable to future space systems and especially allows the study of line-of-sight control issues.

  12. Optical Fiber Assemblies for Space Flight from the NASA Goddard Space Flight Center, Photonics Group

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Thoma, William Joe; LaRocca, Frank; Chuska, Richard; Switzer, Robert; Day, Lance

    2009-01-01

    The Photonics Group at NASA Goddard Space Flight Center in the Electrical Engineering Division of the Advanced Engineering and Technologies Directorate has been involved in the design, development, characterization, qualification, manufacturing, integration and anomaly analysis of optical fiber subsystems for over a decade. The group supports a variety of instrumentation across NASA and outside entities that build flight systems. Among the projects currently supported are: The Lunar Reconnaissance Orbiter, the Mars Science Laboratory, the James Webb Space Telescope, the Express Logistics Carrier for the International Space Station and the NASA Electronic Parts. and Packaging Program. A collection of the most pertinent information gathered during project support over the past year in regards to space flight performance of optical fiber components is presented here. The objective is to provide guidance for future space flight designs of instrumentation and communication systems.

  13. Contamination Control and Hardware Processing Solutions at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Burns, DeWitt H.; Hampton, Tammy; Huey, LaQuieta; Mitchell, Mark; Norwood, Joey; Lowrey, Nikki

    2012-01-01

    The Contamination Control Team of Marshall Space Flight Center's Materials and Processes Laboratory supports many Programs/ Projects that design, manufacture, and test a wide range of hardware types that are sensitive to contamination and foreign object damage (FOD). Examples where contamination/FOD concerns arise include sensitive structural bondline failure, critical orifice blockage, seal leakage, and reactive fluid compatibility (liquid oxygen, hydrazine) as well as performance degradation of sensitive instruments or spacecraft surfaces such as optical elements and thermal control systems. During the design phase, determination of the sensitivity of a hardware system to different types or levels of contamination/FOD is essential. A contamination control and FOD control plan must then be developed and implemented through all phases of ground processing, and, sometimes, on-orbit use, recovery, and refurbishment. Implementation of proper controls prevents cost and schedule impacts due to hardware damage or rework and helps assure mission success. Current capabilities are being used to support recent and on-going activities for multiple Mission Directorates / Programs such as International Space Station (ISS), James Webb Space Telescope (JWST), Space Launch System (SLS) elements (tanks, engines, booster), etc. The team also advances Green Technology initiatives and addresses materials obsolescence issues for NASA and external customers, most notably in the area of solvent replacement (e.g. aqueous cleaners containing hexavalent chrome, ozone depleting chemicals (CFC s and HCFC's), suspect carcinogens). The team evaluates new surface cleanliness inspection and cleaning technologies (e.g. plasma cleaning), and maintains databases for processing support materials as well as outgassing and optical compatibility test results for spaceflight environments.

  14. Extraction of stability and control derivatives from orbiter flight data

    NASA Technical Reports Server (NTRS)

    Iliff, Kenneth W.; Shafer, Mary F.

    1993-01-01

    The Space Shuttle Orbiter has provided unique and important information on aircraft flight dynamics. This information has provided the opportunity to assess the flight-derived stability and control derivatives for maneuvering flight in the hypersonic regime. In the case of the Space Shuttle Orbiter, these derivatives are required to determine if certain configuration placards (limitations on the flight envelope) can be modified. These placards were determined on the basis of preflight predictions and the associated uncertainties. As flight-determined derivatives are obtained, the placards are reassessed, and some of them are removed or modified. Extraction of the stability and control derivatives was justified by operational considerations and not by research considerations. Using flight results to update the predicted database of the orbiter is one of the most completely documented processes for a flight vehicle. This process followed from the requirement for analysis of flight data for control system updates and for expansion of the operational flight envelope. These results show significant changes in many important stability and control derivatives from the preflight database. This paper presents some of the stability and control derivative results obtained from Space Shuttle flights. Some of the limitations of this information are also examined.

  15. 14 CFR 27.151 - Flight controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flight controls. 27.151 Section 27.151 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS...) Longitudinal, lateral, directional, and collective controls may not exhibit excessive breakout force, friction...

  16. 14 CFR 29.151 - Flight controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flight controls. 29.151 Section 29.151 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS...) Longitudinal, lateral, directional, and collective controls may not exhibit excessive breakout force, friction...

  17. 14 CFR 29.151 - Flight controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flight controls. 29.151 Section 29.151 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS...) Longitudinal, lateral, directional, and collective controls may not exhibit excessive breakout force, friction...

  18. 14 CFR 29.151 - Flight controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flight controls. 29.151 Section 29.151 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS...) Longitudinal, lateral, directional, and collective controls may not exhibit excessive breakout force, friction...

  19. 14 CFR 27.151 - Flight controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flight controls. 27.151 Section 27.151 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS...) Longitudinal, lateral, directional, and collective controls may not exhibit excessive breakout force, friction...

  20. 14 CFR 27.151 - Flight controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flight controls. 27.151 Section 27.151 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS...) Longitudinal, lateral, directional, and collective controls may not exhibit excessive breakout force, friction...

  1. 14 CFR 29.151 - Flight controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flight controls. 29.151 Section 29.151 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS...) Longitudinal, lateral, directional, and collective controls may not exhibit excessive breakout force, friction...

  2. 14 CFR 27.151 - Flight controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flight controls. 27.151 Section 27.151 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS...) Longitudinal, lateral, directional, and collective controls may not exhibit excessive breakout force, friction...

  3. Thermal control surfaces experiment: Initial flight data analysis

    NASA Technical Reports Server (NTRS)

    Wilkes, Donald R.; Hummer, Leigh L.

    1991-01-01

    The behavior of materials in the space environment continues to be a limiting technology for spacecraft and experiments. The thermal control surfaces experiment (TCSE) aboard the Long Duration Exposure Facility (LDEF) is the most comprehensive experiment flown to study the effects of the space environment on thermal control surfaces. Selected thermal control surfaces were exposed to the LDEF orbital environment and the effects of this exposure were measured. The TCSE combined in-space orbital measurements with pre and post-flight analyses of flight materials to determine the effects of long term space exposure. The TCSE experiment objective, method, and measurements are described along with the results of the initial materials analysis. The TCSE flight system and its excellent performance on the LDEF mission is described. A few operational anomalies were encountered and are discussed.

  4. Biotechnological experiments in space flights on board of space stations

    NASA Astrophysics Data System (ADS)

    Nechitailo, Galina S.

    2012-07-01

    Space flight conditions are stressful for any plant and cause structural-functional transition due to mobiliation of adaptivity. In space flight experiments with pea tissue, wheat and arabidopsis we found anatomical-morphological transformations and biochemistry of plants. In following experiments, tissue of stevia (Stevia rebaudiana), potato (Solanum tuberosum), callus culture and culture and bulbs of suffron (Crocus sativus), callus culture of ginseng (Panax ginseng) were investigated. Experiments with stevia carried out in special chambers. The duration of experiment was 8-14 days. Board lamp was used for illumination of the plants. After experiment the plants grew in the same chamber and after 50 days the plants were moved into artificial ionexchange soil. The biochemical analysis of plants was done. The total concentration of glycozides and ratio of stevioside and rebauside were found different in space and ground plants. In following generations of stevia after flight the total concentration of stevioside and rebauside remains higher than in ground plants. Experiments with callus culture of suffron carried out in tubes. Duration of space flight experiment was 8-167 days. Board lamp was used for illumination of the plants. We found picrocitina pigment in the space plants but not in ground plants. Tissue culture of ginseng was grown in special container in thermostate under stable temperature of 22 ± 0,5 C. Duration of space experiment was from 8 to 167 days. Biological activity of space flight culutre was in 5 times higher than the ground culture. This difference was observed after recultivation of space flight samples on Earth during year after flight. Callus tissue of potato was grown in tubes in thermostate under stable temperature of 22 ± 0,5 C. Duration of space experiment was from 8 to 14 days. Concentration of regenerates in flight samples was in 5 times higher than in ground samples. The space flight experiments show, that microgravity and other

  5. Increased Renal Solute Excretion in Rats Following Space Flight

    NASA Technical Reports Server (NTRS)

    Wade, Charles E.; Moore, A. L.; Morey-Holton, E.

    1995-01-01

    Following space flight a diuresis, due to an increase in free water clearance, has been suggested in humans. To assess the effects of space flight on renal function, rats were flown in space for 14 days. Rats were divided into three groups; vivarium controls (V;n=6; housed 2/shoe box cage), flight controls (FC;n=6; group housed in a flight cage), and flight animals (F;n=6). Upon landing all animals were placed into individual metabolic cages. Urine was collected daily for 7 days and every other day for 14 days. Urine output was increased (p less than 0.05; ANOVA) following flight for 3 days. On postflight day 1, flow rates were, V=6.8 plus or minus 0.9, FC=8.711.8 and F=16.6 plus or minus 2.7 microliter/min. Excretion rates of Na+ and K+ were increased, resulting in an increased osmotic excretion rate (V=7.9 plus or minus 0.9, FC=6.1 plus or minus 0.7 and F=13.5 plus or minus 0.7 uOsm/min). Creatinine excretion rate was increased over the first two postflight days. In the absence of changes in plasma creatinine, Na+, or K+ (samples obtained immediately post flight from similar rats compared to Day 14), GFR was increased following space flight. The increased excretion of solute was thus the result of increased delivery and decreased reabsorption. Osmotic clearance was increased (V=28, FC=27 and F=51 microliter/min), while free water clearance was decreased post flight (V=-21,FC=-18 and F=-34 microliter/min). In rats, the postflight diuresis is the result of an increase in solute (osmotic) excretion with an accompanying reduction in free water clearance.

  6. SpaceOps 2012 Plus 2: Social Tools to Simplify ISS Flight Control Communications and Log Keeping

    NASA Technical Reports Server (NTRS)

    Cowart, Hugh S.; Scott, David W.

    2014-01-01

    A paper written for the SpaceOps 2012 Conference (Simplify ISS Flight Control Communications and Log Keeping via Social Tools and Techniques) identified three innovative concepts for real time flight control communications tools based on social mechanisms: a) Console Log Tool (CoLT) - A log keeping application at Marshall Space Flight Center's (MSFC) Payload Operations Integration Center (POIC) that provides "anywhere" access, comment and notifications features similar to those found in Social Networking Systems (SNS), b) Cross-Log Communication via Social Techniques - A concept from Johnsson Space Center's (JSC) Mission Control Center Houston (MCC-H) that would use microblogging's @tag and #tag protocols to make information/requests visible and/or discoverable in logs owned by @Destination addressees, and c) Communications Dashboard (CommDash) - A MSFC concept for a Facebook-like interface to visually integrate and manage basic console log content, text chat streams analogous to voice loops, text chat streams dedicated to particular conversations, generic and position-specific status displays/streams, and a graphically based hailing display. CoLT was deployed operationally at nearly the same time as SpaceOps 2012, the Cross- Log Communications idea is currently waiting for a champion to carry it forward, and CommDash was approved as a NASA Iinformation Technoloby (IT) Labs project. This paper discusses lessons learned from two years of actual CoLT operations, updates CommDash prototype development status, and discusses potential for using Cross-Log Communications in both MCC-H and/or POIC environments, and considers other ways for synergizing console applcations.

  7. STS-132 ascent flight control team photo with Flight Director Richard Jones and the STS-132 crew

    NASA Image and Video Library

    2010-06-08

    JSC2010-E-090665 (8 June 2010) --- The members of the STS-132 Ascent flight control team and crew members pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Richard Jones (right) and NASA astronaut Ken Ham, STS-132 commander, hold the STS-132 mission logo. Additional crew members pictured are NASA astronauts Tony Antonelli, pilot; along with Garrett Reisman, Piers Sellers, Michael Good and Steve Bowen, all mission specialists. Photo credit: NASA or National Aeronautics and Space Administration

  8. Effects of space flight on GLUT-4 content in rat plantaris muscle

    NASA Astrophysics Data System (ADS)

    Tabata, I.; Kawanaka, Kentaro; Sekiguchi, Chiharu; Nagaoka, Shunji; Ohira, Yoshinobu

    The effects of 14 days of space flight on the glucose transporter protein (GLUT-4) were studied in the plantaris muscle of growing 9-week-old, male Sprague Dawley rats. The rats were randomly separated into five groups: pre-flight vivarium ground controls (PF-VC) sacrificed approximately 2 h after launch; flight groups sacrificed either approximately 5 h (F-R0) or 9 days (F-R9) after the return from space; and synchronous ground controls (SC-R0 and SC-R9) sacrificed at the same time as the respective flight groups. The flight groups F-R0 and F-R9 were exposed to micro-gravity for 14 days in the Spacelab module located in the cargo bay of the shuttle transport system - 58 of the manned Space Shuttle for the NASA mission named ''Spacelab Life Sciences 2''. Body weight and plantaris weight of SC-R0 and F-R0 were significantly higher than those of PF-VC. Neither body weight nor plantaris muscle weight in either group had changed 9 days after the return from space. As a result, body weight and plantaris muscle weight did not differ between the flight and synchronous control groups at any of the time points investigated. The GLUT-4 content (cpm/µg membrane protein) in the plantaris muscle did not show any significant change in response to 14 days of space flight or 9 days after return. Similarly, citrate synthase activity did not change during the course of the space flight or the recovery period. These results suggest that 14 days of space flight does not affect muscle mass or GLUT-4 content of the fast-twitch plantaris muscle in the rat.

  9. STS-132/ULF4 Flight Controllers on Console - Bldg. 30 south

    NASA Image and Video Library

    2010-05-20

    JSC2010-E-086375 (20 May 2010) --- Flight director Mike Sarafin monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-132 mission flight day seven activities.

  10. STS-132/ULF4 Flight Controllers on Console - Bldg. 30 south

    NASA Image and Video Library

    2010-05-20

    JSC2010-E-086399 (20 May 2010) --- Flight director Mike Sarafin monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-132 mission flight day seven activities.

  11. Space flight and neurovestibular adaptation

    NASA Technical Reports Server (NTRS)

    Reschke, M. F.; Bloomberg, J. J.; Harm, D. L.; Paloski, W. H.

    1994-01-01

    Space flight represents a form of sensory stimulus rearrangement requiring modification of established terrestrial response patterns through central reinterpretation. Evidence of sensory reinterpretation is manifested as postflight modifications of eye/head coordination, locomotor patterns, postural control strategies, and illusory perceptions of self or surround motion in conjunction with head movements. Under normal preflight conditions, the head is stabilized during locomotion, but immediately postflight reduced head stability, coupled with inappropriate eye/head coordination, results in modifications of gait. Postflight postural control exhibits increased dependence on vision which compensates for inappropriate interpretation of otolith and proprioceptive inputs. Eye movements compensatory for perceived self motion, rather than actual head movements have been observed postflight. Overall, the in-flight adaptive modification of head stabilization strategies, changes in head/eye coordination, illusionary motion, and postural control are maladaptive for a return to the terrestrial environment.

  12. STS-132/ULF4 Flight Controllers on Console - Orbit 2

    NASA Image and Video Library

    2010-05-17

    JSC2010-E-084271 (17 May 2010) --- Flight director Chris Edelen (right) and NASA astronaut Stanley Love, spacecraft communicator (CAPCOM) for the STS-132 mission, are pictured at their consoles in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during flight day four activities.

  13. Evaluation of in vitro macrophage differentiation during space flight

    NASA Astrophysics Data System (ADS)

    Ortega, M. Teresa; Lu, Nanyan; Chapes, Stephen K.

    2012-05-01

    We differentiated mouse bone marrow cells in the presence of recombinant macrophage colony stimulating (rM-CSF) factor for 14 days during the flight of space shuttle Space Transportation System (STS)-126. We tested the hypothesis that the receptor expression for M-CSF, c-Fms was reduced. We used flow cytometry to assess molecules on cells that were preserved during flight to define the differentiation state of the developing bone marrow macrophages; including CD11b, CD31, CD44, Ly6C, Ly6G, F4/80, Mac2, c-Fos as well as c-Fms. In addition, RNA was preserved during the flight and was used to perform a gene microarray. We found that there were significant differences in the number of macrophages that developed in space compared to controls maintained on Earth. We found that there were significant changes in the distribution of cells that expressed CD11b, CD31, F4/80, Mac2, Ly6C and c-Fos. However, there were no changes in c-Fms expression and no consistent pattern of advanced or retarded differentiation during space flight. We also found a pattern of transcript levels that would be consistent with a relatively normal differentiation outcome but increased proliferation by the bone marrow macrophages that were assayed after 14 days of space flight. There also was a surprising pattern of space flight influence on genes of the coagulation pathway. These data confirm that a space flight can have an impact on the in vitro development of macrophages from mouse bone marrow cells.

  14. Evaluation of in vitro macrophage differentiation during space flight.

    PubMed

    Ortega, M Teresa; Lu, Nanyan; Chapes, Stephen K

    2012-05-15

    We differentiated mouse bone marrow cells in the presence of recombinant macrophage colony stimulating (rM-CSF) factor for 14 days during the flight of space shuttle Space Transportation System (STS)-126. We tested the hypothesis that the receptor expression for M-CSF, c-Fms was reduced. We used flow cytometry to assess molecules on cells that were preserved during flight to define the differentiation state of the developing bone marrow macrophages; including CD11b, CD31, CD44, Ly6C, Ly6G, F4/80, Mac2, c-Fos as well as c-Fms. In addition, RNA was preserved during the flight and was used to perform a gene microarray. We found that there were significant differences in the number of macrophages that developed in space compared to controls maintained on Earth. We found that there were significant changes in the distribution of cells that expressed CD11b, CD31, F4/80, Mac2, Ly6C and c-Fos. However, there were no changes in c-Fms expression and no consistent pattern of advanced or retarded differentiation during space flight. We also found a pattern of transcript levels that would be consistent with a relatively normal differentiation outcome but increased proliferation by the bone marrow macrophages that were assayed after 14 days of space flight. There also was a surprising pattern of space flight influence on genes of the coagulation pathway. These data confirm that a space flight can have an impact on the in vitro development of macrophages from mouse bone marrow cells.

  15. Risk of Impaired Control of Spacecraft/Associated Systems and Decreased Mobility Due to Vestibular/Sensorimotor Alterations Associated with Space flight

    NASA Technical Reports Server (NTRS)

    Bloomberg, Jacob J.; Reschke, Millard F.; Clement, Gilles R.; Mulavara, Ajitkumar P.; Taylor, Laura C..

    2015-01-01

    Control of vehicles and other complex systems is a high-level integrative function of the central nervous system (CNS). It requires well-functioning subsystem performance, including good visual acuity, eye-hand coordination, spatial and geographic orientation perception, and cognitive function. Evidence from space flight research demonstrates that the function of each of these subsystems is altered by removing gravity, a fundamental orientation reference, which is sensed by vestibular, proprioceptive, and haptic receptors and used by the CNS for spatial orientation, posture, navigation, and coordination of movements. The available evidence also shows that the degree of alteration of each subsystem depends on a number of crew- and mission-related factors. There is only limited operational evidence that these alterations cause functional impacts on mission-critical vehicle (or complex system) control capabilities. Furthermore, while much of the operational performance data collected during space flight has not been available for independent analysis, those that have been reviewed are somewhat equivocal owing to uncontrolled (and/or unmeasured) environmental and/or engineering factors. Whether this can be improved by further analysis of previously inaccessible operational data or by development of new operational research protocols remains to be seen. The true operational risks will be estimable only after we have filled the knowledge gaps and when we can accurately assess integrated performance in off-nominal operational settings (Paloski et al. 2008). Thus, our current understanding of the Risk of Impaired Control of Spacecraft/Associated Systems and Decreased Mobility Due to Vestibular/Sensorimotor Alterations Associated with Space flight is limited primarily to extrapolation of scientific research findings, and, since there are limited ground-based analogs of the sensorimotor and vestibular changes associated with space flight, observation of their functional

  16. STS-124/1J ISS Orbit 3 flight control team portrait

    NASA Image and Video Library

    2008-06-09

    JSC2008-E-045777 (9 June 2008) --- The members of the STS-124/1J ISS Orbit 3 flight control team pose for a group portrait in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Emily Nelson stands in the center foreground.

  17. Functional testing of space flight induced changes in tonic motor control by using limb-attached excitation and load devices

    NASA Astrophysics Data System (ADS)

    Gallasch, Eugen; Kozlovskaya, Inessa

    2007-02-01

    Long term space flights induce atrophy and contractile changes on postural muscles such effecting tonic motor control. Functional testing of tonic motor control structures is a challenge because of the difficulties to deliver appropriate test forces on crew members. In this paper we propose two approaches for functional testing by using limb attached loading devices. The first approach is based on a frequency and amplitude controllable moving magnet exciter to deliver sinusoidal test forces during limb postures. The responding limb deflection is recorded by an embedded accelerometer to obtain limb impedance. The second approach is based on elastic limb loading to evoke self-excited oscillations during arm extensions. Here the contraction force at the oscillation onset provides information about limb stiffness. The rationale for both testing approaches is based on Feldman's λ-model. An arm expander based on the second approach was probed in a 6-month MIR space flight. The results obtained from the load oscillations, confirmed that this device is well suited to capture space flight induced neuromuscular changes.

  18. STS-134 Orbit 2 flight controllers on consoles

    NASA Image and Video Library

    2011-05-17

    JSC2011-E-045472 (17 May 2011) --- A scale model of HM Bark Endeavour, namesake for the space shuttle currently making its final flight, adorns a console in the space shuttle flight control room in Mission Control in Houston. This model was first displayed in 1992 in the old shuttle control room during STS-49, the inaugural flight of the shuttle Endeavour. It was built by Dan Willett of JSC's Information Resources Directorate. The original sailing ship Endeavour was commanded by Lt. James Cook on a scientific voyage to the South Pacific, Australia and New Zealand from 1768 to 1771. Photo credit: NASA

  19. Space flight and changes in spatial orientation

    NASA Technical Reports Server (NTRS)

    Reschke, Millard F.; Bloomberg, Jacob J.; Harm, Deborah L.; Paloski, William H.

    1992-01-01

    From a sensory point of view, space flight represents a form of stimulus rearrangement requiring modification of established terrestrial response patterns through central reinterpretation. Evidence of sensory reinterpretation is manifested as postflight modifications of eye/head coordination, locomotor patterns, postural control strategies, and illusory perceptions of self or surround motion in conjunction with head movements. Under normal preflight conditions, the head is stabilized during locomotion, but immediately postflight reduced head stability, coupled with inappropriate eye/head coordination, results in modifications of gait. Postflight postural control exhibits increased dependence on vision which compensates for inappropriate interpretation of otolith and proprioceptive inputs. Eye movements compensatory for perceived self motion, rather than actual head movements have been observed postflight. Overall, the in-flight adaptive modification of head stabilization strategies, changes in head/eye coordination, illusionary motion, and postural control are maladaptive for a return to the terrestrial environment. Appropriate countermeasures for long-duration flights will rely on preflight adaptation and in-flight training.

  20. STS-132/ULF4 Flight Controllers on Console - Bldg. 30 south

    NASA Image and Video Library

    2010-05-20

    JSC2010-E-086341 (20 May 2010) --- ISS flight director Holly Ridings monitors data at her console in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-132/ULF-4 mission flight day seven activities.

  1. STS-132/ULF4 WFCR Flight Controllers on Console

    NASA Image and Video Library

    2010-05-14

    JSC2010-E-080444 (14 May 2010) --- Flight director Richard Jones is pictured in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Atlantis? STS-132 launch. Liftoff was on time at 2:20 p.m. (EDT) on May 14, 2010 from launch pad 39A at NASA's Kennedy Space Center.

  2. Space Flight Applications of Optical Fiber; 30 Years of Space Flight Success

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.

    2010-01-01

    For over thirty years NASA has had success with space flight missions that utilize optical fiber component technology. One of the early environmental characterization experiments that included optical fiber was launched as the Long Duration Exposure Facility in 1978. Since then, multiple missions have launched with optical fiber components that functioned as expected, without failure throughout the mission life. The use of optical fiber in NASA space flight communications links and exploration and science instrumentation is reviewed.

  3. NASA on a Strong Roll in Preparing Space Launch System Flight Engines

    NASA Image and Video Library

    2017-08-09

    NASA is on a roll when it comes to testing engines for its new Space Launch System (SLS) rocket that will send astronauts to deep-space destinations, including Mars. Just two weeks after the third test of a new RS-25 engine flight controller, the space agency recorded its fourth full-duration controller test Aug. 9 at Stennis Space Center near Bay St. Louis, Mississippi. Engineers conducted a 500-second test of the RS-25 engine controller on the A-1 Test Stand at Stennis. The test involved installing the controller on an RS-25 development engine and firing it in the same manner, and for the same length of time, as needed during an actual SLS launch. The test marked another milestone toward launch of the first integrated flight of the SLS rocket and Orion crew vehicle. Exploration Mission-1 will be an uncrewed mission into lunar orbit, designed to provide a final check-out test of rocket and Orion capabilities before astronauts are returned to deep space. The SLS rocket will be powered at launch by four RS-25 engines, providing a combined 2 million pounds of thrust, and with a pair of solid rocket boosters, providing more than 8 million pounds of total thrust. The RS-25 engines for the initial SLS flights are former space shuttle main engines that are now being used to launch the larger and heavier SLS rocket and with the new controller. The controller is a critical component that operates as the engine “brain” that communicates with SLS flight computers to receive operation performance commands and to provide diagnostic data on engine health and status. Engineers conducted early prototype tests at Stennis to collect data for development of the new controller by NASA, RS-25 prime contractor Aerojet Rocketdyne and subcontractor Honeywell. Testing of actual flight controllers began at Stennis in March. NASA is testing all controllers and engines designated for the EM-1 flight at Stennis. It also will test the SLS core stage for the flight at Stennis, which will

  4. Calcium Kinetics During Space Flight

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Wastney, Meryl E.; OBrien, Kimberly O.; Lane, Helen W.

    1999-01-01

    Bone loss is one of the most detrimental effects of space flight, threatening to limit the duration of human space missions. The ability to understand and counteract this loss will be critical for crew health and safety during and after extended-duration missions. The hypotheses to be tested in this project are that space flight alters calcium homeostasis and bone mineral metabolism, and that calcium homeostasis and bone mineral metabolism will return to baseline within days to weeks of return to Earth. These hypotheses will be evidenced by elevated rates of bone mineral resorption and decreased bone mineral deposition, decreased absorption of dietary calcium, altered calcitropic endocrine profiles, elevated excretion of calcium in urine and feces, and elevated excretion of markers of bone resorption. The second hypothesis will be evidenced by return of indices of calcium homeostasis and bone metabolism to preflight levels within days to weeks of return to Earth. Studies will be conducted on International Space Station astronauts before, during, and after extended-duration flights. Measurements of calcium kinetics, bone mass, and endocrine/biochemical markers of bone and calcium homeostasis will be conducted. Kinetic studies utilizing dual isotope tracer kinetic studies and mathematical modeling techniques will allow for determination of bone calcium deposition, bone calcium resorption, dietary calcium absorption and calcium excretion (both urinary and endogenous fecal excretion). These studies will build upon preliminary work conducted on the Russian Mir space station. The results from this project will be critical for clarifying how microgravity affects bone and calcium homeostasis, and will provide an important control point for assessment of countermeasure efficacy. These results are expected to aid in developing countermeasures for bone loss, both for space crews and for individuals on Earth who have metabolic bone diseases.

  5. 14 CFR 125.311 - Flight crewmembers at controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight crewmembers at controls. 125.311... CAPACITY OF 6,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 125.311 Flight crewmembers at controls. (a) Except as provided in paragraph (b) of this section, each...

  6. 14 CFR 125.311 - Flight crewmembers at controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight crewmembers at controls. 125.311... CAPACITY OF 6,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 125.311 Flight crewmembers at controls. (a) Except as provided in paragraph (b) of this section, each...

  7. 14 CFR 125.311 - Flight crewmembers at controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight crewmembers at controls. 125.311... CAPACITY OF 6,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 125.311 Flight crewmembers at controls. (a) Except as provided in paragraph (b) of this section, each...

  8. 14 CFR 125.311 - Flight crewmembers at controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight crewmembers at controls. 125.311... CAPACITY OF 6,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 125.311 Flight crewmembers at controls. (a) Except as provided in paragraph (b) of this section, each...

  9. 14 CFR 125.311 - Flight crewmembers at controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight crewmembers at controls. 125.311... CAPACITY OF 6,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 125.311 Flight crewmembers at controls. (a) Except as provided in paragraph (b) of this section, each...

  10. Haploid deletion strains of Saccharomyces cerevisiae that determine survival during space flight

    NASA Astrophysics Data System (ADS)

    Johanson, Kelly; Allen, Patricia L.; Gonzalez-Villalobos, Romer A.; Nesbit, Jacqueline; Nickerson, Cheryl A.; Höner zu Bentrup, Kerstin; Wilson, James W.; Ramamurthy, Rajee; D'Elia, Riccardo; Muse, Kenneth E.; Hammond, Jeffrey; Freeman, Jake; Stodieck, Louis S.; Hammond, Timothy G.

    2007-02-01

    This study identifies genes that determine survival during a space flight, using the model eukaryotic organism, Saccharomyces cerevisiae. Select strains of a haploid yeast deletion series grew during storage in distilled water in space, but not in ground based static or clinorotation controls. The survival advantages in space in distilled water include a 133-fold advantage for the deletion of PEX19, a chaperone and import receptor for newly- synthesized class I peroxisomal membrane proteins, to 77-40 fold for deletion strains lacking elements of aerobic respiration, isocitrate metabolism, and mitochondrial electron transport. Following automated addition of rich growth media, the space flight was associated with a marked survival advantage of strains with deletions in catalytically active genes including hydrolases, oxidoreductases and transferases. When compared to static controls, space flight was associated with a marked survival disadvantage of deletion strains lacking transporter, antioxidant and catalytic activity. This study identifies yeast deletion strains with a survival advantage during storage in distilled water and space flight, and amplifies our understanding of the genes critical for survival in space.

  11. STS-132/ULF4 WFCR Flight Controllers on Console

    NASA Image and Video Library

    2010-05-14

    JSC2010-E-080463 (14 May 2010) --- Brent Jett, director, flight crew operations, is pictured in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Atlantis' scheduled STS-132 launch. Liftoff was on time at 2:20 p.m. (EDT) on May 14, 2010 from launch pad 39A at NASA's Kennedy Space Center.

  12. STS-132/ULF4 WFCR Flight Controllers on Console

    NASA Image and Video Library

    2010-05-14

    JSC2010-E-080441 (14 May 2010) --- Flight director Richard Jones is pictured at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Atlantis? STS-132 launch. Liftoff was on time at 2:20 p.m. (EDT) on May 14, 2010 from launch pad 39A at NASA's Kennedy Space Center.

  13. STS-132/ULF4 WFCR Flight Controllers on Console

    NASA Image and Video Library

    2010-05-14

    JSC2010-E-080454 (14 May 2010) --- Flight director Tony Ceccacci is pictured at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Atlantis? STS-132 launch. Liftoff was on time at 2:20 p.m. (EDT) on May 14, 2010 from launch pad 39A at NASA's Kennedy Space Center.

  14. Design and implementation of robust decentralized control laws for the ACES structure at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Collins, Emmanuel G., Jr.; Phillips, Douglas; Hyland, David C.

    1990-01-01

    An experiment was conducted to design controllers that would provide substantial reduction of line-of-sight control errors. The satisfaction of this objective required the controllers to attenuate the beam vibration significantly. Particular emphasis was placed on controller simplicity (i.e., reduced-order and decentralized controller architectures). Complexity reduction in control law implementation is of paramount interest due to stringent limitations on throughput of even state-of-the-art space qualified processors. The results of this experiment successfully demonstrate active vibrator control for a flexible structure. The testbed is the ACES structure at the NASA Marshall Space Flight Center. The ACES structure is dynamically traceable to future space systems and especially allows the study of line-of-sight control issues.

  15. STS-134 Flight Controllers on Console - Landing

    NASA Image and Video Library

    2011-06-01

    JSC2011-E-050134 (1 June 2011) --- An overall view of the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center photographed during STS-134/ULF-6 landing day activities. Photo credit: NASA

  16. STS-134 Flight Controllers on Console - Landing

    NASA Image and Video Library

    2011-06-01

    JSC2011-E-050159 (1 June 2011) --- An overall view of the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center photographed during STS-134/ULF-6 landing day activities. Photo credit: NASA

  17. Space Flight-Associated Neuro-ocular Syndrome.

    PubMed

    Lee, Andrew G; Mader, Thomas H; Gibson, C Robert; Tarver, William

    2017-09-01

    New and unique physiologic and pathologic systemic and neuro-ocular responses have been documented in astronauts during and after long-duration space flight. Although the precise cause remains unknown, space flight-associated neuro-ocular syndrome (SANS) has been adopted as an appropriate descriptive term. The Space Medicine Operations Division of the US National Aeronautics and Space Administration (NASA) has documented the variable occurrence of SANS in astronauts returning from long-duration space flight on the International Space Station. These clinical findings have included unilateral and bilateral optic disc edema, globe flattening, choroidal and retinal folds, hyperopic refractive error shifts, and nerve fiber layer infarcts. The clinical findings of SANS have been correlated with structural changes on intraorbital and intracranial magnetic resonance imaging and in-flight and terrestrial ultrasonographic studies and ocular optical coherence tomography. Further study of SANS is ongoing for consideration of future manned missions to space, including a return trip to the moon or Mars.

  18. Post-Flight Analysis of the Guidance, Navigation, and Control Performance During Orion Exploration Flight Test 1

    NASA Technical Reports Server (NTRS)

    Barth, Andrew; Mamich, Harvey; Hoelscher, Brian

    2015-01-01

    The first test flight of the Orion Multi-Purpose Crew Vehicle presented additional challenges for guidance, navigation and control as compared to a typical re-entry from the International Space Station or other Low Earth Orbit. An elevated re-entry velocity and steeper flight path angle were chosen to achieve aero-thermal flight test objectives. New IMU's, a GPS receiver, and baro altimeters were flight qualified to provide the redundant navigation needed for human space flight. The guidance and control systems must manage the vehicle lift vector in order to deliver the vehicle to a precision, coastal, water landing, while operating within aerodynamic load, reaction control system, and propellant constraints. Extensive pre-flight six degree-of-freedom analysis was performed that showed mission success for the nominal mission as well as in the presence of sensor and effector failures. Post-flight reconstruction analysis of the test flight is presented in this paper to show whether that all performance metrics were met and establish how well the pre-flight analysis predicted the in-flight performance.

