Science.gov

Sample records for space flight effects

  1. Physiological effects of space flight

    NASA Technical Reports Server (NTRS)

    Huntoon, Carolyn L.

    1989-01-01

    Data from Skylab and Space Shuttle missions are used as a framework for discussing the physiological effects of space flight. Consideration is given to motion sickness, and changes in body fluids, the cardiovascular system, and red blood cell counts. In addition, changes in muscle mass, bone mass, and the immune system, and neurosensory disturbances are examined.

  2. Effect of space flight on cytokine production

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Gerald

    Space flight has been shown to alter many immunological responses. Among those affected are the production of cytokines, Cytokines are the messengers of the immune system that facilitate communication among cells that allow the interaction among cells leading to the development of immune responses. Included among the cytokines are the interferons, interleukins, and colony stimulating factors. Cytokines also facilitate communication between the immune system and other body systems, such as the neuroendocrine and musculoskeletal systems. Some cytokines also have direct protective effects on the host, such as interferon, which can inhibit the replication of viruses. Studies in both humans and animals indicate that models of space flight as well as actual space flight alter the production and action of cytokines. Included among these changes are altered interferon production, altered responsiveness of bone marrow cells to granulocyte/monocyte-colony stimulating factor, but no alteration in the production of interleukin-3. This suggests that there are selective effects of space flight on immune responses, i.e. not all cytokines are affected in the same fashion by space flight. Tissue culture studies also suggest that there may be direct effects of space flight on the cells responsible for cytokine production and action. The results of the above study indicate that the effects of space flight on cytokines may be a fundamental mechanism by which space flight not only affects immune responses, but also other biological systems of the human.

  3. Effect of space flight on bone strength

    NASA Technical Reports Server (NTRS)

    Spengler, D. M.; Morey, E. R.; Carter, D. R.; Turner, R. T.; Baylink, D. J.

    1982-01-01

    To test the possibility that spaceflight has a deleterious effect on bone mechanical properties, femur breaking strength by torsional loading in rats that had been flown for 19 days aboard Cosmos 936 was determined. The results showed that femurs from flight rats were less stiff than the flight controls, and failed under torsion at a lower torque and energy of absorption. The defect was corrected following space flight and could be prevented during space flight by centrifuging the rats at 1 x g. Altered bone geometry due to inhibition of bone formation at the periosteal surface provides the most likely explanation for the decrease in bone strength during spaceflight.

  4. Effect of space flight on bone strength

    NASA Technical Reports Server (NTRS)

    Spengler, D. M.; Morey, E. R.; Carter, D. R.; Turner, R. T.; Baylink, D. J.

    1982-01-01

    To test the possibility that spaceflight has a deleterious effect on bone mechanical properties, femur breaking strength by torsional loading in rats that had been flown for 19 days aboard Cosmos 936 was determined. The results showed that femurs from flight rats were less stiff than the flight controls, and failed under torsion at a lower torque and energy of absorption. The defect was corrected following space flight and could be prevented during space flight by centrifuging the rats at 1 x g. Altered bone geometry due to inhibition of bone formation at the periosteal surface provides the most likely explanation for the decrease in bone strength during spaceflight.

  5. Effects of Space Flight on Rodent Tissues

    NASA Technical Reports Server (NTRS)

    Worgul, Basil V.

    1997-01-01

    As the inevitable expression of mankind's search for knowledge continues into space, the potential acute and long-term effects of space flight on human health must be fully appreciated. Despite its critical role relatively little is known regarding the effects of the space environment on the ocular system. Our proposed studies were aimed at determining whether or not space flight causes discernible disruption of the genomic integrity, cell kinetics, cytoarchitecture and other cytological parameters in the eye. Because of its defined and singular biology our main focus was on the lens and possible changes associated with its primary pathology, cataract. We also hoped to explore the possible effect of space flight on the preferred orientation of dividing cells in the perilimbal region of conjunctiva and cornea.

  6. Space flight effects on bacterial physiology.

    PubMed

    Leys, N M E J; Hendrickx, L; De Boever, P; Baatout, S; Mergeay, M

    2004-01-01

    The study of bacterial behavior under space flight conditions is highly important for the early detection of changes in bacterial communities and bacteria with medical, environmental, or life support consequences for survival of the crew in closed space environments. Although many species of prokaryotes have been studied in ground simulation facilities or have been flown in space flights, at present only few hard research data are available to predict the effects of cosmic radiation, microgravity, vibration and hypervelocity on microbial behavior in space flight. The results that are available tend to be fragmentary and often lack a classical, controlled experimental context to interpret them. Thus, many basic questions concerning the effects of space on microbial behavior have yet to be resolved.

  7. [Effect of space flight on yield of Monascus purpureus].

    PubMed

    Yin, Hong; Xie, Shen-yi; Zhang, Guang-ming; Xie, Shen-meng

    2003-10-01

    To select high Lovastatin-producing microbial breed by space flight. Monascus purpureus species was carried into space by the recoverable spaceship, "Shenzhou 3". After flight, the strain was rejuvenized, segregated and selected. The content of Lovastatin produced in the solid fermentation was examined. Mutants with high productivity of Lovastatin were obtained. A series of tests showed that the acquired character of the mutants was stable. Space flight is an effective method for the selection of fine strains.

  8. Effects of space flight and IGF-1 on immune function

    NASA Astrophysics Data System (ADS)

    1999-01-01

    We tested the hypothesis that insulin-like growth factor-1 (IGF-1) would ameliorate space flight-induced effects on the immune system. Twelve male, Sprague-Dawley rats, surgically implanted with mini osmotic pumps, were subjected to space flight for 10 days on STS-77. Six rats received 10 mg/kg/day of IGF-1 and 6 rats received saline. Flight animals had a lymphocytopenia and granulocytosis which were reversed by IGF-1. Flight animals had significantly higher corticosterone levels than ground controls but IGF-1 did not impact this stress hormone. Therefore, the reversed granulocytosis did not correlate with serum corticosterone. Space flight and IGF-1 also combined to induce a monocytopenia that was not evident in ground control animals treated with IGF-1 or in animals subjected to space flight but given physiological saline. There was a significant increase in spleen weights in vivarium animals treated with IGF-1, however, this change did not occur in flight animals. We observed reduced agonist-induced lymph node cell proliferation by cells from flight animals compared to ground controls. The reduced proliferation was not augmented by IGF-1 treatment. There was enhanced secretion of TNF, IL-6 and NO by flight-animal peritoneal macrophages compared to vivarium controls, however, O2- secretion was not affected. These data suggest that IGF-1 can ameliorate some of the effects of space flight but that space flight can also impact the normal response to IGF-1.

  9. Effects of space flight factors on Drosophila.

    PubMed

    Dubinin, N P; Glembotsky, Y L; Vaulina, E N; Grozdova, T Y; Kamshilova, E M; Ivaschenko, N I; Kholikova, I A; Nechitailo, G S; Mashinsky, A L; Iordanishvili, E K

    1973-01-01

    Drosophila melanogaster flies of strain D-32 were exposed aboard the Soyuz 10 spaceship. An insert with a nutritional medium and insects was placed in a small on-board thermostat (Biotherm II) providing a constant temperature (24 degrees C +/- 1 degree) for Drosophila development. The frequency of dominant lethals was determined in the females. Dominant, autosomal and sex-linked recessive lethals were estimated in hatching virgin males and females; the time of hatching was rigorously fixed. Sex-linked recessive lethals were related to certain stages of gametogenesis. The 1-5 oocyte stage showed an increased sensitivity to space-flight factors as regards the frequency of both dominant and recessive lethals.

  10. The effects of space radiation on flight film

    NASA Technical Reports Server (NTRS)

    Holly, Mark H.

    1995-01-01

    The Shuttle and its cargo are occasionally exposed to an amount of radiation large enough to create non-image forming exposures (fog) on photographic flight film. The television/photography working group proposed a test plan to quantify the sensitivity of photographic films to space radiation. This plan was flown on STS-37 and was later incorporated into a detailed supplementary objective (DSO) which was flown on STS48. This DSO addressed the effects of significant space radiation on representative samples of six highly sensitive flight films. In addition, a lead-lined bag was evaluated as a potential shield for flight film against space radiation.

  11. The effects of space radiation on flight film

    SciTech Connect

    Holly, M.H.

    1995-09-01

    The Shuttle and its cargo are occasionally exposed to an amount of radiation large enough to create non-image forming exposures (fog) on photographic flight film. The television/photography working group proposed a test plan to quantify the sensitivity of photographic films to space radiation. This plan was flown on STS-37 and was later incorporated into a detailed supplementary objective (DSO) which was flown on STS48. This DSO addressed the effects of significant space radiation on representative samples of six highly sensitive flight films. In addition, a lead-lined bag was evaluated as a potential shield for flight film against space radiation.

  12. Effects of the space flight environment on the immune system.

    PubMed

    Sonnenfeld, Gerald; Butel, Janet S; Shearer, William T

    2003-01-01

    Space flight conditions have a dramatic effect on a variety of physiologic functions of mammals, including muscle, bone, and neurovestibular function. Among the physiological functions that are affected when humans or animals are exposed to space flight conditions is the immune response. The focus of this review is on the function of the immune system in space flight conditions during actual space flights, as well as in models of space flight conditions on the earth. The experiments were carried out in tissue culture systems, in animal models, and in human subjects. The results indicate that space flight conditions alter cell-mediated immune responses, including lymphocyte proliferation and subset distribution, and cytokine production. The mechanism(s) of space flight-induced alterations in immune system function remain(s) to be established. It is likely, however, that multiple factors, including microgravity, stress, neuroendocrine factors, sleep disruption, and nutritional factors, are involved in altering certain functions of the immune system. Such alterations could lead to compromised defenses against infections and tumors.

  13. Effects of the space flight environment on the immune system

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald; Butel, Janet S.; Shearer, William T.

    2003-01-01

    Space flight conditions have a dramatic effect on a variety of physiologic functions of mammals, including muscle, bone, and neurovestibular function. Among the physiological functions that are affected when humans or animals are exposed to space flight conditions is the immune response. The focus of this review is on the function of the immune system in space flight conditions during actual space flights, as well as in models of space flight conditions on the earth. The experiments were carried out in tissue culture systems, in animal models, and in human subjects. The results indicate that space flight conditions alter cell-mediated immune responses, including lymphocyte proliferation and subset distribution, and cytokine production. The mechanism(s) of space flight-induced alterations in immune system function remain(s) to be established. It is likely, however, that multiple factors, including microgravity, stress, neuroendocrine factors, sleep disruption, and nutritional factors, are involved in altering certain functions of the immune system. Such alterations could lead to compromised defenses against infections and tumors.

  14. Effects of the space flight environment on the immune system

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald; Butel, Janet S.; Shearer, William T.

    2003-01-01

    Space flight conditions have a dramatic effect on a variety of physiologic functions of mammals, including muscle, bone, and neurovestibular function. Among the physiological functions that are affected when humans or animals are exposed to space flight conditions is the immune response. The focus of this review is on the function of the immune system in space flight conditions during actual space flights, as well as in models of space flight conditions on the earth. The experiments were carried out in tissue culture systems, in animal models, and in human subjects. The results indicate that space flight conditions alter cell-mediated immune responses, including lymphocyte proliferation and subset distribution, and cytokine production. The mechanism(s) of space flight-induced alterations in immune system function remain(s) to be established. It is likely, however, that multiple factors, including microgravity, stress, neuroendocrine factors, sleep disruption, and nutritional factors, are involved in altering certain functions of the immune system. Such alterations could lead to compromised defenses against infections and tumors.

  15. Countermeasure for space flight effects on immune system: nutritional nucleotides.

    PubMed

    Kulkarni, A D; Yamauchi, K; Sundaresan, A; Ramesh, G T; Pellis, N R

    2005-06-01

    Microgravity and its environment have adverse effects on the immune system. Abnormal immune responses observed in microgravity may pose serious consequences, especially for the recent directions of NASA for long-term space missions to Moon, Mars and deep Space exploration. The study of space flight immunology is limited due to relative inaccessibility, difficulty of performing experiments in space, and inadequate provisions in this area in the United States and Russian space programs (Taylor 1993). Microgravity and stress experienced during space flights results in immune system aberration (Taylor 1993). In ground-based mouse models for some of the microgravity effects on the human body, hindlimb unloading (HU) has been reported to cause abnormal cell proliferation and cytokine production (Armstrong et al., 1993, Chapes et al. 1993). In this report, we document that a nutritional nucleotide supplementation as studied in ground-based microgravity analogs, has potential to serve as a countermeasure for the immune dysfunction observed in space travel.

  16. Countermeasure for space flight effects on immune system: nutritional nucleotides

    NASA Technical Reports Server (NTRS)

    Kulkarni, A. D.; Yamauchi, K.; Sundaresan, A.; Ramesh, G. T.; Pellis, N. R.

    2005-01-01

    Microgravity and its environment have adverse effects on the immune system. Abnormal immune responses observed in microgravity may pose serious consequences, especially for the recent directions of NASA for long-term space missions to Moon, Mars and deep Space exploration. The study of space flight immunology is limited due to relative inaccessibility, difficulty of performing experiments in space, and inadequate provisions in this area in the United States and Russian space programs (Taylor 1993). Microgravity and stress experienced during space flights results in immune system aberration (Taylor 1993). In ground-based mouse models for some of the microgravity effects on the human body, hindlimb unloading (HU) has been reported to cause abnormal cell proliferation and cytokine production (Armstrong et al., 1993, Chapes et al. 1993). In this report, we document that a nutritional nucleotide supplementation as studied in ground-based microgravity analogs, has potential to serve as a countermeasure for the immune dysfunction observed in space travel.

  17. Countermeasure for space flight effects on immune system: nutritional nucleotides

    NASA Technical Reports Server (NTRS)

    Kulkarni, A. D.; Yamauchi, K.; Sundaresan, A.; Ramesh, G. T.; Pellis, N. R.

    2005-01-01

    Microgravity and its environment have adverse effects on the immune system. Abnormal immune responses observed in microgravity may pose serious consequences, especially for the recent directions of NASA for long-term space missions to Moon, Mars and deep Space exploration. The study of space flight immunology is limited due to relative inaccessibility, difficulty of performing experiments in space, and inadequate provisions in this area in the United States and Russian space programs (Taylor 1993). Microgravity and stress experienced during space flights results in immune system aberration (Taylor 1993). In ground-based mouse models for some of the microgravity effects on the human body, hindlimb unloading (HU) has been reported to cause abnormal cell proliferation and cytokine production (Armstrong et al., 1993, Chapes et al. 1993). In this report, we document that a nutritional nucleotide supplementation as studied in ground-based microgravity analogs, has potential to serve as a countermeasure for the immune dysfunction observed in space travel.

  18. Pilot Searfoss in experiment measuring effects space flight & pilot ability

    NASA Image and Video Library

    1993-10-18

    STS058-14-006 (18 Oct- 1 Nov 1993) --- Astronaut Richard A. Searfoss, pilot, participates in an experiment that measures the effects of space flight on pilot proficiency. Astronauts Searfoss (seen here at the pilot's station) and John E. Blaha, mission commander, are conducting the first tests of the Portable Inflight Landing Operations Trainer (PILOT). STS-58 is the first of six scheduled test flights of PILOT designed to determine its effectiveness as a training tool.

  19. Radiobiological risk and single event effects during manned space flights.

    PubMed

    Bourrieau, J; Calvet, M C

    1995-01-01

    Radiation hazard during previous manned space flights was not a critical problem as seen from monitoring on board MIR and the SHUTTLE. Future Martian and Lunar missions as well as flights on inclined or high altitude orbits around the Earth can be exposed to a large radiobiological risk and critical reliability losses can be expected, due to Single Event Effects on VLSI devices. The main characteristics of these hazards and some counter-measures to be provided for are given.

  20. Effects of space flight on locomotor control

    NASA Technical Reports Server (NTRS)

    Bloomberg, Jacob J.; Layne, Charles S.; McDonald, P. Vernon; Peters, Brian T.; Huebner, William P.; Reschke, Millard F.; Berthoz, Alain; Glasauer, Stefan; Newman, Dava; Jackson, D. Keoki

    1999-01-01

    In the microgravity environment of spaceflight, the relationship between sensory input and motor output is altered. During prolonged missions, neural adaptive processes come into play to recalibrate central nervous system function, thereby permitting new motor control strategies to emerge in the novel sensory environment of microgravity. However, the adaptive state achieved during spaceflight is inappropriate for a unit gravity environment and leads to motor control alterations upon return to Earth that include disturbances in locomotion. Indeed, gait and postural instabilities following the return to Earth have been reported in both U.S. astronauts and Russian cosmonauts even after short duration (5- to 10-day) flights. After spaceflight, astronauts may: (1) experience the sensation of turning while attempting to walk a straight path, (2) encounter sudden loss of postural stability, especially when rounding corners, (3) perceive exaggerated pitch and rolling head movements during walking, (4) experience sudden loss of orientation in unstructured visual environments, or (5) experience significant oscillopsia during locomotion.

  1. Insulin secretion and sensitivity in space flight: diabetogenic effects

    NASA Technical Reports Server (NTRS)

    Tobin, Brian W.; Uchakin, Peter N.; Leeper-Woodford, Sandra K.

    2002-01-01

    Nearly three decades of space flight research have suggested that there are subclinical diabetogenic changes that occur in microgravity. Alterations in insulin secretion, insulin sensitivity, glucose tolerance, and metabolism of protein and amino acids support the hypothesis that insulin plays an essential role in the maintenance of muscle mass in extended-duration space flight. Experiments in flight and after flight and ground-based bedrest studies have associated microgravity and its experimental paradigms with manifestations similar to those of diabetes, physical inactivity, and aging. We propose that these manifestations are characterized best by an etiology that falls into the clinical category of "other" causes of diabetes, including, but not restricted to, genetic beta-cell defects, insulin action defects, diseases of the endocrine pancreas, endocrinopathies, drug or chemically induced diabetes, infections, immune-mediated metabolic alteration, and a host of genetic related diseases. We present data showing alterations in tumor necrosis factor-alpha production, insulin secretion, and amino acid metabolism in pancreatic islets of Langerhans cultured in a ground-based cell culture bioreactor that mimics some of the effects of microgravity. Taken together, space flight research, ground-based studies, and bioreactor studies of pancreatic islets of Langerhans support the hypothesis that the pancreas is unable to overcome peripheral insulin resistance and amino acid dysregulation during space flight. We propose that measures of insulin secretion and insulin action will be necessary to design effective countermeasures against muscle loss, and we advance the "disposition index" as an essential model to be used in the clinical management of space flight-induced muscle loss.

  2. Insulin secretion and sensitivity in space flight: diabetogenic effects

    NASA Technical Reports Server (NTRS)

    Tobin, Brian W.; Uchakin, Peter N.; Leeper-Woodford, Sandra K.

    2002-01-01

    Nearly three decades of space flight research have suggested that there are subclinical diabetogenic changes that occur in microgravity. Alterations in insulin secretion, insulin sensitivity, glucose tolerance, and metabolism of protein and amino acids support the hypothesis that insulin plays an essential role in the maintenance of muscle mass in extended-duration space flight. Experiments in flight and after flight and ground-based bedrest studies have associated microgravity and its experimental paradigms with manifestations similar to those of diabetes, physical inactivity, and aging. We propose that these manifestations are characterized best by an etiology that falls into the clinical category of "other" causes of diabetes, including, but not restricted to, genetic beta-cell defects, insulin action defects, diseases of the endocrine pancreas, endocrinopathies, drug or chemically induced diabetes, infections, immune-mediated metabolic alteration, and a host of genetic related diseases. We present data showing alterations in tumor necrosis factor-alpha production, insulin secretion, and amino acid metabolism in pancreatic islets of Langerhans cultured in a ground-based cell culture bioreactor that mimics some of the effects of microgravity. Taken together, space flight research, ground-based studies, and bioreactor studies of pancreatic islets of Langerhans support the hypothesis that the pancreas is unable to overcome peripheral insulin resistance and amino acid dysregulation during space flight. We propose that measures of insulin secretion and insulin action will be necessary to design effective countermeasures against muscle loss, and we advance the "disposition index" as an essential model to be used in the clinical management of space flight-induced muscle loss.

  3. Insulin secretion and sensitivity in space flight: diabetogenic effects.

    PubMed

    Tobin, Brian W; Uchakin, Peter N; Leeper-Woodford, Sandra K

    2002-10-01

    Nearly three decades of space flight research have suggested that there are subclinical diabetogenic changes that occur in microgravity. Alterations in insulin secretion, insulin sensitivity, glucose tolerance, and metabolism of protein and amino acids support the hypothesis that insulin plays an essential role in the maintenance of muscle mass in extended-duration space flight. Experiments in flight and after flight and ground-based bedrest studies have associated microgravity and its experimental paradigms with manifestations similar to those of diabetes, physical inactivity, and aging. We propose that these manifestations are characterized best by an etiology that falls into the clinical category of "other" causes of diabetes, including, but not restricted to, genetic beta-cell defects, insulin action defects, diseases of the endocrine pancreas, endocrinopathies, drug or chemically induced diabetes, infections, immune-mediated metabolic alteration, and a host of genetic related diseases. We present data showing alterations in tumor necrosis factor-alpha production, insulin secretion, and amino acid metabolism in pancreatic islets of Langerhans cultured in a ground-based cell culture bioreactor that mimics some of the effects of microgravity. Taken together, space flight research, ground-based studies, and bioreactor studies of pancreatic islets of Langerhans support the hypothesis that the pancreas is unable to overcome peripheral insulin resistance and amino acid dysregulation during space flight. We propose that measures of insulin secretion and insulin action will be necessary to design effective countermeasures against muscle loss, and we advance the "disposition index" as an essential model to be used in the clinical management of space flight-induced muscle loss.

  4. Effect of space flight on cell-mediated immunity

    NASA Technical Reports Server (NTRS)

    Mandel, A. D.; Balish, E.

    1977-01-01

    The cell-mediated immune response to Listeria monocytogenes was studied in rats subjected to 20 days of flight aboard the Soviet biosatellite Kosmos 7820. Groups of rats were immunized with 1,000,000 formalin-killed Listeria suspended in Freunds Complete Adjuvant, 5 days prior to flight. Immunized rats subjected to the same environmental factors as the flight rats, except flight itself, and immunized and nonimmunized rats held in a normal animal colony served as controls. Following recovery, lymphocyte cultures were harvested from spleens of all rats, cultured in vitro in the presence of L. monocytogenes antigens, Phytohemagglutinin, Conconavlin A, or purified protein derivative (PPD), and measured for their uptake of H-3-thymidine. Although individual rats varied considerably, all flight and immunized control rats gave a blastogenic response to the Listeria antigens and PPD. With several mitogens, the lymphocytes of flight rats showed a significantly increased blastogenic response over the controls. The results of this study do not support a hypothesis of a detrimental effect of space flight on cell-mediated immunity. The data suggest a possible suppressive effect of stress and gravity on an in vitro correlate of cell-mediated immunity.

  5. Effect of space flight on cell-mediated immunity

    NASA Technical Reports Server (NTRS)

    Mandel, A. D.; Balish, E.

    1977-01-01

    The cell-mediated immune response to Listeria monocytogenes was studied in rats subjected to 20 days of flight aboard the Soviet biosatellite Kosmos 7820. Groups of rats were immunized with 1,000,000 formalin-killed Listeria suspended in Freunds Complete Adjuvant, 5 days prior to flight. Immunized rats subjected to the same environmental factors as the flight rats, except flight itself, and immunized and nonimmunized rats held in a normal animal colony served as controls. Following recovery, lymphocyte cultures were harvested from spleens of all rats, cultured in vitro in the presence of L. monocytogenes antigens, Phytohemagglutinin, Conconavlin A, or purified protein derivative (PPD), and measured for their uptake of H-3-thymidine. Although individual rats varied considerably, all flight and immunized control rats gave a blastogenic response to the Listeria antigens and PPD. With several mitogens, the lymphocytes of flight rats showed a significantly increased blastogenic response over the controls. The results of this study do not support a hypothesis of a detrimental effect of space flight on cell-mediated immunity. The data suggest a possible suppressive effect of stress and gravity on an in vitro correlate of cell-mediated immunity.

  6. Effect of space flight on interferon production - mechanistic studies

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1991-01-01

    Ground-based models were studied for the effects of space flight on immune responses. Most time was spent on the model for the antiorthostatic, hypokinetic, hypodynamic suspension model for rats. Results indicate that suspension is useful for modeling the effects of spaceflight on functional immune responses, such as interferon and interleukin production. It does not appear to be useful for modeling shifts in leukocyte sub-populations. Calcium and 1,25-dihydroxyvitamin D sub 3 appear to play a pivitol role in regulating shifts in immune responses due to suspension. The macrophage appears to be an important target cell for the effects of suspension on immune responses.

  7. Combined effects of space flight factors and radiation on humans

    NASA Technical Reports Server (NTRS)

    Todd, P.; Pecaut, M. J.; Fleshner, M.; Clarkson, T. W. (Principal Investigator)

    1999-01-01

    The probability that a dose of ionizing radiation kills a cell is about 10,000 times the probability that the cell will be transformed to malignancy. On the other hand, the number of cells killed required to significantly impact health is about 10,000 times the number that must be transformed to cause a late malignancy. If these two risks, cell killing and malignant transformation, are about equal, then the risk that occurs during a mission is more significant than the risk that occurs after a mission. The latent period for acute irradiation effects (cell killing) is about 2-4 weeks; the latent period for malignancy is 10-20 years. If these statements are approximately true, then the impact of cell killing on health in the low-gravity environment of space flight should be examined to establish an estimate of risk. The objective of this study is to synthesize data and conclusions from three areas of space biology and environmental health to arrive at rational risk assessment for radiations received by spacecraft crews: (1) the increased physiological demands of the space flight environment; (2) the effects of the space flight environment on physiological systems; and (3) the effects of radiation on physiological systems. One physiological system has been chosen: the immune response and its components, consisting of myeloid and lymphoid proliferative cell compartments. Best-case and worst-case scenarios are considered. In the worst case, a doubling of immune-function demand, accompanied by a halving of immune capacity, would reduce the endangering dose to a crew member to around 1 Gy.

  8. Combined effects of space flight factors and radiation on humans

    NASA Technical Reports Server (NTRS)

    Todd, P.; Pecaut, M. J.; Fleshner, M.; Clarkson, T. W. (Principal Investigator)

    1999-01-01

    The probability that a dose of ionizing radiation kills a cell is about 10,000 times the probability that the cell will be transformed to malignancy. On the other hand, the number of cells killed required to significantly impact health is about 10,000 times the number that must be transformed to cause a late malignancy. If these two risks, cell killing and malignant transformation, are about equal, then the risk that occurs during a mission is more significant than the risk that occurs after a mission. The latent period for acute irradiation effects (cell killing) is about 2-4 weeks; the latent period for malignancy is 10-20 years. If these statements are approximately true, then the impact of cell killing on health in the low-gravity environment of space flight should be examined to establish an estimate of risk. The objective of this study is to synthesize data and conclusions from three areas of space biology and environmental health to arrive at rational risk assessment for radiations received by spacecraft crews: (1) the increased physiological demands of the space flight environment; (2) the effects of the space flight environment on physiological systems; and (3) the effects of radiation on physiological systems. One physiological system has been chosen: the immune response and its components, consisting of myeloid and lymphoid proliferative cell compartments. Best-case and worst-case scenarios are considered. In the worst case, a doubling of immune-function demand, accompanied by a halving of immune capacity, would reduce the endangering dose to a crew member to around 1 Gy.

  9. Effects of space flight on surface marker expression

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, G.

    1999-01-01

    Space flight has been shown to affect expression of several cell surface markers. These markers play important roles in regulation of immune responses, including CD4 and CD8. The studies have involved flight of experimental animals and humans followed by analysis of tissue samples (blood in humans, rats and monkeys, spleen, thymus, lymph nodes and bone marrow in rodents). The degree and direction of the changes induced by space flight have been determined by the conditions of the flight. Also, there may be compartmentalization of the response of surface markers to space flight, with differences in the response of cells isolated from blood and local immune tissue. The same type of compartmentalization was also observed with cell adhesion molecules (integrins). In this case, the expression of integrins from lymph node cells differed from that of splenocytes isolated from rats immediately after space flight. Cell culture studies have indicated that there may be an inhibition in conversion of a precursor cell line to cells exhibiting mature macrophage characteristics after space flight, however, these experiments were limited as a result of technical difficulties. In general, it is clear that space flight results in alterations of cell surface markers. The biological significance of these changes remains to be established.

  10. Effects of prolonged space flight on rat skeletal muscle.

    PubMed

    Nesterov, V P; Zheludkova, Z P; Kuznetsova, L A

    1979-10-01

    The effect of a 20-day space flight on water, Na+, K+, Mg2+, Ca2+ and glycogen contents as well as on activities of glycogen metabolism enzymes--glycogen synthetase and glycogen phosphorylase--of rat skeletal muscles was studied. This data is regarded as an integral test characterizing the state of contractile tissue of the animals at the final stage of flight aboard biosatellites. The measurements indicate that there were no significant changes of cations and glycogen contents nor of the enzymic activities in fast-twitch muscles during the 20-day spaceflight. At the same time dehydration in these muscles was observed, which disappeared on the 25th postflight day. In slow-twitch antigravitational skeletal muscle (m. soleus) there was a decrease of K+ and increase of Na+ in the tissue contents. The changes disappeared at the end of the on-earth readaptation period. From the pattern of these observations, we can conclude that the 20-day space flight leads to some reversible biochemical changes of the rat skeletal muscles. A conclusion can be drawn about necessity of creating, aboard the spaceship, an artificial load on antigravitational skeletal muscles.

  11. [Effect of space flight factors on health of cosmonauts in the near and late term after space flights].

    PubMed

    Fedorenko, B S; Voronkov, Iu I; Snigireva, G P; Shevchenko, V A; Druzhinin, S V; Akatov, Iu A; Tsetlin, V V

    2002-01-01

    Cytogenetical studies of cosmonauts' peripheral blood lymphocytes after space flights on MIR orbital station showed a statistically significant increase in the yields of radiation-induced chromosomal aberrations. However, similar studies with in vitro irradiation of biological objects with accelerated charged particles are of great importance for elucidation of the nature of cytogenetical damage induced in vivo. It is also important to investigate the structure of cosmonatus' diseases over their life, in particular, lens opacities and oncological diseases. Thus, the purpose of the investigations planned is to study cytogenetical damage in blood lymphocytes from cosmonauts after space flights on the ISS in vivo, as well as in donor blood lymphocytes after in vitro exposure to accelerated charged particles. The tasks of the project are as follows: determination of the yields and types of chromosomal aberrations in cosmonauts' blood lymphocytes before and after space flights, comparative studies of biological effects induced in vitro by different types of ionizing radiation in human blood lymphocytes in ground experiments, assessment of cytogenetical risks, analysis of the structure of cosmonatus' diseases comparing with that of whole population, study of the mortality and frequency of cataracts and oncological diseases in cosmonauts. The results to be obtained will be used for setting of health norms applied to the influence of radiations of different types, and for elaboration of measures to reduce health risks from space flight factors.

  12. Space Shuttle Environmental Effects: The First 5 Flights

    NASA Technical Reports Server (NTRS)

    Potter, A. (Editor)

    1983-01-01

    Environmental effects associated with the first five Space Shuttle flights were monitored by the National Aeronautics and Space Administration (NASA) and the U.S. Air Force (USAF). Results and interpretations from this effort were reported at the December 1982 joint NASA-USAF conference. The conference proceedings are presented in this document. Most of the monitoring activity was focused on the launch cloud, emphasizing surface effects on the biota and air quality, model prediction of surface concentrations of HCl gas and Al2O3 dust, and airborne measurements of cloud composition. In general, assessments and predictions made in the April 1978 Final Environmental Impact Statement for the Space Shuttle Program were verified. Fallout of acidic mist and dust within 3 mi to 5 mi of the launch pad was the only unexpected effect of the launch. Atomization of deluge water in the Shuttle exhaust is considered to be the most probable cause of this effect. Sonic booms were monitored for several landings at Edwards Air Force Base, California; results agreed well with model predictions.

  13. Cardiovascular physiology in space flight

    NASA Technical Reports Server (NTRS)

    Charles, John B.; Bungo, Michael W.

    1991-01-01

    The effects of space flight on the cardiovascular system have been studied since the first manned flights. In several instances, the results from these investigations have directly contradicted the predictions based on established models. Results suggest associations between space flight's effects on other organ systems and those on the cardiovascular system. Such findings provide new insights into normal human physiology. They must also be considered when planning for the safety and efficiency of space flight crewmembers.

  14. Cardiovascular physiology in space flight

    NASA Technical Reports Server (NTRS)

    Charles, John B.; Bungo, Michael W.

    1991-01-01

    The effects of space flight on the cardiovascular system have been studied since the first manned flights. In several instances, the results from these investigations have directly contradicted the predictions based on established models. Results suggest associations between space flight's effects on other organ systems and those on the cardiovascular system. Such findings provide new insights into normal human physiology. They must also be considered when planning for the safety and efficiency of space flight crewmembers.

  15. Gravity and space flight: effects on nutritional status

    NASA Technical Reports Server (NTRS)

    Smith, S. M.; Lane, H. W.

    1999-01-01

    The final decade of the millennium has seen an enormous amount of on-orbit life sciences research, including both short- and long-duration flight research. Life sciences dedicated Space Shuttle flights have made intensive research opportunities available to study on the acute adaptation to weightlessness. The NASA/Mir Science Program combined resources of the USA and Russia to provide the first long-duration flight opportunities for the United States since the Skylab program of the early 1970s. Many of the results of these studies are still being evaluated, and in some cases data are still being collected to assess long-term readaptation to gravity after several months in weightlessness. The surge in life sciences research during this decade serves as a preamble to the opportunities to be provided by the latest addition to the Earth-orbiting structures--the International Space Station.

  16. Gravity and space flight: effects on nutritional status

    NASA Technical Reports Server (NTRS)

    Smith, S. M.; Lane, H. W.

    1999-01-01

    The final decade of the millennium has seen an enormous amount of on-orbit life sciences research, including both short- and long-duration flight research. Life sciences dedicated Space Shuttle flights have made intensive research opportunities available to study on the acute adaptation to weightlessness. The NASA/Mir Science Program combined resources of the USA and Russia to provide the first long-duration flight opportunities for the United States since the Skylab program of the early 1970s. Many of the results of these studies are still being evaluated, and in some cases data are still being collected to assess long-term readaptation to gravity after several months in weightlessness. The surge in life sciences research during this decade serves as a preamble to the opportunities to be provided by the latest addition to the Earth-orbiting structures--the International Space Station.

  17. Gravity and space flight: effects on nutritional status.

    PubMed

    Smith, S M; Lane, H W

    1999-07-01

    The final decade of the millennium has seen an enormous amount of on-orbit life sciences research, including both short- and long-duration flight research. Life sciences dedicated Space Shuttle flights have made intensive research opportunities available to study on the acute adaptation to weightlessness. The NASA/Mir Science Program combined resources of the USA and Russia to provide the first long-duration flight opportunities for the United States since the Skylab program of the early 1970s. Many of the results of these studies are still being evaluated, and in some cases data are still being collected to assess long-term readaptation to gravity after several months in weightlessness. The surge in life sciences research during this decade serves as a preamble to the opportunities to be provided by the latest addition to the Earth-orbiting structures--the International Space Station.

  18. Effects of Space Flight on Ovarian-Hypophyseal Function in Postpartum Rats

    NASA Technical Reports Server (NTRS)

    Burden, H. W.; Zary, J.; Lawrence, I. E.; Jonnalagadda, P.; Davis, M.; Hodson, C. A.

    1997-01-01

    The effect of space flight in a National Aeronautics and Space Administration (NASA) shuttle was studied in pregnant rats. Rats were launched on day 9 of gestation and recovered on day 20 of gestation. On day 20 of gestation, rats were unilaterally hysterectomized and subsequently allowed to go to term and deliver vaginally. There was no effect of space flight on pituitary and ovary mass postpartum. In addition, space flight did not alter healthy and atretic ovarian antral follicle populations, fetal wastage in utero, plasma concentrations of progesterone and luteinizing hormone (LH) or pituitary content of follicle stimulating hormone (FSH). Space flight significantly increased plasma concentrations of FSH and decreased pituitary content of LH at the postpartum sampling time. Collectively, these data show that space flight, initiated during the postimplantation period of pregnancy, and concluded before parturition, is compatible with maintenance of pregnancy and has minimal effects on postpartum hypophyseal parameters; however, none of the ovarian parameters examined was altered by space flight.

  19. The effects of space flight on the cardiopulmonary system

    NASA Technical Reports Server (NTRS)

    Nicogossian, Arnauld E.; Gaffney, F. Andrew; Garshnek, Victoria

    1989-01-01

    Alterations of the human cardiopulmonary system in space flight are examined, including fluid shifts, orthostatic intolerance, changes in cardiac dynamics and electromechanics, and changes in pulmonary function and exercise capacity. Consideration is given to lower body negative pressure data from Skylab experiments and studies on the Space Shuttle. Also, echocardiography, cardiac dysrhythmias during spaceflight, and the role of neural mechanisms in circulatory control after spaceflight are discussed.

  20. The effects of space flight on the cardiopulmonary system

    NASA Technical Reports Server (NTRS)

    Nicogossian, Arnauld E.; Gaffney, F. Andrew; Garshnek, Victoria

    1989-01-01

    Alterations of the human cardiopulmonary system in space flight are examined, including fluid shifts, orthostatic intolerance, changes in cardiac dynamics and electromechanics, and changes in pulmonary function and exercise capacity. Consideration is given to lower body negative pressure data from Skylab experiments and studies on the Space Shuttle. Also, echocardiography, cardiac dysrhythmias during spaceflight, and the role of neural mechanisms in circulatory control after spaceflight are discussed.

  1. Environmental stressors during space flight: potential effects on body temperature

    NASA Technical Reports Server (NTRS)

    Jauchem, J. R.

    1988-01-01

    1. Organisms may be affected by many environmental factors during space flight, e.g., acceleration, weightlessness, decreased pressure, changes in oxygen tension, radiofrequency radiation and vibration. 2. Previous studies of change in body temperature--one response to these environmental factors--are reviewed. 3. Conditions leading to heat stress and hypothermia are discussed.

  2. Environmental stressors during space flight: potential effects on body temperature

    NASA Technical Reports Server (NTRS)

    Jauchem, J. R.

    1988-01-01

    1. Organisms may be affected by many environmental factors during space flight, e.g., acceleration, weightlessness, decreased pressure, changes in oxygen tension, radiofrequency radiation and vibration. 2. Previous studies of change in body temperature--one response to these environmental factors--are reviewed. 3. Conditions leading to heat stress and hypothermia are discussed.

  3. Test and Analysis Capabilities of the Space Environment Effects Team at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Finckenor, M. M.; Edwards, D. L.; Vaughn, J. A.; Schneider, T. A.; Hovater, M. A.; Hoppe, D. T.

    2002-01-01

    Marshall Space Flight Center has developed world-class space environmental effects testing facilities to simulate the space environment. The combined environmental effects test system exposes temperature-controlled samples to simultaneous protons, high- and low-energy electrons, vacuum ultraviolet (VUV) radiation, and near-ultraviolet (NUV) radiation. Separate chambers for studying the effects of NUV and VUV at elevated temperatures are also available. The Atomic Oxygen Beam Facility exposes samples to atomic oxygen of 5 eV energy to simulate low-Earth orbit (LEO). The LEO space plasma simulators are used to study current collection to biased spacecraft surfaces, arcing from insulators and electrical conductivity of materials. Plasma propulsion techniques are analyzed using the Marshall magnetic mirror system. The micro light gas gun simulates micrometeoroid and space debris impacts. Candidate materials and hardware for spacecraft can be evaluated for durability in the space environment with a variety of analytical techniques. Mass, solar absorptance, infrared emittance, transmission, reflectance, bidirectional reflectance distribution function, and surface morphology characterization can be performed. The data from the space environmental effects testing facilities, combined with analytical results from flight experiments, enable the Environmental Effects Group to determine optimum materials for use on spacecraft.

  4. Space Environmental Effects Testing Capability at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    DeWittBurns, H.; Craven, Paul; Finckenor, Miria; Nehls, Mary; Schneider, Todd; Vaughn, Jason

    2012-01-01

    Understanding the effects of the space environment on materials and systems is fundamental and essential for mission success. If not properly understood and designed for, the effects of the environment can lead to degradation of materials, reduction of functional lifetime, and system failure. In response to this need, the Marshall Space Flight Center has developed world class Space Environmental Effects (SEE) expertise and test facilities to simulate the space environment. Capabilities include multiple unique test systems comprising the most complete SEE testing capability available. These test capabilities include charged particle radiation (electrons, protons, ions), ultraviolet radiation (UV), vacuum ultraviolet radiation (VUV), atomic oxygen, plasma effects, space craft charging, lunar surface and planetary effects, vacuum effects, and hypervelocity impacts as well as the combination of these capabilities. In addition to the uniqueness of the individual test capabilities, MSFC is the only NASA facility where the effects of the different space environments can be tested in one location. Combined with additional analytical capabilities for pre- and post-test evaluation, MSFC is a one-stop shop for materials testing and analysis. The SEE testing and analysis are performed by a team of award winning experts nationally recognized for their contributions in the study of the effects of the space environment on materials and systems. With this broad expertise in space environmental effects and the variety of test systems and equipment available, MSFC is able to customize tests with a demonstrated ability to rapidly adapt and reconfigure systems to meet customers needs. Extensive flight experiment experience bolsters this simulation and analysis capability with a comprehensive understanding of space environmental effects.

  5. Space Flight. Teacher Resources.

    ERIC Educational Resources Information Center

    2001

    This teacher's guide contains information, lesson plans, and diverse student learning activities focusing on space flight. The guide is divided into seven sections: (1) "Drawing Activities" (Future Flight; Space Fun; Mission: Draw); (2) "Geography" (Space Places); (3) "History" (Space and Time); (4)…

  6. Space Flight. Teacher Resources.

    ERIC Educational Resources Information Center

    2001

    This teacher's guide contains information, lesson plans, and diverse student learning activities focusing on space flight. The guide is divided into seven sections: (1) "Drawing Activities" (Future Flight; Space Fun; Mission: Draw); (2) "Geography" (Space Places); (3) "History" (Space and Time); (4)…

  7. The effect of space flight on spatial orientation

    NASA Technical Reports Server (NTRS)

    Reschke, Millard F.; Bloomberg, Jacob J.; Harm, Deborah L.; Paloski, William H.; Satake, Hirotaka

    1992-01-01

    Both during and following early space missions, little neurosensory change in the astronauts was noted as a result of their exposure to microgravity. It is believed that this lack of in-flight adaptation in the spatial orientation and perceptual-motor system resulted from short exposure times and limited interaction with the new environment. Parker and Parker (1990) have suggested that while spatial orientation and motion information can be detected by a passive observer, adaptation to stimulus rearrangement is greatly enhanced when the observer moves through or acts on the environment. Experience with the actual consequences of action can be compared with those consequences expected on the basis of prior experience. Space flight today is of longer duration, and space craft volume has increased. These changes have forced the astronauts to interact with the new environment of microgravity, and as a result substantial changes occur in the perceptual and sensory-motor repsonses reflecting adaptation to the stimulus rearrangement of space flight. We are currently evaluating spatial orientation and the perceptual-motor systems' adaptation to microgravity by examining responses of postural control, head and gaze stability during locomotion, goal oriented vestibulo-ocular reflex (VOR), and structured quantitative perceptual reports. Evidence suggests that humans can successfully replace the gravitational reference available on Earth with cues available within the spacecraft or within themselves, but that adaptation to microgravity is not appropriate for a return to Earth. Countermeasures for optimal performance on-orbit and a successful return to earth will require development of preflight and in-flight training to help the astronauts acquire and maintain a dual adaptive state. An understanding of spatial orientation and motion perception, postural control, locomotion, and the VOR will aid in this process.

  8. Effect of Space Flight on Adrenal Medullary Function

    NASA Technical Reports Server (NTRS)

    Lelkes, Peter I.

    1999-01-01

    We hypothesize that microgravity conditions during space flight alter the expression and specific activities of the adrenal medullary CA synthesizing enzymes (CASE). Previously, we examined adrenals from six rats flown for six days aboard STS 54 and reported that microgravity induced a decrease in the expression and specific activity of rat adrenal medullary tyrosine hydroxylase, the rate limiting enzyme of CA synthesis, without affecting the expression of other CASE. In the past, we analyzed some of the > 300 adrenals from two previous Space Shuttle missions (PARE 03 and SLS 2). The preliminary results (a) attest to the good state of tissue preservation, thus proving the feasibility of subsequent large-scale evaluation, and (b) confirm and extend our previous findings. With this grant we will be able to expeditiously analyze all our specimens and to complete our studies in a timely fashion.

  9. Long-duration space flight and bed rest effects on testosterone and other steroids.

    PubMed

    Smith, Scott M; Heer, Martina; Wang, Zuwei; Huntoon, Carolyn L; Zwart, Sara R

    2012-01-01

    Limited data suggest that testosterone is decreased during space flight, which could contribute to bone and muscle loss. The main objective was to assess testosterone and hormone status in long- and short-duration space flight and bed rest environments and to determine relationships with other physiological systems, including bone and muscle. Blood and urine samples were collected before, during, and after long-duration space flight. Samples were also collected before and after 12- to 14-d missions and from participants in 30- to 90-d bed rest studies. Space flight studies were conducted on the International Space Station and before and after Space Shuttle missions. Bed rest studies were conducted in a clinical research center setting. Data from Skylab missions are also presented. All of the participants were male, and they included 15 long-duration and nine short-duration mission crew members and 30 bed rest subjects. Serum total, free, and bioavailable testosterone were measured along with serum and urinary cortisol, serum dehydroepiandrosterone, dehydroepiandrosterone sulfate, and SHBG. Total, free, and bioavailable testosterone was not changed during long-duration space flight but were decreased (P < 0.01) on landing day after these flights and after short-duration space flight. There were no changes in other hormones measured. Testosterone concentrations dropped before and soon after bed rest, but bed rest itself had no effect on testosterone. There was no evidence for decrements in testosterone during long-duration space flight or bed rest.

  10. Effect of space flight on cytokine production and other immunologic parameters of rhesus monkeys

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, G.; Davis, S.; Taylor, G. R.; Mandel, A. D.; Konstantinova, I. V.; Lesnyak, A.; Fuchs, B. B.; Peres, C.; Tkackzuk, J.; Schmitt, D. A.

    1996-01-01

    During a recent flight of a Russian satellite (Cosmos #2229), initial experiments examining the effects of space flight on immunologic responses of rhesus monkeys were performed to gain insight into the effect of space flight on resistance to infection. Experiments were performed on tissue samples taken from the monkeys before and immediately after flight. Additional samples were obtained approximately 1 month after flight for a postflight restraint study. Two types of experiments were carried out throughout this study. The first experiment determined the ability of leukocytes to produce interleukin-1 and to express interleukin-2 receptors. The second experiment examined the responsiveness of rhesus bone marrow cells to recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF). Human reagents that cross-reacted with monkey tissue were utilized for the bulk of the studies. Results from both studies indicated that there were changes in immunologic function attributable to space flight. Interleukin-1 production and the expression of interleukin-2 receptors was decreased after space flight. Bone marrow cells from flight monkeys showed a significant decrease in their response to GM-CSF compared with the response of bone marrow cells from nonflight control monkeys. These results suggest that the rhesus monkey may be a useful surrogate for humans in future studies that examine the effect of space flight on immune response, particularly when conditions do not readily permit human study.

  11. Effect of space flight on cytokine production and other immunologic parameters of rhesus monkeys

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, G.; Davis, S.; Taylor, G. R.; Mandel, A. D.; Konstantinova, I. V.; Lesnyak, A.; Fuchs, B. B.; Peres, C.; Tkackzuk, J.; Schmitt, D. A.

    1996-01-01

    During a recent flight of a Russian satellite (Cosmos #2229), initial experiments examining the effects of space flight on immunologic responses of rhesus monkeys were performed to gain insight into the effect of space flight on resistance to infection. Experiments were performed on tissue samples taken from the monkeys before and immediately after flight. Additional samples were obtained approximately 1 month after flight for a postflight restraint study. Two types of experiments were carried out throughout this study. The first experiment determined the ability of leukocytes to produce interleukin-1 and to express interleukin-2 receptors. The second experiment examined the responsiveness of rhesus bone marrow cells to recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF). Human reagents that cross-reacted with monkey tissue were utilized for the bulk of the studies. Results from both studies indicated that there were changes in immunologic function attributable to space flight. Interleukin-1 production and the expression of interleukin-2 receptors was decreased after space flight. Bone marrow cells from flight monkeys showed a significant decrease in their response to GM-CSF compared with the response of bone marrow cells from nonflight control monkeys. These results suggest that the rhesus monkey may be a useful surrogate for humans in future studies that examine the effect of space flight on immune response, particularly when conditions do not readily permit human study.

  12. Effects of Space Flight on Neutrophil Functions in Astronauts

    NASA Technical Reports Server (NTRS)

    Kaur, Indreshpal; Valadez, Victoria A.; Simons, Elizabeth R.; Pierson, Duane L.

    2000-01-01

    Neutrophil phagocytosis, oxidative burst, degranulation, and the expression of selected surface markers were studied in 25 astronauts following 4 space shuttle missions. Space flight duration ranged from 5 to 11 days. Blood specimens were obtained 10 days before launch, immediately after landing, and again at 3 days after landing. The number of neutrophils increased at landing by 85%. Phagocytosis of Escherichia coli (E. coli) and oxidative burst following the medium length (9 to 11 days) missions were lower than the control mean values. Whereas, following the short-duration (5 days) mission, these functions were unchanged from control values. No consistent changes in degranulation were observed following either short or medium length space missions. The expression of CD16, CD32, CD11a, CD11b, CD11c, L-selectin and CD36 were measured and found to be variable. Specifically, CD16 and CD32 did not correlate with the changes in oxidative burst. Mission duration appears to be a factor in phagocytic and oxidative functions.

  13. Effect of microgravity on plasma catecholamine responses to stressors during space flight.

    PubMed

    Kvetnansky, R; Macho, L; Koska, J; Pacak, K; Hoff, T; Ksinantova, L; Noskov, V B; Kobzev, E; Grigoriev, A I; Vigas, M

    2001-07-01

    The effect of microgravity on the sympathicoadrenal system (SAS) activity in humans and animals has not yet been clarified. Our previous studies suggested that the SAS activity, evaluated by circulating and/or urinary catecholamine (CA) levels in astronauts during space flights, was found to be rather unchanged. However, CA levels were measured in astronauts only at rest conditions. The aim of the present study was to investigate effect of microgravity during space flight and post-flight readaptation on responsiveness of the SAS to somatic and psychic stressors evaluated by levels of catecholamines and their metabolite in the blood of the Slovak cosmonaut during his stay on board the space station Mir.

  14. NASA - Human Space Flight

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.

    2006-01-01

    The presentation covers five main topical areas. The first is a description of how things work in the microgravity environment such as convection and sedimentation. The second part describes the effects of microgravity on human physiology. This is followed by a description of the hazards of space flight including the environment, the space craft, and the mission. An overview of biomedical research in space, both on shuttle and ISS is the fourth section of the presentation. The presentation concludes with a history of space flight from Ham to ISS. At CART students (11th and 12th graders from Fresno Unified and Clovis Unified) are actively involved in their education. They work in teams to research real world problems and discover original solutions. Students work on projects guided by academic instructors and business partners. They will have access to the latest technology and will be expected to expand their learning environment to include the community. They will focus their studies around a career area (Professional Sciences, Advanced Communications, Engineering and Product Development, or Global Issues).

  15. Trapped belt variations and their effects on human space flights

    NASA Technical Reports Server (NTRS)

    Robbins, Donald E.; Badhwar, Gautam D.

    1993-01-01

    Variations in the Earth's trapped (Van Allen) belts produced by solar flare particle events are not well understood. This paper reports the existence of a second proton belt and its subsequent decay as measured by a tissue-equivalent proportional counter and a particle spectrometer on five Space Shuttle flights covering an 18-month period. The creation of this second belt is attributed to the injection of particles from a solar particle event which occurred at 2246 UT, March 22, 1991. Comparisons with observations onboard the Russian Mir space station and other unmanned satellites are made. Shuttle measurements and data from other spacecraft are used to determine that the e-folding time of the peak of the second proton belt was ten months. Proton populations in the second belt returned to values of quiescent times within 18 months. The increase in absorbed dose attributed to protons in the second belt was approximately 20 percent. Passive dosimeter measurements were in good agreement with this value.

  16. Human Space Flight

    NASA Technical Reports Server (NTRS)

    Woolford, Barbara; Mount, Frances

    2004-01-01

    The first human space flight, in the early 1960s, was aimed primarily at determining whether humans could indeed survive and function in micro-gravity. Would eating and sleeping be possible? What mental and physical tasks could be performed? Subsequent programs increased the complexity of the tasks the crew performed. Table 1 summarizes the history of U.S. space flight, showing the projects, their dates, crew sizes, and mission durations. With over forty years of experience with human space flight, the emphasis now is on how to design space vehicles, habitats, and missions to produce the greatest returns to human knowledge. What are the roles of the humans in space flight in low earth orbit, on the moon, and in exploring Mars?

  17. Effects of exposure to space flight on endocrine regulations in experimental animals.

    PubMed

    Macho, L; Kvetnansky, R; Fickova, M; Popova, I A; Grigoriev, A

    2001-06-01

    This minireview summarizes the results of the observations on changes in endocrine functions of rats exposed to space flights for various periods. The results found after space flights are compared with those obtained from rats in acute or repeated restrain stress. A slight increase of plasma catecholamine levels was observed in rats after space flight of longer duration (>14 days), but no changes in catecholamine content in the activity of catecholamine synthesizing enzymes were noted in adrenal medulla and in hypothalamus. The norepinephrine content was, however, decreased in several nuclei selected from hypothalamus of flight rats. Plasma corticosterone levels were increased after space flight and morphological examination of pituitary showed elevated activity of corticotrophs. However, the plasma levels of ACTH were not increased in rats 6 hours after space flight. These changes in plasma hormone levels affected the activity of enzymes involved in metabolism of amino acids in liver and lipolysis in adipose tissue. The plasma levels of testosterone and triiodothyronine were diminished after space flight suggesting the suppression of the thyroid and gonadal activity. Increase of plasma insulin and glucose levels were found in rats after space flight, but the glucagon values were not changed. Comparing these results from flight rats with the animals exposed to acute or repeated stress indicate that long stay in microgravity do not represent very intensive stressogenic stimulus for adrenocortical and sympatho-adrenomedullar systems, and hormone alterations observed after space flight may be due to acute gravitational stress resulting from a return to Earth gravity. Therefore further studies including the inflight animal experiments on a board of International Space Station are necessary for elucidation of the effects of microgravity on endocrine functions.

  18. Acclimation during space flight: effects on human emotion.

    PubMed

    Liu, Qing; Zhou, Ren-Lai; Zhao, Xin; Chen, Xiao-Ping; Chen, Shan-Guang

    2016-01-01

    Recently, studies on the extent to which spaceflight affects the psychology of individuals has received attention. In order to reveal the mental challenges that humans face in space, we need practical viewpoints to integrate the psychological effects, behavior, performance and the environment itself for space exploration. The present review discusses the individual variables related to space psychology and manned spaceflight, in addition to their growing trends. These items include patterns of emotional changes in extreme environments and the approaches to evaluating emotions. Moreover, the review concludes with suggested future research on emotion during spaceflight and its analogs. These data and information are needed to plan for the exploration of the Moon and Mars, along with contributions to the construction of the international space station (ISS) and astronaut training.

  19. Space flight hazards catalog

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The most significant hazards identified on manned space flight programs are listed. This summary is of special value to system safety engineers in developing safety checklists and otherwise tailoring safety tasks to specific systems and subsystems.

  20. Magnesium and Space Flight.

    PubMed

    Smith, Scott M; Zwart, Sara R

    2015-12-08

    Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD) before, during, and after 4-6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female), 35 ± 7 years old). We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4-6-month space missions.

  1. Magnesium and Space Flight

    PubMed Central

    Smith, Scott M.; Zwart, Sara R.

    2015-01-01

    Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD) before, during, and after 4–6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female), 35 ± 7 years old). We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4–6-month space missions. PMID:26670248

  2. Nutritional Biochemistry of Space Flight

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.