  19. Spacecraft flight control with the new phase space control law and optimal linear jet select

    NASA Technical Reports Server (NTRS)

    Bergmann, E. V.; Croopnick, S. R.; Turkovich, J. J.; Work, C. C.

    1977-01-01

    An autopilot designed for rotation and translation control of a rigid spacecraft is described. The autopilot uses reaction control jets as control effectors and incorporates a six-dimensional phase space control law as well as a linear programming algorithm for jet selection. The interaction of the control law and jet selection was investigated and a recommended configuration proposed. By means of a simulation procedure the new autopilot was compared with an existing system and was found to be superior in terms of core memory, central processing unit time, firings, and propellant consumption. But it is thought that the cycle time required to perform the jet selection computations might render the new autopilot unsuitable for existing flight computer applications, without modifications. The new autopilot is capable of maintaining attitude control in the presence of a large number of jet failures.

  20. Space Flight: The First 30 Years

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A history of space flight from Project Mercury to the Space Shuttle is told from the perspective of NASA flight programs. Details are given on Mercury missions, Gemini missions, Apollo missions, Skylab missions, the Apollo-Soyuz Test Project, and the Space Shuttle missions.

  1. 14 CFR 460.51 - Space flight participant training.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Space flight participant training. 460.51 Section 460.51 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING HUMAN SPACE FLIGHT REQUIREMENTS Launch and Reentry with a Space Flight...

  2. 14 CFR 460.51 - Space flight participant training.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Space flight participant training. 460.51 Section 460.51 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING HUMAN SPACE FLIGHT REQUIREMENTS Launch and Reentry with a Space Flight...

  3. 14 CFR 460.51 - Space flight participant training.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Space flight participant training. 460.51 Section 460.51 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING HUMAN SPACE FLIGHT REQUIREMENTS Launch and Reentry with a Space Flight...

  4. 14 CFR 460.51 - Space flight participant training.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Space flight participant training. 460.51 Section 460.51 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING HUMAN SPACE FLIGHT REQUIREMENTS Launch and Reentry with a Space Flight...

  5. 14 CFR 460.51 - Space flight participant training.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Space flight participant training. 460.51 Section 460.51 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING HUMAN SPACE FLIGHT REQUIREMENTS Launch and Reentry with a Space Flight...

  6. Soviet space flight: the human element.

    PubMed

    Garshnek, V

    1988-05-01

    Building on past experience and knowledge, the Soviet manned space flight effort has become broad, comprehensive, and forward-looking. Their long-running space station program has provided the capabilities to investigate long-term effects of microgravity on human physiology and behavior and test various countermeasures against microgravity-induced physiological deconditioning. Since the beginning of Soviet manned space flight, the biomedical training and preparation of cosmonauts has evolved from a process that increased human tolerance to space flight factors, to a system of interrelated measures to prepare cosmonauts physically and psychologically to live and work in space. Currently, the Soviet Union is constructing a multimodular space station, the Mir. With the emergence of dedicated laboratory modules, the Soviets have begun the transition from small-scale experimental research to large-scale production activities and specialized scientific work in space. In the future, additional laboratory modules will be added, including one dedicated to biomedical research, called the "Medilab." The longest manned space flight to date (326 days) has been completed by the Soviets. The biomedical effects of previous long-duration flights, and perhaps those of still greater length, may contribute important insight ito the possibility of extended missions beyond Earth, such as a voyage to Mars.

  7. Space shuttle orbiter test flight series

    NASA Technical Reports Server (NTRS)

    Garrett, D.; Gordon, R.; Jackson, R. B.

    1977-01-01

    The proposed studies on the space shuttle orbiter test taxi runs and captive flight tests were set forth. The orbiter test flights, the approach and landing tests (ALT), and the ground vibration tests were cited. Free flight plans, the space shuttle ALT crews, and 747 carrier aircraft crew were considered.

  8. Summary results of the first United States manned orbital space flight

    NASA Technical Reports Server (NTRS)

    Glenn, J. H. Jr

    1963-01-01

    This paper describes the principal findings of the first United States manned orbital space flight in light of the flight mission. Consideration is given to the coordinated tracking network, recovery forces and to the spacecraft and its several functional systems. These include mechanisms for heat protection, escape maneuvers, spacecraft control, power supply, communications, life support and landing. A few difficulties encountered in the flight and deviations from the planned sequence are described. Craft preparation, aeromedical studies, flight plan and particularly flight observations--including the color, light, horizon visibility by day and by night, cloud formations and sunrise and sunset effects are given in some detail. The general conclusion from the MA-6 flight is that man can adapt well to new conditions encountered in space flight and that man can contribute importantly to mission reliability and toward mission achievement through his capacities to control the spacecraft and its multiple systems contribute to decision making and adaptation of programming as well as to direct exploratory and experimental observations.

  9. Gene Kranz Visits Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2006-01-01

    On October 19, 2006, former NASA director of Mission Operations Gene Kranz was a keynote speaker at the Marshall Space Flight Center's (MSFC's) 2006 Annual Safety Day program. The best selling author of 'Failure Is Not An Option' and past Apollo flight director was featured during a morning session called 'Coffee and Kranz'. Marshall employees hung on his every word as he told the fascinating story of Apollo 13. Kranz was the acting flight director during the Apollo 13 mission, a mission that seemed doomed to fail due to an onboard explosion. Kranz and his flight control team worked around the clock relentlessly, solving problem after problem, until the crew was returned safely to Earth.

  10. STS-132/ULF4 WFCR Flight Controllers on Console

    NASA Image and Video Library

    2010-05-14

    JSC2010-E-080439 (14 May 2010) --- Flight directors Richard Jones and Tony Ceccacci (foreground) monitor data at their console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Atlantis? STS-132 launch. Liftoff was on time at 2:20 p.m. (EDT) on May 14, 2010 from launch pad 39A at NASA's Kennedy Space Center.

  11. STS-132/ULF4 WFCR Flight Controllers on Console

    NASA Image and Video Library

    2010-05-14

    JSC2010-E-080438 (14 May 2010) --- Flight directors Richard Jones and Tony Ceccacci (foreground) monitor data at their console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Atlantis? STS-132 launch. Liftoff was on time at 2:20 p.m. (EDT) on May 14, 2010 from launch pad 39A at NASA's Kennedy Space Center.

  12. History of Manned Space Flight

    NASA Technical Reports Server (NTRS)

    1975-01-01

    U.S. manned space projects from Mercury Redstone 3 through Skylab 4 are briefly described including dates, flight duration, crew, and number of earth/moon orbits. The flight costs of each project are itemized. Highlights in the history of the manned space program from 1957 to February, 1974 are included.

  13. Effect of space flight on cell-mediated immunity

    NASA Technical Reports Server (NTRS)

    Mandel, A. D.; Balish, E.

    1977-01-01

    The cell-mediated immune response to Listeria monocytogenes was studied in rats subjected to 20 days of flight aboard the Soviet biosatellite Kosmos 7820. Groups of rats were immunized with 1,000,000 formalin-killed Listeria suspended in Freunds Complete Adjuvant, 5 days prior to flight. Immunized rats subjected to the same environmental factors as the flight rats, except flight itself, and immunized and nonimmunized rats held in a normal animal colony served as controls. Following recovery, lymphocyte cultures were harvested from spleens of all rats, cultured in vitro in the presence of L. monocytogenes antigens, Phytohemagglutinin, Conconavlin A, or purified protein derivative (PPD), and measured for their uptake of H-3-thymidine. Although individual rats varied considerably, all flight and immunized control rats gave a blastogenic response to the Listeria antigens and PPD. With several mitogens, the lymphocytes of flight rats showed a significantly increased blastogenic response over the controls. The results of this study do not support a hypothesis of a detrimental effect of space flight on cell-mediated immunity. The data suggest a possible suppressive effect of stress and gravity on an in vitro correlate of cell-mediated immunity.

  14. STS-125 Flight Control Team in BFCR - HST Orbit & Planning Teams

    NASA Image and Video Library

    2009-05-18

    JSC2009-E-120479 (18 May 2009) --- Members of the STS-125 Hubble Space Telescope Planning and Orbit flight control team pose for a group portrait in the blue flight control room in the Mission Control Center at NASA's Johnson Space Center.

  15. STS-125 Flight Control Team in BFCR - HST Planning & Orbit Team

    NASA Image and Video Library

    2009-05-19

    JSC2009-E-120701 (19 May 2009) --- Members of the STS-125 Hubble Space Telescope Planning and Orbit flight control team pose for a group portrait in the blue flight control room in the Mission Control Center at NASA's Johnson Space Center.

  16. 14 CFR 1214.1705 - Selection of space flight participants.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Selection of space flight participants. 1214.1705 Section 1214.1705 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Space Flight Participants § 1214.1705 Selection of space flight participants. (a) The agency will...

  17. 14 CFR 1214.1705 - Selection of space flight participants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Selection of space flight participants. 1214.1705 Section 1214.1705 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Space Flight Participants § 1214.1705 Selection of space flight participants. (a) The agency will...

  18. Predicted and flight test results of the performance, stability and control of the space shuttle from reentry to landing

    NASA Technical Reports Server (NTRS)

    Kirsten, P. W.; Richardson, D. F.; Wilson, C. M.

    1983-01-01

    Aerodynaic performance, stability and control data obtained from the first five reentries of the Space Shuttle orbiter are given. Flight results are compared to pedicted data from Mach 26.4 to Mach 0.4. Differences between flight and predicted data as well as probable causes for the discrepancies are given.

  19. [Development of fixed-base full task space flight training simulator].

    PubMed

    Xue, Liang; Chen, Shan-quang; Chang, Tian-chun; Yang, Hong; Chao, Jian-gang; Li, Zhi-peng

    2003-01-01

    Fixed-base full task flight training simulator is a very critical and important integrated training facility. It is mostly used in training of integrated skills and tasks, such as running the flight program of manned space flight, dealing with faults, operating and controlling spacecraft flight, communicating information between spacecraft and ground. This simulator was made up of several subentries including spacecraft simulation, simulating cabin, sight image, acoustics, main controlling computer, instructor and assistant support. It has implemented many simulation functions, such as spacecraft environment, spacecraft movement, communicating information between spacecraft and ground, typical faults, manual control and operating training, training control, training monitor, training database management, training data recording, system detecting and so on.

  20. Effect of space flight on cytokine production

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Gerald

    Space flight has been shown to alter many immunological responses. Among those affected are the production of cytokines, Cytokines are the messengers of the immune system that facilitate communication among cells that allow the interaction among cells leading to the development of immune responses. Included among the cytokines are the interferons, interleukins, and colony stimulating factors. Cytokines also facilitate communication between the immune system and other body systems, such as the neuroendocrine and musculoskeletal systems. Some cytokines also have direct protective effects on the host, such as interferon, which can inhibit the replication of viruses. Studies in both humans and animals indicate that models of space flight as well as actual space flight alter the production and action of cytokines. Included among these changes are altered interferon production, altered responsiveness of bone marrow cells to granulocyte/monocyte-colony stimulating factor, but no alteration in the production of interleukin-3. This suggests that there are selective effects of space flight on immune responses, i.e. not all cytokines are affected in the same fashion by space flight. Tissue culture studies also suggest that there may be direct effects of space flight on the cells responsible for cytokine production and action. The results of the above study indicate that the effects of space flight on cytokines may be a fundamental mechanism by which space flight not only affects immune responses, but also other biological systems of the human.

  1. STS-132/ULF4 Flight Controllers on Console - Orbit 2

    NASA Image and Video Library

    2010-05-17

    JSC2010-E-084362 (17 May 2010) --- NASA astronaut Stanley Love, spacecraft communicator (CAPCOM) for the STS-132 mission, monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during flight day four activities.

  2. STS-132/ULF4 Flight Controllers on Console - Orbit 2

    NASA Image and Video Library

    2010-05-17

    JSC2010-E-084364 (17 May 2010) --- NASA astronaut Stanley Love, spacecraft communicator (CAPCOM) for the STS-132 mission, monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during flight day four activities.

  3. STS-116/ISS 12A.1 flight controllers on console during EVA #4

    NASA Image and Video Library

    2006-12-18

    JSC2006-E-54436 (18 Dec. 2006) --- ISS lead flight director John Curry (right) and astronaut Stephen K. Robinson, at the CAPCOM console, represent part of the busy ground support effort for the add-on spacewalk by the STS-116 crew. Astronaut Joseph R. Tanner, who like Robinson is a veteran of multiple space walks, assisted with CAPCOM duties. While flight controllers in this space station flight control room were busy supporting the spacewalk, so were their counterparts in the space shuttle flight control room, not far away in the Johnson Space Center's Mission Control Center.

  4. T2 vertebral bone marrow changes after space flight

    NASA Technical Reports Server (NTRS)

    LeBlanc, A.; Lin, C.; Evans, H.; Shackelford, L.; Martin, C.; Hedrick, T.

    1999-01-01

    Bone biopsies indicate that during immobilization bone marrow adipose tissue increases while the functional cellular fraction decreases. One objective of our Spacelab flight experiment was to determine, using in vivo volume-localized magnetic resonance spectroscopy (VLMRS), whether bone marrow composition was altered by space flight. Four crew members of a 17 day Spacelab mission participated in the experiment. The apparent cellular fraction and transverse relaxation time (T2) were determined twice before launch and at several times after flight. Immediately after flight, no significant change in the cellular fraction was found. However, the T2 of the cellular, but not the fat component increased following flight, although to a variable extent, in all crew members with a time course for return to baseline lasting several months. The T2 of seven control subjects showed no significant change. Although these observations may have several explanations, it is speculated that the observed T2 changes might reflect increased marrow osteoblastic activity during recovery from space flight.

  5. Flight Control of Biomimetic Air Vehicles Using Vibrational Control and Averaging

    NASA Astrophysics Data System (ADS)

    Tahmasian, Sevak; Woolsey, Craig A.

    2017-08-01

    A combination of vibrational inputs and state feedback is applied to control the flight of a biomimetic air vehicle. First, a control strategy is developed for longitudinal flight, using a quasi-steady aerodynamic model and neglecting wing inertial effects. Vertical and forward motion is controlled by modulating the wings' stroke and feather angles, respectively. Stabilizing control parameter values are determined using the time-averaged dynamic model. Simulations of a system resembling a hawkmoth show that the proposed controller can overcome modeling error associated with the wing inertia and small parameter uncertainties when following a prescribed trajectory. After introducing the approach through an application to longitudinal flight, the control strategy is extended to address flight in three-dimensional space.

  6. Immune response during space flight.

    PubMed

    Criswell-Hudak, B S

    1991-01-01

    The health status of an astronaut prior to and following space flight has been a prime concern of NASA throughout the Apollo series of lunar landings, Skylab, Apollo-Soyuz Test Projects (ASTP), and the new Spacelab-Shuttle missions. Both humoral and cellular immunity has been studied using classical clinical procedures. Serum proteins show fluctuations that can be explained with adaptation to flight. Conversely, cellular immune responses of lymphocytes appear to be depressed in both in vivo as well as in vitro. If this depression in vivo and in vitro is a result of the same cause, then man's adaptation to outer space living will present interesting challenges in the future. Since the cause may be due to reduced gravity, perhaps the designs of the experiments for space flight will offer insights at the cellular levels that will facilitate development of mechanisms for adaptation. Further, if the aging process is viewed as an adaptational concept or model and not as a disease process then perhaps space flight could very easily interact to supply some information on our biological time clocks.

  7. STS-120 Flight Controllers on console during mission

    NASA Image and Video Library

    2007-10-31

    JSC2007-E-095788 (3 Nov. 2007) --- Flight directors Norm Knight (left) and Bryan Lunney, inside the shuttle flight control room of JSC's Mission Control Center, monitor the progress of the Nov. 3 spacewalk by two members of Discovery's crew, while the space shuttle is docked with the International Space Station in Earth orbit. Astronaut Scott Parazynski was busy at work on repairing a tear in a solar panel on the orbiting outpost.

  8. AAS/GSFC 13th International Symposium on Space Flight Dynamics. Volume 1

    NASA Technical Reports Server (NTRS)

    Stengle, Tom (Editor)

    1998-01-01

    This conference proceedings preprint includes papers and abstracts presented at the 13th International Symposium on Space Flight Dynamics. Cosponsored by American Astronautical Society and the Guidance, Navigation and Control Center of the Goddard Space Flight Center, this symposium featured technical papers on a wide range of issues related to orbit-attitude prediction, determination, and control; attitude sensor calibration; attitude dynamics; and mission design.

  9. Video File - NASA on a Roll Testing Space Launch System Flight Engines

    NASA Image and Video Library

    2017-08-09

    Just two weeks after conducting another in a series of tests on new RS-25 rocket engine flight controllers for NASA’s Space Launch System (SLS) rocket, engineers at NASA’s Stennis Space Center in Mississippi completed one more hot-fire test of a flight controller on August 9, 2017. With the hot fire, NASA has moved a step closer in completing testing on the four RS-25 engines which will power the first integrated flight of the SLS rocket and Orion capsule known as Exploration Mission 1.

  10. Space Station flight telerobotic servicer functional requirements development

    NASA Technical Reports Server (NTRS)

    Oberright, John; Mccain, Harry; Whitman, Ruth I.

    1987-01-01

    The Space Station flight telerobotic servicer (FTS), a flight robotic system for use on the first Space Station launch, is described. The objectives of the FTS program include: (1) the provision of an alternative crew EVA by supporting the crew in assembly, maintenance, and servicing activities, and (2) the improvement of crew safety by performing hazardous tasks such as spacecraft refueling or thermal and power system maintenance. The NASA/NBS Standard Reference Model provides the generic, hierarchical, structured functional control definition for the system. It is capable of accommodating additional degrees of machine intelligence in the future.

  11. The Photovoltaic Array Space Power plus Diagnostics (PASP Plus) Flight Experiment

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F.; Curtis, Henry B.; Guidice, Donald A.; Severance, Paul S.

    1992-01-01

    An overview of the Photovoltaic Array Space Power Plus Diagnostics (PASP Plus) flight experiment is presented in outline and graphic form. The goal of the experiment is to test a variety of photovoltaic cell and array technologies under various space environmental conditions. Experiment objectives, flight hardware, experiment control and diagnostic instrumentation, and illuminated thermal vacuum testing are addressed.

  12. Neuromuscular activation patterns during treadmill walking after space flight

    NASA Technical Reports Server (NTRS)

    Layne, C. S.; McDonald, P. V.; Bloomberg, J. J.

    1997-01-01

    Astronauts adopt a variety of neuromuscular control strategies during space flight that are appropriate for locomoting in that unique environment, but are less than optimal upon return to Earth. We report here the first systematic investigation of potential adaptations in neuromuscular activity patterns associated with postflight locomotion. Astronaut-subjects were tasked with walking on a treadmill at 6.4 km/h while fixating a visual target 30 cm away from their eyes after space flights of 8-15 days. Surface electromyography was collected from selected lower limb muscles and normalized with regard to mean amplitude and temporal relation to heel strike. In general, high correlations (more than 0.80) were found between preflight and postflight activation waveforms for each muscle and each subject: however relative activation amplitude around heel strike and toe off was changed as a result of flight. The level of muscle cocontraction and activation variability, and the relationship between the phasic characteristics of the ankle musculature in preparation for toe off also were altered by space flight. Subjects also reported oscillopsia during treadmill walking after flight. These findings indicate that, after space flight, the sensory-motor system can generate neuromuscular-activation strategies that permit treadmill walking, but subtle changes in lower-limb neuromuscular activation are present that may contribute to increased lower limb kinematic variability and oscillopsia also present during postflight walking.

  13. Metabolic and Regulatory Systems in Space Flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this session, Session JP2, the discussion focuses on the following topics: The Dynamics of Blood Biochemical Parameters in Cosmonauts During Long-Term Space Flights; Efficiency of Functional Loading Test for Investigations of Metabolic Responses to Weightlessness; Human Cellular Immunity and Space Flight; Cytokine Production and Head-Down Tilt Bed Rest; Plasma and Urine Amino Acids During Human Space Flight; and DNA Fingerprinting, Applications to Space Microbiology.

  14. Space flight visual simulation.

    PubMed

    Xu, L

    1985-01-01

    In this paper, based on the scenes of stars seen by astronauts in their orbital flights, we have studied the mathematical model which must be constructed for CGI system to realize the space flight visual simulation. Considering such factors as the revolution and rotation of the Earth, exact date, time and site of orbital injection of the spacecraft, as well as its orbital flight and attitude motion, etc., we first defined all the instantaneous lines of sight and visual fields of astronauts in space. Then, through a series of coordinate transforms, the pictures of the scenes of stars changing with time-space were photographed one by one mathematically. In the procedure, we have designed a method of three-times "mathematical cutting." Finally, we obtained each instantaneous picture of the scenes of stars observed by astronauts through the window of the cockpit. Also, the dynamic conditions shaded by the Earth in the varying pictures of scenes of stars could be displayed.

  15. ASTEC and MODEL: Controls software development at Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Downing, John P.; Bauer, Frank H.; Surber, Jeffrey L.

    1993-01-01

    The ASTEC (Analysis and Simulation Tools for Engineering Controls) software is under development at the Goddard Space Flight Center (GSFC). The design goal is to provide a wide selection of controls analysis tools at the personal computer level, as well as the capability to upload compute-intensive jobs to a mainframe or supercomputer. In the last three years the ASTEC (Analysis and Simulation Tools for Engineering Controls) software has been under development. ASTEC is meant to be an integrated collection of controls analysis tools for use at the desktop level. MODEL (Multi-Optimal Differential Equation Language) is a translator that converts programs written in the MODEL language to FORTRAN. An upgraded version of the MODEL program will be merged into ASTEC. MODEL has not been modified since 1981 and has not kept with changes in computers or user interface techniques. This paper describes the changes made to MODEL in order to make it useful in the 90's and how it relates to ASTEC.

  16. Coverage of STS-104 Launch Coverage of Flight Controllers in MCC.

    NASA Image and Video Library

    2001-07-12

    JSC2001-E-21341 (12 July 2001) --- From a familiar setting near the rear of shuttle flight control room (WFCR) at Houston's Mission Control Center (MCC), Wayne Hale (second left), ascent flight director for STS-104, pays close attention to new data related to the Space Shuttle Atlantis and its impending launch from the Kennedy Space Center (KSC) in Florida. Several other flight controllers are visible in the wide shot.

  17. Styx tours Marshall Space Flight Center

    NASA Image and Video Library

    2017-04-27

    Keith Parrish, left, of the Space Systems Department at NASA’s Marshall Space Flight Center, discusses the process of the Environmental Control and Life Support System with Marshall Center Director Todd May, second from left, and members of the legendary rock band Styx during a tour of Marshall April 27. Inspired by NASA’s goal of sending humans to Mars in the 2030s, the band’s upcoming album, "The Mission," musically chronicles a futuristic, crewed mission to Mars. While Styx’s mission may be only realized through their iconic sound, NASA’s mission is well underway with the new Space Launch System

  18. Trusted Autonomy for Space Flight Systems

    NASA Technical Reports Server (NTRS)

    Freed, Michael; Bonasso, Pete; Ingham, Mitch; Kortenkamp, David; Perix, John

    2005-01-01

    NASA has long supported research on intelligent control technologies that could allow space systems to operate autonomously or with reduced human supervision. Proposed uses range from automated control of entire space vehicles to mobile robots that assist or substitute for astronauts to vehicle systems such as life support that interact with other systems in complex ways and require constant vigilance. The potential for pervasive use of such technology to extend the kinds of missions that are possible in practice is well understood, as is its potential to radically improve the robustness, safety and productivity of diverse mission systems. Despite its acknowledged potential, intelligent control capabilities are rarely used in space flight systems. Perhaps the most famous example of intelligent control on a spacecraft is the Remote Agent system flown on the Deep Space One mission (1998 - 2001). However, even in this case, the role of the intelligent control element, originally intended to have full control of the spacecraft for the duration of the mission, was reduced to having partial control for a two-week non-critical period. Even this level of mission acceptance was exceptional. In most cases, mission managers consider intelligent control systems an unacceptable source of risk and elect not to fly them. Overall, the technology is not trusted. From the standpoint of those who need to decide whether to incorporate this technology, lack of trust is easy to understand. Intelligent high-level control means allowing software io make decisions that are too complex for conventional software. The decision-making behavior of these systems is often hard to understand and inspect, and thus hard to evaluate. Moreover, such software is typically designed and implemented either as a research product or custom-built for a particular mission. In the former case, software quality is unlikely to be adequate for flight qualification and the functionality provided by the system is

  19. 14 CFR 431.8 - Human space flight.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Human space flight. 431.8 Section 431.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH VEHICLE (RLV) General § 431.8 Human space flight...

  20. 14 CFR 431.8 - Human space flight.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Human space flight. 431.8 Section 431.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH VEHICLE (RLV) General § 431.8 Human space flight...

  1. 14 CFR 415.8 - Human space flight.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Human space flight. 415.8 Section 415.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH LICENSE General § 415.8 Human space flight. To obtain a launch license, an...

  2. 14 CFR 415.8 - Human space flight.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Human space flight. 415.8 Section 415.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH LICENSE General § 415.8 Human space flight. To obtain a launch license, an...

  3. 14 CFR 415.8 - Human space flight.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Human space flight. 415.8 Section 415.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH LICENSE General § 415.8 Human space flight. To obtain a launch license, an...

  4. 14 CFR 431.8 - Human space flight.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Human space flight. 431.8 Section 431.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH VEHICLE (RLV) General § 431.8 Human space flight...

  5. 14 CFR 431.8 - Human space flight.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Human space flight. 431.8 Section 431.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH VEHICLE (RLV) General § 431.8 Human space flight...

  6. 14 CFR 415.8 - Human space flight.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Human space flight. 415.8 Section 415.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH LICENSE General § 415.8 Human space flight. To obtain a launch license, an...

  7. 14 CFR 415.8 - Human space flight.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Human space flight. 415.8 Section 415.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH LICENSE General § 415.8 Human space flight. To obtain a launch license, an...

  8. 14 CFR 431.8 - Human space flight.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Human space flight. 431.8 Section 431.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH VEHICLE (RLV) General § 431.8 Human space flight...

  9. Human Space Flight Plans Committee Report

    NASA Image and Video Library

    2009-10-21

    Copies of the U.S. Human Space Flight Plans Committee report are seen in the foreground of Chairman of the U.S. Human Space Flight Plans Committee Norman Augustine, left, and committee member Ed Crawley, right, during a press conference where the committee released it's report on Thursday, Oct., 22, 2009 at the National Press Club in Washington. The Obama Administration tasked the committee to do an independent review of planned U.S. human space flight activities with the goal of ensuring that the nation is on a vigorous and sustainable path to achieving its boldest aspirations in space. Photo Credit: (NASA/Bill Ingalls)

  10. AAS/GSFC 13th International Symposium on Space Flight Dynamics. Volume 2

    NASA Technical Reports Server (NTRS)

    Stengle, Tom (Editor)

    1998-01-01

    This conference proceedings preprint includes papers and abstracts presented at the 13th International Symposium on Space Flight Dynamics, May 11-15, 1998. Co-sponsored by American Astronautical Society and the Guidance, Navigation and Control Center of the Goddard Space Flight Center, this symposium featured technical papers on a wide range of issues related to orbit-attitude prediction, determination, and control; attitude sensor calibration; attitude dynamics; and mission design.

  11. Ethernet for Space Flight Applications

    NASA Technical Reports Server (NTRS)

    Webb, Evan; Day, John H. (Technical Monitor)

    2002-01-01

    NASA's Goddard Space Flight Center (GSFC) is adapting current data networking technologies to fly on future spaceflight missions. The benefits of using commercially based networking standards and protocols have been widely discussed and are expected to include reduction in overall mission cost, shortened integration and test (I&T) schedules, increased operations flexibility, and hardware and software upgradeability/scalability with developments ongoing in the commercial world. The networking effort is a comprehensive one encompassing missions ranging from small University Explorer (UNEX) class spacecraft to large observatories such as the Next Generation Space Telescope (NGST). Mission aspects such as flight hardware and software, ground station hardware and software, operations, RF communications, and security (physical and electronic) are all being addressed to ensure a complete end-to-end system solution. One of the current networking development efforts at GSFC is the SpaceLAN (Spacecraft Local Area Network) project, development of a space-qualifiable Ethernet network. To this end we have purchased an IEEE 802.3-compatible 10/100/1000 Media Access Control (MAC) layer Intellectual Property (IP) core and are designing a network node interface (NNI) and associated network components such as a switch. These systems will ultimately allow the replacement of the typical MIL-STD-1553/1773 and custom interfaces that inhabit most spacecraft. In this paper we will describe our current Ethernet NNI development along with a novel new space qualified physical layer that will be used in place of the standard interfaces. We will outline our plans for development of space qualified network components that will allow future spacecraft to operate in significant radiation environments while using a single onboard network for reliable commanding and data transfer. There will be a brief discussion of some issues surrounding system implications of a flight Ethernet. Finally, we will

  12. Sleep patterns among shift-working flight controllers of the International Space Station: an observational study on the JAXA Flight Control Team.

    PubMed

    Mizuno, Koh; Matsumoto, Akiko; Aiba, Tatsuya; Abe, Takashi; Ohshima, Hiroshi; Takahashi, Masaya; Inoue, Yuichi

    2016-09-01

    Flight controllers of the International Space Station (ISS) are engaged in shift work to provide 24-h coverage to support ISS systems. The purpose of this study was to investigate the prevalence and associated factors of shift work sleep disorder (SWSD) among Japanese ISS flight controllers. A questionnaire study was conducted using the Standard Shiftwork Index to evaluate sleep-related problems and possible associated variables. Among 52 respondents out of 73 flight controllers, 30 subjects were identified as night shift workers who worked 3 or more night shifts per month. Those night shift workers who answered "almost always" to questions about experiencing insomnia or excessive sleepiness in any case of work shifts and days off were classified as having SWSD. Additionally, 7 night shift workers participated in supplemental wrist actigraphy data collection for 7 to 8 days including 3 to 4 days of consecutive night shifts. Fourteen of 30 night shift workers were classified as having SWSD. Significant group differences were observed where the SWSD group felt that night shift work was harder and reported more frequent insomniac symptoms after a night shift. However, no other variables demonstrated remarkable differences between groups. Actigraphy results characterized 5 subjects reporting better perceived adaptation as having regular daytime sleep, for 6 to 9 h in total, between consecutive night shifts. On the other hand, 2 subjects reporting perceived maladaptation revealed different sleep patterns, with longer daytime sleep and large day-to-day variation in daytime sleep between consecutive night shifts, respectively. As the tasks for flight control require high levels of alertness and cognitive function, several characteristics, namely shift-working schedule (2 to 4 consecutive night shifts), very short break time (5 to 10 min/h) during work shifts, and cooperative work with onboard astronauts during the evening/night shift, accounted for increasing

  13. Electrical, Electronic, and Electromechanical (EEE) parts management and control requirements for NASA space flight programs

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This document establishes electrical, electronic, and electromechanical (EEE) parts management and control requirements for contractors providing and maintaining space flight and mission-essential or critical ground support equipment for NASA space flight programs. Although the text is worded 'the contractor shall,' the requirements are also to be used by NASA Headquarters and field installations for developing program/project parts management and control requirements for in-house and contracted efforts. This document places increased emphasis on parts programs to ensure that reliability and quality are considered through adequate consideration of the selection, control, and application of parts. It is the intent of this document to identify disciplines that can be implemented to obtain reliable parts which meet mission needs. The parts management and control requirements described in this document are to be selectively applied, based on equipment class and mission needs. Individual equipment needs should be evaluated to determine the extent to which each requirement should be implemented on a procurement. Utilization of this document does not preclude the usage of other documents. The entire process of developing and implementing requirements is referred to as 'tailoring' the program for a specific project. Some factors that should be considered in this tailoring process include program phase, equipment category and criticality, equipment complexity, and mission requirements. Parts management and control requirements advocated by this document directly support the concept of 'reliability by design' and are an integral part of system reliability and maintainability. Achieving the required availability and mission success objectives during operation depends on the attention given reliability and maintainability in the design phase. Consequently, it is intended that the requirements described in this document are consistent with those of NASA publications

  14. [Ultraviolet radiation and long term space flight].

    PubMed

    Wu, H B; Su, S N; Ba, F S

    2000-08-01

    With the prolongation of space flight, influences of various aerospace environmental factors on the astronauts become more and more severe, while ultraviolet radiation is lacking. Some studies indicated that low doses of ultraviolet rays are useful and essential for human body. In space flight, ultraviolet rays can improve the hygienic condition in the space cabin, enhance astronaut's working ability and resistance to unfavorable factors, prevent mineral metabolic disorders, cure purulent skin diseases and deallergize the allergens. So in long-term space flight, moderate amount of ultraviolet rays in the space cabin would be beneficial.

  15. Statistical analysis of flight times for space shuttle ferry flights

    NASA Technical Reports Server (NTRS)

    Graves, M. E.; Perlmutter, M.

    1974-01-01

    Markov chain and Monte Carlo analysis techniques are applied to the simulated Space Shuttle Orbiter Ferry flights to obtain statistical distributions of flight time duration between Edwards Air Force Base and Kennedy Space Center. The two methods are compared, and are found to be in excellent agreement. The flights are subjected to certain operational and meteorological requirements, or constraints, which cause eastbound and westbound trips to yield different results. Persistence of events theory is applied to the occurrence of inclement conditions to find their effect upon the statistical flight time distribution. In a sensitivity test, some of the constraints are varied to observe the corresponding changes in the results.

  16. Human Space Flight Plans Committee

    NASA Image and Video Library

    2009-06-16

    Norman Augustine, chair of the Human Space Flight Review Committee, makes a point during the first of several public meetings at different U.S. locations, Wednesday, June 17, 2009, at the Carnegie Institution in Washington. The panel will examine ongoing and planned NASA development activities and potential alternatives in order to present options for advancing a safe, innovative, affordable and sustainable human space flight program following the space shuttle's retirement. The committee wil present its results by August 2009. Photo Credit: (NASA/Paul E. Alers)

  17. Expedition 43 flight control team with Flight Director Gary Horlacher during the release of SpaceX Dragon cargo vehicle. Photo Date: May 21, 2015. Location: Building 30 - FCR1. Photographer: Robert Markowitz

    NASA Image and Video Library

    2015-05-21

    Expedition 43 flight control team with Flight Director Gary Horlacher during the release of SpaceX Dragon cargo vehicle. Photo Date: May 21, 2015. Location: Building 30 - FCR1. Photographer: Robert Markowitz

  18. Metabolic energy requirements for space flight

    NASA Technical Reports Server (NTRS)

    Lane, Helen W.