    2000-01-01

    Adequate nutrition is critical for maintenance of crew health during and after extended-duration space flight. The impact of weightlessness on human physiology is profound, with effects on many systems related to nutrition, including bone, muscle, hematology, fluid and electrolyte regulation. Additionally, we have much to learn regarding the impact of weightlessness on absorption, mtabolism , and excretion of nutrients, and this will ultimately determine the nutrient requirements for extended-duration space flight. Existing nutritional requirements for extended-duration space flight have been formulated based on limited flight research, and extrapolation from ground-based research. NASA's Nutritional Biochemistry Laboratory is charged with defining the nutritional requirements for space flight. This is accomplished through both operational and research projects. A nutritional status assessment program is included operationally for all International Space Station astronauts. This medical requirement includes biochemical and dietary assessments, and is completed before, during, and after the missions. This program will provide information about crew health and nutritional status, and will also provide assessments of countermeasure efficacy. Ongoing research projects include studies of calcium and bone metabolism, and iron absorption and metabolism. The calcium studies include measurements of endocrine regulation of calcium homeostasis, biochemical marker of bone metabolism, and tracer kinetic studies of calcium movement in the body. These calcium kinetic studies allow for estimation of intestinal absorption, urinary excretion, and perhaps most importantly - deposition and resorption of calcium from bone. The Calcium Kinetics experiment is currently being prepared for flight on the Space Shuttle in 2001, and potentially for subsequent Shuttle and International Space Station missions. The iron study is intended to assess whether iron absorption is down-regulated dUl1ng

  3. Effects of factors of prolonged space flight on conditions of tortoise skeleton

    NASA Technical Reports Server (NTRS)

    Stupakon, G. P.; Volozhin, A. I.; Korzhenyants, V. A.; Yagodovskiy, V. S.; Polyakov, A. N.; Korolev, V. V.; Elivanov, V. A.

    1980-01-01

    After a 60-90 day space flight mild osteoporosis developed in the epiphyses and metaphyses of long tubular bones of tortoises, which was not attributed to reduced mineral saturation of the preserved bone tissue microstructures. The diminished strength of the cancellous bone of the epiphyses in tortoises after space flight was due to the reduced properties of its structure. The strength of the compact substance did not change under the effect of weightlessness.

  4. Space Flight Immunodeficiency

    NASA Technical Reports Server (NTRS)

    Shearer, William T.

    1999-01-01

    The National Aeronautics and Space Administration (NASA) has had sufficient concern for the well-being of astronauts traveling in space to create the National Space Biomedical Research Institute (NSBRI), which is investigating several areas of biomedical research including those of immunology. As part of the Immunology, Infection, and Hematology Team, the co-investigators of the Space Flight Immunodeficiency Project began their research projects on April 1, 1998 and are now just into the second year of work. Two areas of research have been targeted: 1) specific immune (especially antibody) responses and 2) non-specific inflammation and adhesion. More precise knowledge of these two areas of research will help elucidate the potential harmful effects of space travel on the immune system, possibly sufficient to create a secondary state of immunodeficiency in astronauts. The results of these experiments are likely to lead to the delineation of functional alterations in antigen presentation, specific immune memory, cytokine regulation of immune responses, cell to cell interactions, and cell to endothelium interactions.

  5. Space Flight Immunodeficiency

    NASA Technical Reports Server (NTRS)

    Shearer, William T.

    1999-01-01

    The National Aeronautics and Space Administration (NASA) has had sufficient concern for the well-being of astronauts traveling in space to create the National Space Biomedical Research Institute (NSBRI), which is investigating several areas of biomedical research including those of immunology. As part of the Immunology, Infection, and Hematology Team, the co-investigators of the Space Flight Immunodeficiency Project began their research projects on April 1, 1998 and are now just into the second year of work. Two areas of research have been targeted: 1) specific immune (especially antibody) responses and 2) non-specific inflammation and adhesion. More precise knowledge of these two areas of research will help elucidate the potential harmful effects of space travel on the immune system, possibly sufficient to create a secondary state of immunodeficiency in astronauts. The results of these experiments are likely to lead to the delineation of functional alterations in antigen presentation, specific immune memory, cytokine regulation of immune responses, cell to cell interactions, and cell to endothelium interactions.

  6. The effects of space flight on some rat liver enzymes regulating carbohydrate and lipid metabolism

    NASA Technical Reports Server (NTRS)

    Abraham, S.; Lin, C. Y.; Klein, H. P.; Volkmann, C.

    1981-01-01

    The effects of space flight conditions on the activities of certain enzymes regulating carbohydrate and lipid metabolism in rat liver are investigated in an attempt to account for the losses in body weight observed during space flight despite preflight caloric consumption. Liver samples were analyzed for the activities of 32 cytosolic and microsomal enzymes as well as hepatic glycogen and individual fatty acid levels for ground control rats and rats flown on board the Cosmos 936 biosatellite under normal space flight conditions and in centrifuges which were sacrificed upon recovery or 25 days after recovery. Significant decreases in the activities of glycogen phosphorylase, alpha-glycerol phosphate acyl transferase, diglyceride acyl transferase, aconitase and 6-phosphogluconate dehydrogenase and an increase in palmitoyl CoA desaturase are found in the flight stationary relative to the flight contrifuged rats upon recovery, with all enzymes showing alterations returning to normal values 25 days postflight. The flight stationary group is also observed to be characterized by more than twice the amount of liver glycogen of the flight centrifuged group as well as a significant increase in the ratio of palmitic to palmitoleic acid. Results thus indicate metabolic changes which may be involved in the mechanism of weight loss during weightlessness, and demonstrate the equivalence of centrifugation during space flight to terrestrial gravity.

  7. The effects of space flight on some rat liver enzymes regulating carbohydrate and lipid metabolism

    NASA Technical Reports Server (NTRS)

    Abraham, S.; Lin, C. Y.; Klein, H. P.; Volkmann, C.

    1981-01-01

    The effects of space flight conditions on the activities of certain enzymes regulating carbohydrate and lipid metabolism in rat liver are investigated in an attempt to account for the losses in body weight observed during space flight despite preflight caloric consumption. Liver samples were analyzed for the activities of 32 cytosolic and microsomal enzymes as well as hepatic glycogen and individual fatty acid levels for ground control rats and rats flown on board the Cosmos 936 biosatellite under normal space flight conditions and in centrifuges which were sacrificed upon recovery or 25 days after recovery. Significant decreases in the activities of glycogen phosphorylase, alpha-glycerol phosphate acyl transferase, diglyceride acyl transferase, aconitase and 6-phosphogluconate dehydrogenase and an increase in palmitoyl CoA desaturase are found in the flight stationary relative to the flight contrifuged rats upon recovery, with all enzymes showing alterations returning to normal values 25 days postflight. The flight stationary group is also observed to be characterized by more than twice the amount of liver glycogen of the flight centrifuged group as well as a significant increase in the ratio of palmitic to palmitoleic acid. Results thus indicate metabolic changes which may be involved in the mechanism of weight loss during weightlessness, and demonstrate the equivalence of centrifugation during space flight to terrestrial gravity.

  8. Long-Duration Space Flight and Bed Rest Effects on Testosterone and Other Steroids

    PubMed Central

    Heer, Martina; Wang, Zuwei; Huntoon, Carolyn L.; Zwart, Sara R.

    2012-01-01

    Context: Limited data suggest that testosterone is decreased during space flight, which could contribute to bone and muscle loss. Objective: The main objective was to assess testosterone and hormone status in long- and short-duration space flight and bed rest environments and to determine relationships with other physiological systems, including bone and muscle. Design: Blood and urine samples were collected before, during, and after long-duration space flight. Samples were also collected before and after 12- to 14-d missions and from participants in 30- to 90-d bed rest studies. Setting: Space flight studies were conducted on the International Space Station and before and after Space Shuttle missions. Bed rest studies were conducted in a clinical research center setting. Data from Skylab missions are also presented. Participants: All of the participants were male, and they included 15 long-duration and nine short-duration mission crew members and 30 bed rest subjects. Main Outcome Measures: Serum total, free, and bioavailable testosterone were measured along with serum and urinary cortisol, serum dehydroepiandrosterone, dehydroepiandrosterone sulfate, and SHBG. Results: Total, free, and bioavailable testosterone was not changed during long-duration space flight but were decreased (P < 0.01) on landing day after these flights and after short-duration space flight. There were no changes in other hormones measured. Testosterone concentrations dropped before and soon after bed rest, but bed rest itself had no effect on testosterone. Conclusions: There was no evidence for decrements in testosterone during long-duration space flight or bed rest. PMID:22049169

  9. Effects of space flight on GLUT-4 content in rat plantaris muscle

    NASA Astrophysics Data System (ADS)

    Tabata, I.; Kawanaka, Kentaro; Sekiguchi, Chiharu; Nagaoka, Shunji; Ohira, Yoshinobu

    The effects of 14 days of space flight on the glucose transporter protein (GLUT-4) were studied in the plantaris muscle of growing 9-week-old, male Sprague Dawley rats. The rats were randomly separated into five groups: pre-flight vivarium ground controls (PF-VC) sacrificed approximately 2 h after launch; flight groups sacrificed either approximately 5 h (F-R0) or 9 days (F-R9) after the return from space; and synchronous ground controls (SC-R0 and SC-R9) sacrificed at the same time as the respective flight groups. The flight groups F-R0 and F-R9 were exposed to micro-gravity for 14 days in the Spacelab module located in the cargo bay of the shuttle transport system - 58 of the manned Space Shuttle for the NASA mission named ''Spacelab Life Sciences 2''. Body weight and plantaris weight of SC-R0 and F-R0 were significantly higher than those of PF-VC. Neither body weight nor plantaris muscle weight in either group had changed 9 days after the return from space. As a result, body weight and plantaris muscle weight did not differ between the flight and synchronous control groups at any of the time points investigated. The GLUT-4 content (cpm/µg membrane protein) in the plantaris muscle did not show any significant change in response to 14 days of space flight or 9 days after return. Similarly, citrate synthase activity did not change during the course of the space flight or the recovery period. These results suggest that 14 days of space flight does not affect muscle mass or GLUT-4 content of the fast-twitch plantaris muscle in the rat.

  10. The effect of wind variability on Space Shuttle flight

    NASA Technical Reports Server (NTRS)

    Hill, C. K.; Brown, S. C.

    1983-01-01

    A data base of paired detailed wind profiles is developed for use in evaluating the STS ascent capability. The flight of the Shuttle is simulated through a sequence of measured detailed wind profiles and the wind effects on load and performance are evaluated. Since the wind measurement and simulation time requirements dictate that the launch decision be based on wind measurements taken about 3.5 hr before launch, a data base of paired detailed profiles is obtained in order to account for possible load increases due to wind profile changes during the final 3.5 hr before launch. Results show that the largest wind changes occur in winter at about 12 km altitude. At that time and altitude, it is found that there is a 5 percent risk that the wind component speed change will approximate 10 m/s in 3.5 hr. It is determined that the wind can vary over a period of 3.5 hr by more than 20 percent from the transition season to the winter season while somewhat smaller changes occur between the transition season and the summer season. It is concluded that these results demonstrate the feasibility of the wind change model concept and that this model should be considered for future use in Shuttle prelaunch operations.

  11. Use of phytochrome-dependent reaction in evaluating the effect of space flight factors on the plant organism

    NASA Technical Reports Server (NTRS)

    Shteyne, B. A.; Nevzgodina, L. V.; Miller, A. T.

    1982-01-01

    The effects of space flight factors on lettuce seeds aboard the Kosmos-936 and Kosmos-1129 satellites for 20 days were studied. The phytochrome dependent (PD) reaction of light sensitive seeds was a sensitive criterion for evaluating the biological effects of space flight factors. The PD reaction of air dry lettuce seeds was suppressed after space flight, especially if the seeds were exposed to open space during the flight. Space flight affects the physiological activity of both phytochrome forms, and both the phi sub 730 dependent reactions of lettuce seeds were suppressed.

  12. Immune responses in space flight

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, G.

    1998-01-01

    Space flight has been shown to have profound effects on immunological parameters of humans, monkeys and rodents. These studies have been carried out by a number of different laboratories. Among the parameters affected are leukocyte blastogenesis, natural killer cell activity, leukocyte subset distribution, cytokine production - including interferons and interleukins, and macrophage maturation and activity. These changes start to occur only after a few days space flight, and some changes continue throughout long-term space flight. Antibody responses have received only very limited study, and total antibody levels have been shown to be increased after long-term space flight. Several factors could be involved in inducing these changes. These factors could include microgravity, lack of load-bearing, stress, acceleration forces, and radiation. The mechanism(s) for space flight-induced changes in immune responses remain(s) to be established. Certainly, there can be direct effects of microgravity, or other factors, on cells that play a fundamental role in immune responses. However, it is now clear that there are interactions between the immune system and other physiological systems that could play a major role. For example, changes occurring in calcium use in the musculoskeletal system induced by microgravity or lack of use could have great impact on the immune system. Most of the changes in immune responses have been observed using samples taken immediately after return from space flight. However, there have been two recent studies that have used in-flight testing. Delayed-type hypersensitivity responses to common recall antigens of astronauts and cosmonauts have been shown to be decreased when tested during space flights. Additionally, natural killer cell and blastogenic activities are inhibited in samples taken from rats during space flight. Therefore, it is now clear that events occurring during space flight itself can affect immune responses. The biological

  13. Immune responses in space flight

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, G.

    1998-01-01

    Space flight has been shown to have profound effects on immunological parameters of humans, monkeys and rodents. These studies have been carried out by a number of different laboratories. Among the parameters affected are leukocyte blastogenesis, natural killer cell activity, leukocyte subset distribution, cytokine production - including interferons and interleukins, and macrophage maturation and activity. These changes start to occur only after a few days space flight, and some changes continue throughout long-term space flight. Antibody responses have received only very limited study, and total antibody levels have been shown to be increased after long-term space flight. Several factors could be involved in inducing these changes. These factors could include microgravity, lack of load-bearing, stress, acceleration forces, and radiation. The mechanism(s) for space flight-induced changes in immune responses remain(s) to be established. Certainly, there can be direct effects of microgravity, or other factors, on cells that play a fundamental role in immune responses. However, it is now clear that there are interactions between the immune system and other physiological systems that could play a major role. For example, changes occurring in calcium use in the musculoskeletal system induced by microgravity or lack of use could have great impact on the immune system. Most of the changes in immune responses have been observed using samples taken immediately after return from space flight. However, there have been two recent studies that have used in-flight testing. Delayed-type hypersensitivity responses to common recall antigens of astronauts and cosmonauts have been shown to be decreased when tested during space flights. Additionally, natural killer cell and blastogenic activities are inhibited in samples taken from rats during space flight. Therefore, it is now clear that events occurring during space flight itself can affect immune responses. The biological

  14. Effect of weightlessness and centrifugation on red cell survival in rats subjected to space flight

    NASA Technical Reports Server (NTRS)

    Leon, H. A.; Serova, L. V.; Landaw, S. A.

    1980-01-01

    Rats were flown aboard the Soviet biosatellite Cosmos 936 for 18.5 d during August, 1977. Five rats were subjected to near-weightless space flight, as with Cosmos 782, and five rats were subjected to a 1-G force via an on-board centrifuge. These rats and three control groups were injected with 2-(C-14) glycine 19 d preflight. The flight rats were recovered from orbit after 18.5 d of space flight. Erythrocyte hemolysis and lifespan were evaluated in the five groups of rats by quantitation of radioactive carbon monoxide exhaled in the breath which arises from the breakdown of the previously labeled hemoglobin. The results support the previous findings wherein hemolysis was found to increase as a result of weightless space flight. A comparison to the centrifuged animals indicates that artificial gravity attenuates the effect of weightlessness on hemolysis and appears to normalize the hemolytic rate in the early postflight period.

  15. Effect of space flights on plasma hormone levels in man and in experimental animal

    NASA Astrophysics Data System (ADS)

    Macho, L.; Kvetňanský, R.; Vigaš, M.; Németh, S.; Popova, I.; Tigranian, R. A.; Noskov, V. B.; Serova, L.; Grigoriev, I. A.

    An important increase of plasma hormone levels like insulin, TSH and aldosterone was observed in human subjects after space flights, however in the changes of plasma content of ACTH, cortisol, adrenaline and noradrenaline the individual variations were observed in relation to number and duration of space flight. For evaluation of the effects of these changes in plasma hormone levels on metabolic processes also the experiments with small animals subjected to space flights on a board of biosatellite of Cosmos series were running. An elevation of plasma levels of corticosterone, adrenaline, noradrenaline and insulin was found in rats after the space flights of duration from 7 to 20 days. It was demonstrated, that the increase of corticosterone in plasma is followed by the activation of enzymes involved in the aminoacid metabolism in rat liver (tyrosine aminotransferase, tryptophanpyrolase, alanine aminotransferase and aspartate aminotransferase). After a short recovery period (2 to 6 days) the plasma corticosterone concentration and also the activity of liver enzymes returned to control levels. The exposition of animals to stress stimuli during this recovery period showed higher response of corticosterone levels in flight rats as compared to intact controls. The increase of plasma catecholamine levels was not followed by elevation of lipolysis in adipose tissue. This is due to lower response of adipose tissue to catecholamine because a decrease of the stimulation of lipolysis by noradrenaline was observed in animals after space flight. The increase of insulin was not followed by adequate decrease of glucose concentration suggesting a disturbances in glucose utilization similarly as in cosmonauts after a long-term space flight. These results showed that changes in plasma hormone levels, observed after space flight, affected the regulation of metabolic processes in tissues.

  16. Space Flight Support Building

    NASA Image and Video Library

    2016-10-27

    This archival image was released as part of a gallery comparing JPL’s past and present, commemorating the 80th anniversary of NASA’s Jet Propulsion Laboratory on Oct. 31, 2016. Building 264, also known as the Space Flight Support Building, hosts engineers supporting space missions in flight at NASA's Jet Propulsion Laboratory. It used to be just two stories, as seen in this image from January 1972, but then the Viking project to Mars needed more room. The building still serves the same function today, but now has eight floors. http://photojournal.jpl.nasa.gov/catalog/PIA21123

  17. Calcium Kinetics During Space Flight

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; OBrien, K. O.; Abrams, S. A.; Wastney, M. E.

    2005-01-01

    Bone loss during space flight is one of the most critical challenges to astronaut health on space exploration missions. Defining the time course and mechanism of these changes will aid in developing means to counteract bone loss during space flight, and will have relevance for other clinical situations that impair weight-bearing activity. Bone health is a product of the balance between bone formation and bone resorption. Early space research could not clearly identify which of these was the main process altered in bone loss, but identification of the collagen crosslinks in the 1990s made possible a clear understanding that the impact of space flight was greater on bone resorption, with bone formation being unchanged or only slightly decreased. Calcium kinetics data showed that bone resorption was greater during flight than before flight (668 plus or minus 130 vs. 427 plus or minus 153 mg/d, p less than 0.001), and clearly documented that true intestinal calcium absorption was lower during flight than before flight (233 plus or minus 87 vs. 460 plus or minus 47 mg/d, p less than 0.01). Weightlessness had a detrimental effect on the balance in bone turnover: the difference between daily calcium balance during flight (-234 plus or minus 102 mg/d) and calcium balance before flight (63 plus or minus 75 mg/d) approached 300 mg/d (p less than 0.01). These data demonstrate that the bone loss that occurs during space flight is a consequence of increased bone resorption and decreased intestinal calcium absorption. Examining the changes in bone and calcium homeostasis in the initial days and weeks of space flight, as well as at later times on missions longer than 6 months, is critical to understanding the nature of bone adaptation to weightlessness. To increase knowledge of these changes, we studied bone adaptation to space flight on the 16-day Space Shuttle Columbia (STS-107) mission. When the brave and talented crew of Columbia were lost during reentry on the tragic morning

  18. The effect of dynamic factors of space flight on animal organisms

    NASA Technical Reports Server (NTRS)

    Genin, A. M. (Editor)

    1979-01-01

    Physiological, biochemical and morphological studies made on the Cosmos-782 biosatellite are presented. Rats, which were exposed on the biosatellite for 19.5 days, were examined immediately after completion of the flight and also during the 25 day period of readaptation to earth's conditions. The effect of factors of space flight, primarily weightlessness, on the organism was investigated for all systems of the body.

  19. Effects of prolonged exposure to space flight factors for 175 days on lettuce seeds

    NASA Astrophysics Data System (ADS)

    Nevzgodina, L. V.; Maximova, E. N.; Akatov, Yu. A.

    We have studied the effects of prolonged (up to 175 days) exposure of Lactuca sativa seeds to space flight factors, including primary cosmic radiation heavy ions. The data obtained evidence a significant fourfold increase ofs pontaneous mutagenesis in seeds both with regard to the total number of aberrant cells as well as the formation of single cells with multiple aberrations. Comparison of the present experiment with earlier works shows that the frequency of such aberrations increases with the duration of the flight.

  20. Effects of prolonged exposure to space flight factors for 175 days on lettuce seeds

    SciTech Connect

    Nevzgodina, L.V.; Maximova, E.N.; Akatov, Yu.A.

    1981-01-01

    The effects of prolonged (up to 175 days) exposure of Lactuca sativa seeds to space flight factors, including primary cosmic radiation heavy ions have been studied. The data obtained evidence a significant fourfold increase of spontaneous mutagenesis in seeds both with regard to the total number of aberrant cells as well as the formation of single cells with multiple aberrations. Comparison of the present experiment with earlier works shows that the frequency of such aberrations increases with the duration of the flight.

  1. Space flight affects magnocellular supraoptic neurons of young prepuberal rats: transient and permanent effects

    NASA Technical Reports Server (NTRS)

    Garcia-Ovejero, D.; Trejo, J. L.; Ciriza, I.; Walton, K. D.; Garcia-Segura, L. M.

    2001-01-01

    Effects of microgravity on postural control and volume of extracellular fluids as well as stress associated with space flight may affect the function of hypothalamic neurosecretory neurons. Since environmental modifications in young animals may result in permanent alterations in neuroendocrine function, the present study was designed to determine the effect of a space flight on oxytocinergic and vasopressinergic magnocellular hypothalamic neurons of prepuberal rats. Fifteen-day-old Sprague-Dawley female rats were flown aboard the Space Shuttle Columbia (STS-90, Neurolab mission, experiment 150) for 16 days. Age-matched litters remained on the ground in cages similar to those of the flight animals. Six animals from each group were killed on the day of landing and eight animals from each group were maintained under standard vivarium conditions and killed 18 weeks after landing. Several signs of enhanced transcriptional and biosynthetic activity were observed in magnocellular supraoptic neurons of flight animals on the day of landing compared to control animals. These include increased c-Fos expression, larger nucleoli and cytoplasm, and higher volume occupied in the neuronal perikaryon by mitochondriae, endoplasmic reticulum, Golgi apparatus, lysosomes and cytoplasmic inclusions known as nematosomes. In contrast, the volume occupied by neurosecretory vesicles in the supraoptic neuronal perikarya was significantly decreased in flight rats. This decrease was associated with a significant decrease in oxytocin and vasopressin immunoreactive levels, suggestive of an increased hormonal release. Vasopressin levels, cytoplasmic volume and c-Fos expression returned to control levels by 18 weeks after landing. These reversible effects were probably associated to osmotic stimuli resulting from modifications in the volume and distribution of extracellular fluids and plasma during flight and landing. However, oxytocin levels were still reduced at 18 weeks after landing in flight

  2. Space flight affects magnocellular supraoptic neurons of young prepuberal rats: transient and permanent effects.

    PubMed

    García-Ovejero, D; Trejo, J L; Ciriza, I; Walton, K D; García-Segura, L M

    2001-10-24

    Effects of microgravity on postural control and volume of extracellular fluids as well as stress associated with space flight may affect the function of hypothalamic neurosecretory neurons. Since environmental modifications in young animals may result in permanent alterations in neuroendocrine function, the present study was designed to determine the effect of a space flight on oxytocinergic and vasopressinergic magnocellular hypothalamic neurons of prepuberal rats. Fifteen-day-old Sprague-Dawley female rats were flown aboard the Space Shuttle Columbia (STS-90, Neurolab mission, experiment 150) for 16 days. Age-matched litters remained on the ground in cages similar to those of the flight animals. Six animals from each group were killed on the day of landing and eight animals from each group were maintained under standard vivarium conditions and killed 18 weeks after landing. Several signs of enhanced transcriptional and biosynthetic activity were observed in magnocellular supraoptic neurons of flight animals on the day of landing compared to control animals. These include increased c-Fos expression, larger nucleoli and cytoplasm, and higher volume occupied in the neuronal perikaryon by mitochondriae, endoplasmic reticulum, Golgi apparatus, lysosomes and cytoplasmic inclusions known as nematosomes. In contrast, the volume occupied by neurosecretory vesicles in the supraoptic neuronal perikarya was significantly decreased in flight rats. This decrease was associated with a significant decrease in oxytocin and vasopressin immunoreactive levels, suggestive of an increased hormonal release. Vasopressin levels, cytoplasmic volume and c-Fos expression returned to control levels by 18 weeks after landing. These reversible effects were probably associated to osmotic stimuli resulting from modifications in the volume and distribution of extracellular fluids and plasma during flight and landing. However, oxytocin levels were still reduced at 18 weeks after landing in flight

  3. Space flight affects magnocellular supraoptic neurons of young prepuberal rats: transient and permanent effects

    NASA Technical Reports Server (NTRS)

    Garcia-Ovejero, D.; Trejo, J. L.; Ciriza, I.; Walton, K. D.; Garcia-Segura, L. M.

    2001-01-01

    Effects of microgravity on postural control and volume of extracellular fluids as well as stress associated with space flight may affect the function of hypothalamic neurosecretory neurons. Since environmental modifications in young animals may result in permanent alterations in neuroendocrine function, the present study was designed to determine the effect of a space flight on oxytocinergic and vasopressinergic magnocellular hypothalamic neurons of prepuberal rats. Fifteen-day-old Sprague-Dawley female rats were flown aboard the Space Shuttle Columbia (STS-90, Neurolab mission, experiment 150) for 16 days. Age-matched litters remained on the ground in cages similar to those of the flight animals. Six animals from each group were killed on the day of landing and eight animals from each group were maintained under standard vivarium conditions and killed 18 weeks after landing. Several signs of enhanced transcriptional and biosynthetic activity were observed in magnocellular supraoptic neurons of flight animals on the day of landing compared to control animals. These include increased c-Fos expression, larger nucleoli and cytoplasm, and higher volume occupied in the neuronal perikaryon by mitochondriae, endoplasmic reticulum, Golgi apparatus, lysosomes and cytoplasmic inclusions known as nematosomes. In contrast, the volume occupied by neurosecretory vesicles in the supraoptic neuronal perikarya was significantly decreased in flight rats. This decrease was associated with a significant decrease in oxytocin and vasopressin immunoreactive levels, suggestive of an increased hormonal release. Vasopressin levels, cytoplasmic volume and c-Fos expression returned to control levels by 18 weeks after landing. These reversible effects were probably associated to osmotic stimuli resulting from modifications in the volume and distribution of extracellular fluids and plasma during flight and landing. However, oxytocin levels were still reduced at 18 weeks after landing in flight

  4. Bone effects of space flight analysis by quantum concept of bone remodelling

    NASA Astrophysics Data System (ADS)

    Parfitt, A. M.

    During the manned Skylab flights mineral losses from the calcaneum and changes in external calcium balance were in the ranges found for healthy subjects at bedrest. Calcium balance reached a nadir of -200 mg/day by two months with no change thereafter; the negative balance was due to increased urinary excretion with no change in net absorption. The total calcium loss averaged 18 g in the longest flight of 84 days; the densitiometric data suggested that about two-thirds of this came from trabecular bone and about one-third from cortical bone. These data could represent reversible bone loss due to increased birth rate of normal osteoclasts and osteoblasts and consequent increase in bone turnover and in reversible mineral deficit, or irreversible bone loss due to overactive osteoclasts and/or underactive osteoblasts. If the former explanation is correct, significant bone loss is unlikely whatever the duration of future flights, except in older persons already losing bone; if the latter explanation is correct, space flights longer than six months may lead to a significant increase in fracture risk in later life. Neither terrestrial immobilization nor unwilling animals in orbit are ideal models for the effects of space flight on human bone. To choose between reversible and irreversible mechanisms of bone loss, and to determine the effects of space flight on lifelong fracture risk, future astronauts and cosmonauts must undergo adequate histologic study of bone after in vivo tetracycline labeling.

  5. Bone effects of space flight: analysis by quantum concept of bone remodelling.

    PubMed

    Parfitt, A M

    1981-01-01

    During the manned Skylab flights mineral losses from the calcaneum and changes in external calcium balance were in the ranges found for healthy subjects at bedrest. Calcium balance reached a nadir of -200 mg/day by two months with no change thereafter; the negative balance was due to increased urinary excretion with no change in net absorption. The total calcium loss averaged 18 g in the longest flight of 84 days; the densitiometric data suggested that about two-thirds of this came from trabecular bone and about one-third from cortical bone. These data could represent reversible bone loss due to increased birth rate of normal osteoclasts and osteoblasts and consequent increase in bone turnover and in reversible mineral deficit, or irreversible bone loss due to overactive osteoclasts and/or underactive osteoblasts. If the former explanation is correct, significant bone loss is unlikely whatever the duration of future flights, except in older persons already losing bone; if the latter explanation is correct, space flights longer than six months may lead to a significant increase in fracture risk in later life. Neither terrestrial immobilization nor unwilling animals in orbit are ideal models for the effects of space flight on human bone. To choose between reversible and irreversible mechanisms of bone loss, and to determine the effects of space flight on lifelong fracture risk, future astronauts and cosmonauts must undergo adequate histologic study of bone after in vivo tetracycline labeling.

  6. Mutational effects of space flight on Zea mays seeds

    NASA Technical Reports Server (NTRS)

    Mei, M.; Qiu, Y.; He, Y.; Bucker, H.; Yang, C. H.

    1994-01-01

    The growth and development of more than 500 Zea mays seeds flown on Long Duration Exposure Facility (LDEF) were studied. Somatic mutations, including white-yellow stripes on leaves, dwarfing, change of leaf sheath color or seedling color were observed in plants developed from these seeds. When the frequency of white-yellow formation was used as the endpoint and compared with data from ground based studies, the dose to which maize seeds might be exposed during the flight was estimated to be equivalent to 635 cGy of gamma rays. Seeds from one particular holder gave a high mutation frequency and a wide mutation spectrum. White-yellow stripes on leaves were also found in some of the inbred progenies from plants displayed somatic mutation. Electron microscopy studies showed that the damage of chloroplast development in the white-yellow stripe on leaves was similar between seeds flown on LDEF and that irradiated by accelerated heavy ions on ground.

  7. Mutational effects of space flight on Zea mays seeds

    NASA Technical Reports Server (NTRS)

    Mei, M.; Qiu, Y.; He, Y.; Bucker, H.; Yang, C. H.

    1994-01-01

    The growth and development of more than 500 Zea mays seeds flown on Long Duration Exposure Facility (LDEF) were studied. Somatic mutations, including white-yellow stripes on leaves, dwarfing, change of leaf sheath color or seedling color were observed in plants developed from these seeds. When the frequency of white-yellow formation was used as the endpoint and compared with data from ground based studies, the dose to which maize seeds might be exposed during the flight was estimated to be equivalent to 635 cGy of gamma rays. Seeds from one particular holder gave a high mutation frequency and a wide mutation spectrum. White-yellow stripes on leaves were also found in some of the inbred progenies from plants displayed somatic mutation. Electron microscopy studies showed that the damage of chloroplast development in the white-yellow stripe on leaves was similar between seeds flown on LDEF and that irradiated by accelerated heavy ions on ground.

  8. Mutational effects of space flight on Zea mays seeds

    NASA Astrophysics Data System (ADS)

    Mei, M.; Qiu, Y.; He, Y.; Bucker, H.; Yang, C. H.

    1994-10-01

    The growth and development of more than 500 Zea mays seeds flown on LDEF were studied. Somatic mutations, including white-yellow stripes on leaves, dwarfing, change of leaf sheath color or seedling color were observed in plants developed from these seeds. When the frequency of white-yellow formation was used as the endpoint and compared with data from ground based studies, the dose to which maize seeds might be exposed during the flight was estimated to be equivalent to 635 cGy of gamma rays. Seeds from one particular holder gave a high mutation frequency and a wide mutation spectrum. White-yellow stripes on leaves were also found in some of the inbred progenies from plants displayed somatic mutation. Electron microscopy studies showed that the damage of chroloplast development in the white-yellow stripe on leaves was similar between seeds flown on LDEF and that irradiated by accelerated heavy ions on ground.

  9. The Rhesus monkey as a model for testing the immunological effects of space flight

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, G.; Schaffar, L.; Schmitt, D. A.; Peres, C.; Miller, E. S.

    1994-01-01

    The Rhesus monkey has been proposed as a model for the effects of space flight on immunity. In order to determine the feasibility of the use of the Rhesus monkey as a model, we studied the use of Rhesus monkey cells for immunological procedures that have been shown to be affected by space flight in both rodents and humans. We have shown that both lymph node cells and peripheral blood leukocytes can be stained with monoclonal antibodies to detect the following surface markers: CD4, CD-8, Ia and surface immunoglobulin. Also, the level of Ia antigen expression was increased by treatment of the cells with human interferon-gamma. In addition, cells were induced to produce interferons and interleukins. Isolated neutrophils also demonstrated increased oxidative burst. These data indicate that the Rhesus monkey will be a useful model for space flight studies of immunity.

  10. The Rhesus monkey as a model for testing the immunological effects of space flight

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, G.; Schaffar, L.; Schmitt, D. A.; Peres, C.; Miller, E. S.

    1994-01-01

    The Rhesus monkey has been proposed as a model for the effects of space flight on immunity. In order to determine the feasibility of the use of the Rhesus monkey as a model, we studied the use of Rhesus monkey cells for immunological procedures that have been shown to be affected by space flight in both rodents and humans. We have shown that both lymph node cells and peripheral blood leukocytes can be stained with monoclonal antibodies to detect the following surface markers: CD4, CD-8, Ia and surface immunoglobulin. Also, the level of Ia antigen expression was increased by treatment of the cells with human interferon-gamma. In addition, cells were induced to produce interferons and interleukins. Isolated neutrophils also demonstrated increased oxidative burst. These data indicate that the Rhesus monkey will be a useful model for space flight studies of immunity.

  11. The rhesus monkey as a model for testing the immunological effects of space flight

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, G.; Schaffar, L.; Schmitt, D. A.; Peres, C.; Miller, E. S.

    1994-08-01

    The Rhesus monkey has been proposed as a model for the effects of space flight on immunity. In order to determine the feasibility of the use of the Rhesus monkey as a model, we studied the use of Rhesus monkey cells for immunological procedures that have been shown to be affected by space flight in both rodents and humans. We have shown that both lymph node cells and peripheral blood leukocytes can be stained with monoclonal antibodies to detect the following surface markers: CD4, CD-8, Ia and surface immunoglobulin. Also, the level of Ia antigen expression was increased by treatment of the cells with human interferon-gamma. In addition, cells were induced to produce interferons and interleukins. Isolated neutrophils also demonstrated increased oxidative burst. These data indicate that the Rhesus monkey will be a useful model for space flight studies of immunity.

  12. Effect of dehydration on erythropoiesis in mice - Relevance to the 'anemia' of space flight

    NASA Technical Reports Server (NTRS)

    Dunn, C. D. R.

    1978-01-01

    Mice deprived of water for 24 h showed an increase in hematocrit and loss of body weight comparable to that seen in men during space flight. The increase in hematocrit was entirely due to a decrease in plasma volume and was associated with suppression of erythropoiesis, but with no significant change in the serum titer of a presumptive humoral regulator of erythropoiesis, Erythroid Stimulating Activity (ESA). Mice deprived of water for 24 h may be a useful model for the study of the early hematological effects of space flight. The suppression of erythropoiesis due to a relative erythrocytosis appears to be independent of ESA.

  13. Effect of dehydration on erythropoiesis in mice - Relevance to the 'anemia' of space flight

    NASA Technical Reports Server (NTRS)

    Dunn, C. D. R.

    1978-01-01

    Mice deprived of water for 24 h showed an increase in hematocrit and loss of body weight comparable to that seen in men during space flight. The increase in hematocrit was entirely due to a decrease in plasma volume and was associated with suppression of erythropoiesis, but with no significant change in the serum titer of a presumptive humoral regulator of erythropoiesis, Erythroid Stimulating Activity (ESA). Mice deprived of water for 24 h may be a useful model for the study of the early hematological effects of space flight. The suppression of erythropoiesis due to a relative erythrocytosis appears to be independent of ESA.

  14. Planning strategies for development of effective exercise and nutrition countermeasures for long-duration space flight

    NASA Technical Reports Server (NTRS)

    Convertino, Victor A.

    2002-01-01

    Exercise and nutrition represent primary countermeasures used during space flight to maintain or restore maximal aerobic capacity, musculoskeletal structure, and orthostatic function. However, no single exercise, dietary regimen, or combination of prescriptions has proven entirely effective in maintaining or restoring cardiovascular and musculoskeletal functions to preflight levels after prolonged space flight. As human space flight exposures increase in duration, identification, assessment, and development of various effective exercise- and nutrition-based protective procedures will become paramount. The application of adequate dietary intake in combination with effective exercise prescription will be based on identification of basic physiologic stimuli that maintain normal function in terrestrial gravity, and understanding how specific combinations of exercise characteristics (e.g., duration, frequency, intensity, and mode) can be combined with minimal nutritional requirements that mimic the stimuli normally produced by living in Earth's gravity environment. This can be accomplished only with greater emphasis of research on ground-based experiments targeted at understanding the interactions between caloric intake and expenditure during space flight. Future strategies for application of nutrition and exercise countermeasures for long-duration space missions must be directed to minimizing crew time and the impact on life-support resources.

  15. The effects of space flight on polymorphonuclear leukocyte response experiment MA-032

    NASA Technical Reports Server (NTRS)

    Martin, R. R.

    1976-01-01

    In a series of studies performed at intervals from 30 day before flight to 30 days after recovery, blood samples were obtained from the three astronauts of the Apollo Soyuz Test Project and from eight control subjects. To determine the effects of space flight on polymorphonuclear leukocytes, tests were performed on blood samples obtained as quickly as possible after splashdown and on the day following recovery. The astronauts' inhalation of propellant gases and the inception of corticosteroid therapy 1 day after recovery provided an additional opportunity to investigate the possible effects of these factors on leukocyte function. Data were obtained during each time period on the total leukocyte count, differential count, leukocyte adhesion, leukocyte migration and chemotaxis, phagocytosis, and histochemical staining for leukocyte acid and alkaline phosphatase. These observations present a variety of in vitro correlates to white blood cell function within the body. Taken together, they serve as a reasonable approximation of the effects of space flight on leukocyte function.

  16. [EFFECT OF REPEATED SPACE FLIGHTS ON OCULAR TRACKING].

    PubMed

    Naumov, I A; Kornilova, L N; Glukhikh, D O; Pavlova, A S; Khabarova, E V; Ekimovsky, G A; Vasin, A V

    2016-01-01

    The paper reports the results of studying the vestibular and ocular intersensory interactions and eye tracking function in 32 cosmonauts on maiden and repeated missions to the International space station. Mission duration ranged from 125 to 215 days. The cosmonauts were tested twice pre launch (baseline data collection) and on days R + 1/2, 4/5 and 8/9. Video oculography was used to test eye movements. It was found that in the majority of cosmonauts who had no experience of long-duration space missions the eye tracking function remained impaired significantly till R + 8/9. In cosmonauts who had already encountered with microgravity, obvious changes in eye tracking were observed on R + 1/2 only and, residual, on R + 4/5. On recovery, a new eye tracking strategy was acquired only by cosmonauts who had the first touch with spaceflight microgravity.

  17. Nutritional biochemistry of space flight.

    PubMed

    Smith, S M; Lane, H W

    1999-01-01

    Humans have flown in space for more than 35 years. Since that time, Americans have walked on the moon, launched two space stations (Skylab and the International Space Station), docked during orbit with a Soviet Soyuz space capsule and the Russian Mir space station, flown the only reusable space vehicle, and visited a Russian space station for more then 6 months at a time. Nutritional intake has not been considered a high priority during relatively brief flights of the Space Shuttle and other programs (i.e., less than 21 days). However, as we embark on extended-duration (i.e., > 30 days up to several years) missions, nutrition becomes a critical issue. The impact of weightlessness on human physiology is profound. We are in the very early stages of understanding how space flight affects nutrient requirements and related issues such as absorption, metabolism, and excretion. Apart from the obvious role of providing energy and required nutrients, nutrition is also important in terms of enhancing psychosocial interactions among crews, and ameliorating some of the effects of microgravity on the body (i.e., acting as a "countermeasure"). The interrelationships among space flight, nutrition, and physiology suggest that a program of specified nutritional intake may be required to enhance mission safety and crew productivity. Defining which nutrients are essential for the space flight environment depends on a more complete understanding of how weightlessness affects physiology. Providing the required nutrients is also limited by the types of foods that can be provided by the food system on board the space craft, and the dietary habits of space crews.

  18. Degradation of learned skills. Effectiveness of practice methods on simulated space flight skill retention

    NASA Technical Reports Server (NTRS)

    Sitterley, T. E.; Berge, W. A.

    1972-01-01

    Manual flight control and emergency procedure task skill degradation was evaluated after time intervals of from 1 to 6 months. The tasks were associated with a simulated launch through the orbit insertion flight phase of a space vehicle. The results showed that acceptable flight control performance was retained for 2 months, rapidly deteriorating thereafter by a factor of 1.7 to 3.1 depending on the performance measure used. Procedural task performance showed unacceptable degradation after only 1 month, and exceeded an order of magnitude after 4 months. The effectiveness of static rehearsal (checklists and briefings) and dynamic warmup (simulator practice) retraining methods were compared for the two tasks. Static rehearsal effectively countered procedural skill degradation, while some combination of dynamic warmup appeared necessary for flight control skill retention. It was apparent that these differences between methods were not solely a function of task type or retraining method, but were a function of the performance measures used for each task.

  19. The effect of a 5-day space flight on the immature rat spine.

    PubMed

    Sinha, Raj K; Shah, Suken A; Hume, Eric L; Tuan, Rocky S

    2002-01-01

    Spaceflight has many reported effects upon the musculoskeletal system structure and function. This study was designed to determine the effect of a 5-day flight on the rat spine. In September 1991, 8 neonatal rats were flown aboard the Space Shuttle Columbia flight STS-48 during a 5-day mission. Upon return to earth, the spines were dissected, frozen and shipped to our laboratory. Matched ground-based rats were used as controls. The spines were radiographed and then slowly thawed. Individual vertebrae were subjected to compressive biomechanical testing using an Instron tester (Instron Corp, Canton, MA, USA) and then processed for determination of calcium and phosphorus content. The intervertebral discs were placed in physiological saline and the stress-relaxation characteristics measured. The discs were then lyophilized and assayed for collagen and proteoglycan content. Disc height on radiographs was measured by image analysis. After space flight, the heights of the discs were found to be 150 to 200 microns greater, although the values were not statistically significant. There was no difference in the resiliency of the thoracic discs as determined by stress-relaxation. However, in the lumbar discs, space flight increased the resiliency (p<.01). There was no difference in water content. In both the thoracic and lumbar discs there was a 3.3-fold increase in hydroxyproline-proteoglycan ratio after space flight. However, because of the small sample size, these values were not statistically significant. In the vertebrae, there was no difference in calcium-phosphate ratio or compressive strength. These data suggest that even after a short 5-day flight, the spine begins to undergo biomechanical and biochemical changes. In addition, the weightless environment in space may provide a good model to study the effects of immobilization on earth.

  20. Calbindins decreased after space flight

    NASA Technical Reports Server (NTRS)

    Sergeev, I. N.; Rhoten, W. B.; Carney, M. D.

    1996-01-01

    Exposure of the body to microgravity during space flight causes a series of well-documented changes in Ca2+ metabolism, yet the cellular and molecular mechanisms leading to these changes are poorly understood. Calbindins, vitamin D-dependent Ca2+ binding proteins, are believed to have a significant role in maintaining cellular Ca2+ homeostasis. In this study, we used biochemical and immunocytochemical approaches to analyze the expression of calbindin-D28k and calbindin-D9k in kidneys, small intestine, and pancreas of rats flown for 9 d aboard the space shuttle. The effects of microgravity on calbindins in rats from space were compared with synchronous Animal Enclosure Module controls, modeled weightlessness animals (tail suspension), and their controls. Exposure to microgravity resulted in a significant and sustained decrease in calbindin-D28k content in the kidney and calbindin-D9k in the small intestine of flight animals, as measured by enzyme-linked immunosorbent assay (ELISA). Modeled weightlessness animals exhibited a similar decrease in calbindins by ELISA. Immunocytochemistry (ICC) in combination with quantitative computer image analysis was used to measure in situ the expression of calbindins in the kidney and the small intestine, and the expression of insulin in pancreas. There was a large decrease of immunoreactivity in renal distal tubular cell-associated calbindin-D28k and in intestinal absorptive cell-associated calbindin-D9k of space flight and modeled weightlessness animals compared with matched controls. No consistent difference in pancreatic insulin immunoreactivity between space flight, modeled weightlessness, and controls was observed. Regression analysis of results obtained by quantitative ICC and ELISA for space flight, modeled weightlessness animals, and their controls demonstrated a significant correlation. These findings after a short-term exposure to microgravity or modeled weightlessness suggest that a decreased expression of calbindins

  1. Calbindins decreased after space flight

    NASA Technical Reports Server (NTRS)

    Sergeev, I. N.; Rhoten, W. B.; Carney, M. D.

    1996-01-01

    Exposure of the body to microgravity during space flight causes a series of well-documented changes in Ca2+ metabolism, yet the cellular and molecular mechanisms leading to these changes are poorly understood. Calbindins, vitamin D-dependent Ca2+ binding proteins, are believed to have a significant role in maintaining cellular Ca2+ homeostasis. In this study, we used biochemical and immunocytochemical approaches to analyze the expression of calbindin-D28k and calbindin-D9k in kidneys, small intestine, and pancreas of rats flown for 9 d aboard the space shuttle. The effects of microgravity on calbindins in rats from space were compared with synchronous Animal Enclosure Module controls, modeled weightlessness animals (tail suspension), and their controls. Exposure to microgravity resulted in a significant and sustained decrease in calbindin-D28k content in the kidney and calbindin-D9k in the small intestine of flight animals, as measured by enzyme-linked immunosorbent assay (ELISA). Modeled weightlessness animals exhibited a similar decrease in calbindins by ELISA. Immunocytochemistry (ICC) in combination with quantitative computer image analysis was used to measure in situ the expression of calbindins in the kidney and the small intestine, and the expression of insulin in pancreas. There was a large decrease of immunoreactivity in renal distal tubular cell-associated calbindin-D28k and in intestinal absorptive cell-associated calbindin-D9k of space flight and modeled weightlessness animals compared with matched controls. No consistent difference in pancreatic insulin immunoreactivity between space flight, modeled weightlessness, and controls was observed. Regression analysis of results obtained by quantitative ICC and ELISA for space flight, modeled weightlessness animals, and their controls demonstrated a significant correlation. These findings after a short-term exposure to microgravity or modeled weightlessness suggest that a decreased expression of calbindins

  2. Effect of prolonged space flight on cardiac function and dimensions

    NASA Technical Reports Server (NTRS)

    Henry, W. L.; Epstein, S. E.; Griffith, J. M.; Goldstein, R. E.; Redwood, D. R.

    1974-01-01

    Echocardiographic studies were performed preflight 5 days before launch and on recovery day and 1, 2, 4, 11, 31 and 68 days postflight. From these echocardiograms measurements were made. From these primary measurements, left ventricular end-diastolic volume, end-systolic volume, stroke volume, and mass were derived using the accepted assumptions. Findings in the Scientist Pilot and Pilot resemble those seen in trained distance runners. Wall thickness measurements were normal in all three crewmembers preflight. Postflight basal studies were unchanged in the Commander on recovery day through 68 days postflight in both the Scientist Pilot and Pilot, however, the left ventricular end-diastolic volume, stroke volume, and mass were decreased slightly. Left ventricular function curves were constructed for the Commander and Pilot by plotting stroke volume versus end-diastolic volume. In both astronauts, preflight and postflight data fell on the same straight line demonstrating that no deterioration in cardiac function had occurred. These data indicate that the cardiovascular system adapts well to prolonged weightlessness and suggest that alterations in cardiac dimensions and function are unlikely to limit man's future in space.

  3. Capabilities of the Environmental Effects Branch at Marshall Space Flight Cente

    NASA Technical Reports Server (NTRS)

    Rogers, Jan; Finckenor, Miria; Nehls, Mary

    2016-01-01

    The Environmental Effects Branch at the Marshall Space Flight Center supports a myriad array of programs for NASA, DoD, and commercial space including human exploration, advanced space propulsion, improving life on Earth, and the study of the Sun, the Earth, and the solar system. The branch provides testing, evaluation, and qualification of materials for use on external spacecraft surfaces and in contamination-sensitive systems. Space environment capabilities include charged particle radiation, ultraviolet radiation, atomic oxygen, impact, plasma, and thermal vacuum, anchored by flight experiments and analysis of returned space hardware. These environmental components can be combined for solar wind or planetary surface environment studies or to evaluate synergistic effects. The Impact Testing Facility allows simulation of impacts ranging from sand and rain to micrometeoroids and orbital debris in order to evaluate materials and components for flight and ground-based systems. The Contamination Control Team is involved in the evaluation of environmentally-friendly replacements for HCFC-225 for use in propulsion oxygen systems, developing cleaning methods for additively manufactured hardware, and reducing risk for the Space Launch System.

  4. Space flight rehabilitation.

    PubMed

    Payne, Michael W C; Williams, David R; Trudel, Guy

    2007-07-01

    The weightless environment of space imposes specific physiologic adaptations on healthy astronauts. On return to Earth, these adaptations manifest as physical impairments that necessitate a period of rehabilitation. Physiologic changes result from unloading in microgravity and highly correlate with those seen in relatively immobile terrestrial patient populations such as spinal cord, geriatric, or deconditioned bed-rest patients. Major postflight impairments requiring rehabilitation intervention include orthostatic intolerance, bone demineralization, muscular atrophy, and neurovestibular symptoms. Space agencies are preparing for extended-duration missions, including colonization of the moon and interplanetary exploration of Mars. These longer-duration flights will result in more severe and more prolonged disability, potentially beyond the point of safe return to Earth. This paper will review and discuss existing space rehabilitation plans for major postflight impairments. Evidence-based rehabilitation interventions are imperative not only to facilitate return to Earth but also to extend the safe duration of exposure to a physiologically hostile microgravity environment.

  5. Effect of prolonged space flight on cardiac function and dimensions

    NASA Technical Reports Server (NTRS)

    Henry, W. L.; Epstein, S. E.; Griffith, J. M.; Goldstein, R. E.; Redwood, D. R.

    1977-01-01

    By taking advantage of the capabilities of echocardiography to measure noninvasively left ventricular volume, stroke volume, and ejection fraction, and of the fact that the astronauts were routinely subjected to lower body negative pressure (whereby cardiac filling is progressively decreased), it was possible to construct classic ventricular function curves noninvasively, thereby obviating the difficulties encountered in comparing cardiac function at different end-diastolic volumes preflight and postflight. In this manner, the effect of an 84-day period of weightlessness on cardiac structure and function was evaluated in the Skylab 4 astronauts.

  6. Some results of the effect of space flight factors on Drosophila melanogaster

    SciTech Connect

    Filatova, L.P.; Vaulina, E.N.

    1983-01-01

    Chromosomal effects of space flight factors were investigated in Drosophila melanogaster flown aboard the Salyut 6 orbital station. Drosophila males heterozygous for four linked traits were exposed to space flight conditions for periods of eight days, and the progeny when the males were mated with homozygous recessive females were compared with those from control flies exposed to the same vibration and acceleration environment, and the progeny of laboratory controls. Increases in recombination and nondisjunction frequencies were observed in the flies exposed to the space environment, with recombinant flies also found in the F1 generation of the vibration and acceleration controls. Results suggest that it is the action of heavy particles that accounts for the major portion of the genetic effects observed. 17 references.

  7. Experiment K-310: The effect of space flight on ostenogenesis and dentinogenesis in the mandible of rats. Supplement 1: The effects of space flight on alveolar bone modeling and remodeling in the rat mandible

    NASA Technical Reports Server (NTRS)

    Van, P. T.; Vignery, A.; Bacon, R.

    1981-01-01

    The histomorphometric study of alveolar bone, a non-weight-bearing bone submitted mainly to the mechanical stimulations of mastication, showed that space flight decreases the remodeling activity but does not induce a negative balance between resorption and formation. The most dramatic effect of space flight has been observed along the periosteal surface, and especially in areas not covered with masticatory muscles, where bone formation almost stopped completely during the flight period. This bone, having been submitted to the same mechanical forces in the flight animals and the controls, leads to the conclusion that factors other than mechanical loading might be involved in the decreased bone formation during flight.

  8. Experiment K-310: The effect of space flight on ostenogenesis and dentinogenesis in the mandible of rats. Supplement 1: The effects of space flight on alveolar bone modeling and remodeling in the rat mandible

    NASA Technical Reports Server (NTRS)

    Van, P. T.; Vignery, A.; Bacon, R.

    1981-01-01

    The histomorphometric study of alveolar bone, a non-weight-bearing bone submitted mainly to the mechanical stimulations of mastication, showed that space flight decreases the remodeling activity but does not induce a negative balance between resorption and formation. The most dramatic effect of space flight has been observed along the periosteal surface, and especially in areas not covered with masticatory muscles, where bone formation almost stopped completely during the flight period. This bone, having been submitted to the same mechanical forces in the flight animals and the controls, leads to the conclusion that factors other than mechanical loading might be involved in the decreased bone formation during flight.

  9. [The effect of space flight factors on the peripheral blood in the newt Pleurodeles waltlii].

    PubMed

    Domaratskaia, E I; Mirchurina, T V; Nikonova, T M; Khrushchov, N G

    1994-01-01

    The effects of space flight factors (SFF) on the peripheral blood in Pleurodeles waltlii were assessed after 12-day flight on board of the biosatellite "Kosmos-2229". These animals were also used to study regeneration of the limb, tail and lens. The corresponding control groups of animals allowed to distinguish between the effects of the operation, non-specific and specific SFFs: (1) basal control-operated animals; (2) synchronous control-operated animals kept on the Earth under the same conditions as the flight group, and (3) intact animals. It has been shown that the relative content of neutrophils (mostly, young forms) increased and the proportion of lymphocytes and eosinophils decreased under the influence of SFFs, while the capacity of blood cells for DNA synthesis was not affected. A conclusion has been drawn that the Spanish newts can be used for adequate studies of the SFF effects on the hemopoietic tissue.

  10. The effect of microgravity and space flight on the chemical senses

    NASA Technical Reports Server (NTRS)

    Olabi, A. A.; Lawless, H. T.; Hunter, J. B.; Levitsky, D. A.; Halpern, B. P.

    2002-01-01

    The effect of space flight and microgravity on the chemical senses is reviewed. Skylab-4 and Soyuz 30-31 studies revealed changes in taste thresholds while no effect was found in a Canadian investigation (41-G) and conflicting results were obtained on another Soyuz mission. Two simulated microgravity studies found no effect on taste or smell sensitivity; while 5 other studies found an effect. Microgravity induces physiological changes including an upward shift of body fluids toward the head, which may lead to an attenuation of the olfactory component in the flavor of foods. Chemosensory changes may also relate to space sickness, Shuttle atmosphere, stress, radiation, and psychological factors.

  11. Update on the Effects of Space Flight on Development of Immune Responses

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, G.; Foster, M.; Morton, D.; Bailliard, F.; Fowler, N. A.; Hakenwewerth, A. M.; Bates, R.; Miller, E. S.

    1999-01-01

    This study has been completed, and the following is an update of the results as published. Pregnant rats were flown on the Space Shuttle in the NIH.R I mission for 11 days, and pregnant control rats were maintained in animal enclosure modules in a ground-based chamber under conditions approximating those in flight. Additional controls were in standard housing. The effects of the flight on immunological parameters (including blastogenesis, interferon-gamma production, response to colony stimulating factor and total immunoglobulin levels) of dams, fetuses, and pups was determined.

  12. Hemodynamic Effects of Midodrine After Space Flight in Astronauts Without Orthostatic Hypotension

    NASA Technical Reports Server (NTRS)

    Platts, Steven H.; Ziegler, Michael G.; Waters, Wendy W.; Meck, Janice V.

    2006-01-01

    Orthostatic hypotension and presyncope are common and potentially serious risks for astronauts returning from space. Susceptible subjects fail to generate an adequate adrenergic response to upright posture. The -1 adrenergic agonist, midodrine, may be an effective countermeasure. We tested the hypothesis that midodrine would have no negative hemodynamic effect on healthy astronauts returning from space. Five male astronauts participated in preflight and postflight tilt testing on a control flight as well as on the test flights, where midodrine (10 mg, orally) was administered after landing, approximately 1 hour before testing. None of these astronauts exhibited orthostatic hypotension or presyncope before or after either flight. Midodrine did not cause any untoward reactions in these subjects before or after flight, in fact a modest beneficial effect was seen on postflight tachycardia (p=0.036). These data show that midodrine protected against post-spaceflight increases in heart rate, without having any adverse hemodynamic effects on non-presyncopal, male astronauts. Among these subjects, midodrine was a safe cardiovascular countermeasure.