    1992-01-01

    The international space community, including the USSR, Japan, Germany, the European Space Agency, and the US, is preparing for extended stays in space. Much of the research planned for space will be tended by humans, thus, maintaining adequate nutritional status during long stays in space has lately become an issue of much interest. Historically, it appears that minimum nutritional requirements are being met during stays in space. Thus far, crewmembers have been able to consume food adequate for maintaining nominal performance in microgravity. The physiological data obtained from ground-based and flight research that may enable us to understand the biochemical alterations that effect energy utilization and performance. Focus is on energy utilization during the Apollo lunar missions, Skylab's extended space lab missions, and Space Shuttle flights. Available data includes those recorded during intra- and extravehicular activities as well as during microgravity simulation (bed rest). Data on metabolism during flight and during bed rest are discussed, with a follow-up on human gastrointestinal function.

  19. How human sleep in space — investigations during space flights

    NASA Astrophysics Data System (ADS)

    Stoilova, I. M.; Zdravev, T. K.; Yanev, T. K.

    Sleep problems have been observed during many of the space flights. The existence of poor quality of sleep, fatigue, insomnia or different alterations in sleep structure, organization and sleep cyclicity have been established. Nevertheless results obtained from investigations of human sleep on board manned space vehicles show that it is possible to keep sleep patterns related to the restorative and adaptive processes. For the first time in the frame of the "Intercosmos" program a multi-channel system for recording and analysis of sleep in space was constructed by scientists of the Bulgarian Academy of Sciences and was installed on board the manned Mir orbiting station. In 1988 during the joint Bulgarian-Russian space flight continues recording of electro-physiological parameters necessary to estimate the sleep stages and sleep organization was made. These investigations were continued in next space flights of different prolongation. The results were compared with the findings obtained under the conditions during the pre- and post-flight periods.

  20. Personnel discussing Gemini 11 space flight in Mission Control

    NASA Image and Video Library

    1966-09-12

    S66-52157 (12 Sept. 1966) --- Discussing the Gemini-11 spaceflight in the Mission Control Center are: (left to right) Christopher C. Kraft Jr., (wearing glasses), Director of Flight Operations; Charles W. Mathews (holding phone), Manager, Gemini Program Office; Dr. Donald K. Slayton (center, checked coat), Director of Flight Crew Operations; astronaut William A. Anders, and astronaut John W. Young. Photo credit: NASA

  1. Challenges of Human Space Flight

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.; Charles, John B.

    2006-01-01

    The presentations will be given during the X-Prize symposium, exploring the multi-faceted dimensions of spaceflight ranging from the technical developments necessary to achieve safe routine flight to and from and through space to the new personal business opportunities and economic benefits that will open in space and here on Earth. The symposium will delve into the technical, regulatory, market and financial needs and challenges that must be met in charting and executing the incremental developments leading to Personal Spaceflight and the opening of a Place Called Space. The presentation covers facets of human space flight including descriptions of life in space, the challenges of delivering medical care in space, and the preparations needed for safe and productive human travel to the moon and Mars.

  2. Comparing future options for human space flight

    NASA Astrophysics Data System (ADS)

    Sherwood, Brent

    2011-09-01

    The paper analyzes the "value proposition" for government-funded human space flight, a vexing question that persistently dogs efforts to justify its $10 10/year expense in the US. The original Mercury/Gemini/Apollo value proposition is not valid today. Neither was it the value proposition actually promoted by von Braun, which the post-Apollo 80% of human space flight history has persistently attempted to fulfill. Divergent potential objectives for human space flight are captured in four strategic options— Explore Mars; accelerate Space Passenger Travel; enable Space Power for Earth; and Settle the Moon—which are then analyzed for their purpose, societal myth, legacy benefits, core needs, and result as measured by the number and type of humans they would fly in space. This simple framework is proposed as a way to support productive dialog with public and other stakeholders, to determine a sustainable value proposition for human space flight.

  3. Space flight effects on antioxidant molecules in dry tardigrades: the TARDIKISS experiment.

    PubMed

    Rizzo, Angela Maria; Altiero, Tiziana; Corsetto, Paola Antonia; Montorfano, Gigliola; Guidetti, Roberto; Rebecchi, Lorena

    2015-01-01

    The TARDIKISS (Tardigrades in Space) experiment was part of the Biokon in Space (BIOKIS) payload, a set of multidisciplinary experiments performed during the DAMA (Dark Matter) mission organized by Italian Space Agency and Italian Air Force in 2011. This mission supported the execution of experiments in short duration (16 days) taking the advantage of the microgravity environment on board of the Space Shuttle Endeavour (its last mission STS-134) docked to the International Space Station. TARDIKISS was composed of three sample sets: one flight sample and two ground control samples. These samples provided the biological material used to test as space stressors, including microgravity, affected animal survivability, life cycle, DNA integrity, and pathways of molecules working as antioxidants. In this paper we compared the molecular pathways of some antioxidant molecules, thiobarbituric acid reactive substances, and fatty acid composition between flight and control samples in two tardigrade species, namely, Paramacrobiotus richtersi and Ramazzottius oberhaeuseri. In both species, the activities of ROS scavenging enzymes, the total content of glutathione, and the fatty acids composition between flight and control samples showed few significant differences. TARDIKISS experiment, together with a previous space experiment (TARSE), further confirms that both desiccated and hydrated tardigrades represent useful animal tool for space research.

  4. Living Together in Space: The International Space Station Internal Active Thermal Control System Issues and Solutions-Sustaining Engineering Activities at the Marshall Space Flight Center From 1998 to 2005

    NASA Technical Reports Server (NTRS)

    Wieland, P. O.; Roman, M. C.; Miller, L.

    2007-01-01

    On board the International Space Station, heat generated by the crew and equipment is removed by the internal active thermal control system to maintain a comfortable working environment and prevent equipment overheating. Test facilities simulating the internal active thermal control system (IATCS) were constructed at the Marshall Space Flight Center as part of the sustaining engineering activities to address concerns related to operational issues, equipment capability, and reliability. A full-scale functional simulator of the Destiny lab module IATCS was constructed and activated prior to launch of Destiny in 2001. This facility simulates the flow and thermal characteristics of the flight system and has a similar control interface. A subscale simulator was built, and activated in 2000, with special attention to materials and proportions of wetted surfaces to address issues related to changes in fluid chemistry, material corrosion, and microbial activity. The flight issues that have arisen and the tests performed using the simulator facilities are discussed in detail. In addition, other test facilities at the MSFC have been used to perform specific tests related to IATCS issues. Future testing is discussed as well as potential modifications to the simulators to enhance their utility.

  5. Human tolerance to space flight

    NASA Technical Reports Server (NTRS)

    Huntoon, C. L.

    1989-01-01

    Medical studies of astronauts and cosmonauts before, during, and after space missions have identified several effects of weightlessness and other factors that influence the ability of humans to tolerate space flight. Weightlessness effects include space motion sickness, cardiovascular abnormalities, reduction in immune system function, loss of red blood cells, loss of bone mass, and muscle atrophy. Extravehicular activity (EVA) increases the likelihood that decompression sickness may occur. Radiation also gives reason for concern about health of crewmembers, and psychological factors are important on long-term flights. Countermeasures that have been used include sensory preadaptation, prebreathing and use of various air mixtures for EVA, loading with water and electrolytes, exercise, use of pharmacological agents and special diets, and psychological support. It appears that humans can tolerate and recover satisfactorily from at least one year of space flight, but a number of conditions must be further ameliorated before long-duration missions can be considered routine.

  6. Human Space Flight Plans Committee

    NASA Image and Video Library

    2009-06-16

    Norman Augustine, chair of the Human Space Flight Review Committee, listens to a comment from the audience during the first of several public meetings at different U.S. locations, Wednesday, June 17, 2009, at the Carnegie Institution in Washington. The panel will examine ongoing and planned NASA development activities and potential alternatives in order to present options for advancing a safe, innovative, affordable and sustainable human space flight program following the space shuttle's retirement. The committee wil present its results by August 2009. Photo Credit: (NASA/Paul E. Alers)

  7. STS-134 Orbit 1 flight controllers on console during AMS install

    NASA Image and Video Library

    2011-05-19

    JSC2011-E-046802 (19 May 2011) --- NASA astronaut Megan McArthur, STS-134 spacecraft communicator (CAPCOM), monitors data at her console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during flight day four activities. Photo credit: NASA

  8. Predictors of immune function in space flight

    NASA Astrophysics Data System (ADS)

    Shearer, William T.; Zhang, Shaojie; Reuben, James M.; Lee, Bang-Ning; Butel, Janet S.

    2007-02-01

    Of all of the environmental conditions of space flight that might have an adverse effect upon human immunity and the incidence of infection, space radiation stands out as the single-most important threat. As important as this would be on humans engaged in long and deep space flight, it obviously is not possible to plan Earth-bound radiation and infection studies in humans. Therefore, we propose to develop a murine model that could predict the adverse effects of space flight radiation and reactivation of latent virus infection for humans. Recent observations on the effects of gamma and latent virus infection demonstrate latent virus reactivation and loss of T cell mediated immune responses in a murine model. We conclude that using this small animal method of quantitating the amounts of radiation and latent virus infection and resulting alterations in immune responses, it may be possible to predict the degree of immunosuppression in interplanetary space travel for humans. Moreover, this model could be extended to include other space flight conditions, such as microgravity, sleep deprivation, and isolation, to obtain a more complete assessment of space flight risks for humans.

  9. Comparing Future Options for Human Space Flight

    NASA Technical Reports Server (NTRS)

    Sherwood, Brent

    2010-01-01

    The paper analyzes the "value proposition" for government-funded human space flight, a vexing question that persistently dogs efforts to justify its $10(exp 10)/year expense in the U.S. The original Mercury/Gemini/Apollo value proposition is not valid today. Neither was it the value proposition actually promoted by von Braun, which the post-Apollo 80% of human space flight history has persistently attempted to fulfill. Divergent potential objectives for human space flight are captured in four strategic options - Explore Mars; accelerate Space Passenger Travel; enable Space Power for Earth; and Settle the Moon - which are then analyzed for their Purpose, societal Myth, Legacy benefits, core Needs, and result as measured by the number and type of humans they would fly in space. This simple framework is proposed as a way to support productive dialogue with public and other stakeholders, to determine a sustainable value proposition for human space flight.

  10. A review of adaptive change in musculoskeletal impedance during space flight and associated implications for postflight head movement control

    NASA Technical Reports Server (NTRS)

    McDonald, P. V.; Bloomberg, J. J.; Layne, C. S.

    1997-01-01

    We present a review of converging sources of evidence which suggest that the differences between loading histories experienced in 1-g and weightlessness are sufficient to stimulate adaptation in mechanical impedance of the musculoskeletal system. As a consequence of this adaptive change we argue that we should observe changes in the ability to attenuate force transmission through the musculoskeletal system both during and after space flight. By focusing attention on the relation between human sensorimotor activity and support surfaces, the importance of controlling mechanical energy flow through the musculoskeletal system is demonstrated. The implications of such control are discussed in light of visual-vestibular function in the specific context of head and gaze control during postflight locomotion. Evidence from locomotory biomechanics, visual-vestibular function, ergonomic evaluations of human vibration, and specific investigations of locomotion and head and gaze control after space flight, is considered.

  11. Space Flight Support Building

    NASA Image and Video Library

    2016-10-27

    This archival image was released as part of a gallery comparing JPL’s past and present, commemorating the 80th anniversary of NASA’s Jet Propulsion Laboratory on Oct. 31, 2016. Building 264, also known as the Space Flight Support Building, hosts engineers supporting space missions in flight at NASA's Jet Propulsion Laboratory. It used to be just two stories, as seen in this image from January 1972, but then the Viking project to Mars needed more room. The building still serves the same function today, but now has eight floors. http://photojournal.jpl.nasa.gov/catalog/PIA21123

  12. 14 CFR § 1214.1705 - Selection of space flight participants.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Selection of space flight participants. § 1214.1705 Section § 1214.1705 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Space Flight Participants § 1214.1705 Selection of space flight participants. (a) The...

  13. The effect of space flight on spatial orientation

    NASA Technical Reports Server (NTRS)

    Reschke, Millard F.; Bloomberg, Jacob J.; Harm, Deborah L.; Paloski, William H.; Satake, Hirotaka

    1992-01-01

    Both during and following early space missions, little neurosensory change in the astronauts was noted as a result of their exposure to microgravity. It is believed that this lack of in-flight adaptation in the spatial orientation and perceptual-motor system resulted from short exposure times and limited interaction with the new environment. Parker and Parker (1990) have suggested that while spatial orientation and motion information can be detected by a passive observer, adaptation to stimulus rearrangement is greatly enhanced when the observer moves through or acts on the environment. Experience with the actual consequences of action can be compared with those consequences expected on the basis of prior experience. Space flight today is of longer duration, and space craft volume has increased. These changes have forced the astronauts to interact with the new environment of microgravity, and as a result substantial changes occur in the perceptual and sensory-motor repsonses reflecting adaptation to the stimulus rearrangement of space flight. We are currently evaluating spatial orientation and the perceptual-motor systems' adaptation to microgravity by examining responses of postural control, head and gaze stability during locomotion, goal oriented vestibulo-ocular reflex (VOR), and structured quantitative perceptual reports. Evidence suggests that humans can successfully replace the gravitational reference available on Earth with cues available within the spacecraft or within themselves, but that adaptation to microgravity is not appropriate for a return to Earth. Countermeasures for optimal performance on-orbit and a successful return to earth will require development of preflight and in-flight training to help the astronauts acquire and maintain a dual adaptive state. An understanding of spatial orientation and motion perception, postural control, locomotion, and the VOR will aid in this process.

  14. A Flight Control Approach for Small Reentry Vehicles

    NASA Technical Reports Server (NTRS)

    Bevacqoa, Tim; Adams, Tony; Zhu. J. Jim; Rao, P. Prabhakara

    2004-01-01

    Flight control of small crew return vehicles during atmospheric reentry will be an important technology in any human space flight mission undertaken in the future. The control system presented in this paper is applicable to small crew return vehicles in which reaction control system (RCS) thrusters are the only actuators available for attitude control. The control system consists of two modules: (i) the attitude controller using the trajectory linearization control (TLC) technique, and (ii) the reaction control system (RCS) control allocation module using a dynamic table-lookup technique. This paper describes the design and implementation of the TLC attitude control and the dynamic table-lookup RCS control allocation for nonimal flight along with design verification test results.

  15. Design considerations for space flight hardware

    NASA Technical Reports Server (NTRS)

    Glover, Daniel

    1990-01-01

    The environmental and design constraints are reviewed along with some insight into the established design and quality assurance practices that apply to low earth orbit (LEO) space flight hardware. It is intended as an introduction for people unfamiliar with space flight considerations. Some basic data and a bibliography are included.

  16. Effects of space flight on surface marker expression

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, G.

    1999-01-01

    Space flight has been shown to affect expression of several cell surface markers. These markers play important roles in regulation of immune responses, including CD4 and CD8. The studies have involved flight of experimental animals and humans followed by analysis of tissue samples (blood in humans, rats and monkeys, spleen, thymus, lymph nodes and bone marrow in rodents). The degree and direction of the changes induced by space flight have been determined by the conditions of the flight. Also, there may be compartmentalization of the response of surface markers to space flight, with differences in the response of cells isolated from blood and local immune tissue. The same type of compartmentalization was also observed with cell adhesion molecules (integrins). In this case, the expression of integrins from lymph node cells differed from that of splenocytes isolated from rats immediately after space flight. Cell culture studies have indicated that there may be an inhibition in conversion of a precursor cell line to cells exhibiting mature macrophage characteristics after space flight, however, these experiments were limited as a result of technical difficulties. In general, it is clear that space flight results in alterations of cell surface markers. The biological significance of these changes remains to be established.

  17. [Bone metabolism in human space flight and bed rest study].

    PubMed

    Ohshima, Hiroshi; Mukai, Chiaki

    2008-09-01

    Japanese Experiment Module "KIBO" is Japan's first manned space facility and will be operated as part of the international space station (ISS) . KIBO operations will be monitored and controlled from Tsukuba Space Center. In Japan, after the KIBO element components are fully assembled and activated aboard the ISS, Japanese astronauts will stay on the ISS for three or more months, and full-scale experiment operations will begin. Bone loss and renal stone are significant medical concerns for long duration human space flight. This paper will summarize the results of bone loss, calcium balance obtained from the American and Russian space programs, and ground-base analog bedrest studies. Current in-flight training program, nutritional recommendations and future countermeasure plans for station astronauts are also described.

  18. L1 Adaptive Control Law for Flexible Space Launch Vehicle and Proposed Plan for Flight Test Validation

    NASA Technical Reports Server (NTRS)

    Kharisov, Evgeny; Gregory, Irene M.; Cao, Chengyu; Hovakimyan, Naira

    2008-01-01

    This paper explores application of the L1 adaptive control architecture to a generic flexible Crew Launch Vehicle (CLV). Adaptive control has the potential to improve performance and enhance safety of space vehicles that often operate in very unforgiving and occasionally highly uncertain environments. NASA s development of the next generation space launch vehicles presents an opportunity for adaptive control to contribute to improved performance of this statically unstable vehicle with low damping and low bending frequency flexible dynamics. In this paper, we consider the L1 adaptive output feedback controller to control the low frequency structural modes and propose steps to validate the adaptive controller performance utilizing one of the experimental test flights for the CLV Ares-I Program.

  19. Role of Corticosteroids in Bone Loss During Space Flight

    NASA Technical Reports Server (NTRS)

    Wronski, Thomas J.; Halloran, Bernard P.; Miller, Scott C.

    1998-01-01

    The primary objective of this research project is to test the hypothesis that corticosteroids contribute to the adverse skeletal effects of space flight. To achieve this objective, serum corticosteroids, which are known to increase during space flight, must be maintained at normal physiologic levels in flight rats by a combination of adrenalectomy and corticosteroid supplementation via implanted hormone pellets. Bone analyses in these animals will then be compared to those of intact flight rats that, based on past experience, will undergo corticosteroid excess and bone loss during space flight. The results will reveal whether maintaining serum corticosteroids at physiologic levels in flight rats affects the skeletal abnormalities that normally develop during space flight. A positive response to this question would indicate that the bone loss and decreased bone formation associated with space flight are mediated, at least in part, by corticosteroid excess.

  20. NASA Aerosciences Activities to Support Human Space Flight

    NASA Technical Reports Server (NTRS)

    LeBeau, Gerald J.

    2011-01-01

    The Lyndon B. Johnson Space Center (JSC) has been a critical element of the United State's human space flight program for over 50 years. It is the home to NASA s Mission Control Center, the astronaut corps, and many major programs and projects including the Space Shuttle Program, International Space Station Program, and the Orion Project. As part of JSC's Engineering Directorate, the Applied Aeroscience and Computational Fluid Dynamics Branch is charted to provide aerosciences support to all human spacecraft designs and missions for all phases of flight, including ascent, exo-atmospheric, and entry. The presentation will review past and current aeroscience applications and how NASA works to apply a balanced philosophy that leverages ground testing, computational modeling and simulation, and flight testing, to develop and validate related products. The speaker will address associated aspects of aerodynamics, aerothermodynamics, rarefied gas dynamics, and decelerator systems, involving both spacecraft vehicle design and analysis, and operational mission support. From these examples some of NASA leading aerosciences challenges will be identified. These challenges will be used to provide foundational motivation for the development of specific advanced modeling and simulation capabilities, and will also be used to highlight how development activities are increasing becoming more aligned with flight projects. NASA s efforts to apply principles of innovation and inclusion towards improving its ability to support the myriad of vehicle design and operational challenges will also be briefly reviewed.

  1. Ambiguous Tilt and Translation Motion Cues in Astronauts after Space Flight

    NASA Technical Reports Server (NTRS)

    Clement, G.; Harm, D. L.; Rupert, A. H.; Beaton, K. H.; Wood, S. J.

    2008-01-01

    Adaptive changes during space flight in how the brain integrates vestibular cues with visual, proprioceptive, and somatosensory information can lead to impaired movement coordination, vertigo, spatial disorientation, and perceptual illusions following transitions between gravity levels. This joint ESA-NASA pre- and post-flight experiment is designed to examine both the physiological basis and operational implications for disorientation and tilt-translation disturbances in astronauts following short-duration space flights. The first specific aim is to examine the effects of stimulus frequency on adaptive changes in eye movements and motion perception during independent tilt and translation motion profiles. Roll motion is provided by a variable radius centrifuge. Pitch motion is provided by NASA's Tilt-Translation Sled in which the resultant gravitoinertial vector remains aligned with the body longitudinal axis during tilt motion (referred to as the Z-axis gravitoinertial or ZAG paradigm). We hypothesize that the adaptation of otolith-mediated responses to these stimuli will have specific frequency characteristics, being greatest in the mid-frequency range where there is a crossover of tilt and translation. The second specific aim is to employ a closed-loop nulling task in which subjects are tasked to use a joystick to null-out tilt motion disturbances on these two devices. The stimuli consist of random steps or sum-of-sinusoids stimuli, including the ZAG profiles on the Tilt-Translation Sled. We hypothesize that the ability to control tilt orientation will be compromised following space flight, with increased control errors corresponding to changes in self-motion perception. The third specific aim is to evaluate how sensory substitution aids can be used to improve manual control performance. During the closed-loop nulling task on both devices, small tactors placed around the torso vibrate according to the actual body tilt angle relative to gravity. We hypothesize

  2. Epstein-Barr Virus Shedding by Astronauts During Space Flight

    NASA Technical Reports Server (NTRS)

    Pierson, D. L.

    2004-01-01

    Patterns of Epstein-Barr virus (EBV) reactivation in 32 astronauts and 18 healthy age-matched control subjects were characterized by quantifying EBV shedding. Saliva samples were collected from astronauts before, during, and after 10 space shuttle missions of 5 to 14 d duration. Samples were collected on a similar schedule from control subjects. At one time point or another, EBV was detected in saliva from each of the astronauts. Of 1398 saliva specimens from 32 astronauts, polymerase chain reaction analysis showed that 314 (23%) were positive for EBV DNA. Examination by flight phase showed that 29% of the saliva specimens collected before flight were positive for EBV DNA, as were 16% of those collected during flight and 16% of those collected after flight. The mean number of copies of EBV DNA from samples taken during the flights was 417 plus or minus 31, significantly greater (p less than 0.05) than the number of copies from the preflight (40 plus or minus 2) and postflight (44 plus or minus 5) phases. In contrast, the control subjects shed EBV DNA with a frequency of 3.7% and a mean number of EBV DNA copies of 40 plus or minus 2 per mL of saliva. Ten days before flight and on landing day, titers of antibody to EBV viral capsid antigen were significantly (p less than 0.05) greater than baseline levels. On landing day, urinary levels of cortisol and catecholamines, and plasma levels of substance P and other neuropeptides, were increased over their preflight values. Increases in the number of viral copies and in the amount of EBV-specific antibody were consistent with the occurrence of EBV reactivation before, during, and after space flight.

  3. Mouse infection models for space flight immunology

    NASA Technical Reports Server (NTRS)

    Chapes, Stephen Keith; Ganta, Roman Reddy; Chapers, S. K. (Principal Investigator)

    2005-01-01

    Several immunological processes can be affected by space flight. However, there is little evidence to suggest that flight-induced immunological deficits lead to illness. Therefore, one of our goals has been to define models to examine host resistance during space flight. Our working hypothesis is that space flight crews will come from a heterogeneous population; the immune response gene make-up will be quite varied. It is unknown how much the immune response gene variation contributes to the potential threat from infectious organisms, allergic responses or other long term health problems (e.g. cancer). This article details recent efforts of the Kansas State University gravitational immunology group to assess how population heterogeneity impacts host health, either in laboratory experimental situations and/or using the skeletal unloading model of space-flight stress. This paper details our use of several mouse strains with several different genotypes. In particular, mice with varying MHCII allotypes and mice on the C57BL background with different genetic defects have been particularly useful tools with which to study infections by Staphylococcus aureus, Salmonella typhimurium, Pasteurella pneumotropica and Ehrlichia chaffeensis. We propose that some of these experimental challenge models will be useful to assess the effects of space flight on host resistance to infection.

  4. Calcium Balance in Mature Rats Exposed to a Space Flight Model

    NASA Technical Reports Server (NTRS)

    Wolinsky, Ira

    1996-01-01

    Negative calcium balances are seen in humans during spaceflight and bed rest, an analog of space flight. Due to the infrequency and costliness of space flight and the difficulties, cost, and restraints in using invasive procedures in bed rest studies, several ground based animal models of space flight have been employed. The most useful and well developed of these models is hind limb unloading in the rat. In this model the hind limbs are non-weight bearing (unloaded) but still mobile; there is a cephalad fluid shift similar to that seen in astronauts in flight; the animals are able to feed, groom and locomote using their front limbs; the procedure is reversible; and, importantly, the model has been validated by comparison to space flight. Several laboratories have studied calcium balance using rats in hind limb unweighting. Roer and Dillaman used young male rats to study calcium balance in this model for 25 days. They found no differences in dietary calcium intake, percent calcium absorption, urinary and fecal excretion, hence indicating no differences in calcium balance between control and unloaded rats. In another study, employing 120 day old females, rats' hind limbs were unloaded for 28 days. While negative calcium balances were observed during a 25 day recovery period no balance measurements were possible during unweighting since the researchers did not employ appropriate metabolic cages. In a recent study from this laboratory, using 200 g rats in the space flight model for two weeks, we found depressed intestinal calcium absorption and increased fecal calcium excretion (indicating less positive calcium balances) and lower circulating 1,25-dihydroxyvitamin D. The above studies indicate that there remains a dearth of information on calcium balance during the hind limb unloading rat space flight model, especially in mature rats, whose use is a better model for planned manned space flight than juvenile or growing animals. With the aid of a newly designed

  5. Bone and Calcium Metabolism During Space Flight

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.

    2004-01-01

    Understanding bone loss during space flight is one of the most critical challenges for maintaining astronaut health on space exploration missions. Flight and ground-based studies have been conducted to better understand the nature and mechanisms of weightlessness-induced bone loss, and to identify a means to counteract the loss. Maintenance of bone health requires a balance between bone formation and bone resorption. Early space research identified bone loss as a critical health issue, but could not provide a distinction between the bone formation and breakdown processes. The recent identification of collagen crosslinks as markers of bone resorption has made possible a clear understanding that a decrease in bone resorption is an important effect of space flight, with bone formation being unchanged or only slightly decreased. Calcium regulatory factors have also been studied, in an attempt to understand their role in bone loss. The lack of ultraviolet light exposure and insufficient dietary sources of vitamin D often lead to reduced vitamin D stores on long-duration flights. Serum parathyroid hormone (PTH) concentrations are decreased during flight compared to before flight, although small subject numbers often make this hard to document statistically. As expected, reduced PTH concentrations are accompanied by reduced 1,25-dihydroxyvitamin D concentrations. Calcium kinetic studies during space flight confirm and extend the information gained from biochemical markers of bone metabolism. Calcium kinetic studies demonstrate that bone resorption is increased, bone formation is unchanged or decreased, and dietary calcium absorption is reduced during space flight. Evaluations have also been conducted of countermeasures, including dietary, exercise, and pharmacological treatments. In recent studies, many potential countermeasures show promise at mitigating bone loss in ground-based analogs of weightlessness (e.g., bed rest), but require further ground and flight testing to

  6. Human Space Flight Plans Committee

    NASA Image and Video Library

    2009-06-16

    Douglas R. Cooke, Associate Administrator for Exploration Systems Mission Directorate, at podium, addresses the Human Space Flight Review Committee, Wednesday, June 17, 2009, at the Carnegie Institution in Washington. The panel will examine ongoing and planned NASA development activities and potential alternatives in order to present options for advancing a safe, innovative, affordable and sustainable human space flight program following the space shuttle's retirement. The committee wil present its results by August 2009. Seated from left on the panel is Jeffrey Greason, Bohdan Bejmuk, Dr. Leroy Chiao, Norman Augustine (chair), Dr. Wanda Austin, Dr. Edward Crawley, Dr. Christopher Chyba and Philip McAlister. Photo Credit: (NASA/Paul E. Alers)

  7. Human Space Flight Plans Committee

    NASA Image and Video Library

    2009-06-16

    U.S. Sen. Bill Nelson, D-Fla., at podium, addresses members of the Human Space Flight Review Committee, Wednesday, June 17, 2009, at the Carnegie Institution in Washington. Seated from left are Jeffrey Greason, Bohdan Bejmuk, Dr. Leroy Chiao, Norman Augustine (chair), Dr. Wanda Austin, Dr. Edward Crawley, Dr. Christopher Chyba and Philip McAlister. The panel will examine ongoing and planned NASA development activities and potential alternatives in order to present options for advancing a safe, innovative, affordable and sustainable human space flight program following the space shuttle's retirement. The committee wil present its results by August 2009. Photo Credit: (NASA/Paul E. Alers)

  8. On the attitude control and flight result of winged reentry test vehicle

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Jun'ichiro; Inatani, Yoshifumi; Yonemoto, Koichi; Hinada, Motoki

    The Institute of Space and Astronautical Science (ISAS) has been studying the unmanned winged space vehicle HIMES (HIghly Maneuverable Engineering Space vehicle) for a decade and successfully carried out sub-sonic Gliding Flight Experiments several years ago, which was followed by Reentry Flight Experiment, utilizing so called 'Rockoon' method, in September of 1988, which failed due to the unexpected burst of the balloon. ISAS conducted it again making use of refined 'Rockoon' scheme in February of 1992. In spite of its small bulk property, it was equipped with not only a reaction control system (RCS) but a surface control system (SCS) capability as well, which enabled it to make a successful flight under both vacuum and atmospheric circumstances. The highest Mach number exceeded 3.5 and the highest altitude was a bit lower to 67 km. Switching from reaction control to surface control was one of the essential engineering interests in the flight like this. Supersonic autonomous flight control with high angle of attack was also what should be established through this, since in general it inevitably carries inherent lateral instability. A flight test this time revealed those features and characteristics quite well. This paper deals with the attitude control strategy with three-axis Motion Simulation Test as well as the flight results.

  9. Coverage of STS-104 Launch Coverage of Flight Controllers in MCC.

    NASA Image and Video Library

    2001-07-12

    JSC2001-E-21333 (12 July 2001) --- From a familiar setting in the shuttle flight control room (WFCR)at Houston's Mission Control Center (MCC), Wayne Hale, ascent flight director for STS-104, pays close attention to new data related to the Space Shuttle Atlantis and its impending launch from the Kennedy Space Center (KSC) in Florida.

  10. Coverage of STS-104 Launch Coverage of Flight Controllers in MCC.

    NASA Image and Video Library

    2001-07-12

    JSC2001-E-21333 (12 July 2001) --- From a familiar setting in the shuttle flight control room (WFCR) at Houston's Mission Control Center (MCC), Wayne Hale, ascent flight director for STS-104, pays close attention to new data related to the Space Shuttle Atlantis and its impending launch from the Kennedy Space Center (KSC) in Florida.

  11. Infectivity and egg production of Nematospiroides dubius as affected by space flight and ultraviolet irradiation

    NASA Technical Reports Server (NTRS)

    Long, R. A.; Ellis, W. L.; Taylor, G. R.

    1973-01-01

    Nematospiroides dubius was tested to determine the infective potential of the third stage larvae and the egg-production and egg-viability rates of the resulting adults after they are exposed to space flight and solar ultraviolet irradiation. The results are indicative that space-flown larvae exposed to solar ultraviolet irradiation were rendered noninfective in C57 mice, whereas flight control larvae that received no solar ultraviolet irradiation matured at the same rate as the ground control larvae. However, depressed egg viability was evident in the flight control larvae.

  12. Effects of Space Flight on Rodent Tissues

    NASA Technical Reports Server (NTRS)

    Worgul, Basil V.

    1997-01-01

    As the inevitable expression of mankind's search for knowledge continues into space, the potential acute and long-term effects of space flight on human health must be fully appreciated. Despite its critical role relatively little is known regarding the effects of the space environment on the ocular system. Our proposed studies were aimed at determining whether or not space flight causes discernible disruption of the genomic integrity, cell kinetics, cytoarchitecture and other cytological parameters in the eye. Because of its defined and singular biology our main focus was on the lens and possible changes associated with its primary pathology, cataract. We also hoped to explore the possible effect of space flight on the preferred orientation of dividing cells in the perilimbal region of conjunctiva and cornea.

  13. Bronchoesophageal and related systems in space flight

    NASA Technical Reports Server (NTRS)

    Thornton, William

    1991-01-01

    A review is presented of the detrimental effects of space flight on the human bronchoesophageal system emphasizing related areas such as the gastric system. In-flight symptoms are listed including congestion, nasopharyngeal irritation, epigastric sensations, anorexia, and nausea. Particular attention is given to space-related effects on eating/drinking associated with the absence of hydrostatic pressure in the vascular system. The atmospheric characteristics of a typical space shuttle flight are given, and the reduced pressure and low humidity are related to bronchial, eye, and nose irritation. Earth and space versions of motion sickness are compared, and some critical differences are identified. It is proposed that more research is required to assess the effects of long-duration space travel on these related systems.

  14. Human Space Flight Plans Committee Report

    NASA Image and Video Library

    2009-10-21

    U.S. Human Space Flight Plans Committee member Ed Crawley, right, answers a reporter's question during a press conference where the committee released it's report on Thursday, Oct., 22, 2009 at the National Press Club in Washington. The Obama Administration tasked the committee to do an independent review of planned U.S. human space flight activities with the goal of ensuring that the nation is on a vigorous and sustainable path to achieving its boldest aspirations in space. Photo Credit: (NASA/Bill Ingalls)

  15. Human Space Flight Plans Committee Report

    NASA Image and Video Library

    2009-10-21

    U.S. Human Space Flight Plans Committee member Ed Crawley answers a reporter's question during a press conference where the committee released it's report on Thursday, Oct., 22, 2009 at the National Press Club in Washington. The Obama Administration tasked the committee to do an independent review of planned U.S. human space flight activities with the goal of ensuring that the nation is on a vigorous and sustainable path to achieving its boldest aspirations in space. Photo Credit: (NASA/Bill Ingalls)

  16. Human Space Flight Plans Committee Report

    NASA Image and Video Library

    2009-10-21

    Copies of the U.S. Human Space Flight Plans Committee report are seen at a press conference where the committee released it's report findings on Thursday, Oct., 22, 2009 at the National Press Club in Washington. The Obama Administration tasked the committee to do an independent review of planned U.S. human space flight activities with the goal of ensuring that the nation is on a vigorous and sustainable path to achieving its boldest aspirations in space. Photo Credit: (NASA/Bill Ingalls)

  17. Colloid Microthruster Flight Performance Results from Space Technology 7 Disturbance Reduction System

    NASA Technical Reports Server (NTRS)

    Ziemer, John; Marrese-Reading, Colleen; Dunn, Charley; Romero-Wolf, Andrew; Cutler, Curt; Javidnia, Shahram; Li, Thanh; Li, Irena; Franklin, Garth; Barela, Phil; hide

    2017-01-01

    Space Technology 7 Disturbance Reduction System (ST7-DRS) is a NASA technology demonstration payload as part of the ESA LISA Pathfinder (LPF) mission, which launched on December 3, 2015. The ST7-DRS payload includes colloid microthrusters as part of a drag-free dynamic control system (DCS) hosted on an integrated avionics unit (IAU) with spacecraft attitude and test mass position provided by the LPF spacecraft computer and the highly sensitive gravitational reference sensor (GRS) as part of the LISA Technology Package (LTP). The objective of the DRS was to validate two technologies: colloid micro-Newton thrusters (CMNT) to provide low-noise control capability of the spacecraft, and drag-free flight control. The CMNT were developed by Busek Co., Inc., in a partnership with NASA Jet Propulsion Laboratory (JPL), and the DCS algorithms and flight software were developed at NASA Goddard Space Flight Center (GSFC). ST7-DRS demonstrated drag-free operation with 10nmHz level precision spacecraft position control along the primary axis of the LTP using eight CMNTs that provided 5-30 N each with 0.1 N precision. The DCS and CMNTs performed as required and as expected from ground test results, meeting all Level 1 requirements based on on-orbit data and analysis. DRS microthrusters operated for 2400 hours in flight during commissioning activities, a 90-day experiment and the extended mission. This mission represents the first validated demonstration of electrospray thrusters in space, providing precision spacecraft control and drag-free operation in a flight environment with applications to future gravitational wave observatories like LISA.

  18. Space Flight Cable Model Development

    NASA Technical Reports Server (NTRS)

    Spak, Kaitlin

    2013-01-01

    This work concentrates the modeling efforts presented in last year's VSGC conference paper, "Model Development for Cable-Harnessed Beams." The focus is narrowed to modeling of space-flight cables only, as a reliable damped cable model is not yet readily available and is necessary to continue modeling cable-harnessed space structures. New experimental data is presented, eliminating the low-frequency noise that plagued the first year's efforts. The distributed transfer function method is applied to a single section of space flight cable for Euler-Bernoulli and shear beams. The work presented here will be developed into a damped cable model that can be incorporated into an interconnected beam-cable system. The overall goal of this work is to accurately predict natural frequencies and modal damping ratios for cabled space structures.

  19. Propulsion at the Marshall Space Flight Center - A brief history

    NASA Technical Reports Server (NTRS)

    Jones, L. W.; Fisher, M. F.; Mccool, A. A.; Mccarty, J. P.

    1991-01-01

    The history of propulsion development at the NASA Marshall Space Flight Center is summarized, beginning with the development of the propulsion system for the Redstone missile. This course of propulsion development continues through the Jupiter IRBM, the Saturn family of launch vehicles and the engines that powered them, the Centaur upper stage and RL-10 engine, the Reactor In-Flight Test stage and the NERVA nuclear engine. The Space Shuttle Main Engine and Solid Rocket Boosters are covered, as are spacecraft propulsion systems, including the reaction control systems for the High Energy Astronomy Observatory and the Space Station. The paper includes a description of several technology efforts such as those in high pressure turbomachinery, aerospike engines, and the AS203 cyrogenic fluid management flight experiment. These and other propulsion projects are documented, and the scope of activities in support of these efforts at Marshall delineated.

  20. Epstein-Barr virus shedding by astronauts during space flight

    NASA Technical Reports Server (NTRS)

    Pierson, D. L.; Stowe, R. P.; Phillips, T. M.; Lugg, D. J.; Mehta, S. K.

    2005-01-01

    Patterns of Epstein-Barr virus (EBV) reactivation in 32 astronauts and 18 healthy age-matched control subjects were characterized by quantifying EBV shedding. Saliva samples were collected from astronauts before, during, and after 10 space shuttle missions of 5-14 days duration. At one time point or another, EBV was detected in saliva from each of the astronauts. Of 1398 saliva specimens from 32 astronauts, polymerase chain reaction analysis showed that 314 (23%) were positive for EBV DNA. Examination by flight phase showed that 29% of the saliva specimens collected from 28 astronauts before flight were positive for EBV DNA, as were 16% of those collected from 25 astronauts during flight and 16% of those collected after flight from 23 astronauts. The mean number of EBV copies from samples taken during the flights was 417 per mL, significantly greater (p<.05) than the number of viral copies from the preflight (40) and postflight (44) phases. In contrast, the control subjects shed EBV DNA with a frequency of 3.7% and mean number of EBV copies of 40 per mL of saliva. Ten days before flight and on landing day, titers of antibody to EBV viral capsid antigen were significantly (p<.05) greater than baseline levels. On landing day, urinary levels of cortisol and catecholamines were greater than their preflight values. In a limited study (n=5), plasma levels of substance P and other neuropeptides were also greater on landing day. Increases in the number of viral copies and in the amount of EBV-specific antibody were consistent with EBV reactivation before, during, and after space flight.

  1. Research and technology, 1984: Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Moorehead, T. W. (Editor)

    1984-01-01

    The Marshall Space Flight Center conducts research programs in space sciences, materials processing in space, and atmospheric sciences, as well as technology programs in such areas as propulsion, materials, processes, and space power. This Marshall Space Flight Center 1984 Annual Report on Research and Technology contains summaries of the more significant scientific and technical results obtained during FY-84.

  2. Human Space Flight Plans Committee Report

    NASA Image and Video Library

    2009-10-21

    Chairman of the U.S. Human Space Flight Plans Committee Norman Augustine, center, listens to reporters questions during a press conference where the committee released it's report on Thursday, Oct., 22, 2009 at the National Press Club in Washington. The Obama Administration tasked the committee to do an independent review of planned U.S. human space flight activities with the goal of ensuring that the nation is on a vigorous and sustainable path to achieving its boldest aspirations in space. Photo Credit: (NASA/Bill Ingalls)

  3. Human Space Flight Plans Committee Report

    NASA Image and Video Library

    2009-10-21

    Chairman of the U.S. Human Space Flight Plans Committee Norman Augustine answers a reporters question during a press conference where the committee released it's report on Thursday, Oct., 22, 2009 at the National Press Club in Washington. The Obama Administration tasked the committee to do an independent review of planned U.S. human space flight activities with the goal of ensuring that the nation is on a vigorous and sustainable path to achieving its boldest aspirations in space. Photo Credit: (NASA/Bill Ingalls)

  4. NASA - Human Space Flight

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.

    2006-01-01

    The presentation covers five main topical areas. The first is a description of how things work in the microgravity environment such as convection and sedimentation. The second part describes the effects of microgravity on human physiology. This is followed by a description of the hazards of space flight including the environment, the space craft, and the mission. An overview of biomedical research in space, both on shuttle and ISS is the fourth section of the presentation. The presentation concludes with a history of space flight from Ham to ISS. At CART students (11th and 12th graders from Fresno Unified and Clovis Unified) are actively involved in their education. They work in teams to research real world problems and discover original solutions. Students work on projects guided by academic instructors and business partners. They will have access to the latest technology and will be expected to expand their learning environment to include the community. They will focus their studies around a career area (Professional Sciences, Advanced Communications, Engineering and Product Development, or Global Issues).

  5. Launch Vehicle Manual Steering with Adaptive Augmenting Control In-flight Evaluations Using a Piloted Aircraft

    NASA Technical Reports Server (NTRS)

    Hanson, Curt

    2014-01-01

    An adaptive augmenting control algorithm for the Space Launch System has been developed at the Marshall Space Flight Center as part of the launch vehicles baseline flight control system. A prototype version of the SLS flight control software was hosted on a piloted aircraft at the Armstrong Flight Research Center to demonstrate the adaptive controller on a full-scale realistic application in a relevant flight environment. Concerns regarding adverse interactions between the adaptive controller and a proposed manual steering mode were investigated by giving the pilot trajectory deviation cues and pitch rate command authority.

  6. Results of the First US Manned Orbital Space Flight

    NASA Technical Reports Server (NTRS)

    1962-01-01

    The results of the first United States manned orbital space flight conducted on February 20, 1962 are presented. The prelaunch activities, spacecraft description, flight operations, flight data, and postflight analyses presented form a continuation of the information previously published for the two United States manned suborbital space flights conducted on May 5, 1961, and July 21, 1961, respectively, by the National Aeronautics and Space Administration.

  7. Ambiguous Tilt and Translation Motion Cues in Astronauts After Space Flight (ZAG)

    NASA Astrophysics Data System (ADS)

    Clement, Guilles; Harm, Deborah; Rupert, Angus; Beaton, Kara; Wood, Scott

    2008-06-01

    Adaptive changes during space flight in how the brain integrates vestibular cues with visual, proprioceptive, and somatosensory information can lead to impaired movement coordination, vertigo, spatial disorientation, and perceptual illusions following transitions between gravity levels. This joint ESA-NASA pre- and post-flight experiment is designed to examine both the physiological basis and operational implications for disorientation and tilt-translation disturbances in astronauts following short-duration space flights. Specifically, this study addresses three questions: (1) What adaptive changes occur in eye movements and motion perception in response to different combinations of tilt and translation motion? (2) Do adaptive changes in tilt-translation responses impair ability to manually control vehicle orientation? (3) Can sensory substitution aids (e.g., tactile) mitigate risks associated with manual control of vehicle orientation?

  8. STS-118 Ascent/Entry Flight Control Team in WFCR

    NASA Image and Video Library

    2007-09-17

    JSC2007-E-46429 (17 Sept. 2007) --- The members of the STS-118 Ascent/Entry flight control team and crewmembers pose for a group portrait in the space shuttle flight control room of Houston's Mission Control Center (MCC). Flight director Steve Stich holds the STS-118 mission logo. Astronauts Scott Kelly, commander, is at left foreground and astronaut Chris Ferguson, spacecraft communicator (CAPCOM), is at right foreground. Additional crewmembers pictured are Charlie Hobaugh, pilot; Barbara R. Morgan, Tracy Caldwell and Rick Mastracchio, all mission specialists.

  9. Effect of space flights on plasma hormone levels in man and in experimental animal

    NASA Astrophysics Data System (ADS)

    Macho, L.; Kvetňanský, R.; Vigaš, M.; Németh, S.; Popova, I.; Tigranian, R. A.; Noskov, V. B.; Serova, L.; Grigoriev, I. A.

    An important increase of plasma hormone levels like insulin, TSH and aldosterone was observed in human subjects after space flights, however in the changes of plasma content of ACTH, cortisol, adrenaline and noradrenaline the individual variations were observed in relation to number and duration of space flight. For evaluation of the effects of these changes in plasma hormone levels on metabolic processes also the experiments with small animals subjected to space flights on a board of biosatellite of Cosmos series were running. An elevation of plasma levels of corticosterone, adrenaline, noradrenaline and insulin was found in rats after the space flights of duration from 7 to 20 days. It was demonstrated, that the increase of corticosterone in plasma is followed by the activation of enzymes involved in the aminoacid metabolism in rat liver (tyrosine aminotransferase, tryptophanpyrolase, alanine aminotransferase and aspartate aminotransferase). After a short recovery period (2 to 6 days) the plasma corticosterone concentration and also the activity of liver enzymes returned to control levels. The exposition of animals to stress stimuli during this recovery period showed higher response of corticosterone levels in flight rats as compared to intact controls. The increase of plasma catecholamine levels was not followed by elevation of lipolysis in adipose tissue. This is due to lower response of adipose tissue to catecholamine because a decrease of the stimulation of lipolysis by noradrenaline was observed in animals after space flight. The increase of insulin was not followed by adequate decrease of glucose concentration suggesting a disturbances in glucose utilization similarly as in cosmonauts after a long-term space flight. These results showed that changes in plasma hormone levels, observed after space flight, affected the regulation of metabolic processes in tissues.

  10. Calcium Kinetics During Long-Duration Space Flight

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; OBrien, K. O.; Wastney, M. E.; Morukov, B. V.; Larina, I.; Abrams, S. A.; Lane, H. W.; Nillen, J. L.; Davis-Street, J. E.; Oganov, V.; hide

    2001-01-01

    Bone loss represents one of the most significant effects of space flight on the human body. Understanding the mechanisms underlying this loss is critical for maintaining crew health and safety during and after flight. This investigation documents the changes in bone metabolism and calcium kinetics during and after space flight. We previously reported calcium studies on three subjects during and after a 115-d stay on the Russian space station Mir. We report here data on an additional three subjects, whose stays on Mir were approximately 4 (n=l) and 6 (n=2) mos. Previously published data are included for comparison.

  11. Research and Technology, 1987, Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Guerny, Gene (Editor); Moe, Karen (Editor); Paddack, Steven (Editor); Soffen, Gerald (Editor); Sullivan, Walter (Editor); Ballard, Jan (Editor)

    1987-01-01

    Research at Goddard Space Flight Center during 1987 is summarized. Topics addressed include space and earth sciences, technology, flight projects and mission definition studies, and institutional technology.

  12. Capabilities of the Environmental Effects Branch at Marshall Space Flight Cente

    NASA Technical Reports Server (NTRS)

    Rogers, Jan; Finckenor, Miria; Nehls, Mary

    2016-01-01

    The Environmental Effects Branch at the Marshall Space Flight Center supports a myriad array of programs for NASA, DoD, and commercial space including human exploration, advanced space propulsion, improving life on Earth, and the study of the Sun, the Earth, and the solar system. The branch provides testing, evaluation, and qualification of materials for use on external spacecraft surfaces and in contamination-sensitive systems. Space environment capabilities include charged particle radiation, ultraviolet radiation, atomic oxygen, impact, plasma, and thermal vacuum, anchored by flight experiments and analysis of returned space hardware. These environmental components can be combined for solar wind or planetary surface environment studies or to evaluate synergistic effects. The Impact Testing Facility allows simulation of impacts ranging from sand and rain to micrometeoroids and orbital debris in order to evaluate materials and components for flight and ground-based systems. The Contamination Control Team is involved in the evaluation of environmentally-friendly replacements for HCFC-225 for use in propulsion oxygen systems, developing cleaning methods for additively manufactured hardware, and reducing risk for the Space Launch System.

  13. Vision Aspects of Space Flight

    NASA Technical Reports Server (NTRS)

    Manuel, Keith; Billica, Roger (Technical Monitor)

    2000-01-01

    Vision, being one of our most important senses, is critically important in the unique working environment of space flight. Critical evaluation of the astronauts visual system begins with pre-selection examinations resulting in an average of 65% of all medical disqualification's caused by ocular findings. With an average age of 42, approximately 60% of the astronaut corps requires vision correction. Further demands of the unique training and working environment of microgravity, variable lighting from very poor to extreme brightness of sunlight and exposure to extremes of electromagnetic energy results in unique eyewear and contact lens applications. This presentation will describe some of those unique eyewear and contact lens applications used in space flight and training environments. Additionally, ocular findings from 26 shuttle and 5 MIR mission post-flight examinations will be presented.

  14. The Legacy of Space Shuttle Flight Software

    NASA Technical Reports Server (NTRS)

    Hickey, Christopher J.; Loveall, James B.; Orr, James K.; Klausman, Andrew L.

    2011-01-01

    The initial goals of the Space Shuttle Program required that the avionics and software systems blaze new trails in advancing avionics system technology. Many of the requirements placed on avionics and software were accomplished for the first time on this program. Examples include comprehensive digital fly-by-wire technology, use of a digital databus for flight critical functions, fail operational/fail safe requirements, complex automated redundancy management, and the use of a high-order software language for flight software development. In order to meet the operational and safety goals of the program, the Space Shuttle software had to be extremely high quality, reliable, robust, reconfigurable and maintainable. To achieve this, the software development team evolved a software process focused on continuous process improvement and defect elimination that consistently produced highly predictable and top quality results, providing software managers the confidence needed to sign each Certificate of Flight Readiness (COFR). This process, which has been appraised at Capability Maturity Model (CMM)/Capability Maturity Model Integration (CMMI) Level 5, has resulted in one of the lowest software defect rates in the industry. This paper will present an overview of the evolution of the Primary Avionics Software System (PASS) project and processes over thirty years, an argument for strong statistical control of software processes with examples, an overview of the success story for identifying and driving out errors before flight, a case study of the few significant software issues and how they were either identified before flight or slipped through the process onto a flight vehicle, and identification of the valuable lessons learned over the life of the project.

  15. Urinary Acid Excretion Can Predict Changes in Bone Metabolism During Space Flight

    NASA Technical Reports Server (NTRS)

    Zwart, Sara R.; Smith, Scott M.

    2011-01-01

    Mitigating space flight-induced bone loss is critical for space exploration, and a dietary countermeasure would be ideal. We present here preliminary data from a study where we examined the role of dietary intake patterns as one factor that can influence bone mineral loss in astronauts during space flight. Crewmembers (n=5) were asked to consume a prescribed diet with either a low (0.3-0.6) or high (1.0-1.3) ratio of animal protein to potassium (APro:K) before and during space flight for 4-d periods. Diets were controlled for energy, total protein, calcium, and sodium. 24-h urine samples were collected on the last day of each of the 4-d controlled diet sessions. 24-h urinary acid excretion, which was predicted by dietary potential renal acid load, was correlated with urinary n-telopeptide (NTX, Pearson R = 0.99 and 0.80 for the high and low APro:K sessions, respectively, p<0.001). The amount of protein when expressed as the percentage of total energy (but not as total grams) was also correlated with urinary NTX (R = 0.66, p<0.01). These results, from healthy individuals in a unique environment, will be important to better understand diet and bone interrelationships during space flight as well as on Earth. The study was funded by the NASA Human Research Program.

  16. FOD Prevention at NASA-Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Lowrey, Nikki M.

    2011-01-01

    NASA now requires all flight hardware projects to develop and implement a Foreign Object Damage (FOD) Prevention Program. With the increasing use of composite and bonded structures, NASA now also requires an Impact Damage Protection Plan for these items. In 2009, Marshall Space Flight Center released an interim directive that required all Center organizations to comply with FOD protocols established by on-site Projects, to include prevention of impact damage. The MSFC Technical Standards Control Board authorized the development of a new MSFC technical standard for FOD Prevention.

  17. Visual-Vestibular Responses During Space Flight

    NASA Technical Reports Server (NTRS)

    Reschke, M. F.; Kozlovskaya, I. B.; Paloski, W. H.

    1999-01-01

    Given the documented disruptions that occur in spatial orientation during space flight and the putative sensory-motor information underlying eye and head spatial coding, the primary purpose of this paper is to examine components of the target acquisition system in subjects free to make head and eye movements in three dimensional space both during and following adaptation to long duration space flight. It is also our intention to suggest a simple model of adaptation that has components in common with cerebellar disorders whose neurobiological substrate has been identified.

  18. Human Space Flight Plans Committee Report

    NASA Image and Video Library

    2009-10-21

    NASA Public Affairs Officer Doc Mirelson, left, and Chairman of the U.S. Human Space Flight Plans Committee Norman Augustine, right, listen to reporters questions during a press conference where the committee released it's report on Thursday, Oct., 22, 2009 at the National Press Club in Washington. The Obama Administration tasked the committee to do an independent review of planned U.S. human space flight activities with the goal of ensuring that the nation is on a vigorous and sustainable path to achieving its boldest aspirations in space. Photo Credit: (NASA/Bill Ingalls)

  19. Inheritance of induction radiation sensitivity of space flight environments and γ-radiation on rice

    NASA Astrophysics Data System (ADS)

    Xu, J.; Wang, J.; Wei, L.; Li, Z.; Sun, Y.

    There are many factors affecting living things during space flight, such as microgravity, cosmic radiation, etc. A large number of plant mutants have been obtained after space flight on satellite in China in the last decade and some commercial crop varieties were released. However, little consideration has so far been given to the genetic mechanisms underlying sensitivity of plant seeds to space flight environments. To reveal the genetic mechanisms associated with induction radiation sensitivity (IRS), a set of 226 recombination inbred lines (RILs) derived from Lemont (japonica)/ Teqing (indica) F13, were analyzed using 164 well-distributed DNA markers and assayed for the traits related to IRS including rate of survival seedling (RSS), seedling height (SH), seed setting rate (SSR) and total physiological damage (TPD) in replicated trials after space flight on Chinese Shenzhou IV Spacecraft andγ -radiation treatment (35000 rad) on the ground in 2002. Seedling growth of Lemont was accelerated after space flight with the SH of 116.2% of ground control while growth suppression was happened for Teqing with the SH of 85.7% of ground control. γ -radiation treatment resulted in significant decrease in all tested traits for the two parents, indicating space flight and γ -radiation treatment had different biological effects on the two parents. Significant differences were detected among the RILs for their responses to space flight environments and γ -radiation, reflected as the difference in the four tested traits. Space flight resulted in stimulation on growth for 57.1% lines whileγ -radiation had suppression on growth for most lines. Seventeen putative main-effect QTLs was identified for the four traits related to IRS under space flight and γ -radiation, which totally explained significant portions of the total trait variation (4.4% for RSS, 27.2% for SH, 4% for SSR and 15.8% for TPD for space flight; 10.4% for RSS, 15.1% for SH, 8.2% for SSR and 6.1% for TPD for

  20. Vitamin D endocrine system after short-term space flight

    NASA Technical Reports Server (NTRS)

    Rhoten, William B. (Principal Investigator); Sergeev, Igor N. (Principal Investigator)

    1996-01-01

    The exposure of the body to microgravity during space flight causes a series of well-documented changes in Ca(2+) metabolism, yet the cellular/molecular mechanisms leading to these changes are poorly understood. There is some evidence for microgravity-induced alterations in the vitamin D endocrine system, which is known to be primarily involved in the regulation of Ca(2+) metabolism. Vitamin D-dependent Ca(2+) binding proteins, or calbindins, are believed to have a significant role in maintaining cellular Ca(2+) homeostasis. We used immunocytochemical, biochemical and molecular approaches to analyze the expression of calbindin-D(sub 28k) and calbindin-D(sub 9k) in kidneys and intestines of rats flown for 9 days aboard the Spacelab 3 mission. The effects of microgravity on calbindins in rats in space vs. 'grounded' animals (synchronous Animal Enclosure Module controls and tail suspension controls) were compared. Exposure to microgravity resulted in a significant decrease in calbindin-D(sub 28k) content in kidneys and calbindin-D(sub 9k) in the intestine of flight and suspended animals, as measured by enzyme-linked immunosorbent assay (ELISA). Immunocytochemistry (ICC) in combination with quantitative computer image analysis was used to measure in situ the expression of calbindins in kidneys and intestine, and insulin in pancreas. There was a large decrease in the distal tubular cell-associated calbindin-D(sub 28k) and absorptive cell-associated calbindin-D(sub 9k) immunoreactivity in the space and suspension kidneys and intestine, as compared with matched ground controls. No consistent differences in pancreatic insulin immunoreactivity between space, suspension and ground controls was observed. There were significant correlations between results by quantitative ICC and ELISA. Western blot analysis showed no consistent changes in the low levels of intestinal and renal vitamin D receptors. These findings suggest that a decreased expression of calbindins after a short

  1. The Texas space flight liability act and efficient regulation for the private commercial space flight era

    NASA Astrophysics Data System (ADS)

    Johnson, Christopher D.

    2013-12-01

    In the spring of 2011, the American state of Texas passed into law an act limiting the liability of commercial space flight entities. Under it, those companies would not be liable for space flight participant injuries, except in cases of intentional injury or injury proximately caused by the company's gross negligence. An analysis within the framework of international and national space law, but especially informed by the academic discipline of law and economics, discusses the incentives of all relevant parties and attempts to understand whether the law is economically "efficient" (allocating resources so as to yield maximum utility), and suited to further the development of the fledgling commercial suborbital tourism industry. Insights into the Texas law are applicable to other states hoping to foster commercial space tourism and considering space tourism related legislation.

  2. Effects of the space flight environment on the immune system

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald; Butel, Janet S.; Shearer, William T.

    2003-01-01

    Space flight conditions have a dramatic effect on a variety of physiologic functions of mammals, including muscle, bone, and neurovestibular function. Among the physiological functions that are affected when humans or animals are exposed to space flight conditions is the immune response. The focus of this review is on the function of the immune system in space flight conditions during actual space flights, as well as in models of space flight conditions on the earth. The experiments were carried out in tissue culture systems, in animal models, and in human subjects. The results indicate that space flight conditions alter cell-mediated immune responses, including lymphocyte proliferation and subset distribution, and cytokine production. The mechanism(s) of space flight-induced alterations in immune system function remain(s) to be established. It is likely, however, that multiple factors, including microgravity, stress, neuroendocrine factors, sleep disruption, and nutritional factors, are involved in altering certain functions of the immune system. Such alterations could lead to compromised defenses against infections and tumors.

  3. FOOT experiment (Foot/Ground Reaction Forces during Space Flight)

    NASA Image and Video Library

    2005-06-29

    ISS011-E-09831 (29 June 2005) --- Astronaut John L. Phillips, Expedition 11 NASA Space Station science officer and flight engineer, works at the Canadarm2 controls while participating in the Foot/Ground Reaction Forces During Spaceflight (FOOT) experiment in the Destiny laboratory of the International Space Station. Phillips wore the specially instrumented Lower Extremity Monitoring Suit (LEMS), cycling tights outfitted with sensors, during the experiment.

  4. Locomotor Dysfunction after Long-Duration Space Flight and Development of Countermeasures to Facilitate Faster Recovery

    NASA Technical Reports Server (NTRS)

    Mulavara, A. P.; Wood, S. J.; Cohen, H. S.; Bloomberg, J. J.

    2012-01-01

    Exposure to the microgravity conditions of space flight induces adaptive modification in sensorimotor function allowing astronauts to operate in this unique environment. This adaptive state, however, is inappropriate for a 1-g environment. Consequently astronauts must spend time readapting to Earth s gravity following their return to Earth. During this readaptation period, alterations in sensorimotor function cause various disturbances in astronaut gait during postflight walking. They often rely more on vision for postural and gait stability and many report the need for greater cognitive supervision of motor actions that previous to space flight were fully automated. Over the last several years our laboratory has investigated postflight astronaut locomotion with the aim of better understanding how adaptive changes in underlying sensorimotor mechanisms contribute to postflight gait dysfunction. Exposure to the microgravity conditions of space flight induces adaptive modification in the control of vestibularly-mediated reflexive head movement during locomotion after space flight. Furthermore, during motor learning, adaptive transitions are composed of two main mechanisms: strategic and plastic. Strategic mechanisms represent immediate and transitory modifications in control to deal with changes in the prevailing environment that, if prolonged, induce plastic mechanisms designed to automate new behavioral responses. The goal of the present study was to examine the contributions of sensorimotor subsystems such as the vestibular and body load sensing (BLS) somatosensory influences on head movement control during locomotion after long-duration space flight. Further we present data on the two motor learning processes during readaptation of locomotor function after long-duration space flight.

  5. International Space Station medical standards and certification for space flight participants.

    PubMed

    Bogomolov, Valery V; Castrucci, Filippo; Comtois, Jean-Marc; Damann, Volker; Davis, Jeffrey R; Duncan, J Michael; Johnston, Smith L; Gray, Gary W; Grigoriev, Anatoly I; Koike, Yu; Kuklinski, Paul; Matveyev, Vladimir P; Morgun, Valery V; Pochuev, Vladimir I; Sargsyan, Ashot E; Shimada, Kazuhito; Straube, Ulrich; Tachibana, Shoichi; Voronkov, Yuri V; Williams, Richard S

    2007-12-01

    The medical community of the International Space Station (ISS) has developed joint medical standards and evaluation requirements for Space Flight Participants ("space tourists") which are used by the ISS medical certification board to determine medical eligibility of individuals other than professional astronauts (cosmonauts) for short-duration space flight to the ISS. These individuals are generally fare-paying passengers without operational responsibilities. By means of this publication, the medical standards and evaluation requirements for the ISS Space Flight Participants are offered to the aerospace medicine and commercial spaceflight communities for reference purposes. It is emphasized that the criteria applied to the ISS spaceflight participant candidates are substantially less stringent than those for professional astronauts and/or crewmembers of visiting and long-duration missions to the ISS. These medical standards are released by the government space agencies to facilitate the development of robust medical screening and medical risk assessment approaches in the context of the evolving commercial human spaceflight industry.

  6. Integration Testing of Space Flight Systems

    NASA Technical Reports Server (NTRS)

    Sowards, Stephanie; Honeycutt, Timothy

    2008-01-01

    This paper discusses the benefits of conducting multi-system integration testing of space flight elements in lieu of merely shipping and shooting to the launch site and launching. "Ship and shoot" is a philosophy that proposes to transport flight elements directly from the factory to the launch site and begin the mission without further testing. Integration testing, relevant to validation testing in this context, is a risk mitigation effort that builds upon the individual element and system levels of qualification and acceptance tests, greatly improving the confidence of operations in space. The International Space Station Program (ISSP) experience is the focus of most discussions from a historical perspective, while proposed integration testing of the Constellation Program is also discussed. The latter will include Multi-Element Integration Testing (MElT) and Flight Element Integration Testing (FElT).

  7. Frozen human cells can record radiation damage accumulated during space flight: mutation induction and radioadaptation.

    PubMed

    Yatagai, Fumio; Honma, Masamitsu; Takahashi, Akihisa; Omori, Katsunori; Suzuki, Hiromi; Shimazu, Toru; Seki, Masaya; Hashizume, Toko; Ukai, Akiko; Sugasawa, Kaoru; Abe, Tomoko; Dohmae, Naoshi; Enomoto, Shuichi; Ohnishi, Takeo; Gordon, Alasdair; Ishioka, Noriaki

    2011-03-01

    To estimate the space-radiation effects separately from other space-environmental effects such as microgravity, frozen human lymphoblastoid TK6 cells were sent to the "Kibo" module of the International Space Station (ISS), preserved under frozen condition during the mission and finally recovered to Earth (after a total of 134 days flight, 72 mSv). Biological assays were performed on the cells recovered to Earth. We observed a tendency of increase (2.3-fold) in thymidine kinase deficient (TK(-)) mutations over the ground control. Loss of heterozygosity (LOH) analysis on the mutants also demonstrated a tendency of increase in proportion of the large deletion (beyond the TK locus) events, 6/41 in the in-flight samples and 1/17 in the ground control. Furthermore, in-flight samples exhibited 48% of the ground-control level in TK(-) mutation frequency upon exposure to a subsequent 2 Gy dose of X-rays, suggesting a tendency of radioadaptation when compared with the ground-control samples. The tendency of radioadaptation was also supported by the post-flight assays on DNA double-strand break repair: a 1.8- and 1.7-fold higher efficiency of in-flight samples compared to ground control via non-homologous end-joining and homologous recombination, respectively. These observations suggest that this system can be used as a biodosimeter, because DNA damage generated by space radiation is considered to be accumulated in the cells preserved frozen during the mission, Furthermore, this system is also suggested to be applicable for evaluating various cellular responses to low-dose space radiation, providing a better understanding of biological space-radiation effects as well as estimation of health influences of future space explores. © Springer-Verlag 2010

  8. 14 CFR 417.415 - Post-launch and post-flight-attempt hazard controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Post-launch and post-flight-attempt hazard controls. 417.415 Section 417.415 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... inadvertent liftoff. If an ignition signal has been sent to a solid rocket motor, the flight termination...

  9. 14 CFR 417.415 - Post-launch and post-flight-attempt hazard controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Post-launch and post-flight-attempt hazard controls. 417.415 Section 417.415 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... inadvertent liftoff. If an ignition signal has been sent to a solid rocket motor, the flight termination...

  10. Modeling Hubble Space Telescope flight data by Q-Markov cover identification

    NASA Technical Reports Server (NTRS)

    Liu, K.; Skelton, R. E.; Sharkey, J. P.

    1992-01-01

    A state space model for the Hubble Space Telescope under the influence of unknown disturbances in orbit is presented. This model was obtained from flight data by applying the Q-Markov covariance equivalent realization identification algorithm. This state space model guarantees the match of the first Q-Markov parameters and covariance parameters of the Hubble system. The flight data were partitioned into high- and low-frequency components for more efficient Q-Markov cover modeling, to reduce some computational difficulties of the Q-Markov cover algorithm. This identification revealed more than 20 lightly damped modes within the bandwidth of the attitude control system. Comparisons with the analytical (TREETOPS) model are also included.

  11. Technical Evaluation Report on the Flight Mechanics Panel Symposium on the Flight Mechanics Panel Symposium on Space Vehicle Flight Mechanics (La Mecanique du Vol des Vehicules Spatiaux)

    DTIC Science & Technology

    1990-11-01

    control and including final recovery for a wide range of space vehicles from tethered satellite systems and flexible space structures to the space plane...flight mechanics, members from the Fluid Dynamics Panel, the Guidance and Control Panel, the Propulsion and Energetics Panel and the Structures and... Structures and Materials which should be overcome for a successful realization of a human Space Transportation System in the 21st century. He

  12. Oxygen regimen in the human peripheral tissue during space flights

    NASA Astrophysics Data System (ADS)

    Haase, H.; Kovalenko, E. A.; Vacek, A.; Bobrovnickij, M. P.; Jarsumbeck, B.; Semencov, V. N.; Sarol, Z.; Hideg, J.; Zlatarev, K.

    A survey of the results of the experiment "Oxygen," carried out within the scope of the INTERKOSMOS program in members of the permanent crews and of international visiting expeditions to the Soviet orbital station Salyut-6, is given. During the 7-day space flights of the international visiting expeditions a significant decrease in pO 2 ic by 3.28 kPa was observed. Local oxygen utilization reduced significantly by 0.44 kPa. During hyperventilation testing after return to earth a statistically significant decrease in the peak value by 1.39 kPa was noted. In the long-term crews of the orbital station Salyut-6 the highest decrease in pO 2 ic of 3.8 kPa and the absolutely lowest value of 3.4 ± 0.5 kPa during space flight were observed. The decrease in local oxygen utilization during the flight of 0.8 kPa/min was greater than that of the visiting crews. The results indicate the importance of investigating the dynamics of the oxygen regimen for medical control of the crew members both during the space flight and during the readaptation phase after return to earth.

  13. Human-Rated Space Vehicle Backup Flight Systems

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey A.; Busa, Joseph L.