  13. Space Environmental Effects (SEE) Testing Capability: NASA/Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    DeWittBurns, H.; Crave, Paul; Finckenor, Miria; Finchum, Charles; Nehls, Mary; Schneider, Todd; Vaughn, Jason

    2012-01-01

    Understanding the effects of the space environment on materials and systems is fundamental and essential for mission success. If not properly understood and designed for, the space environment can lead to materials degradation, reduction of functional lifetime, and system failure. Ground based testing is critical in predicting performance NASA/MSFC's expertise and capabilities make up the most complete SEE testing capability available.

  14. Cardiovascular function in space flight

    NASA Technical Reports Server (NTRS)

    Nicogossian, A. E.; Charles, J. B.; Bungo, M. W.; Leach-Huntoon, C. S.; Nicgossian, A. E.

    1991-01-01

    Changes in orthostatic heart rate have been noted universally in Soviet and U.S. crewmembers post space flight. The magnitude of these changes appears to be influenced by mission duration, with increasing orthostatic intolerance for the first 7-10 days of flight and then a partial recovery in the orthostatic heart rate response. Fluid loading has been used as a countermeasure to this postflight orthostatic intolerance. Previous reports have documented the effectiveness of this technique, but it has also been noted that the effectiveness of volume expansion diminishes as flight duration exceeds one week. The response of carotid baroreceptor function was investigated utilizing a commercially available neck collar which could apply positive and negative pressure to effect receptor stimulation. Bedrest studies had validated the usefulness and validity of the device. In these studies it was shown that carotid baroreceptor function curves demonstrated less responsiveness to orthostatic stimulation than control individuals. Twelve Space Shuttle crewmembers were examined pre- and postflight from flights lasting from 4-5 days. Plots of baroreceptor function were constructed and plotted as change in R-R interval vs. carotid distending pressure (an orthostatic stimulus). Typical sigmoidal curves were obtained. Postflight the resting heart rate was higher (smaller R-R interval) and the range of R-R value and the slope of the carotid sigmoidal response were both depressed. These changes were not significant immediately postflight (L + O), but did become significant by the second day postflight (L + 2), and remained suppressed for several days thereafter. It is hypothesized that the early adaptation to space flight involves a central fluid shift during the initial days of flight, but subsequent alterations in neural controlling mechanisms (such as carotid baroreceptor function) contribute to orthostatic intolerance.

  15. Cardiovascular function in space flight

    NASA Technical Reports Server (NTRS)

    Nicogossian, A. E.; Charles, J. B.; Bungo, M. W.; Leach-Huntoon, C. S.; Nicgossian, A. E.

    1991-01-01

    Changes in orthostatic heart rate have been noted universally in Soviet and U.S. crewmembers post space flight. The magnitude of these changes appears to be influenced by mission duration, with increasing orthostatic intolerance for the first 7-10 days of flight and then a partial recovery in the orthostatic heart rate response. Fluid loading has been used as a countermeasure to this postflight orthostatic intolerance. Previous reports have documented the effectiveness of this technique, but it has also been noted that the effectiveness of volume expansion diminishes as flight duration exceeds one week. The response of carotid baroreceptor function was investigated utilizing a commercially available neck collar which could apply positive and negative pressure to effect receptor stimulation. Bedrest studies had validated the usefulness and validity of the device. In these studies it was shown that carotid baroreceptor function curves demonstrated less responsiveness to orthostatic stimulation than control individuals. Twelve Space Shuttle crewmembers were examined pre- and postflight from flights lasting from 4-5 days. Plots of baroreceptor function were constructed and plotted as change in R-R interval vs. carotid distending pressure (an orthostatic stimulus). Typical sigmoidal curves were obtained. Postflight the resting heart rate was higher (smaller R-R interval) and the range of R-R value and the slope of the carotid sigmoidal response were both depressed. These changes were not significant immediately postflight (L + O), but did become significant by the second day postflight (L + 2), and remained suppressed for several days thereafter. It is hypothesized that the early adaptation to space flight involves a central fluid shift during the initial days of flight, but subsequent alterations in neural controlling mechanisms (such as carotid baroreceptor function) contribute to orthostatic intolerance.

  16. Effects of space flights on human allergic status (IgE-mediated sensitivity)

    NASA Astrophysics Data System (ADS)

    Buravkova, L. B.; Rykova, M. P.; Gertsik, Y. G.; Antropova, E. N.

    2007-02-01

    Suppression of the immune system after space flights of different duration has been reported earlier by Konstantinova [Immune system in extreme conditions, Space immunology. B. 59. M. Science 1988. 289p. (in Russian) [4]; Immunoresistance of man in space flight, Acta Astronautica 23 (1991) 123-127 [5

  17. The effect of the space flight environment on mucin production in the mouse uterine tube

    NASA Astrophysics Data System (ADS)

    Svalina, Gorica; Forsman, Allan D.

    2013-06-01

    Numerous studies have indicated that the microgravity environment of space has harmful effects on several tissues throughout the body. Although this phenomenon is well documented, research in this area is still in its relative infancy. This study investigates the effects of space flight on mucin production of the uterine tubes of mice. This study examined the epithelium of the uterine tubes from female mice that were flown on the space shuttle Endeavour for 13 days in August, 2007 and their concomitant controls. The tissue was qualitatively analyzed for the type of mucin produced, i.e., acidic, neutral, acidic/neutral mixture. Further, the tissue was quantitatively analyzed for the amounts of mucins produced by measuring the thickness of the mucin layer for each region of the uterine tube: isthmus, ampulla, and infundibulum. One way ANOVA tests were used to compare mucin thickness between all three sets of animals. Results indicate similar but not identical results between the three regions of the uterine tube. The Baseline tissue had the thickest mucin layer regardless of treatment group. In the ampulla the mucin layer was the thinnest in the Flight tissue, followed by the Ground Control, with the Baseline being the thickest. Analysis of the mucin layer of the infundibulum of the three treatment groups indicated no difference in its thickness between the three regions of the uterine tube. These results indicate a trend toward thinning of the mucin layer of the uterine tube in space flight, but also indicate an influence by the housing environment.

  18. The effects of proton radiation on UHMWPE material properties for space flight and medical applications

    NASA Astrophysics Data System (ADS)

    Cummings, Chad S.; Lucas, Eric M.; Marro, Justin A.; Kieu, Tri M.; DesJardins, John D.

    2011-11-01

    Ultra High Molecular Weight Polyethylene (UHMWPE) is a polymer widely used as a radiation shielding material in space flight applications and as a bearing material in total joint replacements. As a long chain hydrocarbon based polymer, UHMWPE's material properties are influenced by radiation exposure, and prior studies show that gamma irradiation is effective for both medical sterilization and increased wear resistance in total joint replacement applications. However, the effects of space flight radiation types and doses on UHMWPE material properties are poorly understood. In this study, three clinically relevant grades of UHMWPE (GUR 1020, GUR 1050, and GUR 1020 blended with Vitamin E) were proton irradiated and tested for differences in material properties. Each of the three types of UHMWPE was irradiated at nominal doses of 0 Gy (control), 5 Gy, 10 Gy, 20 Gy, and 35 Gy. Following irradiation, uniaxial tensile testing and thermal testing using Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA) were performed. Results show small but significant changes in several material properties between the control (0 Gy) and 35 Gy samples, indicating that proton irradiation could have a effect on the long term performance of UHMWPE in both medical and space flight applications.

  19. Human Space Flight

    NASA Technical Reports Server (NTRS)

    Woolford, Barbara

    2006-01-01

    The performance of complex tasks on the International Space Station (ISS) requires significant preflight crew training commitments and frequent skill and knowledge refreshment. This report documents a recently developed just-in-time training methodology, which integrates preflight hardware familiarization and procedure training with an on-orbit CD-ROM-based skill enhancement. This just-in-time concept was used to support real-time remote expert guidance to complete medical examinations using the ISS Human Research Facility (HRF). An American md Russian ISS crewmember received 2-hours of hands on ultrasound training 8 months prior to the on-orbit ultrasound exam. A CD-ROM-based Onboard Proficiency Enhancement (OPE) interactive multimedia program consisting of memory enhancing tutorials, and skill testing exercises, was completed by the crewmember six days prior to the on-orbit ultrasound exam. The crewmember was then remotely guided through a thoracic, vascular, and echocardiographic examination by ultrasound imaging experts. Results of the CD ROM based OPE session were used to modify the instructions during a complete 35 minute real-time thoracic, cardiac, and carotid/jugular ultrasound study. Following commands from the ground-based expert, the crewmember acquired all target views and images without difficulty. The anatomical content and fidelity of ultrasound video were excellent and adequate for clinical decision-making. Complex ultrasound experiments with expert guidance were performed with high accuracy following limited pre-flight training and CD-ROM-based in-flight review, despite a 2-second communication latency.

  20. Human Space Flight

    NASA Technical Reports Server (NTRS)

    Woolford, Barbara

    2006-01-01

    The performance of complex tasks on the International Space Station (ISS) requires significant preflight crew training commitments and frequent skill and knowledge refreshment. This report documents a recently developed just-in-time training methodology, which integrates preflight hardware familiarization and procedure training with an on-orbit CD-ROM-based skill enhancement. This just-in-time concept was used to support real-time remote expert guidance to complete medical examinations using the ISS Human Research Facility (HRF). An American md Russian ISS crewmember received 2-hours of hands on ultrasound training 8 months prior to the on-orbit ultrasound exam. A CD-ROM-based Onboard Proficiency Enhancement (OPE) interactive multimedia program consisting of memory enhancing tutorials, and skill testing exercises, was completed by the crewmember six days prior to the on-orbit ultrasound exam. The crewmember was then remotely guided through a thoracic, vascular, and echocardiographic examination by ultrasound imaging experts. Results of the CD ROM based OPE session were used to modify the instructions during a complete 35 minute real-time thoracic, cardiac, and carotid/jugular ultrasound study. Following commands from the ground-based expert, the crewmember acquired all target views and images without difficulty. The anatomical content and fidelity of ultrasound video were excellent and adequate for clinical decision-making. Complex ultrasound experiments with expert guidance were performed with high accuracy following limited pre-flight training and CD-ROM-based in-flight review, despite a 2-second communication latency.

  1. Comparing the effects of two in-flight aerobic exercise protocols on standing heart rates and VO(2peak) before and after space flight

    NASA Technical Reports Server (NTRS)

    Siconolfi, S. F.; Charles, J. B.; Moore, A. D. Jr; Barrows, L. H.

    1994-01-01

    The effects of regular aerobic exercise on orthostatic tolerance have been the subject of a long-standing controversy that will influence the use of exercise during space flight. To examine these effects, astronauts performed continuous (CE) aerobic exercise (n = 8), interval (IE) aerobic exercise (n = 4), or no (NE) exercise (n = 5) during flights of 7 to 11 days. Heart rate (HR) responses to an orthostatic challenge (stand test) were measured 10 days before flight and on landing day. VO(2peak) (graded treadmill exercise) was measured 7 to 21 days before and 2 days after flight. No significant differences across the groups were observed in standing HRs before or after flight. However, the within-group mean HRs significantly increased in the NE (71-89 beats/min) and CE (60-85 beats/min) groups after space flight. The HRs for the IE group did not significantly increase (75-86 beats/min) after space flight. VO(2peak) decreased (P < .05) in the NE (-9.5%) group, but did not change in the CE (-2.4%) and IE (1%) groups. The relationship (r = 0.237) between the delta HR and delta VO(2peak) was not significant. These preliminary results indicate that: (1) continuous exercise does not affect the orthostatic HR response after space flight; (2) interval exercise may minimize an increase in the postflight orthostatic HR; and (3) both exercise protocols can maintain VO(2peak).

  2. Comparing the effects of two in-flight aerobic exercise protocols on standing heart rates and VO(2peak) before and after space flight

    NASA Technical Reports Server (NTRS)

    Siconolfi, S. F.; Charles, J. B.; Moore, A. D. Jr; Barrows, L. H.

    1994-01-01

    The effects of regular aerobic exercise on orthostatic tolerance have been the subject of a long-standing controversy that will influence the use of exercise during space flight. To examine these effects, astronauts performed continuous (CE) aerobic exercise (n = 8), interval (IE) aerobic exercise (n = 4), or no (NE) exercise (n = 5) during flights of 7 to 11 days. Heart rate (HR) responses to an orthostatic challenge (stand test) were measured 10 days before flight and on landing day. VO(2peak) (graded treadmill exercise) was measured 7 to 21 days before and 2 days after flight. No significant differences across the groups were observed in standing HRs before or after flight. However, the within-group mean HRs significantly increased in the NE (71-89 beats/min) and CE (60-85 beats/min) groups after space flight. The HRs for the IE group did not significantly increase (75-86 beats/min) after space flight. VO(2peak) decreased (P < .05) in the NE (-9.5%) group, but did not change in the CE (-2.4%) and IE (1%) groups. The relationship (r = 0.237) between the delta HR and delta VO(2peak) was not significant. These preliminary results indicate that: (1) continuous exercise does not affect the orthostatic HR response after space flight; (2) interval exercise may minimize an increase in the postflight orthostatic HR; and (3) both exercise protocols can maintain VO(2peak).

  3. Effects of long-duration space flights on characteristics of the vertical gaze fixation reaction.

    PubMed

    Tomilovskaya, E S; Berger, M; Gerstenbrand, F; Kozlovskaya, I B

    2013-01-01

    The aim of the study was to examine effects of long-duration exposure to weightlessness on characteristics of the vertical gaze fixation reaction (GFR). The subjects were to perform the target acquisition task on visual stimuli that appeared at a distance of 16 deg. up- and down from the primary position in a random order. Experiments were performed before launch, during flight and after landing. Before flight time of gaze fixation reaction did not exceed 650 ms. During space flight (SF) it extended up to 900-1000 ms and more. The velocities of head movement in space decreased, but the velocities of eye counterrotation decreased to a lesser degree. This difference resulted in sharp increase of vertical vestibular ocular reflex (VOR) gain (up to 4.3 values in one of the cosmonauts) during the 1st month of flight; further it decreased reaching the values of 0.5-0.7 on the 5th month of SF. After landing vertical VOR gain increased greatly again. These results in the vertical axis are in agreement with the data of Kozlovskaya et al., which showed in experiments with monkeys that horizontal VOR gain increased together with redundant inadequate responses of vestibular nucleus on vestibular stimulation and that in the course of adaptation to these conditions central nervous system inhibited vestibular input from the motor control system.

  4. Endocrine responses to space flights.

    PubMed

    Macho, L; Kvetnansky, R; Fickova, M; Kolena, J; Knopp, J; Tigranian, R A; Popova, I A; Grogoriev, A I

    2001-07-01

    Simultaneously with human space flights several series of observations were performed by using experimental animals--mainly rats--exposed to space flights on board of special satellites BION-COSMOS or in Shuttle Transportation Systems (STS). The aims of these experiments were to study in more details: the mechanisms of the changes in bones and skeletal muscle, the alterations of the function of immune system, the radiation effects on organism, the mechanism of the changes of endocrine functions, the evaluation of the role of hormones in alteration of metabolic processes in organism. The advantages of these animal experiments were the possibilities to analyze not only the plasma samples, but it was possible to obtain samples of organs or tissues: for morphological and biochemical analysis for studies of the changes in enzyme activities and in gene expressions, for measurement of metabolic processes and for investigation of the hormone production in endocrine glands and estimation of the response of tissues to hormones. It was also possible to compare the endocrine response to spaceflight and to other stress stimuli. These animal studies are interesting for verification of some hypothesis in the mechanism of adaptation of human organism to the changes of gravity. The disadvantage was, however, that the animals in almost all experiments could be examined only after space flight. The actual inflight changes were investigated only in two SLS flights. In this short review it is not possible to evaluate all hormonal data available on the response of endocrine system to the conditions of space flights. Therefore we will concentrate on the response of pituitary adrenocortical system, pituitary thyroid and pituitary gonadal functions.

  5. Fiber Optic Cable Assemblies for Space Flight 2: Thermal and Radiation Effects

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.

    1998-01-01

    Goddard Space Flight Center is conducting a search for space flight worthy fiber optic cable assemblies that will benefit all projects at all of the NASA centers. This paper is number two in a series of papers being issued as a result of this task to define and qualify space grade fiber optic cable assemblies. Though to qualify and use a fiber optic cable in space requires treatment of the cable assembly as a system, it is very important to understand the design and behavior of its parts. This paper addresses that need, providing information on cable components shrinkage testing and radiation testing results from recent experiments at Goddard Space Flight Center.

  6. Radiation protection during space flight.

    PubMed

    Kovalev, E E

    1983-12-01

    The problem of ensuring space flight safety arises from conditions inherent to space flights and outer space and from the existing weight limitations of spacecraft. In estimating radiation hazard during space flights, three natural sources are considered: the Earth's radiation belt, solar radiation, and galactic radiation. This survey first describes the major sources of radiation hazard in outer space with emphasis on those source parameters directly related to shielding manned spacecraft. Then, the current status of the safety criteria used in the shielding calculations is discussed. The rest of the survey is devoted to the rationale for spacecraft radiation shielding calculations. The recently completed long-term space flights indicate the reliability of the radiation safety measures used for the near-Earth space exploration. While planning long-term interplanetary flights, it is necessary to solve a number of complicated technological problems related to the radiation protection of the crew.

  7. [Effects of occlusive cuffs "Braslet" on crew hemodynamics in short space flights and orthostatic stability post flight].

    PubMed

    Fomina, G A; Kotovskaia, A R; Vil'-Vil'iams, I F; Pochuev, V I; Zhernavkov, A F

    2004-01-01

    Effects of prophylactic device Braslet (occlusive cuffs wrapped around the calf) on hemodynamics were studied at rest and during the LBNP test during and on orthostatic stability post short (one-month) space flights. The ultrasonic procedure was applied to seven cosmonauts who had and six cosmonauts who had not worn the cuffs while in orbit. The device markedly alleviated the subjective feeling of discomfort caused by blood shift toward the cranial end at the beginning of adaptation to microgravity. Reductions in the central and peripheral hemodynamics, cervico-cephalic venous plethora specifically, were sequel to staying in microgravity. Testing of the hemodynamic reactions to LBNP during and after shortflights failed to discover noticeable deltas among the cosmonauts who had and had not worn the cuffs. The first analysis of objective in- and postflight data did not suggest any determent in orthostatic stability of cosmonauts due to application of the Braslet cuffs.

  8. Statistical analysis of flight times for space shuttle ferry flights

    NASA Technical Reports Server (NTRS)

    Graves, M. E.; Perlmutter, M.

    1974-01-01

    Markov chain and Monte Carlo analysis techniques are applied to the simulated Space Shuttle Orbiter Ferry flights to obtain statistical distributions of flight time duration between Edwards Air Force Base and Kennedy Space Center. The two methods are compared, and are found to be in excellent agreement. The flights are subjected to certain operational and meteorological requirements, or constraints, which cause eastbound and westbound trips to yield different results. Persistence of events theory is applied to the occurrence of inclement conditions to find their effect upon the statistical flight time distribution. In a sensitivity test, some of the constraints are varied to observe the corresponding changes in the results.

  9. Effects of microgravity on vestibular ontogeny: direct physiological and anatomical measurements following space flight (STS-29)

    NASA Technical Reports Server (NTRS)

    Jones, T. A.; Fermin, C.; Hester, P. Y.; Vellinger, J.

    1993-01-01

    Does space flight change gravity receptor development? The present study measured vestibular form and function in birds flown as embryos for 5 days in earth orbit (STS-29). No major changes in vestibular gross morphology were found. Vestibular response mean amplitudes and latencies were unaffected by space flight. However, the results of measuring vestibular thresholds were mixed and abnormal responses in 3 of the 8 flight animals raise important questions.

  10. Effects of microgravity on vestibular ontogeny: direct physiological and anatomical measurements following space flight (STS-29)

    NASA Technical Reports Server (NTRS)

    Jones, T. A.; Fermin, C.; Hester, P. Y.; Vellinger, J.

    1993-01-01

    Does space flight change gravity receptor development? The present study measured vestibular form and function in birds flown as embryos for 5 days in earth orbit (STS-29). No major changes in vestibular gross morphology were found. Vestibular response mean amplitudes and latencies were unaffected by space flight. However, the results of measuring vestibular thresholds were mixed and abnormal responses in 3 of the 8 flight animals raise important questions.

  11. Space Flight Effects on Intracellular Ions in Sublingual Cells of Non-Human Primates

    NASA Technical Reports Server (NTRS)

    Arnaud, Sara B.; Dotsenko, R.; Fung, P.; Navidi, M.; Silver, B.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    We have used a novel technique that quantifies minerals and electrolytes from smears of sublingual cells by x-ray microanalysis to monitor metabolic changes in bed rest subjects. Increases in intracellular calcium (Ca), phosphorus (P), and potassium (K) were characteristic of subjects whose exercise regimen was inadequate to maintain calcium metabolism. To test the effects of space flight on intracellular ions, we analyzed cells from 2-4 kg Rhesus monkeys before and after 2 weeks in space or chair restraint (CR). There were increases in sublingual cell Ca, P and K after space flight which paralleled the clinical estimates of metabolic status of the animals and exceeded the levels found during CR on R+11. Increases after 2 weeks CR were 26% in Ca, 6% in P and 29% in K. Species similarity ill responses of intracellular ions to inactivity imposed by bed rest, restraint or microgravity suggest that this innovative non-invasive technique would be a useful in-flight monitor of exercise countermeasures directed toward maintaining calcium balance.

  12. Space Flight Effects on Intracellular Ions in Sublingual Cells of Non-Human Primates

    NASA Technical Reports Server (NTRS)

    Arnaud, Sara B.; Dotsenko, R.; Fung, P.; Navidi, M.; Silver, B.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    We have used a novel technique that quantifies minerals and electrolytes from smears of sublingual cells by x-ray microanalysis to monitor metabolic changes in bed rest subjects. Increases in intracellular calcium (Ca), phosphorus (P), and potassium (K) were characteristic of subjects whose exercise regimen was inadequate to maintain calcium metabolism. To test the effects of space flight on intracellular ions, we analyzed cells from 2-4 kg Rhesus monkeys before and after 2 weeks in space or chair restraint (CR). There were increases in sublingual cell Ca, P and K after space flight which paralleled the clinical estimates of metabolic status of the animals and exceeded the levels found during CR on R+11. Increases after 2 weeks CR were 26% in Ca, 6% in P and 29% in K. Species similarity ill responses of intracellular ions to inactivity imposed by bed rest, restraint or microgravity suggest that this innovative non-invasive technique would be a useful in-flight monitor of exercise countermeasures directed toward maintaining calcium balance.

  13. Effects of long-term space flight on erythrocytes and oxidative stress of rodents.

    PubMed

    Rizzo, Angela Maria; Corsetto, Paola Antonia; Montorfano, Gigliola; Milani, Simona; Zava, Stefania; Tavella, Sara; Cancedda, Ranieri; Berra, Bruno

    2012-01-01

    Erythrocyte and hemoglobin losses have been frequently observed in humans during space missions; these observations have been designated as "space anemia". Erythrocytes exposed to microgravity have a modified rheology and undergo hemolysis to a greater extent. Cell membrane composition plays an important role in determining erythrocyte resistance to mechanical stress and it is well known that membrane composition might be influenced by external events, such as hypothermia, hypoxia or gravitational strength variations. Moreover, an altered cell membrane composition, in particular in fatty acids, can cause a greater sensitivity to peroxidative stress, with increase in membrane fragility. Solar radiation or low wavelength electromagnetic radiations (such as gamma rays) from the Earth or the space environment can split water to generate the hydroxyl radical, very reactive at the site of its formation, which can initiate chain reactions leading to lipid peroxidation. These reactive free radicals can react with the non-radical molecules, leading to oxidative damage of lipids, proteins and DNA, etiologically associated with various diseases and morbidities such as cancer, cell degeneration, and inflammation. Indeed, radiation constitutes on of the most important hazard for humans during long-term space flights. With this background, we participated to the MDS tissue-sharing program performing analyses on mice erythrocytes flown on the ISS from August to November 2009. Our results indicate that space flight induced modifications in cell membrane composition and increase of lipid peroxidation products, in mouse erythrocytes. Moreover, antioxidant defenses in the flight erythrocytes were induced, with a significant increase of glutathione content as compared to both vivarium and ground control erythrocytes. Nonetheless, this induction was not sufficient to prevent damages caused by oxidative stress. Future experiments should provide information helpful to reduce the effects

  14. Space Shuttle flight control system

    NASA Technical Reports Server (NTRS)

    Klinar, W. J.; Kubiak, E. T.; Peters, W. H.; Saldana, R. L.; Smith, E. E., Jr.; Stegall, H. W.

    1975-01-01

    The Space Shuttle is a control stabilized vehicle with control provided by an all digital, fly-by-wire flight control system. This paper gives a description of the several modes of flight control which correspond to the Shuttle mission phases. These modes are ascent flight control (including open loop first stage steering, the use of four computers operating in parallel and inertial guidance sensors), on-orbit flight control (with a discussion of reaction control, phase plane switching logic, jet selection logic, state estimator logic and OMS thrust vector control), entry flight control and TAEM (terminal area energy management to landing). Also discussed are redundancy management and backup flight control.

  15. Energy requirements for space flight

    NASA Technical Reports Server (NTRS)

    Lane, Helen W.

    1992-01-01

    Both the United States and the Soviet Union perform human space research. This paper reviews data available on energy metabolism in the microgravity of space flight. The level of energy utilization in space seems to be similar to that on earth, as does energy availability. However, despite adequate intake of energy and protein and in-flight exercise, lean body mass was catabolized, as indicated by negative nitrogen balance. Metabolic studies during simulated microgravity (bed rest) and true microgravity in flight have shown changes in blood glucose, fatty acids and insulin concentrations, suggesting that energy metabolism may be altered during space flight. Future research should focus on the interactions of lean body mass, diet and exercise in space, and their roles in energy metabolism during space flight.

  16. Energy requirements for space flight

    NASA Technical Reports Server (NTRS)

    Lane, Helen W.

    1992-01-01

    Both the United States and the Soviet Union perform human space research. This paper reviews data available on energy metabolism in the microgravity of space flight. The level of energy utilization in space seems to be similar to that on earth, as does energy availability. However, despite adequate intake of energy and protein and in-flight exercise, lean body mass was catabolized, as indicated by negative nitrogen balance. Metabolic studies during simulated microgravity (bed rest) and true microgravity in flight have shown changes in blood glucose, fatty acids and insulin concentrations, suggesting that energy metabolism may be altered during space flight. Future research should focus on the interactions of lean body mass, diet and exercise in space, and their roles in energy metabolism during space flight.

  17. Long-Duration Space Flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Session WA1 includes short reports concerning: (1) Medical and Physiological Studies During 438-Day Space Flights: (2) Human Performance During a 14 Month Space Mission: (3) Homeostasis in Long-Term Microgravity Conditions; (4) Strategy of Preservation of Health of Cosmonauts in Prolonged and Superprolonged Space Flights; (5) Rehabilitation of Cosmonauts Health Following Long-Term Space Missions; and (6) Perfect Cosmonauts: Some Features of Bio-Portrait.

  18. History of Manned Space Flight

    NASA Technical Reports Server (NTRS)

    1975-01-01

    U.S. manned space projects from Mercury Redstone 3 through Skylab 4 are briefly described including dates, flight duration, crew, and number of earth/moon orbits. The flight costs of each project are itemized. Highlights in the history of the manned space program from 1957 to February, 1974 are included.

  19. Ensuring safety of space flights

    NASA Astrophysics Data System (ADS)

    Smirnov, N. N.

    2017-06-01

    The present section accumulates selected papers from the Third IAA Space Flight Safety Symposium - the international meeting consolidating the international efforts on safety of space flights at new scientific and technological level. It was held in St. Petersburg since July 4 on July 8, 2016. Venue:

  20. Human Factors in Space Flight

    NASA Technical Reports Server (NTRS)

    Woolford, Barbara J.; Mount, Frances

    2005-01-01

    After forty years of experience with human space flight (Table 1), the current emphasis is on the design of space vehicles, habitats, and missions to ensure mission success. What lessons have we learned that will affect the design of spacecraft for future space exploration, leading up to exploring Mars? This chapter addresses this issue in four sections: Anthropometry and Biomechanics; Environmental Factors; Habitability and Architecture; and Crew Personal Sustenance. This introductory section introduces factors unique to space flight. A unique consideration for design of a habitable volume in a space vehicle is the lack of gravity during a space flight, referred to as microgravity. This affects all aspects of life, and drives special features in the habitat, equipment, tools, and procedures. The difference in gravity during a space mission requires designing for posture and motion differences. In Earth s gravity, or even with partial gravity, orientation is not a variable because the direction in which gravity acts defines up and down. In a microgravity environment the working position is arbitrary; there is no gravity cue. Orientation is defined primarily through visual cues. The orientation within a particular crew station or work area is referred to as local vertical, and should be consistent within a module to increase crew productivity. Equipment was intentionally arranged in various orientations in one module on Skylab to assess the efficiency in use of space versus the effects of inconsistent layout. The effects of that arrangement were confusion on entering the module, time spent in re-orientation, and conflicts in crew space requirements when multiple crew members were in the module. Design of a space vehicle is constrained by the three major mission drivers: mass, volume and power. Each of these factors drives the cost of a mission. Mass and volume determine the size of the launch vehicle directly; they can limit consumables such as air, water, and

  1. Understanding the Effects of Long-duration Space Flight on Astronant Functional Task Performance

    NASA Technical Reports Server (NTRS)

    Bloomberg, Jacob J.; Batson, Crystal D.; Buxton, Roxanne E.; Feiveson, Al H.; Kofman, Igor S.; Lee, Stuart M. C.; Miller, Chris A.; Mulavara, Ajitkumar P.; Peters, Brian T.; Phillips, Tiffany; Platts, Steven H.; Ploutz-Snyder, Lori L.; Reschke, Millard F.; Ryder, Jeff W.; Stenger, Michael B.; Taylor, Laura C.

    2014-01-01

    Space flight is known to cause alterations in multiple physiological systems including changes in sensorimotor, cardiovascular, and neuromuscular systems. These physiological changes cause balance, gait and visual disturbances, cardiovascular deconditioning, and loss of muscle mass and strength. These changes may affect a crewmember's ability to perform critical mission tasks immediately after landing on a planetary surface. To understand how changes in physiological function affect functional performance, an interdisciplinary pre- and postflight testing regimen, Functional Task Test (FTT), was developed to systematically evaluate both astronaut functional performance and related physiological changes. Ultimately this information will be used to assess performance risks and inform the design of countermeasures for exploration class missions. We are currently conducting the FTT study on International Space Station (ISS) crewmembers before and after 6-month expeditions. Additionally, in a corresponding study we are using the FTT protocol on subjects before and after 70 days of 6deg head-down bed-rest as an analog for space flight. Bed-rest provides the opportunity for us to investigate the role of prolonged axial body unloading in isolation from the other physiological effects produced by exposure to the microgravity environment of space flight. Therefore, the bed rest analog allows us to investigate the impact of body unloading on both functional tasks and on the underlying physiological factors that lead to decrement in performance and then compare them with the results obtained in our space flight study. Functional tests included ladder climbing, hatch opening, jump down, manual manipulation of objects and tool use, seat egress and obstacle avoidance, recovery from a fall and object translation tasks. Physiological measures included assessments of postural and gait control, dynamic visual acuity, fine motor control, plasma volume, heart rate, blood pressure

  2. [Effect of space flight on the Kosmos-1129 biosatellite on enzyme activity of the rat liver].

    PubMed

    Nemeth, S; Tigranian, R A

    1983-01-01

    After the 18.5 day Cosmos-1129 flight the activity of 7 glucocorticoid-stimulated enzymes of the rat liver was measured. Immediately postflight the activity of tyrosine aminotransferase, tryptophan pyrolase and serine dehydrogenase increased. These enzymes rapidly (within several hours) react to increased glucocorticoids. The activity of aspartate and alanine aminotransferases also increased. These enzymes require many days of a continuous effect of glucocorticoids. The glycogen concentration in the rat liver also grew. At R + 6 the activity of tryptophan pyrolase and serine dehydrogenase decreased and that of the other enzymes returned to normal. The immobilization stress applied postflight led to an increased activity of tyrosine aminotransferase and tryptophan pyrolase. This study gives evidence that after space flight rats are in an acute stress state, evidently, produced by the biosatellite recovery.

  3. Space flight and oxidative stress

    NASA Technical Reports Server (NTRS)

    Stein, T. P.

    2002-01-01

    Space flight is associated with an increase in oxidative stress after return to 1g. The effect is more pronounced after long-duration space flight. The effects lasts for several weeks after landing. In humans there is increased lipid peroxidation in erythrocyte membranes, reduction in some blood antioxidants, and increased urinary excretion of 8-iso-prostaglandin F(2alpha) and 8-oxo-7,8 dihydro-2 deoxyguanosine. Isoprostane 8-iso-prostaglandin F(2alpha) and 8-oxo-7,8 dihydro-2 deoxyguanosine are markers for oxidative damage to lipids and DNA, respectively. The changes have been attributed to a combination of the energy deficiency that occurs during flight and substrate competition for amino acids occurring between repleting muscle and other tissues during the recovery phase. The observations in humans have been complemented by rodent studies. Most rodent studies showed increased production of lipid peroxidation products postflight and decreased antioxidant enzyme activity postflight. The rodent observations were attributed to the stress associated with reentry into Earth's gravity. Decreasing the imbalance between the production of endogenous oxidant defenses and oxidant production by increasing the supply of dietary antioxidants may lessen the severity of the postflight increase in oxidative stress.

  4. Space flight and oxidative stress.

    PubMed

    Stein, T P

    2002-10-01

    Space flight is associated with an increase in oxidative stress after return to 1g. The effect is more pronounced after long-duration space flight. The effects lasts for several weeks after landing. In humans there is increased lipid peroxidation in erythrocyte membranes, reduction in some blood antioxidants, and increased urinary excretion of 8-iso-prostaglandin F(2alpha) and 8-oxo-7,8 dihydro-2 deoxyguanosine. Isoprostane 8-iso-prostaglandin F(2alpha) and 8-oxo-7,8 dihydro-2 deoxyguanosine are markers for oxidative damage to lipids and DNA, respectively. The changes have been attributed to a combination of the energy deficiency that occurs during flight and substrate competition for amino acids occurring between repleting muscle and other tissues during the recovery phase. The observations in humans have been complemented by rodent studies. Most rodent studies showed increased production of lipid peroxidation products postflight and decreased antioxidant enzyme activity postflight. The rodent observations were attributed to the stress associated with reentry into Earth's gravity. Decreasing the imbalance between the production of endogenous oxidant defenses and oxidant production by increasing the supply of dietary antioxidants may lessen the severity of the postflight increase in oxidative stress.

  5. Space flight and oxidative stress

    NASA Technical Reports Server (NTRS)

    Stein, T. P.

    2002-01-01

    Space flight is associated with an increase in oxidative stress after return to 1g. The effect is more pronounced after long-duration space flight. The effects lasts for several weeks after landing. In humans there is increased lipid peroxidation in erythrocyte membranes, reduction in some blood antioxidants, and increased urinary excretion of 8-iso-prostaglandin F(2alpha) and 8-oxo-7,8 dihydro-2 deoxyguanosine. Isoprostane 8-iso-prostaglandin F(2alpha) and 8-oxo-7,8 dihydro-2 deoxyguanosine are markers for oxidative damage to lipids and DNA, respectively. The changes have been attributed to a combination of the energy deficiency that occurs during flight and substrate competition for amino acids occurring between repleting muscle and other tissues during the recovery phase. The observations in humans have been complemented by rodent studies. Most rodent studies showed increased production of lipid peroxidation products postflight and decreased antioxidant enzyme activity postflight. The rodent observations were attributed to the stress associated with reentry into Earth's gravity. Decreasing the imbalance between the production of endogenous oxidant defenses and oxidant production by increasing the supply of dietary antioxidants may lessen the severity of the postflight increase in oxidative stress.

  6. [Space flight and peroxidative damage].

    PubMed

    Yang, Tang-bin; Zhong, Ping; Qu, Li-na; Yuan, Yan-hong

    2003-12-01

    Space flight is associated with an increase of peroxidative damage after returning to 1 g. The effect is more pronounced after long-duration space flight and can even last for several weeks after landing. In humans there is increased lipid peroxidation in erythrocyte membranes, reduced blood antioxidants, and increased urinary excretion of 8-iso-prostaglandin F2alpha, and 8-oxo-7, 8 dihydro-2 deoxyguanosine. Isoprostane 8-iso-prostaglandin F2alpha and 8-oxo-7, 8 dihydro-2 deoxyguanosine are markers for oxidative damage to lipids and DNA, respectively. The changes are attributed to a combination of energy deficiency that occurs during flight and substrate competition for amino acids occurring between repleted muscle and other tissues during the recovery phase. The observations in humans have been complemented by studies in rodents, which showed increased production of lipid peroxidation products and decreased antioxidant enzyme activity afterflight. The changes in rodents were attributed to the stress associated with re-entry into Earth's gravity. Reducing the imbalance between the production of endogenous oxidant defenses and oxidant production by increasing the supply antioxidants in diet may lessen the severity of the postflight increase in oxidative stress.

  7. Space life sciences: search for signatures of life, and space flight environmental effects on the nervous system.

    PubMed

    2004-01-01

    This volume contains selected papers of the Joint COSPAR-IAC event "Search for signatures of life in the solar system, terrestrial analogues and simulation experiments" held during the World Space Congress 2002 in Houston, Texas, USA. The first section of the volume reports on the rich variety of terrestrial microbial communities adapted to extreme environments, such as microbial life at very low temperatures in permafrost and ice layers, at high salt concentrations, as inhabitants of rocks and the microbial recolonization of impact-shocked rocks. These communities are suggested to serve as analogues for extraterrestrial habitats, which are also described in this section. The second section deals with the detection of biomarkers and signatures from extinct life on Earth, which might provide clues for detection of potential extraterrestrial biomarkers. This section is followed by reports of experiments in space and in the laboratory simulating space conditions, such as the prebiotic organic chemistry, the chemistry of dust particles to be detected during the Cassini mission to Saturn, as well as the photochemistry of biological systems exposed to space or planetary surface conditions. The second part of the issue contains papers from the session "The nervous system: space flight environmental factors effects--present results and new perspectives." The presentations in this session explored various aspects of the effects of exposure to protons and heavy particles on central nervous system function and on behavior. The second series of papers examines the effects of exposure to heavy particles and protons on neurochemistry and on behavior.

  8. Stimulating effect of space flight factors on Artemia cysts: comparison with irradiation by gamma rays

    SciTech Connect

    Gaubin, Y.; Pianezzi, B.; Gasset, G.; Plannel, H.; Kovalev, E.E.

    1986-06-01

    The Artemia cyst, a gastrula in dormant state, is a very suitable material to investigate the individual effects of HZE cosmic particles. Monolayers of Artemia cysts, sandwiched with nuclear emulsions, flew aboard the Soviet biosatellite Cosmos 1129. The space flight stimulated the developmental capacity expressed by higher percentages of emergence, hatching, and alive nauplii at day 4-5. A greater mean life span was reported in Artemias developed from Artemia cysts hit by the cosmic heavy ions. On Earth, Artemia cysts were exposed to 1, 10, 100, 200 and 400 Gy of gamma (gamma) rays. A stimulating effect on developmental capacity was observed for 10 Gy; the mean life span was significantly increased for this dose. These results are discussed in comparison with previous investigations performed on Earth and in space.

  9. Effects of space flight and mixing on bacterial growth in low volume cultures

    NASA Technical Reports Server (NTRS)

    Kacena, M. A.; Manfredi, B.; Todd, P.

    1999-01-01

    Previous investigations have shown that liquid suspension bacterial cultures grow to higher cell concentrations in spaceflight than on Earth. None of these studies included ground-control experiments designed to evaluate the fluid effects potentially responsible for the reported increases. Therefore, the emphasis of this research was to both confirm differences in final cell concentration between 1g and microgravity cultures, and to examine the effects of mixing as a partial explanation for this difference. Flight experiments were performed in the Fluid Processing Apparatus (FPA), aboard Space Shuttle Missions STS-63 and STS-69, with simultaneous 1g static and agitated controls. Additional static 1g, agitated, and clino-rotated controls were performed in 9-ml culture tubes. This research revealed that both E. coli and B. subtilis samples cultured in space flight grew to higher final cell densities (120-345% increase) than simultaneous static 1g controls. The final cell concentration of E. coli cells cultured under agitation was 43% higher than in static 1g cultures and was 102% higher with clino-rotation. However, for B. subtilis cultures grown while being agitated on a shaker or clino-rotated, the final cell concentrations were nearly identical to those of the simultaneous static 1g controls. Therefore, these data suggest that the unique fluid quiescence in the microgravity environment (lack of sedimentation, creating unique transfer of nutrients and waste products), was responsible for the enhanced bacterial proliferation reported in this and other studies.

  10. Effects of space flight and mixing on bacterial growth in low volume cultures

    NASA Technical Reports Server (NTRS)

    Kacena, M. A.; Manfredi, B.; Todd, P.

    1999-01-01

    Previous investigations have shown that liquid suspension bacterial cultures grow to higher cell concentrations in spaceflight than on Earth. None of these studies included ground-control experiments designed to evaluate the fluid effects potentially responsible for the reported increases. Therefore, the emphasis of this research was to both confirm differences in final cell concentration between 1g and microgravity cultures, and to examine the effects of mixing as a partial explanation for this difference. Flight experiments were performed in the Fluid Processing Apparatus (FPA), aboard Space Shuttle Missions STS-63 and STS-69, with simultaneous 1g static and agitated controls. Additional static 1g, agitated, and clino-rotated controls were performed in 9-ml culture tubes. This research revealed that both E. coli and B. subtilis samples cultured in space flight grew to higher final cell densities (120-345% increase) than simultaneous static 1g controls. The final cell concentration of E. coli cells cultured under agitation was 43% higher than in static 1g cultures and was 102% higher with clino-rotation. However, for B. subtilis cultures grown while being agitated on a shaker or clino-rotated, the final cell concentrations were nearly identical to those of the simultaneous static 1g controls. Therefore, these data suggest that the unique fluid quiescence in the microgravity environment (lack of sedimentation, creating unique transfer of nutrients and waste products), was responsible for the enhanced bacterial proliferation reported in this and other studies.

  11. Human Space Flight Plans Committee

    NASA Image and Video Library

    2009-12-07

    Former astronaut Dr. Sally Ride, left, confers with Norman Augustine, chair, prior to the start of the final meeting of the Human Space Flight Review Committee, Wednesday, Aug. 12, 2009, in Washington. Photo Credit: (NASA/Paul E. Alers)

  12. Human Space Flight Plans Committee

    NASA Image and Video Library

    2009-08-12

    Former astronaut Dr. Sally Ride, left, confers with Norman Augustine, chair, prior to the start of the final meeting of the Human Space Flight Review Committee, Wednesday, Aug. 12, 2009, in Washington. Photo Credit: (NASA/Paul E. Alers)

  13. Human Space Flight Plans Committee

    NASA Image and Video Library

    2009-08-11

    Norman Augustine, chair, listens to a speaker's presentation during the final meeting of the Human Space Flight Review Committee, Wednesday, Aug. 12, 2009, in Washington. Photo Credit: (NASA/Paul E. Alers)

  14. "Space flight is utter bilge"

    NASA Astrophysics Data System (ADS)

    Yeomans, Donald

    2004-01-01

    Despite skepticism and ridicule from scientists and the public alike, a small handful of dreamers kept faith in their vision of space flight and planned for the day when humanity would break loose from Earth.

  15. Locomotor function after long-duration space flight: effects and motor learning during recovery.

    PubMed

    Mulavara, Ajitkumar P; Feiveson, Alan H; Fiedler, James; Cohen, Helen; Peters, Brian T; Miller, Chris; Brady, Rachel; Bloomberg, Jacob J

    2010-05-01

    Astronauts returning from space flight and performing Earth-bound activities must rapidly transition from the microgravity-adapted sensorimotor state to that of Earth's gravity. The goal of the current study was to assess locomotor dysfunction and recovery of function after long-duration space flight using a test of functional mobility. Eighteen International Space Station crewmembers experiencing an average flight duration of 185 days performed the functional mobility test (FMT) pre-flight and post-flight. To perform the FMT, subjects walked at a self selected pace through an obstacle course consisting of several pylons and obstacles set up on a base of 10-cm-thick, medium-density foam for a total of six trials per test session. The primary outcome measure was the time to complete the course (TCC, in seconds). To assess the long-term recovery trend of locomotor function after return from space flight, a multilevel exponential recovery model was fitted to the log-transformed TCC data. All crewmembers exhibited altered locomotor function after space flight, with a median 48% increase in the TCC. From the fitted model we calculated that a typical subject would recover to 95% of his/her pre-flight level at approximately 15 days post-flight. In addition, to assess the early motor learning responses after returning from space flight, we modeled performance over the six trials during the first post-flight session by a similar multilevel exponential relation. We found a significant positive correlation between measures of long-term recovery and early motor learning (P < 0.001) obtained from the respective models. We concluded that two types of recovery processes influence an astronaut's ability to re-adapt to Earth's gravity environment. Early motor learning helps astronauts make rapid modifications in their motor control strategies during the first hours after landing. Further, this early motor learning appears to reinforce the adaptive realignment, facilitating re

  16. Space Flight Safety - Discussing perspectives

    NASA Astrophysics Data System (ADS)

    Smirnov, N. N.

    2016-09-01

    The present section accumulates selected papers from the Second IAA Space Flight Safety Symposium - the international action consolidating the international efforts on safety of space flights at new scientific and technological level. It was held in St. Petersburg in the period since June 29 till July 3, 2015. Venue - the congress-hall and Proving ground of «Special Materials Corp»- Scientific and production association of special materials (St. Petersburg, Sampsonievsky pr. 28a) (Figs. 1 and 2).

  17. Space flight, microgravity, stress, and immune responses

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, G.

    1999-01-01

    Exposure of animals and humans to space flight conditions has resulted in numerous alterations in immunological parameters. Decreases in lymphocyte blastogenesis, cytokine production, and natural killer cell activity have all been reported after space flight. Alterations in leukocyte subset distribution have also been reported after flight of humans and animals in space. The relative contribution of microgravity conditions and stress to the observed results has not been established. Antiorthostatic, hypokinetic, hypodynamic, suspension of rodents and chronic head-down tilt bed-rest of humans have been used to model effects of microgravity on immune responses. After use of these models, some effects of space flight on immune responses, such as decreases in cytokine function, were observed, but others, such as alterations in leukocyte subset distribution, were not observed. These results suggest that stresses that occur during space flight could combine with microgravity conditions in inducing the changes seen in immune responses after space flight. The biological/biomedical significance of space flight induced changes in immune parameters remains to be established.

  18. [The characteristics of the effect of space flight factors on regeneration processes in mammals and Urodela].

    PubMed

    Brushlinskaia, N V; Tuchkova, S Ia; Grigorian, E N; Anton, H J; Mitashov, V I

    1994-01-01

    Comparative analysis of experimental studies on regeneration of bone and muscle tissue under the influence of space flight factors (SFF) during restoration of experimental fracture in rats and epimorphic limb regeneration in adult newt is presented SFF-induced retardation of regeneration in mammals and its acceleration in tailed amphibians results from changed calcium metabolism in conditions of microgravity. Bidirectional effect of SFF on bone regeneration is due to specific control of calcium homeostasis in these taxa. Upon termination of the space flight (SF) the Wistar SPF rats proved to have increased functional activity of parathyrocytes and blocked calcitonin secretion to the blood by the C-cells of thyroid gland. Hence, inhibition of posttraumatic bone regeneration in rats is due to decreased formation rate and enhanced resorption of bony tissue. Sharp decrease of the calcitonincytes population following the initial hypertrophy of ultimobranchial gland (UBG) is observed in adult newt Pleurodeles waltlii Michah during SF. Progressing demineralization of skeletal elements including the amputated limb stump accelerates the first stages of its regeneration in conditions of SF.

  19. Cardiovascular function in space flight

    NASA Technical Reports Server (NTRS)

    Nicogossian, A. E.; Charles, J. B.; Bungo, M. W.; Leach-Huntoon, C. S.

    1990-01-01

    Postflight orthostatic intolerance and cardiac hemodynamics associated with manned space flight have been investigated on seven STS missions. Orthostatic heart rates appear to be influenced by the mission duration. The rates increase during the first 7-10 days of flight and recover partially after that. Fluid loading is used as a countermeasure to the postflight orthostatic intolerance. The carotid baroreceptor function shows only slight responsiveness to orthostatic stimulation. Plots of the baroreceptor function are presented. It is concluded that an early adaptation to the space flight conditions involves a fluid shift and that the subsequent alterations in the neutral controlling mechanisms contribute to the orthoststic intolerance.

  20. Cardiovascular function in space flight

    NASA Technical Reports Server (NTRS)

    Nicogossian, A. E.; Charles, J. B.; Bungo, M. W.; Leach-Huntoon, C. S.

    1990-01-01

    Postflight orthostatic intolerance and cardiac hemodynamics associated with manned space flight have been investigated on seven STS missions. Orthostatic heart rates appear to be influenced by the mission duration. The rates increase during the first 7-10 days of flight and recover partially after that. Fluid loading is used as a countermeasure to the postflight orthostatic intolerance. The carotid baroreceptor function shows only slight responsiveness to orthostatic stimulation. Plots of the baroreceptor function are presented. It is concluded that an early adaptation to the space flight conditions involves a fluid shift and that the subsequent alterations in the neutral controlling mechanisms contribute to the orthoststic intolerance.

  1. [Effects of space flight on glycyrrhizic acid-related gene mutation in Glycyrrhiza uralensis].

    PubMed

    Yan, Shuo; Gao, Wenyuan; Lu, Fuping; Zhao, Runhuai

    2009-11-01

    To substantiate the effects of spaceflight on the glycyrrhizic acid-related gene mutation in Glycyrrhiza uralensis. Licorice (G. uralensis) seeds were carried by a recoverable satellite for 18 days (the average radiation dose in the flight recovery module was 0. 102 m x d(-1), the orbit semidiameter 350 km, gravity 10(-6)). After returned to the earth, the satellite-flown seeds and the un-flown seeds (ground control) were planted in the fields of experimental farm. The leaves of each group were used for studying the effects of space flight on the glycyrrhizic acid-related gene mutation including ITS sequence and beta-amyrine synthase gene. The ITS sequence of glycyrrhizic acid related gene showed no changes after spaceflight. While beta-amyrine synthase gene had some different points after spaceflight and the different points could get the expression. The results indicated that spaceflight induce genetic variation in G. uralensis and spaceflight could also have effects on glycyrrhizic acid-related gene mutation in G. uralensis. It may need to further research how the spaceflight induced the mutation of the glycyrrhizic acid related gene. The results suggested that recoverable satellite-flown condition could bring inheritable mutagenic effects on G. uralensis seeds and maybe used as a tool for accelerating the progress in G. uralensis breeding.

  2. Space Science and Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Spann, James

    2005-01-01

    Space Science a t Marshall Space Flight Center is diverse and very interesting. It ranges from high energy astrophysics to astrobiology, from solar physics to space weather to dusty plasmas. I will present some of the more interesting investigations regarding auroral physics, what it takes to build a space camera, and laboratory investigations of dust. There will be time for questions and answers at the conclusion.

  3. Man, space flight and medicine.

    NASA Technical Reports Server (NTRS)

    Berry, C. A.

    1972-01-01

    Review of experience obtained from space flight to evaluate man's physiological capability to function in space. Results of the Mercury, Gemini, and Apollo programs are presented, with emphasis on the latter. The space medicine requirements which were necessary for assuring man's safe journey into and return from space have resulted in hardware and techniques of great value to terrestrial medicine. The need to monitor the physiologic function of crewmen led to the development of miniaturized, nonirritating, and highly reliable sensors.

  4. Effects of space flight on the immunohistochemical demonstration of connexin 26 and connexin 43 in the postpartum uterus of rats

    NASA Technical Reports Server (NTRS)

    Burden, H. W.; Zary, J.; Alberts, J. R.

    1999-01-01

    The effect of space flight in a National Aeronautics and Space Administration shuttle was studied in pregnant rats. Rats were launched on day 11 of gestation and recovered on day 20 of gestation. Pregnancy was allowed to proceed to term and rats delivered vaginally on days 22-23, although flight animals required more labour contractions to complete the delivery process. Pups were placed with foster dams and connexin 26 and 43 were examined in the uterus of flight animals approximately 3 h after delivery. Space flight did not affect uterine connexin 26, localized primarily in epithelial cells of the endometrium, but decreased connexin 43, the major gap junction protein in the myometrium. It is suggested that decreased connexin 43 alters synchronization and coordination of labour contractions, resulting in a requirement for more contractions to complete the delivery process.

  5. Effects of space flight on the immunohistochemical demonstration of connexin 26 and connexin 43 in the postpartum uterus of rats

    NASA Technical Reports Server (NTRS)

    Burden, H. W.; Zary, J.; Alberts, J. R.

    1999-01-01

    The effect of space flight in a National Aeronautics and Space Administration shuttle was studied in pregnant rats. Rats were launched on day 11 of gestation and recovered on day 20 of gestation. Pregnancy was allowed to proceed to term and rats delivered vaginally on days 22-23, although flight animals required more labour contractions to complete the delivery process. Pups were placed with foster dams and connexin 26 and 43 were examined in the uterus of flight animals approximately 3 h after delivery. Space flight did not affect uterine connexin 26, localized primarily in epithelial cells of the endometrium, but decreased connexin 43, the major gap junction protein in the myometrium. It is suggested that decreased connexin 43 alters synchronization and coordination of labour contractions, resulting in a requirement for more contractions to complete the delivery process.

  6. Effects of radiation and latent virus on immune responses in a space flight model.

    PubMed

    Shearer, William T; Zhang, Shaojie; Reuben, James M; Lee, Bang-Ning; Butel, Janet S

    2005-06-01

    The immunosuppressive effects of space flight radiation and reactivation of latent virus infections in human beings are largely unknown. To develop a murine model that can predict the adverse effects of space flight radiation and reactivation of latent virus infection for human beings. In experiment I, some BALB/c mice received whole-body gamma-irradiation (3 Gy) on day 0 and murine polyoma virus (PyV) on day 1. In experiment II, mice received irradiation (3 Gy) or none on days 0 and/or 49, and PyV or none on day 1: A1, 3 Gy/PyV/3 Gy; A2, 3 Gy/ PyV/0 Gy; B1, 0 Gy/PyV/3 Gy; B2, 0 Gy/ PyV/0 Gy; C, 3 Gy/0 PyV/0 Gy; and D, 0 Gy/0 PyV/0 Gy. In experiment I, PyV was detected by PCR more frequently in several host organs tested and for a longer period of time in irradiated than in control animals. In experiment II, PyV replication in the spleen was detected in A1>B1 mice on days 10 and 20; both groups cleared PyV by day 49. After irradiation on day 49, reactivated PyV was detected in more B1 than A1 mice. A1 mice had lower spleen weights and cell counts than other groups at all time points. From 0 to 49 days, irradiation suppressed spleen cell proliferation to concanavalin A in all irradiated groups except in B1 when the virus was cleared at day 20. PyV enhanced IFN-gamma production in all groups: B1>A1>C, D (0-49 days; all differences, P < .05). This small animal model of space flight suggests that the combined effects of radiation and virus replication will significantly affect T-lymphocyte-mediated immunity that may lead to chronic viral infection and malignancy.

  7. Immune function during space flight

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald; Shearer, William T.

    2002-01-01

    It is very likely that the human immune system will be altered in astronauts exposed to the conditions of long-term space flight: isolation, containment, microgravity, radiation, microbial contamination, sleep disruption, and insufficient nutrition. In human and animal subjects flown in space, there is evidence of immune compromise, reactivation of latent virus infection, and possible development of a premalignant or malignant condition. Moreover, in ground-based space flight model investigations, there is evidence of immune compromise and reactivation of latent virus infection. All of these observations in space flight itself or in ground-based models of space flight have a strong resonance in a wealth of human pathologic conditions involving the immune system where reactivated virus infections and cancer appear as natural consequences. The clinical conditions of Epstein-Barr-driven lymphomas in transplant patients and Kaposi's sarcoma in patients with autoimmune deficiency virus come easily to mind in trying to identify these conditions. With these thoughts in mind, it is highly appropriate, indeed imperative, that careful investigations of human immunity, infection, and cancer be made by space flight researchers.

  8. Immune function during space flight.

    PubMed

    Sonnenfeld, Gerald; Shearer, William T

    2002-10-01

    It is very likely that the human immune system will be altered in astronauts exposed to the conditions of long-term space flight: isolation, containment, microgravity, radiation, microbial contamination, sleep disruption, and insufficient nutrition. In human and animal subjects flown in space, there is evidence of immune compromise, reactivation of latent virus infection, and possible development of a premalignant or malignant condition. Moreover, in ground-based space flight model investigations, there is evidence of immune compromise and reactivation of latent virus infection. All of these observations in space flight itself or in ground-based models of space flight have a strong resonance in a wealth of human pathologic conditions involving the immune system where reactivated virus infections and cancer appear as natural consequences. The clinical conditions of Epstein-Barr-driven lymphomas in transplant patients and Kaposi's sarcoma in patients with autoimmune deficiency virus come easily to mind in trying to identify these conditions. With these thoughts in mind, it is highly appropriate, indeed imperative, that careful investigations of human immunity, infection, and cancer be made by space flight researchers.

  9. Human Space Flight Plans Committee

    NASA Image and Video Library

    2009-08-11

    Bohdan Bejmuk, chair, Constellation program Standing Review Board, and former manager of the Boeing Space Shuttle and Sea Launch programs, right, asks a question during the final meeting of the Human Space Flight Review Committee as Dr. Wanda Austin, president and CEO, The Aerospace Corp., looks on at left, Wednesday, Aug. 12, 2009, in Washington. Photo Credit: (NASA/Paul E. Alers)

  10. Human Space Flight Plans Committee

    NASA Image and Video Library

    2009-06-16

    Norman Augustine, chair of the Human Space Flight Review Committee, listens to a comment from the audience during the first of several public meetings at different U.S. locations, Wednesday, June 17, 2009, at the Carnegie Institution in Washington. The panel will examine ongoing and planned NASA development activities and potential alternatives in order to present options for advancing a safe, innovative, affordable and sustainable human space flight program following the space shuttle's retirement. The committee wil present its results by August 2009. Photo Credit: (NASA/Paul E. Alers)

  11. Human Space Flight Plans Committee

    NASA Image and Video Library

    2009-06-16

    Norman Augustine, chair of the Human Space Flight Review Committee, makes a point during the first of several public meetings at different U.S. locations, Wednesday, June 17, 2009, at the Carnegie Institution in Washington. The panel will examine ongoing and planned NASA development activities and potential alternatives in order to present options for advancing a safe, innovative, affordable and sustainable human space flight program following the space shuttle's retirement. The committee wil present its results by August 2009. Photo Credit: (NASA/Paul E. Alers)

  12. Human Space Flight Plans Committee

    NASA Image and Video Library

    2009-06-16

    Douglas R. Cooke, Associate Administrator for Exploration Systems Mission Directorate, at podium, addresses the Human Space Flight Review Committee, Wednesday, June 17, 2009, at the Carnegie Institution in Washington. The panel will examine ongoing and planned NASA development activities and potential alternatives in order to present options for advancing a safe, innovative, affordable and sustainable human space flight program following the space shuttle's retirement. The committee wil present its results by August 2009. Seated from left on the panel is Jeffrey Greason, Bohdan Bejmuk, Dr. Leroy Chiao, Norman Augustine (chair), Dr. Wanda Austin, Dr. Edward Crawley, Dr. Christopher Chyba and Philip McAlister. Photo Credit: (NASA/Paul E. Alers)

  13. Human Space Flight Plans Committee

    NASA Image and Video Library

    2009-06-16

    U.S. Sen. Bill Nelson, D-Fla., at podium, addresses members of the Human Space Flight Review Committee, Wednesday, June 17, 2009, at the Carnegie Institution in Washington. Seated from left are Jeffrey Greason, Bohdan Bejmuk, Dr. Leroy Chiao, Norman Augustine (chair), Dr. Wanda Austin, Dr. Edward Crawley, Dr. Christopher Chyba and Philip McAlister. The panel will examine ongoing and planned NASA development activities and potential alternatives in order to present options for advancing a safe, innovative, affordable and sustainable human space flight program following the space shuttle's retirement. The committee wil present its results by August 2009. Photo Credit: (NASA/Paul E. Alers)

  14. [Effects of long-term space flights on organization of horizontal gaze fixation reaction].

    PubMed

    Tomilovskaia, E S; Kozlovskaia, I B

    2010-01-01

    Results of Russian-Austrian space experiment "Monimir" which was a part of international space program "Austromir" are presented in this paper. Characteristics of horizontal gaze fixation reaction (hGFR) to visual targets were analyzed. Seven crewmembers of "Mir" space station expeditions took part in the experiment. Experiments were carried out 4 times before space flight, 5 times in flight and 3-4 times after landing. There were revealed significant alterations in characteristics of gaze fixation reaction during flight and after its accomplishing, namely: an increase of the time of gaze fixation to the target, changes of eye and head movements' velocity and increase of the gain of vestibular-ocular reflex, that pointed out to the disturbances of the control mechanisms of vestibular-ocular reflex in weightlessness caused by changes of vestibular input's activity. There was discovered also the difference in the strategies of adaptation to microgravity conditions among the cosmonauts of flight and non-flight occupation: in the first group exposure to weightlessness was accompanied by gaze hypermetry and inhibition of head movements; in the second one--on the contrary--by increase of head movement velocity and decrease of saccades' velocity.

  15. Space Flight Effects on Antioxidant Molecules in Dry Tardigrades: The TARDIKISS Experiment

    PubMed Central

    Rizzo, Angela Maria; Corsetto, Paola Antonia; Montorfano, Gigliola

    2015-01-01

    The TARDIKISS (Tardigrades in Space) experiment was part of the Biokon in Space (BIOKIS) payload, a set of multidisciplinary experiments performed during the DAMA (Dark Matter) mission organized by Italian Space Agency and Italian Air Force in 2011. This mission supported the execution of experiments in short duration (16 days) taking the advantage of the microgravity environment on board of the Space Shuttle Endeavour (its last mission STS-134) docked to the International Space Station. TARDIKISS was composed of three sample sets: one flight sample and two ground control samples. These samples provided the biological material used to test as space stressors, including microgravity, affected animal survivability, life cycle, DNA integrity, and pathways of molecules working as antioxidants. In this paper we compared the molecular pathways of some antioxidant molecules, thiobarbituric acid reactive substances, and fatty acid composition between flight and control samples in two tardigrade species, namely, Paramacrobiotus richtersi and Ramazzottius oberhaeuseri. In both species, the activities of ROS scavenging enzymes, the total content of glutathione, and the fatty acids composition between flight and control samples showed few significant differences. TARDIKISS experiment, together with a previous space experiment (TARSE), further confirms that both desiccated and hydrated tardigrades represent useful animal tool for space research. PMID:25654086

  16. Space flight effects on antioxidant molecules in dry tardigrades: the TARDIKISS experiment.

    PubMed

    Rizzo, Angela Maria; Altiero, Tiziana; Corsetto, Paola Antonia; Montorfano, Gigliola; Guidetti, Roberto; Rebecchi, Lorena

    2015-01-01

    The TARDIKISS (Tardigrades in Space) experiment was part of the Biokon in Space (BIOKIS) payload, a set of multidisciplinary experiments performed during the DAMA (Dark Matter) mission organized by Italian Space Agency and Italian Air Force in 2011. This mission supported the execution of experiments in short duration (16 days) taking the advantage of the microgravity environment on board of the Space Shuttle Endeavour (its last mission STS-134) docked to the International Space Station. TARDIKISS was composed of three sample sets: one flight sample and two ground control samples. These samples provided the biological material used to test as space stressors, including microgravity, affected animal survivability, life cycle, DNA integrity, and pathways of molecules working as antioxidants. In this paper we compared the molecular pathways of some antioxidant molecules, thiobarbituric acid reactive substances, and fatty acid composition between flight and control samples in two tardigrade species, namely, Paramacrobiotus richtersi and Ramazzottius oberhaeuseri. In both species, the activities of ROS scavenging enzymes, the total content of glutathione, and the fatty acids composition between flight and control samples showed few significant differences. TARDIKISS experiment, together with a previous space experiment (TARSE), further confirms that both desiccated and hydrated tardigrades represent useful animal tool for space research.

  17. Bronchoesophageal and related systems in space flight

    NASA Technical Reports Server (NTRS)

    Thornton, William

    1991-01-01

    A review is presented of the detrimental effects of space flight on the human bronchoesophageal system emphasizing related areas such as the gastric system. In-flight symptoms are listed including congestion, nasopharyngeal irritation, epigastric sensations, anorexia, and nausea. Particular attention is given to space-related effects on eating/drinking associated with the absence of hydrostatic pressure in the vascular system. The atmospheric characteristics of a typical space shuttle flight are given, and the reduced pressure and low humidity are related to bronchial, eye, and nose irritation. Earth and space versions of motion sickness are compared, and some critical differences are identified. It is proposed that more research is required to assess the effects of long-duration space travel on these related systems.

  18. Bronchoesophageal and related systems in space flight

    NASA Technical Reports Server (NTRS)

    Thornton, William

    1991-01-01

    A review is presented of the detrimental effects of space flight on the human bronchoesophageal system emphasizing related areas such as the gastric system. In-flight symptoms are listed including congestion, nasopharyngeal irritation, epigastric sensations, anorexia, and nausea. Particular attention is given to space-related effects on eating/drinking associated with the absence of hydrostatic pressure in the vascular system. The atmospheric characteristics of a typical space shuttle flight are given, and the reduced pressure and low humidity are related to bronchial, eye, and nose irritation. Earth and space versions of motion sickness are compared, and some critical differences are identified. It is proposed that more research is required to assess the effects of long-duration space travel on these related systems.

  19. Effects of the space flight environment on man's immune system. II - Lymphocyte counts and reactivity.

    NASA Technical Reports Server (NTRS)

    Fischer, G. L.; Daniels, J. C.; Levin, W. C.; Kimzey, S. L.; Cobb, E. K.; Ritzmann, S. E.

    1972-01-01

    The present studies were undertaken to assess the effects of the environment of space flights on the cellular division of the human immune system. Peripheral blood absolute lymphocyte counts were determined at various preflight and postflight intervals for the 21 crewmen of Apollo Missions 7-13. Mean lymphocyte numbers tended to exhibit a delayed significant but fluctuating increase shortly after recovery, although a variety of responses was seen in individual astronauts. The in vitro reactivity of lymphocytes, reflected by RNA and DNA synthesis rates by unstimulated and PHA-stimulated lymphocytes tissue-cultured preflight and postflight from the same participants, was found to remain within previously established normal ranges. These results indicate that functional integrity of cellular immune potential as reflected by in vitro techniques is maintained during this spaceflight experience.

  20. Challenges of Human Space Flight

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.; Charles, John B.

    2006-01-01

    The presentations will be given during the X-Prize symposium, exploring the multi-faceted dimensions of spaceflight ranging from the technical developments necessary to achieve safe routine flight to and from and through space to the new personal business opportunities and economic benefits that will open in space and here on Earth. The symposium will delve into the technical, regulatory, market and financial needs and challenges that must be met in charting and executing the incremental developments leading to Personal Spaceflight and the opening of a Place Called Space. The presentation covers facets of human space flight including descriptions of life in space, the challenges of delivering medical care in space, and the preparations needed for safe and productive human travel to the moon and Mars.

  1. Challenges of Human Space Flight

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.; Charles, John B.

    2006-01-01

    The presentations will be given during the X-Prize symposium, exploring the multi-faceted dimensions of spaceflight ranging from the technical developments necessary to achieve safe routine flight to and from and through space to the new personal business opportunities and economic benefits that will open in space and here on Earth. The symposium will delve into the technical, regulatory, market and financial needs and challenges that must be met in charting and executing the incremental developments leading to Personal Spaceflight and the opening of a Place Called Space. The presentation covers facets of human space flight including descriptions of life in space, the challenges of delivering medical care in space, and the preparations needed for safe and productive human travel to the moon and Mars.

  2. Effects of space balloon flights on reproductive activity in Paramecium aurelia.

    PubMed

    Planel, H; Soleilhavoup, J P; Croute, F

    1975-01-01

    Post autogamous Paramecium aurelia cultures were placed in hermetic containers, including a heating device with accuracy kept around +/- 0.1 degrees C. Kinetics of cellular growth was determined by cell count, after recovery, on in-flight cultures and ground control cultures. Dosimetry was performed by thermoluminescent detectors (CaSO4 activated with dysprosium). Flight durations of maximum altitude (ceiling) ranged between 48 min and 15 hours (repeated flights). Conclusions are as follows: short flights result in a secondary stimulating effect, shown by post-flight increase of the growth rate (total dose above 2 mrads); long flights or repeated flights are accompanied by a decrease in growth rate (total dose ranging from 2 to 6 mrads); in the stimulation experiments, cell counts performed immediately after flight permit identification of a temporary decrease of growth rate. The biphasic character of the biological response after flights may be due to an ionization phenomena induced by cosmic rays. Indeed, the temporary drop of growth rate is not observed after recovery if the cells are subcultured in fresh medium and left on the earth's surface. We observe, on the contrary, an increase in growth rate. These findings confirm the great sensitivity of Paramecium aurelia to very low doses of ionizing radiations and demonstrate the biological effect of cosmic radiation.

  3. Strategy in space flight experiments

    NASA Technical Reports Server (NTRS)

    Marvin, Dean; Severns, James

    1991-01-01

    The main topics of the workshop were the evaluation of both the need for flight testing of solar array hardware and the opportunities for such testing. Spacecraft charging effects, array dynamics, cost-effectiveness, and methods of flight planning were also discussed.

  4. Soviet space flight: the human element.

    PubMed

    Garshnek, V

    1988-05-01

    Building on past experience and knowledge, the Soviet manned space flight effort has become broad, comprehensive, and forward-looking. Their long-running space station program has provided the capabilities to investigate long-term effects of microgravity on human physiology and behavior and test various countermeasures against microgravity-induced physiological deconditioning. Since the beginning of Soviet manned space flight, the biomedical training and preparation of cosmonauts has evolved from a process that increased human tolerance to space flight factors, to a system of interrelated measures to prepare cosmonauts physically and psychologically to live and work in space. Currently, the Soviet Union is constructing a multimodular space station, the Mir. With the emergence of dedicated laboratory modules, the Soviets have begun the transition from small-scale experimental research to large-scale production activities and specialized scientific work in space. In the future, additional laboratory modules will be added, including one dedicated to biomedical research, called the "Medilab." The longest manned space flight to date (326 days) has been completed by the Soviets. The biomedical effects of previous long-duration flights, and perhaps those of still greater length, may contribute important insight ito the possibility of extended missions beyond Earth, such as a voyage to Mars.

  5. Soviet space flight: the human element.

    PubMed

    Garshnek, V

    1989-07-01

    Building on past experience and knowledge, the Soviet manned space flight effort has become broad, comprehensive, and forward-looking. Their long-running space station program has provided the capabilities to investigate long-term effects of microgravity on human physiology and behavior, and test various countermeasures against microgravity-induced physiological deconditioning. Since the beginning of Soviet manned space flight, the biomedical training and preparation of cosmonauts has evolved from a process that increased human tolerance to space flight factors, to a system of interrelated measures to prepare cosmonauts physically and psychologically to live and work in space. Currently, the Soviet Union is constructing a multimodular space station, the Mir. With the emergence of dedicated laboratory modules, the Soviets have begun the transition from small-scale experimental research to large-scale production activities and specialized scientific work in space. In the future, additional laboratory modules will be added, including one dedicated to biomedical research, called the "Medilab." The longest manned space flight to date (326 d) has been completed by the Soviets. The biomedical effects of previous long-duration flights, and perhaps those of still greater length, may contribute important insight into the possibility of extended missions beyond Earth, such as a voyage to Mars.

  6. Space Flight Ionizing Radiation Environments

    NASA Technical Reports Server (NTRS)

    Koontz, Steve

    2017-01-01

    The space-flight ionizing radiation (IR) environment is dominated by very high-kinetic energy-charged particles with relatively smaller contributions from X-rays and gamma rays. The Earth's surface IR environment is not dominated by the natural radioisotope decay processes. Dr. Steven Koontz's lecture will provide a solid foundation in the basic engineering physics of space radiation environments, beginning with the space radiation environment on the International Space Station and moving outward through the Van Allen belts to cislunar space. The benefits and limitations of radiation shielding materials will also be summarized.

  7. Predictors of immune function in space flight

    NASA Astrophysics Data System (ADS)

    Shearer, William T.; Zhang, Shaojie; Reuben, James M.; Lee, Bang-Ning; Butel, Janet S.

    2007-02-01

    Of all of the environmental conditions of space flight that might have an adverse effect upon human immunity and the incidence of infection, space radiation stands out as the single-most important threat. As important as this would be on humans engaged in long and deep space flight, it obviously is not possible to plan Earth-bound radiation and infection studies in humans. Therefore, we propose to develop a murine model that could predict the adverse effects of space flight radiation and reactivation of latent virus infection for humans. Recent observations on the effects of gamma and latent virus infection demonstrate latent virus reactivation and loss of T cell mediated immune responses in a murine model. We conclude that using this small animal method of quantitating the amounts of radiation and latent virus infection and resulting alterations in immune responses, it may be possible to predict the degree of immunosuppression in interplanetary space travel for humans. Moreover, this model could be extended to include other space flight conditions, such as microgravity, sleep deprivation, and isolation, to obtain a more complete assessment of space flight risks for humans.

  8. [Effects of space-flight factors on cytochemical characteristics of the motor analyzer neurons].

    PubMed

    Gorbunova, A V

    2010-01-01

    The work was designed to study metabolism of motoneurons in anterior horns of the spinal cord and sensorimotor cortex of Wistar rats after flights on Earth's satellites for 22.5 days (Kosmos-605), 19.5 days (Kosmos-782), and 18.5 days (Kosmos-936). Control rats underwent simulated space-flight factors under laboratory conditions excepting weightlessness. Rats placed in Kosmos-936 were subjected to artificial gravity (AG). They showed complete recovery of motoneuronal metabolism 25 days after landing unlike animals that had experienced weightlessness in which enhanced functional activity of the genetic apparatus was manifest as increased RNA level, protein content, and nuclei size. These finding may reflect differences of neuronal metabolism in animals experiencing weightlessness and AG. We believe they may be due to reduced static load on the locomotor system during the space flight.

  9. Space Flight 101

    NASA Technical Reports Server (NTRS)

    Bacon, Jack

    2006-01-01

    This viewgraph presentation reviews many aspects of spaceflight. There are many pictures of the International Space Station. Some of the topics covered in this review are: Have you ever wondered why we have launch windows? Or why the attitude of the Space Station changes? The half-day seminar answers some of the many questions about why and how we fly in space. Topics in the course were: What's so valuable about micro gravity? How do we get to micro G so close to a huge gravity well like the Earth? How come such a big rocket gets so little payload to space? Why do we have daily launch windows, and why are they so short? What's the beta angle, why does it change so strangely, and why do we care so much about it? Why do we have launch seasons for the Shuttle? Why can't we just launch any old day? Why do we see the station some days, not on others, and at different times and directions? Why do we keep changing the attitude of the Space Station? What are the certified attitudes of the station, and why did we pick these few? Why do we keep changing the altitude of the Space Station among these three? What's the difference between Power Balance, Energy Balance, and Depth-of-Discharge? Where does all the uncertainty come from in our orbit predictions for phasing, collisions, communications coverage, etc? Why do we usually reboost only on days that we do attitude changes? What's F(10.7), what does it do, why do we care, and why does it vary so much? Why do we care about orbital phasing of the ISS? Can't we just do phasing with the arriving vehicles? Why is the Space Station built the way it is? What's Sun Slicer? (or Night Glider, or Dual Angle, or (coming soon!) Mixmaster, or Outrigger, or...) What's a BGA, and what is BGA conditioning all about? What's a Control Moment Gyroscope, and what does it do? What's a desat? Why is it more trouble now than it used to be? How much orbital debris is there, and how dangerous is it? Why aren't we more worried about meteor storms

  10. Space environmental effect on solar cells: LDEF and other flight tests

    NASA Technical Reports Server (NTRS)

    Gruenbaum, Peter; Dursch, Harry

    1995-01-01

    This paper summarizes results of several experiments flown on the Long Duration Exposure Facility (LDEF) to examine the effects of the space environment on materials and technologies to be used in solar arrays. The various LDEF experiments are compared to each other as well as to other solar cell flight data published in the literature. Data on environmental effects such as atomic oxygen, ultraviolet light, micrometeoroids and debris, and charged particles are discussed in detail. The results from the LDEF experiments allow us to draw several conclusions. Atomic oxygen erodes unprotected silver interconnects, unprotected Kapton, and polymer cell covers, but certain dielectric coatings can protect both silver and Kapton. Cells that had wrap-around silver contacts sometimes showed erosion at the edges, but more recently developed wrap-through cells are not expected to have these problems. Micrometeoroid and debris damage is limited to the area close to the impact, and microsheet covers provide the cells with some protection. Damage from charged particles was as predicted, and the cell covers provided adequate protection. In general, silicon cells with microsheet covers showed very little degradation, and solar modules showed less than 3 percent degradation, except when mechanically damaged. The solar cell choices for the Space Station solar array are supported by the data from LDEF.

  11. [Aviation and space flight ophthalmology].

    PubMed

    Daumann, F J; Draeger, J

    1993-08-01

    So far it has not been possible to adapt man genetically to the specific environmental conditions of flying. A variety of disturbing factors act on the human body and affect its vital as well as sensory functions, vision being considered the most important sense for providing information. The effects of oxygen deficiency caused by increasing altitude, acceleration and centrifugal force affecting visual function, ocular motility, and pupillary reactions are well known. Like visual illusions, vibrations, high accelerative forces, high illuminance and glare at high altitudes impair the visual perception of the environment. In space flight further problems ensue from weightlessness and short-wave radiation. The high medical standards that must be met by the eyes of flying personnel, as will as for air-traffic controllers, result in the enhancement of flight safety. After operations on the cornea or retina or cataract operations in pilote, the retinal findings and DOP must be monitored closely. Special attention must be paid to means of visual aids, corrective lenses, contact lenses, and intraocular lenses. Ophthalmology is a very important element of aviation and aerospace medicine.

  12. Space Launch Flight Termination System initial development

    NASA Astrophysics Data System (ADS)

    Ratkevich, B.; Brierley, S.; Lupia, D.; Leiker, T.

    This paper describes the studies, capabilities and challenges in initial development of a new digital encrypted termination system for space launch vehicles. This system is called the Space Launch Flight Termination System (SLFTS). Development of SLFTS is required to address an obsolescence issue and to improve the security of flight termination systems presently in use on the nation's space launch vehicles. SLFTS development was implemented in a four phase approach with the goal of producing a high secure, cost effective flight termination system for United Launch Alliance (ULA) and the United States Air Force (USAF) Evolved Expendable Launch Vehicle (EELV). These detailed study phases developed the requirements, design and implementation approach for a new high secure flight termination system. Studies led to a cost effective approach to replace the High Alphabet Command Receiver Decoders (HA-CRD) presently used on the EELV (Delta-IV & Atlas-V), with a common SLFTS unit. SLFTS is the next generation flight termination system for space launch vehicles, providing an assured high secure command destruct system for launch vehicles in flight. The unique capabilities and challenges to develop this technology for space launch use will be addressed in this paper in detail. This paper summarizes the current development status, design and capabilities of SLFTS for EELV.

  13. Effects of long-duration space flight on calcium metabolism: Review of human studies from Skylab to the present

    NASA Astrophysics Data System (ADS)

    Whedon, G. Donald; Rambaut, Paul C.

    2006-01-01

    One of the major effects of prolonged weightlessness seen in long-duration space flights has been an extended loss of bone from the skeleton. The principal characteristics of this loss were shown in the metabolic studies carried out on the Skylab flights of 1, 2 and 3 months in 1973 and 1974. These studies now provide the background for a comprehensive review of the considerable number of subsequent calcium studies in humans during space flights from that time until the present. Because of the close similarities in pattern and degree between space flight and bed rest in effects on calcium metabolism, relevant long-term human bed rest studies have been included. An analysis is presented of the bone calcium loss data with respect to degree, duration and significance, as well as relative failure of reversibility or recovery following flights. Possible mechanisms of bone loss are discussed: the physiological condition of disuse atrophy, increase in bone resorption, decrease (later and lesser) in bone formation, decrease in intestinal calcium absorption, increase in glucocorticoids, along with the threat of urinary tract stone formation and proposed countermeasures. Considerable future research is needed, particularly on mechanisms of bone loss and on countermeasures, to be carried out on the International Space Station and via bed rest studies, before a mission to and return from Mars is undertaken.

  14. Effects of space flight, clinorotation, and centrifugation on the substrate utilization efficiency of E. coli

    NASA Technical Reports Server (NTRS)

    Brown, Robert B.; Klaus, D.; Todd, P.

    2002-01-01

    Cultures of Escherichia coli grown in space reached a 25% higher average final cell population than those in comparably matched ground controls (p<0.05). However, both groups consumed the same quantity of glucose, which suggests that space flight not only stimulated bacterial growth as has been previously reported, but also resulted in a 25% more efficient utilization of the available nutrients. Supporting experiments performed in "simulated weightlessness" under clinorotation produced similar trends of increased growth and efficiency, but to a lesser extent in absolute values. These experiments resulted in increases of 12% and 9% in average final cell population (p<0.05), while the efficiency of substrate utilization improved by 6% and 9% relative to static controls (p=0.12 and p<0.05, respectively). In contrast, hypergravity, produced by centrifugation, predictably resulted in the opposite effect--a decrease of 33% to 40% in final cell numbers with corresponding 29% to 40% lower net growth efficiencies (p<0.01). Collectively, these findings support the hypothesis that the increased bacterial growth observed in weightlessness is a result of reduced extracellular mass transport that occurs in the absence of sedimentation and buoyancy-driven convection, which consequently also improves substrate utilization efficiency in suspended cultures.

  15. Effects of space flight, clinorotation, and centrifugation on the substrate utilization efficiency of E. coli

    NASA Technical Reports Server (NTRS)

    Brown, Robert B.; Klaus, D.; Todd, P.

    2002-01-01

    Cultures of Escherichia coli grown in space reached a 25% higher average final cell population than those in comparably matched ground controls (p<0.05). However, both groups consumed the same quantity of glucose, which suggests that space flight not only stimulated bacterial growth as has been previously reported, but also resulted in a 25% more efficient utilization of the available nutrients. Supporting experiments performed in "simulated weightlessness" under clinorotation produced similar trends of increased growth and efficiency, but to a lesser extent in absolute values. These experiments resulted in increases of 12% and 9% in average final cell population (p<0.05), while the efficiency of substrate utilization improved by 6% and 9% relative to static controls (p=0.12 and p<0.05, respectively). In contrast, hypergravity, produced by centrifugation, predictably resulted in the opposite effect--a decrease of 33% to 40% in final cell numbers with corresponding 29% to 40% lower net growth efficiencies (p<0.01). Collectively, these findings support the hypothesis that the increased bacterial growth observed in weightlessness is a result of reduced extracellular mass transport that occurs in the absence of sedimentation and buoyancy-driven convection, which consequently also improves substrate utilization efficiency in suspended cultures.

  16. The Effects of Liquid Cooling Garments on Post-Space Flight Orthostatic Intolerance

    NASA Technical Reports Server (NTRS)

    Billica, Roger; Kraft, Daniel

    1997-01-01

    Post space flight orthostatic intolerance among Space Shuttle crew members following exposure to extended periods of microgravity has been of significant concern to the safety of the shuttle program. Following the Challenger accident, flight crews were required to wear launch and entry suits (LES). It was noted that overall, there appeared to be a higher degree of orthostatic intolerance among the post-Challenger crews (approaching 30%). It was hypothesized that the increased heat load incurred when wearing the LES, contributed to an increased degree of orthostatic intolerance, possibly mediated through increased peripheral vasodilatation triggered by the heat load. The use of liquid cooling garments (LCG) beneath the launch and entry suits was gradually implemented among flight crews in an attempt to decrease heat load, increase crew comfort, and hopefully improve orthostatic tolerance during reentry and landing. The hypothesis that the use of the LCG during reentry and landing would decrease the degree of orthostasis has not been previously tested. Operational stand-tests were performed pre and post flight to assess crewmember's cardiovascular system's ability to respond to gravitational stress. Stand test and debrief information were collected and databased for 27 space shuttle missions. 63 crewpersons wearing the LCG, and 70 crewpersons not wearing the LCG were entered into the database for analysis. Of 17 crewmembers who exhibited pre-syncopal symptoms at the R+O analysis, 15 were not wearing the LCG. This corresponds to a 21% rate of postflight orthostatic intolerance among those without the LCG, and a 3% rate for those wearing LCG. There were differences in these individual's average post-flight maximal systolic blood pressure, and lower minimal Systolic Blood pressures in those without LCG. Though other factors, such as type of fluid loading, and exercise have improved concurrently with LCG introduction, from this data analysis, it appears that LCG usage

  17. Space Flight Cable Model Development

    NASA Technical Reports Server (NTRS)

    Spak, Kaitlin

    2013-01-01

    This work concentrates the modeling efforts presented in last year's VSGC conference paper, "Model Development for Cable-Harnessed Beams." The focus is narrowed to modeling of space-flight cables only, as a reliable damped cable model is not yet readily available and is necessary to continue modeling cable-harnessed space structures. New experimental data is presented, eliminating the low-frequency noise that plagued the first year's efforts. The distributed transfer function method is applied to a single section of space flight cable for Euler-Bernoulli and shear beams. The work presented here will be developed into a damped cable model that can be incorporated into an interconnected beam-cable system. The overall goal of this work is to accurately predict natural frequencies and modal damping ratios for cabled space structures.

  18. Vision Aspects of Space Flight

    NASA Technical Reports Server (NTRS)

    Manuel, Keith; Billica, Roger (Technical Monitor)

    2000-01-01

    Vision, being one of our most important senses, is critically important in the unique working environment of space flight. Critical evaluation of the astronauts visual system begins with pre-selection examinations resulting in an average of 65% of all medical disqualification's caused by ocular findings. With an average age of 42, approximately 60% of the astronaut corps requires vision correction. Further demands of the unique training and working environment of microgravity, variable lighting from very poor to extreme brightness of sunlight and exposure to extremes of electromagnetic energy results in unique eyewear and contact lens applications. This presentation will describe some of those unique eyewear and contact lens applications used in space flight and training environments. Additionally, ocular findings from 26 shuttle and 5 MIR mission post-flight examinations will be presented.

  19. Marshall Space Flight Center Overview

    NASA Technical Reports Server (NTRS)

    Geveden, Rex D.

    2003-01-01

    This presentation gives an overview of Marshall Spaceflight Center (MSFC), including its history and activities. The six enterprises to carry out NASA's mission are: Space Science; Earth Science; Biological and Physical Research; Aerospace Technology; Education (our newest); and Space Flight. These are explained, as well as MSFC's contributions toward these NASA enterprises. The presentation also covers cooperation between MSFC and the Department of Defense (DoD).

  20. Marshall Space Flight Center Overview

    NASA Technical Reports Server (NTRS)

    Geveden, Rex D.

    2003-01-01

    This presentation gives an overview of Marshall Spaceflight Center (MSFC), including its history and activities. The six enterprises to carry out NASA's mission are: Space Science; Earth Science; Biological and Physical Research; Aerospace Technology; Education (our newest); and Space Flight. These are explained, as well as MSFC's contributions toward these NASA enterprises. The presentation also covers cooperation between MSFC and the Department of Defense (DoD).

  1. Human Space Flight Plans Committee

    NASA Image and Video Library

    2009-08-11

    Dr. Edward Crawley, Ford Professor of Engineering at MIT and co-chair, NASA Exploration Technology Development Program Review Committee speaks during the final meeting of the Human Space Flight Review Committee, Wednesday, Aug. 12, 2009, in Washington. Photo Credit: (NASA/Paul E. Alers)

  2. Human Space Flight Plans Committee

    NASA Image and Video Library

    2009-08-11

    Members of the Human Space Flight Review Committee from left, Jeffrey Greason, Dr. Christopher Chyba, Dr. Leroy Chiao, Dr. Sally Ride, Norman Augustine (chair), Philip McAllister, Dr. Edward Crawley, Dr. Wanda Austin, and Bhodan Bejmuk review their notes prior to the start of a public meeting, Wednesday, Aug. 12, 2009, in Washington. Photo Credit: (NASA/Paul E. Alers)

  3. Human Space Flight Plans Committee

    NASA Image and Video Library

    2009-08-11

    Members of the Human Space Flight Review Committee from left, Jeffrey Greason, Dr. Christopher Chyba, Dr. Leroy Chiao, Dr. Sally Ride, Norman Augustine (chair), Philip McAllister, Dr. Edward Crawley, Dr. Wanda Austin (not seen), and Bhodan Bejmuk review their notes prior to the start of a public meeting, Wednesday, Aug. 12, 2009, in Washington. Photo Credit: (NASA/Paul E. Alers)

  4. Human Space Flight Plans Committee

    NASA Image and Video Library

    2009-08-11

    Dr. Wanda Austin, president and CEO of the Aerospace Corp., left, asks a question during the final meeting of the Human Space Flight Review Committee, Wednesday, Aug. 12, 2009, in Washington as committee member Bohdan Bejmuk reviews his notes. Photo Credit: (NASA/Paul E. Alers)

  5. Mouse infection models for space flight immunology

    NASA Technical Reports Server (NTRS)

    Chapes, Stephen Keith; Ganta, Roman Reddy; Chapers, S. K. (Principal Investigator)

    2005-01-01

    Several immunological processes can be affected by space flight. However, there is little evidence to suggest that flight-induced immunological deficits lead to illness. Therefore, one of our goals has been to define models to examine host resistance during space flight. Our working hypothesis is that space flight crews will come from a heterogeneous population; the immune response gene make-up will be quite varied. It is unknown how much the immune response gene variation contributes to the potential threat from infectious organisms, allergic responses or other long term health problems (e.g. cancer). This article details recent efforts of the Kansas State University gravitational immunology group to assess how population heterogeneity impacts host health, either in laboratory experimental situations and/or using the skeletal unloading model of space-flight stress. This paper details our use of several mouse strains with several different genotypes. In particular, mice with varying MHCII allotypes and mice on the C57BL background with different genetic defects have been particularly useful tools with which to study infections by Staphylococcus aureus, Salmonella typhimurium, Pasteurella pneumotropica and Ehrlichia chaffeensis. We propose that some of these experimental challenge models will be useful to assess the effects of space flight on host resistance to infection.

  6. Mouse infection models for space flight immunology

    NASA Technical Reports Server (NTRS)

    Chapes, Stephen Keith; Ganta, Roman Reddy; Chapers, S. K. (Principal Investigator)

    2005-01-01

    Several immunological processes can be affected by space flight. However, there is little evidence to suggest that flight-induced immunological deficits lead to illness. Therefore, one of our goals has been to define models to examine host resistance during space flight. Our working hypothesis is that space flight crews will come from a heterogeneous population; the immune response gene make-up will be quite varied. It is unknown how much the immune response gene variation contributes to the potential threat from infectious organisms, allergic responses or other long term health problems (e.g. cancer). This article details recent efforts of the Kansas State University gravitational immunology group to assess how population heterogeneity impacts host health, either in laboratory experimental situations and/or using the skeletal unloading model of space-flight stress. This paper details our use of several mouse strains with several different genotypes. In particular, mice with varying MHCII allotypes and mice on the C57BL background with different genetic defects have been particularly useful tools with which to study infections by Staphylococcus aureus, Salmonella typhimurium, Pasteurella pneumotropica and Ehrlichia chaffeensis. We propose that some of these experimental challenge models will be useful to assess the effects of space flight on host resistance to infection.

  7. Mouse infection models for space flight immunology.

    PubMed

    Chapes, Stephen Keith; Ganta, Roman Reddy

    2005-01-01

    Several immunological processes can be affected by space flight. However, there is little evidence to suggest that flight-induced immunological deficits lead to illness. Therefore, one of our goals has been to define models to examine host resistance during space flight. Our working hypothesis is that space flight crews will come from a heterogeneous population; the immune response gene make-up will be quite varied. It is unknown how much the immune response gene variation contributes to the potential threat from infectious organisms, allergic responses or other long term health problems (e.g. cancer). This article details recent efforts of the Kansas State University gravitational immunology group to assess how population heterogeneity impacts host health, either in laboratory experimental situations and/or using the skeletal unloading model of space-flight stress. This paper details our use of several mouse strains with several different genotypes. In particular, mice with varying MHCII allotypes and mice on the C57BL background with different genetic defects have been particularly useful tools with which to study infections by Staphylococcus aureus, Salmonella typhimurium, Pasteurella pneumotropica and Ehrlichia chaffeensis. We propose that some of these experimental challenge models will be useful to assess the effects of space flight on host resistance to infection.

  8. Work, exercise, and space flight. 1: Operations, environment, and effects of spaceflight

    NASA Technical Reports Server (NTRS)

    Thornton, William

    1989-01-01

    The selection, training, and operations of space flight impose significant physical demands which seem to be adequately met by the existing physical training facilities and informal individual exercise programs. The professional astronaut population has, by selection, better than average health and physical capacity. The essentials of life on earth are adequately met by the spacecraft. However, as the human body adapts to weightlessness, it is compromised for the usual life on earth, but readaptation is rapid. Long term flight without countermeasures will produce major changes in the cardiovascular, respiratory, musculoskeletal and neuromuscular systems. There is strong theoretical and experimental evidence from 1-g studies and limited in-flight evidence to believe that exercise is a key counter-measure to many of these adaptations.

  9. Effects of prolonged space flight on human skeletal muscle enzyme and substrate profiles.

    PubMed

    Fitts, R H; Colloton, P A; Trappe, S W; Costill, D L; Bain, J L W; Riley, D A

    2013-09-01

    Our primary goal was to determine the effects of 6-mo flight on the International Space Station (ISS) on selected anaerobic and aerobic enzymes, and the content of glycogen and lipids in slow and fast fibers of the soleus and gastrocnemius. Following local anesthesia, biopsies were obtained from nine ISS crew members ∼45 days preflight and on landing day (R+0) postflight. We subdivided the crew into those who ran 200 min/wk or more (high treadmill, HT) in-flight from those who ran <100 min/wk (low treadmill, LT). In the LT group, there was a loss of lipid in soleus type I fibers, and muscle glycogen significantly increased in soleus fiber types postflight. Soleus cytochrome oxidase (CO) activity was significantly depressed postflight in the type I fiber. This was attributed to the LT group where CO activity was reduced 59%. Otherwise, there was no change in the crew mean for type I or IIa fiber glycolytic or mitochondrial enzyme activities pre- vs. postflight in either muscle. However, two of the three HT subjects (Subjects E and H) showed significant increases in both β-hydroxyacyl-CoA dehydrogenase and citrate synthase in the soleus type I fibers, and Subject E, exhibiting the largest increase in soleus oxidative enzymes, was the only subject to show a significant decrease in glycolytic enzyme activity. It is apparent that crew members performing adequate treadmill running can maintain calf muscle enzymes, which suggests that increased fatigue with weightlessness cannot be directly caused by a decline in muscle enzyme capacity.

  10. Effects of Short- and Long-Duration Space Flight on Neuromuscular Function

    NASA Technical Reports Server (NTRS)

    Buxton, Roxanne E.; Spiering, Barry A.; Ryder, Jeffrey W.; Ploutz-Snyder, Lori L.; Bloomberg, Jacob J.

    2010-01-01

    The Functional Task Tests (FTT) is an interdisciplinary study designed to correlate the changes in functional tasks (such as emergency egress, ladder climbing, and hatch opening) with changes in neuromuscular, cardiovascular, and sensorimotor function. One aspect of the FTT, the neuromuscular function test, is used to investigate the neuromuscular component underlying changes in the ability of astronauts to perform functional tasks (representative of critical mission tasks) safely and quickly after flight. PURPOSE: To describe neuromuscular function after short- and long-duration space flight. METHODS: To date, 5 crewmembers on short-duration (10- to 15-day) missions and 3 on long-duration missions have participated. Crewmembers were assessed 30 days before flight, on landing day (short-duration subjects only) and 1, 6, and 30 days after landing. The interpolated twitch technique, which utilizes a combination of maximal voluntary contractions and electrically evoked contractions, was used to assess the maximal voluntary isometric force (MIF) and central activation capacity of the knee extensors. Leg-press and bench-press devices were used to assess MIF and maximal dynamic power of the lower and upper body respectively. Specifically, power was measured during concentric-only ballistic throws of the leg-press sled and bench-press bar loaded to 40% and 30% of MIF respectively. RESULTS: Data are currently being collected from both Shuttle and ISS crewmembers. Emerging data indicate that measures of knee extensor muscle function are decreased with long-duration flight. DISCUSSION: The relationships between flight duration, neural drive, and muscle performance are of particular interest. Ongoing research will add to the current sample size and will focus on defining changes in muscle performance measures after long-duration space flight.

  11. Human Space Flight Plans Committee

    NASA Image and Video Library

    2009-06-16

    Norman Augustine, chair of the Human Space Flight Review Committee, front center, is joined by other members of the committee, clockwise from left, Bohdan Bejmuk, Leroy Chiao, Dr. Wanda Austin, Philip McAlister, Dr. Edward Crawley, Jeffrey Greason and Dr. Christopher Chyba prior to the start of the first of several public meetings at different U.S. locations, Wednesday, June 17, 2009, at the Carnegie Institution in Washington. The panel will examine ongoing and planned NASA development activities and potential alternatives in order to present options for advancing a safe, innovative, affordable and sustainable human space flight program following the space shuttle's retirement. The committee wil present its results by August 2009. Members of the committee that were not in attendance and are not pictured are Dr. Charles Kennel, Retired Air Force Gen. Lester Lyles and former astronaut Sally Ride. Photo Credit: (NASA/Paul E. Alers)

  12. Effects of radiation during space flight on microorganisms and plants on the Biosatellite II and Gemini XI Missions.

    PubMed

    de Serres, F J

    1969-01-01

    The results of recent experiments with the lysogenic bacteria, Escherichia coli and Salmonella typhimurium, the bread mold Neurospora crassa and the flowering plant Tradescantia on the Biosatellite II and Gemini XI Missions will be summarized. In the lysogenic bacteria experiment (Dr. Rudolf H.T. Mattoni, NUS Corporation) on the Biosatellite II mission significant effects of space flight were found on both growth rate and the induction of prophage. In that part of the Neurospora experiment on both the Biosatellite II and Gemini XI Missions (Dr. J.F. de Serres), utilizing non-dividing and inactive spores, no difference was found in the genetic effects of radiation between the flight and ground samples. In that portion of the Neurospora experiment on the Gemini XI mission utilizing rapidly-metabolizing spores the genetic effects of radiation were less serious in the flight samples than the ground samples. In the Tradescantia experiment (Dr. A.H. Sparrow, Brookhaven National Laboratory) on the Biosatellite II Mission, the irradiated flight material, in general, produced increased rates of cell death, abortion of pollen, loss of reproductive integrity, as well as other abnormalities in cell structure and function. In some of the experiments there were found significantly genetic effects of space flight alone, and the enhancement of various genetic effects of radiation under weightlessness was no more than 2- or 3-fold.

  13. Flight simulator with spaced visuals

    NASA Technical Reports Server (NTRS)

    Gilson, Richard D. (Inventor); Thurston, Marlin O. (Inventor); Olson, Karl W. (Inventor); Ventola, Ronald W. (Inventor)

    1980-01-01

    A flight simulator arrangement wherein a conventional, movable base flight trainer is combined with a visual cue display surface spaced a predetermined distance from an eye position within the trainer. Thus, three degrees of motive freedom (roll, pitch and crab) are provided for a visual proprioceptive, and vestibular cue system by the trainer while the remaining geometric visual cue image alterations are developed by a video system. A geometric approach to computing runway image eliminates a need to electronically compute trigonometric functions, while utilization of a line generator and designated vanishing point at the video system raster permits facile development of the images of the longitudinal edges of the runway.

  14. [Psychophysiological aspects of piloted flights to space].

    PubMed

    Kozarenko, O P; Ponomareva, I P

    2008-01-01

    The paper illuminates some issues of the psychophysiological support (PPS) of piloted flights to space discussed with academician O.G. Gazenko. Already in initial space flights monitoring and assessment of the psychic state and mental performance of crew members were the key PPS component that needed all-round investigations and development of associated methods. The poly-effect method of registering the physiological functions (ECG, EEG, GSR) was recognized as a potent tool for gathering information to be used in actual state assessment. Starting from the 96-d flight of Yu. Romanenko and G. Grechko, the enhanced PPS system has been an indispensable component of long-term missions to orbital complexes Salyut, Mir, and the International space station. The practical experience with the PPS system showed its major contribution to maintenance of space crew mental health and performance.

  15. Bisphosphonates as a Countermeasure to Space Flight Induced Bone Loss

    NASA Technical Reports Server (NTRS)

    LeBlanc, Adrian; Matsumoto, Toshio; Jones, Jeff; Shapiro, Jay; Lang, Tom; Smith, Scott M.; Shackelford, Linda C.; Sibonga, Jean; Evans, Harlan; Spector, Elisabeth; hide

    2011-01-01

    Experiment Hypothesis -- The combined effect of anti-resorptive drugs plus in-flight exercise regimen will have a measurable effect in preventing space flight induced bone mass and strength loss and reducing renal stone risk.

  16. An Integrated Analysis of the Physiological Effects of Space Flight: Executive Summary

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1985-01-01

    A large array of models were applied in a unified manner to solve problems in space flight physiology. Mathematical simulation was used as an alternative way of looking at physiological systems and maximizing the yield from previous space flight experiments. A medical data analysis system was created which consist of an automated data base, a computerized biostatistical and data analysis system, and a set of simulation models of physiological systems. Five basic models were employed: (1) a pulsatile cardiovascular model; (2) a respiratory model; (3) a thermoregulatory model; (4) a circulatory, fluid, and electrolyte balance model; and (5) an erythropoiesis regulatory model. Algorithms were provided to perform routine statistical tests, multivariate analysis, nonlinear regression analysis, and autocorrelation analysis. Special purpose programs were prepared for rank correlation, factor analysis, and the integration of the metabolic balance data.

  17. Modification of cytogenetic and physiological effects of space flight factors by biologically active compounds

    NASA Technical Reports Server (NTRS)

    Aliyev, A. A.; Mekhti-Zade, E. R.; Mashinskiy, A. L.; Alekperov, U. K.

    1986-01-01

    Physiological and cytogenetic changes in the Welsh onion plants induced by a short (82 days) and long term (522 days) space flight are expressed in decrease of seed germination, inhibition of stem growth, depression of cell division in root meristem, and increase in the number of structural chromosome rearrangements. The treatment of such plants with solutions of a-tocopherol, auxin, and kinetin decreased the level of chromosome aberrations to the control one and normalized cell divisions and growth partly or completely.

  18. Effect of space flight on sodium, copper, manganese and magnesium content in the skeletal bones

    NASA Technical Reports Server (NTRS)

    Prokhonchukov, A. A.; Taitsev, V. P.; Shakhunov, B. A.; Zhizhina, V. A.; Kolesnik, A. G.; Komissarova, N. A.

    1979-01-01

    Sodium content decreased in the human skeletal bones and rose in the rat bones following space flight. In man copper content rose in the femoral bone and decreased in the vertebral body and the sternum, but was unchanged in the rest of the bones. Magnesium content was decreased in the femoral bone and the sternum, and in the vertebrae, but remained unchanged in the rest of the bones. Possible mechanisms of the changes detected are discussed.

  19. Physical examination during space flight

    NASA Technical Reports Server (NTRS)

    Harris, B. A. Jr; Billica, R. D.; Bishop, S. L.; Blackwell, T.; Layne, C. S.; Harm, D. L.; Sandoz, G. R.; Rosenow, E. C. 3rd

    1997-01-01

    OBJECTIVE: To develop techniques for conducting a physical examination in microgravity and to describe and document the physiologic changes noted with use of a modified basic physical examination. DESIGN: On the basis of data gathered from physical examinations on KC-135 flights, three physical variables were assessed serially in astronauts during two shuttle missions (of 8- and 10-day duration, respectively). Preflight, in-flight, and postflight examinations were conducted by trained physician-astronauts or flight surgeons, who used this modified examination. MATERIAL AND METHODS: Five male and two female crewmembers participated in the "hands-on" physical examination of all physiologic systems except the genitourinary system. Level of edema, intensity of bowel sounds, and peripheral reflexes were assessed and graded. RESULTS: This investigation identified unique elements of a physical examination performed during space flight that will assist in the development of standard methods for conducting examinations of astronauts in weightlessness. In addition, demonstrable changes induced by microgravity were noted in most physiologic systems examined. CONCLUSION: The data support the hypothesis that the microgravity examination differs from that conducted on earth or in a 1g environment. In addition, alterations in the physiologic response can be detected with use of hands-on technique. These data are invaluable in the development of optimal medical care for humans in space.

  20. Physical examination during space flight

    NASA Technical Reports Server (NTRS)

    Harris, B. A. Jr; Billica, R. D.; Bishop, S. L.; Blackwell, T.; Layne, C. S.; Harm, D. L.; Sandoz, G. R.; Rosenow, E. C. 3rd

    1997-01-01

    OBJECTIVE: To develop techniques for conducting a physical examination in microgravity and to describe and document the physiologic changes noted with use of a modified basic physical examination. DESIGN: On the basis of data gathered from physical examinations on KC-135 flights, three physical variables were assessed serially in astronauts during two shuttle missions (of 8- and 10-day duration, respectively). Preflight, in-flight, and postflight examinations were conducted by trained physician-astronauts or flight surgeons, who used this modified examination. MATERIAL AND METHODS: Five male and two female crewmembers participated in the "hands-on" physical examination of all physiologic systems except the genitourinary system. Level of edema, intensity of bowel sounds, and peripheral reflexes were assessed and graded. RESULTS: This investigation identified unique elements of a physical examination performed during space flight that will assist in the development of standard methods for conducting examinations of astronauts in weightlessness. In addition, demonstrable changes induced by microgravity were noted in most physiologic systems examined. CONCLUSION: The data support the hypothesis that the microgravity examination differs from that conducted on earth or in a 1g environment. In addition, alterations in the physiologic response can be detected with use of hands-on technique. These data are invaluable in the development of optimal medical care for humans in space.

  1. Bone and Calcium Metabolism During Space Flight

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.

    2004-01-01

    Understanding bone loss during space flight is one of the most critical challenges for maintaining astronaut health on space exploration missions. Flight and ground-based studies have been conducted to better understand the nature and mechanisms of weightlessness-induced bone loss, and to identify a means to counteract the loss. Maintenance of bone health requires a balance between bone formation and bone resorption. Early space research identified bone loss as a critical health issue, but could not provide a distinction between the bone formation and breakdown processes. The recent identification of collagen crosslinks as markers of bone resorption has made possible a clear understanding that a decrease in bone resorption is an important effect of space flight, with bone formation being unchanged or only slightly decreased. Calcium regulatory factors have also been studied, in an attempt to understand their role in bone loss. The lack of ultraviolet light exposure and insufficient dietary sources of vitamin D often lead to reduced vitamin D stores on long-duration flights. Serum parathyroid hormone (PTH) concentrations are decreased during flight compared to before flight, although small subject numbers often make this hard to document statistically. As expected, reduced PTH concentrations are accompanied by reduced 1,25-dihydroxyvitamin D concentrations. Calcium kinetic studies during space flight confirm and extend the information gained from biochemical markers of bone metabolism. Calcium kinetic studies demonstrate that bone resorption is increased, bone formation is unchanged or decreased, and dietary calcium absorption is reduced during space flight. Evaluations have also been conducted of countermeasures, including dietary, exercise, and pharmacological treatments. In recent studies, many potential countermeasures show promise at mitigating bone loss in ground-based analogs of weightlessness (e.g., bed rest), but require further ground and flight testing to

  2. Bone and Calcium Metabolism During Space Flight

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.

    2004-01-01

    Understanding bone loss during space flight is one of the most critical challenges for maintaining astronaut health on space exploration missions. Flight and ground-based studies have been conducted to better understand the nature and mechanisms of weightlessness-induced bone loss, and to identify a means to counteract the loss. Maintenance of bone health requires a balance between bone formation and bone resorption. Early space research identified bone loss as a critical health issue, but could not provide a distinction between the bone formation and breakdown processes. The recent identification of collagen crosslinks as markers of bone resorption has made possible a clear understanding that a decrease in bone resorption is an important effect of space flight, with bone formation being unchanged or only slightly decreased. Calcium regulatory factors have also been studied, in an attempt to understand their role in bone loss. The lack of ultraviolet light exposure and insufficient dietary sources of vitamin D often lead to reduced vitamin D stores on long-duration flights. Serum parathyroid hormone (PTH) concentrations are decreased during flight compared to before flight, although small subject numbers often make this hard to document statistically. As expected, reduced PTH concentrations are accompanied by reduced 1,25-dihydroxyvitamin D concentrations. Calcium kinetic studies during space flight confirm and extend the information gained from biochemical markers of bone metabolism. Calcium kinetic studies demonstrate that bone resorption is increased, bone formation is unchanged or decreased, and dietary calcium absorption is reduced during space flight. Evaluations have also been conducted of countermeasures, including dietary, exercise, and pharmacological treatments. In recent studies, many potential countermeasures show promise at mitigating bone loss in ground-based analogs of weightlessness (e.g., bed rest), but require further ground and flight testing to

  3. Neuroplasticity changes during space flight

    NASA Astrophysics Data System (ADS)

    Slenzka, K.

    Neuroplasticity refers to the ability of neurons to alter some functional property in response to alterations in input. Most of the inputs received by the brain and thus the neurons are coming from the overall sensory system. The lack of gravity during space flight or even the reduction of gravity during the planned Mars missions are and will change these inputs. The often observed "loop swimming" of some aquatic species is under discussion to be based on sensory input changes as well as the observed motion sickness of astronauts and cosmonauts. Several reports are published regarding these changes being based on alterations of general neurophysiological parameters. In this paper a summing-up of recent results obtained in the last years during space flight missions will be presented. Beside data obtained from astronauts and cosmonauts, main focus of this paper will be on animal model system data.

  4. Effect of space flight on the frequency of micronuclei and expression of stress-responsive proteins in cultured mammalian cells.

    PubMed

    Ikenaga, Mituo; Hirayama, Jun; Kato, Tomohisa; Kitao, Hiroyuki; Han, Zhen-Bo; Ishizaki, Kanji; Nishizawa, Kimiko; Suzuki, Fumio; Cannon, Thomas F; Fukui, Keiji; Shimazu, Toru; Kamigaichi, Shigeki; Ishioka, Noriaki; Matsumiya, Hiroyuki

    2002-12-01

    Results of past space experiments suggest that the biological effect of space radiation could be enhanced under microgravity in some cases, especially in insects. To examine if such a synergistic effect of radiation and microgravity also exists in human cells, frequencies of chromosome instability and cellular levels of several stress-responsive proteins were analyzed in cultured human and rodent cells after space flight. Human (MCF7 and AT2KY), mouse (m5S) and hamster (SHE) cell lines were loaded on the Space Shuttle Discovery (STS-95 mission) and grown during a 9-day mission. After landing, the micronuclei resulting from abnormal nuclear division and accumulation of stress-responsive proteins such as p53 and mitogen-activated protein kinases (MAPKs), which are involved in radiation-induced signal transduction cascades, were analyzed. The frequencies of micronuclei in all the four mammalian cell strains tested were not significantly different between flight and ground control samples. Also, the cellular amounts of p53, p21 (WAF1/SDI1/CIP1) and activated (phosphorylated) forms of three distinct MAPKs in MCF7 and m5S cells of flight samples were similar to those of ground control samples. These results indicated that any effect of space radiation, microgravity, or combination of both were not detectable, at least under the present experimental conditions.