    2004-01-01

    Human rated space vehicles have historically employed a Backup Flight System (BFS) for the main purpose of mitigating the loss of the primary avionics control system. Throughout these projects, however, the underlying philosophy and technical implementation vary greatly. This paper attempts to coalesce each of the past space vehicle program's BFS design and implementation methodologies with the accompanying underlining philosophical arguments that drove each program to such decisions. The focus will be aimed at Mercury, Gemini, Apollo, and Space Shuttle However, the ideologies and implementation of several commercial and military aircraft are incorporated as well to complete the full breadth view of BFS development across the varying industries. In particular to the non-space based vehicles is the notion of deciding not to utilize a BFS. A diverse analysis of BFS to primary system benefits in terms of reliability against all aspects of project development are reviewed and traded. The risk of engaging the BFS during critical stages of flight (e.g. ascent and entry), the level of capability of the BFS (subset capability of main system vs. equivalent system), and the notion of dissimilar hardware and software design are all discussed. Finally, considerations for employing a BFS on future human-rated space missions are reviewed in light of modern avionics architectures and mission scenarios implicit in exploration beyond low Earth orbit.

  14. Space Flight Resource Management for ISS Operations

    NASA Technical Reports Server (NTRS)

    Schmidt, Lacey L.; Slack, Kelley; Holland, Albert; Huning, Therese; O'Keefe, William; Sipes, Walter E.

    2010-01-01

    Although the astronaut training flow for the International Space Station (ISS) spans 2 years, each astronaut or cosmonaut often spends most of their training alone. Rarely is it operationally feasible for all six ISS crewmembers to train together, even more unlikely that crewmembers can practice living together before launch. Likewise, ISS Flight Controller training spans 18 months of learning to manage incredibly complex systems remotely in plug-and-play ground teams that have little to no exposure to crewmembers before a mission. How then do all of these people quickly become a team - a team that must respond flexibly yet decisively to a variety of situations? The answer implemented at NASA is Space Flight Resource Management (SFRM), the so-called "soft skills" or team performance skills. Based on Crew Resource Management, SFRM was developed first for shuttle astronauts and focused on managing human errors during time-critical events (Rogers, et al. 2002). Given the nature of life on ISS, the scope of SFRM for ISS broadened to include teamwork during prolonged and routine operations (O'Keefe, 2008). The ISS SFRM model resembles a star with one competency for each point: Communication, Cross-Culture, Teamwork, Decision Making, Team Care, Leadership/Followership, Conflict Management, and Situation Awareness. These eight competencies were developed with international participation by the Human Behavior and Performance Training Working Group. Over the last two years, these competencies have been used to build a multi-modal SFRM training flow for astronaut candidates and flight controllers that integrates team performance skills into the practice of technical skills. Preliminary results show trainee skill increases as the flow progresses; and participants find the training invaluable to performing well and staying healthy during ISS operations. Future development of SFRM training will aim to help support indirect handovers as ISS operations evolve further with the

  15. Assessment of Nutritional Intake During Space Flight and Space Flight Analogs

    NASA Technical Reports Server (NTRS)

    Rice, Barbara L.; Dlouhy, Holly; Zwart, Sara R.; Smith, Scott M.

    2011-01-01

    Background: Maintaining adequate nutrient intake in microgravity is important not only to meet health maintenance needs of astronauts but also to help counteract the negative effects of space flight. Beyond this, food provides psychosocial benefits throughout a mission. Objective: The purpose of this presentation is to discuss dietary intake data from multiple space programs, including Space Shuttle and the International Space Station. Description: These data arise from medical monitoring of both dietary intake and crew health, as well as research protocols designed to assess the role of diet in counteracting bone loss and other health concerns. Ground-based studies are conducted to better understand some of the negative issues related to space flight. Examples of these analog studies are extended bed rest studies, vitamin D supplementation studies in Antarctica, and saturation diving missions on the floor of the ocean. Methods and findings will be presented describing the use of weighed records, diet diaries, and food frequency questionnaires in these various environments. Provision of food and nutrients in spaceflight is important for many body systems including cardiovascular, musculoskeletal, endocrine, immune, and others. Some key areas of concern are loss of body mass, bone and muscle loss, radiation exposure, nutrient intakes during spacewalks, depletion of nutrient stores, and inadequate dietary intake. Initial experimental research studies using food and nutrition as a countermeasure to aid in mitigating these concerns are underway. Conclusion: Beyond their importance for the few individuals leaving the planet, these studies have significant implications for those remaining on Earth.

  16. Pancreas of C57 black mice after long-term space flight (Bion-M1 Space Mission).

    PubMed

    Proshchina, A E; Krivova, Y S; Saveliev, S C

    2015-11-01

    In this study, we analysed the pancreases of C57BL/6N mice in order to estimate the effects of long-term space flights. Mice were flown aboard the Bion-M1 biosatellite, or remained on ground in the control experiment that replicated environmental and housing conditions in the spacecraft. Vivarium control group was used to account for housing effects. Each of the groups included mice designated for recovery studies. Mice pancreases were dissected for histological and immunohistochemical examinations. Using a morphometry and statistical analysis, a strong correlation between the mean islet size and the mean body weight was revealed in all groups. Therefore, we propose that hypokinesia and an increase in nutrition play an important role in alterations of the endocrine pancreas, both in space flight and terrestrial conditions. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  17. Morphology of human embryonic kidney cells in culture after space flight

    NASA Technical Reports Server (NTRS)

    Todd, P.; Kunze, M. E.; Williams, K.; Morrison, D. R.; Lewis, M. L.; Barlow, G. H.

    1985-01-01

    The ability of human embyronic kidney cells to differentiate into small epithelioid, large epithelioid, domed, and fenestrated morphological cell types following space flight is examined. Kidney cells exposed to 1 day at 1 g, then 1 day in orbit, and a 12 minute passage through the electrophoretic separator are compared with control cultures. The data reveal that 70 percent of small epithelioid, 16 percent of large epithelioid, 9 percent of dome-forming, and 5 percent of fenestrated cells formed in the space exposed cells; the distributions correlate well with control data. The formation of domed cells from cells cultured from low electrophoretic mobility fractions and small epithelioid cells from high mobility fractions is unaffected by space flight conditions. It is concluded that storage under microgravity conditions does not influence the morphological differentiation of human embryonic kidney cells in low-passage culture.

  18. Cardiovascular response to lower body negative pressure stimulation before, during, and after space flight

    NASA Technical Reports Server (NTRS)

    Baisch, F.; Beck, L.; Blomqvist, G.; Wolfram, G.; Drescher, J.; Rome, J. L.; Drummer, C.

    2000-01-01

    BACKGROUND: It is well known that space travel cause post-flight orthostatic hypotension and it was assumed that autonomic cardiovascular control deteriorates in space. Lower body negative pressure (LBNP) was used to assess autonomic function of the cardiovascular system. METHODS: LBNP tests were performed on six crew-members before and on the first days post-flight in a series of three space missions. Additionally, two of the subjects performed LBNP tests in-flight. LBNP mimics fluid distribution of upright posture in a gravity independent way. It causes an artificial sequestration of blood, reduces preload, and filtrates plasma into the lower part of the body. Fluid distribution was assessed by bioelectrical impedance and anthropometric measurements. RESULTS: Heart rate, blood pressure, and total peripheral resistance increased significantly during LBNP experiments in-flight. The decrease in stroke volume, the increased pooling of blood, and the increased filtration of plasma into the lower limbs during LBNP indicated that a plasma volume reduction and a deficit of the interstitial volume of lower limbs rather than a change in cardiovascular control was responsible for the in-flight response. Post-flight LBNP showed no signs of cardiovascular deterioration. The still more pronounced haemodynamic changes during LBNP reflected the expected behaviour of cardiovascular control faced with less intravascular volume. In-flight, the status of an intra-and extravascular fluid deficit increases sympathetic activity, the release of vasoactive substances and consequently blood pressure. Post-flight, blood pressure decreases significantly below pre-flight values after restoration of volume deficits. CONCLUSION: We conclude that the cardiovascular changes in-flight are a consequence of a fluid deficit rather than a consequence of changes in autonomic signal processing.

  19. Adaptive Augmenting Control Flight Characterization Experiment on an F/A-18

    NASA Technical Reports Server (NTRS)

    VanZwieten, Tannen S.; Gilligan, Eric T.; Wall, John H.; Orr, Jeb S.; Miller, Christopher J.; Hanson, Curtis E.

    2014-01-01

    The NASA Marshall Space Flight Center (MSFC) Flight Mechanics and Analysis Division developed an Adaptive Augmenting Control (AAC) algorithm for launch vehicles that improves robustness and performance by adapting an otherwise welltuned classical control algorithm to unexpected environments or variations in vehicle dynamics. This AAC algorithm is currently part of the baseline design for the SLS Flight Control System (FCS), but prior to this series of research flights it was the only component of the autopilot design that had not been flight tested. The Space Launch System (SLS) flight software prototype, including the adaptive component, was recently tested on a piloted aircraft at Dryden Flight Research Center (DFRC) which has the capability to achieve a high level of dynamic similarity to a launch vehicle. Scenarios for the flight test campaign were designed specifically to evaluate the AAC algorithm to ensure that it is able to achieve the expected performance improvements with no adverse impacts in nominal or nearnominal scenarios. Having completed the recent series of flight characterization experiments on DFRC's F/A-18, the AAC algorithm's capability, robustness, and reproducibility, have been successfully demonstrated. Thus, the entire SLS control architecture has been successfully flight tested in a relevant environment. This has increased NASA's confidence that the autopilot design is ready to fly on the SLS Block I vehicle and will exceed the performance of previous architectures.

  20. Locomotor function after long-duration space flight: effects and motor learning during recovery.

    PubMed

    Mulavara, Ajitkumar P; Feiveson, Alan H; Fiedler, James; Cohen, Helen; Peters, Brian T; Miller, Chris; Brady, Rachel; Bloomberg, Jacob J

    2010-05-01

    Astronauts returning from space flight and performing Earth-bound activities must rapidly transition from the microgravity-adapted sensorimotor state to that of Earth's gravity. The goal of the current study was to assess locomotor dysfunction and recovery of function after long-duration space flight using a test of functional mobility. Eighteen International Space Station crewmembers experiencing an average flight duration of 185 days performed the functional mobility test (FMT) pre-flight and post-flight. To perform the FMT, subjects walked at a self selected pace through an obstacle course consisting of several pylons and obstacles set up on a base of 10-cm-thick, medium-density foam for a total of six trials per test session. The primary outcome measure was the time to complete the course (TCC, in seconds). To assess the long-term recovery trend of locomotor function after return from space flight, a multilevel exponential recovery model was fitted to the log-transformed TCC data. All crewmembers exhibited altered locomotor function after space flight, with a median 48% increase in the TCC. From the fitted model we calculated that a typical subject would recover to 95% of his/her pre-flight level at approximately 15 days post-flight. In addition, to assess the early motor learning responses after returning from space flight, we modeled performance over the six trials during the first post-flight session by a similar multilevel exponential relation. We found a significant positive correlation between measures of long-term recovery and early motor learning (P < 0.001) obtained from the respective models. We concluded that two types of recovery processes influence an astronaut's ability to re-adapt to Earth's gravity environment. Early motor learning helps astronauts make rapid modifications in their motor control strategies during the first hours after landing. Further, this early motor learning appears to reinforce the adaptive realignment, facilitating re

  1. History of nutrition in space flight: overview

    NASA Technical Reports Server (NTRS)

    Lane, Helen W.; Feeback, Daniel L.

    2002-01-01

    Major accomplishments in nutritional sciences for support of human space travel have occurred over the past 40 y. This article reviews these accomplishments, beginning with the early Gemini program and continuing through the impressive results from the first space station Skylab program that focused on life sciences research, the Russian contributions through the Mir space station, the US Shuttle life sciences research, and the emerging International Space Station missions. Nutrition is affected by environmental conditions such as radiation, temperature, and atmospheric pressures, and these are reviewed. Nutrition with respect to space flight is closely interconnected with other life sciences research disciplines including the study of hematology, immunology, as well as neurosensory, cardiovascular, gastrointestinal, circadian rhythms, and musculoskeletal physiology. These relationships are reviewed in reference to the overall history of nutritional science in human space flight. Cumulative nutritional research over the past four decades has resulted in the current nutritional requirements for astronauts. Space-flight nutritional recommendations are presented along with the critical path road map that outlines the research needed for future development of nutritional requirements.

  2. History of nutrition in space flight: overview.

    PubMed

    Lane, Helen W; Feeback, Daniel L

    2002-10-01

    Major accomplishments in nutritional sciences for support of human space travel have occurred over the past 40 y. This article reviews these accomplishments, beginning with the early Gemini program and continuing through the impressive results from the first space station Skylab program that focused on life sciences research, the Russian contributions through the Mir space station, the US Shuttle life sciences research, and the emerging International Space Station missions. Nutrition is affected by environmental conditions such as radiation, temperature, and atmospheric pressures, and these are reviewed. Nutrition with respect to space flight is closely interconnected with other life sciences research disciplines including the study of hematology, immunology, as well as neurosensory, cardiovascular, gastrointestinal, circadian rhythms, and musculoskeletal physiology. These relationships are reviewed in reference to the overall history of nutritional science in human space flight. Cumulative nutritional research over the past four decades has resulted in the current nutritional requirements for astronauts. Space-flight nutritional recommendations are presented along with the critical path road map that outlines the research needed for future development of nutritional requirements.

  3. Modeling Calcium Loss from Bones During Space Flight

    NASA Technical Reports Server (NTRS)

    Wastney, Meryl E.; Morukov, Boris V.; Larina, Irina M.; Abrams, Steven A.; Nillen, Jeannie L.; Davis-Street, Janis E.; Lane, Helen W.; Smith, Scott M.; Paloski, W. H. (Technical Monitor)

    1999-01-01

    Calcium loss from bones during space flight creates a risk for astronauts who travel into space, and may prohibit space flights to other planets. The problem of calcium loss during space flight has been studied using animal models, bed rest (as a ground-based model), and humans in-flight. In-flight studies have typically documented bone loss by comparing bone mass before and after flight. To identify changes in metabolism leading to bone loss, we have performed kinetic studies using stable isotopes of calcium. Oral (Ca-43) and intravenous (Ca-46) tracers were administered to subjects (n=3), three-times before flight, once in-flight (after 110 days), and three times post-flight (on landing day, and 9 days and 3 months after flight). Samples of blood, saliva, urine, and feces were collected for up to 5 days after isotope administration, and were analyzed for tracer enrichment. Tracer data in tissues were analyzed using a compartmental model for calcium metabolism and the WinSAAM software. The model was used to: account for carryover of tracer between studies, fit data for all studies using the minimal number of changes between studies, and calculate calcium absorption, excretion, bone calcium deposition and bone calcium resorption. Results showed that fractional absorption decreased by 50% during flight and that bone resorption and urinary excretion increased by 50%. Results were supported by changes in biochemical markers of bone metabolism. Inflight bone loss of approximately 250 mg Ca/d resulted from decreased calcium absorption combined with increased bone resorption and excretion. Further studies will assess the time course of these changes during flight, and the effectiveness of countermeasures to mitigate flight-induced bone loss. The overall goal is to enable human travel beyond low-Earth orbit, and to allow for better understanding and treatment of bone diseases on Earth.

  4. Antimicrobial Medication Stability During Space Flight

    NASA Technical Reports Server (NTRS)

    Putcha, Lakshmi; Berens, Kurt; Du, Jianping

    2004-01-01

    The current vision for manned space flight involves lunar and Martian exploration within the next two decades. In order for NASA to achieve these goals, a significant amount of preparation is necessary to assure crew health and safety. A mission critical component of this vision centers around the stability of pharmaceutical preparations contained in the space medicine kits. Evidence suggests that even brief periods of space flight have significant detrimental effects for some pharmaceutical formulations. The effects observed include decreases in physical stability of drug formulations of sufficient magnitude to effect bioavailability. Other formulations exhibit decreases in chemical stability resulting in a loss of potency. Physical or-chemical instability of pharmaceutical formulations i n space medicine kits could render the products ineffective. Of additional concern is the potential for formation of toxic degradation products as a result of the observed product instability. This proposal addresses Question number 11 of Clinical Capabilities in the Critical Path Roadmap. In addition, this proposal will reduce the risks and/or enhance the capabilities of humans exposed to the environments of space flight or an extraterrestrial destination by identifying drugs that may be unstable during spaceflight.

  5. Space physiology II: adaptation of the central nervous system to space flight--past, current, and future studies.

    PubMed

    Clément, Gilles; Ngo-Anh, Jennifer Thu

    2013-07-01

    Experiments performed in orbit on the central nervous system have focused on the control of posture, eye movements, spatial orientation, as well as cognitive processes, such as three-dimensional visual perception and mental representation of space. Brain activity has also been recorded during and immediately after space flight for evaluating the changes in brain structure activation during tasks involving perception, attention, memory, decision, and action. Recent ground-based studies brought evidence that the inputs from the neurovestibular system also participate in orthostatic intolerance. It is, therefore, important to revisit the flight data of neuroscience studies in the light of new models of integrative physiology. The outcomes of this exercise will increase our knowledge on the adaptation of body functions to changing gravitational environment, vestibular disorders, aging, and our approach towards more effective countermeasures during human space flight and planetary exploration.

  6. Brown, Rominger and Curbeam conduct flight control systems checkout

    NASA Image and Video Library

    1997-08-29

    STS085-330-034 (7 - 19 August 1997) --- From the left, astronauts Curtis L. Brown, Jr., mission commander; Robert L. Curbeam, Jr., mission specialist; and Kent V. Rominger, pilot, are pictured on the Space Shuttle Discovery's flight deck during a checkout of flight control systems.

  7. Effect of space flight on cytokine production and other immunologic parameters of rhesus monkeys

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, G.; Davis, S.; Taylor, G. R.; Mandel, A. D.; Konstantinova, I. V.; Lesnyak, A.; Fuchs, B. B.; Peres, C.; Tkackzuk, J.; Schmitt, D. A.

    1996-01-01

    During a recent flight of a Russian satellite (Cosmos #2229), initial experiments examining the effects of space flight on immunologic responses of rhesus monkeys were performed to gain insight into the effect of space flight on resistance to infection. Experiments were performed on tissue samples taken from the monkeys before and immediately after flight. Additional samples were obtained approximately 1 month after flight for a postflight restraint study. Two types of experiments were carried out throughout this study. The first experiment determined the ability of leukocytes to produce interleukin-1 and to express interleukin-2 receptors. The second experiment examined the responsiveness of rhesus bone marrow cells to recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF). Human reagents that cross-reacted with monkey tissue were utilized for the bulk of the studies. Results from both studies indicated that there were changes in immunologic function attributable to space flight. Interleukin-1 production and the expression of interleukin-2 receptors was decreased after space flight. Bone marrow cells from flight monkeys showed a significant decrease in their response to GM-CSF compared with the response of bone marrow cells from nonflight control monkeys. These results suggest that the rhesus monkey may be a useful surrogate for humans in future studies that examine the effect of space flight on immune response, particularly when conditions do not readily permit human study.

  8. Attitudes towards personal and shared space during the flight.

    PubMed

    Ahmadpour, N; Kühne, M; Robert, J-M; Vink, P

    2016-07-25

    Aircraft passenger comfort experience was previously defined based on its underlying thematic components representing passengers' perception of the environmental elements and their link to their concerns. This paper aims to 1) identify aircraft passengers' attitudes towards their personal and shared space in the cabin environment during the flight which are linked to their comfort experience and 2) highlight passenger concerns associated with those attitudes. A sample involving 16 participants was conducted, collecting full accounts of their real-time flight experiences onboard commercial aircrafts, using questionnaires. Four types of attitudes were identified in reaction to participants' personal and shared space during the flight. Those were described as adjust, avoid, approach, and shield. Passengers' concerns associated with those attitudes were respectively: control, privacy, connectedness and tolerance. It is concluded that passenger comfort can be improved once the identified concerns and attitudes are addressed in the design of the aircraft seat and interior. Design recommendations are provided accordingly.

  9. Inhibited interferon production after space flight

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, G.; Gould, C. L.; Williams, J.; Mandel, A. D.

    1988-01-01

    Several studies have been performed in our laboratories indicating that interferon production may be impaired in rodents after space flight. Using an antiorthostatic suspension model that simulates some of the effects of microgravity seen during space flight, we have shown that interferon-alpha/beta production was inhibited. The inhibition was not due solely to the stress of suspension. The inhibited interferon production was transient, as suspended animals returned to normal caging recovered the ability to produce interferon. Antiorthostatic suspension of mice also resulted in a loss of resistance to infection with the diabetogenic strain of encephalomyocarditis virus, which correlated with the drop in interferon production. In rats flown in US Space Shuttle mission SL-3, interferon-gamma production was inhibited severely when spleen cells were challenged with concanavalin-A upon return to earth. In contrast, interleukin-3 production by these cells was normal. These results suggest that immune responses may be altered after antiorthostatic modeling or space flight, and the resistance to viral infections may be especially affected.

  10. Space flight hazards catalog

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The most significant hazards identified on manned space flight programs are listed. This summary is of special value to system safety engineers in developing safety checklists and otherwise tailoring safety tasks to specific systems and subsystems.

  11. 2016 Year in Review Video- NASA’s Marshall Space Flight Center

    NASA Image and Video Library

    2016-12-22

    The work underway today at NASA’s Marshall Space Flight Center is making it possible to send humans beyond Earth’s orbit and into deep space on bold new missions of space exploration. Marshall teams are designing and building NASA’s Space Launch System, the most powerful rocket ever built and the only launch vehicle capable of launching human explorers to Mars. Using the International Space Station’s orbiting lab, Marshall flight controllers provided round-the-clock oversight of science experiments, supporting the first-ever DNA sequencing in space, pioneering 3-D printing capabilities and advancing human health research. Several successful New Frontiers deep-space robotic missions including OSIRIS-REx, New Horizons and Juno, made new discoveries and refined theories of the solar system. And Marshall collaborations with outside partners are yielding innovative technologies and solving technical challenges that are making the Journey to Mars a reality.

  12. Acquisition of a Biomedical Database of Acute Responses to Space Flight during Commercial Personal Suborbital Flights

    NASA Technical Reports Server (NTRS)

    Charles, John B.; Richard, Elizabeth E.

    2010-01-01

    There is currently too little reproducible data for a scientifically valid understanding of the initial responses of a diverse human population to weightlessness and other space flight factors. Astronauts on orbital space flights to date have been extremely healthy and fit, unlike the general human population. Data collection opportunities during the earliest phases of space flights to date, when the most dynamic responses may occur in response to abrupt transitions in acceleration loads, have been limited by operational restrictions on our ability to encumber the astronauts with even minimal monitoring instrumentation. The era of commercial personal suborbital space flights promises the availability of a large (perhaps hundreds per year), diverse population of potential participants with a vested interest in their own responses to space flight factors, and a number of flight providers interested in documenting and demonstrating the attractiveness and safety of the experience they are offering. Voluntary participation by even a fraction of the flying population in a uniform set of unobtrusive biomedical data collections would provide a database enabling statistical analyses of a variety of acute responses to a standardized space flight environment. This will benefit both the space life sciences discipline and the general state of human knowledge.

  13. [Energy reactions in the skeletal muscles of rats after short-term space flight on Kosmos-1514].

    PubMed

    Mailian, E S; Chabdarova, R N; Korzun, E I

    1988-01-01

    Ten hours after the 5-day space flight on Cosmos-1514 rats were examined for oxidative phosphorylation in mitochondria isolated from the posterior femoral muscles as well as for Krebs cycle enzymes and glycolysis in the mitochondrial and cytoplasmic fractions of the muscles. The mitochondrial respiration rate in various metabolic states was similar in flight rats and vivarium controls. After flight calculated parameters of energy efficacy of respiration as well as activity of malate dehydrogenase, isocitrate dehydrogenase and total lactate dehydrogenase remained unchanged. Unlike the flight rats, the synchronous controls showed signs of the stress-reaction: uncoupling of oxidative phosphorylation and oxalacetate inhibition of succinate dehydrogenase. Comparison of these findings with those from prolonged space flights indicates that inhibition of oxidative metabolism and glycolysis in mixed muscles which was demonstrated in the 20-day space flight does not develop immediately after launch but occurs within the time interval between mission days 6 and 18.

  14. Flight mechanics applications for tethers in space: Cooperative Italian-US programs

    NASA Technical Reports Server (NTRS)

    Bevilacqua, Franco; Merlina, Pietro; Anderson, John L.

    1990-01-01

    Since the 1974 proposal by Giuseppe Colombo to fly a tethered subsatellite from the Shuttle Orbiter, the creative thinking of many scientists and engineers from Italy and U.S. has generated a broad range of potential tether applications in space. Many of these applications have promise for enabling innovative research and operational activities relating to flight mechanics in earth orbit and at suborbital altitudes. From a flight mechanics standpoint the most interesting of the currently proposed flight demonstrations are: the second Tethered Satellite System experiment which offers both the potential for aerothermodynamics and hypersonics research and for atmospheric science research; the Tethered Initiated Space Recovery System which would enable orbital deboost and recovery of a re-entry vehicle and waste removal from a space station; and the Tether Elevator/Crawler System which would provide a variable microgravity environment and space station center of mass management. The outer atmospheric and orbital flight mechanics characteristics of these proposed tether flight demonstrations are described. The second Tethered Satellite System mission will deploy the tethered satellite earthward and will bring it as low as 130 km from ground and thus into the transition region between the atmosphere (non-ionized) and the partially ionized ionosphere. The atmospheric flight mechanics of the tethered satellite is discussed and simulation results are presented. The Tether Initiated Space Recovery System experiment will demonstrate the ability of a simple tether system to deboost and recover a reentry vehicle. The main feature of this demonstration is the utilization of a Small Expendable Deployment System (SEDS) and the low-tension deployment assumed to separate the reentry vehicle from the Shuttle. This low-tension deployment maneuver is discussed and its criticalities are outlined. The Tether Elevator/Crawler System is a new space element able to move in a controlled way

  15. Space Crew Members' Microbial Flora in Space Flight and Prospective Approaches for Its Ecological Control

    NASA Technical Reports Server (NTRS)

    Iilyin, V. K.; Kornyushenkova, I. N.; Lizko, N. N.

    1996-01-01

    An analysis of the astronauts' microflora, the changes that occur during spaceflight and the control of microflora using drugs, is reported. A decrease in the quantity of lactibacilli in the mouth and throat cavities was observed during flight. The data showed that the susceptibility of the microflora to antibiotics increased during flight.

  16. In-Flight Suppression of a De-Stabilized F/A-18 Structural Mode Using the Space Launch System Adaptive Augmenting Control System

    NASA Technical Reports Server (NTRS)

    Wall, John; VanZwieten, Tannen; Giiligan Eric; Miller, Chris; Hanson, Curtis; Orr, Jeb

    2015-01-01

    Adaptive Augmenting Control (AAC) has been developed for NASA's Space Launch System (SLS) family of launch vehicles and implemented as a baseline part of its flight control system (FCS). To raise the technical readiness level of the SLS AAC algorithm, the Launch Vehicle Adaptive Control (LVAC) flight test program was conducted in which the SLS FCS prototype software was employed to control the pitch axis of Dryden's specially outfitted F/A-18, the Full Scale Advanced Systems Test Bed (FAST). This presentation focuses on a set of special test cases which demonstrate the successful mitigation of the unstable coupling of an F/A-18 airframe structural mode with the SLS FCS.

  17. Human Factors in Training - Space Flight Resource Management Training

    NASA Technical Reports Server (NTRS)

    Bryne, Vicky; Connell, Erin; Barshi, Immanuel; Arsintescu, L.

    2009-01-01

    Accidents and incidents show that high workload-induced stress and poor teamwork skills lead to performance decrements and errors. Research on teamwork shows that effective teams are able to adapt to stressful situations, and to reduce workload by using successful strategies for communication and decision making, and through dynamic redistribution of tasks among team members. Furthermore, superior teams are able to recognize signs and symptoms of workload-induced stress early, and to adapt their coordination and communication strategies to the high workload, or stress conditions. Mission Control Center (MCC) teams often face demanding situations in which they must operate as an effective team to solve problems with crew and vehicle during onorbit operations. To be successful as a team, flight controllers (FCers) must learn effective teamwork strategies. Such strategies are the focus of Space Flight Resource Management (SFRM) training. SFRM training in MOD has been structured to include some classroom presentations of basic concepts and case studies, with the assumption that skill development happens in mission simulation. Integrated mission simulations do provide excellent opportunities for FCers to practice teamwork, but also require extensive technical knowledge of vehicle systems, mission operations, and crew actions. Such technical knowledge requires lengthy training. When SFRM training is relegated to integrated simulations, FCers can only practice SFRM after they have already mastered the technical knowledge necessary for these simulations. Given the centrality of teamwork to the success of MCC, holding SFRM training till late in the flow is inefficient. But to be able to train SFRM earlier in the flow, the training cannot rely on extensive mission-specific technical knowledge. Hence, the need for a generic SFRM training framework that would allow FCers to develop basic teamwork skills which are mission relevant, but without the required mission knowledge

  18. Space flight affects magnocellular supraoptic neurons of young prepuberal rats: transient and permanent effects

    NASA Technical Reports Server (NTRS)

    Garcia-Ovejero, D.; Trejo, J. L.; Ciriza, I.; Walton, K. D.; Garcia-Segura, L. M.

    2001-01-01

    Effects of microgravity on postural control and volume of extracellular fluids as well as stress associated with space flight may affect the function of hypothalamic neurosecretory neurons. Since environmental modifications in young animals may result in permanent alterations in neuroendocrine function, the present study was designed to determine the effect of a space flight on oxytocinergic and vasopressinergic magnocellular hypothalamic neurons of prepuberal rats. Fifteen-day-old Sprague-Dawley female rats were flown aboard the Space Shuttle Columbia (STS-90, Neurolab mission, experiment 150) for 16 days. Age-matched litters remained on the ground in cages similar to those of the flight animals. Six animals from each group were killed on the day of landing and eight animals from each group were maintained under standard vivarium conditions and killed 18 weeks after landing. Several signs of enhanced transcriptional and biosynthetic activity were observed in magnocellular supraoptic neurons of flight animals on the day of landing compared to control animals. These include increased c-Fos expression, larger nucleoli and cytoplasm, and higher volume occupied in the neuronal perikaryon by mitochondriae, endoplasmic reticulum, Golgi apparatus, lysosomes and cytoplasmic inclusions known as nematosomes. In contrast, the volume occupied by neurosecretory vesicles in the supraoptic neuronal perikarya was significantly decreased in flight rats. This decrease was associated with a significant decrease in oxytocin and vasopressin immunoreactive levels, suggestive of an increased hormonal release. Vasopressin levels, cytoplasmic volume and c-Fos expression returned to control levels by 18 weeks after landing. These reversible effects were probably associated to osmotic stimuli resulting from modifications in the volume and distribution of extracellular fluids and plasma during flight and landing. However, oxytocin levels were still reduced at 18 weeks after landing in flight

  19. Development and testing of a mouse simulated space flight model

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, G.

    1985-01-01

    The development and testing of a mouse model for simulating some aspects of weightlessness that occur during space flight, and the carrying out of immunological flight experiments on animals was discussed. The mouse model is an antiorthostatic, hypokinetic, hypodynamic suspension model similar to the one used with rats. It is shown that this murine model yield similar results to the rat model of antiorthostatic suspension for simulating some aspects of weightlessness. It is also shown that mice suspended in this model have decreased interferon-alpha/beta production as compared to control, nonsuspended mice or to orthostatically suspended mice. It is suggested that the conditions occuring during space flight could possibly affect interferon production. The regulatory role of interferon in nonviral diseases is demonstrated including several bacterial and protozoan infections indicating the great significance of interferon in resistance to many types of infectious diseases.

  20. Current concepts of space flight induced changes in hormonal control of fluid and electrolyte metabolism

    NASA Technical Reports Server (NTRS)

    Leach, C. S.; Johnson, P. C.; Suki, W. N.

    1983-01-01

    A systematic analysis of body fluid and renal dynamics during simulated space flight (head-down bedrest) was undertaken to increase understanding of the physiologic effects of acute cephalad fluid shifts. The earliest effects were increases in central venous pressure and decreases in plasma aldosterone, epinephrine and norepinephrine and glomerular filtration rate, 2 h after the beginning of bedrest. Decreases in plasma angiotensin I at 6 h may have resulted from the increased effective pressure and decreased sympathetic activity seen earlier in bedrest. The early decrease in aldosterone and ADH is thought to contribute to an increase, by 6 h, in urinary excretion of salt and water. Fluid and electrolyte losses occur during space flight, and analysis of body fluids from Space Shuttle crewmembers has indicated that conservation of these substances is begun almost immediately upon cessation of weightlessness. Operational medicine measures to counteract dehydration and electrolyte loss resulted in a less extreme physiologic response to the flight.

  1. CCSDS telemetry systems experience at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Carper, Richard D.; Stallings, William H., III

    1990-01-01

    NASA Goddard Space Flight Center (GSFC) designs, builds, manages, and operates science and applications spacecraft in near-earth orbit, and provides data capture, data processing, and flight control services for these spacecraft. In addition, GSFC has the responsibility of providing space-ground and ground-ground communications for near-earth orbiting spacecraft, including those of the manned spaceflight programs. The goal of reducing both the developmental and operating costs of the end-to-end information system has led the GSFC to support and participate in the standardization activities of the Consultative Committee for Space Data Systems (CCSDS), including those for packet telemetry. The environment in which such systems function is described, and the GSFC experience with CCSDS packet telemetry in the context of the Gamma-Ray Observatory project is discussed.

  2. Excretion of amino acids by humans during space flight

    NASA Technical Reports Server (NTRS)

    Stein, T. P.; Schluter, M. D.

    1998-01-01

    We measured the urine amino acid distribution patterns before, during and after space flight on the Space Shuttle. The urine samples were collected on two separate flights of the space shuttle. The first flight lasted 9.5 days and the second flight 15 days. Urine was collected continuously on 8 subjects for the period beginning 10 d before launch to 6 d after landing. Results: In contrast to the earlier Skylab missions where a pronounced amino aciduria was found, on shuttle the urinary amino acids showed little change with spaceflight except for a marked decrease in all of the amino acids on FD (flight day) 1 (p<0.05) and a reduction in isoleucine and valine on FD3 and FD4 (p<0.05). Conclusions: (i) Amino aciduria is not an inevitable consequence of space flight. (ii) The occurrence of amino aciduria, like muscle protein breakdown is a mission specific effect rather than part of the general human response to microgravity.

  3. Pancreas of C57 black mice after long-term space flight (Bion-M1 Space Mission)

    NASA Astrophysics Data System (ADS)

    Proshchina, A. E.; Krivova, Y. S.; Saveliev, S. C.