  5. LDEF (Flight), M0003 : Space Environment Effects on Spacecraft Materials, Tray D08

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Flight), M0003 : Space Environment Effects on Spacecraft Materials, Tray D08 The flight photograph was taken from the Orbiter aft flight deck during the LDEF retrieval prior to berthing the LDEF in the Orbiter cargo bay. Experiment Power and Data Systems (EPDS), two Environment Exposure Control Canisters (EECC), twelve LiSO2 batteries and internal support structure, instrumentation and black anodized aluminum mounting plates for experiment samples. The experiment structural members were assembled using non-magnetic stainless steel fasteners. One six-inch tray and one three-inch tray with a connecting wiring harness, one EPDS, one EECC and six LiSO2 batteries were located in tray locations D08 and D09 near the LDEF leading edge and a similar set of hardware was located near the LDEF trailing edge in tray locations D03 and D04. The environmental exposure was similar with one significant exception, the trailing edge location was not exposed to continuous bombardment by the relativity high atomic oxygen flux. The white paint dots on the experiment tray clamp blocks appear to have no significant change in color. The experiment tray in the D08 location is divided into three sections.The top section provides space for the EPDS, the center section accommodates the Signal Conditioning Unit (SCU) and an experiment mounting plate, on an aluminum sub-structure, that is populated with composite material samples. The lower section houses the EECC with a complement of experiment samples that consist of coatings, thermal paints, polymers, glasses and semiconductors. Detectors within the experiment provide environmental data for use in postflight analyses. Batteries and the inter-tray wiring harness are located beneath the tray base plates. The EPDS is located under an aluminum cover that is coated with a white thermal control paint (Chemglaze II A-276) and thermally iso- lated from the tray structure by fiberglass clips. The SCU cover is also coated with a white thermal

  6. LDEF (Flight), M0003 : Space Environment Effects on Spacecraft Materials, Tray D04

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Flight), M0003 : Space Environment Effects on Spacecraft Materials, Tray D04 The flight photograph was taken from the Orbiter aft flight deck during the LDEF retrieval prior to berthing the LDEF in the Orbiter cargo bay. Experiment Power and Data Systems (EPDS), two Environment Exposure Control Canisters (EECC), twelve LiSO2 batteries and internal support structure, instrumentation and black anodized aluminum mounting plates for experiment samples. The experiment structural members were assembled using non-magnetic stainless steel fasteners. One six-inch tray and one three-inch tray with a connecting wiring harness, one EPDS, one EECC and six LiSO2 batteries were located in tray locations D08 and D09 near the LDEF leading edge and a similar set of hardware was located near the LDEF trailing edge in tray locations D03 and D04. The environmental exposure was similar with one significant exception, the trailing edge location was not exposed to continuous bombardment by the relativity high atomic oxygen flux. The white paint dots on the experiment tray clamp blocks appear to have changed significantly. The paint on the clamp block located in the center of the trays right flange is brown and the paint on the clamp block at the upper end of the left flange is gray. The trays right flange and clamp blocks appear to have a light tan discoloration. The experiment tray in the D04 location is divided into three sections.The top section provides space for the EPDS, the center section accommodates the Signal Conditioning Unit (SCU) and an experiment mounting plate, on an aluminum sub-structure, that is populated with composite material samples. The lower section houses the EECC with a complement of experiment samples that consist of coatings, thermal paints, polymers, glasses and semiconductors. Detectors within the experiment provide environmental data for use in postflight analyses. Batteries and the inter-tray wiring harness are located beneath the tray base plates

  7. Space Flight Orthostatic Intolerance Protection

    NASA Technical Reports Server (NTRS)

    Luty, Wei

    2009-01-01

    This paper summarizes investigations conducted on different orthostatic intolerance protection garments. This paper emphasizes on the engineering and operational aspects of the project. The current Shuttle pneumatic Anti-G Suit or AGS at 25 mmHg (0.5 psi) and customized medical mechanical compressive garments (20-30 mmHg) were tested on human subjects. The test process is presented. The preliminary results conclude that mechanical compressive garments can ameliorate orthostatic hypotension in hypovolemic subjects. A mechanical compressive garment is light, small and works without external pressure gas source; however the current garment design does not provide an adjustment to compensate for the loss of mass and size in the lower torso during long term space missions. It is also difficult to don. Compression garments that do not include an abdominal component are less effective countermeasures than garments which do. An early investigation conducted by the Human Adaptation and Countermeasures Division at Johnson Space Center (JSC) has shown there is no significant difference between the protection function of the AGS (at 77 mmHg or 1.5 psi) and the Russian anti-g suit, Kentavr (at 25 mmHg or 0.5 psi). Although both garments successfully countered hypovolemia-induced orthostatic intolerance, the Kentavr provided protection by using lower levels of compression pressure. This more recent study with a lower AGS pressure shows that pressures at 20-30 mmHg is acceptable but protection function is not as effective as higher pressure. In addition, a questionnaire survey with flight crewmembers who used both AGS and Kentavr during different missions was also performed.

  8. Space Flight Orthostatic Intolerance Protection

    NASA Technical Reports Server (NTRS)

    Luty, Wei

    2009-01-01

    This paper summarizes investigations conducted on different orthostatic intolerance protection garments. This paper emphasizes on the engineering and operational aspects of the project. The current Shuttle pneumatic Anti-G Suit or AGS at 25 mmHg (0.5 psi) and customized medical mechanical compressive garments (20-30 mmHg) were tested on human subjects. The test process is presented. The preliminary results conclude that mechanical compressive garments can ameliorate orthostatic hypotension in hypovolemic subjects. A mechanical compressive garment is light, small and works without external pressure gas source; however the current garment design does not provide an adjustment to compensate for the loss of mass and size in the lower torso during long term space missions. It is also difficult to don. Compression garments that do not include an abdominal component are less effective countermeasures than garments which do. An early investigation conducted by the Human Adaptation and Countermeasures Division at Johnson Space Center (JSC) has shown there is no significant difference between the protection function of the AGS (at 77 mmHg or 1.5 psi) and the Russian anti-g suit, Kentavr (at 25 mmHg or 0.5 psi). Although both garments successfully countered hypovolemia-induced orthostatic intolerance, the Kentavr provided protection by using lower levels of compression pressure. This more recent study with a lower AGS pressure shows that pressures at 20-30 mmHg is acceptable but protection function is not as effective as higher pressure. In addition, a questionnaire survey with flight crewmembers who used both AGS and Kentavr during different missions was also performed.

  9. Ethernet for Space Flight Applications

    NASA Technical Reports Server (NTRS)

    Webb, Evan; Day, John H. (Technical Monitor)

    2002-01-01

    NASA's Goddard Space Flight Center (GSFC) is adapting current data networking technologies to fly on future spaceflight missions. The benefits of using commercially based networking standards and protocols have been widely discussed and are expected to include reduction in overall mission cost, shortened integration and test (I&T) schedules, increased operations flexibility, and hardware and software upgradeability/scalability with developments ongoing in the commercial world. The networking effort is a comprehensive one encompassing missions ranging from small University Explorer (UNEX) class spacecraft to large observatories such as the Next Generation Space Telescope (NGST). Mission aspects such as flight hardware and software, ground station hardware and software, operations, RF communications, and security (physical and electronic) are all being addressed to ensure a complete end-to-end system solution. One of the current networking development efforts at GSFC is the SpaceLAN (Spacecraft Local Area Network) project, development of a space-qualifiable Ethernet network. To this end we have purchased an IEEE 802.3-compatible 10/100/1000 Media Access Control (MAC) layer Intellectual Property (IP) core and are designing a network node interface (NNI) and associated network components such as a switch. These systems will ultimately allow the replacement of the typical MIL-STD-1553/1773 and custom interfaces that inhabit most spacecraft. In this paper we will describe our current Ethernet NNI development along with a novel new space qualified physical layer that will be used in place of the standard interfaces. We will outline our plans for development of space qualified network components that will allow future spacecraft to operate in significant radiation environments while using a single onboard network for reliable commanding and data transfer. There will be a brief discussion of some issues surrounding system implications of a flight Ethernet. Finally, we will

  10. Effect of long real space flight on the whole genome mRNA expression properties in medaka Oryzias latipes

    NASA Astrophysics Data System (ADS)

    Kozlova, Olga; Gusev, Oleg; Levinskikh, Margarita; Sychev, Vladimir; Poddubko, Svetlana

    The current study is addressed to the complex analysis of whole genome mRNA expression profile and properties of splicing variants formation in different organs of medaka fish exposed to prolonged space flight in the frame of joint Russia-Japan research program “Aquarium-AQH”. The fish were kept in the AQH joint-aquariums system in October-December 2013, followed by fixation in RNA-preserving buffers and freezing during the space flight. The samples we returned to the Earth frozen in March 2013 and mRNAs from four fish were sequenced in organ-specific manner using HiSeq Illumina sequencing platform. The ground group fish treated in the same way was used as a control. The comparison between the groups revealed space group-specific specific mRNA expression pattern. More than 50 genes (including several types of myosins) were down-regulated in the space group. Moreover, we found an evidence for formation of space group-specific splicing variants of mRNA. Taking together, the data suggest that in spite of aquatic environment, space flight-associated factors have a strong effect on the activity of fish genome. This work was supported in part by subsidy of the Russian Government to support the Program of competitive growth of Kazan Federal University among world class academic centres and universities.

  11. Integrating Space Flight Resource Management Skills into Technical Lessons for International Space Station Flight Controller Training

    NASA Technical Reports Server (NTRS)

    Baldwin, Evelyn

    2008-01-01

    The Johnson Space Center s (JSC) International Space Station (ISS) Space Flight Resource Management (SFRM) training program is designed to teach the team skills required to be an effective flight controller. It was adapted from the SFRM training given to Shuttle flight controllers to fit the needs of a "24 hours a day/365 days a year" flight controller. More recently, the length reduction of technical training flows for ISS flight controllers impacted the number of opportunities for fully integrated team scenario based training, where most SFRM training occurred. Thus, the ISS SFRM training program is evolving yet again, using a new approach of teaching and evaluating SFRM alongside of technical materials. Because there are very few models in other industries that have successfully tied team and technical skills together, challenges are arising. Despite this, the Mission Operations Directorate of NASA s JSC is committed to implementing this integrated training approach because of the anticipated benefits.

  12. Effects of Long-duration Space Flight on Toe Clearance During Treadmill Walking

    NASA Technical Reports Server (NTRS)

    Miller, Chris; Peters, Brian; Brady, Rachel; Mulavara, Ajitkumar; Richards, Jason; Hayat, Matthew; Bloomberg, Jacob

    2008-01-01

    Upon returning from long-duration space flight, astronauts and cosmonauts must overcome physiologic and sensorimotor changes induced by prolonged exposure to microgravity as they readapt to a gravitational environment. Their compromised balance and coordination lead to an altered and more variable walking pattern (Bloomberg & Mulavara, 2003; McDonald, et al., 1996). Toe trajectory during the swing phase of locomotion has been identified as a precise motor control task (Karst, et al., 1999), thus providing an indication of the coordination of the lower limbs (Winter, 1992). Failure to achieve sufficient toe clearance may put the crew member at a greater risk of tripping and falling, especially if an emergency egress from the vehicle should be necessary upon landing. The purpose of this study was to determine the pre- to post-flight changes in toe clearance in crew members returning from long-duration missions and the recovery thereafter.

  13. Adenoviruses as a model in the study of the effect of space flight factors

    NASA Astrophysics Data System (ADS)

    Nosach, L. M.; Povnitsa, O. Yu.; Zhovnovata, V. L.

    Simulated microgravity conditions, independently of multiplicity of infection, does not influence the reproduction of adenoviruses in cells which were clinorotated for 48 hours after adsorption of virus. The incubation of infected cells before clinorotation under static conditions at a temperature of 4 °C for three days (the conditions for keeping cells before the flight) does not change the number of infected cells relatively to control, but some changes of cell morphology are revealed, namely round off and aggregation of cells. The adenoviruses which were exposed in the medium keep infectivity under the conditions of clinorotation at 4 and 20-22 °C over prolonged periods (90 and 60 days, respectively). A model is elaborated for investigation of the influence of space flight factors on the interaction of the adenovirus and Epstein-Barr virus genomes at combined infection of limphoblastoid cells.

  14. Mineral balance, experiment M071. [space flight effects on human mineral metabolism

    NASA Technical Reports Server (NTRS)

    Whedon, G. D.; Rambaut, P. C.; Smith, M. C., Jr.

    1973-01-01

    Concern for the long term metabolic consequences of weightless flight was the basis for the conception of the Skylab medical experiment to measure mineral balance. Proper interpretation of obtained data that diminished atmospheric pressure has no appreciable effect, or at least no protective effect, on calcium metabolism. The absence of changes in calcium metabolism indicates that a stable baseline observation has been made for Skylab as far as the effects of atmosphere or calcium metabolism are concerned.

  15. U.S. view of human problems to be addressed for long duration space flights. [physiological and psychological effects

    NASA Technical Reports Server (NTRS)

    Berry, C. A.

    1973-01-01

    The Russian and American space programs have consisted of several thousands of hours of exposure of man to the space environment. In spite of numerous biological phenomena of adaptation observed, the space travellers have displayed, after their return, no enduring pathological effect. Although the usable data remain too limited to reflect fully the effects of space flight, it is possible to sketch the biological responses in the absence of gravity and to define the work bases for the future. Beyond its basic physiological effects, weightlessness has operational consequences in the daily life of the astronauts. These consequences will be still more evident during missions of long duration. The conclusions drawn in flight as well as on the ground are reviewed, and future requirements concerning prolonged flights are outlined. The gaps in actual knowledge are discussed and solutions are suggested. The problems of habitability are considered, particularly those which remain at present without satisfactory solutions: psychological responses to a confined life, cleaning, hygiene, and used material.

  16. U.S. view of human problems to be addressed for long duration space flights. [physiological and psychological effects

    NASA Technical Reports Server (NTRS)

    Berry, C. A.

    1973-01-01

    The Russian and American space programs have consisted of several thousands of hours of exposure of man to the space environment. In spite of numerous biological phenomena of adaptation observed, the space travellers have displayed, after their return, no enduring pathological effect. Although the usable data remain too limited to reflect fully the effects of space flight, it is possible to sketch the biological responses in the absence of gravity and to define the work bases for the future. Beyond its basic physiological effects, weightlessness has operational consequences in the daily life of the astronauts. These consequences will be still more evident during missions of long duration. The conclusions drawn in flight as well as on the ground are reviewed, and future requirements concerning prolonged flights are outlined. The gaps in actual knowledge are discussed and solutions are suggested. The problems of habitability are considered, particularly those which remain at present without satisfactory solutions: psychological responses to a confined life, cleaning, hygiene, and used material.

  17. Effect of space flight and head-down bedrest on neuroendocrine response to metabolic stress in physically trained subjects.

    PubMed

    Kvetnanský, R; Ksinantová, L; Koska, J; Noskov, V B; Vigas, M; Grigoriev, A I; Macho, L

    2004-07-01

    The aim of this study was to evaluate the association of plasma epinephrine (EPI) and norepinephrine (NE) responses to insulin induced hypoglycemia (ITT) 3 weeks before the space flight (SF), on the 5th day of SF, on the 2nd and 16th days after the landing in the first Slovak astronaut, and before and on the 5th day of prolonged subsequent head-down (-6 degrees) bed rest (BR) in 15 military aircraft pilots. Blood samples during the test were collected via cannula inserted into cubital vein, centrifuged in the special appliance Plasma-03, frozen in Kryogem-03, and at the end of the 8-day space flight transferred to Earth in special container for hormonal analysis. Insulin hypoglycemia was induced by i.v. administration of 0.1 IU/kg BW insulin (Actrapid HM) in bolus. Insulin administration led to a comparable hypoglycemia in pre-flight, in-flight conditions and before and after bed rest. ITT led to a pronounced increase in EPI levels and moderate increase in NE in pre-flight studies. However, an evidently reduced EPI response was found after insulin administration during SF and during BR. Thus, during the real microgravity in SF and simulated microgravity in BR, insulin-induced hypoglycemia activates the adrenomedullary system to less extent than at conditions of the Earth gravitation. Post-flight changes in EPI and NE levels did not significantly differ from those of pre-flight since SF was relatively short (8 days) and the readaptation to Earth gravitation was fast. It seems, that an increased blood flow in brain might be responsible for the reduced EPI response to insulin. Responses to ITT in physically fit subjects indicate the stimulus specificity of deconditioning effect of 5 days bed rest on stress response. Thus, the data indicate that catecholamine responses to ITT are reduced after exposure to real as well as simulated microgravity.

  18. Metabolic energy requirements for space flight

    NASA Technical Reports Server (NTRS)

    Lane, Helen W.

    1992-01-01

    The international space community, including the USSR, Japan, Germany, the European Space Agency, and the US, is preparing for extended stays in space. Much of the research planned for space will be tended by humans, thus, maintaining adequate nutritional status during long stays in space has lately become an issue of much interest. Historically, it appears that minimum nutritional requirements are being met during stays in space. Thus far, crewmembers have been able to consume food adequate for maintaining nominal performance in microgravity. The physiological data obtained from ground-based and flight research that may enable us to understand the biochemical alterations that effect energy utilization and performance. Focus is on energy utilization during the Apollo lunar missions, Skylab's extended space lab missions, and Space Shuttle flights. Available data includes those recorded during intra- and extravehicular activities as well as during microgravity simulation (bed rest). Data on metabolism during flight and during bed rest are discussed, with a follow-up on human gastrointestinal function.

  19. Role of Corticosteroids in Bone Loss During Space Flight

    NASA Technical Reports Server (NTRS)

    Wronski, Thomas J.; Halloran, Bernard P.; Miller, Scott C.

    1998-01-01

    The primary objective of this research project is to test the hypothesis that corticosteroids contribute to the adverse skeletal effects of space flight. To achieve this objective, serum corticosteroids, which are known to increase during space flight, must be maintained at normal physiologic levels in flight rats by a combination of adrenalectomy and corticosteroid supplementation via implanted hormone pellets. Bone analyses in these animals will then be compared to those of intact flight rats that, based on past experience, will undergo corticosteroid excess and bone loss during space flight. The results will reveal whether maintaining serum corticosteroids at physiologic levels in flight rats affects the skeletal abnormalities that normally develop during space flight. A positive response to this question would indicate that the bone loss and decreased bone formation associated with space flight are mediated, at least in part, by corticosteroid excess.

  20. Study of biological effects and radiation protection to future European manned space flights

    NASA Astrophysics Data System (ADS)

    Bourrieau, J.; Berry, J.; Philippon, J. P.; Roux, M.; Reitz, G.; Facius, R.; Schafer, M.; Schott, J. U.; Bucker, H.; Horneck, G.

    1988-02-01

    The Earth's radiation environment; radiation dose calculation and measurement; foreseen exposure in European manned space missions; biological effects of radiation; and radiation monitoring and protection are discussed.

  1. Space flight and neurovestibular adaptation

    NASA Technical Reports Server (NTRS)

    Reschke, M. F.; Bloomberg, J. J.; Harm, D. L.; Paloski, W. H.

    1994-01-01

    Space flight represents a form of sensory stimulus rearrangement requiring modification of established terrestrial response patterns through central reinterpretation. Evidence of sensory reinterpretation is manifested as postflight modifications of eye/head coordination, locomotor patterns, postural control strategies, and illusory perceptions of self or surround motion in conjunction with head movements. Under normal preflight conditions, the head is stabilized during locomotion, but immediately postflight reduced head stability, coupled with inappropriate eye/head coordination, results in modifications of gait. Postflight postural control exhibits increased dependence on vision which compensates for inappropriate interpretation of otolith and proprioceptive inputs. Eye movements compensatory for perceived self motion, rather than actual head movements have been observed postflight. Overall, the in-flight adaptive modification of head stabilization strategies, changes in head/eye coordination, illusionary motion, and postural control are maladaptive for a return to the terrestrial environment.

  2. Effect of 90-day space flight (MDS-ISS) on immunological parameters in mice: lymphocyte distribution and function

    NASA Astrophysics Data System (ADS)

    Roberts, Arthur; Lhuillier, Andrew; Liu, Yi; Ruggiu, Alessandra; Shi, Yufang

    Elucidation of the effects of space flight on the immune system of astronauts and other animal species is important for the survival and success of manned space flight, especially long-term missions. Space flight exposes astronauts to microgravity, galactic cosmic radiation (GCR), and various psycho-social stressors. Blood samples from astronauts returning from space flight have shown changes in the numbers and types of circulating leukocytes. Similarly, normal lym-phocyte homeostasis has been shown to be severely affected in mice using ground-based models of microgravity and GCR exposure, as demonstrated by profound effects on several immuno-logical parameters examined by other investigators and ourselves. In particular, lymphocyte numbers are significantly reduced and subpopulation distribution is altered in the spleen, thy-mus, and peripheral blood following hindlimb unloading (HU) in mice. Lymphocyte depletion was found to be mediated through corticosteroid-induced apoptosis, although the molecular mechanism of apoptosis induction is still under investigation. The proliferative capacity of TCR-stimulated lymphocytes was also inhibited after HU. We have similarly shown that mice exposed to high-energy 56Fe ion radiation have decreased lymphocyte numbers and perturba-tions in proportions of various subpopulations, including CD4+ and CD8+ T cells, and B cells in the spleen, and maturation stages of immature T cells in the thymus. To compare these ground-based results to the effects of actual space-flight, fresh spleen and thymus samples were recently obtained from normal and transgenic mice immediately after 90 d. space-flight in the MDS, and identically-housed ground control mice. Total leukocyte numbers in each organ were enumerated, and subpopulation distribution was examined by flow cytometric analysis of CD3, CD4, CD8, CD19, CD25, DX-5, and CD11b. Splenic T cells were stimulated with anti-CD3 and assessed for proliferation after 2-4 d., and production of

  3. Spatial Reorientation Following Space Flight

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The short-arm centrifuge subjects an astronaut to conflicting sensory input and study the astronaut's perception of motion. It is one of several instruments used in the Spatial Reorientation Following Space Flight investigation to be conducted after astronauts return to Earth. During space flight, the vestibular organs no longer respond in a familiar way. Instead, inputs from the irner ear do not match those coming from the eyes. While on Earth, you can open your eyes to see if you truly are spinning, but astronauts do not have this luxury. Astronauts can see the floor, but have no sense of down; when they bend their heads forward, the otoliths are not stimulated properly. This state, called sensory conflict, must be resolved by the brain to maintain orientation. When they first return to Earth, astronauts are again disoriented because of sensory conflict. They undergo a period of spatial reorientation, as their brains reconcile what their eyes see and what their vestibular system senses. Recovery can take anywhere from hours to days depending on the length of the mission. Principal Investigator: Dr. William Paloski, Johnson Space Center, Houston, TX.

  4. Spatial Reorientation Following Space Flight

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The short-arm centrifuge subjects an astronaut to conflicting sensory input and study the astronaut's perception of motion. It is one of several instruments used in the Spatial Reorientation Following Space Flight investigation to be conducted on crewmembers. During space flight, the vestibular organs no longer respond in a familiar way. Instead, inputs from the irner ear do not match those coming from the eyes. While on Earth, you can open your eyes to see if you truly are spinning, but astronauts do not have this luxury. Astronauts can see the floor, but have no sense of down; when they bend their heads forward, the otoliths are not stimulated properly. This state, called sensory conflict, must be resolved by the brain to maintain orientation. When they first return to Earth, astronauts are again disoriented because of sensory conflict. They undergo a period of spatial reorientation, as their brains reconcile what their eyes see and what their vestibular system senses. Recovery can take anywhere from hours to days depending on the length of the mission. Principal Investigator: Dr. William Paloski, Johnson Space Center, Houston, TX.

  5. Spatial Reorientation Following Space Flight

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The short-arm centrifuge subjects an astronaut to conflicting sensory input and study the astronaut's perception of motion. It is one of several instruments used in the Spatial Reorientation Following Space Flight investigation to be conducted after astronauts return to Earth. During space flight, the vestibular organs no longer respond in a familiar way. Instead, inputs from the irner ear do not match those coming from the eyes. While on Earth, you can open your eyes to see if you truly are spinning, but astronauts do not have this luxury. Astronauts can see the floor, but have no sense of down; when they bend their heads forward, the otoliths are not stimulated properly. This state, called sensory conflict, must be resolved by the brain to maintain orientation. When they first return to Earth, astronauts are again disoriented because of sensory conflict. They undergo a period of spatial reorientation, as their brains reconcile what their eyes see and what their vestibular system senses. Recovery can take anywhere from hours to days depending on the length of the mission. Principal Investigator: Dr. William Paloski, Johnson Space Center, Houston, TX.

  6. Spatial Reorientation Following Space Flight

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The short-arm centrifuge subjects an astronaut to conflicting sensory input and study the astronaut's perception of motion. It is one of several instruments used in the Spatial Reorientation Following Space Flight investigation to be conducted on crewmembers. During space flight, the vestibular organs no longer respond in a familiar way. Instead, inputs from the irner ear do not match those coming from the eyes. While on Earth, you can open your eyes to see if you truly are spinning, but astronauts do not have this luxury. Astronauts can see the floor, but have no sense of down; when they bend their heads forward, the otoliths are not stimulated properly. This state, called sensory conflict, must be resolved by the brain to maintain orientation. When they first return to Earth, astronauts are again disoriented because of sensory conflict. They undergo a period of spatial reorientation, as their brains reconcile what their eyes see and what their vestibular system senses. Recovery can take anywhere from hours to days depending on the length of the mission. Principal Investigator: Dr. William Paloski, Johnson Space Center, Houston, TX.

  7. Effects of Space Flight, Clinorotation, and Centrifugation on the Growth and Metabolism of Escherichia Coli

    NASA Technical Reports Server (NTRS)

    Brown, Robert B.

    1999-01-01

    Previous experiments have shown that space flight stimulates bacterial growth and metabolism. An explanation for these results is proposed, which may eventually lead to improved terrestrial pharmaceutical production efficiency. It is hypothesized that inertial acceleration affects bacterial growth and metabolism by altering the transport phenomena in the cells external fluid environment. It is believed that this occurs indirectly through changes in the sedimentation rate acting on the bacteria and buoyancy-driven convection acting on their excreted by-products. Experiments over a broad range of accelerations consistently supported this theory. Experiments at I g indicated that higher concentrations of excreted by products surrounding bacterial cells result in a shorter lag phase. Nineteen additional experiments simulated 0 g and 0.5 g using a clinostat, and achieved 50 g, 180 g, and 400 g using a centrifuge. These experiments showed that final cell density is inversely related to the level of acceleration. The experiments also consistently showed that acceleration affects the length of the lag phase in a non-monotonic, yet predictable, manner. Additional data indicated that E. coli metabolize glucose less efficiently at hypergravity, and more efficiently at hypogravity. A space-flight experiment was also performed. Samples on orbit had a statistically significant higher final cell density and more efficient metabolism than did ground controls. These results. which were similar to simulations of 0 g using a clinostat, support the theory that gravity only affects bacterial growth and metabolism indirectly, through changes in the bacteria's fluid environment.

  8. Effects of Space Flight, Clinorotation, and Centrifugation on the Growth and Metabolism of Escherichia Coli

    NASA Technical Reports Server (NTRS)

    Brown, Robert B.

    1999-01-01

    Previous experiments have shown that space flight stimulates bacterial growth and metabolism. An explanation for these results is proposed, which may eventually lead to improved terrestrial pharmaceutical production efficiency. It is hypothesized that inertial acceleration affects bacterial growth and metabolism by altering the transport phenomena in the cells external fluid environment. It is believed that this occurs indirectly through changes in the sedimentation rate acting on the bacteria and buoyancy-driven convection acting on their excreted by-products. Experiments over a broad range of accelerations consistently supported this theory. Experiments at I g indicated that higher concentrations of excreted by products surrounding bacterial cells result in a shorter lag phase. Nineteen additional experiments simulated 0 g and 0.5 g using a clinostat, and achieved 50 g, 180 g, and 400 g using a centrifuge. These experiments showed that final cell density is inversely related to the level of acceleration. The experiments also consistently showed that acceleration affects the length of the lag phase in a non-monotonic, yet predictable, manner. Additional data indicated that E. coli metabolize glucose less efficiently at hypergravity, and more efficiently at hypogravity. A space-flight experiment was also performed. Samples on orbit had a statistically significant higher final cell density and more efficient metabolism than did ground controls. These results. which were similar to simulations of 0 g using a clinostat, support the theory that gravity only affects bacterial growth and metabolism indirectly, through changes in the bacteria's fluid environment.

  9. Flight Planning Branch Space Shuttle Lessons Learned

    NASA Technical Reports Server (NTRS)

    Price, Jennifer B.; Scott, Tracy A.; Hyde, Crystal M.

    2011-01-01

    Planning products and procedures that allow the mission flight control teams and the astronaut crews to plan, train and fly every Space Shuttle mission have been developed by the Flight Planning Branch at the NASA Johnson Space Center. As the Space Shuttle Program ends, lessons learned have been collected from each phase of the successful execution of these Shuttle missions. Specific examples of how roles and responsibilities of console positions that develop the crew and vehicle attitude timelines will be discussed, as well as techniques and methods used to solve complex spacecraft and instrument orientation problems. Additionally, the relationships and procedural hurdles experienced through international collaboration have molded operations. These facets will be explored and related to current and future operations with the International Space Station and future vehicles. Along with these important aspects, the evolution of technology and continual improvement of data transfer tools between the shuttle and ground team has also defined specific lessons used in the improving the control teams effectiveness. Methodologies to communicate and transmit messages, images, and files from Mission Control to the Orbiter evolved over several years. These lessons have been vital in shaping the effectiveness of safe and successful mission planning that have been applied to current mission planning work in addition to being incorporated into future space flight planning. The critical lessons from all aspects of previous plan, train, and fly phases of shuttle flight missions are not only documented in this paper, but are also discussed as how they pertain to changes in process and consideration for future space flight planning.

  10. Anesthetic Concerns of Space Flight

    NASA Technical Reports Server (NTRS)

    Norfleet, William T.

    1999-01-01

    Anesthesiologists are acutely aware of the fact that, although a given surgical procedure may be relatively simple, the required anesthetic care is, in certain cases, extremely complex. This principle is particularly evident when one ponders the difficulties involved in providing even basic anesthetic care in microgravity. In this issue some of these difficulties through the evaluation of airway management techniques during water immersion are confronted, a simulation of the gravito-inertial conditions of space flight. As prelude for this paper, I would like to outline some of the challenges to be overcome before surgical, anesthetic, and critical care can be delivered beyond our home planet.

  11. LDEF (Flight), M0004 : Space Environment Effects on Fiber Optics Systems, Tray F08

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The flight photograph was taken while the LDEF was attached to the Orbiter's RMS arm prior to berthing in the Orbiter's cargo bay. The white paint dot on the center clamp block of the experiment tray lower flange appears to be slightly discolored. The Space Environment Effects on Fiber Optic Systems Experiment occupies a six (6) inch deep LDEF peripheral tray and consist of an aluminum internal support structure, an Electronic Power and Data System (EPDS), three aluminum experiment mounting plates, two aluminum cover plates, four operational digital optical data links (lengths of 48 m, 45 m and two 20 m) exposed to the space environment, three passive cabled fiber optic links (each 10 m long) with electronic components and end connectors, aluminum brackets and non-magnet stainless steel fasteners required to assemble the experiment. Four active cabled optical fiber links (one black, one blue, one yellow and one light tan), each configured in the form of a planar, helix coil, are attached to thermally isolated mounting plates with black anodized aluminum clips cushioned with silicone-rubber spacers. The three mounting plates are coated with a Catalac off-white thermal control paint, the large cover plate is coated with Chemglaze II A-276 white paint and the smaller cover plate is coated with IITRI S13G-LO white paint to meet thermal control requirements. The three passive cabled optical fiber links and all emitters, detectors and associated electronics are located in the interior volume of the tray. All cabled optical fibers terminate in connectors mounted in brackets that are located in the tray bottom or on the backside of the thermally isolated mounting plates. The Space Environment Effects on Fiber Optic Systems Experiment appears to be intact with no apparent structural damage. Colors of all three exposed coils of fiber optic cables have changed significantly. The cable located in the upper right corner, originally glossy black, appears to be dark brown and the

  12. Space shuttle orbiter test flight series

    NASA Technical Reports Server (NTRS)

    Garrett, D.; Gordon, R.; Jackson, R. B.

    1977-01-01

    The proposed studies on the space shuttle orbiter test taxi runs and captive flight tests were set forth. The orbiter test flights, the approach and landing tests (ALT), and the ground vibration tests were cited. Free flight plans, the space shuttle ALT crews, and 747 carrier aircraft crew were considered.

  13. Dichotomal effect of space flight-associated microgravity on stress-activated protein kinases in innate immunity.

    PubMed

    Verhaar, Auke P; Hoekstra, Elmer; Tjon, Angela S W; Utomo, Wesley K; Deuring, J Jasper; Bakker, Elvira R M; Muncan, Vanesa; Peppelenbosch, Maikel P

    2014-06-27

    Space flight strongly moderates human immunity but is in general well tolerated. Elucidation of the mechanisms by which zero gravity interacts with human immunity may provide clues for developing rational avenues to deal with exaggerated immune responses, e.g. as in autoimmune disease. Using two sounding rockets and one manned Soyuz launch, the influence of space flight on immunological signal transduction provoked by lipopolysaccharide (LPS) stimulation was investigated in freshly isolated peripheral blood monocytes and was compared to samples obtained from on-board centrifuge-loaded 1 g controls. The effect of microgravity on immunological signal transduction is highly specific, since LPS dependent Jun-N-terminal kinase activation is impaired in the 0 g condition, while the corresponding LPS dependent activation of p38 MAP kinase remains unaffected. Thus our results identify Jun-N-terminal kinase as a relevant target in immunity for microgravity and support using Jun-N-terminal kinase specific inhibitors for combating autoimmune disease.

  14. Antimicrobial Medication Stability During Space Flight

    NASA Technical Reports Server (NTRS)

    Putcha, Lakshmi; Berens, Kurt; Du, Jianping

    2004-01-01

    The current vision for manned space flight involves lunar and Martian exploration within the next two decades. In order for NASA to achieve these goals, a significant amount of preparation is necessary to assure crew health and safety. A mission critical component of this vision centers around the stability of pharmaceutical preparations contained in the space medicine kits. Evidence suggests that even brief periods of space flight have significant detrimental effects for some pharmaceutical formulations. The effects observed include decreases in physical stability of drug formulations of sufficient magnitude to effect bioavailability. Other formulations exhibit decreases in chemical stability resulting in a loss of potency. Physical or-chemical instability of pharmaceutical formulations i n space medicine kits could render the products ineffective. Of additional concern is the potential for formation of toxic degradation products as a result of the observed product instability. This proposal addresses Question number 11 of Clinical Capabilities in the Critical Path Roadmap. In addition, this proposal will reduce the risks and/or enhance the capabilities of humans exposed to the environments of space flight or an extraterrestrial destination by identifying drugs that may be unstable during spaceflight.

  15. Lytic Replication of Epstein-Barr Virus During Space Flight

    NASA Technical Reports Server (NTRS)

    Stowe, R. P.; Pierson, D. L.; Barrett, A. D. T.

    1999-01-01

    Reactivation of latent Epstein-Barr virus (EBV) may be an important threat to crew health during extended space missions. Cellular immunity, which is decreased during and after space flight, is responsible for controlling EBV replication in vivo. In this study, we investigated the effects of short-term space flight on latent EBV reactivation.

  16. Metabolic and Regulatory Systems in Space Flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this session, Session JP2, the discussion focuses on the following topics: The Dynamics of Blood Biochemical Parameters in Cosmonauts During Long-Term Space Flights; Efficiency of Functional Loading Test for Investigations of Metabolic Responses to Weightlessness; Human Cellular Immunity and Space Flight; Cytokine Production and Head-Down Tilt Bed Rest; Plasma and Urine Amino Acids During Human Space Flight; and DNA Fingerprinting, Applications to Space Microbiology.

  17. Application of "FLUOR-P" device for analysis of the space flight effects on the intracellular level.

    NASA Astrophysics Data System (ADS)

    Grigorieva, Olga; Rudimov, Evgeny; Buravkova, Ludmila; Galchuk, Sergey

    The mechanisms of cellular gravisensitivity still remain unclear despite the intensive research in the hypogravity effects on cellular function. In most cell culture experiments on unmanned vehicles "Bion" and "Photon", as well as on the ISS only allow post-flight analysis of biological material, including fixed cells is provided. The dynamic evaluation cellular parameters over a prolonged period of time is not possible. Thus, a promising direction is the development of equipment for onboard autonomous experiments. For this purpose, the SSC RF IBMP RAS has developed "FLUOR-P" device for measurement and recording of the dynamic differential fluorescent signal from nano- and microsized objects of organic and inorganic nature (human and animal cells, unicellular algae, bacteria, cellular organelles suspension) in hermetically sealed cuvettes. Besides, the device allows to record the main physical factors affecting the analyzed object (temperature and gravity loads: position in space, any vector acceleration, shock) in sync with the main measurements. The device is designed to perform long-term programmable autonomous experiments in space flight on biological satellites. The device software of allows to carry out complex experiments using cell. Permanent registration of data on built-in flash will give the opportunity to analyze the dynamics of the estimated parameters. FLUOR-P is designed as a monobloc (5.5 kg weight), 8 functional blocks are located in the inner space of the device. Each registration unit of the FLUOR-P has two channels of fluorescence intensity and excitation light source with the wavelength range from 300 nm to 700 nm. During biosatellite "Photon" flight is supposed to conduct a full analysis of the most important intracellular parameters (mitochondria activity and intracellular pH) dynamics under space flight factors and to assess the possible contribution of temperature on the effects of microgravity. Work is supported by Roskosmos and the

  18. ROTEX: space telerobotic flight experiment

    NASA Astrophysics Data System (ADS)

    Hirzinger, Gerd; Landzettel, Klaus L.; Heindl, J.

    1993-12-01

    In early 1993 the space robot technology experiment ROTEX flew with the space-shuttle Columbia (spacelab mission D2 on flight STS-55 from April 26 to May 6). A multisensory robot on board the space-craft successfully worked in autonomous modes, teleoperated by astronauts, as well as in different telerobotic ground control modes. These include on-line teleoperation and tele-sensor-programming, a task-level oriented programming technique involving `learning by showing' concepts in a virtual environment. The robot's key features were its multisensory gripper and the local sensory feedback schemes which are the basis for shared autonomy. The corresponding man-machine interface concepts using a 6 dof non-force- reflecting control ball and visual feedback to the human operator are explained. Stereographic simulation on ground was used to predict not only the robot's free motion but even the sensor based path refinement on board; prototype tasks performed by this space robot were the assembly of a truss structure, connecting/disconnecting an electric plug (orbit replaceable unit exchange ORU), and grasping free-floating objects.

  19. Space flight and the immune system

    NASA Technical Reports Server (NTRS)

    Cogoli, A.

    1993-01-01

    Depression of lymphocyte response to mitogens in cosmonauts after space flight was reported for the first time in the early 1970s by Soviet immunologists. Today we know that depression of lymphocyte function affects at least 50% of space crew members. Investigations on the ground on subjects undergoing physical and psychological stress indicate that stress is a major factor in immune depression of astronauts. This is despite the fact that weightlessness per se has a strong inhibitory effect on lymphocyte activation in vitro. Although the changes observed never harmed the health of astronauts, immunological changes must be seriously investigated and understood in view of long-duration flight on space stations in an Earth orbit, to other planets such as Mars and to the Moon.

  20. Space Shuttle Experiments Take Flight.

    ERIC Educational Resources Information Center

    Mohler, Robert R. J.

    1997-01-01

    Describes a primarily volunteer project that was developed with private industry to contribute to the research on space-grown vegetables and to promote science as a career. Focuses on the effects of microgravity and space travel on the germination and growth of plants. (DDR)

  1. Space Shuttle Experiments Take Flight.

    ERIC Educational Resources Information Center

    Mohler, Robert R. J.

    1997-01-01

    Describes a primarily volunteer project that was developed with private industry to contribute to the research on space-grown vegetables and to promote science as a career. Focuses on the effects of microgravity and space travel on the germination and growth of plants. (DDR)

  2. The German ISS-Experiment Cellular Responses to Radiation in Space (CERASP): The Effects of Single and Combined Space Flight Conditions on Mammalian Cells

    NASA Astrophysics Data System (ADS)

    Baumstark-Khan, C.; Hellweg, C. E.; Arenz, A.

    The combined action of ionizing radiation and microgravity will continue to influence future space missions with special risks for astronauts on the Moon surface or for long duration missions to Mars Previous space flight experiments have reported additive neither sensitization nor protection as well as synergistic increased radiation effect under microgravity interactions of radiation and microgravity in different cell systems Although a direct effect of microgravity on enzymatic mechanisms can be excluded on thermo dynamical reasons modifications of cellular repair can not be excluded as such processes are under the control of cellular signal transduction systems which are controlled by environmental parameters presumably also by gravity DNA repair studies in space on bacteria yeast cells and human fibroblasts which were irradiated before flight gave contradictory results from inhibition of repair by microgravity to enhancement whereas others did not detect any influence of microgravity on repair At the Radiation Biology Department of the German Aerospace Center DLR recombinant bacterial and mammalian cell systems were developed as reporters for cellular signal transduction modulation by genotoxic environmental conditions The space experiment CERASP Cellular Responses to Radiation in Space to be performed at the International Space Station ISS will make use of such reporter cell lines thereby supplying basic information on the cellular response to radiation applied in microgravity One of the biological endpoints will be survival

  3. Space Flight: The First 30 Years

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A history of space flight from Project Mercury to the Space Shuttle is told from the perspective of NASA flight programs. Details are given on Mercury missions, Gemini missions, Apollo missions, Skylab missions, the Apollo-Soyuz Test Project, and the Space Shuttle missions.

  4. Molecular and Cellular Characterization of Space Flight Effects on Microvascular Endothelial Cell Function - PreparatoryWork for the SFEF Project

    NASA Astrophysics Data System (ADS)

    Balsamo, Michele; Barravecchia, Ivana; Mariotti, Sara; Merenda, Alessandra; De Cesari, Chiara; Vukich, Marco; Angeloni, Debora

    2014-12-01

    Exposure to microgravity during space flight (SF) of variable length induces suffering of the endothelium (the cells lining all blood vessels), mostly responsible for health problems found in astronauts and animals returning from space. Of interest to pre-nosological medicine, the effects of microgravity on astronauts are strikingly similar to the consequences of sedentary life, senescence and degenerative diseases on Earth, although SF effects are accelerated and reversible. Thus, microgravity is a significant novel model for better understanding of common pathologies. A comprehensive cell and molecular biology study is needed in order to explain pathophysiological findings after SFs. This project will study the effects of microgravity and cosmic radiation on endothelial cells (ECs) cultured on the International Space Station through analysis of 1) cell transcriptome, 2) DNA methylome, 3) DNA damage and cell senescence, 4) variations in cell cycle and cell morphology. This project has been selected by the European Space Agency and the Italian Space Agency and is presently in preparation. The ground study presented here was performed to determine the biological and engineering requirements that will allow us to retrieve suitable samples after culturing, fixing and storing ECs in space. We expect to identify molecular pathways activated by space microgravity in microvascular ECs, which may shed light on pathogenic molecular mechanisms responsible for endothelial suffering shared by astronauts and individuals affected with aging, degenerative and sedentary life-associated pathologies on Earth.

  5. Vectorcardiographic changes during extended space flight

    NASA Technical Reports Server (NTRS)

    Smith, R. F.; Stanton, K.; Stoop, D.; Brown, D.; Janusz, W.; King, P.

    1974-01-01

    To assess the effects of space flight on cardiac electrical properties, vectorcardiograms were taken on the 9 Skylab astronauts during the flights of 28, 59, and 84 days. The Frank lead system was used and observations were made at rest; during 25%, 50% and 75% of maximum exercise; during a short pulse of exercise (150 watts, 2 minutes); and after exercise. Data from 131 in-flight tests were analyzed by computer and compared to preflight and postflight values. Statistically significant increase in QRS vector magnitude (six of nine crewmen); T vector magnitude (five of nine crewmen); and resting PR interval duration (six of nine crewmen) occurred. During exercise the PR interval did not differ from preflight. Exercise heart rates inflight were the same as preflight, but increased in the immediate postflight period. With the exception of the arrhythmias, no deleterious vectorcardiographic changes were observed during the Skylab missions.

  6. Young PHD's in Human Space Flight

    NASA Technical Reports Server (NTRS)

    Wilson, Eleanor

    2002-01-01

    The Cooperating Hampton Roads Organizations for Minorities in Engineering (CHROME) in cooperation with the NASA Office of Space Flight, Human Exploration and Development of Space Enterprise sponsored a summer institute, Young PHD#s (Persons Having Dreams) in Human Space Flight. This 3-day institute used the curriculum of a workshop designed for space professionals, 'Human Space Flight-Analysis and Design: An Integrated, Systematic Approach.' The content was tailored to a high school audience. This institute seeks to stimulate the interest of pre-college students in space flight and motivate them to pursue further experiences in this field. Additionally, this institute will serve as a pilot model for a pre- collegiate training program that can be replicated throughout the country. The institute was complemented with a trip to the Goddard Space Flight Center.

  7. Young PHD's in Human Space Flight

    NASA Technical Reports Server (NTRS)

    Wilson, Eleanor

    2002-01-01

    The Cooperating Hampton Roads Organizations for Minorities in Engineering (CHROME) in cooperation with the NASA Office of Space Flight, Human Exploration and Development of Space Enterprise sponsored a summer institute, Young PHD#s (Persons Having Dreams) in Human Space Flight. This 3-day institute used the curriculum of a workshop designed for space professionals, 'Human Space Flight-Analysis and Design: An Integrated, Systematic Approach.' The content was tailored to a high school audience. This institute seeks to stimulate the interest of pre-college students in space flight and motivate them to pursue further experiences in this field. Additionally, this institute will serve as a pilot model for a pre- collegiate training program that can be replicated throughout the country. The institute was complemented with a trip to the Goddard Space Flight Center.

  8. [The effect of space flight on metabolism: the results of biochemical research in rat experiments on the Kosmos biosatellites].

    PubMed

    Popova, I A; Grigor'ev, A I

    1992-01-01

    Cosmos biosatellites research program was the unique possibility to study the metabolic features influenced by space flight factors. Based on the existing ideas about relationships between some metabolic responses, the state of metabolism and the systems of its control in the rats flown in space was evaluated to differentiate the processes occurred in microgravity, possibly under effect of this factor and during first postflight hours. The biochemical results of studying the rats exposed to space environments during 7, 14, 18.5 and 19.5 days and sacrificed 4-11 h after landing (Cosmos-782, -936, -1129, -1667, -2044 flight) are used. The major portion of data are in line with understanding that after landing when the microgravity-adapted rats again return to 1-g environments they display an acute stress reaction. A postflight stress reaction is manifested itself in a specific way as compared to adequate and well studied model of acute and chronic stress and dictates subsequent metabolic changes. Postflight together with the acute stressful and progressing readaptation shifts the metabolic signs of previous adaptation to microgravity are shown up. In the absence of engineering feasibility to control or record the state of metabolism inflight it can only presupposed what metabolic status is typical of the animals in space environments and that its development is triggered by a decreased secretion of the biologically active growth hormone. This concept is confirmed by the postflight data.

  9. Inhibited interferon production after space flight

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, G.; Gould, C. L.; Williams, J.; Mandel, A. D.

    1988-01-01

    Several studies have been performed in our laboratories indicating that interferon production may be impaired in rodents after space flight. Using an antiorthostatic suspension model that simulates some of the effects of microgravity seen during space flight, we have shown that interferon-alpha/beta production was inhibited. The inhibition was not due solely to the stress of suspension. The inhibited interferon production was transient, as suspended animals returned to normal caging recovered the ability to produce interferon. Antiorthostatic suspension of mice also resulted in a loss of resistance to infection with the diabetogenic strain of encephalomyocarditis virus, which correlated with the drop in interferon production. In rats flown in US Space Shuttle mission SL-3, interferon-gamma production was inhibited severely when spleen cells were challenged with concanavalin-A upon return to earth. In contrast, interleukin-3 production by these cells was normal. These results suggest that immune responses may be altered after antiorthostatic modeling or space flight, and the resistance to viral infections may be especially affected.

  10. Inhibited interferon production after space flight

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, G.; Gould, C. L.; Williams, J.; Mandel, A. D.

    1988-01-01

    Several studies have been performed in our laboratories indicating that interferon production may be impaired in rodents after space flight. Using an antiorthostatic suspension model that simulates some of the effects of microgravity seen during space flight, we have shown that interferon-alpha/beta production was inhibited. The inhibition was not due solely to the stress of suspension. The inhibited interferon production was transient, as suspended animals returned to normal caging recovered the ability to produce interferon. Antiorthostatic suspension of mice also resulted in a loss of resistance to infection with the diabetogenic strain of encephalomyocarditis virus, which correlated with the drop in interferon production. In rats flown in US Space Shuttle mission SL-3, interferon-gamma production was inhibited severely when spleen cells were challenged with concanavalin-A upon return to earth. In contrast, interleukin-3 production by these cells was normal. These results suggest that immune responses may be altered after antiorthostatic modeling or space flight, and the resistance to viral infections may be especially affected.

  11. Effects of Radiation on Rat Retina after 18 days of Space Flight

    NASA Technical Reports Server (NTRS)

    Philpott, D.; Corbett, R.; Turnbill, C.; Black, S.; Dayhoff, D.; McGourty, J.; Lee, R.; Harrison, G.; Savick, L.

    1978-01-01

    Although cumulative effects an retina from low-dose radiation during prolonged spaceflight are not known, ary impairment of vision could set limits for spaceflight duration. Cosmic rays are now considered to be the cause of the "light flashes" seen during spaceflight by activating retina cells as they pass through the photoreceptors. Previous studies have also shown retinal cellular alterations and cell necrosis from high-energy, particle (HZE) radiation. Ten rats, 5 centrifuged during flight (FC) to simulate gravity and 5 in-flight stationary (FS) experiencing hypogravity, orbited Earth for 18.5 days on Cosmos 936. The animals were sacrificed 25 days post-recovery and the eyes flown to Ames Res. Ctr. The pattern of cell necrosis in the retinas from the FC group showed the same response to radiation as the FS. This would indicate that hypogravity was not a factor in the observed results. Also the cellular response in the retinas exposed in the Berkeley accelerator again matched both the FC and FS eyes. Thus all three conditions provide comparable changes and indicate HZE particles as the possible cause of the cellular alterations, channels, and breakdown.

  12. Physiological adaptation to space flight

    NASA Technical Reports Server (NTRS)

    Nicogossian, Arnauld E.; Sulzman, Frank M.; Gaiser, Karen K.; Teeter, Ronald C.

    1990-01-01

    In space, adaptive physiological changes have been observed in virtually all body systems, but how far these changes progress with time is not known. Their time course demonstrates variable patterns; some systems show evidence of gradual and progressive change. Biomedical postflight data have shown that a compensatory period of readaptation to one gravity is required after space flight, with longer intervals required for longer missions. Consistent readaptation trends include orthostatic intolerance and neurovestibular difficulties. For the long-duration missions of the exploration era, it is critical to determine the extent to which deleterious changes (e.g., bone loss and possible immunological changes) can be reversed upon return to earth. Radiation protection is another critical enabling element for missions beyond low earth orbit. Radiation exposure guidelines have not been established for exploration missions. Currently our experience is insufficient to prescribe countermeasures for the stay times associated with a lunar base or a mission to Mars. Artificial gravity may provide a solution, but the level and duration of exposure necessary to prevent deconditioning must be determined. Central issues for medical care in remote settings are preventive, diagnostic, and therapeutic care and the minimization of risk.

  13. Physiological adaptation to space flight

    NASA Technical Reports Server (NTRS)

    Nicogossian, Arnauld E.; Sulzman, Frank M.; Gaiser, Karen K.; Teeter, Ronald C.

    1990-01-01

    In space, adaptive physiological changes have been observed in virtually all body systems, but how far these changes progress with time is not known. Their time course demonstrates variable patterns; some systems show evidence of gradual and progressive change. Biomedical postflight data have shown that a compensatory period of readaptation to one gravity is required after space flight, with longer intervals required for longer missions. Consistent readaptation trends include orthostatic intolerance and neurovestibular difficulties. For the long-duration missions of the exploration era, it is critical to determine the extent to which deleterious changes (e.g., bone loss and possible immunological changes) can be reversed upon return to earth. Radiation protection is another critical enabling element for missions beyond low earth orbit. Radiation exposure guidelines have not been established for exploration missions. Currently our experience is insufficient to prescribe countermeasures for the stay times associated with a lunar base or a mission to Mars. Artificial gravity may provide a solution, but the level and duration of exposure necessary to prevent deconditioning must be determined. Central issues for medical care in remote settings are preventive, diagnostic, and therapeutic care and the minimization of risk.

  14. Effect of space flight factors on osteogenetic processes in the bone skeleton

    NASA Astrophysics Data System (ADS)

    Rodionova, Natalia Vasilievna; Oganov, Victor Sumbatovich

    The space flight factors (space radiation, magnetic fields etc.) affect considerably the state of bone tissue, leading to the development of osteoporosis and osteopenia in the bone skeleton. Many aspects of reactions of bone tissue cells still remain unclear until now. With the use of electron microscopy we studied the samples gathered from the femoral bone epiphyses and metaphyses of rats flown on board the space laboratory (Spacelab - 2) during 2 weeks. It was established, that under microgravity conditions there occur remodelling processes in a spongy bone related with a deficit of support load. In this work the main attention is focused on studying the ultrastructure of osteogenetic cells and osteoclasts. The degree of differentiation and functional state are evaluated according to the degree of development of organelles for specific biosynthesis: rough endoplasmic reticulum (RER), Golgy complex (GC), as well as the state of mitochondria and cell nucleus. As compared with a synchronous control, the population of osteogenetic cells from zones of bone reconstruction shows a decrease in the number of functionally active forms. We can judge of this from the reduction of a specific volume of RER, GC, mitochondria in osteoblasts. RER loses architectonics typical for osteoblasts and, as against the control, is represented by short narrow canaliculi distributed throughout the cytoplasm; some canals disintegrate. GC is slightly pronounced, mitochondria become smaller in size and acquire an optically dark matrix. These phenomena are supposed to be associated with the desorganization of microtubules and microfilaments in the cells under microgravity conditions. The population of osteogenetic cells shows a decrease in the number of differentiating osteoblasts and an increase in the number of little-differentiated stromal cells. In the population of osteoblasts, degrading and apoptotic cells are sometimes encountered. Such zones show a numerical increase of monocytic cells

  15. Toxicological implications of extended space flights

    NASA Technical Reports Server (NTRS)

    Weiss, Bernard; Utell, Mark; Morrow, Paul

    1992-01-01

    This paper draws attention to the needs and mechanisms for shielding crewmembers on long-duration space flights from hazards related to chemical toxicants. Specific attention is given to existing data on sources of impaired performance, namely, neurotoxicants, respiratory infections, pulmonary function. The behavioral effects associated with long-term exposure to volatile organic solvents can impair crucial functional parameters of space flight and mission objectives. Respiratory infections contribute to performance decrements of up to 20 percent, and pulmonary function can be impaired by contaminants such as ozone leading to reduced performance. It is concluded that these and other sources of toxicologically induced performance reductions be studied since they impinge on vehicle design and mission objectives.

  16. Toxicological implications of extended space flights

    NASA Technical Reports Server (NTRS)

    Weiss, Bernard; Utell, Mark; Morrow, Paul

    1992-01-01

    This paper draws attention to the needs and mechanisms for shielding crewmembers on long-duration space flights from hazards related to chemical toxicants. Specific attention is given to existing data on sources of impaired performance, namely, neurotoxicants, respiratory infections, pulmonary function. The behavioral effects associated with long-term exposure to volatile organic solvents can impair crucial functional parameters of space flight and mission objectives. Respiratory infections contribute to performance decrements of up to 20 percent, and pulmonary function can be impaired by contaminants such as ozone leading to reduced performance. It is concluded that these and other sources of toxicologically induced performance reductions be studied since they impinge on vehicle design and mission objectives.

  17. [The effect of space flight factors on the intact and regenerating skeletal muscles of the extremities in newts].

    PubMed

    Tuchkova, S Ia

    1997-01-01

    The influence of space flight factors on the structure of two skeletal muscles of the hindlimbs was studied in newts. Degenerative-atrophic changes took place in the both muscles of the flight group animals. Comparative-quantitative analysis of ultrastructural changes of the muscle tissue has shown that after space flight, the rate of structural defects of the muscle was twice that in animals of the synchronous and laboratory control groups. But these changes were reversible: within 10 days, the structure of the muscle fibers was practically normalized. The influence of space flight on repair regeneration of the hindlimb skeletal muscle was also studied: the muscle was minced and placed back in its bed 14 days before the flight. Under these conditions, the repair regeneration of the muscle was not suppressed, but a trend towards its delay was found.

  18. Space Flight Resource Management for ISS Operations

    NASA Technical Reports Server (NTRS)

    Schmidt, Larry; Slack, Kelley; O'Keefe, William; Huning, Therese; Sipes, Walter; Holland, Albert

    2011-01-01

    This slide presentation reviews the International Space Station (ISS) Operations space flight resource management, which was adapted to the ISS from the shuttle processes. It covers crew training and behavior elements.

  19. Historical Plaque at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This plaque, displayed on the grounds of Marshall Space Flight Center in Huntsville, Alabama, commemorates the Saturn V Space Vehicle's induction into the National Register of Historic Places by the United States Department of the Interior.

  20. Historical Plaque at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This plaque, displayed on the grounds of Marshall Space Flight Center in Huntsville, Alabama, commemorates the Saturn V Space Vehicle's induction into the National Register of Historic Places by the United States Department of the Interior.

  1. Flight Opportunities: Space Technology Mission Directorate

    NASA Technical Reports Server (NTRS)

    Van Dijk, Alexander

    2016-01-01

    Flight Opportunities enables maturation of new space technologies by funding access to commercially available space-relevant test environments. The program also supports capability development in the commercial suborbital and orbital small satellite launcher markets.

  2. ASSESSMENT OF THE PERFORMANCE EFFECTS OF THE STRESSES OF SPACE FLIGHT,

    DTIC Science & Technology

    space mission . The information obtained from such measures can also be used to delineate the quality of man’s contribution to system effectiveness and the data may also be generalizable to other potential space vehicle missions. It is argued that optimal generality and sensitivity of such performance measures will result from the use of a synthetic task complex. This complex should require the operator to time-share among tasks representative of the psychological functions to be exercised by the man in the kinds of systems to which generalizations are to be made.