    2015-11-01

    In this study, we analysed the pancreases of C57BL/6N mice in order to estimate the effects of long-term space flights. Mice were flown aboard the Bion-M1 biosatellite, or remained on ground in the control experiment that replicated environmental and housing conditions in the spacecraft. Vivarium control group was used to account for housing effects. Each of the groups included mice designated for recovery studies. Mice pancreases were dissected for histological and immunohistochemical examinations. Using a morphometry and statistical analysis, a strong correlation between the mean islet size and the mean body weight was revealed in all groups. Therefore, we propose that hypokinesia and an increase in nutrition play an important role in alterations of the endocrine pancreas, both in space flight and terrestrial conditions.

  4. Overview of Pre-Flight Physical Training, In-Flight Exercise Countermeasures and the Post-Flight Reconditioning Program for International Space Station Astronauts

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric

    2011-01-01

    International Space Station (ISS) astronauts receive supervised physical training pre-flight, utilize exercise countermeasures in-flight, and participate in a structured reconditioning program post-flight. Despite recent advances in exercise hardware and prescribed exercise countermeasures, ISS crewmembers are still found to have variable levels of deconditioning post-flight. This presentation provides an overview of the astronaut medical certification requirements, pre-flight physical training, in-flight exercise countermeasures, and the post-flight reconditioning program. Astronauts must meet medical certification requirements on selection, annually, and prior to ISS missions. In addition, extensive physical fitness testing and standardized medical assessments are performed on long duration crewmembers pre-flight. Limited physical fitness assessments and medical examinations are performed in-flight to develop exercise countermeasure prescriptions, ensure that the crewmembers are physically capable of performing mission tasks, and monitor astronaut health. Upon mission completion, long duration astronauts must re-adapt to the 1 G environment, and be certified as fit to return to space flight training and active duty. A structured, supervised postflight reconditioning program has been developed to prevent injuries, facilitate re-adaptation to the 1 G environment, and subsequently return astronauts to training and space flight. The NASA reconditioning program is implemented by the Astronaut Strength, Conditioning, and Rehabilitation (ASCR) team and supervised by NASA flight surgeons. This program has evolved over the past 10 years of the International Space Station (ISS) program and has been successful in ensuring that long duration astronauts safely re-adapt to the 1 g environment and return to active duty. Lessons learned from this approach to managing deconditioning can be applied to terrestrial medicine and future exploration space flight missions.

  5. Developing a corss-project support system during mission operations: Deep Space 1 extended mission flight control

    NASA Technical Reports Server (NTRS)

    Scarffe, V. A.

    2002-01-01

    NASA is focusing on small, low-cost spacecraft for both planetary and earth science missions. Deep Space 1 (DS1) was the first mission to be launched by the NMP. The New Millennium Project (NMP) is designed to develop and test new technology that can be used on future science missions with lower cost and risk. The NMP is finding ways to reduce cost not only in development, but also in operations. DS 1 was approved for an extended mission, but the budget was not large, so the project began looking into part time team members shared with other projects. DS1 launched on October 24, 1998, in it's primary mission it successfully tested twelve new technologies. The extended mission started September 18, 1999 and ran through the encounter with Comet Borrelly on September 22,2001. The Flight Control Team (FCT) was one team that needed to use part time or multi mission people. Circumstances led to a situation where for the few months before the Borrelly encounter in September of 2001 DSl had no certified full time Flight Control Engineers also known as Aces. This paper examines how DS 1 utilized cross-project support including the communication between different projects, and the how the tools used by the Flight Control Engineer fit into cross-project support.

  6. Carrier account utilization at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Mathis, W. E.; Langmead, J. T.

    1972-01-01

    The system in use at Goddard Space Flight Center for the utilization of the Common Use Service Carrier Account and the R&D Inventory Carrier Account technique for budgeting, accounting, financial control, and management reporting, both for the individual functional area and on a Center-wide basis, is documented.

  7. Renal stone risk assessment during Space Shuttle flights

    NASA Technical Reports Server (NTRS)

    Whitson, P. A.; Pietrzyk, R. A.; Pak, C. Y.

    1997-01-01

    PURPOSE: The metabolic and environmental factors influencing renal stone formation before, during, and after Space Shuttle flights were assessed. We established the contributing roles of dietary factors in relationship to the urinary risk factors associated with renal stone formation. MATERIALS AND METHODS: 24-hr. urine samples were collected prior to, during space flight, and following landing. Urinary and dietary factors associated with renal stone formation were analyzed and the relative urinary supersaturation of calcium oxalate, calcium phosphate (brushite), sodium urate, struvite and uric acid were calculated. RESULTS: Urinary composition changed during flight to favor the crystallization of calcium-forming salts. Factors that contributed to increased potential for stone formation during space flight were significant reductions in urinary pH and increases in urinary calcium. Urinary output and citrate, a potent inhibitor of calcium-containing stones, were slightly reduced during space flight. Dietary intakes were significantly reduced for a number of variables, including fluid, energy, protein, potassium, phosphorus and magnesium. CONCLUSIONS: This is the first in-flight characterization of the renal stone forming potential in astronauts. With the examination of urinary components and nutritional factors, it was possible to determine the factors that contributed to increased risk or protected from risk. In spite of the protective components, the negative contributions to renal stone risk predominated and resulted in a urinary environment that favored the supersaturation of stone-forming salts. Dietary and pharmacologic therapies need to be assessed to minimize the potential for renal stone formation in astronauts during/after space flight.

  8. STS-98 Flight Control Team Photo in the WFCR

    NASA Image and Video Library

    2001-01-08

    JSC2001-00001 (January 2001) --- The STS-98 astronaut crew poses with about five dozen flight controllers making up its ascent/entry team in the shuttle flight control room of the Johnson Space Center's Mission Control Center (MCC). Standing with the STS-98 insignia is flight director LeRoy Cain. He is flanked by astronauts Marsha S. Ivins, mission specialist, and Kenneth D. Cockrell, mission commander. Behind Cockrell is astronaut Robert L. Curbeam, Jr., mission specialist; and behind Ivins and Cain is astronaut Mark L. Polansky, pilot. Astronaut Thomas D. Jones, mission specialist (blue shirt) stands near the flight director sign. Astronaut Scott D. Altman, CAPCOM or Spacecraft Communicator, is immediately behind Cain. Launch is currently scheduled for February 6, 2001.

  9. Actions Needed to Ensure Scientific and Technical Information is Adequately Reviewed at Goddard Space Flight Center, Johnson Space Center, Langley Research Center, and Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This audit was initiated in response to a hotline complaint regarding the review, approval, and release of scientific and technical information (STI) at Johnson Space Center. The complainant alleged that Johnson personnel conducting export control reviews of STI were not fully qualified to conduct those reviews and that the reviews often did not occur until after the STI had been publicly released. NASA guidance requires that STI, defined as the results of basic and applied scientific, technical, and related engineering research and development, undergo certain reviews prior to being released outside of NASA or to audiences that include foreign nationals. The process includes technical, national security, export control, copyright, and trade secret (e.g., proprietary data) reviews. The review process was designed to preclude the inappropriate dissemination of sensitive information while ensuring that NASA complies with a requirement of the National Aeronautics and Space Act of 1958 (the Space Act)1 to provide for the widest practicable and appropriate dissemination of information resulting from NASA research activities. We focused our audit on evaluating the STI review process: specifically, determining whether the roles and responsibilities for the review, approval, and release of STI were adequately defined and documented in NASA and Center-level guidance and whether that guidance was effectively implemented at Goddard Space Flight Center, Johnson Space Center, Langley Research Center, and Marshall Space Flight Center. Johnson was included in the review because it was the source of the initial complaint, and Goddard, Langley, and Marshall were included because those Centers consistently produce significant amounts of STI.

  10. Sub-orbital flights, a starting point for space tourism

    NASA Astrophysics Data System (ADS)

    Gaubatz, William A.

    2002-07-01

    While there is a growing awareness and interest by the general public in space travel neither the market nor the infrastructure exist to make a commercial space tourism business an attractive risk venture. In addition there is much to be learned about how the general public will respond to space flights and what physiological and psychological needs must be met to ensure a pleasurable as well as adventurous experience. Sub-orbital flights offer an incremental approach to develop the market and the infrastructure, demonstrate the safety of space flight, obtain real flight information regarding the needs of general public passengers and demonstrate the profitability of space tourism. This paper will summarize some of the system, operations, and financial aspects of creating a sub-orbital space tourism business as a stepping-stone to public space travel. A sample business case will be reviewed and impacts of markets, operations and vehicle costs and lifetimes will be assessed.

  11. The role of nutritional research in the success of human space flight.

    PubMed

    Lane, Helen W; Bourland, Charles; Barrett, Ann; Heer, Martina; Smith, Scott M

    2013-09-01

    The United States has had human space flight programs for >50 y and has had a continued presence in space since 2000. Providing nutritious and safe food is imperative for astronauts because space travelers are totally dependent on launched food. Space flight research topics have included energy, protein, nutritional aspects of bone and muscle health, and vision issues related to 1-carbon metabolism. Research has shown that energy needs during flight are similar to energy needs on Earth. Low energy intakes affect protein turnover. The type of dietary protein is also important for bone health, plant-based protein being more efficacious than animal protein. Bone loss is greatly ameliorated with adequate intakes of energy and vitamin D, along with routine resistive exercise. Astronauts with lower plasma folate concentrations may be more susceptible to vision changes. Foods for space flight were developed initially by the U.S. Air Force School of Aerospace Medicine in conjunction with the U.S. Army Natick Laboratories and NASA. Hazard Analysis Critical Control Point safety standards were specifically developed for space feeding. Prepackaged foods for the International Space Station were originally high in sodium (5300 mg/d), but NASA has recently reformulated >90 foods to reduce sodium intake to 3000 mg/d. Food development has improved nutritional quality as well as safety and acceptability.

  12. STS-132/ULF4 WFCR Flight Controllers on Console

    NASA Image and Video Library

    2010-05-14

    JSC2010-E-080432 (14 May 2010) --- Astronaut Charles Hobaugh, spacecraft communicator (CAPCOM) for the STS-132 mission, is pictured in the space shuttle flight control room in the Johnson Space Center's Mission Control Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Atlantis? STS-132 launch. Liftoff was on time at 2:20 p.m. (EDT) on May 14, 2010 from launch pad 39A at NASA's Kennedy Space Center.

  13. Long-Duration Space Flight Provokes Pathologic Q-Tc Interval Prolongation

    NASA Technical Reports Server (NTRS)

    D'Aunno, DOminick S.; Dougherty, Anne H.; DeBlock, Heidi F.; Meck, Janice V.

    2002-01-01

    Space flight has a profound influence on the cardiovascular and autonomic nervous systems. Alterations in baroreflex function, plasma catecholamine concentrations, and arterial pressure regulation have been observed. Changes in autonomic regulation of cardiac function may lead to serious rhythm disturbances. In fact, ventricular tachycardia has been reported during long-duration space flight. The study aim was to determine the effects of space flight on cardiac conduction. Methods and Results: Electrocardiograms (ECGs) and serum electrolytes were obtained before and after short-duration (SD) (4-16 days) and long-duration (LD) (4-6 months) missions. Holter recordings were obtained from 3 different subjects before, during and after a 4-month mission. P-R, R-R, and Q-T intervals were measured manually in a random, blinded fashion and Bazzet's formula used to correct the Q-T interval (Q-Tc). Space flight had no clinically significant effect on electrolyte concentrations. P-R and RR intervals were decreased after SD flight (p<0.05) and recovered 3 days after landing. In the same subjects, P-R and Q-Tc intervals were prolonged after LD flight (p<0.01). Clinically significant Q-Tc prolongation (>0.44 sec) occurred during the first month of flight and persisted until 3 days after landing (p<0.01). Conclusions - Space flight alters cardiac conduction with more ominous changes seen with LD missions. Alterations in autonomic tone may explain ECG changes associated with space flight. Primary cardiac changes may also contribute to the conduction changes with LD flight. Q-Tc prolongation may predispose astronauts to ventricular arrhythmias during and after long-duration space flight.

  14. Nutrition in Space Flight: Some Thoughts

    NASA Technical Reports Server (NTRS)

    Johnson, P. C., Jr.

    1985-01-01

    Space flight causes physiological changes related to microgravity and on which nutrition has a bearing. Examples are: muscle atrophy-protein; bone atrophy-calcium; phosphorus, and vitamin D; space sickness-fat; cardiovascular deconditioning-sodium; water, and potassium. The physiological changes are discussed which relate to living in space.

  15. Flight Test of an Intelligent Flight-Control System

    NASA Technical Reports Server (NTRS)

    Davidson, Ron; Bosworth, John T.; Jacobson, Steven R.; Thomson, Michael Pl; Jorgensen, Charles C.

    2003-01-01

    The F-15 Advanced Controls Technology for Integrated Vehicles (ACTIVE) airplane (see figure) was the test bed for a flight test of an intelligent flight control system (IFCS). This IFCS utilizes a neural network to determine critical stability and control derivatives for a control law, the real-time gains of which are computed by an algorithm that solves the Riccati equation. These derivatives are also used to identify the parameters of a dynamic model of the airplane. The model is used in a model-following portion of the control law, in order to provide specific vehicle handling characteristics. The flight test of the IFCS marks the initiation of the Intelligent Flight Control System Advanced Concept Program (IFCS ACP), which is a collaboration between NASA and Boeing Phantom Works. The goals of the IFCS ACP are to (1) develop the concept of a flight-control system that uses neural-network technology to identify aircraft characteristics to provide optimal aircraft performance, (2) develop a self-training neural network to update estimates of aircraft properties in flight, and (3) demonstrate the aforementioned concepts on the F-15 ACTIVE airplane in flight. The activities of the initial IFCS ACP were divided into three Phases, each devoted to the attainment of a different objective. The objective of Phase I was to develop a pre-trained neural network to store and recall the wind-tunnel-based stability and control derivatives of the vehicle. The objective of Phase II was to develop a neural network that can learn how to adjust the stability and control derivatives to account for failures or modeling deficiencies. The objective of Phase III was to develop a flight control system that uses the neural network outputs as a basis for controlling the aircraft. The flight test of the IFCS was performed in stages. In the first stage, the Phase I version of the pre-trained neural network was flown in a passive mode. The neural network software was running using flight data

  16. Flight Opportunities: Space Technology Mission Directorate

    NASA Technical Reports Server (NTRS)

    Van Dijk, Alexander

    2016-01-01

    Flight Opportunities enables maturation of new space technologies by funding access to commercially available space-relevant test environments. The program also supports capability development in the commercial suborbital and orbital small satellite launcher markets.

  17. Space Flight Immunodeficiency

    NASA Technical Reports Server (NTRS)

    Shearer, William T.

    1999-01-01

    The National Aeronautics and Space Administration (NASA) has had sufficient concern for the well-being of astronauts traveling in space to create the National Space Biomedical Research Institute (NSBRI), which is investigating several areas of biomedical research including those of immunology. As part of the Immunology, Infection, and Hematology Team, the co-investigators of the Space Flight Immunodeficiency Project began their research projects on April 1, 1998 and are now just into the second year of work. Two areas of research have been targeted: 1) specific immune (especially antibody) responses and 2) non-specific inflammation and adhesion. More precise knowledge of these two areas of research will help elucidate the potential harmful effects of space travel on the immune system, possibly sufficient to create a secondary state of immunodeficiency in astronauts. The results of these experiments are likely to lead to the delineation of functional alterations in antigen presentation, specific immune memory, cytokine regulation of immune responses, cell to cell interactions, and cell to endothelium interactions.

  18. Virtual decoupling flight control via real-time trajectory synthesis and tracking

    NASA Astrophysics Data System (ADS)

    Zhang, Xuefu

    The production of the General Aviation industry has declined in the past 25 years. Ironically, however, the increasing demand for air travel as a fast, safe, and high-quality mode of transportation has been far from satisfied. Addressing this demand shortfall with personal air transportation necessitates advanced systems for navigation, guidance, control, flight management, and flight traffic control. Among them, an effective decoupling flight control system will not only improve flight quality, safety, and simplicity, and increase air space usage, but also reduce expenses on pilot initial and current training, and thus expand the current market and explore new markets. Because of the formidable difficulties encountered in the actual decoupling of non-linear, time-variant, and highly coupled flight control systems through traditional approaches, a new approach, which essentially converts the decoupling problem into a real-time trajectory synthesis and tracking problem, is employed. Then, the converted problem is solved and a virtual decoupling effect is achieved. In this approach, a trajectory in inertial space can be predefined and dynamically modified based on the flight mission and the pilot's commands. A feedforward-feedback control architecture is constructed to guide the airplane along the trajectory as precisely as possible. Through this approach, the pilot has much simpler, virtually decoupled control of the airplane in terms of speed, flight path angle and horizontal radius of curvature. To verify and evaluate this approach, extensive computer simulation is performed. A great deal of test cases are designed for the flight control under different flight conditions. The simulation results show that our decoupling strategy is satisfactory and promising, and therefore the research can serve as a consolidated foundation for future practical applications.

  19. X-38 Application of Dynamic Inversion Flight Control

    NASA Technical Reports Server (NTRS)

    Wacker, Roger; Munday, Steve; Merkle, Scott

    2001-01-01

    This paper summarizes the application of a nonlinear dynamic inversion (DI) flight control system (FCS) to an autonomous flight test vehicle in NASA's X-38 Project, a predecessor to the International Space Station (ISS) Crew Return Vehicle (CRV). Honeywell's Multi-Application Control-H (MACH) is a parameterized FCS design architecture including both model-based DI rate-compensation and classical P+I command-tracking. MACH was adopted by X-38 in order to shorten the design cycle time for different vehicle shapes and flight envelopes and evolving aerodynamic databases. Specific design issues and analysis results are presented for the application of MACH to the 3rd free flight (FF3) of X-38 Vehicle 132 (V132). This B-52 drop test, occurring on March 30, 2000, represents the first flight test of MACH and one of the first few known applications of DI in the primary FCS of an autonomous flight test vehicle.

  20. Fuzzy Control/Space Station automation

    NASA Technical Reports Server (NTRS)

    Gersh, Mark

    1990-01-01

    Viewgraphs on fuzzy control/space station automation are presented. Topics covered include: Space Station Freedom (SSF); SSF evolution; factors pointing to automation & robotics (A&R); astronaut office inputs concerning A&R; flight system automation and ground operations applications; transition definition program; and advanced automation software tools.

  1. Space Flight Ionizing Radiation Environments

    NASA Technical Reports Server (NTRS)

    Koontz, Steve

    2017-01-01

    The space-flight ionizing radiation (IR) environment is dominated by very high-kinetic energy-charged particles with relatively smaller contributions from X-rays and gamma rays. The Earth's surface IR environment is not dominated by the natural radioisotope decay processes. Dr. Steven Koontz's lecture will provide a solid foundation in the basic engineering physics of space radiation environments, beginning with the space radiation environment on the International Space Station and moving outward through the Van Allen belts to cislunar space. The benefits and limitations of radiation shielding materials will also be summarized.

  2. Thermal control surfaces experiment flight system performance

    NASA Technical Reports Server (NTRS)

    Wilkes, Donald R.; Hummer, Leigh L.; Zwiener, James M.

    1991-01-01

    The Thermal Control Surfaces Experiment (TCSE) is the most complex system, other than the LDEF, retrieved after long term space exposure. The TCSE is a microcosm of complex electro-optical payloads being developed and flow by NASA and the DoD including SDI. The objective of TCSE was to determine the effects of the near-Earth orbital environment and the LDEF induced environment on spacecraft thermal control surfaces. The TCSE was a comprehensive experiment that combined in-space measurements with extensive post flight analyses of thermal control surfaces to determine the effects of exposure to the low earth orbit space environment. The TCSE was the first space experiment to measure the optical properties of thermal control surfaces the way they are routinely measured in a lab. The performance of the TCSE confirms that low cost, complex experiment packages can be developed that perform well in space.

  3. Human Space Flight Plans Committee

    NASA Image and Video Library

    2009-06-16

    Norman Augustine, chair of the Human Space Flight Review Committee, front center, is joined by other members of the committee, clockwise from left, Bohdan Bejmuk, Leroy Chiao, Dr. Wanda Austin, Philip McAlister, Dr. Edward Crawley, Jeffrey Greason and Dr. Christopher Chyba prior to the start of the first of several public meetings at different U.S. locations, Wednesday, June 17, 2009, at the Carnegie Institution in Washington. The panel will examine ongoing and planned NASA development activities and potential alternatives in order to present options for advancing a safe, innovative, affordable and sustainable human space flight program following the space shuttle's retirement. The committee wil present its results by August 2009. Members of the committee that were not in attendance and are not pictured are Dr. Charles Kennel, Retired Air Force Gen. Lester Lyles and former astronaut Sally Ride. Photo Credit: (NASA/Paul E. Alers)

  4. Nutrition, endocrinology, and body composition during space flight

    NASA Technical Reports Server (NTRS)

    Lane, H. W.; Gretebeck, R. J.; Smith, S. M.

    1998-01-01

    Space flight induces endocrine changes that perturb metabolism. This altered metabolism affects both the astronauts' body composition and the nutritional requirements necessary to maintain their health. During the last 25 years, a combination of studies conducted on Skylab (the first U.S. space laboratory), U.S. Shuttle flights, and Soviet and Russian flights provides a range of data from which general conclusions about energy and protein requirements can be drawn. We have reviewed the endocrine data from those studies and related it to changes in body composition. From these data it appears that protein and energy intake of astronauts are similar to those on Earth. However, a combination of measures, including exercise, appropriate diet, and, potentially, drugs, is required to provide the muscle health needed for long duration space flight.

  5. Test and Analysis Capabilities of the Space Environment Effects Team at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Finckenor, M. M.; Edwards, D. L.; Vaughn, J. A.; Schneider, T. A.; Hovater, M. A.; Hoppe, D. T.

    2002-01-01

    Marshall Space Flight Center has developed world-class space environmental effects testing facilities to simulate the space environment. The combined environmental effects test system exposes temperature-controlled samples to simultaneous protons, high- and low-energy electrons, vacuum ultraviolet (VUV) radiation, and near-ultraviolet (NUV) radiation. Separate chambers for studying the effects of NUV and VUV at elevated temperatures are also available. The Atomic Oxygen Beam Facility exposes samples to atomic oxygen of 5 eV energy to simulate low-Earth orbit (LEO). The LEO space plasma simulators are used to study current collection to biased spacecraft surfaces, arcing from insulators and electrical conductivity of materials. Plasma propulsion techniques are analyzed using the Marshall magnetic mirror system. The micro light gas gun simulates micrometeoroid and space debris impacts. Candidate materials and hardware for spacecraft can be evaluated for durability in the space environment with a variety of analytical techniques. Mass, solar absorptance, infrared emittance, transmission, reflectance, bidirectional reflectance distribution function, and surface morphology characterization can be performed. The data from the space environmental effects testing facilities, combined with analytical results from flight experiments, enable the Environmental Effects Group to determine optimum materials for use on spacecraft.

  6. Space flight nutrition research: platforms and analogs

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Uchakin, Peter N.; Tobin, Brian W.

    2002-01-01

    Conducting research during actual or simulated weightlessness is a challenging endeavor, where even the simplest activities may present significant challenges. This article reviews some of the potential obstacles associated with performing research during space flight and offers brief descriptions of current and previous space research platforms and ground-based analogs, including those for human, animal, and cell-based research. This review is intended to highlight the main issues of space flight research analogs and leave the specifics for each physiologic system for the other papers in this section.

  7. [Effect of space flight on yield of Monascus purpureus].

    PubMed

    Yin, Hong; Xie, Shen-yi; Zhang, Guang-ming; Xie, Shen-meng

    2003-10-01

    To select high Lovastatin-producing microbial breed by space flight. Monascus purpureus species was carried into space by the recoverable spaceship, "Shenzhou 3". After flight, the strain was rejuvenized, segregated and selected. The content of Lovastatin produced in the solid fermentation was examined. Mutants with high productivity of Lovastatin were obtained. A series of tests showed that the acquired character of the mutants was stable. Space flight is an effective method for the selection of fine strains.

  8. STS-132/ULF4 WFCR Flight Controllers on Console

    NASA Image and Video Library

    2010-05-14

    JSC2010-E-080410 (14 May 2010) --- Astronauts Steve Frick (standing) and Charles Hobaugh, both spacecraft communicators (CAPCOM) for the STS-132 mission, are pictured in the space shuttle flight control room in the Johnson Space Center's Mission Control Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Atlantis? STS-132 launch. Liftoff was on time at 2:20 p.m. (EDT) on May 14, 2010 from launch pad 39A at NASA's Kennedy Space Center.

  9. Cognitive Assessment During Long-Duration Space Flight

    NASA Technical Reports Server (NTRS)

    Seaton, Kimberly; Kane, R. L.; Sipes, Walter

    2010-01-01

    The Space Flight Cognitive Assessment Tool for Windows (WinSCAT) is a computer-based, self-administered battery of five cognitive assessment tests developed for medical operations at NASA's Johnson Space Center in Houston, Texas. WinSCAT is a medical requirement for U.S. long-duration astronauts and has been implemented with U.S. astronauts from one NASA/Mir mission (NASA-7 mission) and all expeditions to date on the International Space Station (ISS). Its purpose is to provide ISS crew surgeons with an objective clinical tool after an unexpected traumatic event, a medical condition, or the cumulative effects of space flight that could negatively affect an astronaut's cognitive status and threaten mission success. WinSCAT was recently updated to add network capability to support a 6-person crew on the station support computers. Additionally, WinSCAT Version 2.0.28 has increased difficulty of items in Mathematics, increased number of items in Match-to-Sample, incorporates a moving rather than a fixed baseline, and implements stricter interpretation rules. ISS performance data were assessed to compare initial to modified interpretation rules for detecting potential changes in cognitive functioning during space flight. WinSCAT tests are routinely taken monthly during an ISS mission. Performance data from these ISS missions do not indicate significant cognitive decrements due to microgravity/space flight alone but have shown decrements. Applying the newly derived rules to ISS data results in a number of off-nominal performances at various times during and after flight.. Correlation to actual events is needed, but possible explanations for off-nominal performances could include actual physical factors such as toxic exposure, medication effects, or fatigue; emotional factors including stress from the mission or life events; or failure to exert adequate effort on the tests.

  10. Simulator evaluation of display concepts for pilot monitoring and control of space shuttle approach and landing. Phase 2: Manual flight control

    NASA Technical Reports Server (NTRS)

    Gartner, W. B.; Baldwin, K. M.

    1973-01-01

    A study of the display requirements for final approach management of the space shuttle orbiter vehicle is presented. An experimental display concept, providing a more direct, pictorial representation of the vehicle's movement relative to the selected approach path and aiming points, was developed and assessed as an aid to manual flight path control. Both head-up, windshield projections and head-down, panel mounted presentations of the experimental display were evaluated in a series of simulated orbiter approach sequence. Data obtained indicate that the experimental display would enable orbiter pilots to exercise greater flexibility in implementing alternative final approach control strategies. Touchdown position and airspeed dispersion criteria were satisfied on 91 percent of the approach sequences, representing various profile and wind effect conditions. Flight path control and airspeed management satisfied operationally-relevant criteria for the two-segment, power-off orbiter approach and were consistently more accurate and less variable when the full set of experimental display elements was available to the pilot. Approach control tended to be more precise when the head-up display was used; however, the data also indicate that the head-down display would provide adequate support for the manual control task.

  11. Sustaining Human Space Flight: From the Present to the Future

    NASA Technical Reports Server (NTRS)

    Russell, Rick

    2010-01-01

    This slide presentation reviews some of the efforts to ensure that human space flight continues in NASA. With the aging shuttle orbiter fleet, some actions have been taken to assure safe operations. Some of these are: (1) the formation of a Corrosion Control Review Board (CCRB) that will assess the extent and cause of corrosion to the shuttle, and provide short term and long term corrective actions, among other objectives, (2) a formalization of an aging vehicle assessment (AVA) as part of a certification for the Return-to-Flight, (3) an assessment of the age life of the materials in the space shuttle, and (4) the formation of the Aging Orbiter Working Group (AOWG). There are also slides with information about the International Space Station. There is also information about the need to update the Kennedy Space Center, to sustain a 21st century launch complex and the requirement to further the aim of commercial launch capability.

  12. Intersatellite communications optoelectronics research at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.

    1992-01-01

    A review is presented of current optoelectronics research and development at the NASA Goddard Space Flight Center for high-power, high-bandwidth laser transmitters; high-bandwidth, high-sensitivity optical receivers; pointing, acquisition, and tracking components; and experimental and theoretical system modeling at the NASA Goddard Space Flight Center. Program hardware and space flight opportunities are presented.

  13. Long range planning for the development of space flight emergency systems.

    NASA Technical Reports Server (NTRS)

    Bolger, P. H.; Childs, C. W.

    1972-01-01

    The importance of long-range planning for space flight emergency systems is pointed out. Factors in emergency systems planning are considered, giving attention to some of the mission classes which have to be taken into account. Examples of the hazards in space flight include fire, decompression, mechanical structure failures, radiation, collision, and meteoroid penetration. The criteria for rescue vehicles are examined together with aspects regarding the conduction of rescue missions. Future space flight programs are discussed, taking into consideration low earth orbit space stations, geosynchronous orbit space stations, lunar operations, manned planetary missions, future space flight vehicles, the space shuttle, special purpose space vehicles, and a reusable nuclear shuttle.

  14. An assessment of space shuttle flight software development processes

    NASA Technical Reports Server (NTRS)

    1993-01-01

    In early 1991, the National Aeronautics and Space Administration's (NASA's) Office of Space Flight commissioned the Aeronautics and Space Engineering Board (ASEB) of the National Research Council (NRC) to investigate the adequacy of the current process by which NASA develops and verifies changes and updates to the Space Shuttle flight software. The Committee for Review of Oversight Mechanisms for Space Shuttle Flight Software Processes was convened in Jan. 1992 to accomplish the following tasks: (1) review the entire flight software development process from the initial requirements definition phase to final implementation, including object code build and final machine loading; (2) review and critique NASA's independent verification and validation process and mechanisms, including NASA's established software development and testing standards; (3) determine the acceptability and adequacy of the complete flight software development process, including the embedded validation and verification processes through comparison with (1) generally accepted industry practices, and (2) generally accepted Department of Defense and/or other government practices (comparing NASA's program with organizations and projects having similar volumes of software development, software maturity, complexity, criticality, lines of code, and national standards); (4) consider whether independent verification and validation should continue. An overview of the study, independent verification and validation of critical software, and the Space Shuttle flight software development process are addressed. Findings and recommendations are presented.

  15. The effects of space radiation on flight film

    NASA Technical Reports Server (NTRS)

    Holly, Mark H.

    1995-01-01

    The Shuttle and its cargo are occasionally exposed to an amount of radiation large enough to create non-image forming exposures (fog) on photographic flight film. The television/photography working group proposed a test plan to quantify the sensitivity of photographic films to space radiation. This plan was flown on STS-37 and was later incorporated into a detailed supplementary objective (DSO) which was flown on STS48. This DSO addressed the effects of significant space radiation on representative samples of six highly sensitive flight films. In addition, a lead-lined bag was evaluated as a potential shield for flight film against space radiation.

  16. An automated water iodinating subsystem for manned space flight

    NASA Technical Reports Server (NTRS)

    Houck, O. K.; Wynveen, R. A.

    1974-01-01

    Controlling microbial growth by injecting iodine (l2) into water supplies is a widely acceptable technique, but requires a specialized injection method for space flight. An electrochemical l2 injection method and l2 level monitor are discussed in this paper, which also describe iodination practices previously used in the manned space program and major l2 biocidal characteristics. The development and design of the injector and monitor are described, and results of subsequent experiments are presented. Also presented are expected vehicle penalties for utilizing the l2 injector in certain space missions, especially the Space Shuttle, and possible injector failure modes and their criticality.

  17. Marshall Space Flight Center's Education Department

    NASA Technical Reports Server (NTRS)

    Henderson, Arthur J., Jr.; Whitaker, Ann F. (Technical Monitor)

    2000-01-01

    Marshall Space Flight Center's Education Department is a resource for Educator, Students and Lifelong Learners. This paper will highlight the Marshall Space Flight Center's Education Department with references to other NASA Education Departments nationwide. The principal focus will be on the responsibilities of the Pre-college Education Team which is responsible for supporting K- 12 teachers highlighting how many of the NASA Pre-college Offices engage teachers and their students in better understanding NASA's inspiring missions, unique facilities, and specialized workforce to carryout these many agency-wide tasks, goals and objectives. Attendee's will learn about the Marshall Educational Alliance Teams, as well, which is responsible for using NASA's unique assets to support all types of learning. All experience and knowledge levels, all grades K-12, and teachers in these specified groupings will gain a true appreciation of what is available for them, through Marshall Space Flight Center's Education Department. An agency-wide blue directory booklet will be distributed to all attendees, for future references and related points of contact.

  18. Origin of Marshall Space Flight Center (MSFC)

    NASA Image and Video Library

    2004-04-15

    Twelve scientific specialists of the Peenemuende team at the front of Building 4488, Redstone Arsenal, Huntsville, Alabama. They led the Army's space efforts at ABMA before transfer of the team to National Aeronautic and Space Administration (NASA), George C. Marshall Space Flight Center (MSFC). (Left to right) Dr. Ernst Stuhlinger, Director, Research Projects Office; Dr. Helmut Hoelzer, Director, Computation Laboratory: Karl L. Heimburg, Director, Test Laboratory; Dr. Ernst Geissler, Director, Aeroballistics Laboratory; Erich W. Neubert, Director, Systems Analysis Reliability Laboratory; Dr. Walter Haeussermarn, Director, Guidance and Control Laboratory; Dr. Wernher von Braun, Director Development Operations Division; William A. Mrazek, Director, Structures and Mechanics Laboratory; Hans Hueter, Director, System Support Equipment Laboratory;Eberhard Rees, Deputy Director, Development Operations Division; Dr. Kurt Debus, Director Missile Firing Laboratory; Hans H. Maus, Director, Fabrication and Assembly Engineering Laboratory

  19. Space Flight Software Development Software for Intelligent System Health Management

    NASA Technical Reports Server (NTRS)

    Trevino, Luis C.; Crumbley, Tim

    2004-01-01

    The slide presentation examines the Marshall Space Flight Center Flight Software Branch, including software development projects, mission critical space flight software development, software technical insight, advanced software development technologies, and continuous improvement in the software development processes and methods.

  20. 48 CFR 1852.246-73 - Human space flight item.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false Human space flight item. 1852.246-73 Section 1852.246-73 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE... 1852.246-73 Human space flight item. As prescribed in 1845.370(b), insert the following clause: Human...