  3. Effects of space flight exposure on cell growth, tumorigenicity and gene expression in cancer cells

    NASA Astrophysics Data System (ADS)

    Yang, Cheng; Li, Yuehui; Zhang, Zhijie; Luo, Chen; Tong, Yongqing; Zhou, Guohua; Xie, Pingli; Hu, Jinyue; Li, Guancheng

    2008-12-01

    It is well recognized that harsh outer space environment, consisting of microgravity and radiation, poses significant health risks for human cells. To investigate potential effects of the space environment exposure on cancer cells we examined the biological changes in Caski cells carried by the "Shen Zhou IV" spaceship. After exposure for 7 days in spaceflight, 1440 survival subclonal cell lines were established and 4 cell lines were screened. 44F10 and 17E3 were selected because of their increased cell proliferation and tumorigenesis, while 48A9 and 31F2 had slower cytological events. Experiments with cell proliferation assay, flow cytometry, soft agar assay, tumorigenesis assay and DNA microarray analysis have shown that selected cell lines presented multiple biological changes in cell morphology, cell growth, tumorigenicity and gene expression. These results suggest that space environment exposure can make significant biological impact on cancer cells and provide an entry point to find the immunological target of tumorigenesis.

  4. Skylab rescue space vehicle flight readiness test

    NASA Technical Reports Server (NTRS)

    Jevitt, S. J.

    1973-01-01

    A Skylab Rescue Space Vehicle flight readiness test is described which ensures that space vehicle systems are in a state of flight readiness and are compatible with associated ground support equipment. The functions of propellant loading, umbilical ejection, ignition, holddown arm release, liftoff, and service arm and tail service mast retraction are simulated. The test outline is presented along with a list of references, intercommunications information, operations interface control chart, and flight test.

  5. Orbital Space Plane Program Flight Demonstrators Status

    NASA Technical Reports Server (NTRS)

    Turner, Susan G.

    2003-01-01

    Under the Orbital Space Plane Program, NASA is currently pursuing the maturation of technologies via three flight demonstrators - DART (Demonstration of Autonomous Rendezvous Technology), X-37, and PAD (Pad Abort Demonstrator). Flight demonstrators provide the opportunity to test key technologies in their actual working environment. These flight demonstrators are required at this stage to mature technologies needed to support full-scale development design of a future competitively selected Orbital Space.

  6. Life-sciences research opportunities in commercial suborbital space flight

    NASA Astrophysics Data System (ADS)

    Shelhamer, Mark

    2014-11-01

    Commercial suborbital space flights will reach altitudes above 100 km, with 3-5 min of weightlessness bracketed by high-g launch and landing phases. The proposed frequency of these flights, and the large passenger population, present interesting opportunities for researchers in the life sciences. The characteristics of suborbital flight are between those of parabolic and orbital flights, opening up new scientific possibilities and easing the burden for obtaining access to 0g. There are several areas where these flights might be used for research in the life sciences: (1) operational research: preparation for “real” space flight, such as rehearsal of medical procedures, (2) applied research-to answer questions relevant to long-term space flight; (3) passenger health and safety-effects on passengers, relevant to screening and training; (4) basic research in physiological mechanisms-to address issues of fundamental science. We describe possible projects in each of these categories. One in particular spans several areas. Based on the anticipated suborbital flight profiles, observations from parabolic flight, and the wide range of fitness and experience levels of suborbital passengers, sensorimotor disturbances such as motion sickness and disorientation are major concerns. Protocols for pre-flight adaptation of sensorimotor responses might help to alleviate some of these problems, based on results from research in the initial flights. This would improve the passenger experience and add to the knowledge base relevant to space flight more generally.

  7. Design considerations for space flight hardware

    NASA Technical Reports Server (NTRS)

    Glover, Daniel

    1990-01-01

    The environmental and design constraints are reviewed along with some insight into the established design and quality assurance practices that apply to low earth orbit (LEO) space flight hardware. It is intended as an introduction for people unfamiliar with space flight considerations. Some basic data and a bibliography are included.

  8. Bisphosphonates as a Countermeasure to Space Flight Induced Bone Loss

    NASA Technical Reports Server (NTRS)

    LeBlanc, A.; Matsumoto, T.; Jones, J.; Shapiro, J.; Lang, T.; Shackelford, L.; Smith, S.; Evans, H.; Spector, E.; Ploutz-Snyder, R.; hide

    2011-01-01

    This poster reviews the possibility of using Bisphosphonates to counter the bone loss that is experienced during space flight. The Hypothesis that is tested in this experiment is that the combined effect of anti-resorptive drugs plus in-flight exercise regimen will attenuate space flight induced loss in bone mass and strength and reduce renal stone risk. The experiment design, the status and the results are described.

  9. Comparing future options for human space flight

    NASA Astrophysics Data System (ADS)

    Sherwood, Brent

    2011-09-01

    The paper analyzes the "value proposition" for government-funded human space flight, a vexing question that persistently dogs efforts to justify its $10 10/year expense in the US. The original Mercury/Gemini/Apollo value proposition is not valid today. Neither was it the value proposition actually promoted by von Braun, which the post-Apollo 80% of human space flight history has persistently attempted to fulfill. Divergent potential objectives for human space flight are captured in four strategic options— Explore Mars; accelerate Space Passenger Travel; enable Space Power for Earth; and Settle the Moon—which are then analyzed for their purpose, societal myth, legacy benefits, core needs, and result as measured by the number and type of humans they would fly in space. This simple framework is proposed as a way to support productive dialog with public and other stakeholders, to determine a sustainable value proposition for human space flight.

  10. Comparing Future Options for Human Space Flight

    NASA Technical Reports Server (NTRS)

    Sherwood, Brent

    2010-01-01

    The paper analyzes the "value proposition" for government-funded human space flight, a vexing question that persistently dogs efforts to justify its $10(exp 10)/year expense in the U.S. The original Mercury/Gemini/Apollo value proposition is not valid today. Neither was it the value proposition actually promoted by von Braun, which the post-Apollo 80% of human space flight history has persistently attempted to fulfill. Divergent potential objectives for human space flight are captured in four strategic options - Explore Mars; accelerate Space Passenger Travel; enable Space Power for Earth; and Settle the Moon - which are then analyzed for their Purpose, societal Myth, Legacy benefits, core Needs, and result as measured by the number and type of humans they would fly in space. This simple framework is proposed as a way to support productive dialogue with public and other stakeholders, to determine a sustainable value proposition for human space flight.

  11. Comparing Future Options for Human Space Flight

    NASA Technical Reports Server (NTRS)

    Sherwood, Brent

    2010-01-01

    The paper analyzes the "value proposition" for government-funded human space flight, a vexing question that persistently dogs efforts to justify its $10(exp 10)/year expense in the U.S. The original Mercury/Gemini/Apollo value proposition is not valid today. Neither was it the value proposition actually promoted by von Braun, which the post-Apollo 80% of human space flight history has persistently attempted to fulfill. Divergent potential objectives for human space flight are captured in four strategic options - Explore Mars; accelerate Space Passenger Travel; enable Space Power for Earth; and Settle the Moon - which are then analyzed for their Purpose, societal Myth, Legacy benefits, core Needs, and result as measured by the number and type of humans they would fly in space. This simple framework is proposed as a way to support productive dialogue with public and other stakeholders, to determine a sustainable value proposition for human space flight.

  12. Space flight and bone formation

    NASA Technical Reports Server (NTRS)

    Doty, St B.

    2004-01-01

    Major physiological changes which occur during spaceflight include bone loss, muscle atrophy, cardiovascular and immune response alterations. When trying to determine the reason why bone loss occurs during spaceflight, one must remember that all these other changes in physiology and metabolism may also have impact on the skeletal system. For bone, however, the role of normal weight bearing is a major concern and we have found no adequate substitute for weight bearing which can prevent bone loss. During the study of this problem, we have learned a great deal about bone physiology and increased our knowledge about how normal bone is formed and maintained. Presently, we do not have adequate ground based models which can mimic the tissue loss that occurs in spaceflight but this condition closely resembles the bone loss seen with osteoporosis. Although a normal bone structure will respond to application of mechanical force and weight bearing by forming new bone, a weakened osteoporotic bone may have a tendency to fracture. The study of the skeletal system during weightless conditions will eventually produce preventative measures and form a basis for protecting the crew during long term space flight. The added benefit from these studies will be methods to treat bone loss conditions which occur here on earth.

  13. EcAMSat: Effect of Space-Flight on Antibiotic Resistance of a Pathogenic Bacterium and its Genetic Basis

    NASA Technical Reports Server (NTRS)

    Matin, A. C.; Benoit, M.; Chin. M.; Chinn, T. N.; Cohen, A.; Friedericks, C.; Henschke, M. B.; Keyhan, M.; Lera, M. P.; Padgen, M. R.; hide

    2015-01-01

    Human immune response is compromised in space and incidence of urinary tract infections (UTI) in astronauts has been reported. We have found that the causative agent of UTI, the uropathogenic Escherichia coli, becomes more resistant to gentamicin (Gm), which is commonly used to treat this disease, under modeled microgravity conditions (MMG), the increase being controlled by the stress response master regulator, ss. While the wild type bacterium becomes virtually invincible under MMG, the strain missing this sigma factor barely survives. We report here preparatory ground work for testing this finding in space flight on a nanosatellite. We have shown that the effect of Gm treatment on culture viability is directly correlated to increased Alamar Blue (AB) reduction; we have identified conditions to keep the experimental elements - the bacterial cultures, Gm, and AB - in a state of viability and potency to permit successful spaceflight experimentation given the necessary constraints. Spaceflight kinetics of AB reduction will be transmitted from the satellite via telemetry. The PharmaSat hardware previously used for space experimentation with yeast was modified to permit studies with bacteria by reducing the filter pore size and increasing fluidics volume to enable more fluid exchanges. Several verification tests have been run using the nanosatellite's flight software and prototype hardware. Cells were grown to stationary phase to induce the ss-controlled stress resistance and treated with Gm. Without Gm, the mutant took longer than the wild type to reduce the AB; this time difference increased almost 8 fold at 55 µg/mL Gm concentration. Thus, using flight hardware the mutant shows similarly increased sensitivity to Gm compared to the wild type to that found in our pilot microtiter plate experiments. Previous inflight experiments have given contradictory results concerning bacterial antibiotic resistance; none has yet explored the involvement of specific genes in this

  14. Preliminary report on the biological effects of space flight on the producing strain of a new immunosuppressant, Kanglemycin C.

    PubMed

    Zhou, Jianqin; Sun, Chenghang; Wang, Nanjin; Gao, Rongmei; Bai, Shuoke; Zheng, Huanrong; You, Xuefu; Li, Rongfeng

    2006-08-01

    Kanglemycin C (K-C) is a new immunosuppressant isolated from the culture broth of Nocardia mediterranei var. kanglensis 1747-64. To improve the productivity of K-C and to study the biological effects of space flight on its producing strain, spores from five K-C producing strains (U-10, U-15, U-7, M-13, gamma-33) mutated from the wild strain N. mediterranei var. kanglensis 1747-64 were carried into space by an unmanned spaceship, "Shenzhou III" (Divine Vessel III) on March 25, 2002. Comparatively, the strain U-7 was the highest K-C producing strain among the above five starting strains when cultivated in 500-ml Erlenmeyer flasks. After a 6 day and 18 h flight, the treated spores went through serial screening processes to screen for high-yield K-C mutant strains, using thin layer chromatography and high performance liquid chromatography (HPLC). The K-C yield produced by one mutant strain, designated as F-16, derived from the starting strain U-7 was increased by up to 200% when compared to that produced by the starting strain U-7 in 500-ml Erlenmeyer flasks after careful postflight HPLC analysis. Another mutant strain, designated as F-210, derived from the starting strain M-13 showed reduced productivity of K-C as well as exhibited changes in some morphological and physiological characteristics. For example, the broth color of the strain F-210 changed from yellow to purple after 96 h of culture, but that of the ground control strain M-13 remained yellow. Similarly, the mycelium morphological change from filamentous to coccoid of F-210 occurred later than that of ground control M-13. Examination of the survivability of postflight spores indicated that exposure to radiation, during the 162 h of space flight, plays a critical role in the survival rates of spores such that spores exposed to strong radiation exhibited lower survival rates than spores exposed to weak radiation.

  15. Effects of Long Term Space Flight on Erythrocytes and Oxidative Stress of Mice

    NASA Astrophysics Data System (ADS)

    Rizzo, Angela Maria; Negroni, M.; Montorfano, G.; Corsetto, P.; Alriero, T.; Liu*, Y.; Tavella, S.; Cancedda, R.; Berra, B.

    The Mice Drawer System (MDS) is an Italian Space Agency (ASI) facility developed by Thales-Alenia Space, which is able to support 6 mice onboard the International Space Station during long-duration missions (from 100 to 150-days).. MDS was launched with STS 128 on Agoust 2009 and returned to ground with STS 130 on the end of November 2009. Two kind of mice were used the Wild Type (WT) and a transgenic type (OSF-1). The principal experiment investigated the genetic mechanisms underlying bone mass loss in microgravity, but this re-search will also contribute to the research on microgravity effects on body systems through an international tissue sharing program. Our laboratory is interested in erythrocyte (RBC) and hemoglobin loss that have been observed during space missions; these observations have been summarized as "space anemia". Erythrocytes exposed to microgravity have a modified rhe-ology and undergo greater hemolysis. We can suppose that microgravity together with space radiation causes variations of cellular shape, plasma membrane composition, and peroxidative stress, that can be responsible of space anemia. Moreover the enzymatic antioxidant pathway, measured in erythrocyte, can reflect oxidative stress of animals, probably due to exposure to space radiations. For these reasons we participated to the tissue shearing program of MDS and we run analysis on samples from mice housed in MDS for 20 and 100 days during ground tests performed in Genova. We analyzed RBC antioxidant potential and lipid composition. During the 20 day simulation the content of glutathione was decreased in OSF while a signifi-cant increase of GSH reductase and peroxidase was measured in WT mice; this might indicate that WT animals are more resistant to the stress during MDS housing. On the contrary after 100 days of housing the two type of mice were very similar in their antioxidant enzymes. In particular a relevant increase of Glutathione peroxidase was induced by the MDS simulation

  16. Human Space Flight Plans Committee Report

    NASA Image and Video Library

    2009-10-21

    Copies of the U.S. Human Space Flight Plans Committee report are seen in the foreground of Chairman of the U.S. Human Space Flight Plans Committee Norman Augustine, left, and committee member Ed Crawley, right, during a press conference where the committee released it's report on Thursday, Oct., 22, 2009 at the National Press Club in Washington. The Obama Administration tasked the committee to do an independent review of planned U.S. human space flight activities with the goal of ensuring that the nation is on a vigorous and sustainable path to achieving its boldest aspirations in space. Photo Credit: (NASA/Bill Ingalls)

  17. Radiation Shielding for Space Flight

    NASA Technical Reports Server (NTRS)

    Blattnig, Steve R.; Norbury, John W.; Norman, Ryan B.

    2003-01-01

    A safe and efficient exploration of space requires an understanding of space radiations so that human life and sensitive equipment can be protected. On the way to these sensitive sites, the radiation is modified in both quality and quantity. Many of these modifications are thought to be due to the production of pions and muons in the interactions between the radiation and intervening matter. A method to predict the effects of the presence of these particles on the transport of radiation through materials is presented.

  18. Atomic oxygen effects on boron nitride and silicon nitride: A comparison of ground based and space flight data

    NASA Technical Reports Server (NTRS)

    Cross, J. B.; Lan, E. H.; Smith, C. A.; Whatley, W. J.

    1990-01-01

    The effects of atomic oxygen on boron nitride (BN) and silicon nitride (Si3N4) were evaluated in a low Earth orbit (LEO) flight experiment and in a ground based simulation facility. In both the inflight and ground based experiments, these materials were coated on thin (approx. 250A) silver films, and the electrical resistance of the silver was measured in situ to detect any penetration of atomic oxygen through the BN and Si3N4 materials. In the presence of atomic oxygen, silver oxidizes to form silver oxide, which has a much higher electrical resistance than pure silver. Permeation of atomic oxygen through BN, as indicated by an increase in the electrical resistance of the silver underneath, was observed in both the inflight and ground based experiments. In contrast, no permeation of atomic oxygen through Si3N4 was observed in either the inflight or ground based experiments. The ground based results show good qualitative correlation with the LEO flight results, indicating that ground based facilities such as the one at Los Alamos National Lab can reproduce space flight data from LEO.

  19. The study on space-flight induced DNA damage in Arabidopsis thaliana and the protective effect of hydrogen

    NASA Astrophysics Data System (ADS)

    Sun, Qiao; Liu, Min; Zhao, Hui

    2016-07-01

    Ionizing radiation (IR) is a known mutagen responsible for causing DNA strand breaks in all living organisms. Strand breaks thus created can be repaired by different mechanisms, including homologous recombination (HR), one of the key mechanisms maintaining genome stability. Here, we used previously generated Arabidopsis thaliana, transgenic for homologous recombination reporter system, in which homologous recombination frequency(HRF) was used as mutagenic end points. Based on the system, effect of DNA damage by space-flight during the Shenzhou-9 mission was investigated and the results showed that 13 days space-flight exposure of seedlings induced a significant increase in HRF compared with its ground-base three-dimensional clinostat controls and ground 1g controls. We also observed three-dimensional clinostat induced a significant increase in HRF compared with ground 1g controls. Molecular hydrogen (H2) has antioxidant activities by selectively reducing hydroxylradical ( •OH) and peroxynitrite(ONOO-), so we investigated the effect of hydrogen on IR-induced HRF. Treatment with hydrogen-rich water dramatically reduced the HR frequency induced by exposure of seedlings to 0 to 80 Gy 60Co radiation , suggesting that hydrogen represents a potentially novel preventative strategy for radiation-induced DNA damage in plants.

  20. Effects of weightlessness and movement restriction on the structure and metabolism of the soleus muscle in monkeys after space flight.

    PubMed

    Shenkman, B S; Belozerova, I N; Lee, Peter; Nemirovskaya, T L; Kozlovskaya, I B

    2003-09-01

    After humans and animals have been in conditions of real and modeled weightlessness, the most marked changes are seen in the "slow" tonic muscles, particularly soleus. Studies of the effects of weightlessness and movement restriction on the soleus muscle in monkeys demonstrated significant reductions in the sizes of slow and rapid fibers due mainly to the actions of real weightlessness (rather than movement restriction in the space capsule). Protein loss in soleus muscle fibers in monkeys following space flight was more marked than loss of other components, including water. The level of atrophy of soleus muscle fibers in these conditions was greater than the decrease in the number of capillaries. Succinate dehydrogenase activity in soleus muscle fibers decreased proportionally to the reduction in fiber size.

  1. Space Radiation Induced Cytogenetic Damage in the Blood Lymphocytes of Astronauts: Persistence of Damage After Flight and the Effects of Repeat Long Duration Missions

    NASA Technical Reports Server (NTRS)

    George, Kerry; Rhone, Jordan; Chappell, L. J.; Cucinotta, F. A.

    2010-01-01

    Cytogenetic damage was assessed in blood lymphocytes from astronauts before and after they participated in long-duration space missions of three months or more. The frequency of chromosome damage was measured by fluorescence in situ hybridization (FISH) chromosome painting before flight and at various intervals from a few days to many months after return from the mission. For all individuals, the frequency of chromosome exchanges measured within a month of return from space was higher than their prefight yield. However, some individuals showed a temporal decline in chromosome damage with time after flight. Statistical analysis using combined data for all astronauts indicated a significant overall decreasing trend in total chromosome exchanges with time after flight, although this trend was not seen for all astronauts and the yield of chromosome damage in some individuals actually increased with time after flight. The decreasing trend in total exchanges was slightly more significant when statistical analysis was restricted to data collected more than 220 days after return from flight. In addition, limited data on multiple flights show a lack of correlation between time in space and translocation yields. Data from three crewmembers who has participated in two separate long-duration space missions provide limited information on the effect of repeat flights and show a possible adaptive response to space radiation exposure.

  2. 14 CFR 1214.1705 - Selection of space flight participants.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Selection of space flight participants... FLIGHT Space Flight Participants § 1214.1705 Selection of space flight participants. (a) The agency will publicly announce each space flight participant opportunity through appropriate means, including notice...

  3. 14 CFR 1214.1705 - Selection of space flight participants.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Selection of space flight participants... FLIGHT Space Flight Participants § 1214.1705 Selection of space flight participants. (a) The agency will publicly announce each space flight participant opportunity through appropriate means, including notice...

  4. 14 CFR 1214.1705 - Selection of space flight participants.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Selection of space flight participants... FLIGHT Space Flight Participants § 1214.1705 Selection of space flight participants. (a) The agency will publicly announce each space flight participant opportunity through appropriate means, including notice...

  5. 14 CFR 1214.1705 - Selection of space flight participants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Selection of space flight participants. 1214.1705 Section 1214.1705 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Space Flight Participants § 1214.1705 Selection of space flight participants. (a) The agency...

  6. The effects of space flight and microgravity on the growth and differentiation of PICM-19 pig liver stem cells.

    PubMed

    Talbot, Neil C; Caperna, Thomas J; Blomberg, LeAnn; Graninger, Paul G; Stodieck, Louis S

    2010-06-01

    The PICM-19 pig liver stem cell line was cultured in space for nearly 16 d on the STS-126 mission to assess the effects of spaceflight on the liver's parenchymal cells-PICM-19 cells to differentiate into either monolayers of fetal hepatocytes or 3-dimensional bile ductules (cholangiocytes). Semi-quantitative data included light microscopic assessments of final cell density, cell morphology, and response to glucagon stimulation and electron microscopic assessment of the cells' ultrastructural features and cell-to-cell connections and physical relationships. Quantitative assessments included assays of hepatocyte detoxification functions, i.e., inducible P450 activities and urea production and quantitation of the mRNA levels of several liver-related genes. Three post-passage age groups were included: 4-d-, 10-d-, and 14-d-old cultures. In comparing flight vs. ground-control cultures 17 h after the space shuttle's return to earth, no differences were found between the cultures with the exception being that some genes were differentially expressed. By light microscopy both young and older cultures, flight and ground, had grown and differentiated normally in the Opticell culture vessels. The PICM-19 cells had grown to approximately 75% confluency, had few signs of apoptosis or necrosis, and had either differentiated into monolayer patches of hepatocytes with biliary canaliculi visible between the cells or into 3-dimensional bile ductules with well-defined lumens. Ultrastructural features between flight and ground were similar with the PICM-19 cells displaying numerous mitochondria, Golgi apparatus, smooth and rough endoplasmic reticulum, vesicular bodies, and occasional lipid vacuoles. Cell-to-cell arrangements were typical in both flight and ground-control samples; biliary canaliculi were well-formed between the PICM-19 cells, and the cells were sandwiched between the STO feeder cells. PICM-19 cells displayed inducible P450 activities. They produced urea in a glutamine

  7. Dichotomal effect of space flight-associated microgravity on stress-activated protein kinases in innate immunity

    PubMed Central

    Verhaar, Auke P.; Hoekstra, Elmer; Tjon, Angela S. W.; Utomo, Wesley K.; Deuring, J. Jasper; Bakker, Elvira R. M.; Muncan, Vanesa; Peppelenbosch, Maikel P.

    2014-01-01

    Space flight strongly moderates human immunity but is in general well tolerated. Elucidation of the mechanisms by which zero gravity interacts with human immunity may provide clues for developing rational avenues to deal with exaggerated immune responses, e.g. as in autoimmune disease. Using two sounding rockets and one manned Soyuz launch, the influence of space flight on immunological signal transduction provoked by lipopolysaccharide (LPS) stimulation was investigated in freshly isolated peripheral blood monocytes and was compared to samples obtained from on-board centrifuge-loaded 1 g controls. The effect of microgravity on immunological signal transduction is highly specific, since LPS dependent Jun-N-terminal kinase activation is impaired in the 0 g condition, while the corresponding LPS dependent activation of p38 MAP kinase remains unaffected. Thus our results identify Jun-N-terminal kinase as a relevant target in immunity for microgravity and support using Jun-N-terminal kinase specific inhibitors for combating autoimmune disease. PMID:24968806

  8. Effect of confinement in small space flight size cages on insulin sensitivity of exercise-trained rats

    NASA Technical Reports Server (NTRS)

    Mondon, C. E.; Dolkas, C. B.; Reaven, G. M.

    1983-01-01

    The effect of confinement in small cages (simulating the size to be used in future space Shuttle missions) on insulin sensitivity was studied in rats having an increased insulin sensitivity due to exercise training prior to confinement. Oral glucose tolerance tests (OGTT) were given to both control and exercise-trained rats before and after placement in the small cages for 7 days. The insulin resistance was assessed by the product of the area of the insulin and glucose curves of the OGTT (IG index). Results show that the values obtained before confinement were one-half as high in exercise-trained rats as those in control rats, reflecting an increased sensitivity to insulin with exercise training. After 7 days confinement, the IG index was found to be not significantly different from initial values for both control and exercise-trained rats. These findings suggest that increased insulin sensitivity in exercise-trained rats persists 7 days after cessation of running activity. The data also indicate that exercise training, before flight, may be beneficial in minimizing the loss of insulin sensitivity expected with decreased use of gravity dependent muscles during exposure to hypogravity in space flight.

  9. Effect of confinement in small space flight size cages on insulin sensitivity of exercise-trained rats

    NASA Technical Reports Server (NTRS)

    Mondon, C. E.; Dolkas, C. B.; Reaven, G. M.

    1983-01-01

    The effect of confinement in small cages (simulating the size to be used in future space Shuttle missions) on insulin sensitivity was studied in rats having an increased insulin sensitivity due to exercise training prior to confinement. Oral glucose tolerance tests (OGTT) were given to both control and exercise-trained rats before and after placement in the small cages for 7 days. The insulin resistance was assessed by the product of the area of the insulin and glucose curves of the OGTT (IG index). Results show that the values obtained before confinement were one-half as high in exercise-trained rats as those in control rats, reflecting an increased sensitivity to insulin with exercise training. After 7 days confinement, the IG index was found to be not significantly different from initial values for both control and exercise-trained rats. These findings suggest that increased insulin sensitivity in exercise-trained rats persists 7 days after cessation of running activity. The data also indicate that exercise training, before flight, may be beneficial in minimizing the loss of insulin sensitivity expected with decreased use of gravity dependent muscles during exposure to hypogravity in space flight.

  10. Secondary metabolism in simulated microgravity and space flight.

    PubMed

    Gao, Hong; Liu, Zhiheng; Zhang, Lixin

    2011-11-01

    Space flight experiments have suggested that microgravity can affect cellular processes in microorganisms. To simulate the microgravity environment on earth, several models have been developed and applied to examine the effect of microgravity on secondary metabolism. In this paper, studies of effects of space flight on secondary metabolism are exemplified and reviewed along with the advantages and disadvantages of the current models used for simulating microgravity. This discussion is both significant and timely to researchers considering the use of simulated microgravity or space flight to explore effects of weightlessness on secondary metabolism.

  11. Daylily as a System to Study Effects of Space Flight on Plant Development

    NASA Technical Reports Server (NTRS)

    Krikorian, A. D.

    1985-01-01

    The intent of the protoplast experimentation was to develop a system which would permit work with wall less counterparts of totipotent free cells as a model for a fertilized egg cell. It is clear that the daylily system is becoming a valuable tool with which to study any number of basic phases of higher plant development. The system can now be studied from a number of perspectives. A system amenable to rigorous experimentation was developed and can be used as a point of departure for studying problems of development in the space environment. This will be a prelude to the studying of the effect of hypogravity on higher plant development.

  12. Daylily as a System to Study Effects of Space Flight on Plant Development

    NASA Technical Reports Server (NTRS)

    Krikorian, A. D.

    1985-01-01

    The intent of the protoplast experimentation was to develop a system which would permit work with wall less counterparts of totipotent free cells as a model for a fertilized egg cell. It is clear that the daylily system is becoming a valuable tool with which to study any number of basic phases of higher plant development. The system can now be studied from a number of perspectives. A system amenable to rigorous experimentation was developed and can be used as a point of departure for studying problems of development in the space environment. This will be a prelude to the studying of the effect of hypogravity on higher plant development.

  13. Space motion sickness during 24 flights of the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.; Vanderploeg, James M.; Santy, Patricia A.; Jennings, Richard T.; Stewart, Donald F.

    1988-01-01

    This paper examines the incidence and the severity of space motion sickness (SMS) during 24 flights of the Space Shuttle, using a standardized questionnaire administered to all crewmembers postflight. It was found that, for 85 crewmembers, the incidence of SMS during a first Shuttle flight was 67 percent, of which 30 percent were mild cases, 24 percent moderate, and 13 percent severe. Crewmembers with a second flight showed a reduction in SMS incidence, but the change was not significant compared with the first flight. It is suggested that variability in crewmember training and flight experience may explain some of the differences observed.

  14. Space motion sickness during 24 flights of the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.; Vanderploeg, James M.; Santy, Patricia A.; Jennings, Richard T.; Stewart, Donald F.

    1988-01-01

    This paper examines the incidence and the severity of space motion sickness (SMS) during 24 flights of the Space Shuttle, using a standardized questionnaire administered to all crewmembers postflight. It was found that, for 85 crewmembers, the incidence of SMS during a first Shuttle flight was 67 percent, of which 30 percent were mild cases, 24 percent moderate, and 13 percent severe. Crewmembers with a second flight showed a reduction in SMS incidence, but the change was not significant compared with the first flight. It is suggested that variability in crewmember training and flight experience may explain some of the differences observed.

  15. Effect of the treadmill training factors on the locomotor ability after space flight

    NASA Astrophysics Data System (ADS)

    Lysova, Nataliya; Fomina, Elena

    Training on the treadmill constitutes the central component of the Russian system of countermeasures against the negative effects of microgravity. Effectiveness of the treadmill training is influenced by three main factors. Namely, these are intensity (velocity and regularity), axial loading with the use of elastic bungee cords and percentage of time for training on the non-motorized treadmill within the overall training program. Previously we have demonstrated the significance of each factor separately: intensity (Kozlovskaya I.B. et al., 2011), passive mode (Fomina E.V. et al., 2012) and axial loading (Fomina E.V. et al., 2013). The Russian system of in-flight countermeasures gives preference to interval training sessions in which walking alternates with short episodes of intensive running. Locomotion on the non-motorized treadmill should make approx. 30% of the total time of locomotor training. The ISS RS treadmill can be utilized with the motor in motion (active mode) or out of motion so that the cosmonaut has to push the belt with his feet (passive mode). Axial loading of the cosmonaut must be 60-70% of his body weight. However, there is a huge variety of strategies cosmonauts choose of when they exercise on the treadmill in the course of long-duration ISS missions. Purpose of the investigation was comparative analysis of different locomotion training regimens from the standpoint of their effectiveness in microgravity. Criteria of effectiveness evaluation were the results of the locomotion test that includes walking along the fixed support at the preset rate of 90 steps/min. Peak amplitude on the m. soleus electromyogram was analyzed. The experiment was performed with participation of 18 Russian members of extended ISS missions. Each locomotion training factors was rated using the score scale from 0 to 10: Intensity (0 to 10), Percentage of passive mode training (recommended 30% was taken as 10 and could go down to 0 if the passive mode was not applied) and

  16. Experiment aboard Russian satellite "Foton M2" in 2005: new approaches for study on stimulating effect of space flight on cell proliferation and regeneration in Urodela

    NASA Astrophysics Data System (ADS)

    Grigoryan, E.; Almeida, E.; Domaratskaya, E.; Tairbekov, M.; Aleinikova, K.; Mitashov, V.

    A study on space flight effect upon processes of regeneration is due to the necessity to know their characteristics in animals and human exposed to space and earth conditions shortly after flight Several experiments on the newts performed earlier aboard Russian biosatellites showed that the rate of organ and tissue regeneration in space was greater than that on the ground Space flight effect stimulating regeneration was enduring and apparent not only just after flight but long time later as well This observation found support in studies simulated physiological weightlessness by means of fast-rotating clinostat It was shown also that the higher rate of regeneration was associated with enhanced cell proliferation For instance we found that the number of cells in S-phase in regenerating tissues was significantly greater in space-flown animals than in the ground controls However it was unclear whether cell proliferation stimulation was induced by micro- g per se or by conditions of hyper- g during launching and re-adaptation on the earth Molecular mechanisms underlying the change also remained obscure These issues were addressed by the joint Russian-USA experiment Regeneration performed on Foton-M2 in 2005 In 16- day flight we used two well-known models of regeneration lens regeneration after lensectomy and tail regeneration after amputation in adult newts Pleurodeles walt Urodela In order to evaluate cell proliferative activity in time limits of microgravity influence the original method for in-flight delivering DNA precursor BrdU

  17. The effects of space flight on some rat liver enzymes regulating carbohydrate and lipid metabolism

    NASA Astrophysics Data System (ADS)

    Abraham, S.; Lin, C. Y.; Klein, H. P.; Volkmann, C.

    We have examined, in the livers of rats carried aboard the Cosmos 936 biosatellite, the activities of about 30 enzymes concerned with carbohydrate and lipid metabolism. In addition to the enzyme studies, the levels of glycogen and of the individual fatty acids in hepatic lipids were determined. Livers from flight and ground control rats at recovery (R0) and 25 days after recovery (R25) were used for these analyses. For all parameters measured, the most meaningful comparisons are those made between flight stationary (FS) and flight centrifuged (FC) animals at R0. When these two groups of flight rats were compared at R0, statistically significant decreases in the activity levels of glycogen phosphorylase, α-glycerol phosphate acyl transferase, diglyceride acyl transferase, aconitase and 6-phosphogluconate dehydrogenase and an increase in the palmitoyl CoA desaturase were noted in the weightless group (FS). The significance of these findings was strengthened by the fact that all enzyme activities showing alterations at R0 returned to normal 25 days postflight. When liver glycogen and total fatty acids of the two sets of flight animals were determined, significant differences that could be attributed to reduced gravity were observed. The weightless group (FS) at R0 contained, on the average, more than twice the amount of glycogen than did the centrifuged controls (FC) and a remarkable shift in the ratio of palmitate to palmitoleate was noted. These metabolic alterations, both in enzyme levels and in hepatic constituents, appear to be characteristic of the weightless condition. Our data seem to justify the conclusion that centrifugation during flight is equivalent to terrestrial gravity.

  18. [The effect of space flight factors on the cellular proliferative activity of different eye tissues during lens regeneration in the Spanish newt Pleurodeles waltlii].

    PubMed

    Brushlinskaia, N V

    1995-01-01

    The proliferative activity of the cells of various eye tissues was studied during lens regeneration in Pleurodeles waltlii under the influence of space-flight factors. After space-flight termination, the index of 3H-thymidine labelled nuclei increased reliably in the lens regenerate, in the ciliary zone of the iris, and in the growth zone of the retina, i.e., in the eye tissues that are not directly involved in formation of the regenerate cell population. The rate of increase in regenerate size was higher in the flight group than in the control. Enhancement of the proliferative activity of eye tissues, acceleration of lens regeneration, and the larger size of the regenerates are related to hormonal changes arising under the effect of space-flight factors. We propose that changes in calcium metabolism under the conditions of microgravity (in particular, increased prolactin production) accelerates the regeneration of both lens and limb in P. waltlii.

  19. Marshall Space Flight Center Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Six, N. F.; Karr, G.

    2017-01-01

    The research projects conducted by the 2016 Faculty Fellows at NASA Marshall Space Flight Center included propulsion studies on propellant issues, and materials investigations involving plasma effects and friction stir welding. Spacecraft Systems research was conducted on wireless systems and 3D printing of avionics. Vehicle Systems studies were performed on controllers and spacecraft instruments. The Science and Technology group investigated additive construction applied to Mars and Lunar regolith, medical uses of 3D printing, and unique instrumentation, while the Test Laboratory measured pressure vessel leakage and crack growth rates.

  20. 14 CFR 435.8 - Human space flight.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Human space flight. 435.8 Section 435.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Human space flight. An applicant for a license to conduct a reentry with flight crew or a space flight...

  1. 14 CFR 435.8 - Human space flight.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Human space flight. 435.8 Section 435.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Human space flight. An applicant for a license to conduct a reentry with flight crew or a space flight...

  2. 14 CFR 435.8 - Human space flight.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Human space flight. 435.8 Section 435.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Human space flight. An applicant for a license to conduct a reentry with flight crew or a space flight...

  3. 14 CFR 435.8 - Human space flight.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Human space flight. 435.8 Section 435.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Human space flight. An applicant for a license to conduct a reentry with flight crew or a space flight...

  4. 14 CFR 435.8 - Human space flight.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Human space flight. 435.8 Section 435.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Human space flight. An applicant for a license to conduct a reentry with flight crew or a space flight...

  5. Looking Up: Multimedia about Space and Flight.

    ERIC Educational Resources Information Center

    Walter, Virginia A.

    1998-01-01

    The best CD-ROMs for young people about space and flight exploit the promise of hypermedia to create informative simulations. This article provides an annotated bibliography of CD-ROMs on astronomy and flight for K-12 students; suggests book and Internet connections; and highlights poetry for astronomers, science fiction, a biography of Charles…

  6. Looking Up: Multimedia about Space and Flight.

    ERIC Educational Resources Information Center

    Walter, Virginia A.

    1998-01-01

    The best CD-ROMs for young people about space and flight exploit the promise of hypermedia to create informative simulations. This article provides an annotated bibliography of CD-ROMs on astronomy and flight for K-12 students; suggests book and Internet connections; and highlights poetry for astronomers, science fiction, a biography of Charles…

  7. Habitability and Behavioral Issues of Space Flight.

    ERIC Educational Resources Information Center

    Stewart, R. A., Jr.

    1988-01-01

    Reviews group behavioral issues from past space missions and simulations such as the Skylab Medical Experiments Altitude Test, Skylab missions, and Shuttle Spacelab I mission. Makes recommendations for future flights concerning commandership, crew selection, and ground-crew communications. Pre- and in-flight behavioral countermeasures are…

  8. Habitability and Behavioral Issues of Space Flight.

    ERIC Educational Resources Information Center

    Stewart, R. A., Jr.

    1988-01-01

    Reviews group behavioral issues from past space missions and simulations such as the Skylab Medical Experiments Altitude Test, Skylab missions, and Shuttle Spacelab I mission. Makes recommendations for future flights concerning commandership, crew selection, and ground-crew communications. Pre- and in-flight behavioral countermeasures are…

  9. Nutrition in Space Flight: Some Thoughts

    NASA Technical Reports Server (NTRS)

    Johnson, P. C., Jr.

    1985-01-01

    Space flight causes physiological changes related to microgravity and on which nutrition has a bearing. Examples are: muscle atrophy-protein; bone atrophy-calcium; phosphorus, and vitamin D; space sickness-fat; cardiovascular deconditioning-sodium; water, and potassium. The physiological changes are discussed which relate to living in space.

  10. Historical Plaque at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This plaque, displayed on the grounds of Marshall Space Flight Center in Huntsville, Alabama, commemorates the Redstone Test Stand as an Alabama Historic Civil Engineering Landmark. The site was desinated as such in 1979.

  11. Historical Plaque at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This plaque, located on the grounds of Marshall Space Flight Center in Huntsville, Alabama,commemorates the designation of the Saturn V Rocket as a National Historic Mechanical Engineering Landmark by the American Society of Mechanical Engineers in 1980.

  12. Historical Plaque at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This plaque, located on the grounds of Marshall Space Flight Center in Huntsville, Alabama,commemorates the designation of the Saturn V Rocket as a National Historic Mechanical Engineering Landmark by the American Society of Mechanical Engineers in 1980.

  13. Historical Plaque at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This plaque, displayed on the grounds of Marshall Space Flight Center in Huntsville, Alabama, commemorates the Redstone Test Stand as an Alabama Historic Civil Engineering Landmark. The site was desinated as such in 1979.

  14. Historical Sign at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This sign, displayed on the grounds of Marshall Space Flight Center in Huntsville, Alabama, commemorates the designation of the Redstone Test Site as a National Historic Landmark. The site was inducted into the National Register of Historical Places in 1976.

  15. Historical Sign at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This sign, displayed on the grounds of Marshall Space Flight Center in Huntsville, Alabama, commemorates the designation of the Redstone Test Site as a National Historic Landmark. The site was inducted into the National Register of Historical Places in 1976.

  16. 14 CFR 91.143 - Flight limitation in the proximity of space flight operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight limitation in the proximity of space flight operations. 91.143 Section 91.143 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... RULES Flight Rules General § 91.143 Flight limitation in the proximity of space flight operations. When...

  17. 14 CFR 91.143 - Flight limitation in the proximity of space flight operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Flight limitation in the proximity of space flight operations. 91.143 Section 91.143 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... RULES Flight Rules General § 91.143 Flight limitation in the proximity of space flight operations. When...

  18. 14 CFR 91.143 - Flight limitation in the proximity of space flight operations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Flight limitation in the proximity of space flight operations. 91.143 Section 91.143 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... RULES Flight Rules General § 91.143 Flight limitation in the proximity of space flight operations....

  19. 14 CFR 91.143 - Flight limitation in the proximity of space flight operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Flight limitation in the proximity of space flight operations. 91.143 Section 91.143 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... RULES Flight Rules General § 91.143 Flight limitation in the proximity of space flight operations....

  20. 14 CFR 91.143 - Flight limitation in the proximity of space flight operations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flight limitation in the proximity of space flight operations. 91.143 Section 91.143 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... RULES Flight Rules General § 91.143 Flight limitation in the proximity of space flight operations....

  1. Space shuttle horizontal flight test plan

    NASA Technical Reports Server (NTRS)

    Mosley, R. L.

    1972-01-01

    A horizontal takeoff flight test concept for testing space shuttle vehicles is presented. The guidelines used in planning and support requirements for the flight tests are developed. Details of the test program are provided. The instrumentation requirements are defined. The limitations imposed by the short flight endurance and restricted maneuvering capability of the shuttle booster/orbiter in the horizontal mode are described. The test program covers the following investigations. (1) stall and lift boundary tests, (2)takeoff and landing tests, (3) level flight speed power tests, (4) longitudinal and laterial directional dynamic stability, and (5) static directional stability.

  2. Research and Technology, 1987, Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Guerny, Gene (Editor); Moe, Karen (Editor); Paddack, Steven (Editor); Soffen, Gerald (Editor); Sullivan, Walter (Editor); Ballard, Jan (Editor)

    1987-01-01

    Research at Goddard Space Flight Center during 1987 is summarized. Topics addressed include space and earth sciences, technology, flight projects and mission definition studies, and institutional technology.

  3. Influence of Cosmos 368 space flight conditions on radiation effects in yeasts, hydrogen bacteria and seeds of lettuce and pea.

    PubMed

    Grigoryev, Y G; Benevolensky, V P; Druzhinin, Y P; Shidarov, Y I; Korogodin, V I; Nevzgodina, L V; Miller, A T; Tsarapkin, L S

    1972-01-01

    Radiobiological studies have been carried out on board the Cosmos 368 satellite, launched on 8 October 1970 and returning to earth on 14 October 1970. Yeast diploid cells Saccharomyces ellipsoides, Megri strain 139-B, haploid cells Zygosaccharomyces Baili, hydrogen bacteria Hydrogenomonas eutropha, strain Z-1, Berlin variety lettuce seeds and Capital variety pea seeds were used in these experiments. The biological specimens were irradiated with gamma-rays at dose rates of 71.8 and 6.7 rad d-1 suring the packaging of containers and after returning the samples to the laboratory. It was found that both on pre-radiation and post-radiation exposure space flight factors did not greatly influence radiobiological effects.

  4. [VESTIBULAR FUNCTION AFTER REPEATED SPACE FLIGHTS].

    PubMed

    Naumov, I A; Kornilova, L N; Glukhikh, D O; Pavlova, A S; Khabarova, E V; Ekimovsky, G A; Vasin, A V

    2015-01-01

    Results of the vestibular function testing of 32 cosmonauts on return from repeated 125- to 215-day space flights (SF) on the International space station are presented. The cosmonauts were tested twice before flight (baseline data collection) and on days 1-2, 4-5 and 8-9 after landing. Electro- and video-oculography were used to register simultaneously eye and head movements. It was found that deadaptation following a repeated stay in long-duration SF takes statistically much shorter time. Most often, atypical vestibular disorders and changed patterns of the otolith-semicircular canal interaction are observed in cosmonauts who have made their maiden flights to microgravity.

  5. A timing discriminator for space flight applications

    NASA Astrophysics Data System (ADS)

    Lampton, Michael

    1998-08-01

    A timing discriminator design for space flight delay line image systems is presented. This discriminator processes delay line signal pulses having a few ns width and recovers event timing centroids with an accuracy better than 100 ps full width at half maximum. For space flight use, it is important to minimize parts count and power consumption. Because it is difficult or impossible to adjust equipment on orbit, it is very desirable to eliminate all adjustments, yet provide generous timing margins against component aging or drift. The discriminator described here uses a simple linear passive network to produce the required internal waveforms. Performance data are reported for the first flight implementation of this design.

  6. Effects of space flight and -6 degrees bed rest on the neuroendocrine response to metabolic stress in physically fit subjects.

    PubMed

    Ksinantová, Lucia; Koska, Juraj; Martinkovic, Miroslav; Vigas, Milan; Macho, Ladislav; Kvetnansky, Richard

    2004-06-01

    The aim of this study was to evaluate the association of plasma epinephrine (EPI) and norepinephrine (NE) responses to insulin-induced hypoglycemia (ITT) 3 weeks before the space flight (SF), on the fifth day of SF, on days 2 and 16 after landing in the first Slovak astronaut, and before and on the fifth day of prolonged bed rest (BR) in 15 military aircraft pilots, aged 33.5 +/- 1.4 years, body mass index (BMI) 26.5 +/- 0.7 kg/m(2), maximal oxygen uptake (VO(2max)) 55.2 +/- 2.4 mL/kg/min, who volunteered for the study. ITT was induced by i.v. administrations of 0.1 IU/kg body weight insulin (Actrapid HM) in a bolus. Insulin administration led to a comparable hypoglycemia in preflight, actual flight conditions, and before and after bed rest. ITT led to a pronounced increase in EPI levels and moderate increase in NE in preflight studies. However, an evidently reduced plasma elevation of EPI was found after insulin administration during SF and during BR. Thus, during the real microgravity in SF and simulated microgravity in BR, ITT activates the adrenomedullary system to less extent that at conditions of the Earth's gravitation. Post-flight changes in EPI and NE did not differ from those of preflight values, since SF was relatively short (8 days) and the readaptation to Earth's gravitation was fast. It seems that an increased blood flow in brain might be responsible for the reduced EPI response to insulin. Responses to ITT in physically fit subjects indicate the stimulus specificity of the deconditioning effect of 5 days of bed rest on the stress response.

  7. Calcium Kinetics During Long-Duration Space Flight

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; OBrien, K. O.; Wastney, M. E.; Morukov, B. V.; Larina, I.; Abrams, S. A.; Lane, H. W.; Nillen, J. L.; Davis-Street, J. E.; Oganov, V.; hide

    2001-01-01

    Bone loss represents one of the most significant effects of space flight on the human body. Understanding the mechanisms underlying this loss is critical for maintaining crew health and safety during and after flight. This investigation documents the changes in bone metabolism and calcium kinetics during and after space flight. We previously reported calcium studies on three subjects during and after a 115-d stay on the Russian space station Mir. We report here data on an additional three subjects, whose stays on Mir were approximately 4 (n=l) and 6 (n=2) mos. Previously published data are included for comparison.

  8. Effects of space flight on the histological characteristics of the aortic depressor nerve in the adult rat: electron microscopic analysis.

    PubMed

    Yamasaki, Masao; Shimizu, Tsuyoshi; Miyake, Masao; Miyamoto, Yukako; Katsuda, Shin-Ichiro; O-Ishi, Hirotaka; Nagayama, Tadanori; Waki, Hidefumi; Katahira, Kiyoaki; Wago, Haruyuki; Okouchi, Toshiyasu; Nagaoka, Shunji; Mukai, Chiaki

    2004-06-01

    The effects of microgravity on the histological characteristics of the aortic depressor nerve, which is the afferent of the aortic baroreflex arc, were determined in 10 female adult rats. The rats were assigned for nursing neonates in the Space Shuttle Columbia or in the animal facility on the ground (NASA Neurolab, STS-90), and were housed for 16 days under microgravity in space (microg, n=5) or under one force of gravity on Earth (one-g, n=5). In the Schwann cell unit in which the axons of unmyelinated fibers are surrounded by one Schwann cell, the average number of axons per unit in the microg group was 2.1 +/- 1.6 (mean +/- SD, n=312) and significantly less than that in the one-g group (3.0 +/- 2.9, n=397, p<0.05). The proportion of unmyelinated fibers in the aortic depressor nerve in the microg group was 64.5 +/- 4.4% and significantly less than that in the one-g group (74.0 +/- 7.3%, p<0.05). These results show that there is a decrease in the number of high-threshold unmyelinated fibers in the aortic depressor nerve in adult rats flown on the Shuttle Orbiter, suggesting that the aortic baroreflex is depressed under microgravity during space flight.

  9. The Effects of Space Flight on Some Liver Enzymes Concerned with Carbohydrate and Lipid Metabolism in Rats

    NASA Technical Reports Server (NTRS)

    Abraham, S.; Lin, C. Y.; Klein, H. P.; Volkmann, C.

    1978-01-01

    The activities of about 30 enzymes concerned with carbohydrate and lipid metabolism and the levels of glycogen and of individual fatty acids were measured in livers of rats ex- posed to prolonged space flight (18.5 days) aboard COSMOS 986 Biosatellite. When flight stationary, (FS) and flight centrifuged (FC) rats were compared at recovery (R(sub 0)), decrceases in the activities of glycogen phosphorylase, alpha glycerphosphate, acyl transferase, diglyceride acyl transferase, acconitase and Epsilon-phosphogluconate dehydrogenase were noted in the weightless group (FS). The significance of these findings was strengthened since all activities, showing alterations at R(sub 0), returned to normal 25 days post-flight. Differences were also seen in levels of two liver constituents. When glycogen and total fatty acids of the two groups of flight animals were determined, differences that could be attributed to reduced gravity were observed, the FS group at R(sub 0) contained, on the average, more than twice the amount of glycogen than did controls ad a remarkable shift in the ratio of palmitate to palmitoleate were noted. These metabolic alterations appear to be unique to the weightless condition. Our data justify the conclusion that centrifugation during space flight is equivalent to terrestrial gravity.

  10. The Effects of Space Flight on Some Liver Enzymes Concerned with Carbohydrate and Lipid Metabolism in Rats

    NASA Technical Reports Server (NTRS)

    Abraham, S.; Lin, C. Y.; Klein, H. P.; Volkmann, C.

    1978-01-01

    The activities of about 30 enzymes concerned with carbohydrate and lipid metabolism and the levels of glycogen and of individual fatty acids were measured in livers of rats ex- posed to prolonged space flight (18.5 days) aboard COSMOS 986 Biosatellite. When flight stationary, (FS) and flight centrifuged (FC) rats were compared at recovery (R(sub 0)), decrceases in the activities of glycogen phosphorylase, alpha glycerphosphate, acyl transferase, diglyceride acyl transferase, acconitase and Epsilon-phosphogluconate dehydrogenase were noted in the weightless group (FS). The significance of these findings was strengthened since all activities, showing alterations at R(sub 0), returned to normal 25 days post-flight. Differences were also seen in levels of two liver constituents. When glycogen and total fatty acids of the two groups of flight animals were determined, differences that could be attributed to reduced gravity were observed, the FS group at R(sub 0) contained, on the average, more than twice the amount of glycogen than did controls ad a remarkable shift in the ratio of palmitate to palmitoleate were noted. These metabolic alterations appear to be unique to the weightless condition. Our data justify the conclusion that centrifugation during space flight is equivalent to terrestrial gravity.

  11. Human System Risk Management for Space Flight

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey

    2015-01-01

    This brief abstract reviews the development of the current day approach to human system risk management for space flight and the development of the critical components of this process over the past few years. The human system risk management process now provides a comprehensive assessment of each human system risk by design reference mission (DRM) and is evaluated not only for mission success but also for long-term health impacts for the astronauts. The discipline of bioastronautics is the study of the biological and medical effects of space flight on humans. In 1997, the Space Life Sciences Directorate (SLSD) initiated the Bioastronautics Roadmap (Roadmap) as the "Critical Path Roadmap", and in 1998 participation in the roadmap was expanded to include the National Space Biomedical Research Institute (NSBRI) and the external community. A total of 55 risks and 250 questions were identified and prioritized and in 2000, the Roadmap was base-lined and put under configuration control. The Roadmap took into account several major advisory committee reviews including the Institute of Medicine (IOM) "Safe Passage: Astronaut care for Exploration Missions", 2001. Subsequently, three collaborating organizations at NASA HQ (Chief Health and Medical Officer, Office of Space Flight and Office of Biological & Physical Research), published the Bioastronautics Strategy in 2003, that identified the human as a "critical subsystem of space flight" and noted that "tolerance limits and safe operating bands must be established" to enable human space flight. These offices also requested a review by the IOM of the Roadmap and that review was published in October 2005 as "A Risk Reduction Strategy for Human Exploration of Space: A Review of NASA's Bioastronautics Roadmap", that noted several strengths and weaknesses of the Roadmap and made several recommendations. In parallel with the development of the Roadmap, the Office of the Chief Health and Medical Officer (OCHMO) began a process in

  12. Bone and body mass changes during space flight

    NASA Astrophysics Data System (ADS)

    Schneider, V.; Oganov, V.; LeBlanc, A.; Rakmonov, A.; Taggart, L.; Bakulin, A.; Huntoon, C.; Grigoriev, A.; Varonin, L.

    Long duration space flight has shown us that humans have significant bone loss and mineral changes because they are living in microgravity. Skylab and the longer Salyut and Mir missions, are providing us useful data and allowing us to explore the mechanism involved in skeletal turnover. Bone redistribution occurs throughout space flight with bone loss predominately in the weight bearing bones of posture and locomotion. The primary health hazards which may occur during space flight induced by skeletal changes include signs and symptoms of hypercalcemia, and the risk of kidney stones and metastatic calcification. After flight lengthy recovery of bone mass and the possible increase in the risk of bone fracture should be considered. Continued research studies are being directed toward determining the mechanisms by which bone is lost in space and developing more effective countermeasures by both the US (Schneider and McDonald, 1984 and Schneider, LeBlanc & Huntoon, 1993) and Russian (Grigoriev et. al., 1989) space programs.

  13. Modeling Calcium Loss from Bones During Space Flight

    NASA Technical Reports Server (NTRS)

    Wastney, Meryl E.; Morukov, Boris V.; Larina, Irina M.; Abrams, Steven A.; Nillen, Jeannie L.; Davis-Street, Janis E.; Lane, Helen W.; Smith, Scott M.; Paloski, W. H. (Technical Monitor)

    1999-01-01

    Calcium loss from bones during space flight creates a risk for astronauts who travel into space, and may prohibit space flights to other planets. The problem of calcium loss during space flight has been studied using animal models, bed rest (as a ground-based model), and humans in-flight. In-flight studies have typically documented bone loss by comparing bone mass before and after flight. To identify changes in metabolism leading to bone loss, we have performed kinetic studies using stable isotopes of calcium. Oral (Ca-43) and intravenous (Ca-46) tracers were administered to subjects (n=3), three-times before flight, once in-flight (after 110 days), and three times post-flight (on landing day, and 9 days and 3 months after flight). Samples of blood, saliva, urine, and feces were collected for up to 5 days after isotope administration, and were analyzed for tracer enrichment. Tracer data in tissues were analyzed using a compartmental model for calcium metabolism and the WinSAAM software. The model was used to: account for carryover of tracer between studies, fit data for all studies using the minimal number of changes between studies, and calculate calcium absorption, excretion, bone calcium deposition and bone calcium resorption. Results showed that fractional absorption decreased by 50% during flight and that bone resorption and urinary excretion increased by 50%. Results were supported by changes in biochemical markers of bone metabolism. Inflight bone loss of approximately 250 mg Ca/d resulted from decreased calcium absorption combined with increased bone resorption and excretion. Further studies will assess the time course of these changes during flight, and the effectiveness of countermeasures to mitigate flight-induced bone loss. The overall goal is to enable human travel beyond low-Earth orbit, and to allow for better understanding and treatment of bone diseases on Earth.

  14. Combined effect of flight factors

    NASA Technical Reports Server (NTRS)

    Antipov, V. V.; Davydov, B. I.; Verigo, V. V.; Svirezhev, Y. M.

    1975-01-01

    The effects of various combinations of space flight stresses are discussed. Included are weightlessness, acceleration, vibration, ionizing radiation, hypoxia, and ambient temperature. The problem of constructing mathematical models to describe the dynamics of biological systems, including those to analyze and predict adaptation and restoration processes following combined stresses, is also considered.

  15. History of manned space flight

    SciTech Connect

    Baker, D.

    1981-01-01

    This book is the history of all the great moments of failure, tension, drama, euphoria, and success that characterized the beginning of man's adventure in space. It covers the technology and scientific knowledge, the vision, the politics, and the dedication of all those involved in the space program. One chapter is devoted to the experiments and observations of the astronauts as they explored the moon. An integral part of the history of space exploration is the race between Russia and the US to establish man in space. This is included. The book vividly portrays the experiences of the astronauts from Mercury, Gemini, Apollo, Skylab, and the Apollo-Soyuz missions. (SC)

  16. Workshop on Exercise Prescription for Long-Duration Space Flight

    NASA Technical Reports Server (NTRS)

    Harris, Bernard A., Jr. (Editor); Stewart, Donald F. (Editor)

    1989-01-01

    The National Aeronautics and Space Administration has a dedicated history of ensuring human safety and productivity in flight. Working and living in space long term represents the challenge of the future. Our concern is in determining the effects on the human body of living in space. Space flight provides a powerful stimulus for adaptation, such as cardiovascular and musculoskeletal deconditioning. Extended-duration space flight will influence a great many systems in the human body. We must understand the process by which this adaptation occurs. The NASA is agressively involved in developing programs which will act as a foundation for this new field of space medicine. The hallmark of these programs deals with prevention of deconditioning, currently referred to as countermeasures to zero g. Exercise appears to be most effective in preventing the cardiovascular and musculoskeletal degradation of microgravity.

  17. Historical Plaque at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This plaque, displayed on the grounds of Marshall Space Flight Center in Huntsville, Alabama commemorates the Neutral Buoyancy Space Simulator as a National Historic Landmark. The site was designated as such in 1986 by the National Park Service of the United States Department of the Interior.

  18. Historical Plaque at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This plaque, displayed on the grounds of Marshall Space Flight Center in Huntsville, Alabama commemorates the Neutral Buoyancy Space Simulator as a National Historic Landmark. The site was designated as such in 1986 by the National Park Service of the United States Department of the Interior.

  19. Origin of Marshall Space Flight Center (MSFC)

    NASA Image and Video Library

    1962-04-12

    The urgency and importance of the Marshall Space Flight Center's mission in the 1960s was apparent from the begirning. It became even more apparent on April 12, 1962, when the Soviet cosmonaut, Yuri Gagarin, became the first man in space.

  20. Origin of Marshall Space Flight Center (MSFC)

    NASA Image and Video Library

    1959-01-01

    The National Aeronautics and Space Administration (NASA) was created on October 1, 1958, to perform civilian research related to space flight and aeronautics. President Eisenhower commissioned Dr. T. Keith Glernan, right, as the first administrator for NASA and Dr. Hugh L. Dryden as deputy administrator.

  1. Space flight nutrition research: platforms and analogs

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Uchakin, Peter N.; Tobin, Brian W.

    2002-01-01

    Conducting research during actual or simulated weightlessness is a challenging endeavor, where even the simplest activities may present significant challenges. This article reviews some of the potential obstacles associated with performing research during space flight and offers brief descriptions of current and previous space research platforms and ground-based analogs, including those for human, animal, and cell-based research. This review is intended to highlight the main issues of space flight research analogs and leave the specifics for each physiologic system for the other papers in this section.

  2. Human Space Flight Plans Committee Report

    NASA Image and Video Library

    2009-10-21

    Copies of the U.S. Human Space Flight Plans Committee report are seen at a press conference where the committee released it's report findings on Thursday, Oct., 22, 2009 at the National Press Club in Washington. The Obama Administration tasked the committee to do an independent review of planned U.S. human space flight activities with the goal of ensuring that the nation is on a vigorous and sustainable path to achieving its boldest aspirations in space. Photo Credit: (NASA/Bill Ingalls)

  3. Human Space Flight Plans Committee Report

    NASA Image and Video Library

    2009-10-21

    Chairman of the U.S. Human Space Flight Plans Committee Norman Augustine answers a reporters question during a press conference where the committee released it's report on Thursday, Oct., 22, 2009 at the National Press Club in Washington. The Obama Administration tasked the committee to do an independent review of planned U.S. human space flight activities with the goal of ensuring that the nation is on a vigorous and sustainable path to achieving its boldest aspirations in space. Photo Credit: (NASA/Bill Ingalls)

  4. Human Space Flight Plans Committee Report

    NASA Image and Video Library

    2009-10-21

    U.S. Human Space Flight Plans Committee member Ed Crawley answers a reporter's question during a press conference where the committee released it's report on Thursday, Oct., 22, 2009 at the National Press Club in Washington. The Obama Administration tasked the committee to do an independent review of planned U.S. human space flight activities with the goal of ensuring that the nation is on a vigorous and sustainable path to achieving its boldest aspirations in space. Photo Credit: (NASA/Bill Ingalls)

  5. Human Space Flight Plans Committee Report

    NASA Image and Video Library

    2009-10-21

    Chairman of the U.S. Human Space Flight Plans Committee Norman Augustine, center, listens to reporters questions during a press conference where the committee released it's report on Thursday, Oct., 22, 2009 at the National Press Club in Washington. The Obama Administration tasked the committee to do an independent review of planned U.S. human space flight activities with the goal of ensuring that the nation is on a vigorous and sustainable path to achieving its boldest aspirations in space. Photo Credit: (NASA/Bill Ingalls)

  6. Origin of Marshall Space Flight Center (MSFC)

    NASA Image and Video Library

    1960-09-08

    President Dwight D. Eisenhower and Mrs. George C. Marshall unveil the bronze bust of General George C. Marshall during the dedication of the Marshall Space Flight Center. Eisenhower signed an Executive Order on October 21, 1959 directing the transfer of persornel from the Redstone Arsenal's Army Ballistic Missile Agency Development Operations Division to NASA. On March 15, 1960, another Executive Order announced that the space complex formed within the boundaries of Redstone Arsenal would become the George C. Marshall Space Flight Center. The Center was activated on July 1, 1960, with dedication ceremonies taking place September 8, 1960.

  7. Human Space Flight Plans Committee Report

    NASA Image and Video Library

    2009-10-21

    U.S. Human Space Flight Plans Committee member Ed Crawley, right, answers a reporter's question during a press conference where the committee released it's report on Thursday, Oct., 22, 2009 at the National Press Club in Washington. The Obama Administration tasked the committee to do an independent review of planned U.S. human space flight activities with the goal of ensuring that the nation is on a vigorous and sustainable path to achieving its boldest aspirations in space. Photo Credit: (NASA/Bill Ingalls)

  8. Human Space Flight Plans Committee Report

    NASA Image and Video Library

    2009-10-21

    NASA Public Affairs Officer Doc Mirelson, left, and Chairman of the U.S. Human Space Flight Plans Committee Norman Augustine, right, listen to reporters questions during a press conference where the committee released it's report on Thursday, Oct., 22, 2009 at the National Press Club in Washington. The Obama Administration tasked the committee to do an independent review of planned U.S. human space flight activities with the goal of ensuring that the nation is on a vigorous and sustainable path to achieving its boldest aspirations in space. Photo Credit: (NASA/Bill Ingalls)

  9. Visual-Vestibular Responses During Space Flight

    NASA Technical Reports Server (NTRS)

    Reschke, M. F.; Kozlovskaya, I. B.; Paloski, W. H.

    1999-01-01

    Given the documented disruptions that occur in spatial orientation during space flight and the putative sensory-motor information underlying eye and head spatial coding, the primary purpose of this paper is to examine components of the target acquisition system in subjects free to make head and eye movements in three dimensional space both during and following adaptation to long duration space flight. It is also our intention to suggest a simple model of adaptation that has components in common with cerebellar disorders whose neurobiological substrate has been identified.

  10. Visual-Vestibular Responses During Space Flight

    NASA Technical Reports Server (NTRS)

    Reschke, M. F.; Kozlovskaya, I. B.; Paloski, W. H.

    1999-01-01

    Given the documented disruptions that occur in spatial orientation during space flight and the putative sensory-motor information underlying eye and head spatial coding, the primary purpose of this paper is to examine components of the target acquisition system in subjects free to make head and eye movements in three dimensional space both during and following adaptation to long duration space flight. It is also our intention to suggest a simple model of adaptation that has components in common with cerebellar disorders whose neurobiological substrate has been identified.

  11. Flight experiences on board Space Station Mir

    NASA Astrophysics Data System (ADS)

    Viehboeck, Franz

    1992-07-01

    A survey of the training in the cosmonaut center 'Yuri Gagarin' near Moscow (U.S.S.R.) and of the preparation for the joint Soviet-Austrian space flight from 2-10 Oct. 1991 is given. The flight in Soyuz-TM 13 with the most important systems, as well as a short description of the Space Station Mir, the life on board the Station with the basic systems, like energy supply, life support, radio, and television are described. The possibilities of exploitation of the Space Station Mir and an outlook to the future is given.

  12. Red blood cell and iron metabolism during space flight

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.

    2002-01-01

    Space flight anemia is a widely recognized phenomenon in astronauts. Reduction in circulating red blood cells and plasma volume results in a 10% to 15% decrement in circulatory volume. This effect appears to be a normal physiologic adaptation to weightlessness and results from the removal of newly released blood cells from the circulation. Iron availability increases, and (in the few subjects studied) iron stores increase during long-duration space flight. The consequences of these changes are not fully understood.

  13. Red blood cell and iron metabolism during space flight

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.

    2002-01-01

    Space flight anemia is a widely recognized phenomenon in astronauts. Reduction in circulating red blood cells and plasma volume results in a 10% to 15% decrement in circulatory volume. This effect appears to be a normal physiologic adaptation to weightlessness and results from the removal of newly released blood cells from the circulation. Iron availability increases, and (in the few subjects studied) iron stores increase during long-duration space flight. The consequences of these changes are not fully understood.

  14. Space Flight Software Development Software for Intelligent System Health Management

    NASA Technical Reports Server (NTRS)

    Trevino, Luis C.; Crumbley, Tim

    2004-01-01

    The slide presentation examines the Marshall Space Flight Center Flight Software Branch, including software development projects, mission critical space flight software development, software technical insight, advanced software development technologies, and continuous improvement in the software development processes and methods.

  15. Use of Virtual Reality for Space Flight

    NASA Technical Reports Server (NTRS)

    Harm, Deborah; Taylor, L. C.; Reschke, M. F.

    2011-01-01

    Virtual environments offer unique training opportunities, particularly for training astronauts and preadapting them to the novel sensory conditions of microgravity. Two unresolved human factors issues in virtual reality (VR) systems are: 1) potential "cybersickness", and 2) maladaptive sensorimotor performance following exposure to VR systems. Interestingly, these aftereffects are often quite similar to adaptive sensorimotor responses observed in astronauts during and/or following space flight. Active exploratory behavior in a new environment, with resulting feedback and the formation of new associations between sensory inputs and response outputs, promotes appropriate perception and motor control in the new environment. Thus, people adapt to consistent, sustained alterations of sensory input such as those produced by microgravity. Our research examining the effects of repeated exposures to a full field of view dome VR system showed that motion sickness and initial decrements in eye movement and postural control were greatly diminished following three exposures. These results suggest that repeated transitions between VR and the normal environment preflight might be a useful countermeasure for neurosensory and sensorimotor effects of space flight. The range of VR applications is enormous, extending from ground-based VR training for extravehicular activities at NASA, to medical and educational uses. It seems reasonable to suggest that other space related uses of VR should be investigated. For example, 1) use of head-mounted VR on orbit to rehearse/practice upcoming operational activities, and 2) ground-based VR training for emergency egress procedures. We propose that by combining VR designed for operational activities preflight, along with an appropriate schedule to facilitate sensorimotor adaptation and improve spatial orientation would potentially accomplish two important goals for astronauts and cosmonauts, preflight sensorimotor adaption and enhanced operational

  16. The effect of space and parabolic flight on macrophage hematopoiesis and function

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.; Gerren, R. A.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1995-01-01

    We used weak electric fields to monitor macrophage spreading in microgravity. Using this technique, we demonstrated that bone marrow-derived macrophages responded to microgravity within 8 s. We also showed that microgravity differentially altered two processes associated with bone marrow-derived macrophage development. Spaceflight enhanced cellular proliferation and inhibited differentiation. These data indicate that the space/microgravity environment significantly affects macrophages.

  17. The effect of space and parabolic flight on macrophage hematopoiesis and function

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.; Gerren, R. A.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1995-01-01

    We used weak electric fields to monitor macrophage spreading in microgravity. Using this technique, we demonstrated that bone marrow-derived macrophages responded to microgravity within 8 s. We also showed that microgravity differentially altered two processes associated with bone marrow-derived macrophage development. Spaceflight enhanced cellular proliferation and inhibited differentiation. These data indicate that the space/microgravity environment significantly affects macrophages.

  18. Infectious Considerations in Space Flight

    NASA Technical Reports Server (NTRS)

    Haddon, Robert

    2009-01-01

    Slightly more than 500 people have flown in space, most of them for short periods of time. The total number of person years in space is small. Given this fact, and given rigorous astronaut screening, it is not surprising that the accumulated infectious disease experience in space is also small, and mostly, theoretical. As the human space presence expands, we may expect mission length, total accumulated person years and the environmental complexity to increase. Add to the mix both changes in human immunity and microbial virulence, and it becomes realistic to consider infectious scenarios and the means to mitigate them. This lecture will cover the inhabited space environment from the perspective of host-microbe interactions, current relevant research, and the current countermeasures used. Future challenges will be discussed and there will be opportunity to ask questions about Space Operations. The audience is encouraged to think about what medical tools you would choose to have in different types of mission, what you would be willing to leave behind, and how you would compensate for the necessary trade offs in mission design.

  19. Recent GSFC Space Power Systems Flight Experience

    NASA Technical Reports Server (NTRS)

    Enciso, Marlon L.; Ahmad, Anisa

    2003-01-01

    This viewgraph presentation provides information on the power supplies on scientific satellites, including batteries, and power supply anomalies during in-flight operations. The recent Goddard Space Flight Center (GSFC) missions profiled include the Tropical Rainfall Measuring Mission (TRMM), Landsat 7, Terra-EOS AM, Earth Observing Mission (EO1), Microwave Anistropy Probe (MAP), AQUA-EOS PM, and the Ice, Cloud and Land Elevation Satellite (ICESAT).

  20. Effects of an Approach Spacing Flight Deck Tool on Pilot Eyescan

    NASA Technical Reports Server (NTRS)

    Oseguera-Lohr, Rosa M.; Nadler, Eric D.

    2004-01-01

    An airborne tool has been developed based on the concept of an aircraft maintaining a time-based spacing interval from the preceding aircraft. The Advanced Terminal Area Approach Spacing (ATAAS) tool uses Automatic Dependent Surveillance-Broadcast (ADS-B) aircraft state data to compute a speed command for the ATAAS-equipped aircraft to obtain a required time interval behind another aircraft. The tool and candidate operational procedures were tested in a high-fidelity, full mission simulator with active airline subject pilots flying an arrival scenario using three different modes for speed control. Eyetracker data showed only slight changes in instrument scan patterns, and no significant change in the amount of time spent looking out the window with ATAAS, versus standard ILS procedures.

  1. Integration Testing of Space Flight Systems

    NASA Technical Reports Server (NTRS)

    Honeycutt, Timothy; Sowards, Stephanie

    2008-01-01

    Based on the previous success' of Multi-Element Integration Testing (MEITs) for the International Space Station Program, these type of integrated tests have also been planned for the Constellation Program: MEIT (1) CEV to ISS (emulated) (2) CEV to Lunar Lander/EDS (emulated) (3) Future: Lunar Surface Systems and Mars Missions Finite Element Integration Test (FEIT) (1) CEV/CLV (2) Lunar Lander/EDS/CaL V Integrated Verification Tests (IVT) (1) Performed as a subset of the FEITs during the flight tests and then performed for every flight after Full Operational Capability (FOC) has been obtained with the flight and ground Systems.

  2. Overview of International Space Station orbital environments exposure flight experiments

    NASA Astrophysics Data System (ADS)

    Soares, Carlos E.; Mikatarian, Ronald R.; Schmidl, Danny; Finckenor, Miria; Neish, Michael; Imagawa, Kichiro; Dinguirard, Magdeleine; van Eesbeek, Marc; Naumov, S. F.; Krylov, A. N.; Mishina, L. V.; Gerasimov, Y. I.; Sokolova, S. P.; Kurilyonok, A. O.; Alexandrov, N. G.; Smirnova, T. N.

    2004-10-01

    This paper presents an overview of International Space Station (ISS) on-orbit environments exposure flight experiments. International teams are flying, or preparing to fly, externally mounted materials exposure trays and sensor packages. The samples in these trays are exposed to a combination of induced molecular contamination, ultraviolet radiation, atomic oxygen, ionizing radiation, micrometeoroids and orbital debris. Exposed materials samples are analyzed upon return. Typical analyses performed on these samples include optical property measurements, X-ray photo spectroscopy (XPS) depth profiles, scanning electron microscope (SEM) surface morphology and materials properties measurements. The objective of these studies is to characterize the long-term effects of the natural and induced environments on spacecraft materials. Ongoing flight experiments include the U.S. Materials International Space Station Experiment (MISSE) program, the Japanese Micro-Particles Capturer and Space Environment Exposure Device (SM/MPAC&SEED) experiment, the Russian SKK and Kromka experiments from RSC-Energia, and the Komplast flight experiment. Flight experiments being prepared for flight, or in development stage, include the Japanese Space Environment Data Acquisition Attached Payload (SEDA-AP), the Russian BKDO monitoring package from RSC-Energia, and the European Materials Exposure and Degradation Experiment (MEDET). Results from these ISS flight experiments will be crucial to extending the performance and life of long-duration space systems such as Space Station, Space Transportation System, and other missions for Moon and Mars exploration.

  3. 14 CFR 460.51 - Space flight participant training.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Space flight participant training. 460.51 Section 460.51 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING HUMAN SPACE FLIGHT REQUIREMENTS Launch and Reentry with a Space Flight...

  4. 14 CFR 460.51 - Space flight participant training.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Space flight participant training. 460.51 Section 460.51 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING HUMAN SPACE FLIGHT REQUIREMENTS Launch and Reentry with a Space Flight...

  5. 14 CFR 460.51 - Space flight participant training.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Space flight participant training. 460.51 Section 460.51 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING HUMAN SPACE FLIGHT REQUIREMENTS Launch and Reentry with a Space Flight...

  6. 14 CFR 460.51 - Space flight participant training.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Space flight participant training. 460.51 Section 460.51 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING HUMAN SPACE FLIGHT REQUIREMENTS Launch and Reentry with a Space Flight...

  7. 14 CFR 460.51 - Space flight participant training.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Space flight participant training. 460.51 Section 460.51 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING HUMAN SPACE FLIGHT REQUIREMENTS Launch and Reentry with a Space Flight...

  8. Calcium metabolism in space flight.

    PubMed

    Neuman, W F

    1970-01-01

    Immobilization has been shown repeatedly to induce a loss of skeletal substance accompanied by hypercalcemia and hypercalcuria. Older data from paraplegics, polio patients, fracture patients and immobilized normal volunteers are reviewed. More recent studies of bone densitometry on normal volunteers and astronauts of Gemini flights IV, V, and VII are reported briefly. Finally, metabolic balance studies from Gemini VII are summarized. The balance data suggest that adequate calcium intake and programmed exercise may control the problem of calcium mobilization. However, there are disquieting discrepancies between the densitometric results (which show bone losses) and the balance data (which show no bone loss). Either the densitometric results are in error or there occur alarming intraskeletal transfers of bone mineral not detected by the balance approach.

  9. Biodosimetry results from space flight Mir-18

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; George, K.; Johnson, A. S.; Durante, M.; Fedorenko, B. S.

    1997-01-01

    Astronauts are classified as radiation workers due to the presence of ionizing radiation in space. For the assessment of health risks, physical dosimetry has been indispensable. However, the change of the location of dosimeters on the crew members, the variation in dose rate with location inside the spacecraft and the unknown biological effects of microgravity can introduce significant uncertainties in estimating exposure. To circumvent such uncertainty, a study on the cytogenetic effects of space radiation in human lymphocytes was proposed and conducted for Mir-18, a 115-day mission. This study used fluorescence in situ hybridization (FISH) with whole-chromosome painting probes to score chromosomal exchanges and the Giemsa staining method to determine the frequency of dicentrics. The growth kinetics of cells and sister chromatid exchanges (SCEs) were examined to ensure that chromosomal aberrations were scored in the first mitosis and were induced primarily by space radiation. Our results showed that the frequency of chromosomal aberrations increased significantly in postflight samples compared to samples drawn prior to flight, and that the frequency of SCEs was similar for both pre- and postflight samples. Based on a dose-response curve for preflight samples exposed to gamma rays, the absorbed dose received by crew members during the mission was estimated to be about 14.75 cSv. Because the absorbed dose measured by physical dosimeters is 5.2 cGy for the entire mission, the RBE is about 2.8.

  10. Biodosimetry results from space flight Mir-18

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; George, K.; Johnson, A. S.; Durante, M.; Fedorenko, B. S.

    1997-01-01

    Astronauts are classified as radiation workers due to the presence of ionizing radiation in space. For the assessment of health risks, physical dosimetry has been indispensable. However, the change of the location of dosimeters on the crew members, the variation in dose rate with location inside the spacecraft and the unknown biological effects of microgravity can introduce significant uncertainties in estimating exposure. To circumvent such uncertainty, a study on the cytogenetic effects of space radiation in human lymphocytes was proposed and conducted for Mir-18, a 115-day mission. This study used fluorescence in situ hybridization (FISH) with whole-chromosome painting probes to score chromosomal exchanges and the Giemsa staining method to determine the frequency of dicentrics. The growth kinetics of cells and sister chromatid exchanges (SCEs) were examined to ensure that chromosomal aberrations were scored in the first mitosis and were induced primarily by space radiation. Our results showed that the frequency of chromosomal aberrations increased significantly in postflight samples compared to samples drawn prior to flight, and that the frequency of SCEs was similar for both pre- and postflight samples. Based on a dose-response curve for preflight samples exposed to gamma rays, the absorbed dose received by crew members during the mission was estimated to be about 14.75 cSv. Because the absorbed dose measured by physical dosimeters is 5.2 cGy for the entire mission, the RBE is about 2.8.

  11. Integration Testing of Space Flight Systems

    NASA Technical Reports Server (NTRS)

    Sowards, Stephanie; Honeycutt, Timothy

    2008-01-01

    This paper discusses the benefits of conducting multi-system integration testing of space flight elements in lieu of merely shipping and shooting to the launch site and launching. "Ship and shoot" is a philosophy that proposes to transport flight elements directly from the factory to the launch site and begin the mission without further testing. Integration testing, relevant to validation testing in this context, is a risk mitigation effort that builds upon the individual element and system levels of qualification and acceptance tests, greatly improving the confidence of operations in space. The International Space Station Program (ISSP) experience is the focus of most discussions from a historical perspective, while proposed integration testing of the Constellation Program is also discussed. The latter will include Multi-Element Integration Testing (MElT) and Flight Element Integration Testing (FElT).

  12. Metabolic Cage for a Space Flight Model in the Rat

    NASA Technical Reports Server (NTRS)

    Harper, Jennifer S.; Mulenburg, Gerald M.; Evans, Juli; Navidi, Meena; Wolinsky, Ira; Arnaud, Sara B.

    1994-01-01

    The new cage facilitates the collection of 24-h specimens of separated urine and feces apparently uncontaminated by food, as required for precise nutritional and metabolic studies, while maintaining the large floor area and suspension method of Holton's design (3). Although the cage was evaluated, using 6-month-old rats weighing 408 to 488 g, it can be easily adjusted for smaller rats. It also was successfully used to collect post-flight urine after the recent Spacelab Life Sciences-2 space shuttle flight. With its flexibility and ease of use, this new cage design adds a new tool to study the physiologic effects of simulated space flight and other disuse conditions.

  13. Space construction results - The EASE/ACCESS flight experiment

    NASA Technical Reports Server (NTRS)

    Bekey, I.

    1986-01-01

    NASA ground and flight test activities aimed at the development of in-space construction techniques for the assembly of Space-Station-sized structures are described. In particular, attention is given to the EASE and ACCESS flight experiments, the ground and water tank program, and operations in-flight including instrumentations. The baseline experiments demonstrate that erectable structures can be assembled effectively by astronauts in EVA. The average assembly time for a 45-foot truss was 25.5 minutes; the assembly rate was 3.6 struts per minute.

  14. Assessment of Nutritional Intake During Space Flight and Space Flight Analogs

    NASA Technical Reports Server (NTRS)

    Rice, Barbara L.; Dlouhy, Holly; Zwart, Sara R.; Smith, Scott M.

    2011-01-01

    Background: Maintaining adequate nutrient intake in microgravity is important not only to meet health maintenance needs of astronauts but also to help counteract the negative effects of space flight. Beyond this, food provides psychosocial benefits throughout a mission. Objective: The purpose of this presentation is to discuss dietary intake data from multiple space programs, including Space Shuttle and the International Space Station. Description: These data arise from medical monitoring of both dietary intake and crew health, as well as research protocols designed to assess the role of diet in counteracting bone loss and other health concerns. Ground-based studies are conducted to better understand some of the negative issues related to space flight. Examples of these analog studies are extended bed rest studies, vitamin D supplementation studies in Antarctica, and saturation diving missions on the floor of the ocean. Methods and findings will be presented describing the use of weighed records, diet diaries, and food frequency questionnaires in these various environments. Provision of food and nutrients in spaceflight is important for many body systems including cardiovascular, musculoskeletal, endocrine, immune, and others. Some key areas of concern are loss of body mass, bone and muscle loss, radiation exposure, nutrient intakes during spacewalks, depletion of nutrient stores, and inadequate dietary intake. Initial experimental research studies using food and nutrition as a countermeasure to aid in mitigating these concerns are underway. Conclusion: Beyond their importance for the few individuals leaving the planet, these studies have significant implications for those remaining on Earth.

  15. Experiment M115: Special hematologic effects: Dynamic changes in red cell shape in response to the space-flight environment

    NASA Technical Reports Server (NTRS)

    Kimzey, S. L.; Burns, L. C.; Fischer, C. L.

    1974-01-01

    The significance of the transformations in red cell shape observed during the Skylab study must be considered relative to the limitation of man's participation in extended space flight missions. The results of this one study are not conclusive with respect to this question. Based on these examinations of red cells in normal, healthy men and based on other Skylab experiment data relative to the functional capacity of the red cells in vitro and the performance capacity of man as an integrated system, the changes observed would not appear to be the limiting factor in determining man's stay in space. However, the results of this experiment and the documented red cell mass loss during space flight raise serious questions at this time relative to the selection criteria utilized for passengers and crews of future space flights. Until the specific cause and impact of the red cell shape change on cell survival in vivo can be resolved, individuals with diagnosed hematologic abnormalities should not be considered as prime candidates for missions, especially those of longer duration.

  16. Biotechnological experiments in space flights on board of space stations

    NASA Astrophysics Data System (ADS)

    Nechitailo, Galina S.

    2012-07-01

    Space flight conditions are stressful for any plant and cause structural-functional transition due to mobiliation of adaptivity. In space flight experiments with pea tissue, wheat and arabidopsis we found anatomical-morphological transformations and biochemistry of plants. In following experiments, tissue of stevia (Stevia rebaudiana), potato (Solanum tuberosum), callus culture and culture and bulbs of suffron (Crocus sativus), callus culture of ginseng (Panax ginseng) were investigated. Experiments with stevia carried out in special chambers. The duration of experiment was 8-14 days. Board lamp was used for illumination of the plants. After experiment the plants grew in the same chamber and after 50 days the plants were moved into artificial ionexchange soil. The biochemical analysis of plants was done. The total concentration of glycozides and ratio of stevioside and rebauside were found different in space and ground plants. In following generations of stevia after flight the total concentration of stevioside and rebauside remains higher than in ground plants. Experiments with callus culture of suffron carried out in tubes. Duration of space flight experiment was 8-167 days. Board lamp was used for illumination of the plants. We found picrocitina pigment in the space plants but not in ground plants. Tissue culture of ginseng was grown in special container in thermostate under stable temperature of 22 ± 0,5 C. Duration of space experiment was from 8 to 167 days. Biological activity of space flight culutre was in 5 times higher than the ground culture. This difference was observed after recultivation of space flight samples on Earth during year after flight. Callus tissue of potato was grown in tubes in thermostate under stable temperature of 22 ± 0,5 C. Duration of space experiment was from 8 to 14 days. Concentration of regenerates in flight samples was in 5 times higher than in ground samples. The space flight experiments show, that microgravity and other

  17. Growth-rate periodicity of Streptomyces levoris during space flight

    NASA Technical Reports Server (NTRS)

    Rogers, T. D.; Brower, M. E.; Taylor, G. R.

    1977-01-01

    Streptomyces levoris provides a suitable biological test system to investigate the effects of space flight on the rhythms of vegetative and spore phase characteristics of both growth-rate periodicity and culture morphology during the pre-, in-, and post-flight periods of the Apollo-Soyuz Test Project. The objectives of the American participation were to study the effects of space flight on the biorhythms of Streptomyces levoris based on a comparison of the growth-rate periodicity of the vegetative and spore phase within each culture, to examine the possible alteration of spore morphology and development by SEM, and to compare the effects of a 12-hr phase shift on the periodic growth characteristics of this microorganism in cultures which were exchanged during the joint activities of the space flight. No uniform differences in the biorhythm of Streptomyces levoris during space flight were observed. It appears that the single most variable factor related to the experiment was the lack of temperature control for the space-flight specimens.

  18. Space shuttle ascent flight turbulence response

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A totally reusable space shuttle configuration has been analyzed during ascent flight to determine its response to atmospheric turbulence. Responses in the form of booster and orbiter body accelerations and booster wing root shear, bending moment and turque were obtained due to random and quasi-square-wave discrete turbulence. The configuration was also analyzed with booster aerodynamic surfaces removed to simulate an expendable booster. Symmetric and antisymmetric analyses were performed. Propellant sloshing, gust penetration, and automatic control system effects were included. It was found that the symmetric responses were generally higher than the antisymmetric ones. The stability augmentation system tended to lower the booster accelerations in the symmetric case, while increasing the orbiter accelerations.

  19. [The countermeasure system for extended space flights].

    PubMed

    Kozlovskaia, I B; Pestov, I D; Egorov, A D

    2008-01-01

    The article summarizes the results of developing countermeasures by the team of winners of the USSR state prize under the leadership of academician O.G. Gazenko, and ensuing investigations at the Institute for Biomedical Problems. The system of countermeasures against the debilitating developments in cosmonaut's organism first developed in Russia ensured successful completion of long-term SF (64 to 438 days) aboard the Salyut and Mir orbital stations. The system incorporates exercises on the treadmill and veloergometer, axial body loading in suit Pinguin, application of negative pressure on the lower part of the body vacuum suit Chibis and several others. The system proved high efficiency in preventing or smoothing over the negative effects of microgravity in the course and after long-term space flight.

  20. Origin of Marshall Space Flight Center (MSFC)

    NASA Image and Video Library

    1960-07-01

    The Marshall Space Flight Center was activated on July 1, 1960 as a part of NASA, which had been established on October 1, 1958 by Congressional passage of the National Aeronautics and Space Act. The nucleus of NASA was the Advisory Committee for Aeronautics later named the National Advisory Committee for Aeronauts (NACA). The NACA was founded in 1915 to study the problems of flight and to recommend practical solutions to basic aircraft design and construction problems. NACA's wind turnels and other research facilities made NACA technical reports the basis for aviation progress for more than 40 years.

  1. Infectious Disease Risk Associated with Space Flight

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.

    2010-01-01

    This slide presentation opens with views of the shuttle in various stages of preparation for launch, a few moments after launch prior to external fuel tank separation, a few pictures of the earth,and several pictures of astronomical interest. The presentation reviews the factors effecting the risks of infectious disease during space flight, such as the crew, water, food, air, surfaces and payloads and the factors that increase disease risk, the factors affecting the risk of infectious disease during spaceflight, and the environmental factors affecting immunity, such as stress. One factor in space infectious disease is latent viral reactivation, such as herpes. There are comparisons of the incidence of viral reactivation in space, and in other analogous situations (such as bed rest, or isolation). There is discussion of shingles, and the pain and results of treatment. There is a further discussion of the changes in microbial pathogen characteristics, using salmonella as an example of the increased virulence of microbes during spaceflight. A factor involved in the risk of infectious disease is stress.

  2. Technology transfer within the NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Plotkin, Henry H.

    1992-01-01

    Viewgraphs on technology transfer within the NASA Goddard Space Flight Center presented to Civil Space Technology Development workshop on technology transfer and effectiveness are provided. Topics covered include: obstacles to technology transfer; technology transfer improvement program at GSFC: communication between technology developers and users; and user feedback to technologists.

  3. History of nutrition in space flight: overview

    NASA Technical Reports Server (NTRS)

    Lane, Helen W.; Feeback, Daniel L.

    2002-01-01

    Major accomplishments in nutritional sciences for support of human space travel have occurred over the past 40 y. This article reviews these accomplishments, beginning with the early Gemini program and continuing through the impressive results from the first space station Skylab program that focused on life sciences research, the Russian contributions through the Mir space station, the US Shuttle life sciences research, and the emerging International Space Station missions. Nutrition is affected by environmental conditions such as radiation, temperature, and atmospheric pressures, and these are reviewed. Nutrition with respect to space flight is closely interconnected with other life sciences research disciplines including the study of hematology, immunology, as well as neurosensory, cardiovascular, gastrointestinal, circadian rhythms, and musculoskeletal physiology. These relationships are reviewed in reference to the overall history of nutritional science in human space flight. Cumulative nutritional research over the past four decades has resulted in the current nutritional requirements for astronauts. Space-flight nutritional recommendations are presented along with the critical path road map that outlines the research needed for future development of nutritional requirements.

  4. History of nutrition in space flight: overview

    NASA Technical Reports Server (NTRS)

    Lane, Helen W.; Feeback, Daniel L.

    2002-01-01

    Major accomplishments in nutritional sciences for support of human space travel have occurred over the past 40 y. This article reviews these accomplishments, beginning with the early Gemini program and continuing through the impressive results from the first space station Skylab program that focused on life sciences research, the Russian contributions through the Mir space station, the US Shuttle life sciences research, and the emerging International Space Station missions. Nutrition is affected by environmental conditions such as radiation, temperature, and atmospheric pressures, and these are reviewed. Nutrition with respect to space flight is closely interconnected with other life sciences research disciplines including the study of hematology, immunology, as well as neurosensory, cardiovascular, gastrointestinal, circadian rhythms, and musculoskeletal physiology. These relationships are reviewed in reference to the overall history of nutritional science in human space flight. Cumulative nutritional research over the past four decades has resulted in the current nutritional requirements for astronauts. Space-flight nutritional recommendations are presented along with the critical path road map that outlines the research needed for future development of nutritional requirements.

  5. History of nutrition in space flight: overview.

    PubMed

    Lane, Helen W; Feeback, Daniel L

    2002-10-01

    Major accomplishments in nutritional sciences for support of human space travel have occurred over the past 40 y. This article reviews these accomplishments, beginning with the early Gemini program and continuing through the impressive results from the first space station Skylab program that focused on life sciences research, the Russian contributions through the Mir space station, the US Shuttle life sciences research, and the emerging International Space Station missions. Nutrition is affected by environmental conditions such as radiation, temperature, and atmospheric pressures, and these are reviewed. Nutrition with respect to space flight is closely interconnected with other life sciences research disciplines including the study of hematology, immunology, as well as neurosensory, cardiovascular, gastrointestinal, circadian rhythms, and musculoskeletal physiology. These relationships are reviewed in reference to the overall history of nutritional science in human space flight. Cumulative nutritional research over the past four decades has resulted in the current nutritional requirements for astronauts. Space-flight nutritional recommendations are presented along with the critical path road map that outlines the research needed for future development of nutritional requirements.

  6. An experiment to study the effects of space flight cells of mesenchymal origin in the new model 3D-graft in vitro

    NASA Astrophysics Data System (ADS)

    Volova, Larissa

    One of the major health problems of the astronauts are disorders of the musculoskeletal system, which determines the relevance of studies of the effect of space flight factors on osteoblastic and hondroblastic cells in vitro. An experiment to study the viability and proliferative activity of cells of mesenchymal origin on culture: chondroblasts and dermal fibroblasts was performed on SC "BION -M" № 1 with scientific equipment " BIOKONT -B ." To study the effect of space flight conditions in vitro at the cellular level has developed a new model with 3D- graft as allogeneic demineralized spongiosa obtained on technology Lioplast ®. For space and simultaneous experiments in the laboratory of the Institute of Experimental Medicine and Biotechnology Samara State Medical University were obtained from the cell culture of hyaline cartilage and human skin, which have previously been grown, and then identified by morphological and immunohistochemical methods. In the experiment, they were seeded on the porous 3D- graft (controlled by means of scanning electron and confocal microscopy) and cultured in full growth medium. After completion of the flight of spacecraft "BION -M" № 1 conducted studies of biological objects using a scanning electron microscope (JEOL JSM-6390A Analysis Station, Japan), confocal microscopy and LDH - test. According to the results of the experiment revealed that after a 30- day flight of the cells not only retained vitality, but also during the flight actively proliferate, and their number has increased by almost 8 times. In synchronous experiment, all the cells died by this date. The experimentally confirmed the adequacy of the proposed model 3D- graft in studying the effect of space flight on the morphological and functional characteristics of cells in vitro.

  7. Gene Kranz Visits Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2006-01-01

    On October 19, 2006, former NASA director of Mission Operations Gene Kranz was a keynote speaker at the Marshall Space Flight Center's (MSFC's) 2006 Annual Safety Day program. The best selling author of 'Failure Is Not An Option' and past Apollo flight director was featured during a morning session called 'Coffee and Kranz'. Marshall employees hung on his every word as he told the fascinating story of Apollo 13. Kranz was the acting flight director during the Apollo 13 mission, a mission that seemed doomed to fail due to an onboard explosion. Kranz and his flight control team worked around the clock relentlessly, solving problem after problem, until the crew was returned safely to Earth.

  8. Gene Kranz Visits Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2006-01-01

    On October 19, 2006, former NASA director of Mission Operations Gene Kranz was a keynote speaker at the Marshall Space Flight Center's (MSFC's) 2006 Annual Safety Day program. The best selling author of 'Failure Is Not An Option' and past Apollo flight director was featured during a morning session called 'Coffee and Kranz'. Marshall employees hung on his every word as he told the fascinating story of Apollo 13. Kranz was the acting flight director during the Apollo 13 mission, a mission that seemed doomed to fail due to an onboard explosion. Kranz and his flight control team worked around the clock relentlessly, solving problem after problem, until the crew was returned safely to Earth.

  9. Space shuttle digital flight control system

    NASA Technical Reports Server (NTRS)

    Minott, G. M.; Peller, J. B.; Cox, K. J.

    1976-01-01

    The space shuttle digital, fly by wire, flight control system presents an interesting challenge in avionics system design. In residence in each of four redundant general purpose computers at lift off are the guidance, navigation, and control algorithms for the entire flight. The mission is divided into several flight segments: first stage ascent, second stage ascent; abort to launch site, abort once around; on orbit operations, entry, terminal area energy management; and approach and landing. The FCS is complicated in that it must perform the functions to fly the shuttle as a boost vehicle, as a spacecraft, as a reentry vehicle, and as a conventional aircraft. The crew is provided with both manual and automatic modes of operations in all flight phases including touchdown and rollout.

  10. The German ISS-experiment Cellular Responses to Radiation in Space (CERASP): The effects of single and combined space flight conditions on mammalian cells

    NASA Astrophysics Data System (ADS)

    Hellweg, C. E.; Thelen, M.; Arenz, A.; Baumstark-Khan, C.

    The combined action of ionizing radiation and microgravity will continue to influence future manned space missions, with special risks for astronauts on the Moon surface or for long duration missions to Mars. There is increasing evidence that basic cellular functions are sensitive not only to radiation but also to microgravity. Previous space flight experiments gave contradictory results: from inhibition of DNA repair by microgravity to enhancement, whereas others did not detect any influence of microgravity on repair. At the Radiation Biology Department of the German Aerospace Center (DLR), recombinant bacterial and mammalian cell systems were developed as reporters for cellular signal transduction modulation by genotoxic environmental conditions. The space experiment “Cellular Responses to Radiation in Space” (CERASP) to be performed at the International Space Station (ISS) will make use of such reporter cell lines thereby supplying basic information on the cellular response to radiation applied in microgravity. One of the biological endpoints will be survival reflected by radiation-dependent reduction of constitutive expression of the enhanced variant of green fluorescent protein (EGFP). A second end-point will be gene activation by space flight conditions in mammalian cells, based on fluorescent promoter reporter systems using the destabilized d2EGFP variant. The promoter element to be investigated reflects the activity of the nuclear factor kappa B (NF-κB) pathway. The NF-κB family of proteins plays a major role in the inflammatory and immune response, cell proliferation and differentiation, apoptosis and tumor genesis. Results obtained with X-rays and accelerated heavy ions produced at the French heavy ion accelerator GANIL imply that densely ionizing radiation has a stronger potential to activate NF-κB dependent gene expression than sparsely ionizing radiation. The correlation of NF-κB activation to negative regulation of apoptosis could favor

  11. The effects of space flight on the contractile apparatus of antigravity muscles: implications for aging and deconditioning.

    PubMed

    Baldwin, K M; Caiozzo, V J; Haddad, F; Baker, M J; Herrick, R E

    1994-05-01

    Previous studies have shown that the unloading of skeletal muscle, as occurring during exposure to space flight, exerts a profound effect on both the mass (cross sectional area) of skeletal muscle fibers and the relative expression of protein isoforms comprising the contractile system. Available information suggests that slow (type I) fibers, comprising chiefly the antigravity muscles of experimental animals, in addition to atrophying, undergo alterations in the type of myosin heavy chain (MHC) expressed such that faster isoforms become concomitantly expressed in a sub-population of slow fibers when insufficient force-bearing activity is maintained on the muscle. Consequently, these transformations in both mass and myosin heavy chain phenotype could exert a significant impact on the functional properties of skeletal muscle as manifest in the strength, contractile speed, and endurance scope of the muscle. To further explore these issues, a study was performed in which young adult male rats were exposed to zero gravity for six days, following which, the antigravity soleus muscle was examined for a) contractile properties, determined in situ and b) isomyosin expression, as studied using biochemical, molecular biology, and histochemical/immunohistochemical techniques.

  12. The effects of space flight on the contractile apparatus of antigravity muscles: implications for aging and deconditioning

    NASA Technical Reports Server (NTRS)

    Baldwin, K. M.; Caiozzo, V. J.; Haddad, F.; Baker, M. J.; Herrick, R. E.

    1994-01-01

    Previous studies have shown that the unloading of skeletal muscle, as occurring during exposure to space flight, exerts a profound effect on both the mass (cross sectional area) of skeletal muscle fibers and the relative expression of protein isoforms comprising the contractile system. Available information suggests that slow (type I) fibers, comprising chiefly the antigravity muscles of experimental animals, in addition to atrophying, undergo alterations in the type of myosin heavy chain (MHC) expressed such that faster isoforms become concomitantly expressed in a sub-population of slow fibers when insufficient force-bearing activity is maintained on the muscle. Consequently, these transformations in both mass and myosin heavy chain phenotype could exert a significant impact on the functional properties of skeletal muscle as manifest in the strength, contractile speed, and endurance scope of the muscle. To further explore these issues, a study was performed in which young adult male rats were exposed to zero gravity for six days, following which, the antigravity soleus muscle was examined for a) contractile properties, determined in situ and b) isomyosin expression, as studied using biochemical, molecular biology, and histochemical/immunohistochemical techniques.

  13. The effects of space flight on the contractile apparatus of antigravity muscles: implications for aging and deconditioning

    NASA Technical Reports Server (NTRS)

    Baldwin, K. M.; Caiozzo, V. J.; Haddad, F.; Baker, M. J.; Herrick, R. E.

    1994-01-01

    Previous studies have shown that the unloading of skeletal muscle, as occurring during exposure to space flight, exerts a profound effect on both the mass (cross sectional area) of skeletal muscle fibers and the relative expression of protein isoforms comprising the contractile system. Available information suggests that slow (type I) fibers, comprising chiefly the antigravity muscles of experimental animals, in addition to atrophying, undergo alterations in the type of myosin heavy chain (MHC) expressed such that faster isoforms become concomitantly expressed in a sub-population of slow fibers when insufficient force-bearing activity is maintained on the muscle. Consequently, these transformations in both mass and myosin heavy chain phenotype could exert a significant impact on the functional properties of skeletal muscle as manifest in the strength, contractile speed, and endurance scope of the muscle. To further explore these issues, a study was performed in which young adult male rats were exposed to zero gravity for six days, following which, the antigravity soleus muscle was examined for a) contractile properties, determined in situ and b) isomyosin expression, as studied using biochemical, molecular biology, and histochemical/immunohistochemical techniques.

  14. The effect of space flight on monoclonal antibody synthesis in a hybridoma mouse cell line

    NASA Technical Reports Server (NTRS)

    Smiley, S. A.; Gillock, E. T.; Black, M. C.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1997-01-01

    The hybridoma cell line, 3G10G5, producing a monoclonal antibody to the major capsid protein VP1 from the avian polyomavirus budgerigar fledgling disease virus, was produced from a Balb/C mouse. This cell line was used to test the effects of microgravity on cellular processes, specifically protein synthesis. A time course study utilizing incorporation of [35S]methionine into newly synthesized monoclonal antibody was performed on STS-77. After 5.5 days, it was observed that cell counts for the samples exposed to microgravity were lower than those of ground-based samples. However, radiolabel incorporation of the synthesized monoclonal antibody was similar in both orbiter and ground control samples. Overall, microgravity does not seem to have an effect on this cell line's ability to synthesize IgG protein.

  15. The effect of space flight on monoclonal antibody synthesis in a hybridoma mouse cell line

    NASA Technical Reports Server (NTRS)

    Smiley, S. A.; Gillock, E. T.; Black, M. C.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1997-01-01

    The hybridoma cell line, 3G10G5, producing a monoclonal antibody to the major capsid protein VP1 from the avian polyomavirus budgerigar fledgling disease virus, was produced from a Balb/C mouse. This cell line was used to test the effects of microgravity on cellular processes, specifically protein synthesis. A time course study utilizing incorporation of [35S]methionine into newly synthesized monoclonal antibody was performed on STS-77. After 5.5 days, it was observed that cell counts for the samples exposed to microgravity were lower than those of ground-based samples. However, radiolabel incorporation of the synthesized monoclonal antibody was similar in both orbiter and ground control samples. Overall, microgravity does not seem to have an effect on this cell line's ability to synthesize IgG protein.

  16. Origin of Marshall Space Flight Center (MSFC)

    NASA Image and Video Library

    2004-04-15

    Representing the National Aeronautics and Space Administration (NASA) Headquarters and the Marshall Space Flight Center (MSFC), these officials performed the major work in the formation of MSFC. (Left to right) Delmar M. Morris, Deputy Director for Administration, MSFC; Eberhard Rees, Deputy Director for Research and Development, MSFC; Dr. Wernher von Braun, Director, MSFC; Dr. T. Keith Glernan, NASA Administrator; and Maj. Gen. Don R. Ostrander, Director, Office of Launch Vehicle Program, NASA

  17. New approaches to countermeasures of the negative effects of microgravity in long-term space flights

    NASA Astrophysics Data System (ADS)

    Kozlovskaya, I. B.; Sayenko, I. V.; Vinogradova, O. L.; Miller, T. F.; Khusnutdinova, D. R.; Melnik, K. A.; Yarmanova, E. N.

    2006-07-01

    The results of studies of the effects of mechanostimulation of the soles' support zones on the effects of microgravity in the motor system are presented. It was shown that mechanostimulation of the soles support zones in regimen of slow and fast walking, being used daily during 7 days dry immersion, eliminates fully or suppress considerably all the microgravity effects. In subjects in which stimulation was applied six times a day by 20 min every hour the decrease of force-velocities properties and atrophic changes in the leg extensors after the exposure to microgravity were not revealed. Their transverse stiffness was only slightly lowered and the amplitude of electromyographic activity at rest stayed unchanged. The level of orthostatic deficiency in this group was also lower than in the group without stimulation. Thus presented experimental results in full agreement with previous studies allow to conclude that support afferentation plays the leading role in gravitational deprivation of the activity of tonic muscle system and that adequate mechanostimulation of the soles support zones can be used as a countermeasures mean in weightlessness.

  18. Space Flight Plasma Data Analysis

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth H.; Minow, Joseph I.

    2009-01-01

    This slide presentation reviews a method to analyze the plasma data that is reported on board the International Space station (ISS). The Floating Potential Measurement Unit (FPMU), the role of which is to obtain floating potential and ionosphere plasma measurements for validation of the ISS charging model, assess photo voltaic array variability and interpreting IRI predictions, is composed of four probes: Floating Potential Probe (FPP), Wide-sweep Langmuir Probe (WLP), Narrow-sweep Langmuir Probe (NLP) and the Plasma Impedance Probe (PIP). This gives redundant measurements of each parameter. There are also many 'boxes' that the data must pass through before being captured by the ground station, which leads to telemetry noise. Methods of analysis for the various signals from the different sets are reviewed. There is also a brief discussion of LP analysis of Low Earth Orbit plasma simulation source.

  19. Historical Plaque at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This plaque, displayed on the grounds of Marshall Space Flight Center in Huntsville, Alabama, commemorates the Redstone Test Stand as a National Historic Landmark. The site was designated as such in 1985 by the National Park Service of the United States Department of the Interior.

  20. Historical Plaque at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This plaque, displayed on the grounds of Marshall Space Flight Center in Huntsville, Alabama, commemorates the designation of the Propulsion and Structural Test Facility as a National Historic Landmark by the National Park Service of the United States Interior. The site was designated as a landmark in 1985.

  1. Historical Plaque at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This plaque, displayed on the grounds of Marshall Space Flight Center in Huntsville, Alabama, commemorates the Saturn V Launch Vehicle as a National Historic Landmark. The site was designated as such in 1984 by the National Park Service of the United States Department of the Interior.

  2. Historical Plaque at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This plaque, displayed on the grounds of Marshall Space Flight Center in Huntsville, Alabama, commemorates the Saturn V Dynamic Test Stand as a National Historic Landmark. The site was designated as such in 1985 by the National Park Service of the United States Department of the Interior.

  3. A prototype space flight intravenous injection system

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.

    1985-01-01

    Medical emergencies, especially those resulting from accidents, frequently require the administration of intravenous fluids to replace lost body liquids. The development of a prototype space flight intravenous injection system is presented. The definition of requirements, injectable concentrates development, water polisher, reconstitution hardware development, administration hardware development, and prototype fabrication and testing are discussed.

  4. Marshall Space Flight Center Small Business Opportunities

    NASA Technical Reports Server (NTRS)

    Garrison, Lynn

    2007-01-01

    This viewgraph presentation reviews the small business opportunities that are available with the Marshall Space Flight Center. It includes information on all forms of opportunities available and information sources: subcontracting, websites, contacts and a separate section on Small Business Innovation Research (SBIR) & Small Business Technology Transfer (STTR) Programs

  5. Origin of Marshall Space Flight Center (MSFC)

    NASA Image and Video Library

    2004-04-15

    The Marshall Space Flight Center, a NASA field installation, was established at Huntsville, Alabama, in 1960. The Center was named in honor of General George C. Marshall, the Army Chief of Staff during World War II, Secretary of State, and Nobel Prize Wirner for his world-renowned Marshall Plan.

  6. Historical Plaque at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This plaque, displayed on the grounds of Marshall Space Flight Center in Huntsville, Alabama, commemorates the designation of the Propulsion and Structural Test Facility as a National Historic Landmark by the National Park Service of the United States Interior. The site was designated as a landmark in 1985.

  7. Historical Plaque at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This plaque, displayed on the grounds of Marshall Space Flight Center in Huntsville, Alabama, commemorates the Redstone Test Stand as a National Historic Landmark. The site was designated as such in 1985 by the National Park Service of the United States Department of the Interior.

  8. Historical Plaque at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This plaque, displayed on the grounds of Marshall Space Flight Center in Huntsville, Alabama, commemorates the Saturn V Dynamic Test Stand as a National Historic Landmark. The site was designated as such in 1985 by the National Park Service of the United States Department of the Interior.

  9. Historical Plaque at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This plaque, displayed on the grounds of Marshall Space Flight Center in Huntsville, Alabama, commemorates the Saturn V Launch Vehicle as a National Historic Landmark. The site was designated as such in 1984 by the National Park Service of the United States Department of the Interior.

  10. Origin of Marshall Space Flight Center (MSFC)

    NASA Image and Video Library

    1960-07-01

    Dr. Wernher von Braun and Maj. Gen. August Schomburg officiate the official transfer of the Army Ballistic Missile Agency (ABMA) to the NASA George C. Marshall Space Flight Center (MSFC) on July 1, 1960. The Official transfer ceremony took place in the front of the ABMA-MSFC joint headquarters, building 4488, Redstone Arsenal, Alabama.

  11. Logic Design Pathology and Space Flight Electronics

    NASA Technical Reports Server (NTRS)

    Katz, Richard B.; Barto, Rod L.; Erickson, Ken

    1999-01-01

    This paper presents a look at logic design from early in the US Space Program and examines faults in recent logic designs. Most examples are based on flight hardware failures and analysis of new tools and techniques. The paper is presented in viewgraph form.

  12. Skeletal Alterations in Rats During Space Flight

    NASA Technical Reports Server (NTRS)

    Wronski, T. J.; Morey-Holton, E.; Jee, W. S. S.

    1981-01-01

    Male Wistar rats were placed in orbit for an 18.5 day period aboard the Soviet Cosmos 1129 biological satellite. The skeletal changes which occurred during space flight were a reduced rate of periosteal bone formation in the tibial and humeral diaphyses, a decreased trabecular bone volume, and an increased fat content of the bone marrow in the proximal tibial metaphysis.

  13. Skeletal alterations in rats during space flight

    NASA Astrophysics Data System (ADS)

    Wronski, T. J.; Morey-Holton, E.; Jee, W. S. S.

    Male Wistar rats were placed in orbit for an 18.5 day period aboard the Soviet Cosmos 1129 biological satellite. The skeletal changes which occurred during space flight were a reduced rate of periosteal bone formation in the tibial and humeral diaphyses, a decreased trabecular bone volume, and an increased fat content of the bone marrow in the proximal tibial metaphysis.

  14. Influence of long term exposure of space flight on Tomato seeds: effects on the first and second generation of plants

    NASA Astrophysics Data System (ADS)

    Nechitailo, G. S.; Jinying, L.; Huai, X.; Yi, P.; Chongqin, T.; Min, L.

    Effects of long term exposure to physical factors of space flight on dormant seeds were studied on plants derived from tomato seeds flown for 5 years on board of the space station MIR. Upon return to Earth the seeds were germinated and grown to maturity (first generation). A second generation of plants was grown from seeds collected from these plants. Samples from both generations of plants were compared to plants from parallel ground-based controls, and significant differences in growth and development were observed between these groups. The test plants exhibited higher variability in yield than control ones. Some of the test plants were infertile. Various differences in cell walls, chloroplasts and mitochondria were observed with an electron microscope. Those ultrastructural changes included plasmolysis, twists, contraction and deformation of cell walls, culvature and loose arrangement of chloroplast lamellae, breach of mitochondria, overflow of inclusions, disappearance of cristae, and a significant increase in the number of starch grains per cell. In addition, changes were revealed in the length and width of chloroplasts in the experimental variant. In some cases, chloroplast destruction was seen. The results obtained point out to significant changes occurring on the molecular level in tomato plants. The leaves of the first generation plants were used for RAPD analysis. Among 40 random primes used in this experiment, 31 primers generated the same DNA bands tape, and 9 primer generated a different DNA band type, 269 DNA bands, were produced among which 29 DNA bands were polymorphic with the percentage of polymorphism being 10.8%. Compared with the control, plants from seeds carried at the space station. The rate of DNA mutation in five plants from seeds carried at the space station was 8.4%, 3.2%, 2.8%, 6.0% and 9.2%, respectively. Considering the specificity of the examined organelles, their sensitivity to environmental factors and dynamics, it can be assumed

  15. Mental Representation of Spatial Cues During Space Flight (3D-Space) experiment

    NASA Image and Video Library

    2009-04-30

    ISS019-E-012429 (30 April 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 19/20 flight engineer, prepares to perform the Mental Representation of Spatial Cues During Space Flight (3D-Space) experiment in the Columbus module of the International Space Station. The experiment is designed to investigate the effects of exposure to microgravity on the mental representation of spatial cues by astronauts during and after spaceflight.

  16. Mental Representation of Spatial Cues During Space Flight (3D-Space) experiment

    NASA Image and Video Library

    2009-04-30

    ISS019-E-012428 (30 April 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 19/20 flight engineer, prepares to perform the Mental Representation of Spatial Cues During Space Flight (3D-Space) experiment in the Columbus module of the International Space Station. The experiment is designed to investigate the effects of exposure to microgravity on the mental representation of spatial cues by astronauts during and after spaceflight.

  17. Metabolic activity, experiment M171. [space flight effects on human metabolism

    NASA Technical Reports Server (NTRS)

    Michel, E. L.; Rummel, J. A.

    1973-01-01

    The Skylab metabolic activity experiment determines if man's metabolic effectiveness in doing mechanical work is progressively altered by a simulated Skylab environment, including environmental factors such as slightly increased pCO2. This test identified several hardware/procedural anomalies. The most important of these were: (1) the metabolic analyzer measured carbon dioxide production and expired water too high; (2) the ergometer load module failed under continuous high workload conditions; (3) a higher than desirable number of erroneous blood pressure measurements were recorded; (4) vital capacity measurements were unreliable; and (5) anticipated crew personal exercise needs to be more structured.

  18. Modulation of vergence by off-vertical yaw axis rotation in the monkey: normal characteristics and effects of space flight

    NASA Technical Reports Server (NTRS)

    Dai, M.; Raphan, T.; Kozlovskaya, I.; Cohen, B.

    1996-01-01

    Horizontal movements of both eyes were recorded simultaneously using scleral search coils in 2 rhesus monkeys before and after the COSMOS 2229 space-flight of 1992-1993. Another 9 monkeys were tested at comparable time intervals and served as controls. Ocular vergence, defined as the difference in horizontal position between the left and right eyes, was measured during off-vertical yaw axis rotation (OVAR) in darkness. Vergence was modulated sinusoidally as a function of head position with regard to gravity during OVAR. The amplitude of peak-to-peak modulation increased with increments in tilt of the angle of the rotational axis (OVAR tilt angle) that ranged from 15 degrees to 90 degrees. Of the 11 monkeys tested, 1 had no measurable modulation in vergence. In the other 10, the mean amplitude of the peak to peak modulation was 5.5 degrees +/- 1.3 degrees at 90 degrees tilt. Each of these monkeys had maximal vergence when its nose was pointed close to upward (gravity back; mean phase: -0.9 degree +/- 26 degrees). After space flight, the modulation in vergence was reduced by over 50% for the two flight monkeys, but the phase of vergence modulation was not altered. The reduction in vergence modulation was sustained for the 11-day postflight testing period. We conclude that changes in vergence are induced in monkeys by the sinusoidal component of gravity acting along the naso-occipital axis during yaw axis OVAR, and that the modulation of the vergence reflex is significantly less sensitive to linear acceleration after space flight.

  19. Modulation of vergence by off-vertical yaw axis rotation in the monkey: normal characteristics and effects of space flight

    NASA Technical Reports Server (NTRS)

    Dai, M.; Raphan, T.; Kozlovskaya, I.; Cohen, B.

    1996-01-01

    Horizontal movements of both eyes were recorded simultaneously using scleral search coils in 2 rhesus monkeys before and after the COSMOS 2229 space-flight of 1992-1993. Another 9 monkeys were tested at comparable time intervals and served as controls. Ocular vergence, defined as the difference in horizontal position between the left and right eyes, was measured during off-vertical yaw axis rotation (OVAR) in darkness. Vergence was modulated sinusoidally as a function of head position with regard to gravity during OVAR. The amplitude of peak-to-peak modulation increased with increments in tilt of the angle of the rotational axis (OVAR tilt angle) that ranged from 15 degrees to 90 degrees. Of the 11 monkeys tested, 1 had no measurable modulation in vergence. In the other 10, the mean amplitude of the peak to peak modulation was 5.5 degrees +/- 1.3 degrees at 90 degrees tilt. Each of these monkeys had maximal vergence when its nose was pointed close to upward (gravity back; mean phase: -0.9 degree +/- 26 degrees). After space flight, the modulation in vergence was reduced by over 50% for the two flight monkeys, but the phase of vergence modulation was not altered. The reduction in vergence modulation was sustained for the 11-day postflight testing period. We conclude that changes in vergence are induced in monkeys by the sinusoidal component of gravity acting along the naso-occipital axis during yaw axis OVAR, and that the modulation of the vergence reflex is significantly less sensitive to linear acceleration after space flight.

  20. Neuro-Ophthalmology of Space Flight.

    PubMed

    Lee, Andrew G; Tarver, William J; Mader, Thomas H; Gibson, Charles Robert; Hart, Stephen F; Otto, Christian A

    2016-03-01

    To describe the history, clinical findings, and possible pathogenic etiologies of the constellation of neuro-ophthalmic findings discovered in astronauts after long-duration space flight and to discuss the terrestrial implications of such findings. Retrospective review of published observational, longitudinal examination of neuro-ophthalmic findings in astronauts after long-duration space flight; analysis of postflight questionnaires regarding in-flight vision changes in approximately 300 additional astronauts; and hypothesis generating for developing possible future countermeasures and potential implications for neuro-ophthalmic disorders on Earth. Astronauts with neuro-ophthalmic findings, which were not present at the start of a space flight mission and only seen on return from long-duration space missions to the International Space Station, will be discussed. After 6 months of space flight, 7 astronauts had ophthalmic findings consisting of optic disc edema in 5, globe flattening in 5, choroidal folds in 5, cotton-wool spots in 3, nerve fiber layer thickening detected by optical coherence tomography in 6, and decreased near vision in 6. Five of 7 astronauts with near vision complaints had a hyperopic shift ≥+0.50 diopters (D) between pre-/post-mission spherical equivalent refraction in 1 or both eyes (range, +0.50 to +1.75 D). These 5 astronauts showed globe flattening on magnetic resonance imaging. A total of 6 lumbar punctures have been performed to date (4 in the originally described cohort) and documented opening pressures of 18, 22, 21, 21.5, 28, and 28.5 cm H2O. These were performed at 8, 66, 19, 7, 12, and 57 days after mission, respectively. The 300 postflight questionnaires documented that approximately 29% and 60% of astronauts on short-duration and long-duration missions, respectively, experienced a degradation in distant and near visual acuity. Some of these vision changes remain unresolved for years after flight. Several possible pathogenic

  1. Proposed Space Flight Experiment Hardware

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The primary thrust for this plan is to develop design tools and fundamental understanding that are timely and consistent with the goal of the various exploration initiatives. The plan will utilize ISS facilities, such as the Fluids Integrated Rack (FIR) and the Microgravity Science Glovebox (MSG). A preliminary flow schematic of Two-Phase Flow Facility (T(phi)FFy) which would utilize FIR is shown in Figure 3. MSG can be utilized to use the Boiling eXperiment Facility (BXF) and Contact Line Dynamics Experiment (CLiDE) Facility. The T(phi)FFy system would have multiple test sections whereby different configurations of heat exchangers could be used to study boiling and condensation phenomena. The test sections would be instrumented for pressure drop, void fraction, heat fluxes, temperatures, high-speed imaging and other diagnostics. Besides a high-speed data acquisition system with a large data storage capability, telemetry could be used to update control and test parameters and download limited amounts of data. In addition, there would be multiple accumulators that could be used to investigate system stability and fluid management issues. The system could accommodate adiabatic tests through either the space station nitrogen supply or have an experiment-specific compressor to pressurize a sufficient amount of air or other non-condensable gas for reuse as the supply bottle is depleted.

  2. Body Fluid Regulation and Hemopoiesis in Space Flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this session, Session JA2, the discussion focuses on the following topics: Bodymass and Fluid Distribution During Longterm Spaceflight with and without Countermeasures; Plasma Volume, Extracellular Fluid Volume, and Regulatory Hormones During Long-Term Space Flight; Effect of Microgravity and its Ground-Based Models on Fluid Volumes and Hemocirculatory Volumes; Seventeen Weeks of Horizontal Bed Rest, Lower Body Negative Pressure Testing, and the Associated Plasma Volume Response; Evaporative Waterloss in Space Theoretical and Experimental Studies; Erythropoietin Under Real and Simulated Micro-G Conditions in Humans; and Vertebral Bone Marrow Changes Following Space Flight.

  3. NASA/Marshall Space Flight Center Overview

    NASA Technical Reports Server (NTRS)

    Sackheim, Robert L.; Roth, Axel (Technical Monitor)

    2001-01-01

    This viewgraph presentation gives an overview of NASA Marshall Space Flight Center's activities and purposes. MSFC seeks to build on previous contacts and relationships with Russian rocket institutions, to better understand Russian rocket products and technical capabilities. The US launch vehicle and spacecraft industry are already using many Russian propulsion products and MSFC needs better technical knowledge and understanding of these products as this use increases. Further details are given on MSFC's role in determining and developing the scope of space propulsion, NASA's Integrated Space Transportation Plan, Earth to Orbit propulsion systems, Space Shuttle propulsion systems, proposed Shuttle safety upgrades, and in-space propulsion systems. MSFC's role in the construction and support of the International Space Station is also described.

  4. [Water-salt metabolism in space flights].

    PubMed

    Noskov, V B

    2013-01-01

    The article centres on the water-salt metabolism properties in space flights of varying duration. To assess the water and mineral turnover, renal function and their hormonal regulation in flight, a series of experiments was carried out with participation of Russian and international cosmonauts. These experiments and ground model investigations shed light on the mechanisms of osmotic and volumetric regulation in microgravity and guided the development of countermeasures and methods for correcting the negative shifts as a result of body adaptation to the novel environment.

  5. Styx tours Marshall Space Flight Center

    NASA Image and Video Library

    2017-04-27

    Keith Parrish, left, of the Space Systems Department at NASA’s Marshall Space Flight Center, discusses the process of the Environmental Control and Life Support System with Marshall Center Director Todd May, second from left, and members of the legendary rock band Styx during a tour of Marshall April 27. Inspired by NASA’s goal of sending humans to Mars in the 2030s, the band’s upcoming album, "The Mission," musically chronicles a futuristic, crewed mission to Mars. While Styx’s mission may be only realized through their iconic sound, NASA’s mission is well underway with the new Space Launch System

  6. Toxicological implications of extended space flights.

    PubMed

    Weiss, B; Utell, M; Morrow, P

    1992-01-01

    The dominant reason for exposing humans to the risks of space flight is their ability to perform complex tasks and make complex decisions. To fulfill such a role, crews must be shielded against even incipient degradation of performance capacity. The space environment contains potential hazards ranging from microgravity to infectious microorganisms to chemical toxicants. An extensive literature indicates that incipient disruptions of function may occur at low levels of exposure to toxic agents and degrade performance. Such questions need to be pursued before irreversible decisions are made about space vehicle design.

  7. Technology Validation of Optical Fiber Cables for Space Flight Environments

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Friedberg, Patricia; Day, John H. (Technical Monitor)

    2000-01-01

    Periodically, commercially available (COTS) optical fiber cable assemblies are characterized for space flight usage under the NASA Electronic Parts and Packaging Program (NEPP). The purpose of this is to provide a family of optical fiber cable options to a variety of different harsh environments typical to space flight missions. The optical fiber cables under test are evaluated to bring out known failure mechanisms that are expected to occur during a typical mission. The tests used to characterize COTS cables include: (1) vacuum exposure, (2) thermal cycling, and (3) radiation exposure. Presented here are the results of the testing conducted at NASA Goddard Space Flight Center on COTS optical fiber cables over this past year. Several optical fiber cables were characterized for their thermal stability both during and after thermal cycling. The results show how much preconditioning is necessary for a variety of available cables to remain thermally stable in a space flight environment. Several optical fibers of dimensions 100/140/172 microns were characterized for their radiation effects at -125 C using the dose rate requirements of International Space Station. One optical fiber cable in particular was tested for outgassing to verify whether an acrylate coated fiber could be used in a space flight optical cable configuration.

  8. 14 CFR 431.8 - Human space flight.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Human space flight. 431.8 Section 431.8... TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH VEHICLE (RLV) General § 431.8 Human space flight... crew or a space flight participant on board must demonstrate compliance with §§ 460.5, 460.7,...

  9. 14 CFR 431.8 - Human space flight.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Human space flight. 431.8 Section 431.8... TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH VEHICLE (RLV) General § 431.8 Human space flight... crew or a space flight participant on board must demonstrate compliance with §§ 460.5, 460.7,...

  10. [SYMPTOMS OF NEGATIVE EFFECTS CUMULATION IN HUMANS AND ANIMALS UNDER THE ACTION OF G-LOADS OF VARYING DIRECTION IN CONTEXT OF AVIATION AND SPACE FLIGHTS].

    PubMed

    Kotovskaya, A R

    2015-01-01

    Author's and literary data are analyzed to evince symptoms of cumulation in humans and animals of the negative effects caused by g-forces of different directions experienced in aviation and space flights. The author cites evidence for the decisive importance of g-duration for the development of negative effects. Functional indices of g-tolerance do not rule out possible latent changes in visceral organs and body tissues.

  11. Space Flight Applications of Optical Fiber; 30 Years of Space Flight Success

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.

    2010-01-01

    For over thirty years NASA has had success with space flight missions that utilize optical fiber component technology. One of the early environmental characterization experiments that included optical fiber was launched as the Long Duration Exposure Facility in 1978. Since then, multiple missions have launched with optical fiber components that functioned as expected, without failure throughout the mission life. The use of optical fiber in NASA space flight communications links and exploration and science instrumentation is reviewed.

  12. Increased Renal Solute Excretion in Rats Following Space Flight

    NASA Technical Reports Server (NTRS)

    Wade, Charles E.; Moore, A. L.; Morey-Holton, E.

    1995-01-01

    Following space flight a diuresis, due to an increase in free water clearance, has been suggested in humans. To assess the effects of space flight on renal function, rats were flown in space for 14 days. Rats were divided into three groups; vivarium controls (V;n=6; housed 2/shoe box cage), flight controls (FC;n=6; group housed in a flight cage), and flight animals (F;n=6). Upon landing all animals were placed into individual metabolic cages. Urine was collected daily for 7 days and every other day for 14 days. Urine output was increased (p less than 0.05; ANOVA) following flight for 3 days. On postflight day 1, flow rates were, V=6.8 plus or minus 0.9, FC=8.711.8 and F=16.6 plus or minus 2.7 microliter/min. Excretion rates of Na+ and K+ were increased, resulting in an increased osmotic excretion rate (V=7.9 plus or minus 0.9, FC=6.1 plus or minus 0.7 and F=13.5 plus or minus 0.7 uOsm/min). Creatinine excretion rate was increased over the first two postflight days. In the absence of changes in plasma creatinine, Na+, or K+ (samples obtained immediately post flight from similar rats compared to Day 14), GFR was increased following space flight. The increased excretion of solute was thus the result of increased delivery and decreased reabsorption. Osmotic clearance was increased (V=28, FC=27 and F=51 microliter/min), while free water clearance was decreased post flight (V=-21,FC=-18 and F=-34 microliter/min). In rats, the postflight diuresis is the result of an increase in solute (osmotic) excretion with an accompanying reduction in free water clearance.

  13. Increased Renal Solute Excretion in Rats Following Space Flight

    NASA Technical Reports Server (NTRS)

    Wade, Charles E.; Moore, A. L.; Morey-Holton, E.

    1995-01-01

    Following space flight a diuresis, due to an increase in free water clearance, has been suggested in humans. To assess the effects of space flight on renal function, rats were flown in space for 14 days. Rats were divided into three groups; vivarium controls (V;n=6; housed 2/shoe box cage), flight controls (FC;n=6; group housed in a flight cage), and flight animals (F;n=6). Upon landing all animals were placed into individual metabolic cages. Urine was collected daily for 7 days and every other day for 14 days. Urine output was increased (p less than 0.05; ANOVA) following flight for 3 days. On postflight day 1, flow rates were, V=6.8 plus or minus 0.9, FC=8.711.8 and F=16.6 plus or minus 2.7 microliter/min. Excretion rates of Na+ and K+ were increased, resulting in an increased osmotic excretion rate (V=7.9 plus or minus 0.9, FC=6.1 plus or minus 0.7 and F=13.5 plus or minus 0.7 uOsm/min). Creatinine excretion rate was increased over the first two postflight days. In the absence of changes in plasma creatinine, Na+, or K+ (samples obtained immediately post flight from similar rats compared to Day 14), GFR was increased following space flight. The increased excretion of solute was thus the result of increased delivery and decreased reabsorption. Osmotic clearance was increased (V=28, FC=27 and F=51 microliter/min), while free water clearance was decreased post flight (V=-21,FC=-18 and F=-34 microliter/min). In rats, the postflight diuresis is the result of an increase in solute (osmotic) excretion with an accompanying reduction in free water clearance.

  14. Excretion of amino acids by humans during space flight

    NASA Technical Reports Server (NTRS)

    Stein, T. P.; Schluter, M. D.

    1998-01-01

    We measured the urine amino acid distribution patterns before, during and after space flight on the Space Shuttle. The urine samples were collected on two separate flights of the space shuttle. The first flight lasted 9.5 days and the second flight 15 days. Urine was collected continuously on 8 subjects for the period beginning 10 d before launch to 6 d after landing. Results: In contrast to the earlier Skylab missions where a pronounced amino aciduria was found, on shuttle the urinary amino acids showed little change with spaceflight except for a marked decrease in all of the amino acids on FD (flight day) 1 (p<0.05) and a reduction in isoleucine and valine on FD3 and FD4 (p<0.05). Conclusions: (i) Amino aciduria is not an inevitable consequence of space flight. (ii) The occurrence of amino aciduria, like muscle protein breakdown is a mission specific effect rather than part of the general human response to microgravity.

  15. Excretion of amino acids by humans during space flight

    NASA Technical Reports Server (NTRS)

    Stein, T. P.; Schluter, M. D.

    1998-01-01

    We measured the urine amino acid distribution patterns before, during and after space flight on the Space Shuttle. The urine samples were collected on two separate flights of the space shuttle. The first flight lasted 9.5 days and the second flight 15 days. Urine was collected continuously on 8 subjects for the period beginning 10 d before launch to 6 d after landing. Results: In contrast to the earlier Skylab missions where a pronounced amino aciduria was found, on shuttle the urinary amino acids showed little change with spaceflight except for a marked decrease in all of the amino acids on FD (flight day) 1 (p<0.05) and a reduction in isoleucine and valine on FD3 and FD4 (p<0.05). Conclusions: (i) Amino aciduria is not an inevitable consequence of space flight. (ii) The occurrence of amino aciduria, like muscle protein breakdown is a mission specific effect rather than part of the general human response to microgravity.

  16. Postnatal development under conditions of simulated weightlessness and space flight

    NASA Technical Reports Server (NTRS)

    Walton, K.

    1998-01-01

    The adaptability of the developing nervous system to environmental influences and the mechanisms underlying this plasticity has recently become a subject of interest in space neuroscience. Ground studies on neonatal rats using the tail suspension model of weightlessness have shown that the force of gravity clearly influences the events underlying the postnatal development of motor function. These effects depend on the age of the animal, duration of the perturbation and the motor function studied. A nine-day flight study has shown that a dam and neonates can develop under conditions of space flight. The motor function of the flight animals after landing was consistent with that seen in the tail suspension studies, being marked by limb joint extension. However, there were expected differences due to: (1) the unloading of the vestibular system in flight, which did not occur in the ground-based experiments; (2) differences between flight and suspension durations; and (3) the inability to evaluate motor function during the flight. The next step is to conduct experiments in space with the flexibility and rigor that is now limited to ground studies: an opportunity offered by the International Space Station. Copyright 1998 Published by Elsevier Science B.V.

  17. Postnatal development under conditions of simulated weightlessness and space flight

    NASA Technical Reports Server (NTRS)

    Walton, K.

    1998-01-01

    The adaptability of the developing nervous system to environmental influences and the mechanisms underlying this plasticity has recently become a subject of interest in space neuroscience. Ground studies on neonatal rats using the tail suspension model of weightlessness have shown that the force of gravity clearly influences the events underlying the postnatal development of motor function. These effects depend on the age of the animal, duration of the perturbation and the motor function studied. A nine-day flight study has shown that a dam and neonates can develop under conditions of space flight. The motor function of the flight animals after landing was consistent with that seen in the tail suspension studies, being marked by limb joint extension. However, there were expected differences due to: (1) the unloading of the vestibular system in flight, which did not occur in the ground-based experiments; (2) differences between flight and suspension durations; and (3) the inability to evaluate motor function during the flight. The next step is to conduct experiments in space with the flexibility and rigor that is now limited to ground studies: an opportunity offered by the International Space Station. Copyright 1998 Published by Elsevier Science B.V.

  18. Marshall Space Flight Center Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Six, N. F. (Compiler)

    2015-01-01

    The Faculty Fellowship program was revived in the summer of 2015 at NASA Marshall Space Flight Center, following a period of diminished faculty research activity here since 2006 when budget cuts in the Headquarters' Education Office required realignment. Several senior Marshall managers recognized the need to involve the Nation's academic research talent in NASA's missions and projects to the benefit of both entities. These managers invested their funds required to establish the renewed Faculty Fellowship program in 2015, a 10-week residential research involvement of 16 faculty in the laboratories and offices at Marshall. These faculty engineers and scientists worked with NASA collaborators on NASA projects, bringing new perspectives and solutions to bear. This Technical Memorandum is a compilation of the research reports of the 2015 Marshall Faculty Fellowship program, along with the Program Announcement (appendix A) and the Program Description (appendix B). The research touched on seven areas-propulsion, materials, instrumentation, fluid dynamics, human factors, control systems, and astrophysics. The propulsion studies included green propellants, gas bubble dynamics, and simulations of fluid and thermal transients. The materials investigations involved sandwich structures in composites, plug and friction stir welding, and additive manufacturing, including both strength characterization and thermosets curing in space. The instrumentation projects involved spectral interfero- metry, emissivity, and strain sensing in structures. The fluid dynamics project studied the water hammer effect. The human factors project investigated the requirements for close proximity operations in confined spaces. Another team proposed a controls system for small launch vehicles, while in astrophysics, one faculty researcher estimated the practicality of weather modification by blocking the Sun's insolation, and another found evidence in satellite data of the detection of a warm

  19. Rehabilitation After International Space Station Flights

    NASA Technical Reports Server (NTRS)

    Chauvin, S. J.; Shepherd, B. A. S.; Guilliams, M. E.; Taddeo, T.

    2003-01-01

    Rehabilitating U.S. crew members to preflight status following flights on the Russian Mir Space Station required longer than six months for full functional recovery of some of the seven crew members. Additional exercise hardware has been added on the International Space Station as well as a rehabilitative emphasis on functional fitness/agility and proprioception. The authors will describe and present the results of the rehabilitation program for ISS and evaluate rehabilitative needs for longer missions. Pre- and in-flight programs emphasize strength and aerobic conditioning. One year before launch, crew members are assigned an Astronaut Strength and Conditioning specialist. Crew members are scheduled for 2 hours, 3 days a week, for pre-flight training and 2.5 hours, six days a week, for in-flight training. Crewmembers are tested on functional fitness, agility, isokinetic strength, and submaximal cycle ergometer evaluation before and after flight. The information from these tests is used for exercise prescriptions, comparison, and evaluation of the astronaut and training programs. The rehabilitation program lasts for 45 days and is scheduled for 2 hours during each crew workday. Phase 1 of the rehabilitation program starts on landing day and places emphasis on ambulation, flexibility, and muscle strengthening. Phase 2 adds proprioceptive exercise and cardiovascular conditioning. Phase 3 (the longest phase) focuses on functional development. All programs are tailored specifically for each individual according to their test results, preferred recreational activities, and mission roles and duties. Most crew members reached or exceeded their preflight test values 45 days after flight. Some crew members subjectively indicated the need for a longer rehabilitation period. The current rehabilitation program for returning ISS crew members seems adequate in content but may need to be extended for longer expeditions.

  20. The Legacy of Space Shuttle Flight Software

    NASA Technical Reports Server (NTRS)

    Hickey, Christopher J.; Loveall, James B.; Orr, James K.; Klausman, Andrew L.

    2011-01-01

    The initial goals of the Space Shuttle Program required that the avionics and software systems blaze new trails in advancing avionics system technology. Many of the requirements placed on avionics and software were accomplished for the first time on this program. Examples include comprehensive digital fly-by-wire technology, use of a digital databus for flight critical functions, fail operational/fail safe requirements, complex automated redundancy management, and the use of a high-order software language for flight software development. In order to meet the operational and safety goals of the program, the Space Shuttle software had to be extremely high quality, reliable, robust, reconfigurable and maintainable. To achieve this, the software development team evolved a software process focused on continuous process improvement and defect elimination that consistently produced highly predictable and top quality results, providing software managers the confidence needed to sign each Certificate of Flight Readiness (COFR). This process, which has been appraised at Capability Maturity Model (CMM)/Capability Maturity Model Integration (CMMI) Level 5, has resulted in one of the lowest software defect rates in the industry. This paper will present an overview of the evolution of the Primary Avionics Software System (PASS) project and processes over thirty years, an argument for strong statistical control of software processes with examples, an overview of the success story for identifying and driving out errors before flight, a case study of the few significant software issues and how they were either identified before flight or slipped through the process onto a flight vehicle, and identification of the valuable lessons learned over the life of the project.

  1. Thermal comfort and thermoregulation in manned space flight.

    PubMed

    Yang, Zhen-Zhong; Fei, Jin-Xue; Yu, Xue-Jun

    2013-11-01

    Exposure to thermal environment is one of the main concerns for manned space exploration. By focusing on the works performed on thermoregulation at microgravity or simulated microgravity, we endeavored to review the investigation on space thermal environmental physiology. First of all, the application of medical requirements for the crew module design from normal thermal comfort to accidental thermal emergencies in a space craft will be addressed. Then, alterations in the autonomic and behavioral temperature regulation caused by the effect of weightlessness both in space flight and its simulation on the ground are also discussed. Furthermore, countermeasures like exercise training, simulated natural ventilation, encouraged drink, etc., in the protection of thermoregulation during space flight is presented. Finally, the challenge of space thermal environment physiology faced in the future is figured out.

  2. [Space flight/bedrest immobilization and bone. Bone metabolism in space flight and long-duration bed rest].

    PubMed

    Ohshima, Hiroshi; Matsumoto, Toshio

    2012-12-01

    Bone loss and urolithiasis are inevitable outcome in human space flight and long-duration bet rest. The rate of space flight induced bone loss is 10 times faster than in those with osteoporosis. Significant bone loss at weight bearing bones, elevated urinary calcium excretion, and un-coupling of bone resorption and bone formation are observed during the long-term bed rest study. Improvements of resistive exercise device and vitamin-D supplementation for astronauts in International Space Station can partially maintain bone mass, however, they can not fully supress bone resorption and urinary calcium excretion during space flight. JAXA and NASA are performing joint study to validate the mitigration effects on bone resorption and urolithiasis of bisphosphonate supplement in conjunction with excercise.

  3. How human sleep in space--investigations during space flights.

    PubMed

    Stoilova, I M; Zdravev, T K; Yanev, T K

    2003-01-01

    Sleep problems have been observed during many of the space flights. The existence of poor quality of sleep, fatigue, insomnia or different alterations in sleep structure, organization and sleep cyclicity have been established. Nevertheless results obtained from investigations of human sleep on board manned space vehicles show that it is possible to keep sleep patterns related to the restorative and adaptive processes. For the first time in the frame of the "Intercosmos" program a multi-channel system for recording and analysis of sleep in space was constructed by scientists of the Bulgarian Academy of Sciences and was installed on board the manned Mir orbiting station. In 1988 during the joint Bulgarian-Russian space flight continues recording of electro-physiological parameters necessary to estimate the sleep stages and sleep organization was made. These investigations were continued in next space flights of different prolongation. The results were compared with the findings obtained under the conditions during the pre- and post-flight periods.

  4. How human sleep in space — investigations during space flights

    NASA Astrophysics Data System (ADS)

    Stoilova, I. M.; Zdravev, T. K.; Yanev, T. K.

    Sleep problems have been observed during many of the space flights. The existence of poor quality of sleep, fatigue, insomnia or different alterations in sleep structure, organization and sleep cyclicity have been established. Nevertheless results obtained from investigations of human sleep on board manned space vehicles show that it is possible to keep sleep patterns related to the restorative and adaptive processes. For the first time in the frame of the "Intercosmos" program a multi-channel system for recording and analysis of sleep in space was constructed by scientists of the Bulgarian Academy of Sciences and was installed on board the manned Mir orbiting station. In 1988 during the joint Bulgarian-Russian space flight continues recording of electro-physiological parameters necessary to estimate the sleep stages and sleep organization was made. These investigations were continued in next space flights of different prolongation. The results were compared with the findings obtained under the conditions during the pre- and post-flight periods.

  5. Space Launch System Ascent Flight Control Design

    NASA Technical Reports Server (NTRS)

    VanZwieten, Tannen S.; Orr, Jeb S.; Wall, John H.; Hall, Charles E.

    2014-01-01

    A robust and flexible autopilot architecture for NASA's Space Launch System (SLS) family of launch vehicles is presented. As the SLS configurations represent a potentially significant increase in complexity and performance capability of the integrated flight vehicle, it was recognized early in the program that a new, generalized autopilot design should be formulated to fulfill the needs of this new space launch architecture. The present design concept is intended to leverage existing NASA and industry launch vehicle design experience and maintain the extensibility and modularity necessary to accommodate multiple vehicle configurations while relying on proven and flight-tested control design principles for large boost vehicles. The SLS flight control architecture combines a digital three-axis autopilot with traditional bending filters to support robust active or passive stabilization of the vehicle's bending and sloshing dynamics using optimally blended measurements from multiple rate gyros on the vehicle structure. The algorithm also relies on a pseudo-optimal control allocation scheme to maximize the performance capability of multiple vectored engines while accommodating throttling and engine failure contingencies in real time with negligible impact to stability characteristics. The architecture supports active in-flight load relief through the use of a nonlinear observer driven by acceleration measurements, and envelope expansion and robustness enhancement is obtained through the use of a multiplicative forward gain modulation law based upon a simple model reference adaptive control scheme.

  6. Habitability and Human Factors Contributions to Human Space Flight

    NASA Technical Reports Server (NTRS)

    Sumaya, Jennifer Boyer

    2011-01-01

    This slide presentation reviews the work of the Habitability and Human Factors Branch in support of human space flight in two main areas: Applied support to major space programs, and Space research. The field of Human Factors applies knowledge of human characteristics for the design of safer, more effective, and more efficient systems. This work is in several areas of the human space program: (1) Human-System Integration (HSI), (2) Orion Crew Exploration Vehicle, (3) Extravehicular Activity (EVA), (4) Lunar Surface Systems, (5) International Space Station (ISS), and (6) Human Research Program (HRP). After detailing the work done in these areas, the facilities that are available for human factors work are shown.

  7. Systems integration in space flight environmental risk management.

    PubMed

    Morgenthaler, G W; Schulz, J R; Eberhardt, R N; Barrett, T G

    1994-07-01

    This paper reviews the issues that must be addressed to define and integrate technologies, countermeasures, and medical care systems into space systems which will be developed for long duration space flight. This paper considers combined and cumulative effects, the broad range of space environmental health issues, including some examples, and a discussion of a management approach to these risks. While the primary emphasis is on space environmental health issues, other aspects of the space environment are also considered. Allocation of finite resources for optimal risk management is also considered.

  8. NASA Flight Planning Branch Space Shuttle Lessons Learned

    NASA Technical Reports Server (NTRS)

    Clevenger, Jennifer D.; Bristol, Douglas J.; Whitney, Gregory R.; Blanton, Mark R.; Reynolds, F. Fisher, III

    2011-01-01

    Planning products and procedures that allowed the mission Flight Control Teams and the Astronaut crews to plan, train and fly every Space Shuttle mission were developed by the Flight Planning Branch at the NASA Johnson Space Center in Houston, Texas. As the Space Shuttle Program came to a close, lessons learned were collected from each phase of the successful execution of these Space Shuttle missions. Specific examples of how roles and responsibilities of console positions that develop the crew and vehicle attitude timelines have been analyzed and will be discussed. Additionally, the relationships and procedural hurdles experienced through international collaboration have molded operations. These facets will be explored and related to current and future operations with the International Space Station and future vehicles. Along with these important aspects, the evolution of technology and continual improvement of data transfer tools between the Space Shuttle and ground team has also defined specific lessons used in improving the control team s effectiveness. Methodologies to communicate and transmit messages, images, and files from the Mission Control Center to the Orbiter evolved over several years. These lessons were vital in shaping the effectiveness of safe and successful mission planning and have been applied to current mission planning work in addition to being incorporated into future space flight planning. The critical lessons from all aspects of previous plan, train, and fly phases of Space Shuttle flight missions are not only documented in this paper, but are also discussed regarding how they pertain to changes in process and consideration for future space flight planning.

  9. Kids in Space Water Absorption Flight Procedures 40 Demo

    NASA Image and Video Library

    2010-09-15

    ISS024-E-014993 (15 Sept. 2010) --- NASA astronaut Tracy Caldwell Dyson, Expedition 24 flight engineer, conducts a demonstration for the "Kids in Space" session for Water Absorption Flight Procedures #40 in the Columbus laboratory of the International Space Station.

  10. Kids in Space Water Absorption Flight Procedures #40 Demo

    NASA Image and Video Library

    2010-09-15

    ISS024-E-014988 (15 Sept. 2010) --- NASA astronaut Tracy Caldwell Dyson, Expedition 24 flight engineer, conducts a demonstration for the "Kids in Space" session for Water Absorption Flight Procedures #40 in the Columbus laboratory of the International Space Station.

  11. Deep Space Network utilization for flight projects, calendar year 1981

    NASA Technical Reports Server (NTRS)

    Adkins, C. L.; Goto, E. K.

    1982-01-01

    A report on the utilization of the Deep Space Network during calendar year 1981 in support of all flight projects is presented. The network expended 63% of its total capability in support of Space Flight projects.

  12. Reactivity of organism in prolonged space flights

    NASA Technical Reports Server (NTRS)

    Vasilyev, P. V.

    1980-01-01

    An analysis of published data are presented as well as the results of experiments which show that the state of weightlessness and hypodynamia result in a reduced orthostatic and vestibular resistance, increased sensitivity to infections, decreased endurance of accelerations and physical exercises, and altered reactivity of the organism to drugs. Various consequences of weightlessness on the human body, especially weightlessness combined with other factors linked to long space flights are also considered.

  13. Calcium and bone metabolism during space flight

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Heer, Martina

    2002-01-01

    Weightlessness induces bone loss. Understanding the nature of this loss and developing means to counteract it are significant challenges to potential human exploration missions. This article reviews the existing information from studies of bone and calcium metabolism conducted during space flight. It also highlights areas where nutrition may play a specific role in this bone loss, and where countermeasures may be developed to mitigate that loss.

  14. Space flight operations communications phraseology and techniques

    NASA Technical Reports Server (NTRS)

    Noneman, S. R.

    1986-01-01

    Communications are a critical link in space flight operations. Specific communications phraseology and techniques have been developed to allow rapid and clear transfer of information. Communications will be clear and brief through the use of procedural words and phrases. Communications protocols standardize the required information transferred. The voicing of letters and numbers is discussed. The protocols used in air-to-ground communications are given. A glossary of communications terminology is presented in the appendix.

  15. Marshall Space Flight Center's Education Department

    NASA Technical Reports Server (NTRS)

    Henderson, Arthur J., Jr.; Whitaker, Ann F. (Technical Monitor)

    2000-01-01

    Marshall Space Flight Center's Education Department is a resource for Educator, Students and Lifelong Learners. This paper will highlight the Marshall Space Flight Center's Education Department with references to other NASA Education Departments nationwide. The principal focus will be on the responsibilities of the Pre-college Education Team which is responsible for supporting K- 12 teachers highlighting how many of the NASA Pre-college Offices engage teachers and their students in better understanding NASA's inspiring missions, unique facilities, and specialized workforce to carryout these many agency-wide tasks, goals and objectives. Attendee's will learn about the Marshall Educational Alliance Teams, as well, which is responsible for using NASA's unique assets to support all types of learning. All experience and knowledge levels, all grades K-12, and teachers in these specified groupings will gain a true appreciation of what is available for them, through Marshall Space Flight Center's Education Department. An agency-wide blue directory booklet will be distributed to all attendees, for future references and related points of contact.

  16. Marshall Space Flight Center's Education Department

    NASA Technical Reports Server (NTRS)

    Henderson, Arthur J., Jr.; Whitaker, Ann F. (Technical Monitor)

    2000-01-01

    Marshall Space Flight Center's Education Department is a resource for Educator, Students and Lifelong Learners. This paper will highlight the Marshall Space Flight Center's Education Department with references to other NASA Education Departments nationwide. The principal focus will be on the responsibilities of the Pre-college Education Team which is responsible for supporting K- 12 teachers highlighting how many of the NASA Pre-college Offices engage teachers and their students in better understanding NASA's inspiring missions, unique facilities, and specialized workforce to carryout these many agency-wide tasks, goals and objectives. Attendee's will learn about the Marshall Educational Alliance Teams, as well, which is responsible for using NASA's unique assets to support all types of learning. All experience and knowledge levels, all grades K-12, and teachers in these specified groupings will gain a true appreciation of what is available for them, through Marshall Space Flight Center's Education Department. An agency-wide blue directory booklet will be distributed to all attendees, for future references and related points of contact.

  17. Interventions to prevent bone loss in astronauts during space flight.

    PubMed

    Iwamoto, Jun; Takeda, Tsuyoshi; Sato, Yoshihiro

    2005-06-01

    This paper reviews the interventions to stabilize calcium balance and bone metabolism and prevent bone loss in astronauts during space flight. Weightlessness during space flight results in calcium, vitamin D, and vitamin K deficiency, increases urinary calcium excretion, decreases intestinal calcium absorption, and increases serum calcium level, with decreased levels of serum parathyroid hormone and calcitriol. Bone resorption is increased, whereas bone formation is decreased. The loss of bone mineral density (BMD) in the spine, femoral neck and trochanter, and pelvis is 1.0-1.6% per month. High calcium intake and vitamin D supplementation during space flight does not affect bone metabolism, but prevents an elevation of serum calcium level through increased calcitriol level, while vitamin K counteracts the reduction in bone formation. However, there are no data to show the efficacy of pharmaceutical agents for prevention of development of osteoporosis in astronauts during flight, although the preventative effect of bisphosphonates, testosterone, and vitamin K2 on cancellous bone loss in the tibia or BMD loss in the hindlimb was reported in tail-suspended mature rats. It still remains uncertain whether these agents can prevent cortical bone loss caused by weightlessness in tail-suspended rats. Therefore, in addition to calcium, vitamin D, and vitamin K supplementation, agents that have both potent anti-resorptive and anabolic effects on cancellous and cortical bone may be needed to stabilize calcium balance and bone metabolism and prevent bone loss in astronauts during space flight.

  18. Space Human Factors Engineering Challenges in Long Duration Space Flight

    NASA Technical Reports Server (NTRS)

    Garland, Daniel J.; Endsley, Mica R.; Ellison, June; Caldwell, Barrett S.; Mount, Frances E.; Bond, Robert L. (Technical Monitor)

    1999-01-01

    The focus of this panel is on identifying and discussing the critical human factors challenges facing long duration space flight. Living and working aboard the International Space Station (ISS) will build on the experience humans have had to date aboard the Shuttle and MIR. More extended missions, involving lunar and planetary missions to Mars are being planned. These missions will involve many human factors challenges regarding a number of issues on which more research is needed.

  19. Space Human Factors Engineering Challenges in Long Duration Space Flight

    NASA Technical Reports Server (NTRS)

    Garland, Daniel J.; Endsley, Mica R.; Ellison, June; Caldwell, Barrett S.; Mount, Frances E.; Bond, Robert L. (Technical Monitor)

    1999-01-01

    The focus of this panel is on identifying and discussing the critical human factors challenges facing long duration space flight. Living and working aboard the International Space Station (ISS) will build on the experience humans have had to date aboard the Shuttle and MIR. More extended missions, involving lunar and planetary missions to Mars are being planned. These missions will involve many human factors challenges regarding a number of issues on which more research is needed.

  20. Pathogenetic validation of the use of biological protective agents and early treatment in cases of radiation injury simulating radiation effects under space flight conditions

    NASA Technical Reports Server (NTRS)

    Rogozkin, V. D.; Varteres, V.; Sabo, L.; Groza, N.; Nikolov, I.

    1974-01-01

    In considering a radiation safety system for space flights, the various measures to protect man against radiation include drug prophylaxis. At the present time a great deal of experimental material has been accumulated on the prevention and treatment of radiation injuries. Antiradiation effectiveness has been established for sulfur- and nitrogen-containing substances, auxins, cyanides, polynucleotides, mucopolysaccharides, lipopolysaccharides, aminosaccharides, synthetic polymers, vitamins, hormones, amino acids and other compounds which can be divided into two basic groups - biological and chemical protective agents.

  1. Pathogenetic validation of the use of biological protective agents and early treatment in cases of radiation injury simulating radiation effects under space flight conditions

    NASA Technical Reports Server (NTRS)

    Rogozkin, V. D.; Varteres, V.; Sabo, L.; Groza, N.; Nikolov, I.

    1974-01-01

    In considering a radiation safety system for space flights, the various measures to protect man against radiation include drug prophylaxis. At the present time a great deal of experimental material has been accumulated on the prevention and treatment of radiation injuries. Antiradiation effectiveness has been established for sulfur- and nitrogen-containing substances, auxins, cyanides, polynucleotides, mucopolysaccharides, lipopolysaccharides, aminosaccharides, synthetic polymers, vitamins, hormones, amino acids and other compounds which can be divided into two basic groups - biological and chemical protective agents.

  2. Epidemiology of Staphylococcus aureus during space flight

    NASA Technical Reports Server (NTRS)

    Pierson, D. L.; Chidambaram, M.; Heath, J. D.; Mallary, L.; Mishra, S. K.; Sharma, B.; Weinstock, G. M.

    1996-01-01

    Staphylococcus aureus was isolated over 2 years from Space Shuttle mission crewmembers to determine dissemination and retention of bacteria. Samples before and after each mission were from nasal, throat, urine, and feces and from air and surface sampling of the Space Shuttle. DNA fingerprinting of samples by digestion of DNA with SmaI restriction endonuclease followed by pulsed-field gel electrophoresis showed S. aureus from each crewmember had a unique fingerprint and usually only one strain was carried by an individual. There was only one instance of transfer between crewmembers. Strains from interior surfaces after flight matched those of crewmembers, suggesting microbial fingerprinting may have forensic application.

  3. Epidemiology of Staphylococcus aureus during space flight.

    PubMed

    Pierson, D L; Chidambaram, M; Heath, J D; Mallary, L; Mishra, S K; Sharma, B; Weinstock, G M

    1996-12-31

    Staphylococcus aureus was isolated over 2 years from Space Shuttle mission crewmembers to determine dissemination and retention of bacteria. Samples before and after each mission were from nasal, throat, urine, and feces and from air and surface sampling of the Space Shuttle. DNA fingerprinting of samples by digestion of DNA with SmaI restriction endonuclease followed by pulsed-field gel electrophoresis showed S. aureus from each crewmember had a unique fingerprint and usually only one strain was carried by an individual. There was only one instance of transfer between crewmembers. Strains from interior surfaces after flight matched those of crewmembers, suggesting microbial fingerprinting may have forensic application.

  4. Marshall Space Flight Center Test Capabilities

    NASA Technical Reports Server (NTRS)

    Hamilton, Jeffrey T.

    2005-01-01

    The Test Laboratory at NASA's Marshall Space Flight Center has over 50 facilities across 400+ acres inside a secure, fenced facility. The entire Center is located inside the boundaries of Redstone Arsenal, a 40,000 acre military reservation. About 150 Government and 250 contractor personnel operate facilities capable of all types of propulsion and structural testing, from small components to engine systems and structural strength, structural dynamic and environmental testing. We have tremendous engineering expertise in research, evaluation, analysis, design and development, and test of space transportation systems, subsystems, and components.

  5. Current Hypersonic and Space Vehicle Flight Test and Instrumentation

    DTIC Science & Technology

    2015-06-22

    412TW-PA-15264 CURRENT HYPERSONIC AND SPACE VEHICLE FLIGHT TEST AND INSTRUMENTATION John J. Spravka* and Timothy R. Jorris† AIR FORCE TEST...DATES COVERED (From - To) 22 – 26 July 2015 4. TITLE AND SUBTITLE Current Hypersonic and Space Vehicle Flight Test and Instrumentation...utility can be leveraged by a wide range of flight test programs. 15. SUBJECT TERMS Hypersonic, flight test, instrumentation, space access, space

  6. A new day: Challenger and space flight thereafter

    NASA Technical Reports Server (NTRS)

    Vonputtkamer, Jesco

    1986-01-01

    On January 28, 1986, at an altitude of 14 kilometers, the Space Shuttle Challenger was torn apart by an explosion of the external tank. The effects of the accident are undoubtedly far-reaching; they have broad repercussions that affect NASA's international partner organizations. The effects of the postponed shuttle flights on European space programs are discussed. A review of the German participation in the American space program is presented. The need to continue the future projects such as the space station is examined in light of its importance as a springboard for further exploration.

  7. Science at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.

    2012-01-01

    The Sciences and Exploration Directorate of the NASA Goddard Space Flight Center (GSFC) is the largest Earth and space science research organization in the world. Its scientists advance understanding of the Earth and its life-sustaining environment, the Sun, the solar system, and the wider universe beyond. Researchers in the Sciences and Exploration Directorate work with engineers, computer programmers, technologists, and other team members to develop the cutting-edge technology needed for space-based research. Instruments are also deployed on aircraft, balloons, and Earth's surface. I will give an overview of the current research activities and programs at GSFC including the James Web Space Telescope (JWST), future Earth Observing programs, experiments that are exploring our solar system and studying the interaction of the Sun with the Earth's magnetosphere.

  8. Physiology, medicine, long-duration space flight and the NSBRI.

    PubMed

    McPhee, J C; White, R J

    2003-01-01

    The hazards of long-duration space flight are real and unacceptable. In order for humans to participate effectively in long-duration orbital missions or continue the exploration of space, we must first secure the health of the astronaut and the success of such missions by assessing in detail the biomedical risks of space flight and developing countermeasures to these hazards. Acquiring the understanding necessary for building a sound foundation for countermeasure development requires an integrated approach to research in physiology and medicine and a level of cooperative action uncommon in the biomedical sciences. The research program of the National Space Biomedical Research Institute (NSBRI) was designed to accomplish just such an integrated research goal, ameliorating or eliminating the biomedical risks of long-duration space flight and enabling safe and productive exploration of space. The fruits of these labors are not limited to the space program. We can also use the gained understanding of the effects and mechanisms of the physiological changes engendered in space and the applied preventive and rehabilitative methods developed to combat these changes to the benefit of those on Earth who are facing similar physiological and psychological difficulties. This paper will discuss the innovative approach the NSBRI has taken to integrated research management and will present some of the successes of this approach. c2003 International Astronautical Federation. Published by Elsevier Science Ltd. All rights reserved.

  9. Physiology, medicine, long-duration space flight and the NSBRI

    NASA Technical Reports Server (NTRS)

    McPhee, J. C.; White, R. J.

    2003-01-01

    The hazards of long-duration space flight are real and unacceptable. In order for humans to participate effectively in long-duration orbital missions or continue the exploration of space, we must first secure the health of the astronaut and the success of such missions by assessing in detail the biomedical risks of space flight and developing countermeasures to these hazards. Acquiring the understanding necessary for building a sound foundation for countermeasure development requires an integrated approach to research in physiology and medicine and a level of cooperative action uncommon in the biomedical sciences. The research program of the National Space Biomedical Research Institute (NSBRI) was designed to accomplish just such an integrated research goal, ameliorating or eliminating the biomedical risks of long-duration space flight and enabling safe and productive exploration of space. The fruits of these labors are not limited to the space program. We can also use the gained understanding of the effects and mechanisms of the physiological changes engendered in space and the applied preventive and rehabilitative methods developed to combat these changes to the benefit of those on Earth who are facing similar physiological and psychological difficulties. This paper will discuss the innovative approach the NSBRI has taken to integrated research management and will present some of the successes of this approach. c2003 International Astronautical Federation. Published by Elsevier Science Ltd. All rights reserved.

  10. Physiology, medicine, long-duration space flight and the NSBRI

    NASA Astrophysics Data System (ADS)

    McPhee, J. C.; White, R. J.

    2003-08-01

    The hazards of long-duration space flight are real and unacceptable. In order for humans to participate effectively in long-duration orbital missions or continue the exploration of space, we must first secure the health of the astronaut and the success of such missions by assessing in detail the biomedical risks of space flight and developing countermeasures to these hazards. Acquiring the understanding necessary for building a sound foundation for countermeasure development requires an integrated approach to research in physiology and medicine and a level of cooperative action uncommon in the biomedical sciences. The research program of the National Space Biomedical Research Institute (NSBRI) was designed to accomplish just such an integrated research goal, ameliorating or eliminating the biomedical risks of long-duration space flight and enabling safe and productive exploration of space. The fruits of these labors are not limited to the space program. We can also use the gained understanding of the effects and mechanisms of the physiological changes engendered in space and the applied preventive and rehabilitative methods developed to combat these changes to the benefit of those on Earth who are facing similar physiological and psychological difficulties. This paper will discuss the innovative approach the NSBRI has taken to integrated research management and will present some of the successes of this approach.

  11. Physiology, Medicine, Long-Duration Space Flight and the NSBRI

    NASA Astrophysics Data System (ADS)

    White, R. J.; Sutton, J. P.; McPhee, J. C.

    The hazards of long-duration space flight are real and unacceptable. In order for humans to participate effectively in long-duration orbital missions or continue the exploration of space, we must first secure the health of the astronaut and the success of such missions by assessing in detail the biomedical risks of space flight and developing countermeasures to these hazards. Acquiring the understanding necessary for building a sound foundation for countermeasure development requires an integrated approach to research in physiology and medicine and a level of cooperative action uncommon in the biomedical sciences. The research program of the National Space Biomedical Research Institute (NSBRI) was designed to accomplish just such an integrated research goal, ameliorating or eliminating the biomedical risks of long-duration space flight and enabling safe and productive exploration of space. The fruits of these labors are not limited to the space program. We can also use the gained understanding of the effects and mechanisms of the physiological changes engendered in space and the applied preventive and rehabilitative methods developed to combat these changes to the benefit of those on Earth who are facing similar physiological and psychological difficulties. This paper will discuss the innovative approach the NSBRI has taken to integrated research management and will present some of the successes of this approach.

  12. Physiology, medicine, long-duration space flight and the NSBRI

    NASA Technical Reports Server (NTRS)

    McPhee, J. C.; White, R. J.

    2003-01-01

    The hazards of long-duration space flight are real and unacceptable. In order for humans to participate effectively in long-duration orbital missions or continue the exploration of space, we must first secure the health of the astronaut and the success of such missions by assessing in detail the biomedical risks of space flight and developing countermeasures to these hazards. Acquiring the understanding necessary for building a sound foundation for countermeasure development requires an integrated approach to research in physiology and medicine and a level of cooperative action uncommon in the biomedical sciences. The research program of the National Space Biomedical Research Institute (NSBRI) was designed to accomplish just such an integrated research goal, ameliorating or eliminating the biomedical risks of long-duration space flight and enabling safe and productive exploration of space. The fruits of these labors are not limited to the space program. We can also use the gained understanding of the effects and mechanisms of the physiological changes engendered in space and the applied preventive and rehabilitative methods developed to combat these changes to the benefit of those on Earth who are facing similar physiological and psychological difficulties. This paper will discuss the innovative approach the NSBRI has taken to integrated research management and will present some of the successes of this approach. c2003 International Astronautical Federation. Published by Elsevier Science Ltd. All rights reserved.

  13. Intersatellite communications optoelectronics research at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.

    1992-01-01

    A review is presented of current optoelectronics research and development at the NASA Goddard Space Flight Center for high-power, high-bandwidth laser transmitters; high-bandwidth, high-sensitivity optical receivers; pointing, acquisition, and tracking components; and experimental and theoretical system modeling at the NASA Goddard Space Flight Center. Program hardware and space flight opportunities are presented.

  14. Intersatellite communications optoelectronics research at the Goddard Space Flight Center

    NASA Astrophysics Data System (ADS)

    Krainak, Michael A.

    1992-09-01

    A review is presented of current optoelectronics research and development at the NASA Goddard Space Flight Center for high-power, high-bandwidth laser transmitters; high-bandwidth, high-sensitivity optical receivers; pointing, acquisition, and tracking components; and experimental and theoretical system modeling at the NASA Goddard Space Flight Center. Program hardware and space flight opportunities are presented.

  15. The German ISS experiment Cellular Responses to Radiation in Space (CERASP): The effects of single and combined space flight conditions on mammalian cells

    NASA Astrophysics Data System (ADS)

    Baumstark-Khan, C.; Hellweg, C.; Arenz, A.

    2005-08-01

    The German experiment "Cellular Responses to Radiation in Space (CERASP)", to be performed on the International Space Station (ISS) will supply basic information on the cellular response to radiation applied in microgravity. One of the biological endpoints under investigation will be gene activation by space flight conditions in mammalian cells, based on fluorescent promoter reporter systems using green fluorescent protein. The promoter element to be investigated reflects the activity of the nuclear factor kappa B (NF-κB) pathway. Results obtained with X-rays and accelerated argon ions (95 MeV/u, LET 230 keV/μm) produced at the French heavy ion accelerator GANIL imply that densely ionizing radiation has a stronger potential to activate NF-κB dependent gene expression than sparsely ionizing radiation.

  16. Cosmonauts' haemostasis system status before and after space flights

    NASA Astrophysics Data System (ADS)

    Kuzichkin, Dmitry; Markin, Andrey; Morukov, Boris

    indices was increased as compared with general population physiological norms. During the 1st day after long- and short-term flights a tendency for activation of coagulation system along inner and terminal pathways emerged (APTT, TT shortening, an increase in the SFMC concentration). After short-term space flights a tendency for activation of fibrin forming (an increase in the fibrin concentration) was evidenced, and, as a compensatory factor, for activation of fibrinolysis (an increase in fibrynolytic activity and D-dimer concentration). On the contrary, after long-term space flights, a tendency for fibrinolysys decline was observed (fibrinolytic activity and D-dimer concentration decreased at this the fibrinogen concentration remained virtually constant relative to the background level). During the 14th day of the post-flight period normalization of all studied parameters was observed. Discussion. After space flights a tendency for activation of haemostasis procoagulant component is observed. However, during short-term space flights compensatory systems become activated, which may be connected with developing of stress reactions of adaptation to weightlessness conditions and post-flight re-adaptation to ground conditions, while after long-term spaceflights the compensatory effect of fibrinolysis is not pronounced, possibly, due to metabolic process intensity reduction developing during long-duration stay in weightlessness conditions [Grigoriev A.I., Kaplansky A.S., Popova I.A., 1992]. Probably the relatively inactivated cosmonauts’ intrinsic pathway coagulation in pre-flight period (prolonged APTT) is one of the prerequisites of the high resistance to stress factors influence. Plausible this status of intrinsic pathway subject to consequent activation by adrenalin promotes body protection against thrombophilic tendency.

  17. The endocrine system in space flight

    NASA Astrophysics Data System (ADS)

    Leach, C. S.; Johnson, P. C.; Cintron, N. M.

    Hormones are important effectors of the body's response to microgravity in the areas of fluid and electrolyte metabolism, erythropoiesis, and calcium metabolism. For many years antidiuretic hormone, cortisol and aldosterone have been considered the hormones most important for regulation of body fluid volume and blood levels of electrolytes, but they cannot account totally for losses of fluid and electrolytes during space flight. We have now measured atrial natriuretic factor (ANF), a hormone recently shown to regulate sodium and water excretion, in blood specimens obtained during flight. After 30 or 42 h of weightlessness, mean ANF was elevated. After 175 or 180 h, ANF had decreased by 59%, and it changed little between that time and soon after landing. There is probably an increase in ANF early inflight associated with the fluid shift, followed by a compensatory decrease in blood volume. Increased renal blood flow may cause the later ANF decrease. Erythropoietin (Ep), a hormone involved in the control of red blood cell production, was measured in blood samples taken during the first Spacelab mission and was significantly decreased on the second day of flight, suggesting also an increase in renal blood flow. Spacelab-2 investigators report that the active vitamin D metabolite 1α, 25-dihydroxyvitamin D 3 increased early in the flight, indicating that a stimulus for increased bone resorption occurs by 30 h after launch.

  18. Space flight and changes in spatial orientation

    NASA Technical Reports Server (NTRS)

    Reschke, Millard F.; Bloomberg, Jacob J.; Harm, Deborah L.; Paloski, William H.

    1992-01-01

    From a sensory point of view, space flight represents a form of stimulus rearrangement requiring modification of established terrestrial response patterns through central reinterpretation. Evidence of sensory reinterpretation is manifested as postflight modifications of eye/head coordination, locomotor patterns, postural control strategies, and illusory perceptions of self or surround motion in conjunction with head movements. Under normal preflight conditions, the head is stabilized during locomotion, but immediately postflight reduced head stability, coupled with inappropriate eye/head coordination, results in modifications of gait. Postflight postural control exhibits increased dependence on vision which compensates for inappropriate interpretation of otolith and proprioceptive inputs. Eye movements compensatory for perceived self motion, rather than actual head movements have been observed postflight. Overall, the in-flight adaptive modification of head stabilization strategies, changes in head/eye coordination, illusionary motion, and postural control are maladaptive for a return to the terrestrial environment. Appropriate countermeasures for long-duration flights will rely on preflight adaptation and in-flight training.

  19. Research and technology, 1984: Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Moorehead, T. W. (Editor)

    1984-01-01

    The Marshall Space Flight Center conducts research programs in space sciences, materials processing in space, and atmospheric sciences, as well as technology programs in such areas as propulsion, materials, processes, and space power. This Marshall Space Flight Center 1984 Annual Report on Research and Technology contains summaries of the more significant scientific and technical results obtained during FY-84.

  20. 14 CFR 415.8 - Human space flight.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Human space flight. 415.8 Section 415.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH LICENSE General § 415.8 Human space flight. To obtain a launch license, an...