  1. 48 CFR 1852.246-73 - Human space flight item.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 6 2013-10-01 2013-10-01 false Human space flight item. 1852.246-73 Section 1852.246-73 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE... 1852.246-73 Human space flight item. As prescribed in 1845.370(b), insert the following clause: Human...

  2. 48 CFR 1852.246-73 - Human space flight item.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 6 2014-10-01 2014-10-01 false Human space flight item. 1852.246-73 Section 1852.246-73 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE... 1852.246-73 Human space flight item. As prescribed in 1845.370(b), insert the following clause: Human...

  3. 48 CFR 1852.246-73 - Human space flight item.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Human space flight item. 1852.246-73 Section 1852.246-73 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE... 1852.246-73 Human space flight item. As prescribed in 1845.370(b), insert the following clause: Human...

  4. 48 CFR 1852.246-73 - Human space flight item.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 6 2012-10-01 2012-10-01 false Human space flight item. 1852.246-73 Section 1852.246-73 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE... 1852.246-73 Human space flight item. As prescribed in 1845.370(b), insert the following clause: Human...

  5. Approximate approach for optimization space flights with a low thrust on the basis of sufficient optimality conditions

    NASA Astrophysics Data System (ADS)

    Salmin, Vadim V.

    2017-01-01

    Flight mechanics with a low-thrust is a new chapter of mechanics of space flight, considered plurality of all problems trajectory optimization and movement control laws and the design parameters of spacecraft. Thus tasks associated with taking into account the additional factors in mathematical models of the motion of spacecraft becomes increasingly important, as well as additional restrictions on the possibilities of the thrust vector control. The complication of the mathematical models of controlled motion leads to difficulties in solving optimization problems. Author proposed methods of finding approximate optimal control and evaluating their optimality based on analytical solutions. These methods are based on the principle of extending the class of admissible states and controls and sufficient conditions for the absolute minimum. Developed procedures of the estimation enabling to determine how close to the optimal founded solution, and indicate ways to improve them. Authors describes procedures of estimate for approximately optimal control laws for space flight mechanics problems, in particular for optimization flight low-thrust between the circular non-coplanar orbits, optimization the control angle and trajectory movement of the spacecraft during interorbital flights, optimization flights with low-thrust between arbitrary elliptical orbits Earth satellites.

  6. The endocrine system in space flight

    NASA Astrophysics Data System (ADS)

    Leach, C. S.; Johnson, P. C.; Cintron, N. M.

    Hormones are important effectors of the body's response to microgravity in the areas of fluid and electrolyte metabolism, erythropoiesis, and calcium metabolism. For many years antidiuretic hormone, cortisol and aldosterone have been considered the hormones most important for regulation of body fluid volume and blood levels of electrolytes, but they cannot account totally for losses of fluid and electrolytes during space flight. We have now measured atrial natriuretic factor (ANF), a hormone recently shown to regulate sodium and water excretion, in blood specimens obtained during flight. After 30 or 42 h of weightlessness, mean ANF was elevated. After 175 or 180 h, ANF had decreased by 59%, and it changed little between that time and soon after landing. There is probably an increase in ANF early inflight associated with the fluid shift, followed by a compensatory decrease in blood volume. Increased renal blood flow may cause the later ANF decrease. Erythropoietin (Ep), a hormone involved in the control of red blood cell production, was measured in blood samples taken during the first Spacelab mission and was significantly decreased on the second day of flight, suggesting also an increase in renal blood flow. Spacelab-2 investigators report that the active vitamin D metabolite 1α, 25-dihydroxyvitamin D 3 increased early in the flight, indicating that a stimulus for increased bone resorption occurs by 30 h after launch.

  7. Space flight and the immune system

    NASA Technical Reports Server (NTRS)

    Cogoli, A.

    1993-01-01

    Depression of lymphocyte response to mitogens in cosmonauts after space flight was reported for the first time in the early 1970s by Soviet immunologists. Today we know that depression of lymphocyte function affects at least 50% of space crew members. Investigations on the ground on subjects undergoing physical and psychological stress indicate that stress is a major factor in immune depression of astronauts. This is despite the fact that weightlessness per se has a strong inhibitory effect on lymphocyte activation in vitro. Although the changes observed never harmed the health of astronauts, immunological changes must be seriously investigated and understood in view of long-duration flight on space stations in an Earth orbit, to other planets such as Mars and to the Moon.

  8. Posture, locomotion, spatial orientation, and motion sickness as a function of space flight

    NASA Technical Reports Server (NTRS)

    Reschke, M. F.; Bloomberg, J. J.; Harm, D. L.; Paloski, W. H.; Layne, C.; McDonald, V.

    1998-01-01

    This article summarizes a variety of newly published findings obtained by the Neuroscience Laboratory, Johnson Space Center, and attempts to place this work within a historical framework of previous results on posture, locomotion, motion sickness, and perceptual responses that have been observed in conjunction with space flight. In this context, we have taken the view that correct transduction and integration of signals from all sensory systems is essential to maintaining stable vision, postural and locomotor control, and eye-hand coordination as components of spatial orientation. The plasticity of the human central nervous system allows individuals to adapt to altered stimulus conditions encountered in a microgravity environment. However, until some level of adaptation is achieved, astronauts and cosmonauts often experience space motion sickness, disturbances in motion control and eye-hand coordination, unstable vision, and illusory motion of the self, the visual scene, or both. Many of the same types of disturbances encountered in space flight reappear immediately after crew members return to earth. The magnitude of these neurosensory, sensory-motor and perceptual disturbances, and the time needed to recover from them, tend to vary as a function of mission duration and the space travelers prior experience with the stimulus rearrangement of space flight. To adequately chart the development of neurosensory changes associated with space flight, we recommend development of enhanced eye movement systems and body position measurement. We also advocate the use of a human small radius centrifuge as both a research tool and as a means of providing on-orbit countermeasures that will lessen the impact of living for long periods of time with out exposure to altering gravito-inertial forces. Copyright 1998 Elsevier Science B.V.

  9. Effects of Space Flight on Ovarian-Hypophyseal Function in Postpartum Rats

    NASA Technical Reports Server (NTRS)

    Burden, H. W.; Zary, J.; Lawrence, I. E.; Jonnalagadda, P.; Davis, M.; Hodson, C. A.

    1997-01-01

    The effect of space flight in a National Aeronautics and Space Administration (NASA) shuttle was studied in pregnant rats. Rats were launched on day 9 of gestation and recovered on day 20 of gestation. On day 20 of gestation, rats were unilaterally hysterectomized and subsequently allowed to go to term and deliver vaginally. There was no effect of space flight on pituitary and ovary mass postpartum. In addition, space flight did not alter healthy and atretic ovarian antral follicle populations, fetal wastage in utero, plasma concentrations of progesterone and luteinizing hormone (LH) or pituitary content of follicle stimulating hormone (FSH). Space flight significantly increased plasma concentrations of FSH and decreased pituitary content of LH at the postpartum sampling time. Collectively, these data show that space flight, initiated during the postimplantation period of pregnancy, and concluded before parturition, is compatible with maintenance of pregnancy and has minimal effects on postpartum hypophyseal parameters; however, none of the ovarian parameters examined was altered by space flight.

  10. Regulation of erythropoiesis in rats during space flight

    NASA Technical Reports Server (NTRS)

    Lange, Robert D.

    1989-01-01

    Astronauts who have flown in microgravity have experienced a loss in red cell mass. The pathogenesis of the anemia of space flight has not been ascertained, but it is probably multifactorial. In 1978, the laboratory was selected to participate in life sciences studies to be carried out in the space shuttle in an attempt to study the pathogenesis of space anemia. In particular, the original studies were to be made in mice. This was later changed to study erythropoiesis in rats during space flight.

  11. Human Space Flight Plans Committee

    NASA Image and Video Library

    2009-08-11

    Norman Augustine, chair, listens to a speaker's presentation during the final meeting of the Human Space Flight Review Committee, Wednesday, Aug. 12, 2009, in Washington. Photo Credit: (NASA/Paul E. Alers)

  12. Simulation Training Versus Real Time Console Training for New Flight Controllers

    NASA Technical Reports Server (NTRS)

    Heaton, Amanda

    2010-01-01

    For new flight controllers, the two main learning tools are simulations and real time console performance training. These benefit the new flight controllers in different ways and could possibly be improved. Simulations: a) Allow for mistakes without serious consequences. b) Lets new flight controllers learn the working style of other new flight controllers. c) Lets new flight controllers eventually begin to feel like they have mastered the sim world, so therefore they must be competent in the real time world too. Real time: a) Shows new flight controllers some of the unique problems that develop and have to be accounted for when dealing with certain payloads or systems. b) Lets new flight controllers experience handovers - gathering information from the previous shift on what the room needs to be aware of and what still needs to be done. c) Gives new flight controllers confidence that they can succeed in the position they are training for when they can solve real anomalies. How Sims could be improved and more like real-time ops for the ISS Operations Controller position: a) Operations Change Requests to review. b) Fewer anomalies (but still more than real time for practice). c) Payload Planning Manager Handover sheet for the E-1 and E-3 reviews. d) Flight note in system with at least one comment to verify for the E-1 and E-3 reviews How the real time console performance training could be improved for the ISS Operations Controller position: a) Schedule the new flight controller to be on console for four days but with a different certified person each day. This will force them to be the source of knowledge about every OCR in progress, everything that has happened in those few days, and every activity on the timeline. Constellation program flight controllers will have to learn entirely from simulations, thereby losing some of the elements that they will need to have experience with for real time ops. It may help them to practice real time console performance training

  13. Flight control actuation system

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2004-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  14. Flight control actuation system

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2006-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  15. Water and Energy Dietary Requirements and Endocrinology of Human Space Flight

    NASA Technical Reports Server (NTRS)

    Lane, Helen W.; Feeback, Daniel L.

    2002-01-01

    Fluid and energy metabolism and related endocrine changes have been studied nearly from the beginning of human space flight in association with short- and long-duration flights. Fluid and electrolyte nutrition status is affected by many factors including the microgravity environment, stress, changes in body composition, diet, exercise habits, sleep cycles, and ambient temperature and humidity conditions. Space flight exposes astronauts to all these factors and consequently poses significant challenges to establishing dietary water, sodium, potassium, and energy recommendations. The purpose of this article is to review the results of ground-based and space flight research studies that have led to current water, electrolyte, and energy dietary requirements for humans during space flight and to give an overview of related endocrinologic changes that have been observed in humans during short- and long-duration space flight.

  16. Apollo experience report: Development flight instrumentation. [telemetry equipment for space flight test program

    NASA Technical Reports Server (NTRS)

    Farmer, N. B.

    1974-01-01

    Development flight instrumentation was delivered for 25 Apollo vehicles as Government-furnished equipment. The problems and philosophies of an activity that was concerned with supplying telemetry equipment to a space-flight test program are discussed. Equipment delivery dates, system-design details, and flight-performance information for each mission also are included.

  17. Knowledge representation in space flight operations

    NASA Technical Reports Server (NTRS)

    Busse, Carl

    1989-01-01

    In space flight operations rapid understanding of the state of the space vehicle is essential. Representation of knowledge depicting space vehicle status in a dynamic environment presents a difficult challenge. The NASA Jet Propulsion Laboratory has pursued areas of technology associated with the advancement of spacecraft operations environment. This has led to the development of several advanced mission systems which incorporate enhanced graphics capabilities. These systems include: (1) Spacecraft Health Automated Reasoning Prototype (SHARP); (2) Spacecraft Monitoring Environment (SME); (3) Electrical Power Data Monitor (EPDM); (4) Generic Payload Operations Control Center (GPOCC); and (5) Telemetry System Monitor Prototype (TSM). Knowledge representation in these systems provides a direct representation of the intrinsic images associated with the instrument and satellite telemetry and telecommunications systems. The man-machine interface includes easily interpreted contextual graphic displays. These interactive video displays contain multiple display screens with pop-up windows and intelligent, high resolution graphics linked through context and mouse-sensitive icons and text.

  18. Summary of longitudinal stability and control parameters as determined from Space Shuttle Challenger flight test data

    NASA Technical Reports Server (NTRS)

    Suit, William T.

    1989-01-01

    Estimates of longitudinal stability and control parameters for the space shuttle were determined by applying a maximum likelihood parameter estimation technique to Challenger flight test data. The parameters for pitching moment coefficient, C(m sub alpha), (at different angles of attack), pitching moment coefficient, C(m sub delta e), (at different elevator deflections) and the normal force coefficient, C(z sub alpha), (at different angles of attack) describe 90 percent of the response to longitudinal inputs during Space Shuttle Challenger flights with C(m sub delta e) being the dominant parameter. The values of C(z sub alpha) were found to be input dependent for these tests. However, when C(z sub alpha) was set at preflight predictions, the values determined for C(m sub delta e) changed less than 10 percent from the values obtained when C(z sub alpha) was estimated as well. The preflight predictions for C(z sub alpha) and C(m sub alpha) are acceptable values, while the values of C(z sub delta e) should be about 30 percent less negative than the preflight predictions near Mach 1, and 10 percent less negative, otherwise.

  19. Analysis of space shuttle orbiter entry dynamics from Mach 10 to Mach 2.5 with the November 1976 flight control system

    NASA Technical Reports Server (NTRS)

    Powell, R. W.; Stone, H. W.

    1980-01-01

    A six-degree-of-freedom simulation analysis was performed for the space shuttle orbiter entry from Mach 10 to Mach 2.5 with realistic off-nominal conditions using the flight control system referred to as the November 1976 Integrated Digital Autopilot. The off-nominal conditions included: (1) aerodynamic uncertainties in extrapolating from wind tunnel of flight characteristics, (2) error in deriving angle of attack from onboard instrumentation, (3) failure of two of the four reaction control-system thrusters on each side (design specification), and (4) lateral center-of-gravity offset. Many combinations of these off-nominal conditions resulted in a loss of the orbiter. Control-system modifications were identified to prevent this possibility.

  20. Space robotic experiment in JEM flight demonstration

    NASA Technical Reports Server (NTRS)

    Nagatomo, Masanori; Tanaka, Masaki; Nakamura, Kazuyuki; Tsuda, Shinichi

    1994-01-01

    Japan is collaborating on the multinational space station program. The JEM, Japanese Experiment Module, has both a pressurized module and an Exposed Facility (EF). JEM Remote Manipulator System (JEMRMS) will play a dominant role in handling/servicing payloads and the maintenance of the EF, and consists of two robotic arms, a main arm and a small fine arm. JEM Flight Demonstration (JFD) is a space robotics experiment using the prototype small fine arm to demonstrate its capability, prior to the Space Station operation. The small fine arm will be installed in the Space Shuttle cargo bay and operated by a crew from a dedicated workstation in the Aft Flight Deck of the orbiter.

  1. Origin of Marshall Space Flight Center (MSFC)

    NASA Image and Video Library

    1960-09-08

    President Dwight D. Eisenhower and Mrs. George C. Marshall unveil the bronze bust of General George C. Marshall during the dedication of the Marshall Space Flight Center. Eisenhower signed an Executive Order on October 21, 1959 directing the transfer of persornel from the Redstone Arsenal's Army Ballistic Missile Agency Development Operations Division to NASA. On March 15, 1960, another Executive Order announced that the space complex formed within the boundaries of Redstone Arsenal would become the George C. Marshall Space Flight Center. The Center was activated on July 1, 1960, with dedication ceremonies taking place September 8, 1960.

  2. [Bone marrow mononuclear cells from murine tibia after the space flight on biosatellite "Bion-M1"].

    PubMed

    Andreeva, E R; Goncharova, E A; Gornostaeva, A N; Grigor'eva, O V; Buravkova, L B

    2014-01-01

    Cellularity, viability and immunophenotype of mononuclear cells derived from the tibial marrow of C57bL/6 mice were measured after the 30-day "Bion-M1" space flight and subsequent 7-day recovery. Cell number in the flight group was significantly less than in the group of vivarium control. There was no difference in the parameter between the flight and control groups after the recovery. Viability of mononuclear cells was more than 95% in all examined groups. Flow cytometric analysis failed to show differences in bone marrow cell immunophenotype (CD45, CD34, CD90.1 (Thy1); however, the flight animals had more large-sized CD45+ mononuclears than the control groups of mice. These results indicate that spaceflight factors did not have significant damaging effects on the number or immunophenotype of murine bone marrow mononuclears. These observations are consistent with the previously made assumption of a moderate and reversible stress reaction of mammals to space flight.

  3. Maximum Oxygen Uptake During and After Long-Duration Space Flight

    NASA Technical Reports Server (NTRS)

    Moore, Alan D., Jr.; Evetts, Simon N.; Feiveson, Alan H.; Lee, Stuart M. C.; McCleary. Frank A.; Platts, Steven H.

    2010-01-01

    Decreased maximum oxygen consumption (VO2max) during and after space flight may impair a crewmember s ability to perform mission-critical work that is high intensity and/or long duration in nature (Human Research Program Integrated Research Plan Risk 2.1.2: Risk of Reduced Physical Performance Capabilities Due to Reduced Aerobic Capacity). When VO2max was measured in Space Shuttle experiments, investigators reported that it did not change during short-duration space flight but decreased immediately after flight. Similar conclusions, based on the heart rate (HR) response of Skylab crewmembers, were made previously concerning long-duration space flight. Specifically, no change in the in-flight exercise HR response in 8 of 9 Skylab crewmembers indicated that VO2max was maintained during flight, but the elevated exercise HR after flight indicated that VO2max was decreased after landing. More recently, a different pattern of in-flight exercise HR response, and assumed changes in VO2max, emerged from routine testing of International Space Station (ISS) crewmembers. Most ISS crewmembers experience an elevated in-flight exercise HR response early in their mission, with a gradual return toward preflight levels as the mission progresses. Similar to previous reports, exercise HR is elevated after ISS missions and returns to preflight levels by 30 days after landing. VO2max has not been measured either during or after long-duration space flight. The purposes of the ISS VO2max experiment are (1) to measure VO2max during and after long-duration spaceflight, and (2) to determine if submaximal exercise test results can be used to accurately estimate VO 2max.

  4. Human Space Flight Plans Committee

    NASA Image and Video Library

    2009-08-11

    Bohdan Bejmuk, chair, Constellation program Standing Review Board, and former manager of the Boeing Space Shuttle and Sea Launch programs, right, asks a question during the final meeting of the Human Space Flight Review Committee as Dr. Wanda Austin, president and CEO, The Aerospace Corp., looks on at left, Wednesday, Aug. 12, 2009, in Washington. Photo Credit: (NASA/Paul E. Alers)

  5. Clean Room at Goddard Space Flight Center

    NASA Image and Video Library

    2010-03-10

    This panorama shows the inside of Goddard's High Bay Clean Room, as seen from the observation deck. Credit: NASA/Goddard Space Flight Center/Chris Gunn Go into a NASA Clean Room Daily with the Webb Telescope via NASA's 'Webb-cam' here: www.jwst.nasa.gov/webcam.html For more information on JWST go to: www.jwst.nasa.gov/ For more information on Goddard Space Flight Center go to: www.nasa.gov/centers/goddard/home/index.html

  6. Biochemical and hematologic changes after short-term space flight

    NASA Technical Reports Server (NTRS)

    Leach, Carolyn S.

    1991-01-01

    Clinical laboratory data from blood samples obtained from astronauts before and after 28 flights (average duration = 6 days) of the Space Shuttle were analyzed by the paired t-test and the Wilcoxon signed-rank test and compared with data from the Skylab flights (duration = 28, 56, and 84 days). Angiotensin I and aldosterone were elevated immediately after short-term space flights, but the response of angiotensin I was delayed after Skylab flights. Serum calcium was not elevated after Shuttle flights, but magnesium and uric acid decreased after both Shuttle and Skylab. Creatine phosphokinase in serum was reduced after Shuttle but not Skylab flights, probably because exercises to prevent deconditioning were not performed on the Shuttle. Total cholesterol was unchanged after Shuttle flights, but low density lipoprotein cholesterol increased and high density lipoprotein cholesterol decreased. The concentration of red blood cells was elevated after Shuttle flights and reduced after Skylab flights.

  7. Physical examination during space flight

    NASA Technical Reports Server (NTRS)

    Harris, B. A. Jr; Billica, R. D.; Bishop, S. L.; Blackwell, T.; Layne, C. S.; Harm, D. L.; Sandoz, G. R.; Rosenow, E. C. 3rd

    1997-01-01

    OBJECTIVE: To develop techniques for conducting a physical examination in microgravity and to describe and document the physiologic changes noted with use of a modified basic physical examination. DESIGN: On the basis of data gathered from physical examinations on KC-135 flights, three physical variables were assessed serially in astronauts during two shuttle missions (of 8- and 10-day duration, respectively). Preflight, in-flight, and postflight examinations were conducted by trained physician-astronauts or flight surgeons, who used this modified examination. MATERIAL AND METHODS: Five male and two female crewmembers participated in the "hands-on" physical examination of all physiologic systems except the genitourinary system. Level of edema, intensity of bowel sounds, and peripheral reflexes were assessed and graded. RESULTS: This investigation identified unique elements of a physical examination performed during space flight that will assist in the development of standard methods for conducting examinations of astronauts in weightlessness. In addition, demonstrable changes induced by microgravity were noted in most physiologic systems examined. CONCLUSION: The data support the hypothesis that the microgravity examination differs from that conducted on earth or in a 1g environment. In addition, alterations in the physiologic response can be detected with use of hands-on technique. These data are invaluable in the development of optimal medical care for humans in space.

  8. Kids in Space Water Absorption Flight Procedures #40 Demo

    NASA Image and Video Library

    2010-09-15

    ISS024-E-014988 (15 Sept. 2010) --- NASA astronaut Tracy Caldwell Dyson, Expedition 24 flight engineer, conducts a demonstration for the "Kids in Space" session for Water Absorption Flight Procedures #40 in the Columbus laboratory of the International Space Station.

  9. Kids in Space Water Absorption Flight Procedures 40 Demo

    NASA Image and Video Library

    2010-09-15

    ISS024-E-014993 (15 Sept. 2010) --- NASA astronaut Tracy Caldwell Dyson, Expedition 24 flight engineer, conducts a demonstration for the "Kids in Space" session for Water Absorption Flight Procedures #40 in the Columbus laboratory of the International Space Station.

  10. Rat gestation during space flight: outcomes for dams and their offspring born after return to Earth.

    PubMed

    Wong, A M; DeSantis, M

    1997-01-01

    Sprague-Dawley rats were studied to learn whether gestation in the near-zero gravity, high radiation environment of space impacts selected mammalian postnatal events. Ten rats spent days nine to twenty of pregnancy aboard the space shuttle orbiter Atlantis (STS-66). Their movement was studied shortly after return to Earth; subsequently, several of their offspring were cross-fostered and examined through postnatal day 81 (P81) for whole body growth and somatic motor development. Values for the flight animals were compared to ground-based control groups. Relative to controls, the pregnant flight rats showed a marked paucity of locomotion during the first few hours after returning to Earth. There was greater likelihood of perinatal morbidity for the offspring of flight dams when compared to the control groups. Whole body weight of surviving offspring, averaged for each group separately, showed typical sigmoidal growth curves when plotted against postnatal age. The flight group for our study had a larger ratio of female to male pups, and that was sufficient to account for the lower average daily weight gained by the flight animals when compared to the control groups. Walking was universally achieved by P13 and preceded eye opening, which was complete in all pups by P17. Thus, both of these developmental horizons were attained on schedule in the flight as well as the control rats. Characteristic changes were observed in hind limb step length and gait width as the pups grew. These patterns occurred at the same time in each group of rats. Therefore, prenatal space flight from days nine to twenty of gestation did not interfere with the establishment of normal patterns for hind paw placement during walking.

  11. Rat Gestation During Space Flight: Outcomes for Dams and Their Offspring Born After Return to Earth

    NASA Technical Reports Server (NTRS)

    Wong, Andre M.; DeSantis, Mark

    1997-01-01

    Sprague-Dawley rats were studied to learn whether gestation in the near-zero gravity, high radiation environment of space impacts selected mammalian postnatal events. Ten rats spent days nine to twenty of pregnancy aboard the space shuttle orbiter Atlantis (STS-66). Their movement was studied shortly after return to Earth; subsequently, several of their offspring were cross-fostered and examined through postnatal day 81 (P81) for whole body growth and somatic motor development. Values for the flight animals were compared to ground-based control groups. Relative to controls, the pregnant flight rats showed a marked paucity of locomotion during the first few hours after returning to Earth. There was greater likelihood of perinatal morbidity for the offspring of flight dams when compared to the control groups. Whole body weight of surviving offspring, averaged for each group separately, showed typical sigmoidal growth curves when plotted against postnatal age. The flight group for our study had a larger ratio of female to male pups, and that was sufficient to account for the lower average daily weight gained by the flight animals when compared to the control groups. Walking was universally achieved by P13 and preceded eye opening, which was complete in all pups by P17. Thus, both of these developmental horizons were attained on schedule in the flight as well as the control rats. Characteristic changes were observed in hind limb step length and gait width as the pups grew. These patterns occurred at the same time in each group of rats. Therefore, prenatal space flight from days nine to twenty of gestation did not interfere with the establishment of normal patterns for hind paw placement during walking.

  12. Effects of space flight on locomotor control

    NASA Technical Reports Server (NTRS)

    Bloomberg, Jacob J.; Layne, Charles S.; McDonald, P. Vernon; Peters, Brian T.; Huebner, William P.; Reschke, Millard F.; Berthoz, Alain; Glasauer, Stefan; Newman, Dava; Jackson, D. Keoki

    1999-01-01

    In the microgravity environment of spaceflight, the relationship between sensory input and motor output is altered. During prolonged missions, neural adaptive processes come into play to recalibrate central nervous system function, thereby permitting new motor control strategies to emerge in the novel sensory environment of microgravity. However, the adaptive state achieved during spaceflight is inappropriate for a unit gravity environment and leads to motor control alterations upon return to Earth that include disturbances in locomotion. Indeed, gait and postural instabilities following the return to Earth have been reported in both U.S. astronauts and Russian cosmonauts even after short duration (5- to 10-day) flights. After spaceflight, astronauts may: (1) experience the sensation of turning while attempting to walk a straight path, (2) encounter sudden loss of postural stability, especially when rounding corners, (3) perceive exaggerated pitch and rolling head movements during walking, (4) experience sudden loss of orientation in unstructured visual environments, or (5) experience significant oscillopsia during locomotion.

  13. SpaceX Falcon Heavy Demo Flight - Press Site Activities

    NASA Image and Video Library

    2018-02-06

    Members of the news media begin setting up at the NASA News Center to await liftoff of the SpaceX Falcon Heavy rocket from Launch Complex 39A at Kennedy Space Center in Florida. The iconic Vehicle Assembly Building and Launch Control Center are visible in the background. The Falcon Heavy demonstration flight will be a significant milestone for the world's premier multi-user spaceport. In 2014, NASA signed a property agreement with SpaceX for the use and operation of the center's pad 39A, where the company has launched Falcon 9 rockets and is preparing for the first Falcon Heavy. NASA also has Space Act Agreements in place with partners, such as SpaceX, to provide services needed to process and launch rockets and spacecraft.

  14. Implementation of an Adaptive Controller System from Concept to Flight Test

    NASA Technical Reports Server (NTRS)

    Larson, Richard R.; Burken, John J.; Butler, Bradley S.; Yokum, Steve

    2009-01-01

    The National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California) is conducting ongoing flight research using adaptive controller algorithms. A highly modified McDonnell-Douglas NF-15B airplane called the F-15 Intelligent Flight Control System (IFCS) is used to test and develop these algorithms. Modifications to this airplane include adding canards and changing the flight control systems to interface a single-string research controller processor for neural network algorithms. Research goals include demonstration of revolutionary control approaches that can efficiently optimize aircraft performance in both normal and failure conditions and advancement of neural-network-based flight control technology for new aerospace system designs. This report presents an overview of the processes utilized to develop adaptive controller algorithms during a flight-test program, including a description of initial adaptive controller concepts and a discussion of modeling formulation and performance testing. Design finalization led to integration with the system interfaces, verification of the software, validation of the hardware to the requirements, design of failure detection, development of safety limiters to minimize the effect of erroneous neural network commands, and creation of flight test control room displays to maximize human situational awareness; these are also discussed.

  15. Electromechanical flight control actuator. [for space shuttles

    NASA Technical Reports Server (NTRS)

    1976-01-01

    An electromechanical actuator that will follow a proportional control command with minimum wasted energy is developed. The feasibility of meeting space vehicle actuator requirements using advanced electromechanical concepts is demonstrated. Recommendations for further development are given.

  16. Manned Space Flight Experiments Symposium: Gemini Missions III and IV

    NASA Technical Reports Server (NTRS)

    1965-01-01

    This is a compilation of papers on in-flight experiments presented at the first symposium of a series, Manned Space Flight Experiments Symposium, sponsored by the National Aeronautics and Space Administration. The results of experiments conducted during the Gemini Missions III and IV are covered. These symposiums are to be conducted for the scientific community at regular intervals on the results of experiments carried out in conjunction with manned space flights.

  17. Documentation of White Flight Control Room (WFCR), Building 30 during STS-109.

    NASA Image and Video Library

    2002-03-07

    JSC2002-E-08460 (7 March 2002) --- Flight directors Jeff Hanley (standing) and Bryan P. Austin watch the large screens from their consoles in the shuttle flight control room (WFCR) in Houston’;s Mission Control Center (MCC) during the STS-109 Hubble Space Telescope (HST) servicing mission.

  18. "Space flight is utter bilge"

    NASA Astrophysics Data System (ADS)

    Yeomans, Donald

    2004-01-01

    Despite skepticism and ridicule from scientists and the public alike, a small handful of dreamers kept faith in their vision of space flight and planned for the day when humanity would break loose from Earth.

  19. Marshall Space Flight Center Technology Capabilities for Use in Space Situational Awareness Activities

    NASA Technical Reports Server (NTRS)

    Gagliano, Larry; McLeod, Todd; Hovater, Mary A.

    2017-01-01

    Marshall performs research, integrates information, matures technologies, and enhances science to bring together a diverse portfolio of products and services of interest for Space Situational Awareness (SSA) and Space Asset Management (SAM), all of which can be accessed through partnerships with Marshall. Integrated Space Situational Awareness and Asset Management (ISSAAM) is an initiative of NASA's Marshall Space Flight Center to improve space situational awareness and space asset management through technical innovation, collaboration, and cooperation with U.S. Government agencies and the global space community. Marshall Space Flight Center provides solutions for complex issues with in-depth capabilities, a broad range of experience, and expertise unique in the world, and all available in one convenient location. NASA has longstanding guidelines that are used to assess space objects. Specifically, Marshall Space Flight Center has the capabilities, facilities and expertise to address the challenges that space objects, such as near-Earth objects (NEO) or Orbital Debris pose. ISSAAM's three pronged approach brings together vital information and in-depth tools working simultaneously toward examining the complex problems encountered in space situational awareness. Marshall's role in managing, understanding and planning includes many projects grouped under each prong area: Database/Analyses/Visualization; Detection/Tracking/ Mitigation/Removal. These are not limited to those listed below.

  20. Selective skin sensitivity changes and sensory reweighting following short-duration space flight.

    PubMed

    Lowrey, Catherine R; Perry, Stephen D; Strzalkowski, Nicholas D J; Williams, David R; Wood, Scott J; Bent, Leah R

    2014-03-15

    Skin sensory input from the foot soles is coupled with vestibular input to facilitate body orientation in a gravitational environment. Anecdotal observations suggest that foot sole skin becomes hypersensitive following space flight. The veritable level of skin sensitivity and its impact on postural disequilibrium observed post space flight have not been documented. Skin sensitivity of astronauts (n = 11) was measured as vibration perception at the great toe, fifth metatarsal and heel. Frequencies targeted four classes of receptors: 3 and 25 Hz for slow-adapting (SA) receptors and 60 and 250 Hz for fast-adapting (FA) receptors. Data were collected pre- and post-space flight. We hypothesized that skin sensitivity would increase post-space flight and correlate to balance measures. Decreased skin sensitivity was found on landing day at 3 and 25 Hz on the great toe. Hypersensitivity was found for a subset of astronauts (n = 6) with significantly increased sensitivity to 250 Hz at the heel. This subset displayed a greater reduction in computerized dynamic posturography (CDP) equilibrium (EQ) scores (-54%) on landing vs. non-hypersensitive participants (-11%). Observed hyposensitivity of SA (pressure) receptors may indicate a strategy to reduce pressure input during periods of unloading. Hypersensitivity of FAs coupled with reduced EQ scores may reflect targeted sensory reweighting. Altered gravito-inertial environments reduce vestibular function in balance control which may trigger increased weighting of FAs (that signal foot contact, slips). Understanding modulations to skin sensitivity has translational implications for mitigating postural disequilibrium following space flight and for on-Earth preventative strategies for imbalance in older adults.

  1. Body mass, energy intake, and water consumption of rats and humans during space flight

    NASA Technical Reports Server (NTRS)

    Wade, C. E.; Miller, M. M.; Baer, L. A.; Moran, M. M.; Steele, M. K.; Stein, T. P.

    2002-01-01

    Alteration of metabolism has been suggested as a major limiting factor to long-term space flight. In humans and primates, a negative energy balance has been reported. The metabolic response of rats to space flight has been suggested to result in a negative energy balance. We hypothesized that rats flown in space would maintain energy balance as indicated by maintenance of caloric intake and body mass gain. Further, the metabolism of the rat would be similar to that of laboratory-reared animals. We studied the results from 15 space flights lasting 4 to 19 d. There was no difference in average body weight (206 +/- 13.9 versus 206 +/- 14.8 g), body weight gain (5.8 +/- 0.48 versus 5.9 +/- 0.56 g/d), caloric intake (309 +/- 21.0 versus 309 +/- 20.1 kcal/kg of body mass per day), or water intake (200 +/- 8.6 versus 199 +/- 9.3 mL/kg of body mass per day) between flight and ground control animals. Compared with standard laboratory animals of similar body mass, no differences were noted. The observations suggested that the negative balance observed in humans and non-human primates may be due to other factors in the space-flight environment.

  2. ISS 7A.1 Flight Control Team Photo in BFCR

    NASA Image and Video Library

    2001-08-16

    JSC2001-02229 (16 August 2001) --- The members of the STS-105/ISS 7A.1 Orbit 1 team pose for a group portrait in the International Space Station (ISS) flight control room (BFCR) in Houston’s Mission Control Center (MCC). Flight director Mark Ferring is kneeling as he holds the Expedition Three mission logo. Astronaut Stephanie D. Wilson, ISS spacecraft communicator (CAPCOM), is standing behind Ferring.

  3. Coverage of STS-104 Launch Coverage of Flight Controllers in MCC.

    NASA Image and Video Library

    2001-07-12

    JSC2001-E-21338 (12 July 2001) --- Robert Gest (left), with United Space Alliance (USA); Steven A. Hawley, deputy director of flight crew operations; and Alan L. (Lee) Briscoe, chief engineer for the Mission Operations Directorate, watch their monitors at the MOD console in the shuttle flight control room (WFCR) as the external tank oxygen vent hood is raised and retracted minutes prior to the launch of the Space Shuttle Atlantis.

  4. Computational Physics for Space Flight Applications

    NASA Technical Reports Server (NTRS)

    Reed, Robert A.

    2004-01-01

    This paper presents viewgraphs on computational physics for space flight applications. The topics include: 1) Introduction to space radiation effects in microelectronics; 2) Using applied physics to help NASA meet mission objectives; 3) Example of applied computational physics; and 4) Future directions in applied computational physics.

  5. Control-oriented reduced order modeling of dipteran flapping flight

    NASA Astrophysics Data System (ADS)

    Faruque, Imraan

    Flying insects achieve flight stabilization and control in a manner that requires only small, specialized neural structures to perform the essential components of sensing and feedback, achieving unparalleled levels of robust aerobatic flight on limited computational resources. An engineering mechanism to replicate these control strategies could provide a dramatic increase in the mobility of small scale aerial robotics, but a formal investigation has not yet yielded tools that both quantitatively and intuitively explain flapping wing flight as an "input-output" relationship. This work uses experimental and simulated measurements of insect flight to create reduced order flight dynamics models. The framework presented here creates models that are relevant for the study of control properties. The work begins with automated measurement of insect wing motions in free flight, which are then used to calculate flight forces via an empirically-derived aerodynamics model. When paired with rigid body dynamics and experimentally measured state feedback, both the bare airframe and closed loop systems may be analyzed using frequency domain system identification. Flight dynamics models describing maneuvering about hover and cruise conditions are presented for example fruit flies (Drosophila melanogaster) and blowflies (Calliphorids). The results show that biologically measured feedback paths are appropriate for flight stabilization and sexual dimorphism is only a minor factor in flight dynamics. A method of ranking kinematic control inputs to maximize maneuverability is also presented, showing that the volume of reachable configurations in state space can be dramatically increased due to appropriate choice of kinematic inputs.

  6. Workshop on Exercise Prescription for Long-Duration Space Flight

    NASA Technical Reports Server (NTRS)

    Harris, Bernard A., Jr. (Editor); Stewart, Donald F. (Editor)

    1989-01-01

    The National Aeronautics and Space Administration has a dedicated history of ensuring human safety and productivity in flight. Working and living in space long term represents the challenge of the future. Our concern is in determining the effects on the human body of living in space. Space flight provides a powerful stimulus for adaptation, such as cardiovascular and musculoskeletal deconditioning. Extended-duration space flight will influence a great many systems in the human body. We must understand the process by which this adaptation occurs. The NASA is agressively involved in developing programs which will act as a foundation for this new field of space medicine. The hallmark of these programs deals with prevention of deconditioning, currently referred to as countermeasures to zero g. Exercise appears to be most effective in preventing the cardiovascular and musculoskeletal degradation of microgravity.

  7. Experiment 305: Pathophysiology of Mineral Loss During Space Flight

    NASA Technical Reports Server (NTRS)

    Arnaud, Claude D.; Cann, Christopher E.

    1995-01-01

    The objective of this SLS-2 experiment was to determine the pathophysiology of mineral loss during space flight. This was to be accomplished by (1) determining the concentrations of blood minerals and of calciotropic hormones (parathyroid hormone-PTH, vitamin D metabolites) before, during, and after a 14 day shuttle flight, and (2) determining, by calcium kinetic analysis (using stable calcium isotopes), the influence of space flight on intestinal calcium absorption .

  8. MS Ivins at the Atlantis aft flight deck controls

    NASA Image and Video Library

    2001-02-10

    STS98-E-5078 (10 February 2001) --- Astronaut Marsha S. Ivins, STS-98 mission specialist, monitors communications from ground controllers from her post at the aft flight deck controls on the Space Shuttle Atlantis. The scene was recorded with a digital still camera.

  9. Insulin secretion and sensitivity in space flight: diabetogenic effects

    NASA Technical Reports Server (NTRS)

    Tobin, Brian W.; Uchakin, Peter N.; Leeper-Woodford, Sandra K.

    2002-01-01

    Nearly three decades of space flight research have suggested that there are subclinical diabetogenic changes that occur in microgravity. Alterations in insulin secretion, insulin sensitivity, glucose tolerance, and metabolism of protein and amino acids support the hypothesis that insulin plays an essential role in the maintenance of muscle mass in extended-duration space flight. Experiments in flight and after flight and ground-based bedrest studies have associated microgravity and its experimental paradigms with manifestations similar to those of diabetes, physical inactivity, and aging. We propose that these manifestations are characterized best by an etiology that falls into the clinical category of "other" causes of diabetes, including, but not restricted to, genetic beta-cell defects, insulin action defects, diseases of the endocrine pancreas, endocrinopathies, drug or chemically induced diabetes, infections, immune-mediated metabolic alteration, and a host of genetic related diseases. We present data showing alterations in tumor necrosis factor-alpha production, insulin secretion, and amino acid metabolism in pancreatic islets of Langerhans cultured in a ground-based cell culture bioreactor that mimics some of the effects of microgravity. Taken together, space flight research, ground-based studies, and bioreactor studies of pancreatic islets of Langerhans support the hypothesis that the pancreas is unable to overcome peripheral insulin resistance and amino acid dysregulation during space flight. We propose that measures of insulin secretion and insulin action will be necessary to design effective countermeasures against muscle loss, and we advance the "disposition index" as an essential model to be used in the clinical management of space flight-induced muscle loss.

  10. Research and Technology Report. Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald (Editor); Truszkowski, Walter (Editor); Ottenstein, Howard (Editor); Frost, Kenneth (Editor); Maran, Stephen (Editor); Walter, Lou (Editor); Brown, Mitch (Editor)

    1996-01-01

    This issue of Goddard Space Flight Center's annual report highlights the importance of mission operations and data systems covering mission planning and operations; TDRSS, positioning systems, and orbit determination; ground system and networks, hardware and software; data processing and analysis; and World Wide Web use. The report also includes flight projects, space sciences, Earth system science, and engineering and materials.

  11. Space Flight Resource Management for ISS Operations

    NASA Technical Reports Server (NTRS)

    Schmidt, Larry; Slack, Kelley; O'Keefe, William; Huning, Therese; Sipes, Walter; Holland, Albert

    2011-01-01

    This slide presentation reviews the International Space Station (ISS) Operations space flight resource management, which was adapted to the ISS from the shuttle processes. It covers crew training and behavior elements.

  12. Cell-Mediated Immune Function and Cytokine Regulation During Space Flight

    NASA Technical Reports Server (NTRS)

    Sams, Clarence F.; Pierson, Duane L.; Paloski, W. H. (Technical Monitor)

    2000-01-01

    The changes in immune function which occur during space flight potentially expose the crews to an increased risk for development of illness. Decreased cellular immune function has been repeatedly documented after space flight and confirmed during flight by in vivo delayed-type hypersensitivity testing. However, correlation of immune changes with a clinically significant risk factor has not yet been performed. Our hypothesis is that space flight induces a decrease in cell-mediated immune function accompanied by a shift from a type 1 cytokine pattern (favoring cell-mediated immunity) to a type 2 cytokine pattern (favoring humoral immunity). We further hypothesize that reactivation of latent viruses will occur during space flight in association with the decreased cellular immunity. To test these hypotheses, we will determine the effects of space flight on cell-mediated immunity and viral reactivation. We will utilize delayed-type hypersensitivity testing as an in vivo measure of integrated cell-mediated immune function. The production of cytokines and immunoregulatory factors by lymphocytes and monocytes will be measured to determine whether changes in cytokine patterns are associated with the space flight-induced immune dysregulation. Correlation of antigen-specific immune changes with reactivation of latent herpes viruses will be determined by measuring peripheral levels of viral (CMV, VZV, EBV) antigen-specific T cells and comparing to the levels of EBV-infected B-cells by fluorescence in situ hybridization and flow cytometry. A comparison of cell-mediated immune function, cytokine regulation and viral reactivation will provide new insights into crew member health risks during flight.

  13. Implementation of Satellite Formation Flight Algorithms Using SPHERES Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Mandy, Christophe P.; Sakamoto, Hiraku; Saenz-Otero, Alvar; Miller, David W.

    2007-01-01

    The MIT's Space Systems Laboratory developed the Synchronized Position Hold Engage and Reorient Experimental Satellites (SPHERES) as a risk-tolerant spaceborne facility to develop and mature control, estimation, and autonomy algorithms for distributed satellite systems for applications such as satellite formation flight. Tests performed study interferometric mission-type formation flight maneuvers in deep space. These tests consist of having the satellites trace a coordinated trajectory under tight control that would allow simulated apertures to constructively interfere observed light and measure the resulting increase in angular resolution. This paper focuses on formation initialization (establishment of a formation using limited field of view relative sensors), formation coordination (synchronization of the different satellite s motion) and fuel-balancing among the different satellites.

  14. Tether dynamics and control results for tethered satellite system's initial flight

    NASA Astrophysics Data System (ADS)

    Chapel, Jim D.; Flanders, Howard

    The recent Tethered Satellite System-1 (TSS-1) mission has provided a wealth of data concerning the dynamics of tethered systems in space and has demonstrated the effectiveness of operational techniques designed to control these dynamics. In this paper, we review control techniques developed for managing tether dynamics, and discuss the results of using these techniques for the Tethered Satellite System's maiden flight on STS-46. In particular, the flight results of controlling libration dynamics, string dynamics, and slack tether are presented. These results show that tether dynamics can be safely managed. The overall stability of the system was found to be surprisingly good even at relatively short tether lengths. In fact, the system operated in passive mode at a tether length of 256 meters for over 9 hours. Only monitoring of the system was required during this time. Although flight anomalies prevented the planned deployment to 20 km, the extended operations at shorter tether lengths have proven the viability of using tethers in space. These results should prove invaluable in preparing for future missions with tethered objects in space.

  15. Tether dynamics and control results for tethered satellite system's initial flight

    NASA Technical Reports Server (NTRS)

    Chapel, Jim D.; Flanders, Howard

    1993-01-01

    The recent Tethered Satellite System-1 (TSS-1) mission has provided a wealth of data concerning the dynamics of tethered systems in space and has demonstrated the effectiveness of operational techniques designed to control these dynamics. In this paper, we review control techniques developed for managing tether dynamics, and discuss the results of using these techniques for the Tethered Satellite System's maiden flight on STS-46. In particular, the flight results of controlling libration dynamics, string dynamics, and slack tether are presented. These results show that tether dynamics can be safely managed. The overall stability of the system was found to be surprisingly good even at relatively short tether lengths. In fact, the system operated in passive mode at a tether length of 256 meters for over 9 hours. Only monitoring of the system was required during this time. Although flight anomalies prevented the planned deployment to 20 km, the extended operations at shorter tether lengths have proven the viability of using tethers in space. These results should prove invaluable in preparing for future missions with tethered objects in space.

  16. Deep-Space Ka-Band Flight Experience

    NASA Astrophysics Data System (ADS)

    Morabito, D. D.

    2017-11-01

    Lower frequency bands have become more congested in allocated bandwidth as there is increased competition between flight projects and other entities. Going to higher frequency bands offers significantly more bandwidth, allowing for the use of much higher data rates. However, Ka-band is more susceptible to weather effects than lower frequency bands currently used for most standard downlink telemetry operations. Future or prospective flight projects considering deep-space Ka-band (32-GHz) telemetry data links have expressed an interest in understanding past flight experience with received Ka-band downlink performance. Especially important to these flight projects is gaining a better understanding of weather effects from the experience of current or past missions that operated Ka-band radio systems. We will discuss the historical flight experience of several Ka-band missions starting from Mars Observer in 1993 up to present-day deep-space missions such as Kepler. The study of historical Ka-band flight experience allows one to recommend margin policy for future missions. Of particular interest, we will review previously reported-on flight experience with the Cassini spacecraft Ka-band radio system that has been used for radio science investigations as well as engineering studies from 2004 to 2015, when Cassini was in orbit around the planet Saturn. In this article, we will focus primarily on the Kepler spacecraft Ka-band link, which has been used for operational telemetry downlink from an Earth trailing orbit where the spacecraft resides. We analyzed the received Ka-band signal level data in order to characterize link performance over a wide range of weather conditions and as a function of elevation angle. Based on this analysis of Kepler and Cassini flight data, we found that a 4-dB margin with respect to adverse conditions ensures that we achieve at least a 95 percent data return.

  17. Habitability and Behavioral Issues of Space Flight.

    ERIC Educational Resources Information Center

    Stewart, R. A., Jr.

    1988-01-01

    Reviews group behavioral issues from past space missions and simulations such as the Skylab Medical Experiments Altitude Test, Skylab missions, and Shuttle Spacelab I mission. Makes recommendations for future flights concerning commandership, crew selection, and ground-crew communications. Pre- and in-flight behavioral countermeasures are…

  18. Space flight and oxidative stress

    NASA Technical Reports Server (NTRS)

    Stein, T. P.

    2002-01-01

    Space flight is associated with an increase in oxidative stress after return to 1g. The effect is more pronounced after long-duration space flight. The effects lasts for several weeks after landing. In humans there is increased lipid peroxidation in erythrocyte membranes, reduction in some blood antioxidants, and increased urinary excretion of 8-iso-prostaglandin F(2alpha) and 8-oxo-7,8 dihydro-2 deoxyguanosine. Isoprostane 8-iso-prostaglandin F(2alpha) and 8-oxo-7,8 dihydro-2 deoxyguanosine are markers for oxidative damage to lipids and DNA, respectively. The changes have been attributed to a combination of the energy deficiency that occurs during flight and substrate competition for amino acids occurring between repleting muscle and other tissues during the recovery phase. The observations in humans have been complemented by rodent studies. Most rodent studies showed increased production of lipid peroxidation products postflight and decreased antioxidant enzyme activity postflight. The rodent observations were attributed to the stress associated with reentry into Earth's gravity. Decreasing the imbalance between the production of endogenous oxidant defenses and oxidant production by increasing the supply of dietary antioxidants may lessen the severity of the postflight increase in oxidative stress.

  19. Flight-determined benefits of integrated flight-propulsion control systems

    NASA Technical Reports Server (NTRS)

    Stewart, James F.; Burcham, Frank W., Jr.; Gatlin, Donald H.

    1992-01-01

    Over the last two decades, NASA has conducted several experiments in integrated flight-propulsion control. Benefits have included improved maneuverability; increased thrust, range, and survivability; reduced fuel consumption; and reduced maintenance. This paper presents the basic concepts for control integration, examples of implementation, and benefits. The F-111E experiment integrated the engine and inlet control systems. The YF-12C incorporated an integral control system involving the inlet, autopilot, autothrottle, airdata, navigation, and stability augmentation systems. The F-15 research involved integration of the engine, flight, and inlet control systems. Further extension of the integration included real-time, onboard optimization of engine, inlet, and flight control variables; a self-repairing flight control system; and an engines-only control concept for emergency control. The F-18A aircraft incorporated thrust vectoring integrated with the flight control system to provide enhanced maneuvering at high angles of attack. The flight research programs and the resulting benefits of each program are described.

  20. Hemodynamic Effects of Midodrine After Space Flight in Astronauts Without Orthostatic Hypotension

    NASA Technical Reports Server (NTRS)

    Platts, Steven H.; Ziegler, Michael G.; Waters, Wendy W.; Meck, Janice V.

    2006-01-01

    Orthostatic hypotension and presyncope are common and potentially serious risks for astronauts returning from space. Susceptible subjects fail to generate an adequate adrenergic response to upright posture. The -1 adrenergic agonist, midodrine, may be an effective countermeasure. We tested the hypothesis that midodrine would have no negative hemodynamic effect on healthy astronauts returning from space. Five male astronauts participated in preflight and postflight tilt testing on a control flight as well as on the test flights, where midodrine (10 mg, orally) was administered after landing, approximately 1 hour before testing. None of these astronauts exhibited orthostatic hypotension or presyncope before or after either flight. Midodrine did not cause any untoward reactions in these subjects before or after flight, in fact a modest beneficial effect was seen on postflight tachycardia (p=0.036). These data show that midodrine protected against post-spaceflight increases in heart rate, without having any adverse hemodynamic effects on non-presyncopal, male astronauts. Among these subjects, midodrine was a safe cardiovascular countermeasure.

  1. Human Space Flight Plans Committee

    NASA Image and Video Library

    2009-08-12

    Former astronaut Dr. Sally Ride, left, confers with Norman Augustine, chair, prior to the start of the final meeting of the Human Space Flight Review Committee, Wednesday, Aug. 12, 2009, in Washington. Photo Credit: (NASA/Paul E. Alers)

  2. Human Space Flight Plans Committee

    NASA Image and Video Library

    2009-12-07

    Former astronaut Dr. Sally Ride, left, confers with Norman Augustine, chair, prior to the start of the final meeting of the Human Space Flight Review Committee, Wednesday, Aug. 12, 2009, in Washington. Photo Credit: (NASA/Paul E. Alers)

  3. Sensory-Motor Adaptation to Space Flight: Human Balance Control and Artificial Gravity

    NASA Technical Reports Server (NTRS)

    Paloski, William H.

    2004-01-01

    Gravity, which is sensed directly by the otolith organs and indirectly by proprioceptors and exteroceptors, provides the CNS a fundamental reference for estimating spatial orientation and coordinating movements in the terrestrial environment. The sustained absence of gravity during orbital space flight creates a unique environment that cannot be reproduced on Earth. Loss of this fundamental CNS reference upon insertion into orbit triggers neuro-adaptive processes that optimize performance for the microgravity environment, while its reintroduction upon return to Earth triggers neuro-adaptive processes that return performance to terrestrial norms. Five pioneering symposia on The Role of the Vestibular Organs in the Exploration of Space were convened between 1965 and 1970. These innovative meetings brought together the top physicians, physiologists, and engineers in the vestibular field to discuss and debate the challenges associated with human vestibular system adaptation to the then novel environment of space flight. These highly successful symposia addressed the perplexing problem of how to understand and ameliorate the adverse physiological effects on humans resulting from the reduction of gravitational stimulation of the vestibular receptors in space. The series resumed in 2002 with the Sixth Symposium, which focused on the microgravity environment as an essential tool for the study of fundamental vestibular functions. The three day meeting included presentations on historical perspectives, vestibular neurobiology, neurophysiology, neuroanatomy, neurotransmitter systems, theoretical considerations, spatial orientation, psychophysics, motor integration, adaptation, autonomic function, space motion sickness, clinical issues, countermeasures, and rehabilitation. Scientists and clinicians entered into lively exchanges on how to design and perform mutually productive research and countermeasure development projects in the future. The problems posed by long duration

  4. Control of NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    VanZwieten, Tannen S.

    2014-01-01

    The flight control system for the NASA Space Launch System (SLS) employs a control architecture that evolved from Saturn, Shuttle & Ares I-X while also incorporating modern enhancements. This control system, baselined for the first unmanned launch, has been verified and successfully flight-tested on the Ares I-X rocket and an F/A-18 aircraft. The development of the launch vehicle itself came on the heels of the Space Shuttle retirement in 2011, and will deliver more payload to orbit and produce more thrust than any other vehicle, past or present, opening the way to new frontiers of space exploration as it carries the Orion crew vehicle, equipment, and experiments into new territories. The initial 70 metric ton vehicle consists of four RS-25 core stage engines from the Space Shuttle inventory, two 5- segment solid rocket boosters which are advanced versions of the Space Shuttle boosters, and a core stage that resembles the External Tank and carries the liquid propellant while also serving as the vehicle's structural backbone. Just above SLS' core stage is the Interim Cryogenic Propulsion Stage (ICPS), based upon the payload motor used by the Delta IV Evolved Expendable Launch Vehicle (EELV).

  5. Renal-Stone Risk Assessment During Space Shuttle Flights

    NASA Technical Reports Server (NTRS)

    Whitson, Peggy A.; Pietrzyk, Robert A.; Pak, Charles Y. C.

    1996-01-01

    The metabolic and environmental factors influencing renal stone formation before, during, and after Space Shuttle flights were assessed. We established the contributing roles of dietary factors in relationship to the urinary risk factors associated with renal stone formation. 24-hr urine samples were collected prior to, during space flight, and following landing. Urinary factors associated with renal stone formation were analyzed and the relative urinary supersaturation ratios of calcium oxalate, calcium phosphate (brushite), sodium urate, struvite and uric acid were calculated. Food and fluid consumption was recorded for a 48-hr period ending with the urine collection. Urinary composition changed during flight to favor the crystallization of stone-forming salts. Factors that contributed to increased potential for stone formation during space flight were significant reductions in urinary pH and increases in urinary calcium. Urinary output and citrate, a potent inhibitor of calcium-containing stones, were slightly reduced during space flight. Dietary intakes were significantly reduced for a number of variables, including fluid, energy, protein, potassium, phosphorus and magnesium. This is the first in-flight characterization of the renal stone forming potential in astronauts. With the examination of urinary components and nutritional factors, it was possible to determine the factors that contributed to increased risk or protected from risk. In spite of the protective components, the negative contributions to renal stone risk predominated and resulted in a urinary environment that favored the supersaturation of stone-forming salts. The importance of the hypercalciuria was noted since renal excretion was high relative to the intake.

  6. Update on the Effects of Space Flight on Development of Immune Responses

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, G.; Foster, M.; Morton, D.; Bailliard, F.; Fowler, N. A.; Hakenwewerth, A. M.; Bates, R.; Miller, E. S.

    1999-01-01

    This study has been completed, and the following is an update of the results as published. Pregnant rats were flown on the Space Shuttle in the NIH.R I mission for 11 days, and pregnant control rats were maintained in animal enclosure modules in a ground-based chamber under conditions approximating those in flight. Additional controls were in standard housing. The effects of the flight on immunological parameters (including blastogenesis, interferon-gamma production, response to colony stimulating factor and total immunoglobulin levels) of dams, fetuses, and pups was determined.

  7. Impact of space flight on bacterial virulence and antibiotic susceptibility

    PubMed Central

    Taylor, Peter William

    2015-01-01

    Manned space flight induces a reduction in immune competence among crew and is likely to cause deleterious changes to the composition of the gastrointestinal, nasal, and respiratory bacterial flora, leading to an increased risk of infection. The space flight environment may also affect the susceptibility of microorganisms within the spacecraft to antibiotics, key components of flown medical kits, and may modify the virulence characteristics of bacteria and other microorganisms that contaminate the fabric of the International Space Station and other flight platforms. This review will consider the impact of true and simulated microgravity and other characteristics of the space flight environment on bacterial cell behavior in relation to the potential for serious infections that may appear during missions to astronomical objects beyond low Earth orbit. PMID:26251622

  8. [Kidney stone formation during space flight and long-term bed rest].

    PubMed

    Okada, Atsushi; Ichikawa, Jun; Tozawa, Keiichi

    2011-10-01

    Microgravity environment like space flight or a condition requiring long-term bed-rest increase bone resorption and decrease bone formation, inducing the rapid decrease of bone minerals to osteoporosis. Bone mineral loss increases urinary calcium excretion and the risk of urinary stone formation. To clarify the influence of the conditions on renal stone formation, a 90-day bed rest test was performed to analyze the mechanism of microgravity or bed rest-induced stone formation and prevention by bisphosphonate medication and bed-rest exercise. As the results, renal stone formation was observed in control and exercise groups and no stone was seen in the medication group. In the medication group, urinary calcium excretion and relative supersaturation of calcium oxalate were lower than in the control group throughout the bed-rest and recovery period. Bisphosphonate is useful for the prevention of renal stone formation during space flight and long-term bed-rest.

  9. Human factors in long-duration space flight

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A study, covering the behavioral, psychological, physiological, and medical factors of long duration manned space flight, is presented. An attempt was made to identify and resolve major obstacles and unknowns associated with such a flight. The costs and maintenance of the spacecraft system are also explored.

  10. The effects of space flight on some rat liver enzymes regulating carbohydrate and lipid metabolism

    NASA Technical Reports Server (NTRS)

    Abraham, S.; Lin, C. Y.; Klein, H. P.; Volkmann, C.

    1981-01-01

    The effects of space flight conditions on the activities of certain enzymes regulating carbohydrate and lipid metabolism in rat liver are investigated in an attempt to account for the losses in body weight observed during space flight despite preflight caloric consumption. Liver samples were analyzed for the activities of 32 cytosolic and microsomal enzymes as well as hepatic glycogen and individual fatty acid levels for ground control rats and rats flown on board the Cosmos 936 biosatellite under normal space flight conditions and in centrifuges which were sacrificed upon recovery or 25 days after recovery. Significant decreases in the activities of glycogen phosphorylase, alpha-glycerol phosphate acyl transferase, diglyceride acyl transferase, aconitase and 6-phosphogluconate dehydrogenase and an increase in palmitoyl CoA desaturase are found in the flight stationary relative to the flight contrifuged rats upon recovery, with all enzymes showing alterations returning to normal values 25 days postflight. The flight stationary group is also observed to be characterized by more than twice the amount of liver glycogen of the flight centrifuged group as well as a significant increase in the ratio of palmitic to palmitoleic acid. Results thus indicate metabolic changes which may be involved in the mechanism of weight loss during weightlessness, and demonstrate the equivalence of centrifugation during space flight to terrestrial gravity.

  11. ISS 7A.1 Flight Control Team Photo in BFCR

    NASA Image and Video Library

    2001-08-17

    JSC2001-02225 (17 August 2001) --- The members of the STS-105/ISS 7A.1 Orbit 2 team pose for a group portrait in the International Space Station (ISS) flight control room (BFCR) in Houston’s Mission Control Center (MCC). Orbit 2 flight director Rick LaBrode (front right) holds the STS-105 mission logo, and Astronaut Joan E. Higginbotham, ISS spacecraft communicator (CAPCOM), holds the ISS 7A.1 mission logo.

  12. Human Factors in Space Flight

    NASA Technical Reports Server (NTRS)

    Woolford, Barbara J.; Mount, Frances

    2005-01-01

    After forty years of experience with human space flight (Table 1), the current emphasis is on the design of space vehicles, habitats, and missions to ensure mission success. What lessons have we learned that will affect the design of spacecraft for future space exploration, leading up to exploring Mars? This chapter addresses this issue in four sections: Anthropometry and Biomechanics; Environmental Factors; Habitability and Architecture; and Crew Personal Sustenance. This introductory section introduces factors unique to space flight. A unique consideration for design of a habitable volume in a space vehicle is the lack of gravity during a space flight, referred to as microgravity. This affects all aspects of life, and drives special features in the habitat, equipment, tools, and procedures. The difference in gravity during a space mission requires designing for posture and motion differences. In Earth s gravity, or even with partial gravity, orientation is not a variable because the direction in which gravity acts defines up and down. In a microgravity environment the working position is arbitrary; there is no gravity cue. Orientation is defined primarily through visual cues. The orientation within a particular crew station or work area is referred to as local vertical, and should be consistent within a module to increase crew productivity. Equipment was intentionally arranged in various orientations in one module on Skylab to assess the efficiency in use of space versus the effects of inconsistent layout. The effects of that arrangement were confusion on entering the module, time spent in re-orientation, and conflicts in crew space requirements when multiple crew members were in the module. Design of a space vehicle is constrained by the three major mission drivers: mass, volume and power. Each of these factors drives the cost of a mission. Mass and volume determine the size of the launch vehicle directly; they can limit consumables such as air, water, and

  13. Postural Responses Following Space Flight and Ground Based Analogs

    NASA Technical Reports Server (NTRS)

    Kofman, Igor S.; Reschke, Millard F.; Cerisano, Jody M.; Fisher, Elizabeth A.; Tomilovskaya, Elena V.; Kozlovskaya, Inessa B.; Bloomberg, Jacob B.

    2013-01-01

    With the transition from the Shuttle program to the International Space Station (ISS), the opportunity to fly sensorimotor experiments in a weightless environment has become increasingly more difficult to obtain. As a result, more investigations have turned to ground-based analogs as a way of evaluating an experiment's viability. The two primary analogs available to most investigators are 6deg head down bed rest (HDBR) and dry immersion (DI). For the time being, HDBR investigations have been associated with studies conducted in the United States while the Russians and several other European Union states have concentrated their efforts on using DI as the space flight analog of choice. While either model may be viable for cardiovascular, bone and other system changes, vestibular and sensorimotor investigators have retained serious reservations of either analog's potential to serve as a replacement for a true weightless environment. These reservations have merit, but it is worthwhile to consider that not all changes associated with sensorimotor function during space flight are the result of top-down modifications, but may also be due to the lack, or change, of appropriate support surfaces applying force to the bottom of the feet. To this end we have compared quiet stance postural responses between short duration Space Shuttle flights, long duration ISS flights and HDBR of varying duration. Using these three platforms, representing different modifications of support we investigated postural ataxia using a quiet stance model. Quiet stance was obtained by asking the subjects to stand upright on a force plate, eyes open, arms at the side of the body for three min. From the force plate we obtained average sway velocity in two axes as well as length of line (stabilogram). These parameters were then related to EMG activity recorded from the medial gastrocnemius and lateral tibialis. It is significant to note that postural ataxia measured as quiet stance shows analogous

  14. Space flight-associated neuro-ocular syndrome (SANS).

    PubMed

    Lee, Andrew G; Mader, Thomas H; Gibson, C Robert; Brunstetter, Tyson J; Tarver, William J

    2018-03-12

    Interesting novel and somewhat perplexing physiologic and pathologic neuro-ocular findings have been documented in astronauts during and after long duration space flight (LDSF). These findings collectively have been termed the "space flight-associated neuro-ocular syndrome" (SANS). The National Aeronautics and Space Administration (NASA) in the United States has meticulously and prospectively documented the clinical, ultrasound, optical coherence tomography imaging, and radiographic findings of SANS including unilateral and bilateral optic disc edema, globe flattening, choroidal and retinal folds, hyperopic refractive error shifts, and nerve fiber layer infarcts (i.e., cotton wool spots). NASA and collaborating researchers continue to study SANS in preparation for future manned missions to space, including continued trips to the ISS, a return to the moon, or perhaps new voyages to the asteroid belt, or the planet, Mars.

  15. Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq

    PubMed Central

    Wilson, J. W.; Ott, C. M.; zu Bentrup, K. Höner; Ramamurthy, R.; Quick, L.; Porwollik, S.; Cheng, P.; McClelland, M.; Tsaprailis, G.; Radabaugh, T.; Hunt, A.; Fernandez, D.; Richter, E.; Shah, M.; Kilcoyne, M.; Joshi, L.; Nelman-Gonzalez, M.; Hing, S.; Parra, M.; Dumars, P.; Norwood, K.; Bober, R.; Devich, J.; Ruggles, A.; Goulart, C.; Rupert, M.; Stodieck, L.; Stafford, P.; Catella, L.; Schurr, M. J.; Buchanan, K.; Morici, L.; McCracken, J.; Allen, P.; Baker-Coleman, C.; Hammond, T.; Vogel, J.; Nelson, R.; Pierson, D. L.; Stefanyshyn-Piper, H. M.; Nickerson, C. A.

    2007-01-01

    A comprehensive analysis of both the molecular genetic and phenotypic responses of any organism to the space flight environment has never been accomplished because of significant technological and logistical hurdles. Moreover, the effects of space flight on microbial pathogenicity and associated infectious disease risks have not been studied. The bacterial pathogen Salmonella typhimurium was grown aboard Space Shuttle mission STS-115 and compared with identical ground control cultures. Global microarray and proteomic analyses revealed that 167 transcripts and 73 proteins changed expression with the conserved RNA-binding protein Hfq identified as a likely global regulator involved in the response to this environment. Hfq involvement was confirmed with a ground-based microgravity culture model. Space flight samples exhibited enhanced virulence in a murine infection model and extracellular matrix accumulation consistent with a biofilm. Strategies to target Hfq and related regulators could potentially decrease infectious disease risks during space flight missions and provide novel therapeutic options on Earth. PMID:17901201

  16. NASA Deputy Administrator Tours Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Pictured from the left, in the Saturn I mockup, are: William Brooksbank, Marshall Space Flight Center (MSFC) Propulsion and Vehicle Engineering Laboratory; Dr. Thomas O. Paine, Deputy Administrator of the National Aeronautics and Space Administration (NASA); Dr. Wernher von Braun, MSFC director; Colonel Clare F. Farley, executive officer of the Office of the Administrator; and Charles J. Donlan, newly appointed deputy associate administrator for Manned Space Flight, technical. The party examined an ordinary man's shoe (held by Paine) outfitted for use in the Saturn I Workshop. The shoe had a unique fastener built into the sole to allow an astronaut to move about the workshop floor and to remain in one position if he desired. Dr. Paine and his party indulged in a two-day tour at the Marshall Space Flight Center getting acquainted with Marshall personnel and programs. It was Paine's first visit to the center since assuming the NASA post on February 1, 1968.

  17. Body Fluid Regulation and Hemopoiesis in Space Flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this session, Session JA2, the discussion focuses on the following topics: Bodymass and Fluid Distribution During Longterm Spaceflight with and without Countermeasures; Plasma Volume, Extracellular Fluid Volume, and Regulatory Hormones During Long-Term Space Flight; Effect of Microgravity and its Ground-Based Models on Fluid Volumes and Hemocirculatory Volumes; Seventeen Weeks of Horizontal Bed Rest, Lower Body Negative Pressure Testing, and the Associated Plasma Volume Response; Evaporative Waterloss in Space Theoretical and Experimental Studies; Erythropoietin Under Real and Simulated Micro-G Conditions in Humans; and Vertebral Bone Marrow Changes Following Space Flight.

  18. 14 CFR 460.45 - Operator informing space flight participant of risk.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... understanding of the hazards and risks of the mission, and each space flight participant must then provide... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Operator informing space flight participant of risk. 460.45 Section 460.45 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL...

  19. 14 CFR 460.45 - Operator informing space flight participant of risk.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... understanding of the hazards and risks of the mission, and each space flight participant must then provide... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Operator informing space flight participant of risk. 460.45 Section 460.45 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL...

  20. 14 CFR 460.45 - Operator informing space flight participant of risk.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... understanding of the hazards and risks of the mission, and each space flight participant must then provide... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Operator informing space flight participant of risk. 460.45 Section 460.45 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL...