Sample records for space flight system

  1. The Human in Space: Lesson from ISS

    NASA Technical Reports Server (NTRS)

    Sams, Clarence F.

    2009-01-01

    This viewgraph presentation reviews the lessons learned from manned space flight on the International Space Station. The contents include: 1) Overview of space flight effects on crewmembers; 2) General overview of immune system; 3) How does space flight alter immune system? 4) What factors associated with space flight inteact with crewmember immune function and impact health risks? 5) What is the current understanding of space flight effects on the immune system? and 6) Why should NASA be interested in immunology? Why is it significant?

  2. Effects of the space flight environment on the immune system

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald; Butel, Janet S.; Shearer, William T.

    2003-01-01

    Space flight conditions have a dramatic effect on a variety of physiologic functions of mammals, including muscle, bone, and neurovestibular function. Among the physiological functions that are affected when humans or animals are exposed to space flight conditions is the immune response. The focus of this review is on the function of the immune system in space flight conditions during actual space flights, as well as in models of space flight conditions on the earth. The experiments were carried out in tissue culture systems, in animal models, and in human subjects. The results indicate that space flight conditions alter cell-mediated immune responses, including lymphocyte proliferation and subset distribution, and cytokine production. The mechanism(s) of space flight-induced alterations in immune system function remain(s) to be established. It is likely, however, that multiple factors, including microgravity, stress, neuroendocrine factors, sleep disruption, and nutritional factors, are involved in altering certain functions of the immune system. Such alterations could lead to compromised defenses against infections and tumors.

  3. Movable Ground Based Recovery System for Reuseable Space Flight Hardware

    NASA Technical Reports Server (NTRS)

    Sarver, George L. (Inventor)

    2013-01-01

    A reusable space flight launch system is configured to eliminate complex descent and landing systems from the space flight hardware and move them to maneuverable ground based systems. Precision landing of the reusable space flight hardware is enabled using a simple, light weight aerodynamic device on board the flight hardware such as a parachute, and one or more translating ground based vehicles such as a hovercraft that include active speed, orientation and directional control. The ground based vehicle maneuvers itself into position beneath the descending flight hardware, matching its speed and direction and captures the flight hardware. The ground based vehicle will contain propulsion, command and GN&C functionality as well as space flight hardware landing cushioning and retaining hardware. The ground based vehicle propulsion system enables longitudinal and transverse maneuverability independent of its physical heading.

  4. Long range planning for the development of space flight emergency systems.

    NASA Technical Reports Server (NTRS)

    Bolger, P. H.; Childs, C. W.

    1972-01-01

    The importance of long-range planning for space flight emergency systems is pointed out. Factors in emergency systems planning are considered, giving attention to some of the mission classes which have to be taken into account. Examples of the hazards in space flight include fire, decompression, mechanical structure failures, radiation, collision, and meteoroid penetration. The criteria for rescue vehicles are examined together with aspects regarding the conduction of rescue missions. Future space flight programs are discussed, taking into consideration low earth orbit space stations, geosynchronous orbit space stations, lunar operations, manned planetary missions, future space flight vehicles, the space shuttle, special purpose space vehicles, and a reusable nuclear shuttle.

  5. Effect of space flight on cytokine production

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Gerald

    Space flight has been shown to alter many immunological responses. Among those affected are the production of cytokines, Cytokines are the messengers of the immune system that facilitate communication among cells that allow the interaction among cells leading to the development of immune responses. Included among the cytokines are the interferons, interleukins, and colony stimulating factors. Cytokines also facilitate communication between the immune system and other body systems, such as the neuroendocrine and musculoskeletal systems. Some cytokines also have direct protective effects on the host, such as interferon, which can inhibit the replication of viruses. Studies in both humans and animals indicate that models of space flight as well as actual space flight alter the production and action of cytokines. Included among these changes are altered interferon production, altered responsiveness of bone marrow cells to granulocyte/monocyte-colony stimulating factor, but no alteration in the production of interleukin-3. This suggests that there are selective effects of space flight on immune responses, i.e. not all cytokines are affected in the same fashion by space flight. Tissue culture studies also suggest that there may be direct effects of space flight on the cells responsible for cytokine production and action. The results of the above study indicate that the effects of space flight on cytokines may be a fundamental mechanism by which space flight not only affects immune responses, but also other biological systems of the human.

  6. ACES: Space shuttle flight software analysis expert system

    NASA Technical Reports Server (NTRS)

    Satterwhite, R. Scott

    1990-01-01

    The Analysis Criteria Evaluation System (ACES) is a knowledge based expert system that automates the final certification of the Space Shuttle onboard flight software. Guidance, navigation and control of the Space Shuttle through all its flight phases are accomplished by a complex onboard flight software system. This software is reconfigured for each flight to allow thousands of mission-specific parameters to be introduced and must therefore be thoroughly certified prior to each flight. This certification is performed in ground simulations by executing the software in the flight computers. Flight trajectories from liftoff to landing, including abort scenarios, are simulated and the results are stored for analysis. The current methodology of performing this analysis is repetitive and requires many man-hours. The ultimate goals of ACES are to capture the knowledge of the current experts and improve the quality and reduce the manpower required to certify the Space Shuttle onboard flight software.

  7. Extended mission life support systems

    NASA Technical Reports Server (NTRS)

    Quattrone, P. D.

    1985-01-01

    Extended manned space missions which include interplanetary missions require regenerative life support systems. Manned mission life support considerations are placed in perspective and previous manned space life support system technology, activities and accomplishments in current supporting research and technology (SR&T) programs are reviewed. The life support subsystem/system technologies required for an enhanced duration orbiter (EDO) and a space operations center (SOC), regenerative life support functions and technology required for manned interplanetary flight vehicles, and future development requirements are outlined. The Space Shuttle Orbiters (space transportation system) is space cabin atmosphere is maintained at Earth ambient pressure of 14.7 psia (20% O2 and 80% N2). The early Shuttle flights will be seven-day flights, and the life support system flight hardware will still utilize expendables.

  8. Flight projects overview

    NASA Technical Reports Server (NTRS)

    Levine, Jack

    1988-01-01

    Information is given in viewgraph form on the activities of the Flight Projects Division of NASA's Office of Aeronautics and Space Technology. Information is given on space research and technology strategy, current space flight experiments, the Long Duration Exposure Facility, the Orbiter Experiment Program, the Lidar In-Space Technology Experiment, the Ion Auxiliary Propulsion System, the Arcjet Flight Experiment, the Telerobotic Intelligent Interface Flight Experiment, the Cryogenic Fluid Management Flight Experiment, the Industry/University In-Space Flight Experiments, and the Aeroassist Flight Experiment.

  9. The immune system in space, including Earth-based benefits of space-based research.

    PubMed

    Sonnenfeld, Gerald

    2005-08-01

    Exposure to space flight conditions has been shown to result in alterations in immune responses. Changes in immune responses of humans and experimental animals have been shown to be altered during and after space flight of humans and experimental animals or cell cultures of lymphoid cells. Exposure of subjects to ground-based models of space flight conditions, such as hindlimb unloading of rodents or chronic bed rest of humans, has also resulted in changes in the immune system. The relationship of these changes to compromised resistance to infection or tumors in space flight has not been fully established, but results from model systems suggest that alterations in the immune system that occur in space flight conditions may be related to decreases in resistance to infection. The establishment of such a relationship could lead to the development of countermeasures that could prevent or ameliorate any compromises in resistance to infection resulting from exposure to space flight conditions. An understanding of the mechanisms of space flight conditions effects on the immune response and development of countermeasures to prevent them could contribute to the development of treatments for compromised immunity on earth.

  10. Use of animal models for space flight physiology studies, with special focus on the immune system

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    2005-01-01

    Animal models have been used to study the effects of space flight on physiological systems. The animal models have been used because of the limited availability of human subjects for studies to be carried out in space as well as because of the need to carry out experiments requiring samples and experimental conditions that cannot be performed using humans. Experiments have been carried out in space using a variety of species, and included developmental biology studies. These species included rats, mice, non-human primates, fish, invertebrates, amphibians and insects. The species were chosen because they best fit the experimental conditions required for the experiments. Experiments with animals have also been carried out utilizing ground-based models that simulate some of the effects of exposure to space flight conditions. Most of the animal studies have generated results that parallel the effects of space flight on human physiological systems. Systems studied have included the neurovestibular system, the musculoskeletal system, the immune system, the neurological system, the hematological system, and the cardiovascular system. Hindlimb unloading, a ground-based model of some of the effects of space flight on the immune system, has been used to study the effects of space flight conditions on physiological parameters. For the immune system, exposure to hindlimb unloading has been shown to results in alterations of the immune system similar to those observed after space flight. This has permitted the development of experiments that demonstrated compromised resistance to infection in rodents maintained in the hindlimb unloading model as well as the beginning of studies to develop countermeasures to ameliorate or prevent such occurrences. Although there are limitations to the use of animal models for the effects of space flight on physiological systems, the animal models should prove very valuable in designing countermeasures for exploration class missions of the future.

  11. 48 CFR 1852.246-73 - Human space flight item.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false Human space flight item. 1852.246-73 Section 1852.246-73 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE... 1852.246-73 Human space flight item. As prescribed in 1845.370(b), insert the following clause: Human...

  12. 48 CFR 1852.246-73 - Human space flight item.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 6 2013-10-01 2013-10-01 false Human space flight item. 1852.246-73 Section 1852.246-73 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE... 1852.246-73 Human space flight item. As prescribed in 1845.370(b), insert the following clause: Human...

  13. 48 CFR 1852.246-73 - Human space flight item.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 6 2014-10-01 2014-10-01 false Human space flight item. 1852.246-73 Section 1852.246-73 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE... 1852.246-73 Human space flight item. As prescribed in 1845.370(b), insert the following clause: Human...

  14. 48 CFR 1852.246-73 - Human space flight item.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Human space flight item. 1852.246-73 Section 1852.246-73 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE... 1852.246-73 Human space flight item. As prescribed in 1845.370(b), insert the following clause: Human...

  15. 48 CFR 1852.246-73 - Human space flight item.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 6 2012-10-01 2012-10-01 false Human space flight item. 1852.246-73 Section 1852.246-73 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE... 1852.246-73 Human space flight item. As prescribed in 1845.370(b), insert the following clause: Human...

  16. Effects of space flights on human allergic status (IgE-mediated sensitivity)

    NASA Astrophysics Data System (ADS)

    Buravkova, L. B.; Rykova, M. P.; Gertsik, Y. G.; Antropova, E. N.

    2007-02-01

    Suppression of the immune system after space flights of different duration has been reported earlier by Konstantinova [Immune system in extreme conditions, Space immunology. B. 59. M. Science 1988. 289p. (in Russian) [4]; Immunoresistance of man in space flight, Acta Astronautica 23 (1991) 123-127 [5

  17. Bronchoesophageal and related systems in space flight

    NASA Technical Reports Server (NTRS)

    Thornton, William

    1991-01-01

    A review is presented of the detrimental effects of space flight on the human bronchoesophageal system emphasizing related areas such as the gastric system. In-flight symptoms are listed including congestion, nasopharyngeal irritation, epigastric sensations, anorexia, and nausea. Particular attention is given to space-related effects on eating/drinking associated with the absence of hydrostatic pressure in the vascular system. The atmospheric characteristics of a typical space shuttle flight are given, and the reduced pressure and low humidity are related to bronchial, eye, and nose irritation. Earth and space versions of motion sickness are compared, and some critical differences are identified. It is proposed that more research is required to assess the effects of long-duration space travel on these related systems.

  18. Esrange Space Center, a Gate to Space

    NASA Astrophysics Data System (ADS)

    Widell, Ola

    Swedish Space Corporation (SSC) is operating the Esrange Space Center in northern Sweden. Space operations have been performed for more than 40 years. We have a unique combination of maintaining balloon and rocket launch operations, and building payloads, providing space vehicles and service systems. Sub-orbital rocket flights with land recovery and short to long duration balloon flights up to weeks are offered. The geographical location, land recovery area and the long term experience makes Swedish Space Corporation and Esrange to an ideal gate for space activities. Stratospheric balloons are primarily used in supporting atmospheric research, validation of satellites and testing of space systems. Balloon operations have been carried out at Esrange since 1974. A large number of balloon flights are yearly launched in cooperation with CNES, France. Since 2005 NASA/CSBF and Esrange provide long duration balloon flights to North America. Flight durations up to 5 days with giant balloons (1.2 Million cubic metres) carrying heavy payload (up to 2500kg) with astronomical instruments has been performed. Balloons are also used as a crane for lifting space vehicles or parachute systems to be dropped and tested from high altitude. Many scientific groups both in US, Europe and Japan have indicated a great need of long duration balloon flights. Esrange will perform a technical polar circum balloon flight during the summer 2008 testing balloon systems and flight technique. We are also working on a permission giving us the opportunity on a circular stratospheric balloon flight around the North Pole.

  19. Immune responses in space flight

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, G.

    1998-01-01

    Space flight has been shown to have profound effects on immunological parameters of humans, monkeys and rodents. These studies have been carried out by a number of different laboratories. Among the parameters affected are leukocyte blastogenesis, natural killer cell activity, leukocyte subset distribution, cytokine production - including interferons and interleukins, and macrophage maturation and activity. These changes start to occur only after a few days space flight, and some changes continue throughout long-term space flight. Antibody responses have received only very limited study, and total antibody levels have been shown to be increased after long-term space flight. Several factors could be involved in inducing these changes. These factors could include microgravity, lack of load-bearing, stress, acceleration forces, and radiation. The mechanism(s) for space flight-induced changes in immune responses remain(s) to be established. Certainly, there can be direct effects of microgravity, or other factors, on cells that play a fundamental role in immune responses. However, it is now clear that there are interactions between the immune system and other physiological systems that could play a major role. For example, changes occurring in calcium use in the musculoskeletal system induced by microgravity or lack of use could have great impact on the immune system. Most of the changes in immune responses have been observed using samples taken immediately after return from space flight. However, there have been two recent studies that have used in-flight testing. Delayed-type hypersensitivity responses to common recall antigens of astronauts and cosmonauts have been shown to be decreased when tested during space flights. Additionally, natural killer cell and blastogenic activities are inhibited in samples taken from rats during space flight. Therefore, it is now clear that events occurring during space flight itself can affect immune responses. The biological significance of space flight-induced changes in immune parameters remains to be established; however, as duration of flights increases, the potential for difficulties due to impaired immune responses also increases.

  20. Flight telerobotic servicer legacy

    NASA Astrophysics Data System (ADS)

    Shattuck, Paul L.; Lowrie, James W.

    1992-11-01

    The Flight Telerobotic Servicer (FTS) was developed to enhance and provide a safe alternative to human presence in space. The first step for this system was a precursor development test flight (DTF-1) on the Space Shuttle. DTF-1 was to be a pathfinder for manned flight safety of robotic systems. The broad objectives of this mission were three-fold: flight validation of telerobotic manipulator (design, control algorithms, man/machine interfaces, safety); demonstration of dexterous manipulator capabilities on specific building block tasks; and correlation of manipulator performance in space with ground predictions. The DTF-1 system is comprised of a payload bay element (7-DOF manipulator with controllers, end-of-arm gripper and camera, telerobot body with head cameras and electronics module, task panel, and MPESS truss) and an aft flight deck element (force-reflecting hand controller, crew restraint, command and display panel and monitors). The approach used to develop the DTF-1 hardware, software and operations involved flight qualification of components from commercial, military, space, and R controller, end-of-arm tooling, force/torque transducer) and the development of the telerobotic system for space applications. The system is capable of teleoperation and autonomous control (advances state of the art); reliable (two-fault tolerance); and safe (man-rated). Benefits from the development flight included space validation of critical telerobotic technologies and resolution of significant safety issues relating to telerobotic operations in the Shuttle bay or in the vicinity of other space assets. This paper discusses the lessons learned and technology evolution that stemmed from developing and integrating a dexterous robot into a manned system, the Space Shuttle. Particular emphasis is placed on the safety and reliability requirements for a man-rated system as these are the critical factors which drive the overall system architecture. Other topics focused on include: task requirements and operational concepts for servicing and maintenance of space platforms; origins of technology for dexterous robotic systems; issues associated with space qualification of components; and development of the industrial base to support space robotics.

  1. Nutrition in space

    NASA Technical Reports Server (NTRS)

    Smith, S. M.; Davis-Street, J.; Rice, B. L.; Lane, H. W.

    1997-01-01

    The authors review studies conducted to define nutritional requirements for astronauts during space flight and to assess nutrition before, during, and after space flight. Topics include space food systems, research and limitations on spacecraft, physiological adaptation to weightlessness, energy requirements, dietary intake during space flight, bone demineralization, gastrointestinal function, blood volume, and nutrition requirements for space flight. Benefits of space-related nutrition research are highlighted.

  2. Stability and control flight test results of the space transportation system's orbiter

    NASA Technical Reports Server (NTRS)

    Culp, M. A.; Cooke, D. R.

    1982-01-01

    Flight testing of the Space Shuttle Orbiter is in progress and current results of the post-flight aerodynamic analyses are discussed. The purpose of these analyses is to reduce the pre-flight aerodynamic uncertainties, thereby leading to operational certification of the Orbiter flight envelope relative to the integrated airframe and flight control system. Primary data reduction is accomplished with a well documented maximum likelihood system identification techniques.

  3. Research and Technology Report. Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald (Editor); Truszkowski, Walter (Editor); Ottenstein, Howard (Editor); Frost, Kenneth (Editor); Maran, Stephen (Editor); Walter, Lou (Editor); Brown, Mitch (Editor)

    1996-01-01

    This issue of Goddard Space Flight Center's annual report highlights the importance of mission operations and data systems covering mission planning and operations; TDRSS, positioning systems, and orbit determination; ground system and networks, hardware and software; data processing and analysis; and World Wide Web use. The report also includes flight projects, space sciences, Earth system science, and engineering and materials.

  4. NASA Tests 2nd RS-25 Flight Engine for Space Launch System

    NASA Image and Video Library

    2018-01-16

    On Jan. 16, 2018, engineers at NASA’s Stennis Space Center in Mississippi conducted a certification test of another RS-25 engine flight controller on the A-1 Test Stand at Stennis Space Center. The 365-second, full-duration test came a month after the space agency capped a year of RS-25 testing with a flight controller test in mid-December. For the “green run” test the flight controller was installed on RS-25 developmental engine E0528 and fired just as during an actual launch. Once certified, the flight controller will be removed and installed on a flight engine for use by NASA’s new deep-space rocket, the Space Launch System (SLS).

  5. Ion Propulsion Development Projects in US: Space Electric Rocket Test I to Deep Space 1

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Rawlin, Vincent K.; Patterson, Michael J.

    2001-01-01

    The historical background and characteristics of the experimental flights of ion propulsion systems and the major ground-based technology demonstrations are reviewed. The results of the first successful ion engine flight in 1964, Space Electric Rocket Test (SERT) I, which demonstrated ion beam neutralization, are discussed along with the extended operation of SERT II starting in 1970. These results together with the technologies employed on the early cesium engine flights, the applications technology satellite series, and the ground-test demonstrations, have provided the evolutionary path for the development of xenon ion thruster component technologies, control systems, and power circuit implementations. In the 1997-1999 period, the communication satellite flights using ion engine systems and the Deep Space 1 flight confirmed that these auxiliary and primary propulsion systems have advanced to a high level of flight readiness.

  6. Space Flight Software Development Software for Intelligent System Health Management

    NASA Technical Reports Server (NTRS)

    Trevino, Luis C.; Crumbley, Tim

    2004-01-01

    The slide presentation examines the Marshall Space Flight Center Flight Software Branch, including software development projects, mission critical space flight software development, software technical insight, advanced software development technologies, and continuous improvement in the software development processes and methods.

  7. Technical Evaluation Report on the Flight Mechanics Panel Symposium on the Flight Mechanics Panel Symposium on Space Vehicle Flight Mechanics (La Mecanique du Vol des Vehicules Spatiaux)

    DTIC Science & Technology

    1990-11-01

    control and including final recovery for a wide range of space vehicles from tethered satellite systems and flexible space structures to the space plane...flight mechanics, members from the Fluid Dynamics Panel, the Guidance and Control Panel, the Propulsion and Energetics Panel and the Structures and... Structures and Materials which should be overcome for a successful realization of a human Space Transportation System in the 21st century. He

  8. STS-71 Shuttle/Mir mission report

    NASA Technical Reports Server (NTRS)

    Zimpfer, Douglas J.

    1995-01-01

    The performance measurements of the space shuttle on-orbit flight control system from the STS-71 mission is presented in this post-flight analysis report. This system is crucial to the stabilization of large space structures and will be needed during the assembly of the International Space Station A mission overview is presented, including the in-orbit flight tests (pre-docking with Mir) and the systems analysis during the docking and undocking operations. Systems errors and lessons learned are discussed, with possible corrective procedures presented for the upcoming Mir flight tests.

  9. Recent findings in cardiovascular physiology with space travel.

    PubMed

    Hughson, Richard L

    2009-10-01

    The cardiovascular system undergoes major changes in stress with space flight primarily related to the elimination of the head-to-foot gravitational force. A major observation has been that the central venous pressure is not elevated early in space flight yet stroke volume is increased at least early in flight. Recent observations demonstrate that heart rate remains lower during the normal daily activities of space flight compared to Earth-based conditions. Structural and functional adaptations occur in the vascular system that could result in impaired response with demands of physical exertion and return to Earth. Cardiac muscle mass is reduced after flight and contractile function may be altered. Regular and specific countermeasures are essential to maintain cardiovascular health during long-duration space flight.

  10. Food and water supply

    NASA Technical Reports Server (NTRS)

    Popov, I. G.

    1975-01-01

    Supplying astronauts with adequate food and water on short and long-term space flights is discussed based on experiences gained in space flight. Food consumption, energy requirements, and suitability of the foodstuffs for space flight are among the factors considered. Physicochemical and biological methods of food production and regeneration of water from astronaut metabolic wastes, as well as wastes produced in a closed ecological system, or as a result of technical processes taking place in various spacecraft systems are suggested for long-term space flights.

  11. Elementary school aerospace activities: A resource for teachers

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The chronological development of the story of man and flight, with emphasis on space flight, is presented in 10 units designed as a resource for elementary school teachers. Future exploration of space and the utlization of space flight capabilities are included. Each unit contains an outline, a list of suggested activities for correlation, a bibliography, and a list of selected audiovisual materials. A glossary of aerospace terms is included. Topics cover: earth characteristics that affect flight; flight in atmosphere, rockets, technological advances, unmanned Earth satellites, umanned exploration of the solar system, life support systems; astronauts, man in space, and projections for the future.

  12. NASA Tests 2nd RS-25 Flight Engine for Space Launch System

    NASA Image and Video Library

    2017-10-19

    Engineers at NASA’s Stennis Space Center in Mississippi on Oct. 19 completed a hot-fire test of RS-25 rocket engine E2063, a flight engine for NASA’s new Space Launch System (SLS) rocket. Engine E2063 is scheduled to help power SLS on its Exploration Mission-2 (EM-2), the first flight of the new rocket to carry humans. Flight engine E2059 was tested on March 10, 2016, also for use on the EM-2 flight.

  13. NASA Tests 2nd RS-25 Flight Engine For Space Launch System

    NASA Image and Video Library

    2017-10-19

    Engineers at NASA’s Stennis Space Center in Mississippi on Oct. 19 completed a hot-fire test of RS-25 rocket engine E2063, a flight engine for NASA’s new Space Launch System (SLS) rocket. Engine E2063 is scheduled to help power SLS on its Exploration Mission-2 (EM-2), the first flight of the new rocket to carry humans. Flight engine E2059 was tested on March 10, 2016, also for use on the EM-2 flight.

  14. Video File - NASA Tests 2nd RS-25 Flight Engine for Space Launch System

    NASA Image and Video Library

    2017-10-19

    Engineers at NASA’s Stennis Space Center in Mississippi on Oct. 19 completed a hot-fire test of RS-25 rocket engine E2063, a flight engine for NASA’s new Space Launch System (SLS) rocket. Engine E2063 is scheduled to help power SLS on its Exploration Mission-2 (EM-2), the first flight of the new rocket to carry humans. Flight engine E2059 was tested on March 10, 2016, also for use on the EM-2 flight.

  15. The Integrated Medical Model - A Risk Assessment and Decision Support Tool for Human Space Flight Missions

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric; Minard, Charles G.; Saile, Lynn; FreiredeCarvalho, Mary; Myers, Jerry; Walton, Marlei; Butler, Douglas; Lopez, Vilma

    2010-01-01

    The Integrated Medical Model (IMM) is a decision support tool that is useful to space flight mission planners and medical system designers in assessing risks and optimizing medical systems. The IMM employs an evidence-based, probabilistic risk assessment (PRA) approach within the operational constraints of space flight.

  16. Optical Fiber Assemblies for Space Flight from the NASA Goddard Space Flight Center, Photonics Group

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Thoma, William Joe; LaRocca, Frank; Chuska, Richard; Switzer, Robert; Day, Lance

    2009-01-01

    The Photonics Group at NASA Goddard Space Flight Center in the Electrical Engineering Division of the Advanced Engineering and Technologies Directorate has been involved in the design, development, characterization, qualification, manufacturing, integration and anomaly analysis of optical fiber subsystems for over a decade. The group supports a variety of instrumentation across NASA and outside entities that build flight systems. Among the projects currently supported are: The Lunar Reconnaissance Orbiter, the Mars Science Laboratory, the James Webb Space Telescope, the Express Logistics Carrier for the International Space Station and the NASA Electronic Parts. and Packaging Program. A collection of the most pertinent information gathered during project support over the past year in regards to space flight performance of optical fiber components is presented here. The objective is to provide guidance for future space flight designs of instrumentation and communication systems.

  17. Autonomous biological system-an unique method of conducting long duration space flight experiments for pharmaceutical and gravitational biology research

    NASA Astrophysics Data System (ADS)

    Anderson, G. A.; MacCallum, T. K.; Poynter, J. E.; Klaus, D., Dr.

    1998-01-01

    Paragon Space Development Corporation (SDC) has developed an Autonomous Biological System (ABS) that can be flown in space to provide for long term growth and breeding of aquatic plants, animals, microbes and algae. The system functions autonomously and in isolation from the spacecraft life support systems and with no mandatory crew time required for function or observation. The ABS can also be used for long term plant and animal life support and breeding on a free flyer space craft. The ABS units are a research tool for both pharmaceutical and basic space biological sciences. Development flights in May of 1996 and September, 1996 through January, 1997 were largely successful, showing both that the hardware and life systems are performing with beneficial results, though some surprises were still found. The two space flights, plus the current flight now on Mir, are expected to result in both a scientific and commercially usable system for breeding and propagation of animals and plants in space.

  18. Solar array flight dynamic experiment

    NASA Technical Reports Server (NTRS)

    Schock, R. W.

    1986-01-01

    The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on space shuttle flight STS-31D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.

  19. Solar array flight dynamic experiment

    NASA Technical Reports Server (NTRS)

    Schock, Richard W.

    1986-01-01

    The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on Space Shuttle flight STS-31D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.

  20. Solar array flight dynamic experiment

    NASA Technical Reports Server (NTRS)

    Schock, Richard W.

    1987-01-01

    The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures' dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on space shuttle flight STS-41D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.

  1. The space shuttle launch vehicle aerodynamic verification challenges

    NASA Technical Reports Server (NTRS)

    Wallace, R. O.; Austin, L. D.; Hondros, J. G.; Surber, T. E.; Gaines, L. M.; Hamilton, J. T.

    1985-01-01

    The Space Shuttle aerodynamics and performance communities were challenged to verify the Space Shuttle vehicle (SSV) aerodynamics and system performance by flight measurements. Historically, launch vehicle flight test programs which faced these same challenges were unmanned instrumented flights of simple aerodynamically shaped vehicles. However, the manned SSV flight test program made these challenges more complex because of the unique aerodynamic configuration powered by the first man-rated solid rocket boosters (SRB). The analyses of flight data did not verify the aerodynamics or performance preflight predictions of the first flight of the Space Transportation System (STS-1). However, these analyses have defined the SSV aerodynamics and verified system performance. The aerodynamics community also was challenged to understand the discrepancy between the wind tunnel and flight defined aerodynamics. The preflight analysis challenges, the aerodynamic extraction challenges, and the postflight analyses challenges which led to the SSV system performance verification and which will lead to the verification of the operational ascent aerodynamics data base are presented.

  2. Intersatellite communications optoelectronics research at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.

    1992-01-01

    A review is presented of current optoelectronics research and development at the NASA Goddard Space Flight Center for high-power, high-bandwidth laser transmitters; high-bandwidth, high-sensitivity optical receivers; pointing, acquisition, and tracking components; and experimental and theoretical system modeling at the NASA Goddard Space Flight Center. Program hardware and space flight opportunities are presented.

  3. Metabolic and Regulatory Systems in Space Flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this session, Session JP2, the discussion focuses on the following topics: The Dynamics of Blood Biochemical Parameters in Cosmonauts During Long-Term Space Flights; Efficiency of Functional Loading Test for Investigations of Metabolic Responses to Weightlessness; Human Cellular Immunity and Space Flight; Cytokine Production and Head-Down Tilt Bed Rest; Plasma and Urine Amino Acids During Human Space Flight; and DNA Fingerprinting, Applications to Space Microbiology.

  4. Space Based Communications

    NASA Technical Reports Server (NTRS)

    Simpson, James; Denson, Erik; Valencia, Lisa; Birr, Richard

    2003-01-01

    Current space lift launches on the Eastern and Western Range require extensive ground-based real-time tracking, communications and command/control systems. These are expensive to maintain and operate and cover only limited geographical areas. Future spaceports will require new technologies to provide greater launch and landing opportunities, support simultaneous missions, and offer enhanced decision support models and simulation capabilities. These ranges must also have lower costs and reduced complexity while continuing to provide unsurpassed safety to the public, flight crew, personnel, vehicles and facilities. Commercial and government space-based assets for tracking and communications offer many attractive possibilities to help achieve these goals. This paper describes two NASA proof-of-concept projects that seek-to exploit the advantages of a space-based range: Iridium Flight Modem and Space-Based Telemetry and Range Safety (STARS). Iridium Flight Modem uses the commercial satellite system Iridium for extremely low cost, low rate two-way communications and has been successfully tested on four aircraft flights. A sister project at Goddard Space Flight Center's (GSFC) Wallops Flight Facility (WFF) using the Globalstar system has been tested on one rocket. The basic Iridium Flight Modem system consists of a L1 carrier Coarse/Acquisition (C/A)-Code Global Positioning System (GPS) receiver, an on-board computer, and a standard commercial satellite modem and antennas. STARS uses the much higher data rate NASA owned Tracking and Data Relay Satellite System (TDRSS), a C/A-Code GPS receiver, an experimental low-power transceiver, custom built command and data handler processor, and digitized flight termination system (FTS) commands. STARS is scheduled to fly on an F-15 at Dryden Flight Research Center in the spring of 2003, with follow-on tests over the next several years.

  5. LSRA in flight

    NASA Image and Video Library

    1993-04-07

    A NASA CV-990, modified as a Landing Systems Research Aircraft (LSRA), in flight over NASA's Dryden Flight Research Center, Edwards, California, for a test of the space shuttle landing gear system. The space shuttle landing gear test unit, operated by a high-pressure hydraulic system, allowed engineers to assess and document the performance of space shuttle main and nose landing gear systems, tires and wheel assemblies, plus braking and nose wheel steering performance. The series of 155 test missions for the space shuttle program provided extensive data about the life and endurance of the shuttle tire systems and helped raise the shuttle crosswind landing limits at Kennedy.

  6. The Vehicle Control Systems Branch at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Barret, Chris

    1990-01-01

    This paper outlines the responsibility of the Vehicle Control Systems Branch at the Marshall Space Flight Center (MSFC) to analyze, evaluate, define, design, verify, and specify requirements for advanced launch vehicles and related space projects, and to conduct research in advanced flight control concepts. Attention is given to branch responsibilities which include Shuttle-C, Shuttle-C Block II, Shuttle-Z, lunar cargo launch vehicles, Mars cargo launch vehicles, orbital maneuvering vehicle, automatic docking, tethered satellite, aeroassisted flight experiment, and solid rocket booster parachute recovery system design.

  7. Telescience operations with the solar array module plasma interaction experiment

    NASA Technical Reports Server (NTRS)

    Wald, Lawrence W.; Bibyk, Irene K.

    1995-01-01

    The Solar Array Module Plasma Interactions Experiment (SAMPIE) is a flight experiment that flew on the Space Shuttle Columbia (STS-62) in March 1994, as part of the OAST-2 mission. The overall objective of SAMPIE was to determine the adverse environmental interactions within the space plasma of low earth orbit (LEO) on modern solar cells and space power system materials which are artificially biased to high positive and negative direct current (DC) voltages. The two environmental interactions of interest included high voltage arcing from the samples to the space plasma and parasitic current losses. High voltage arcing can cause physical damage to power system materials and shorten expected hardware life. parasitic current losses can reduce power system efficiency because electric currents generated in a power system drain into the surrounding plasma via parasitic resistance. The flight electronics included two programmable high voltage DC power supplies to bias the experiment samples, instruments to measure the surrounding plasma environment in the STS cargo bay, and the on-board data acquisition system (DAS). The DAS provided in-flight experiment control, data storage, and communications through the Goddard Space Flight Center (GSFC) Hitchhiker flight avionics to the GSFC Payload Operations Control Center (POCC). The DAS and the SAMPIE POCC computer systems were designed for telescience operations; this paper will focus on the experiences of the SAMPIE team regarding telescience development and operations from the GSFC POCC during STS-62. The SAMPIE conceptual development, hardware design, and system verification testing were accomplished at the NASA Lewis Research Center (LeRC). SAMPIE was developed under the In-Space Technology Experiment Program (IN-STEP), which sponsors NASA, industry, and university flight experiments designed to enable and enhance space flight technology. The IN-STEP Program is sponsored by the Office of Space Access and Technology (OSAT).

  8. Photonic Component Qualification and Implementation Activities at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Jin, Xiaodan Linda; Chuska, Richard F.; LaRocca, Frank V.; MacMurphy, Shawn L.; Matuszeski, Adam J.; Zellar, Ronald S.; Friedberg, Patricia R.; Malenab, Mary C.

    2006-01-01

    The photonics group in Code 562 at NASA Goddard Space Flight Center supports a variety of space flight programs at NASA including the: International Space Station (ISS), Shuttle Return to Flight Mission, Lunar Reconnaissance Orbiter (LRO), Express Logistics Carrier, and the NASA Electronic Parts and Packaging Program (NEPP). Through research, development, and testing of the photonic systems to support these missions much information has been gathered on practical implementations for space environments. Presented here are the highlights and lessons learned as a result of striving to satisfy the project requirements for high performance and reliable commercial optical fiber components for space flight systems. The approach of how to qualify optical fiber components for harsh environmental conditions, the physics of failure and development lessons learned will be discussed.

  9. Space Shuttle Projects Overview to Columbia Air Forces War College

    NASA Technical Reports Server (NTRS)

    Singer, Jody; McCool, Alex (Technical Monitor)

    2000-01-01

    This paper presents, in viewgraph form, a general overview of space shuttle projects. Some of the topics include: 1) Space Shuttle Projects; 2) Marshall Space Flight Center Space Shuttle Projects Office; 3) Space Shuttle Propulsion systems; 4) Space Shuttle Program Major Sites; 5) NASA Office of Space flight (OSF) Center Roles in Space Shuttle Program; 6) Space Shuttle Hardware Flow; and 7) Shuttle Flights To Date.

  10. Implementation of the Enhanced Flight Termination System at National Aeronautics and Space Administration Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Tow, David

    2010-01-01

    This paper discusses the methodology, requirements, tests, and results of the implementation of the current operating capability for the Enhanced Flight Termination System (EFTS) at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center (DFRC). The implementation involves the development of the EFTS at NASA DFRC starting from the requirements to system safety review to full end to end system testing, and concluding with the acceptance of the system as an operational system. The paper discusses the first operational usage and subsequent flight utilizing EFTS successfully.

  11. NASA Crew Launch Vehicle Flight Test Options

    NASA Technical Reports Server (NTRS)

    Cockrell, Charles E., Jr.; Davis, Stephan R.; Robonson, Kimberly; Tuma, Margaret L.; Sullivan, Greg

    2006-01-01

    Options for development flight testing (DFT) of the Ares I Crew Launch Vehicle (CLV) are discussed. The Ares-I Crew Launch Vehicle (CLV) is being developed by the U.S. National Aeronautics and Space Administration (NASA) to launch the Crew Exploration Vehicle (CEV) into low Earth Orbit (LEO). The Ares-I implements one of the components of the Vision for Space Exploration (VSE), providing crew and cargo access to the International Space Station (ISS) after retirement of the Space Shuttle and, eventually, forming part of the launch capability needed for lunar exploration. The role of development flight testing is to demonstrate key sub-systems, address key technical risks, and provide flight data to validate engineering models in representative flight environments. This is distinguished from certification flight testing, which is designed to formally validate system functionality and achieve flight readiness. Lessons learned from Saturn V, Space Shuttle, and other flight programs are examined along with key Ares-I technical risks in order to provide insight into possible development flight test strategies. A strategy for the first test flight of the Ares I, known as Ares I-1, is presented.

  12. Space Shuttle GN and C Development History and Evolution

    NASA Technical Reports Server (NTRS)

    Zimpfer, Douglas; Hattis, Phil; Ruppert, John; Gavert, Don

    2011-01-01

    Completion of the final Space Shuttle flight marks the end of a significant era in Human Spaceflight. Developed in the 1970 s, first launched in 1981, the Space Shuttle embodies many significant engineering achievements. One of these is the development and operation of the first extensive fly-by-wire human space transportation Guidance, Navigation and Control (GN&C) System. Development of the Space Shuttle GN&C represented first time inclusions of modern techniques for electronics, software, algorithms, systems and management in a complex system. Numerous technical design trades and lessons learned continue to drive current vehicle development. For example, the Space Shuttle GN&C system incorporated redundant systems, complex algorithms and flight software rigorously verified through integrated vehicle simulations and avionics integration testing techniques. Over the past thirty years, the Shuttle GN&C continued to go through a series of upgrades to improve safety, performance and to enable the complex flight operations required for assembly of the international space station. Upgrades to the GN&C ranged from the addition of nose wheel steering to modifications that extend capabilities to control of the large flexible configurations while being docked to the Space Station. This paper provides a history of the development and evolution of the Space Shuttle GN&C system. Emphasis is placed on key architecture decisions, design trades and the lessons learned for future complex space transportation system developments. Finally, some of the interesting flight operations experience is provided to inform future developers of flight experiences.

  13. Comparative evaluation of Space Transportation System (STS)-3 flight and acoustic test random vibration response of the OSS-1 payload

    NASA Technical Reports Server (NTRS)

    On, F. J.

    1983-01-01

    A comparative evaluation of the Space Transportation System (STS)-3 flight and acoustic test random vibration response of the Office of Space Science-1 (OSS-1) payload is presented. The results provide insight into the characteristics of vibroacoustic response of pallet payload components in the payload bay during STS flights.

  14. Space-Based Range Safety and Future Space Range Applications

    NASA Technical Reports Server (NTRS)

    Whiteman, Donald E.; Valencia, Lisa M.; Simpson, James C.

    2005-01-01

    The National Aeronautics and Space Administration (NASA) Space-Based Telemetry and Range Safety (STARS) study is a multiphase project to demonstrate the performance, flexibility and cost savings that can be realized by using space-based assets for the Range Safety [global positioning system (GPS) metric tracking data, flight termination command and range safety data relay] and Range User (telemetry) functions during vehicle launches and landings. Phase 1 included flight testing S-band Range Safety and Range User hardware in 2003 onboard a high-dynamic aircraft platform at Dryden Flight Research Center (Edwards, California, USA) using the NASA Tracking and Data Relay Satellite System (TDRSS) as the communications link. The current effort, Phase 2, includes hardware and packaging upgrades to the S-band Range Safety system and development of a high data rate Ku-band Range User system. The enhanced Phase 2 Range Safety Unit (RSU) provided real-time video for three days during the historic Global Flyer (Scaled Composites, Mojave, California, USA) flight in March, 2005. Additional Phase 2 testing will include a sounding rocket test of the Range Safety system and aircraft flight testing of both systems. Future testing will include a flight test on a launch vehicle platform. This paper discusses both Range Safety and Range User developments and testing with emphasis on the Range Safety system. The operational concept of a future space-based range is also discussed.

  15. Space-Based Range Safety and Future Space Range Applications

    NASA Technical Reports Server (NTRS)

    Whiteman, Donald E.; Valencia, Lisa M.; Simpson, James C.

    2005-01-01

    The National Aeronautics and Space Administration Space-Based Telemetry and Range Safety study is a multiphase project to demonstrate the performance, flexibility and cost savings that can be realized by using space-based assets for the Range Safety (global positioning system metric tracking data, flight termination command and range safety data relay) and Range User (telemetry) functions during vehicle launches and landings. Phase 1 included flight testing S-band Range Safety and Range User hardware in 2003 onboard a high-dynamic aircraft platform at Dryden Flight Research Center (Edwards, California) using the NASA Tracking and Data Relay Satellite System as the communications link. The current effort, Phase 2, includes hardware and packaging upgrades to the S-band Range Safety system and development of a high data rate Ku-band Range User system. The enhanced Phase 2 Range Safety Unit provided real-time video for three days during the historic GlobalFlyer (Scaled Composites, Mojave, California) flight in March, 2005. Additional Phase 2 testing will include a sounding rocket test of the Range Safety system and aircraft flight testing of both systems. Future testing will include a flight test on a launch vehicle platform. This report discusses both Range Safety and Range User developments and testing with emphasis on the Range Safety system. The operational concept of a future space-based range is also discussed.

  16. R and T report: Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald A. (Editor)

    1993-01-01

    The 1993 Research and Technology Report for Goddard Space Flight Center is presented. Research covered areas such as (1) flight projects; (2) space sciences including cosmology, high energy, stars and galaxies, and the solar system; (3) earth sciences including process modeling, hydrology/cryology, atmospheres, biosphere, and solid earth; (4) networks, planning, and information systems including support for mission operations, data distribution, advanced software and systems engineering, and planning/scheduling; and (5) engineering and materials including spacecraft systems, material and testing, optics and photonics and robotics.

  17. Final RS-25 Engine Test of the Summer

    NASA Image and Video Library

    2017-08-30

    On Aug. 30, engineers at our Stennis Space Center wrapped up a summer of hot fire testing for flight controllers on RS-25 engines that will help power the new Space Launch System rocket being built to carry astronauts to deep-space destinations, including Mars. The 500-second hot fire of a flight controller or “brain” of the engine marked another step toward the nation’s return to human deep-space exploration missions. Four RS-25 engines, equipped with flight-worthy controllers will help power the first integrated flight of our Space Launch System rocket with our Orion spacecraft, known as Exploration Mission One.

  18. The immune system in space and microgravity

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    2002-01-01

    Space flight and models that created conditions similar to those that occur during space flight have been shown to affect a variety of immunological responses. These have primarily been cell-mediated immune responses including leukocyte proliferation, cytokine production, and leukocyte subset distribution. The mechanisms and biomedical consequences of these changes remain to be established. Among the possible causes of space flight-induced alterations in immune responses are exposure to microgravity, exposure to stress, exposure to radiation, and many more as yet undetermined causes. This review chronicles the known effects of space flight on the immune system and explores the possible role of stress in contributing to these changes.

  19. Cell biology experiments conducted in space

    NASA Technical Reports Server (NTRS)

    Taylor, G. R.

    1977-01-01

    A review of cell biology experiments conducted during the first two decades of space flight is provided. References are tabulated for work done with six types of living test system: isolated viruses, bacteriophage-host, bacteria, yeasts and filamentous fungi, protozoans, and small groups of cells (such as hamster cell tissue and fertilized frog eggs). The general results of studies involving the survival of cells in space, the effect of space flight on growing cultures, the biological effects of multicharged high-energy particles, and the effects of space flight on the genetic apparatus of microorganisms are summarized. It is concluded that cell systems remain sufficiently stable during space flight to permit experimentation with models requiring a fixed cell line during the space shuttle era.

  20. Space-flight simulations of calcium metabolism using a mathematical model of calcium regulation

    NASA Technical Reports Server (NTRS)

    Brand, S. N.

    1985-01-01

    The results of a series of simulation studies of calcium matabolic changes which have been recorded during human exposure to bed rest and space flight are presented. Space flight and bed rest data demonstrate losses of total body calcium during exposure to hypogravic environments. These losses are evidenced by higher than normal rates of urine calcium excretion and by negative calcium balances. In addition, intestinal absorption rates and bone mineral content are assumed to decrease. The bed rest and space flight simulations were executed on a mathematical model of the calcium metabolic system. The purpose of the simulations is to theoretically test hypotheses and predict system responses which are occurring during given experimental stresses. In this case, hypogravity occurs through the comparison of simulation and experimental data and through the analysis of model structure and system responses. The model reliably simulates the responses of selected bed rest and space flight parameters. When experimental data are available, the simulated skeletal responses and regulatory factors involved in the responses agree with space flight data collected on rodents. In addition, areas within the model that need improvement are identified.

  1. STS-125 Flight Controllers on Console During HST Grapple - Orbit 1. Flight Director: Tony Ceccacci

    NASA Image and Video Library

    2009-05-13

    JSC2009-E-119745 (13 May 2009) --- Flight director Tony Ceccacci (left) and astronaut Dan Burbank, STS-125 spacecraft communicator (CAPCOM), monitor data at their consoles in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during flight day three activities. The Hubble Space Telescope, grappled by Space Shuttle Atlantis? remote manipulator system (RMS), is visible on one of the big screens.

  2. STS-125 Flight Controllers on Console During HST Grapple - Orbit 1. Flight Director: Tony Ceccacci

    NASA Image and Video Library

    2009-05-13

    JSC2009-E-119746 (13 May 2009) --- Flight director Tony Ceccacci (left) and astronaut Dan Burbank, STS-125 spacecraft communicator (CAPCOM), monitor data at their consoles in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during flight day three activities. The Hubble Space Telescope, grappled by Space Shuttle Atlantis? remote manipulator system (RMS), is visible on one of the big screens.

  3. Lessons Learned: Mechanical Component and Tribology Activities in Support of Return to Flight

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Zaretsky, Erwin V.

    2017-01-01

    The February 2003 loss of the Space Shuttle Columbia resulted in NASA Management revisiting every critical system onboard this very complex, reusable space vehicle in a an effort to Return to Flight. Many months after the disaster, contact between NASA Johnson Space Center and NASA Glenn Research Center evolved into an in-depth assessment of the actuator drive systems for the Rudder Speed Brake and Body Flap Systems. The actuators are CRIT 1-1 systems that classifies them as failure of any of the actuators could result in loss of crew and vehicle. Upon further evaluation of these actuator systems and the resulting issues uncovered, several research activities were initiated, conducted, and reported to the NASA Space Shuttle Program Management. The papers contained in this document are the contributions of many researchers from NASA Glenn Research Center and Marshall Space Flight Center as part of a Lessons Learned on mechanical actuation systems as used in space applications. Many of the findings contained in this document were used as a basis to safely Return to Flight for the remaining Space Shuttle Fleet until their retirement.

  4. STS-80 Space Shuttle Mission Report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1997-01-01

    The STS-80 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the eightieth flight of the Space Shuttle Program, the fifty-fifth flight since the return-to-flight, and the twenty-first flight of the Orbiter Columbia (OV-102).

  5. The advanced orbiting systems testbed program: Results to date

    NASA Technical Reports Server (NTRS)

    Newsome, Penny A.; Otranto, John F.

    1993-01-01

    The Consultative Committee for Space Data Systems Recommendations for Packet Telemetry and Advanced Orbiting Systems (AOS) propose standard solutions to data handling problems common to many types of space missions. The Recommendations address only space/ground and space/space data handling systems. Goddard Space Flight Center's AOS Testbed (AOST) Program was initiated to better understand the Recommendations and their impact on real-world systems, and to examine the extended domain of ground/ground data handling systems. Central to the AOST Program are the development of an end-to-end Testbed and its use in a comprehensive testing program. Other Program activities include flight-qualifiable component development, supporting studies, and knowledge dissemination. The results and products of the Program will reduce the uncertainties associated with the development of operational space and ground systems that implement the Recommendations. The results presented in this paper include architectural issues, a draft proposed standardized test suite and flight-qualifiable components.

  6. [Application prospect of human-artificial intelligence system in future manned space flight].

    PubMed

    Wei, Jin-he

    2003-01-01

    To make the manned space flight more efficient and safer, a concept of human-artificial (AI) system is proposed in the present paper. The task of future manned space flight and the technique requirement with respect to the human-AI system development were analyzed. The main points are as follows: 1)Astronaut and AI are complementary to each other functionally; 2) Both symbol AI and connectionist AI should be included in the human-AI system, but expert system and Soar-like system are used mainly inside the cabin, the COG-like robots are mainly assigned for EVA either in LEO flight or on the surface of Moon or Mars; 3) The human-AI system is hierarchical in nature with astronaut at the top level; 4) The complex interfaces between astronaut and AI are the key points for running the system reliably and efficiently. As the importance of human-AI system in future manned space flight and the complexity of related technology, it is suggested that the R/D should be planned as early as possible.

  7. Fully Three-Dimensional Virtual-Reality System

    NASA Technical Reports Server (NTRS)

    Beckman, Brian C.

    1994-01-01

    Proposed virtual-reality system presents visual displays to simulate free flight in three-dimensional space. System, virtual space pod, is testbed for control and navigation schemes. Unlike most virtual-reality systems, virtual space pod would not depend for orientation on ground plane, which hinders free flight in three dimensions. Space pod provides comfortable seating, convenient controls, and dynamic virtual-space images for virtual traveler. Controls include buttons plus joysticks with six degrees of freedom.

  8. NASA Tests RS-25 Flight Engine for Space Launch System

    NASA Image and Video Library

    2017-10-19

    Engineers at NASA’s Stennis Space Center in Mississippi on Oct. 19 completed a hot-fire test of RS-25 rocket engine E2063, a flight engine for NASA’s new Space Launch System (SLS) rocket. Engine E2063 is scheduled to help power SLS on its Exploration Mission-2 (EM-2), the first flight of the new rocket to carry humans.

  9. Small Satellites to Hitchhike on SLS Rocket’s First Flight on This Week @NASA – February 5, 2016

    NASA Image and Video Library

    2016-02-05

    During a Feb. 2 event at NASA’s Marshall Space Flight Center, officials announced the selection of 13 low-cost small satellites to launch as secondary payloads on Exploration Mission-1 (EM-1) -- the first flight of the agency’s Space Launch System (SLS) rocket, targeted for 2018. SLS’ first flight is designed to launch an un-crewed Orion spacecraft to a stable orbit beyond the moon to demonstrate and test systems for both the spacecraft and rocket before the first crewed flight of Orion. The announced CubeSat secondary payloads will carry science and technology investigations to help pave the way for future human exploration in deep space, including the Journey to Mars. Also, New Marshall Space Flight Center Director, Webb Telescope’s final mirror installed, Juno adjusts course to Jupiter, Russian spacewalk on space station and Hangar One’s Super Bowl Redwood!

  10. Enterprise - Free Flight after Separation from 747

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Space Shuttle prototype Enterprise flies free of NASA's 747 Shuttle Carrier Aircraft (SCA) during one of five free flights carried out at the Dryden Flight Research Facility, Edwards, California in 1977 as part of the Shuttle program's Approach and Landing Tests (ALT). The tests were conducted to verify orbiter aerodynamics and handling characteristics in preparation for orbital flights with the Space Shuttle Columbia. A tail cone over the main engine area of Enterprise smoothed out turbulent airflow during flight. It was removed on the two last free flights to accurately check approach and landing characteristics. The Space Shuttle Approach and Landings Tests (ALT) program allowed pilots and engineers to learn how the Space Shuttle and the modified Boeing 747 Shuttle Carrier Aircraft (SCA) handled during low-speed flight and landing. The Enterprise, a prototype of the Space Shuttles, and the SCA were flown to conduct the approach and landing tests at the NASA Dryden Flight Research Center, Edwards, California, from February to October 1977. The first flight of the program consisted of the Space Shuttle Enterprise attached to the Shuttle Carrier Aircraft. These flights were to determine how well the two vehicles flew together. Five 'captive-inactive' flights were flown during this first phase in which there was no crew in the Enterprise. The next series of captive flights was flown with a flight crew of two on board the prototype Space Shuttle. Only three such flights proved necessary. This led to the free-flight test series. The free-flight phase of the ALT program allowed pilots and engineers to learn how the Space Shuttle handled in low-speed flight and landing attitudes. For these landings, the Enterprise was flown by a crew of two after it was released from the top of the SCA. The vehicle was released at altitudes ranging from 19,000 to 26,000 feet. The Enterprise had no propulsion system, but its first four glides to the Rogers Dry Lake runway provided realistic, in-flight simulations of how subsequent Space Shuttles would be flown at the end of an orbital mission. The fifth approach and landing test, with the Enterprise landing on the Edwards Air Force Base concrete runway, revealed a problem with the Space Shuttle flight control system that made it susceptible to Pilot-Induced Oscillation (PIO), a potentially dangerous control problem during a landing. Further research using other NASA aircraft, especially the F-8 Digital-Fly-By-Wire aircraft, led to correction of the PIO problem before the first orbital flight. The Enterprise's last free-flight was October 26, 1977, after which it was ferried to other NASA centers for ground-based flight simulations that tested Space Shuttle systems and structure.

  11. Enterprise - Free Flight after Separation from 747

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Space Shuttle prototype Enterprise flies free after being released from NASA's 747 Shuttle Carrier Aircraft (SCA) during one of five free flights carried out at the Dryden Flight Research Center, Edwards, California in 1977, as part of the Shuttle program's Approach and Landing Tests (ALT). The tests were conducted to verify orbiter aerodynamics and handling characteristics in preparation for orbital flights with the Space Shuttle Columbia. A tail cone over the main engine area of Enterprise smoothed out turbulent airflow during flight. It was removed on the two last free flights to accurately check approach and landing characteristics. The Space Shuttle Approach and Landings Tests (ALT) program allowed pilots and engineers to learn how the Space Shuttle and the modified Boeing 747 Shuttle Carrier Aircraft (SCA) handled during low-speed flight and landing. The Enterprise, a prototype of the Space Shuttles, and the SCA were flown to conduct the approach and landing tests at the NASA Dryden Flight Research Center, Edwards, California, from February to October 1977. The first flight of the program consisted of the Space Shuttle Enterprise attached to the Shuttle Carrier Aircraft. These flights were to determine how well the two vehicles flew together. Five 'captive-inactive' flights were flown during this first phase in which there was no crew in the Enterprise. The next series of captive flights was flown with a flight crew of two on board the prototype Space Shuttle. Only three such flights proved necessary. This led to the free-flight test series. The free-flight phase of the ALT program allowed pilots and engineers to learn how the Space Shuttle handled in low-speed flight and landing attitudes. For these landings, the Enterprise was flown by a crew of two after it was released from the top of the SCA. The vehicle was released at altitudes ranging from 19,000 to 26,000 feet. The Enterprise had no propulsion system, but its first four glides to the Rogers Dry Lake runway provided realistic, in-flight simulations of how subsequent Space Shuttles would be flown at the end of an orbital mission. The fifth approach and landing test, with the Enterprise landing on the Edwards Air Force Base concrete runway, revealed a problem with the Space Shuttle flight control system that made it susceptible to Pilot-Induced Oscillation (PIO), a potentially dangerous control problem during a landing. Further research using other NASA aircraft, especially the F-8 Digital-Fly-By-Wire aircraft, led to correction of the PIO problem before the first orbital flight. The Enterprise's last free-flight was October 26, 1977, after which it was ferried to other NASA centers for ground-based flight simulations that tested Space Shuttle systems and structure.

  12. Expedition_55_In-flight_with_Czech_TV_2018_099_1055_637949

    NASA Image and Video Library

    2018-04-09

    SPACE STATION CREW MEMBER DISCUSSES LIFE IN SPACE WITH CZECH MEDIA---------Aboard the International Space Station, Expedition 55 Flight Engineer Drew Feustel of NASA discussed his mission on the orbital outpost during an in-flight question and answer session April 9 with Czech Television in Prague, Czech Republic. Feustel is in his third flight into space, conducting scientific research and operational support of station systems.

  13. Flight Testing of the Space Launch System (SLS) Adaptive Augmenting Control (AAC) Algorithm on an F/A-18

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.; VanZwieten, Tannen S.; Hanson, Curtis E.; Wall, John H.; Miller, Chris J.; Gilligan, Eric T.; Orr, Jeb S.

    2014-01-01

    The Marshall Space Flight Center (MSFC) Flight Mechanics and Analysis Division developed an adaptive augmenting control (AAC) algorithm for launch vehicles that improves robustness and performance on an as-needed basis by adapting a classical control algorithm to unexpected environments or variations in vehicle dynamics. This was baselined as part of the Space Launch System (SLS) flight control system. The NASA Engineering and Safety Center (NESC) was asked to partner with the SLS Program and the Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP) to flight test the AAC algorithm on a manned aircraft that can achieve a high level of dynamic similarity to a launch vehicle and raise the technology readiness of the algorithm early in the program. This document reports the outcome of the NESC assessment.

  14. Space Shuttle Orbiter thermal protection system design and flight experience

    NASA Technical Reports Server (NTRS)

    Curry, Donald M.

    1993-01-01

    The Space Shuttle Orbiter Thermal Protection System materials, design approaches associated with each material, and the operational performance experienced during fifty-five successful flights are described. The flights to date indicate that the thermal and structural design requirements were met and that the overall performance was outstanding.

  15. Capabilities of the Environmental Effects Branch at Marshall Space Flight Cente

    NASA Technical Reports Server (NTRS)

    Rogers, Jan; Finckenor, Miria; Nehls, Mary

    2016-01-01

    The Environmental Effects Branch at the Marshall Space Flight Center supports a myriad array of programs for NASA, DoD, and commercial space including human exploration, advanced space propulsion, improving life on Earth, and the study of the Sun, the Earth, and the solar system. The branch provides testing, evaluation, and qualification of materials for use on external spacecraft surfaces and in contamination-sensitive systems. Space environment capabilities include charged particle radiation, ultraviolet radiation, atomic oxygen, impact, plasma, and thermal vacuum, anchored by flight experiments and analysis of returned space hardware. These environmental components can be combined for solar wind or planetary surface environment studies or to evaluate synergistic effects. The Impact Testing Facility allows simulation of impacts ranging from sand and rain to micrometeoroids and orbital debris in order to evaluate materials and components for flight and ground-based systems. The Contamination Control Team is involved in the evaluation of environmentally-friendly replacements for HCFC-225 for use in propulsion oxygen systems, developing cleaning methods for additively manufactured hardware, and reducing risk for the Space Launch System.

  16. Electric Propulsion Space Experiment (ESEX): Spacecraft design issues for high-power electric propulsion

    NASA Astrophysics Data System (ADS)

    Kriebel, Mary M.; Sanks, Terry M.

    1992-02-01

    Electric propulsion provides high specific impulses, and low thrust when compared to chemical propulsion systems. Therefore, electric propulsion offers improvements over chemical systems such as increased station-keeping time, prolonged on-orbit maneuverability, low acceleration of large structures, and increased launch vehicle flexibility. The anticipated near-term operational electric propulsion system for an electric orbit transfer vehicle is an arcjet propulsion system. Towards this end, the USAF's Phillips Laboratory (PL) has awarded a prime contract to TRW Space & Technology Group to design, build, and space qualify a 30-kWe class arcjet as well as develop and demonstrate, on the ground, a flight-qualified arcjet propulsion flight unit. The name of this effort is the 30 kWe Class Arcjet Advanced Technology Transition Demonstration (Arcjet ATTD) program. Once the flight unit has completed its ground qualification test, it will be given to the Space Test and Transportation Program Office of the Air Force's Space Systems Division (ST/T) for launch vehicle integration and space test. The flight unit's space test is known as the Electric Propulsion Space Experiment (ESEX). ESEX's mission scenario is 10 firings of 15 minutes each. The objectives of the ESEX flight are to measure arcjet plume deposition, electromagnetic interference, thermal radiation, and acceleration in space. Plume deposition, electromagnetic interference, and thermal radiation are operational issues that are primarily being answered for operational use. This paper describes the Arcjet ATTD flight unit design and identifies specifically how the diagnostic data will be collected as part of the ESEX program.

  17. Approach to an Affordable and Productive Space Transportation System

    NASA Technical Reports Server (NTRS)

    McCleskey, Carey M.; Rhodes, Russel E.; Lepsch, Roger A.; Henderson, Edward M.; Robinson, John W.

    2012-01-01

    This paper describes an approach for creating space transportation architectures that are affordable, productive, and sustainable. The architectural scope includes both flight and ground system elements, and focuses on their compatibility to achieve a technical solution that is operationally productive, and also affordable throughout its life cycle. Previous papers by the authors and other members of the Space Propulsion Synergy Team (SPST) focused on space flight system engineering methods, along with operationally efficient propulsion system concepts and technologies. This paper follows up previous work by using a structured process to derive examples of conceptual architectures that integrate a number of advanced concepts and technologies. The examples are not intended to provide a near-term alternative architecture to displace current near-term design and development activity. Rather, the examples demonstrate an approach that promotes early investments in advanced system concept studies and trades (flight and ground), as well as in advanced technologies with the goal of enabling highly affordable, productive flight and ground space transportation systems.

  18. The MATHEMATICA economic analysis of the Space Shuttle System

    NASA Technical Reports Server (NTRS)

    Heiss, K. P.

    1973-01-01

    Detailed economic analysis shows the Thrust Assisted Orbiter Space Shuttle System (TAOS) to be the most economic Space Shuttle configuration among the systems studied. The development of a TAOS Shuttle system is economically justified within a level of space activities between 300 and 360 Shuttle flights in the 1979-1990 period, or about 25 to 30 flights per year, well within the U.S. Space Program including NASA and DoD missions. If the NASA and DoD models are taken at face value (624 flights), the benefits of the Shuttle system are estimated to be $13.9 billion with a standard deviation of plus or minus $1.45 billion in 1970 dollars (at a 10% social rate of discount). If the expected program is modified to 514 flights (in the 1979-1990 period), the estimated benefits of the Shuttle system are $10.2 billion, with a standard deviation of $940 million (at a 10% social rate of discount).

  19. Investigation of periodontal tissue during a long space flights

    NASA Astrophysics Data System (ADS)

    Solovyeva, Zoya; Viacheslav, Ilyin; Skedina, Marina

    Previous studies conducted on the International Space Station found that upon completion of the space flight there are significant changes in the local immunity and periodontal microflora of astronauts. Also research in ground-based experiments that simulate space flight factors showed that prolonged hypokinesia antiorthostatic leads to impaired functional indicators of the periodontal vascular system, an unidirectional change from the microbiota and the immune system. That results in the appearance and progressive increase of the parodontial pathogenic bacteria and increase of the content of immunoglobulins in the oral fluid. All these changes are classified as risk factors for the development of inflammatory periodontal diseases in astronauts. However, the studies were unable to determine whether the changes result from a long space flight and the peculiarities of formation the local immunity and periodontal microbiota during the space flight, or they are one of the specific manifestations of the readaptationary post-flight condition of the body. In this regard, the planned research in a long space flight suggests: to use the means of microbial control, which can retain of the anaerobes periodontal microbiota sampling directly in the space flight; to assess the specificity of changes of the periodontal immune status under the influence of the space flight factors, and to assess the state of microcirculation of periodontal tissue in astronauts. A comprehensive study of the reaction of dentition during the space flight will make it possible to study the pathogenesis of changes for developing an adequate prevention aimed at optimizing the state of dentition of the astronauts.

  20. Validation of Procedures for Monitoring Crewmember Immune Function

    NASA Technical Reports Server (NTRS)

    Crucian, Brian; Stowe, Raymond; Mehta, Satish; Uchakin, Peter; Quiriarte, Heather; Pierson, Duane; Sams, Clarence

    2008-01-01

    There is ample evidence to suggest that space flight leads to immune system dysregulation. This may be a result of microgravity, confinement, physiological stress, radiation, environment or other mission-associated factors. The clinical risk (if any) from prolonged immune dysregulation during exploration-class space flight has not yet been determined, but may include increased incidence of infection, allergy, hypersensitivity, hematological malignancy or altered wound healing. Each of the clinical events resulting from immune dysfunction has the potential to impact mission critical objectives during exploration-class missions. To date, precious little in-flight immune data has been generated to assess this phenomenon. The majority of recent flight immune studies have been post-flight assessments, which may not accurately reflect the in-flight status of immunity as it resolves over prolonged flight. There are no procedures currently in place to monitor immune function or its effect on crew health. The objective of this Supplemental Medical Objective (SMO) is to develop and validate an immune monitoring strategy consistent with operational flight requirements and constraints. This SMO will assess immunity, latent viral reactivation and physiological stress during both short and long duration flights. Upon completion, it is expected that any clinical risks resulting from the adverse effects of space flight on the human immune system will have been determined. In addition, a flight-compatible immune monitoring strategy will have been developed with which countermeasures validation could be performed. This study will determine, to the best level allowed by current technology, the in-flight status of crewmembers' immune systems. The in-flight samples will allow a distinction between legitimate in-flight alterations and the physiological stresses of landing and readaptation which are believed to alter R+0 assessments. The overall status of the immune system during flight (activation, deficiency, dysregulation) and the response of the immune system to specific latent virus reactivation (known to occur during space flight) will be thoroughly assessed. The first in-flight activity for integrated immunity very recently occurred during the STS-120 Space Shuttle mission. The protocols functioned well from a technical perspective, and accurate in-flight data was obtained from 1 Shuttle and 2 ISS crewmembers. Crew participation rates for the study continue to be robust.

  1. Precision Cleaning and Verification Processes Used at Marshall Space Flight Center for Critical Hardware Applications

    NASA Technical Reports Server (NTRS)

    Caruso, Salvadore V.; Cox, Jack A.; McGee, Kathleen A.

    1999-01-01

    This presentation discuss the Marshall Space Flight Center Operations and Responsibilities. These are propulsion, microgravity experiments, international space station, space transportation systems, and advance vehicle research.

  2. ER-2 High Altitude Solar Cell Calibration Flights

    NASA Technical Reports Server (NTRS)

    Myers, Matthew; Wolford, David; Snyder, David; Piszczor, Michael

    2015-01-01

    Evaluation of space photovoltaics using ground-based simulators requires primary standard cells which have been characterized in a space or near-space environment. Due to the high cost inherent in testing cells in space, most primary standards are tested on high altitude fixed wing aircraft or balloons. The ER-2 test platform is the latest system developed by the Glenn Research Center (GRC) for near-space photovoltaic characterization. This system offers several improvements over GRC's current Learjet platform including higher altitude, larger testing area, onboard spectrometers, and longer flight season. The ER-2 system was developed by GRC in cooperation with NASA's Armstrong Flight Research Center (AFRC) as well as partners at the Naval Research Laboratory and Air Force Research Laboratory. The system was designed and built between June and September of 2014, with the integration and first flights taking place at AFRC's Palmdale facility in October of 2014. Three flights were made testing cells from GRC as well as commercial industry partners. Cell performance data was successfully collected on all three flights as well as solar spectra. The data was processed using a Langley extrapolation method, and performance results showed a less than half a percent variation between flights, and less than a percent variation from GRC's current Learjet test platform.

  3. NASA Range Safety Annual Report 2007

    NASA Technical Reports Server (NTRS)

    Dumont, Alan G.

    2007-01-01

    As always, Range Safety has been involved in a number of exciting and challenging activities and events. Throughout the year, we have strived to meet our goal of protecting the public, the workforce, and property during range operations. During the past year, Range Safety was involved in the development, implementation, and support of range safety policy. Range Safety training curriculum development was completed this year and several courses were presented. Tailoring exercises concerning the Constellation Program were undertaken with representatives from the Constellation Program, the 45th Space Wing, and the Launch Constellation Range Safety Panel. Range Safety actively supported the Range Commanders Council and it subgroups and remained involved in updating policy related to flight safety systems and flight safety analysis. In addition, Range Safety supported the Space Shuttle Range Safety Panel and addressed policy concerning unmanned aircraft systems. Launch operations at Kennedy Space Center, the Eastern and Western ranges, Dryden Flight Research Center, and Wallops Flight Facility were addressed. Range Safety was also involved in the evaluation of a number of research and development efforts, including the space-based range (formerly STARS), the autonomous flight safety system, the enhanced flight termination system, and the joint advanced range safety system. Flight safety system challenges were evaluated. Range Safety's role in the Space Florida Customer Assistance Service Program for the Eastern Range was covered along with our support for the Space Florida Educational Balloon Release Program. We hope you have found the web-based format both accessible and easy to use. Anyone having questions or wishing to have an article included in the 2008 Range Safety Annual Report should contact Alan Dumont, the NASA Range Safety Program Manager located at the Kennedy Space Center, or Michael Dook at NASA Headquarters.

  4. Free Enterprise: Contributions of the Approach and Landing Test (ALT) Program to the Development of the Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Merlin, Peter W.

    2006-01-01

    The space shuttle orbiter was the first spacecraft designed with the aerodynamic characteristics and in-atmosphere handling qualities of a conventional airplane. In order to evaluate the orbiter's flight control systems and subsonic handling characteristics, a series of flight tests were undertaken at NASA Dryden Flight Research Center in 1977. A modified Boeing 747 Shuttle Carrier Aircraft carried the Enterprise, a prototype orbiter, during eight captive tests to determine how well the two vehicles flew together and to test some of the orbiter s systems. The free-flight phase of the ALT program allowed shuttle pilots to explore the orbiter's low-speed flight and landing characteristics. The Enterprise provided realistic, in-flight simulations of how subsequent space shuttles would be flown at the end of an orbital mission. The fifth free flight, with the Enterprise landing on a concrete runway for the first time, revealed a problem with the space shuttle flight control system that made it susceptible to pilot-induced oscillation, a potentially dangerous control problem. Further research using various aircraft, particularly NASA Dryden's F-8 Digital-Fly-By-Wire testbed, led to correction of the problem before the first Orbital Test Flight.

  5. The Mercury-Redstone Program

    NASA Technical Reports Server (NTRS)

    Hammack, Jerome B.; Heberlig, Jack C.

    1961-01-01

    The Mercury-Redstone program is reviewed as to its intended mission and its main results. The progressive results of unmanned, animal, and manned flights of this over-all Project Mercury ballistic training program are presented. A technical description of the major spacecraft systems is presented with some analysis of flight performance. Performance of the spacecraft with and without pilot input is discussed. The influence of the astronaut as an operating link in the over-all system is presented, and relative difficulties of manned versus unmanned flight are briefly commented upon. The program provided information on man as an integral part of a space flight system, demonstrating that man can assume a primary role in space as he does in other realms of flight. The Mercury-Redstone program demonstrated that the Mercury spacecraft was capable of manned space flight, and succeeded in partially qualifying the spacecraft for orbital flight.

  6. Enterprise Separates from 747 SCA for First Tailcone off Free Flight

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Space Shuttle prototype Enterprise rises from NASA's 747 Shuttle Carrier Aircraft (SCA) to begin a powerless glide flight back to NASA's Dryden Flight Research Center, Edwards, California, on its fourth of the five free flights in the shuttle program's Approach and Landing Tests (ALT), 12 October 1977. The tests were carried out at Dryden to verify the aerodynamic and control characteristics of the orbiters in preparation for the first space mission with the orbiter Columbia in April 1981. The Space Shuttle Approach and Landings Tests (ALT) program allowed pilots and engineers to learn how the Space Shuttle and the modified Boeing 747 Shuttle Carrier Aircraft (SCA) handled during low-speed flight and landing. The Enterprise, a prototype of the Space Shuttles, and the SCA were flown to conduct the approach and landing tests at the NASA Dryden Flight Research Center, Edwards, California, from February to October 1977. The first flight of the program consisted of the Space Shuttle Enterprise attached to the Shuttle Carrier Aircraft. These flights were to determine how well the two vehicles flew together. Five 'captive-inactive' flights were flown during this first phase in which there was no crew in the Enterprise. The next series of captive flights was flown with a flight crew of two on board the prototype Space Shuttle. Only three such flights proved necessary. This led to the free-flight test series. The free-flight phase of the ALT program allowed pilots and engineers to learn how the Space Shuttle handled in low-speed flight and landing attitudes. For these landings, the Enterprise was flown by a crew of two after it was released from the top of the SCA. The vehicle was released at altitudes ranging from 19,000 to 26,000 feet. The Enterprise had no propulsion system, but its first four glides to the Rogers Dry Lake runway provided realistic, in-flight simulations of how subsequent Space Shuttles would be flown at the end of an orbital mission. The fifth approach and landing test, with the Enterprise landing on the Edwards Air Force Base concrete runway, revealed a problem with the Space Shuttle flight control system that made it susceptible to Pilot-Induced Oscillation (PIO), a potentially dangerous control problem during a landing. Further research using other NASA aircraft, especially the F-8 Digital-Fly-By-Wire aircraft, led to correction of the PIO problem before the first orbital flight. The Enterprise's last free-flight was October 26, 1977, after which it was ferried to other NASA centers for ground-based flight simulations that tested Space Shuttle systems and structure.

  7. Overview of a Proposed Flight Validation of Aerocapture System Technology for Planetary Missions

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Hall, Jeffery L.; Oh, David; Munk, Michelle M.

    2006-01-01

    Aerocapture System Technology for Planetary Missions is being proposed to NASA's New Millennium Program for flight aboard the Space Technology 9 (ST9) flight opportunity. The proposed ST9 aerocapture mission is a system-level flight validation of the aerocapture maneuver as performed by an instrumented, high-fidelity flight vehicle within a true in-space and atmospheric environment. Successful validation of the aerocapture maneuver will be enabled through the flight validation of an advanced guidance, navigation, and control system as developed by Ball Aerospace and two advanced Thermal Protection System (TPS) materials, Silicon Refined Ablative Material-20 (SRAM-20) and SRAM-14, as developed by Applied Research Associates (ARA) Ablatives Laboratory. The ST9 aerocapture flight validation will be sufficient for immediate infusion of these technologies into NASA science missions being proposed for flight to a variety of Solar System destinations possessing a significant planetary atmosphere.

  8. Video File - NASA on a Roll Testing Space Launch System Flight Engines

    NASA Image and Video Library

    2017-08-09

    Just two weeks after conducting another in a series of tests on new RS-25 rocket engine flight controllers for NASA’s Space Launch System (SLS) rocket, engineers at NASA’s Stennis Space Center in Mississippi completed one more hot-fire test of a flight controller on August 9, 2017. With the hot fire, NASA has moved a step closer in completing testing on the four RS-25 engines which will power the first integrated flight of the SLS rocket and Orion capsule known as Exploration Mission 1.

  9. Enterprise - Free Flight after Separation from 747

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Space Shuttle prototype Enterprise flies free after being released from NASA's 747 Shuttle Carrier Aircraft (SCA) over Rogers Dry Lake during the second of five free flights carried out at the Dryden Flight Research Center, Edwards, California, as part of the Shuttle program's Approach and Landing Tests (ALT) in 1977. The tests were conducted to verify orbiter aerodynamics and handling characteristics in preparation for orbital flights with the Space Shuttle Columbia. A tail cone over the main engine area of Enterprise smoothed out turbulent airflow during flight. It was removed on the two last free flights to accurately check approach and landing characteristics. A series of test flights during which Enterprise was taken aloft atop the SCA, but was not released, preceded the free flight tests. The Space Shuttle Approach and Landings Tests (ALT) program allowed pilots and engineers to learn how the Space Shuttle and the modified Boeing 747 Shuttle Carrier Aircraft (SCA) handled during low-speed flight and landing. The Enterprise, a prototype of the Space Shuttles, and the SCA were flown to conduct the approach and landing tests at the NASA Dryden Flight Research Center, Edwards, California, from February to October 1977. The first flight of the program consisted of the Space Shuttle Enterprise attached to the Shuttle Carrier Aircraft. These flights were to determine how well the two vehicles flew together. Five 'captive-inactive' flights were flown during this first phase in which there was no crew in the Enterprise. The next series of captive flights was flown with a flight crew of two on board the prototype Space Shuttle. Only three such flights proved necessary. This led to the free-flight test series. The free-flight phase of the ALT program allowed pilots and engineers to learn how the Space Shuttle handled in low-speed flight and landing attitudes. For these landings, the Enterprise was flown by a crew of two after it was released from the top of the SCA. The vehicle was released at altitudes ranging from 19,000 to 26,000 feet. The Enterprise had no propulsion system, but its first four glides to the Rogers Dry Lake runway provided realistic, in-flight simulations of how subsequent Space Shuttles would be flown at the end of an orbital mission. The fifth approach and landing test, with the Enterprise landing on the Edwards Air Force Base concrete runway, revealed a problem with the Space Shuttle flight control system that made it susceptible to Pilot-Induced Oscillation (PIO), a potentially dangerous control problem during a landing. Further research using other NASA aircraft, especially the F-8 Digital-Fly-By-Wire aircraft, led to correction of the PIO problem before the first orbital flight. The Enterprise's last free-flight was October 26, 1977, after which it was ferried to other NASA centers for ground-based flight simulations that tested Space Shuttle systems and structure.

  10. Activity of the sympathoadrenal system in cosmonauts during 25-day space flight on station Mir

    NASA Astrophysics Data System (ADS)

    Kvetňanský, R.; Noskov, V. B.; Blazicek, P.; Gharib, C.; Popova, I. A.; Gauquelin, G.; Macho, L.; Guell, A.; Grigoriev, A. I.

    The activity of the sympathoadrenal system in cosmonauts was studied by measuring plasma and urinary catecholamines and their metabolites and conjugates. The appliance Plasma 02 was used for collecting, processing, and storing blood and urine samples from the cosmonauts during the course of a 25-day flight on board the station Mir. Plasma and urine concentrations of adrenaline (A), noradrenaline (NA), and dopamine (DA) as well as urinary levels of vanillylmandelic acid (VMA) and homovanillic acid (HVA), and plasma levels of catecholamine sulphates were determined before, during and after the space flight. Plasma NA levels were slightly elevated on day 9 and plasma A on day 20, whereas plasma DA levels were unchanged. However, most of the changes were within the normal range of control values. Sulphates of plasma catecholamines did not change during flight but they were significantly elevated after landing. Urinary levels of A, NA, DA, VMA, and HVA were comparable with preflight values but were elevated at the different intervals studied after landing. The results obtained suggest that in the short period of about 9 days of the cosmonaut's stay in space the sympathoadrenal system was slightly activated indicating a mild stressful influence of the initial period of flight. This short-term space flight compared to long-term flight did not as markedly activate the sympathoadrenal system during the process of re-adaptation to Earth's gravity after landing. Our data suggest that weightlessness is not a stressful factor activating the sympathoadrenal system but it sensitizes the responsiveness of this system during the re-adaptation period after space flight.

  11. RHETT and SCARLET: Synergistic power and propulsion technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, D.M.; Curran, F.M.; Sankovic, J.

    1995-12-31

    The Ballistic Missile Defense Organization (BMDO) sponsors an aggressive program to qualify high performance space power and electric propulsion technologies for space flight. Specifically, the BMDO space propulsion program is now integrating an advanced Hall thruster system including all components necessary for use in an operational spacecraft. This Russian Hall Effect Thruster Technology (RHETT) integrated pallet will be qualified for space flight later this year. This will be followed by a space flight demonstration and verification in 1996. The BMDO power program includes a parallel program to qualify and space flight demonstrate the Solar Concentrator Arrays with Refractive Linear Elementmore » Technology (SCARLET). The first flight SCARLET system is being fabricated for Use on the EER/CTA Comet spacecraft in late July. The space flight demonstration is the first full size, deployed concentrator solar array. The propulsion work is conducted by an industry team led by Space Power, Inc. and Olin Aerospace with their partners in Russia, NIITP and TsNIIMash. The power program is conducted by an industry team led by AEC-Able. This paper is to familiarize the space power community with the synergies between spacecraft power and electric propulsion.« less

  12. Assessment of Nutrient Stability in Space Foods

    NASA Technical Reports Server (NTRS)

    Zwart, S. R.; Perchonok, M.; Braby, L. A.; Kloeris, V. A.; Smith, S. M.

    2009-01-01

    Maintaining an intact nutrient supply in the food system flown on spacecraft is a critical issue for mission success and crew health and safety. Early polar expeditions and exploration expeditions by sailing vessels have taught us that a deficiency, or excess, of even a single vitamin in the food supply can be catastrophic. Evidence from ground-based research indicates that some vitamins are destroyed and fatty acids are oxidized (and therefore rendered dangerous or useless) by different types of radiation and by conditions of long-term storage. We hypothesize that radiation and long-term storage in the space-flight environment will affect the stability of vitamins, amino acids, and fatty acids in the space food system. The research objectives of our ongoing stability studies are to determine the stability of water- and fat-soluble vitamins, fatty acids, and amino acids in the space food supply before and after space flight on the International Space Station (ISS). Foods were analyzed after 2 weeks (a flight control), 11, 19, and 28 months of flight. Along with the space-flown foods, ground-based controls matched for time, light, and temperature are analyzed. The flight studies complement planned ground-based studies of the effects of radiation on vitamins, amino acids, and fatty acids. Flight studies are needed because a model based on ground-based data cannot predict all of the effects of the space-flight environment. Flight studies provide a more accurate test system to determine the effects on these nutrients of the temperature, and radiation conditions in the space-flight environment. Ground studies are required to evaluate longer missions and higher radiation levels expected outside low-Earth orbit. In addition to providing information about nutrient stability in space, the results of these studies will help NASA determine if a need exists to develop special packaging that can ensure stability of foods and nutrients in space, or if further studies of nutrient metabolism or nutrient requirements are needed.

  13. A representational basis for the development of a distributed expert system for Space Shuttle flight control

    NASA Technical Reports Server (NTRS)

    Helly, J. J., Jr.; Bates, W. V.; Cutler, M.; Kelem, S.

    1984-01-01

    A new representation of malfunction procedure logic which permits the automation of these procedures using Boolean normal forms is presented. This representation is discussed in the context of the development of an expert system for space shuttle flight control including software and hardware implementation modes, and a distributed architecture. The roles and responsibility of the flight control team as well as previous work toward the development of expert systems for flight control support at Johnson Space Center are discussed. The notion of malfunction procedures as graphs is introduced as well as the concept of hardware-equivalence.

  14. In-Flight Suppression of an Unstable F/A-18 Structural Mode Using the Space Launch System Adaptive Augmenting Control System

    NASA Technical Reports Server (NTRS)

    VanZwieten, Tannen S.; Gilligan, Eric T.; Wall, John H.; Miller, Christopher J.; Hanson, Curtis E.; Orr, Jeb S.

    2015-01-01

    NASA's Space Launch System (SLS) Flight Control System (FCS) includes an Adaptive Augmenting Control (AAC) component which employs a multiplicative gain update law to enhance the performance and robustness of the baseline control system for extreme off-nominal scenarios. The SLS FCS algorithm including AAC has been flight tested utilizing a specially outfitted F/A-18 fighter jet in which the pitch axis control of the aircraft was performed by a Non-linear Dynamic Inversion (NDI) controller, SLS reference models, and the SLS flight software prototype. This paper describes test cases from the research flight campaign in which the fundamental F/A-18 airframe structural mode was identified using post-flight frequency-domain reconstruction, amplified to result in closed loop instability, and suppressed in-flight by the SLS adaptive control system.

  15. Immune function during space flight

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald; Shearer, William T.

    2002-01-01

    It is very likely that the human immune system will be altered in astronauts exposed to the conditions of long-term space flight: isolation, containment, microgravity, radiation, microbial contamination, sleep disruption, and insufficient nutrition. In human and animal subjects flown in space, there is evidence of immune compromise, reactivation of latent virus infection, and possible development of a premalignant or malignant condition. Moreover, in ground-based space flight model investigations, there is evidence of immune compromise and reactivation of latent virus infection. All of these observations in space flight itself or in ground-based models of space flight have a strong resonance in a wealth of human pathologic conditions involving the immune system where reactivated virus infections and cancer appear as natural consequences. The clinical conditions of Epstein-Barr-driven lymphomas in transplant patients and Kaposi's sarcoma in patients with autoimmune deficiency virus come easily to mind in trying to identify these conditions. With these thoughts in mind, it is highly appropriate, indeed imperative, that careful investigations of human immunity, infection, and cancer be made by space flight researchers.

  16. An improved waste collection system for space flight

    NASA Technical Reports Server (NTRS)

    Thornton, William E.; Lofland, William W., Jr.; Whitmore, Henry

    1986-01-01

    Waste collection systems are a critical part of manned space flight. Systems to date have had a number of deficiencies. A new system, which uses a simple mechanical piston compactor and disposable pads allows a clean area for defecation and maximum efficiency of waste collection and storage. The concept has been extensively tested. Flight demonstration units are being built, tested, and scheduled for flight. A prototype operational unit is under construction. This system offers several advantages over existing or planned systems in the areas of crew interface and operation, cost, size, weight, and maintenance and power consumption.

  17. Thermal environments for Space Shuttle payloads

    NASA Technical Reports Server (NTRS)

    Fu, J. H.; Graves, G. R.

    1985-01-01

    The thermal environment of the Space Shuttle payload bay during the on-orbit phase of the STS flights is presented. The STS Thermal Flight Instrumentation System and various substructures of the Orbiter and the payload are described, as well as the various on-orbit attitudes encountered in the STS flights (the tail to sun, nose to sun, payload bay to sun, etc.). Included are the temperature profiles obtained during the on-orbit STS 1-5 flights (with the payload bay door open), recorded in various substructures of the Orbiter's midsection at different flight attitudes, as well as schematic illustrations of the Space Shuttle system, a typical mission profile, and the Orbiter's substructures.

  18. Space transportation system biomedical operations support study

    NASA Technical Reports Server (NTRS)

    White, S. C.

    1983-01-01

    The shift of the Space Transportation System (STS) flight tests of the orbiter vehicle to the preparation and flight of the payloads is discussed. Part of this change is the transition of the medical and life sciences aspects of the STS flight operations to reflect the new state. The medical operations, the life sciences flight experiments support requirements and the intramural research program expected to be at KSC during the operational flight period of the STS and a future space station are analyzed. The adequacy of available facilities, plans, and resources against these future needs are compared; revisions and/or alternatives where appropriate are proposed.

  19. Effects of Free Molecular Heating on the Space Shuttle Active Thermal Control System

    NASA Technical Reports Server (NTRS)

    McCloud, Peter L.; Wobick, Craig A.

    2007-01-01

    During Space Transportation System (STS) flight 121, higher than predicted radiator outlet temperatures were experienced from post insertion and up until nominal correction (NC) burn two. Effects from the higher than predicted heat loads on the radiator panels led to an additional 50 lbm of supply water consumed by the Flash Evaporator System (FES). Post-flight analysis and research revealed that the additional heat loads were due to Free Molecular Heating (FMH) on the radiator panels, which previously had not been considered as a significant environmental factor for the Space Shuttle radiators. The current Orbiter radiator heat flux models were adapted to incorporate the effects of FMH in addition to solar, earth infrared and albedo sources. Previous STS flights were also examined to find additional flight data on the FMH environment. Results of the model were compared to flight data and verified against results generated by the National Aeronautics and Space Administration (NASA), Johnson Space Center (JSC) Aero-sciences group to verify the accuracy of the model.

  20. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    The Marshall Space Flight Center (MSFC) is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. Scientists and engineers at the MSFC are working together to provide the ISS with systems that are safe, efficient, and cost-effective. These compact and powerful systems are collectively called the Environmental Control and Life Support Systems, or simply, ECLSS. This photograph shows the development Water Processor located in two racks in the ECLSS test area at the Marshall Space Flight Center. Actual waste water, simulating Space Station waste, is generated and processed through the hardware to evaluate the performance of technologies in the flight Water Processor design.

  1. Space flight hazards catalog

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The most significant hazards identified on manned space flight programs are listed. This summary is of special value to system safety engineers in developing safety checklists and otherwise tailoring safety tasks to specific systems and subsystems.

  2. KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility make final adjustments to the Flight Support System (FSS) for STS-82, the second Hubble Space Telescope servicing mission. The FSS is reusable flight hardware that provides the mechanical, structural and electrical interfaces between HST, the space support equipment and the orbiter for payload retrieval and on-orbit servicing. Liftoff aboard Discovery is targeted Feb. 11 with a crew of seven.

    NASA Image and Video Library

    1997-01-16

    KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility make final adjustments to the Flight Support System (FSS) for STS-82, the second Hubble Space Telescope servicing mission. The FSS is reusable flight hardware that provides the mechanical, structural and electrical interfaces between HST, the space support equipment and the orbiter for payload retrieval and on-orbit servicing. Liftoff aboard Discovery is targeted Feb. 11 with a crew of seven.

  3. 14 CFR 121.127 - Flight following system; requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight following system; requirements. 121... Supplemental Operations § 121.127 Flight following system; requirements. (a) Each certificate holder conducting supplemental operations using a flight following system must show that— (1) The system has adequate facilities...

  4. 14 CFR 121.127 - Flight following system; requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight following system; requirements. 121... Supplemental Operations § 121.127 Flight following system; requirements. (a) Each certificate holder conducting supplemental operations using a flight following system must show that— (1) The system has adequate facilities...

  5. 14 CFR 121.127 - Flight following system; requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight following system; requirements. 121... Supplemental Operations § 121.127 Flight following system; requirements. (a) Each certificate holder conducting supplemental operations using a flight following system must show that— (1) The system has adequate facilities...

  6. 14 CFR 121.127 - Flight following system; requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight following system; requirements. 121... Supplemental Operations § 121.127 Flight following system; requirements. (a) Each certificate holder conducting supplemental operations using a flight following system must show that— (1) The system has adequate facilities...

  7. 14 CFR 121.127 - Flight following system; requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight following system; requirements. 121... Supplemental Operations § 121.127 Flight following system; requirements. (a) Each certificate holder conducting supplemental operations using a flight following system must show that— (1) The system has adequate facilities...

  8. 14 CFR 417.311 - Flight safety crew roles and qualifications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Flight safety crew roles and qualifications. 417.311 Section 417.311 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... the knowledge, skills, and abilities needed to operate the flight safety system hardware in accordance...

  9. 14 CFR 417.311 - Flight safety crew roles and qualifications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Flight safety crew roles and qualifications. 417.311 Section 417.311 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... the knowledge, skills, and abilities needed to operate the flight safety system hardware in accordance...

  10. Dexterous Orbital Servicing System (DOSS)

    NASA Technical Reports Server (NTRS)

    Price, Charles R.; Berka, Reginald B.; Chladek, John T.

    1994-01-01

    The Dexterous Orbiter Servicing System (DOSS) is a dexterous robotic spaceflight system that is based on the manipulator designed as part of the Flight Telerobotics Servicer program for the Space Station Freedom and built during a 'technology capture' effort that was commissioned when the FTS was cancelled from the Space Station Freedom program. The FTS technology capture effort yielded one flight manipulator and the 1 g hydraulic simulator that had been designed as an integrated test tool and crew trainer. The DOSS concept was developed to satisfy needs of the telerobotics research community, the space shuttle, and the space station. As a flight testbed, DOSS would serve as a baseline reference for testing the performance of advanced telerobotics and intelligent robotics components. For shuttle, the DOSS, configured as a movable dexterous tool, would be used to provide operational flexibility for payload operations and contingency operations. As a risk mitigation flight demonstration, the DOSS would serve the International Space Station to characterize the end to end system performance of the Special Purpose Dexterous Manipulator performing assembly and maintenance tasks with actual ISSA orbital replacement units. Currently, the most likely entrance of the DOSS into spaceflight is a risk mitigation flight experiment for the International Space Station.

  11. 14 CFR 23.1335 - Flight director systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flight director systems. 23.1335 Section 23...: Installation § 23.1335 Flight director systems. If a flight director system is installed, means must be provided to indicate to the flight crew its current mode of operation. Selector switch position is not...

  12. 14 CFR 23.1335 - Flight director systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flight director systems. 23.1335 Section 23...: Installation § 23.1335 Flight director systems. If a flight director system is installed, means must be provided to indicate to the flight crew its current mode of operation. Selector switch position is not...

  13. Space power system automation approaches at the George C. Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Weeks, D. J.

    1987-01-01

    This paper discusses the automation approaches employed in various electrical power system breadboards at the Marshall Space Flight Center. Of particular interest is the application of knowledge-based systems to fault management and dynamic payload scheduling. A description of each major breadboard and the automation approach taken for each is given.

  14. Research and technology

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Activities of the Goddard Space Flight Center are described in the areas of planets and interplanetary media, comets, astronomy and high-energy physics, solar physics, atmospheres, terrestrial physics, ocean science, sensors and space technology, techniques, user space data systems, space communications and navigation, and system and software engineering. Flight projects and mission definition studies are presented, and institutional technology is described.

  15. Problems of equipment creation for hygienic treatment of textiles (underwear, garments, hygienic towels and napkins) for long-term space missions

    NASA Astrophysics Data System (ADS)

    Shumilina, I.

    Impossibility of just in time stocks delivery to the International Space Station ISS because of Shuttle space flights absence has led to forced changing of standards of underwear garments and personal hygiene means using Therefore hygienic treatment of textiles underwear garments towels and napkins are necessary for long-term space flight missions Investigations into the ways of cosmonauts sanitary -- hygienic supply are prepared The resent equipment means and methods of cosmonauts sanitary -- hygienic supply were created for space flight conditions with an opportunity of stocks updating This investigations are confirm necessity of new generation system creation for cosmonauts sanitary -- hygienic supply and special designing of hygienic treatment laundry drying equipment and technologies for long-term space flights without an opportunity of stocks updating in particular for martian mission One from main requirements for equipment means and methods of cosmonauts sanitary -- hygienic supply is full safety for human organisms under systematic and long-term application in space flight conditions small energy consumption and combining with space Life-Support Systems Method and program of experimental investigations of textiles laundry with application of washing means for long-term space flight conditions are prepared It is necessary to estimate opportunity and efficiency of washing means application for textiles laundry for space flight missions also to estimate compatibility of washing means for textiles laundry and for washing

  16. Infrared On-Orbit RCC Inspection With the EVA IR Camera: Development of Flight Hardware From a COTS System

    NASA Technical Reports Server (NTRS)

    Gazanik, Michael; Johnson, Dave; Kist, Ed; Novak, Frank; Antill, Charles; Haakenson, David; Howell, Patricia; Jenkins, Rusty; Yates, Rusty; Stephan, Ryan; hide

    2005-01-01

    In November 2004, NASA's Space Shuttle Program approved the development of the Extravehicular (EVA) Infrared (IR) Camera to test the application of infrared thermography to on-orbit reinforced carbon-carbon (RCC) damage detection. A multi-center team composed of members from NASA's Johnson Space Center (JSC), Langley Research Center (LaRC), and Goddard Space Flight Center (GSFC) was formed to develop the camera system and plan a flight test. The initial development schedule called for the delivery of the system in time to support STS-115 in late 2005. At the request of Shuttle Program managers and the flight crews, the team accelerated its schedule and delivered a certified EVA IR Camera system in time to support STS-114 in July 2005 as a contingency. The development of the camera system, led by LaRC, was based on the Commercial-Off-the-Shelf (COTS) FLIR S65 handheld infrared camera. An assessment of the S65 system in regards to space-flight operation was critical to the project. This paper discusses the space-flight assessment and describes the significant modifications required for EVA use by the astronaut crew. The on-orbit inspection technique will be demonstrated during the third EVA of STS-121 in September 2005 by imaging damaged RCC samples mounted in a box in the Shuttle's cargo bay.

  17. Integration Testing of Space Flight Systems

    NASA Technical Reports Server (NTRS)

    Sowards, Stephanie; Honeycutt, Timothy

    2008-01-01

    This paper discusses the benefits of conducting multi-system integration testing of space flight elements in lieu of merely shipping and shooting to the launch site and launching. "Ship and shoot" is a philosophy that proposes to transport flight elements directly from the factory to the launch site and begin the mission without further testing. Integration testing, relevant to validation testing in this context, is a risk mitigation effort that builds upon the individual element and system levels of qualification and acceptance tests, greatly improving the confidence of operations in space. The International Space Station Program (ISSP) experience is the focus of most discussions from a historical perspective, while proposed integration testing of the Constellation Program is also discussed. The latter will include Multi-Element Integration Testing (MElT) and Flight Element Integration Testing (FElT).

  18. Effects of microgravity on the immune system

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald; Taylor, Gerald R.

    1991-01-01

    Changes in resistance to bacterial and viral infections in Apollo crew members has stimulated interest in the study of immunity and space flight. Results of studies from several laboratories in both humans and rodents have indicated alterations after space flight that include the following immunological parameters: thymus size, lymphocyte blastogenesis, interferon and interleukin production, natural killer cell activity, cytotoxic T-cell activity, leukocyte subset population distribution, response of bone marrow cells to colony stimulating factors, and delayed hypersensitivity skin test reactivity. The interactions of the immune system with other physiological systems, including muscle, bone, and the nervous system, may play a major role in the development of these immunological parameters during and after flight. There may also be direct effects of space flight on immune responses.

  19. Apollo experience report: Development flight instrumentation. [telemetry equipment for space flight test program

    NASA Technical Reports Server (NTRS)

    Farmer, N. B.

    1974-01-01

    Development flight instrumentation was delivered for 25 Apollo vehicles as Government-furnished equipment. The problems and philosophies of an activity that was concerned with supplying telemetry equipment to a space-flight test program are discussed. Equipment delivery dates, system-design details, and flight-performance information for each mission also are included.

  20. Physics of Colloids in Space--Plus (PCS+) Experiment Completed Flight Acceptance Testing

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    2004-01-01

    The Physics of Colloids in Space--Plus (PCS+) experiment successfully completed system-level flight acceptance testing in the fall of 2003. This testing included electromagnetic interference (EMI) testing, vibration testing, and thermal testing. PCS+, an Expedite the Process of Experiments to Space Station (EXPRESS) Rack payload will deploy a second set of colloid samples within the PCS flight hardware system that flew on the International Space Station (ISS) from April 2001 to June 2002. PCS+ is slated to return to the ISS in late 2004 or early 2005.

  1. Environmental Control and Life Support Systems Test Facility at MSFC

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Marshall Space Flight Center (MSFC) is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. Scientists and engineers at the MSFC are working together to provide the ISS with systems that are safe, efficient, and cost-effective. These compact and powerful systems are collectively called the Environmental Control and Life Support Systems, or simply, ECLSS. This photograph shows the development Water Processor located in two racks in the ECLSS test area at the Marshall Space Flight Center. Actual waste water, simulating Space Station waste, is generated and processed through the hardware to evaluate the performance of technologies in the flight Water Processor design.

  2. 14 CFR 29.1335 - Flight director systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flight director systems. 29.1335 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Instruments: Installation § 29.1335 Flight director systems. If a flight director system is installed, means must be provided to indicate to the...

  3. 14 CFR 27.1335 - Flight director systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flight director systems. 27.1335 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Instruments: Installation § 27.1335 Flight director systems. If a flight director system is installed, means must be provided to indicate to the...

  4. 14 CFR 27.1335 - Flight director systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flight director systems. 27.1335 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Instruments: Installation § 27.1335 Flight director systems. If a flight director system is installed, means must be provided to indicate to the...

  5. 14 CFR 29.1335 - Flight director systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flight director systems. 29.1335 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Instruments: Installation § 29.1335 Flight director systems. If a flight director system is installed, means must be provided to indicate to the...

  6. 14 CFR 29.1335 - Flight director systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flight director systems. 29.1335 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Instruments: Installation § 29.1335 Flight director systems. If a flight director system is installed, means must be provided to indicate to the...

  7. In-Flight Suppression of a Destabilized F/A-18 Structural Mode Using the Space Launch System Adaptive Augmenting Control System

    NASA Technical Reports Server (NTRS)

    Wall, John H.; VanZwieten, Tannen S.; Gilligan, Eric T.; Miller, Christopher J.; Hanson, Curtis E.; Orr, Jeb S.

    2015-01-01

    NASA's Space Launch System (SLS) Flight Control System (FCS) includes an Adaptive Augmenting Control (AAC) component which employs a multiplicative gain update law to enhance the performance and robustness of the baseline control system for extreme off nominal scenarios. The SLS FCS algorithm including AAC has been flight tested utilizing a specially outfitted F/A-18 fighter jet in which the pitch axis control of the aircraft was performed by a Non-linear Dynamic Inversion (NDI) controller, SLS reference models, and the SLS flight software prototype. This paper describes test cases from the research flight campaign in which the fundamental F/A-18 airframe structural mode was identified using frequency-domain reconstruction of flight data, amplified to result in closed loop instability, and suppressed in-flight by the SLS adaptive control system.

  8. Space physiology II: adaptation of the central nervous system to space flight--past, current, and future studies.

    PubMed

    Clément, Gilles; Ngo-Anh, Jennifer Thu

    2013-07-01

    Experiments performed in orbit on the central nervous system have focused on the control of posture, eye movements, spatial orientation, as well as cognitive processes, such as three-dimensional visual perception and mental representation of space. Brain activity has also been recorded during and immediately after space flight for evaluating the changes in brain structure activation during tasks involving perception, attention, memory, decision, and action. Recent ground-based studies brought evidence that the inputs from the neurovestibular system also participate in orthostatic intolerance. It is, therefore, important to revisit the flight data of neuroscience studies in the light of new models of integrative physiology. The outcomes of this exercise will increase our knowledge on the adaptation of body functions to changing gravitational environment, vestibular disorders, aging, and our approach towards more effective countermeasures during human space flight and planetary exploration.

  9. Large Space Systems Technology, Part 2, 1981

    NASA Technical Reports Server (NTRS)

    Boyer, W. J. (Compiler)

    1982-01-01

    Four major areas of interest are covered: technology pertinent to large antenna systems; technology related to the control of large space systems; basic technology concerning structures, materials, and analyses; and flight technology experiments. Large antenna systems and flight technology experiments are described. Design studies, structural testing results, and theoretical applications are presented with accompanying validation data. These research studies represent state-of-the art technology that is necessary for the development of large space systems. A total systems approach including structures, analyses, controls, and antennas is presented as a cohesive, programmatic plan for large space systems.

  10. Space teleoperations technology for Space Station evolution

    NASA Technical Reports Server (NTRS)

    Reuter, Gerald J.

    1990-01-01

    Viewgraphs on space teleoperations technology for space station evolution are presented. Topics covered include: shuttle remote manipulator system; mobile servicing center functions; mobile servicing center technology; flight telerobotic servicer-telerobot; flight telerobotic servicer technology; technologies required for space station assembly; teleoperation applications; and technology needs for space station evolution.

  11. Specification and Design of Electrical Flight System Architectures with SysML

    NASA Technical Reports Server (NTRS)

    McKelvin, Mark L., Jr.; Jimenez, Alejandro

    2012-01-01

    Modern space flight systems are required to perform more complex functions than previous generations to support space missions. This demand is driving the trend to deploy more electronics to realize system functionality. The traditional approach for the specification, design, and deployment of electrical system architectures in space flight systems includes the use of informal definitions and descriptions that are often embedded within loosely coupled but highly interdependent design documents. Traditional methods become inefficient to cope with increasing system complexity, evolving requirements, and the ability to meet project budget and time constraints. Thus, there is a need for more rigorous methods to capture the relevant information about the electrical system architecture as the design evolves. In this work, we propose a model-centric approach to support the specification and design of electrical flight system architectures using the System Modeling Language (SysML). In our approach, we develop a domain specific language for specifying electrical system architectures, and we propose a design flow for the specification and design of electrical interfaces. Our approach is applied to a practical flight system.

  12. Simulation of physiological systems in order to evaluate and predict the human condition in a space flight

    NASA Technical Reports Server (NTRS)

    Verigo, V. V.

    1979-01-01

    Simulation models were used to study theoretical problems of space biology and medicine. The reaction and adaptation of the main physiological systems to the complex effects of space flight were investigated. Mathematical models were discussed in terms of their significance in the selection of the structure and design of biological life support systems.

  13. 1201054

    NASA Image and Video Library

    2012-10-26

    NASA RESEARCHER DR. DAVID SMITH AT NASA’S MARSHALL SPACE FLIGHT CENTER IN HUNTSVILLE, ALA., IS LEADING A THREE-YEAR PROJECT TO REVOLUTIONIZE IN-FLIGHT NAVIGATION SYSTEMS FOR SPACE VEHICLES AND MILITARY AND COMMERCIAL VEHICLES. SMITH AND HIS TEAM SEEK TO REFINE THE HIGHLY SENSITIVE OPTICAL GYROSCOPES THAT DRIVE SPACE VEHICLES’ INERTIAL GUIDANCE SYSTEMS – DELIVERING GYROSCOPES AT LEAST 1,000 TIMES MORE SENSITIVE THAN CURRENT SYSTEMS.

  14. 1201053

    NASA Image and Video Library

    2012-10-26

    NASA RESEARCHER DR. DAVID SMITH AT NASA’S MARSHALL SPACE FLIGHT CENTER IN HUNTSVILLE, ALA., IS LEADING A THREE-YEAR PROJECT TO REVOLUTIONIZE IN-FLIGHT NAVIGATION SYSTEMS FOR SPACE VEHICLES AND MILITARY AND COMMERCIAL VEHICLES. SMITH AND HIS TEAM SEEK TO REFINE THE HIGHLY SENSITIVE OPTICAL GYROSCOPES THAT DRIVE SPACE VEHICLES’ INERTIAL GUIDANCE SYSTEMS – DELIVERING GYROSCOPES AT LEAST 1,000 TIMES MORE SENSITIVE THAN CURRENT SYSTEMS.

  15. 1201056

    NASA Image and Video Library

    2012-10-26

    NASA RESEARCHER DR. DAVID SMITH AT NASA’S MARSHALL SPACE FLIGHT CENTER IN HUNTSVILLE, ALA., IS LEADING A THREE-YEAR PROJECT TO REVOLUTIONIZE IN-FLIGHT NAVIGATION SYSTEMS FOR SPACE VEHICLES AND MILITARY AND COMMERCIAL VEHICLES. SMITH AND HIS TEAM SEEK TO REFINE THE HIGHLY SENSITIVE OPTICAL GYROSCOPES THAT DRIVE SPACE VEHICLES’ INERTIAL GUIDANCE SYSTEMS – DELIVERING GYROSCOPES AT LEAST 1,000 TIMES MORE SENSITIVE THAN CURRENT SYSTEMS.

  16. 1201055

    NASA Image and Video Library

    2012-10-26

    NASA RESEARCHER DR. DAVID SMITH AT NASA’S MARSHALL SPACE FLIGHT CENTER IN HUNTSVILLE, ALA., IS LEADING A THREE-YEAR PROJECT TO REVOLUTIONIZE IN-FLIGHT NAVIGATION SYSTEMS FOR SPACE VEHICLES AND MILITARY AND COMMERCIAL VEHICLES. SMITH AND HIS TEAM SEEK TO REFINE THE HIGHLY SENSITIVE OPTICAL GYROSCOPES THAT DRIVE SPACE VEHICLES’ INERTIAL GUIDANCE SYSTEMS – DELIVERING GYROSCOPES AT LEAST 1,000 TIMES MORE SENSITIVE THAN CURRENT SYSTEMS.

  17. 1201052

    NASA Image and Video Library

    2012-10-26

    NASA RESEARCHER DR. DAVID SMITH AT NASA’S MARSHALL SPACE FLIGHT CENTER IN HUNTSVILLE, ALA., IS LEADING A THREE-YEAR PROJECT TO REVOLUTIONIZE IN-FLIGHT NAVIGATION SYSTEMS FOR SPACE VEHICLES AND MILITARY AND COMMERCIAL VEHICLES. SMITH AND HIS TEAM SEEK TO REFINE THE HIGHLY SENSITIVE OPTICAL GYROSCOPES THAT DRIVE SPACE VEHICLES’ INERTIAL GUIDANCE SYSTEMS – DELIVERING GYROSCOPES AT LEAST 1,000 TIMES MORE SENSITIVE THAN CURRENT SYSTEMS.

  18. 1201057

    NASA Image and Video Library

    2012-10-26

    NASA RESEARCHER DR. DAVID SMITH AT NASA’S MARSHALL SPACE FLIGHT CENTER IN HUNTSVILLE, ALA., IS LEADING A THREE-YEAR PROJECT TO REVOLUTIONIZE IN-FLIGHT NAVIGATION SYSTEMS FOR SPACE VEHICLES AND MILITARY AND COMMERCIAL VEHICLES. SMITH AND HIS TEAM SEEK TO REFINE THE HIGHLY SENSITIVE OPTICAL GYROSCOPES THAT DRIVE SPACE VEHICLES’ INERTIAL GUIDANCE SYSTEMS – DELIVERING GYROSCOPES AT LEAST 1,000 TIMES MORE SENSITIVE THAN CURRENT SYSTEMS.

  19. Validation of Procedures for Monitoring Crewmember Immune Function SDBI-1900, SMO-015 - Integrated Immune

    NASA Technical Reports Server (NTRS)

    Crucian, Brian; Stowe, Raymond; Mehta, Satish; Uchakin, Peter; Nehlsen-Cannarella, Sandra; Morukov, Boris; Pierson, Duane; Sams, Clarence

    2007-01-01

    There is ample evidence to suggest that space flight leads to immune system dysregulation. This may be a result of microgravity, confinement, physiological stress, radiation, environment or other mission-associated factors. The clinical risk from prolonged immune dysregulation during space flight are not yet determined, but may include increased incidence of infection, allergy, hypersensitivity, hematological malignancy or altered wound healing. Each of the clinical events resulting from immune dysfunction has the potential to impact mission critical objectives during exploration-class missions. To date, precious little in-flight immune data has been generated to assess this phenomenon. The majority of recent flight immune studies have been post-flight assessments, which may not accurately reflect the in-flight condition. There are no procedures currently in place to monitor immune function or its effect on crew health. The objective of this Supplemental Medical Objective (SMO) is to develop and validate an immune monitoring strategy consistent with operational flight requirements and constraints. This SMO will assess the clinical risks resulting from the adverse effects of space flight on the human immune system and will validate a flight-compatible immune monitoring strategy. Characterization of the clinical risk and the development of a monitoring strategy are necessary prerequisite activities prior to validating countermeasures. This study will determine, to the best level allowed by current technology, the in-flight status of crewmembers immune system. Pre-flight, in-flight and post-flight assessments of immune status, immune function, viral reactivation and physiological stress will be performed. The in-flight samples will allow a distinction between legitimate in-flight alterations and the physiological stresses of landing and readaptation which are believed to alter landing day assessments. The overall status of the immune system during flight (activation, deficiency, dysregulation) and the response of the immune system to specific latent virus reactivation (known to occur during space flight) will be thoroughly assessed. Following completion of the SMO the data will be evaluated to determine the optimal set of assays for routine monitoring of crewmember immune system function, should the clinical risk warrant such monitoring.

  20. 14 CFR 121.125 - Flight following system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight following system. 121.125 Section... Operations § 121.125 Flight following system. (a) Each certificate holder conducting supplemental operations must show that it has— (1) An approved flight following system established in accordance with subpart U...

  1. 14 CFR 121.125 - Flight following system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight following system. 121.125 Section... Operations § 121.125 Flight following system. (a) Each certificate holder conducting supplemental operations must show that it has— (1) An approved flight following system established in accordance with subpart U...

  2. 14 CFR 121.125 - Flight following system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight following system. 121.125 Section... Operations § 121.125 Flight following system. (a) Each certificate holder conducting supplemental operations must show that it has— (1) An approved flight following system established in accordance with subpart U...

  3. 14 CFR 121.125 - Flight following system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight following system. 121.125 Section... Operations § 121.125 Flight following system. (a) Each certificate holder conducting supplemental operations must show that it has— (1) An approved flight following system established in accordance with subpart U...

  4. 14 CFR 121.125 - Flight following system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight following system. 121.125 Section... Operations § 121.125 Flight following system. (a) Each certificate holder conducting supplemental operations must show that it has— (1) An approved flight following system established in accordance with subpart U...

  5. [From the flight of Iu. A. Gagarin to the contemporary piloted space flights and exploration missions].

    PubMed

    Grigor'ev, A I; Potapov, A N

    2011-01-01

    The first human flight to space made by Yu. A. Gagarin on April 12, 1961 was a crucial event in the history of cosmonautics that had a tremendous effect on further progress of the human civilization. Gagarin's flight had been prefaced by long and purposeful biomedical researches with the use of diverse bio-objects flown aboard rockets and artificial satellites. Data of these researches drove to the conclusion on the possibility in principle for humans to fly to space. After a series of early flights and improvements in the medical support system space missions to the Salyut and Mir station gradually extended to record durations. The foundations of this extension were laid by systemic researches in the fields of space biomedicine and allied sciences. The current ISS system of crew medical care has been successful in maintaining health and performance of cosmonauts as well as in providing the conditions for implementation of flight duties and operations with a broad variety of payloads. The ISS abounds in opportunities of realistic trial of concepts and technologies in preparation for crewed exploration missions. At the same, ground-based simulation of a mission to Mars is a venue for realization of scientific and technological experiments in space biomedicine.

  6. Transplantable tissue growth-a commercial space venture

    NASA Astrophysics Data System (ADS)

    Giuntini, Ronald E.; Vardaman, William K.

    1997-01-01

    Rantek was incorporated in 1984 to pursue research toward product development in space based biotechnology. The company has maintained an aggressive experiment flight program since 1989 having flown biotechnology experiments in six Consort rockets flights, one Joust rocket flight and eight Space Shuttle missions. The objective of these flights was to conduct a series of research experiments to resolve issues affecting transplantable tissue growth feasibility. The purpose of the flight research was to determine the behavior of lymphocyte mixing, activation, magnetic mixing and process control, drug studies in a model leukemia cell line, and various aspects of the hardware system process control in the low gravity of space. The company is now preparing for a two Space Shuttle flight program as precursors to a sustained, permanent, commercial venture at the Space Station. The shuttle flights will enable new, larger scale tissue growth systems to be tested to determine fundamental process control sensitivity and growth rates unique to a number of tissue types. The answer to these issues will ultimately determine the commercial viability of the Rantek Biospace program. This paper addresses considerations that will drive the cost of a space venture-the largest cost driver will be the cost to and from the station and the cost at the station.

  7. Main medical results of extended flights on space station Mir in 1986-1990

    NASA Astrophysics Data System (ADS)

    Grigoriev, A. I.; Bugrov, S. A.; Bogomolov, V. V.; Egorov, A. D.; Polyakov, V. V.; Tarasov, I. K.; Shulzhenko, E. B.

    During 1986-1990 seven prime spacecrews (16 cosmonauts) have flow on-board the Mir orbital complex. The longest space mission duration was 366 days. The principal objectives of the medical tasks were the maintenance of good health and performance of the spacecrews and conducting medical research programs which included study of the cardiovascular, motor, endocrine, blood, immune, and metabolic systems. Results obtained point to the ability of humans to readily adapt to a year-long stay in space and maintain good health and performance. Readaptation had a similar course as after other previous long-term space flights of up to 8 months in duration. Primary body system changes were not qualitatively different from findings after flights aboard the Salyut 6 and 7 space stations. In this case, during and after an 11-12 month flight, body system alterations were even less severe which was a result of adequate countermeasure use, their systematic and creative employment and maintenance of required environments to support life and work in space.

  8. Material Analysis and System Design for Exploration Life Support Systems 2017

    NASA Technical Reports Server (NTRS)

    Knox, Jim; Cmarik, Gregory E.

    2017-01-01

    Advanced Environmental Control and Life Support System (ECLSS) design is critical for manned space flight beyond Earth. Current systems enable extended missions in low-Earth orbit, but for deep-space missions, not only will astronauts be outside the reach of resupply operations from Earth but they will also need to handle malfunctions and compensate for the degradation of materials. These two daunting challenges must be overcome for long-term independent space flight. In order to solve the first, separation and recycling of onboard atmosphere is required. Current systems utilize space vacuum to fully regenerate CO2 sorbent beds, but this is not sustainable. The second challenge stems from material and performance degradation due to operational cycling and on-board contaminants. This report will review the recent work by the ECLSS team at Marshall Space Flight Center towards overcoming these challenges by characterizing materials via novel methods and by assessing new air revitalization systems.

  9. Safety policy and requirements for payloads using the space transportation system

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The safety policy and requirements are established applicable to the Space Transportation System (STS) payloads and their ground support equipment (GSE). The requirements are intended to protect flight and ground personnel, the STS, other payloads, GSE, the general public, public-private property, and the environment from payload-related hazards. The technical and system safety requirements applicable to STS payloads (including payload-provided ground and flight supports systems) during ground and flight operations are contained.

  10. Launch Vehicle Manual Steering with Adaptive Augmenting Control In-flight Evaluations Using a Piloted Aircraft

    NASA Technical Reports Server (NTRS)

    Hanson, Curt

    2014-01-01

    An adaptive augmenting control algorithm for the Space Launch System has been developed at the Marshall Space Flight Center as part of the launch vehicles baseline flight control system. A prototype version of the SLS flight control software was hosted on a piloted aircraft at the Armstrong Flight Research Center to demonstrate the adaptive controller on a full-scale realistic application in a relevant flight environment. Concerns regarding adverse interactions between the adaptive controller and a proposed manual steering mode were investigated by giving the pilot trajectory deviation cues and pitch rate command authority.

  11. Application of identification techniques to remote manipulator system flight data

    NASA Technical Reports Server (NTRS)

    Shepard, G. D.; Lepanto, J. A.; Metzinger, R. W.; Fogel, E.

    1983-01-01

    This paper addresses the application of identification techniques to flight data from the Space Shuttle Remote Manipulator System (RMS). A description of the remote manipulator, including structural and control system characteristics, sensors, and actuators is given. A brief overview of system identification procedures is presented, and the practical aspects of implementing system identification algorithms are discussed. In particular, the problems posed by desampling rate, numerical error, and system nonlinearities are considered. Simulation predictions of damping, frequency, and system order are compared with values identified from flight data to support an evaluation of RMS structural and control system models. Finally, conclusions are drawn regarding the application of identification techniques to flight data obtained from a flexible space structure.

  12. Status of 'HIMES' reentry flight test project

    NASA Astrophysics Data System (ADS)

    Inatani, Yoshifumi; Kawaguchi, Jun'ichiro; Yonemoto, Koichi

    1990-10-01

    The salient features of the Highly Maneuverable Experimental Space (HIMES) vehicle which is being developed by the Institute of Space and Astronautical Science of Japan are discussed together with the results of tests conducted. Analytical studies carried out so far include system analyses, aerodynamic design, the navigation/guidance and control systems, the propulsion system, and structural studies. Results of flight tests conducted to verify these analyses include the low-speed gliding flight test and the atmospheric reentry flight test, as well as a ground firing test of the hydrogen-fueled propulsion system. Diagrams are presented of the HIMES vehicle and its propulsion engines.

  13. The IXV experience, from the mission conception to the flight results

    NASA Astrophysics Data System (ADS)

    Tumino, G.; Mancuso, S.; Gallego, J.-M.; Dussy, S.; Preaud, J.-P.; Di Vita, G.; Brunner, P.

    2016-07-01

    The atmospheric re-entry domain is a cornerstone of a wide range of space applications, ranging from reusable launcher stages developments, robotic planetary exploration, human space flight, to innovative applications such as reusable research platforms for in orbit validation of multiple space applications technologies. The Intermediate experimental Vehicle (IXV) is an advanced demonstrator which has performed in-flight experimentation of atmospheric re-entry enabling systems and technologies aspects, with significant advancements on Europe's previous flight experiences, consolidating Europe's autonomous position in the strategic field of atmospheric re-entry. The IXV mission objectives were the design, development, manufacturing, assembling and on-ground to in-flight verification of an autonomous European lifting and aerodynamically controlled reentry system, integrating critical re-entry technologies at system level. Among such critical technologies of interest, special attention was paid to aerodynamic and aerothermodynamics experimentation, including advanced instrumentation for aerothermodynamics phenomena investigations, thermal protections and hot-structures, guidance, navigation and flight control through combined jets and aerodynamic surfaces (i.e. flaps), in particular focusing on the technologies integration at system level for flight, successfully performed on February 11th, 2015.

  14. Flight mechanics applications for tethers in space: Cooperative Italian-US programs

    NASA Technical Reports Server (NTRS)

    Bevilacqua, Franco; Merlina, Pietro; Anderson, John L.

    1990-01-01

    Since the 1974 proposal by Giuseppe Colombo to fly a tethered subsatellite from the Shuttle Orbiter, the creative thinking of many scientists and engineers from Italy and U.S. has generated a broad range of potential tether applications in space. Many of these applications have promise for enabling innovative research and operational activities relating to flight mechanics in earth orbit and at suborbital altitudes. From a flight mechanics standpoint the most interesting of the currently proposed flight demonstrations are: the second Tethered Satellite System experiment which offers both the potential for aerothermodynamics and hypersonics research and for atmospheric science research; the Tethered Initiated Space Recovery System which would enable orbital deboost and recovery of a re-entry vehicle and waste removal from a space station; and the Tether Elevator/Crawler System which would provide a variable microgravity environment and space station center of mass management. The outer atmospheric and orbital flight mechanics characteristics of these proposed tether flight demonstrations are described. The second Tethered Satellite System mission will deploy the tethered satellite earthward and will bring it as low as 130 km from ground and thus into the transition region between the atmosphere (non-ionized) and the partially ionized ionosphere. The atmospheric flight mechanics of the tethered satellite is discussed and simulation results are presented. The Tether Initiated Space Recovery System experiment will demonstrate the ability of a simple tether system to deboost and recover a reentry vehicle. The main feature of this demonstration is the utilization of a Small Expendable Deployment System (SEDS) and the low-tension deployment assumed to separate the reentry vehicle from the Shuttle. This low-tension deployment maneuver is discussed and its criticalities are outlined. The Tether Elevator/Crawler System is a new space element able to move in a controlled way between the ends of a deployed tethered system. A Shuttle test of an Elevator model is planned to demonstrate the unique capability of this element as a microgravity facility and to test the transfer motion control. The basic dynamical features of the Elevator system are presented and a preliminary assessment of the Elevator-induced tether vibrations is discussed.

  15. SSME digital control design characteristics

    NASA Technical Reports Server (NTRS)

    Mitchell, W. T.; Searle, R. F.

    1985-01-01

    To protect against a latent programming error (software fault) existing in an untried branch combination that would render the space shuttle out of control in a critical flight phase, the Backup Flight System (BFS) was chartered to provide a safety alternative. The BFS is designed to operate in critical flight phases (ascent and descent) by monitoring the activities of the space shuttle flight subsystems that are under control of the primary flight software (PFS) (e.g., navigation, crew interface, propulsion), then, upon manual command by the flightcrew, to assume control of the space shuttle and deliver it to a noncritical flight condition (safe orbit or touchdown). The problems associated with the selection of the PFS/BFS system architecture, the internal BFS architecture, the fault tolerant software mechanisms, and the long term BFS utility are discussed.

  16. Countermeasure for space flight effects on immune system: nutritional nucleotides

    NASA Technical Reports Server (NTRS)

    Kulkarni, A. D.; Yamauchi, K.; Sundaresan, A.; Ramesh, G. T.; Pellis, N. R.

    2005-01-01

    Microgravity and its environment have adverse effects on the immune system. Abnormal immune responses observed in microgravity may pose serious consequences, especially for the recent directions of NASA for long-term space missions to Moon, Mars and deep Space exploration. The study of space flight immunology is limited due to relative inaccessibility, difficulty of performing experiments in space, and inadequate provisions in this area in the United States and Russian space programs (Taylor 1993). Microgravity and stress experienced during space flights results in immune system aberration (Taylor 1993). In ground-based mouse models for some of the microgravity effects on the human body, hindlimb unloading (HU) has been reported to cause abnormal cell proliferation and cytokine production (Armstrong et al., 1993, Chapes et al. 1993). In this report, we document that a nutritional nucleotide supplementation as studied in ground-based microgravity analogs, has potential to serve as a countermeasure for the immune dysfunction observed in space travel.

  17. An Autonomous Flight Safety System

    NASA Technical Reports Server (NTRS)

    Bull, James B.; Lanzi, Raymond J.

    2007-01-01

    The Autonomous Flight Safety System (AFSS) being developed by NASA s Goddard Space Flight Center s Wallops Flight Facility and Kennedy Space Center has completed two successful developmental flights and is preparing for a third. AFSS has been demonstrated to be a viable architecture for implementation of a completely vehicle based system capable of protecting life and property in event of an errant vehicle by terminating the flight or initiating other actions. It is capable of replacing current human-in-the-loop systems or acting in parallel with them. AFSS is configured prior to flight in accordance with a specific rule set agreed upon by the range safety authority and the user to protect the public and assure mission success. This paper discusses the motivation for the project, describes the method of development, and presents an overview of the evolving architecture and the current status.

  18. Optoelectronics research for communication programs at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.

    1991-01-01

    Current optoelectronics research and development of high-power, high-bandwidth laser transmitters, high-bandwidth, high-sensitivity optical receivers, pointing, acquisition and tracking components, and experimental and theoretical system modeling at the NASA Goddard Space Flight Center is reviewed. Program hardware and space flight milestones are presented. It is believed that these experiments will pave the way for intersatellite optical communications links for both the NASA Advanced Tracking and Data Relay Satellite System and commercial users in the 21st century.

  19. Designing for Annual Spacelift Performance

    NASA Technical Reports Server (NTRS)

    McCleskey, Carey M.; Zapata, Edgar

    2017-01-01

    This paper presents a methodology for approaching space launch system design from a total architectural point of view. This different approach to conceptual design is contrasted with traditional approaches that focus on a single set of metrics for flight system performance, i.e., payload lift per flight, vehicle mass, specific impulse, etc. The approach presented works with a larger set of metrics, including annual system lift, or "spacelift" performance. Spacelift performance is more inclusive of the flight production capability of the total architecture, i.e., the flight and ground systems working together as a whole to produce flights on a repeated basis. In the proposed methodology, spacelift performance becomes an important design-for-support parameter for flight system concepts and truly advanced spaceport architectures of the future. The paper covers examples of existing system spacelift performance as benchmarks, points out specific attributes of space transportation systems that must be greatly improved over these existing designs, and outlines current activity in this area.

  20. Application of Telemedicine Technologies to Long Term Spaceflight Support

    NASA Astrophysics Data System (ADS)

    Orlov, O. I.; Grigoriev, A. I.

    Space medicine passed a long way of search for informative methods of medical data collection and analysis and worked out a complex of effective means of countermeasures and medical support. These methods and means aimed at optimization of the habitation conditions and professional activity of space crews enabled space medicine specialists to create a background for the consecutive prolongation of manned space flights and providing their safety and effectiveness. To define support systems perspectives we should consider those projects on which bases the systems are implemented. According to the set opinion manned spaceflights programs will develop in two main directions. The first one is connected with the near space exploration, first of all with the growing interest in scientific-applied and in prospect industrial employment of large size orbit manned complexes, further development of transport systems and in long-run prospect - reclamation of Lunar surface. The second direction is connected with the perspectives of interplanetary missions. There's no doubt that the priority project of the near-earth space exploration in the coming decenaries will be building up of the International Space Station. This trend characteristics prove the necessity to provide crews whose members may differ in health with individual approach to the schedule of work, rest, nutrition and training, to the medical control and therapeutic-prophylactic procedures. In these conditions the importance of remote monitoring and distance support of crew members activities by the earth- based medical control services will increase. The response efficiency in such cases can only be maintained by means of advanced telemedicine systems. The international character of the International Space Station (ISS) gives a special importance to the current activities on integrating medical support systems of the participating countries. Creation of such a system will allow to coordinate international research projects on space biology and medicine at the modern high level. In spite of the ISS international cooperation transparency space research programs require to follow the biomedicine ethics and provide confidentiality of the special medical information exchange. That can be achieved in the telemedicine support system built on the network principle. Presently we have all technical facilities needed to create such a system. In Russia activities on space telemedicicine support improvement are carried out by the State Scientific Center of the Russian Federation - Institute for Biomedical Problems of the Russian Academy of Sciences, Mission Control Center of the Russian Aviation and Space Agency, Space Biomedical Center for Training and Research and Yu. Gagarin Cosmonaut Training Center. Communications development and next generation Internet systems creation almost eliminate differences in the types of information technologies implementation both in the earth-based and near-earth space conditions. In prospect of the information community creation the telecommunication system of the near-earth space objects and its telemedicine element will become a natural part of the Earth unified information field that will open unlimited perspectives for flight support system improvement and space biomedical research conducting. Russia has unique data of numerous investigations on simulation of long, up to a year, effects of space flight factors on the human body. The sphere of situations studied by space medicine specialists embraced orbit manned space flights of the escalating duration (438 days in 1995). However a number of biomedical problems related to space flights didn't face optimal solutions. It's evident that during a space flight to Mars biomedical problems will be much more difficult in comparison with those of the orbit flights of the same duration. The summed up factors of such flights specify a level of the total medical risk that require assessment and application of effective means lowering the risk level. The characteristics of the interplanetary flights projects make it necessary to develop a special system of telemedicine support with an accent on the onboard facilities. Space crew medical support systems must be "intellectual". The telemedicine system of the interplanetary spacecraft should be based on the extremely large data bank, it's better say "knowledge bank", i.e. it should contain the mankind medical knowledge in miniature. At the same time the system capacity is determined by the flight conditions and existing or supposed factors of the effect on the crew. It can be complemented and concretized from the Earth during the flight. Crew interaction with this system will be built on symbiotic "man-machine" combination where a man has a creative inception, adaptability, common sense and intuition, he or she is irreplaceable in situations when nonstandard decisions should be taken in conditions of time and ingoing parameters shortage. A physician's presence in the crew of the spacecraft will decrease the medical risk of the mission. It's quite natural that the effective operations of this knowledge system carried out autonomously by the crew physician or earth-based service can function only if the system is based on the artificial intelligence principles, neuro information systems with the highest degree of analytical functions and prognostical capabilities of the models. Development of telemedicine technologies will greatly change an extent and level of the interference into a crewmember organism. Interplanetary flight support telemedicine solutions present a new quality of simulation and influence systems. They're not simply a new instrument opening promising opportunities to improve flight medical support systems. They integrate information technologies with biology, physics and chemistry. It's a new interdisciplinary technological breakthrough.

  1. The Application of Advanced Cultivation Techniques in the Long Term Maintenance of Space Flight Plant Biological Systems

    NASA Technical Reports Server (NTRS)

    Heyenga, A. G.

    2003-01-01

    The development of the International Space Station (ISS) presents extensive opportunities for the implementation of long duration space life sciences studies. Continued attention has been placed in the development of plant growth chamber facilities capable of supporting the cultivation of plants in space flight microgravity conditions. The success of these facilities is largely dependent on their capacity to support the various growth requirements of test plant species. The cultivation requirements for higher plant species are generally complex, requiring specific levels of illumination, temperature, humidity, water, nutrients, and gas composition in order to achieve normal physiological growth and development. The supply of water, nutrients, and oxygen to the plant root system is a factor, which has proven to be particularly challenging in a microgravity space flight environment. The resolution of this issue is particularly important for the more intensive crop cultivation of plants envisaged in Nasa's advanced life support initiative. BioServe Space Technologies is a NASA, Research Partnership Center (RPC) at the University of Colorado, Boulder. BioServe has designed and operated various space flight plant habitat systems, and placed specific emphasis on the development and enhanced performance of subsystem components such as water and nutrient delivery, illumination, gas exchange and atmosphere control, temperature and humidity control. The further development and application of these subsystems to next generation habitats is of significant benefit and contribution towards the development of both the Space Plant biology and the Advanced Life Support Programs. The cooperative agreement between NASA Ames Research center and BioServe was established to support the further implementation of advanced cultivation techniques and protocols to plant habitat systems being coordinated at NASA Ames Research Center. Emphasis was placed on the implementation of passive-based water and nutrient support systems and techniques, which can be used to minimize demands on power, mass, and operational complexity in space flight studies. This effort has direct application to the development of next-generation space flight plant chambers such as the Plant Research Unit (PRU). Work was also directed at the development of in-flight plant preservation techniques and protocols consistent with the interest in applying recent developments in gene chip micro array technologies. Cultivation technologies and protocols were evaluated in a 55 day space flight plant growth study, conducted on the ISS, mission 9A (10/7/02 - 12/7/02).

  2. COBALT Flight Demonstrations Fuse Technologies

    NASA Image and Video Library

    2017-06-07

    This 5-minute, 50-second video shows how the CoOperative Blending of Autonomous Landing Technologies (COBALT) system pairs new landing sensor technologies that promise to yield the highest precision navigation solution ever tested for NASA space landing applications. The technologies included a navigation doppler lidar (NDL), which provides ultra-precise velocity and line-of-sight range measurements, and the Lander Vision System (LVS), which provides terrain-relative navigation. Through flight campaigns conducted in March and April 2017 aboard Masten Space Systems' Xodiac, a rocket-powered vertical takeoff, vertical landing (VTVL) platform, the COBALT system was flight tested to collect sensor performance data for NDL and LVS and to check the integration and communication between COBALT and the rocket. The flight tests provided excellent performance data for both sensors, as well as valuable information on the integrated performance with the rocket that will be used for subsequent COBALT modifications prior to follow-on flight tests. Based at NASA’s Armstrong Flight Research Center in Edwards, CA, the Flight Opportunities program funds technology development flight tests on commercial suborbital space providers of which Masten is a vendor. The program has previously tested the LVS on the Masten rocket and validated the technology for the Mars 2020 rover.

  3. Thermal Technology Development Activities at the Goddard Space Flight Center - 2001

    NASA Technical Reports Server (NTRS)

    Butler, Dan

    2002-01-01

    This presentation provides an overview of thermal technology development activities carried out at NASA's Goddard Space Flight Center during 2001. Specific topics covered include: two-phase systems (heat pipes, capillary pumped loops, vapor compression systems and phase change materials), variable emittance systems, advanced coatings, high conductivity materials and electrohydrodynamic (EHD) thermal coatings. The application of these activities to specific space missions is also discussed.

  4. System security in the space flight operations center

    NASA Technical Reports Server (NTRS)

    Wagner, David A.

    1988-01-01

    The Space Flight Operations Center is a networked system of workstation-class computers that will provide ground support for NASA's next generation of deep-space missions. The author recounts the development of the SFOC system security policy and discusses the various management and technology issues involved. Particular attention is given to risk assessment, security plan development, security implications of design requirements, automatic safeguards, and procedural safeguards.

  5. Skylab rescue space vehicle flight readiness test

    NASA Technical Reports Server (NTRS)

    Jevitt, S. J.

    1973-01-01

    A Skylab Rescue Space Vehicle flight readiness test is described which ensures that space vehicle systems are in a state of flight readiness and are compatible with associated ground support equipment. The functions of propellant loading, umbilical ejection, ignition, holddown arm release, liftoff, and service arm and tail service mast retraction are simulated. The test outline is presented along with a list of references, intercommunications information, operations interface control chart, and flight test.

  6. Robotics technology developments in the United States space telerobotics program

    NASA Technical Reports Server (NTRS)

    Lavery, David

    1994-01-01

    In the same way that the launch of Yuri Gagarin in April 1961 announced the beginning of human space flight, last year's flight of the German ROTEX robot flight experiment is heralding the start of a new era of space robotics. After a gap of twelve years since the introduction of a new capability in space remote manipulation, ROTEX is the first of at least ten new robotic systems and experiments which will fly before the year 2000. As a result of redefining the development approach for space robotic systems, and capitalizing on opportunities associated with the assembly and maintenance of the space station, the space robotics community is preparing a whole new generation of operational robotic capabilities. Expanding on the capabilities of earlier manipulation systems such as the Viking and Surveyor soil scoops, the Russian Lunakhods, and the Shuttle Remote Manipulator System (RMS), these new space robots will augment astronaut on-orbit capabilities and extend virtual human presence to lunar and planetary surfaces.

  7. Launch and Landing Effects Ground Operations (LLEGO) Model

    NASA Technical Reports Server (NTRS)

    2008-01-01

    LLEGO is a model for understanding recurring launch and landing operations costs at Kennedy Space Center for human space flight. Launch and landing operations are often referred to as ground processing, or ground operations. Currently, this function is specific to the ground operations for the Space Shuttle Space Transportation System within the Space Shuttle Program. The Constellation system to follow the Space Shuttle consists of the crewed Orion spacecraft atop an Ares I launch vehicle and the uncrewed Ares V cargo launch vehicle. The Constellation flight and ground systems build upon many elements of the existing Shuttle flight and ground hardware, as well as upon existing organizations and processes. In turn, the LLEGO model builds upon past ground operations research, modeling, data, and experience in estimating for future programs. Rather than to simply provide estimates, the LLEGO model s main purpose is to improve expenses by relating complex relationships among functions (ground operations contractor, subcontractors, civil service technical, center management, operations, etc.) to tangible drivers. Drivers include flight system complexity and reliability, as well as operations and supply chain management processes and technology. Together these factors define the operability and potential improvements for any future system, from the most direct to the least direct expenses.

  8. Space Technology Demonstrations Using Low Cost, Short-Schedule Airborne and Range Facilities at the Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Carter, John; Kelly, John; Jones, Dan; Lee, James

    2013-01-01

    There is a national effort to expedite advanced space technologies on new space systems for both government and commercial applications. In order to lower risk, these technologies should be demonstrated in a relevant environment before being installed in new space systems. This presentation introduces several low cost, short schedule space technology demonstrations using airborne and range facilities available at the Dryden Flight Research Center.

  9. Report on research and technology-FY 1981

    NASA Technical Reports Server (NTRS)

    1981-01-01

    More than 65 technical reports, papers, and articles published by personnel and contractors at the Dryden Flight Research Center are listed. Activities performed for the Offices of Aeronautics and Space Technology, Space and Terrestrial Applications, Space Transportation Systems, and Space Tracking and Data Systems are summarized. Preliminary stability and control derivatives were determined for the shuttle orbiter at hypersonic speeds from the data obtained at reentry. The shuttle tile tests, spin research vehicle nose shapes flight investigations, envelope expansion flights for the Ames tilt rotor research aircraft, and the AD-1 oblique wing programs were completed as well as the KC-135 winglet program.

  10. KSC-2013-2917

    NASA Image and Video Library

    2013-06-27

    CAPE CANAVERAL, Fla. – Inside the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, members of the media receive an on activities in NASA’s Ground Systems Development and Operations, or GSDO, Program, Space Launch System and Orion crew module for Exploration Test Flight 1. Speaking to the media, from left are Scott Wilson, manager of Orion Production Operations at Kennedy Larry Price, Lockheed Martin deputy program manager for Orion Tom Erdman, from Marshall Space Flight Center’s Kennedy resident office Jules Schneider, Lockheed Martin manager of Orion Production Operations and Jeremy Parsons, chief of the GSDO Operations Integration Office at Kennedy. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Jim Grossmann

  11. 14 CFR 415.131 - Flight safety system crew data.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Flight safety system crew data. 415.131... Launch Vehicle From a Non-Federal Launch Site § 415.131 Flight safety system crew data. (a) An applicant's safety review document must identify each flight safety system crew position and the role of that...

  12. Research and technology, 1990

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Selected research and technology activities at Ames Research Center, including the Moffett Field site and the Dryden Flight Research Facility, are summarized. These accomplishments exemplify the Center's varied and highly productive research efforts for 1990. The activities addressed are under the directories of: (1) aerospace systems which contains aircraft technology, full-scale aerodynamics research, information sciences, aerospace human factors research, and flight systems and simulation research divisions; (2) Dryden flight research facility which contains research engineering division; (3) aerophysics which contains aerodynamics, fluid dynamics, and thermosciences divisions; and (4) space research which contains advanced life support, space projects, earth system science, life science, and space science divisions, and search for extraterrestrial intelligence and space life sciences payloads offices.

  13. Space Station flight telerobotic servicer functional requirements development

    NASA Technical Reports Server (NTRS)

    Oberright, John; Mccain, Harry; Whitman, Ruth I.

    1987-01-01

    The Space Station flight telerobotic servicer (FTS), a flight robotic system for use on the first Space Station launch, is described. The objectives of the FTS program include: (1) the provision of an alternative crew EVA by supporting the crew in assembly, maintenance, and servicing activities, and (2) the improvement of crew safety by performing hazardous tasks such as spacecraft refueling or thermal and power system maintenance. The NASA/NBS Standard Reference Model provides the generic, hierarchical, structured functional control definition for the system. It is capable of accommodating additional degrees of machine intelligence in the future.

  14. Next-Generation RS-25 Engines for the NASA Space Launch System

    NASA Technical Reports Server (NTRS)

    Ballard, Richard O.

    2017-01-01

    The utilization of heritage RS-25 engines, also known as the Space Shuttle Main Engine (SSME), has enabled rapid progress in the development and certification of the NASA Space Launch System (SLS) toward operational flight status. The RS-25 brings design maturity and extensive experience gained through 135 missions, 3000+ ground tests, and over 1 million seconds total accumulated hot-fire time. In addition, there were also 16 flight engines and 2 development engines remaining from the Space Shuttle program that could be leveraged to support the first four flights. Beyond these initial SLS flights, NASA must have a renewed supply of RS-25 engines that must reflect program affordability imperatives as well as technical requirements imposed by the SLS Block-1B vehicle (i.e., 111% RPL power level, reduced service life). Recognizing the long lead times needed for the fabrication, assembly and acceptance testing of flight engines, design activities are underway to improve system affordability and eliminate obsolescence concerns. These key objectives are enabled largely by utilizing modern materials and fabrication technologies, but also by innovations in systems engineering and integration (SE&I) practices.

  15. Investigation of Desiccants and CO2 Sorbents for Advanced Exploration Systems 2016-2017

    NASA Technical Reports Server (NTRS)

    Knox, Jim; Cmarik, Gregory E.

    2017-01-01

    Advanced Environmental Control and Life Support System (ECLSS) design is critical for manned space flight beyond Earth. Current systems enable extended missions in low-Earth orbit, but for deep-space missions, not only will astronauts be outside the reach of resupply operations from Earth but they will also need to handle malfunctions and compensate for the degradation of materials. These two daunting challenges must be overcome for long-term independent space flight. In order to solve the first, separation and recycling of onboard atmosphere is required. Current systems utilize space vacuum to fully regenerate CO2 sorbent beds, but this is not sustainable. The second challenge stems from material and performance degradation due to operational cycling and on-board contaminants. This report will review the recent work by the ECLSS team at Marshall Space Flight Center towards overcoming these challenges by characterizing materials via novel methods and by assessing new air revitalization systems.

  16. [Analysis of possible causes activation a stomach and pancreas excretory and incretory function after completion of space flight on the international space station].

    PubMed

    Afonin, B V

    2013-01-01

    The research excretory and incretory of activity of a stomach and pancreas is carried out at astronauts in the early period after completion of space flights of various duration. It is shown, that the increase of the contents of gastric and pancreatic enzymes and hormones (insulin and C-peptide) in blood reflects increased excretory and incretory activity of organs of gastroduodenal area which arises in weightlessness. The complex of countermeasures, which prevent ingress of subjects, infected by Helicobacter pylori in space flight crew, excluded participation of this microorganism in the mechanism of increase of secretory activity of a stomach. The absence of interrelation between increase of secretory activity of gastroduodenal area organs and space flights' duration has allowed to exclude the hypokinetic mechanism which determined by duration of stay in weightlessness. It was shown that after the end of space flights the increase ofbasal excretory activity of organs of gastroduodenal area occurs simultaneously with increase of a fasting insulin secretion. The changes in gastroduodenal area organs revealed after space flights were are compared to similar changes received in ground-based experiments, simulating hemodynamic reorganization in venous system of abdominal cavity, arising in weightlessness. The conclusion is made, that the basic mechanism of changes of a functional condition of digestive system in space flights, is determined by reorganization venous hemodynamic in abdominal cavity organs reproduced in ground experiments. Increase insulin and C-peptide after space flights are considered as hormonal component of this hemodynamic mechanism.

  17. Reliability Assessment for COTS Components in Space Flight Applications

    NASA Technical Reports Server (NTRS)

    Krishnan, G. S.; Mazzuchi, Thomas A.

    2001-01-01

    Systems built for space flight applications usually demand very high degree of performance and a very high level of accuracy. Hence, the design engineers are often prone to selecting state-of-art technologies for inclusion in their system design. The shrinking budgets also necessitate use of COTS (Commercial Off-The-Shelf) components, which are construed as being less expensive. The performance and accuracy requirements for space flight applications are much more stringent than those for the commercial applications. The quantity of systems designed and developed for space applications are much lower in number than those produced for the commercial applications. With a given set of requirements, are these COTS components reliable? This paper presents a model for assessing the reliability of COTS components in space applications and the associated affect on the system reliability. We illustrate the method with a real application.

  18. Agent Technology, Complex Adaptive Systems, and Autonomic Systems: Their Relationships

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walt; Rash, James; Rouff, Chistopher; Hincheny, Mike

    2004-01-01

    To reduce the cost of future spaceflight missions and to perform new science, NASA has been investigating autonomous ground and space flight systems. These goals of cost reduction have been further complicated by nanosatellites for future science data-gathering which will have large communications delays and at times be out of contact with ground control for extended periods of time. This paper describes two prototype agent-based systems, the Lights-out Ground Operations System (LOGOS) and the Agent Concept Testbed (ACT), and their autonomic properties that were developed at NASA Goddard Space Flight Center (GSFC) to demonstrate autonomous operations of future space flight missions. The paper discusses the architecture of the two agent-based systems, operational scenarios of both, and the two systems autonomic properties.

  19. Columbia carries astronomy experiments on third test flight

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Space Transportation System 3 flight is discussed. The objectives of the test flight are given as well as an account of launch preparations, in liftoff, reentry; and landing. Numerous astronomy and space science experiments carried in the cargo bay are described.

  20. Planned flight test of a mercury ion auxiliary propulsion system. 1: Objectives, systems descriptions, and mission operations

    NASA Technical Reports Server (NTRS)

    Power, J. C.

    1978-01-01

    A planned flight test of an 8 cm diameter, electron-bombardment mercury ion thruster system is described. The primary objective of the test is to flight qualify the 5 mN (1 mlb.) thruster system for auxiliary propulsion applications. A seven year north-south stationkeeping mission was selected as the basis for the flight test operating profile. The flight test, which will employ two thruster systems, will also generate thruster system space performance data, measure thruster-spacecraft interactions, and demonstrate thruster operation in a number of operating modes. The flight test is designated as SAMSO-601 and will be flown aboard the shuttle-launched Air Force space test program P80-1 satellite in 1981. The spacecraft will be 3- axis stabilized in its final 740 km circular orbit, which will have an inclination of approximately greater than 73 degrees. The spacecraft design lifetime is three years.

  1. 14 CFR 1214.502 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Mission Critical Space System Personnel Reliability Program § 1214.502 Definitions. (a) Mission Critical Space Systems. The Space Shuttle and other critical space systems, including Space Station Freedom, designated Expendable Launch...

  2. 14 CFR Appendix E to Part 60 - Qualification Performance Standards for Quality Management Systems for Flight Simulation Training...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Quality Management Systems for Flight Simulation Training Devices E Appendix E to Part 60 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION...—Qualification Performance Standards for Quality Management Systems for Flight Simulation Training Devices Begin...

  3. KSC-06pd1296

    NASA Image and Video Library

    2006-06-30

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility at NASA's Kennedy Space Center, flight crew systems technician Troy Mann and flight crew systems manager Jim Blake store the food containers that will be stowed on Space Shuttle Discovery for the flight of mission STS-121. The containers hold meals prepared for the mission crew. Mann and Blake are with United Space Alliance ground operations. Astronauts select their own menus from a large array of food items. Astronauts are supplied with three balanced meals, plus snacks. Foods flown on space missions are researched and developed at the Space Food Systems Laboratory at the Johnson Space Center (JSC) in Houston, which is staffed by food scientists, dietitians and engineers. Foods are analyzed through nutritional analysis, sensory evaluation, storage studies, packaging evaluations and many other methods. Each astronaut’s food is stored aboard the space shuttle and is identified by a colored dot affixed to each package. Launch of Space Shuttle Discovery on mission STS-121 is scheduled for July 1. Photo credit: NASA/Jack Pfaller

  4. First Shuttle/747 Captive Flight

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Space Shuttle prototype Enterprise rides smoothly atop NASA's first Shuttle Carrier Aircraft (SCA), NASA 905, during the first of the shuttle program's Approach and Landing Tests (ALT) at the Dryden Flight Research Center, Edwards, California, in 1977. During the nearly one year-long series of tests, Enterprise was taken aloft on the SCA to study the aerodynamics of the mated vehicles and, in a series of five free flights, tested the glide and landing characteristics of the orbiter prototype. In this photo, the main engine area on the aft end of Enterprise is covered with a tail cone to reduce aerodynamic drag that affects the horizontal tail of the SCA, on which tip fins have been installed to increase stability when the aircraft carries an orbiter. The Space Shuttle Approach and Landings Tests (ALT) program allowed pilots and engineers to learn how the Space Shuttle and the modified Boeing 747 Shuttle Carrier Aircraft (SCA) handled during low-speed flight and landing. The Enterprise, a prototype of the Space Shuttles, and the SCA were flown to conduct the approach and landing tests at the NASA Dryden Flight Research Center, Edwards, California, from February to October 1977. The first flight of the program consisted of the Space Shuttle Enterprise attached to the Shuttle Carrier Aircraft. These flights were to determine how well the two vehicles flew together. Five 'captive-inactive' flights were flown during this first phase in which there was no crew in the Enterprise. The next series of captive flights was flown with a flight crew of two on board the prototype Space Shuttle. Only three such flights proved necessary. This led to the free-flight test series. The free-flight phase of the ALT program allowed pilots and engineers to learn how the Space Shuttle handled in low-speed flight and landing attitudes. For these landings, the Enterprise was flown by a crew of two after it was released from the top of the SCA. The vehicle was released at altitudes ranging from 19,000 to 26,000 feet. The Enterprise had no propulsion system, but its first four glides to the Rogers Dry Lake runway provided realistic, in-flight simulations of how subsequent Space Shuttles would be flown at the end of an orbital mission. The fifth approach and landing test, with the Enterprise landing on the Edwards Air Force Base concrete runway, revealed a problem with the Space Shuttle flight control system that made it susceptible to Pilot-Induced Oscillation (PIO), a potentially dangerous control problem during a landing. Further research using other NASA aircraft, especially the F-8 Digital-Fly-By-Wire aircraft, led to correction of the PIO problem before the first orbital flight. The Enterprise's last free-flight was October 26, 1977, after which it was ferried to other NASA centers for ground-based flight simulations that tested Space Shuttle systems and structure.

  5. Experimental Results from the Thermal Energy Storage-1 (TES-1) Flight Experiment

    NASA Technical Reports Server (NTRS)

    Wald, Lawrence W.; Tolbert, Carol; Jacqmin, David

    1995-01-01

    The Thermal Energy Storage-1 (TES-1) is a flight experiment that flew on the Space Shuttle Columbia (STS-62), in March 1994, as part of the OAST-2 mission. TES-1 is the first experiment in a four experiment suite designed to provide data for understanding the long duration microgravity behavior of thermal energy storage fluoride salts that undergo repeated melting and freezing. Such data have never been obtained before and have direct application for the development of space-based solar dynamic (SD) power systems. These power systems will store solar energy in a thermal energy salt such as lithium fluoride or calcium fluoride. The stored energy is extracted during the shade portion of the orbit. This enables the solar dynamic power system to provide constant electrical power over the entire orbit. Analytical computer codes have been developed for predicting performance of a spaced-based solar dynamic power system. Experimental verification of the analytical predictions is needed prior to using the analytical results for future space power design applications. The four TES flight experiments will be used to obtain the needed experimental data. This paper will focus on the flight results from the first experiment, TES-1, in comparison to the predicted results from the Thermal Energy Storage Simulation (TESSIM) analytical computer code. The TES-1 conceptual development, hardware design, final development, and system verification testing were accomplished at the NASA lewis Research Center (LeRC). TES-1 was developed under the In-Space Technology Experiment Program (IN-STEP), which sponsors NASA, industry, and university flight experiments designed to enable and enhance space flight technology. The IN-STEP Program is sponsored by the Office of Space Access and Technology (OSAT).

  6. Knowledge-based decision support for Space Station assembly sequence planning

    NASA Astrophysics Data System (ADS)

    1991-04-01

    A complete Personal Analysis Assistant (PAA) for Space Station Freedom (SSF) assembly sequence planning consists of three software components: the system infrastructure, intra-flight value added, and inter-flight value added. The system infrastructure is the substrate on which software elements providing inter-flight and intra-flight value-added functionality are built. It provides the capability for building representations of assembly sequence plans and specification of constraints and analysis options. Intra-flight value-added provides functionality that will, given the manifest for each flight, define cargo elements, place them in the National Space Transportation System (NSTS) cargo bay, compute performance measure values, and identify violated constraints. Inter-flight value-added provides functionality that will, given major milestone dates and capability requirements, determine the number and dates of required flights and develop a manifest for each flight. The current project is Phase 1 of a projected two phase program and delivers the system infrastructure. Intra- and inter-flight value-added were to be developed in Phase 2, which has not been funded. Based on experience derived from hundreds of projects conducted over the past seven years, ISX developed an Intelligent Systems Engineering (ISE) methodology that combines the methods of systems engineering and knowledge engineering to meet the special systems development requirements posed by intelligent systems, systems that blend artificial intelligence and other advanced technologies with more conventional computing technologies. The ISE methodology defines a phased program process that begins with an application assessment designed to provide a preliminary determination of the relative technical risks and payoffs associated with a potential application, and then moves through requirements analysis, system design, and development.

  7. Knowledge-based decision support for Space Station assembly sequence planning

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A complete Personal Analysis Assistant (PAA) for Space Station Freedom (SSF) assembly sequence planning consists of three software components: the system infrastructure, intra-flight value added, and inter-flight value added. The system infrastructure is the substrate on which software elements providing inter-flight and intra-flight value-added functionality are built. It provides the capability for building representations of assembly sequence plans and specification of constraints and analysis options. Intra-flight value-added provides functionality that will, given the manifest for each flight, define cargo elements, place them in the National Space Transportation System (NSTS) cargo bay, compute performance measure values, and identify violated constraints. Inter-flight value-added provides functionality that will, given major milestone dates and capability requirements, determine the number and dates of required flights and develop a manifest for each flight. The current project is Phase 1 of a projected two phase program and delivers the system infrastructure. Intra- and inter-flight value-added were to be developed in Phase 2, which has not been funded. Based on experience derived from hundreds of projects conducted over the past seven years, ISX developed an Intelligent Systems Engineering (ISE) methodology that combines the methods of systems engineering and knowledge engineering to meet the special systems development requirements posed by intelligent systems, systems that blend artificial intelligence and other advanced technologies with more conventional computing technologies. The ISE methodology defines a phased program process that begins with an application assessment designed to provide a preliminary determination of the relative technical risks and payoffs associated with a potential application, and then moves through requirements analysis, system design, and development.

  8. Latent Herpes Viruses Reactivation in Astronauts

    NASA Technical Reports Server (NTRS)

    Mehta, Satish K.; Pierson, Duane L.

    2008-01-01

    Space flight has many adverse effects on human physiology. Changes in multiple systems, including the cardiovascular, musculoskeletal, neurovestibular, endocrine, and immune systems have occurred (12, 32, 38, 39). Alterations in drug pharmacokinetics and pharmacodynamics (12), nutritional needs (31), renal stone formation (40), and microbial flora (2) have also been reported. Evidence suggests that the magnitude of some changes may increase with time in space. A variety of changes in immunity have been reported during both short (.16 days) and long (>30 days) space missions. However, it is difficult to determine the medical significance of these immunological changes in astronauts. Astronauts are in excellent health and in superb physical condition. Illnesses in astronauts during space flight are not common, are generally mild, and rarely affect mission objectives. In an attempt to clarify this issue, we identified the latent herpes viruses as medically important indicators of the effects of space flight on immunity. This chapter demonstrates that space flight leads to asymptomatic reactivation of latent herpes viruses, and proposes that this results from marked changes in neuroendocrine function and immunity caused by the inherent stressfullness of human space flight. Astronauts experience uniquely stressful environments during space flight. Potential stressors include confinement in an unfamiliar, crowded environment, isolation, separation from family, anxiety, fear, sleep deprivation, psychosocial issues, physical exertion, noise, variable acceleration forces, increased radiation, and others. Many of these are intermittent and variable in duration and intensity, but variable gravity forces (including transitions from launch acceleration to microgravity and from microgravity to planetary gravity) and variable radiation levels are part of each mission and contribute to a stressful environment that cannot be duplicated on Earth. Radiation outside the Earth's magnetosphere is particularly worrisome because it includes ionizing radiation from cosmic galactic radiation. Increased stress levels appear even before flight, presumably from the rigors of preflight training and the anticipation of the mission (12, 32, 38, 39). Space flight causes significant changes in human immune function (32), but the means by which these changes come about have been difficult to discern. Consistent indicators of stress associated with space flight include increased production of stress hormones, and changes in cells of the immune system. These changes include elevated white blood cell (WBC) and neutrophil counts at landing (15, 16, 35, 37). Activation of generalized stress responses before, during, and after space flight probably affects the function of the immune system. Space flight has been shown to decrease many aspects of immune function, including natural killer (NK) cell activity, interferon production, the blastogenic response of leukocytes to mitogens, cell-mediated immunity, neutrophil function and monocyte function (5, 16, 18, 21, 35-37).

  9. In-flight testing of the space shuttle orbiter thermal control system

    NASA Technical Reports Server (NTRS)

    Taylor, J. T.

    1985-01-01

    In-flight thermal control system testing of a complex manned spacecraft such as the space shuttle orbiter and the considerations attendant to the definition of the tests are described. Design concerns, design mission requirements, flight test objectives, crew vehicle and mission risk considerations, instrumentation, data requirements, and real-time mission monitoring are discussed. An overview of the tests results is presented.

  10. Postnatal development under conditions of simulated weightlessness and space flight

    NASA Technical Reports Server (NTRS)

    Walton, K.

    1998-01-01

    The adaptability of the developing nervous system to environmental influences and the mechanisms underlying this plasticity has recently become a subject of interest in space neuroscience. Ground studies on neonatal rats using the tail suspension model of weightlessness have shown that the force of gravity clearly influences the events underlying the postnatal development of motor function. These effects depend on the age of the animal, duration of the perturbation and the motor function studied. A nine-day flight study has shown that a dam and neonates can develop under conditions of space flight. The motor function of the flight animals after landing was consistent with that seen in the tail suspension studies, being marked by limb joint extension. However, there were expected differences due to: (1) the unloading of the vestibular system in flight, which did not occur in the ground-based experiments; (2) differences between flight and suspension durations; and (3) the inability to evaluate motor function during the flight. The next step is to conduct experiments in space with the flexibility and rigor that is now limited to ground studies: an opportunity offered by the International Space Station. Copyright 1998 Published by Elsevier Science B.V.

  11. Technicians Todd Viddle, Robert Garrett and Dan McGrath remove a servicing unit from the Space Shuttle Discovery during its post-flight processing at NASA DFRC

    NASA Image and Video Library

    2005-08-12

    Todd Viddle; APU advanced systems technician, Robert 'Skip' Garrett; main propulsion advanced systems technician, and Dan McGrath; main propulsion systems engineer technician, remove a servicing unit from the Space Shuttle Discovery as part of it's post-flight processing at NASA's Dryden Flight Research Center. The Space Shuttles receive post-flight servicing in the Mate-Demate Device (MDD) following landings at NASA's Dryden Flight Research Center, Edwards, California. The gantry-like MDD structure is used for servicing the shuttle orbiters in preparation for their ferry flight back to the Kennedy Space Center in Florida, including mounting the shuttle atop NASA's modified Boeing 747 Shuttle Carrier Aircraft. Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base in California at 5:11:22 a.m. PDT, August 9, 2005, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items

  12. The deep space network, volume 10

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Progress on the Deep Space Network (DSN) supporting research and technology is reported. The objectives, functions and facilities of the DSN are described along with the mission support for the following: interplanetary flight projects, planetary flight projects, and manned space flight projects. Work in advanced engineering and communications systems is reported along with changes in hardware and software configurations in the DSN/MSFN tracking stations.

  13. The NASA Human Space Flight Supply Chain, Current and Future

    NASA Technical Reports Server (NTRS)

    Zapata, Edgar

    2007-01-01

    The current NASA Human Space Flight transportation system, the Space Shuttle, is scheduled for final flight in 2010. The Exploration initiative will create a new capability with a combination of existing systems and new flight and ground elements. To fully understand and act on the implications of such change it is necessary to understand what, how, when and where such changes occur and more importantly, how all these interact. This paper presents Human Space Flight, with an emphasis on KSC Launch and Landing, as a Supply Chain of both information and materials. A supply chain methodology for understanding the flow of information and materials is presented. Further, modeling and simulation projects funded by the Exploration initiative to understand the NASA Exploration Supply Chain are explained. Key concepts and their purpose, including the Enterprise, Locations, Physical and Organizational Functional Units, Products, and Resources, are explained. It is shown that the art, science and perspective of Supply Chain Management is not only applicable to such a government & contractor operation, it is also an invaluable approach for understanding, focusing improvement and growth. It is shown that such commercial practice applies to Human Space Flight and is invaluable towards one day creating routine, affordable access to and from space.

  14. Large Space Antenna Systems Technology, 1984

    NASA Technical Reports Server (NTRS)

    Boyer, W. J. (Compiler)

    1985-01-01

    Mission applications for large space antenna systems; large space antenna structural systems; materials and structures technology; structural dynamics and control technology, electromagnetics technology, large space antenna systems and the Space Station; and flight test and evaluation were examined.

  15. Human factors in long-duration space flight

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A study, covering the behavioral, psychological, physiological, and medical factors of long duration manned space flight, is presented. An attempt was made to identify and resolve major obstacles and unknowns associated with such a flight. The costs and maintenance of the spacecraft system are also explored.

  16. Space transportation system flight 2 OSTA-1 scientific payload data management plan: Addendum

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Flight events for the OSTA-1 scientific payload on the second flight of the Space Shuttle, STS-2 are described. Data acquisition is summarized. A discussion of problems encountered and a preliminary evaluation of data quality is also provided.

  17. Propulsion at the Marshall Space Flight Center - A brief history

    NASA Technical Reports Server (NTRS)

    Jones, L. W.; Fisher, M. F.; Mccool, A. A.; Mccarty, J. P.

    1991-01-01

    The history of propulsion development at the NASA Marshall Space Flight Center is summarized, beginning with the development of the propulsion system for the Redstone missile. This course of propulsion development continues through the Jupiter IRBM, the Saturn family of launch vehicles and the engines that powered them, the Centaur upper stage and RL-10 engine, the Reactor In-Flight Test stage and the NERVA nuclear engine. The Space Shuttle Main Engine and Solid Rocket Boosters are covered, as are spacecraft propulsion systems, including the reaction control systems for the High Energy Astronomy Observatory and the Space Station. The paper includes a description of several technology efforts such as those in high pressure turbomachinery, aerospike engines, and the AS203 cyrogenic fluid management flight experiment. These and other propulsion projects are documented, and the scope of activities in support of these efforts at Marshall delineated.

  18. Space Shuttle Orbital Drag Parachute Design

    NASA Technical Reports Server (NTRS)

    Meyerson, Robert E.

    2001-01-01

    The drag parachute system was added to the Space Shuttle Orbiter's landing deceleration subsystem beginning with flight STS-49 in May 1992. The addition of this subsystem to an existing space vehicle required a detailed set of ground tests and analyses. The aerodynamic design and performance testing of the system consisted of wind tunnel tests, numerical simulations, pilot-in-the-loop simulations, and full-scale testing. This analysis and design resulted in a fully qualified system that is deployed on every flight of the Space Shuttle.

  19. NASA's Space Launch System Takes Shape

    NASA Technical Reports Server (NTRS)

    Askins, Bruce R.; Robinson, Kimberly F.

    2017-01-01

    Significant hardware and software for NASA's Space Launch System (SLS) began rolling off assembly lines in 2016, setting the stage for critical testing in 2017 and the launch of new capability for deep-space human exploration. (Figure 1) At NASA's Michoud Assembly Facility (MAF) near New Orleans, LA, full-scale test articles are being joined by flight hardware. Structural test stands are nearing completion at NASA's Marshall Space Flight Center (MSFC), Huntsville, AL. An SLS booster solid rocket motor underwent test firing, while flight motor segments were cast. An RS-25 and Engine Control Unit (ECU) for early SLS flights were tested at NASA's Stennis Space Center (SSC). The upper stage for the first flight was completed, and NASA completed Preliminary Design Review (PDR) for a new, powerful upper stage. The pace of production and testing is expected to increase in 2017. This paper will discuss the technical and programmatic highlights and challenges of 2016 and look ahead to plans for 2017.

  20. The 1991 Marshall Space Flight Center research and technology

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A compilation of 194 articles addressing research and technology activities at the Marshall Space Flight Center (MSFC) is given. Activities are divided into three major areas: advanced studies addressing transportation systems, space systems, and space science activities conducted primarily in the Program Development Directorate; research tasks carried out in the Space Science Laboratory; and technology programs hosted by a wide array of organizations at the Center. The theme for this year's report is 'Building for the Future'.

  1. Orion Flight Test Preview Briefing

    NASA Image and Video Library

    2014-11-06

    In the Kennedy Space Center’s Press Site auditorium, members of the news media are briefed on the upcoming Orion flight test. From left are: Rachel Kraft, NASA Public Affairs, Bill Hill, NASA deputy associate administrator for Exploration Systems Development, Mark Geyer, NASA Orion Program manager, Bryan Austin, Lockheed Martin mission manager, Jeremy Graeber, Operations Integration Branch of Ground Systems Development and Operations at Kennedy, and Ron Fortson, United Launch Alliance director of Mission Management. Mike Sarafin, NASA's lead flight director, participated by video from the Johnson Space Center. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.

  2. Future Standardization of Space Telecommunications Radio System with Core Flight System

    NASA Technical Reports Server (NTRS)

    Hickey, Joseph P.; Briones, Janette C.; Roche, Rigoberto; Handler, Louis M.; Hall, Steven

    2016-01-01

    NASA Glenn Research Center (GRC) is integrating the NASA Space Telecommunications Radio System (STRS) Standard with the Core Flight System (cFS). The STRS standard provides a common, consistent framework to develop, qualify, operate and maintain complex, reconfigurable and reprogrammable radio systems. The cFS is a flexible, open architecture that features a plug-and-play software executive called the Core Flight Executive (cFE), a reusable library of software components for flight and space missions and an integrated tool suite. Together, STRS and cFS create a development environment that allows for STRS compliant applications to reference the STRS APIs through the cFS infrastructure. These APis are used to standardize the communication protocols on NASAs space SDRs. The cFE-STRS Operating Environment (OE) is a portable cFS library, which adds the ability to run STRS applications on existing cFS platforms. The purpose of this paper is to discuss the cFE-STRS OE prototype, preliminary experimental results performed using the Advanced Space Radio Platform (ASRP), the GRC Sband Ground Station and the SCaN (Space Communication and Navigation) Testbed currently flying onboard the International Space Station. Additionally, this paper presents a demonstration of the Consultative Committee for Space Data Systems (CCSDS) Spacecraft Onboard Interface Services (SOIS) using electronic data sheets inside cFE. This configuration allows for the data sheets to specify binary formats for data exchange between STRS applications. The integration of STRS with cFS leverages mission-proven platform functions and mitigates barriers to integration with future missions. This reduces flight software development time and the costs of software-defined radio (SDR) platforms. Furthermore, the combined benefits of STRS standardization with the flexibility of cFS provide an effective, reliable and modular framework to minimize software development efforts for spaceflight missions.

  3. Space Shuttle redesign status

    NASA Technical Reports Server (NTRS)

    Brand, Vance D.

    1986-01-01

    NASA has conducted an extensive redesign effort for the Space Shutle in the aftermath of the STS 51-L Challenger accident, encompassing not only Shuttle vehicle and booster design but also such system-wide factors as organizational structure, management procedures, flight safety, flight operations, sustainable flight rate, and maintenance safeguards. Attention is presently given to Solid Rocket Booster redesign features, the Shuttle Main Engine's redesigned high pressure fuel and oxidizer turbopumps, the Shuttle Orbiter's braking and rollout (landing gear) system, the entry control mode of the flight control system, a 'split-S' abort maneuver for the Orbiter, and crew escape capsule proposals.

  4. Space Shuttle third flight /STS-3/ entry RCS analysis. [Reaction Control System

    NASA Technical Reports Server (NTRS)

    Scallion, W. I.; Compton, H. R.; Suit, W. T.; Powell, R. W.; Blackstock, T. A.; Bates, B. L.

    1983-01-01

    Flight data obtained from three Space Transportation System orbiter entries (STS-1, 2, and 3) are processed and analyzed to determine the roll interactions caused by the firing of the entry reaction control system (RCS). Comparisons between the flight-derived parameters and the predicted derivatives without interaction effects are made. The flight-derived RCS Plume flow-field interaction effects are independently deduced by direct integration of the incremental changes in the wing upper surface pressures induced by RCS side thruster firings. The separately obtained interaction effects are compared to the predicted values and the differences are discussed.

  5. Integration Testing of Space Flight Systems

    NASA Technical Reports Server (NTRS)

    Honeycutt, Timothy; Sowards, Stephanie

    2008-01-01

    Based on the previous success' of Multi-Element Integration Testing (MEITs) for the International Space Station Program, these type of integrated tests have also been planned for the Constellation Program: MEIT (1) CEV to ISS (emulated) (2) CEV to Lunar Lander/EDS (emulated) (3) Future: Lunar Surface Systems and Mars Missions Finite Element Integration Test (FEIT) (1) CEV/CLV (2) Lunar Lander/EDS/CaL V Integrated Verification Tests (IVT) (1) Performed as a subset of the FEITs during the flight tests and then performed for every flight after Full Operational Capability (FOC) has been obtained with the flight and ground Systems.

  6. Experimenting Maintenance of Flight Software in an Integrated Modular Avionics for Space

    NASA Astrophysics Data System (ADS)

    Hardy, Johan; Laroche, Thomas; Creten, Philippe; Parisis, Paul; Hiller, Martin

    2014-08-01

    This paper presents an experiment of Flight Software partitioning in an Integrated Modular Avionics for Space (IMA-SP) system. This experiment also tackles the maintenance aspects of IMA-SP systems. The presented case study is PROBA-2 Flight Software. The paper addresses and discusses the following subjects: On-Board Software Maintenance in IMA- SP, boot strategy for Time and Space Partitioning, considerations about the ground segment related to On-Board Software Maintenance in IMA-SP, and architectural impacts of Time and Space Partitioning for PROBA software's. Finally, this paper presents the results and the achievements of the study and it appeals at further perspectives for IMA-SP and Time and Space Partitioning.

  7. CCSDS telemetry systems experience at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Carper, Richard D.; Stallings, William H., III

    1990-01-01

    NASA Goddard Space Flight Center (GSFC) designs, builds, manages, and operates science and applications spacecraft in near-earth orbit, and provides data capture, data processing, and flight control services for these spacecraft. In addition, GSFC has the responsibility of providing space-ground and ground-ground communications for near-earth orbiting spacecraft, including those of the manned spaceflight programs. The goal of reducing both the developmental and operating costs of the end-to-end information system has led the GSFC to support and participate in the standardization activities of the Consultative Committee for Space Data Systems (CCSDS), including those for packet telemetry. The environment in which such systems function is described, and the GSFC experience with CCSDS packet telemetry in the context of the Gamma-Ray Observatory project is discussed.

  8. Space Launch System Trans Lunar Payload Delivery Capability

    NASA Technical Reports Server (NTRS)

    Jackman, A. L.; Smith, D. A.

    2016-01-01

    NASA Marshall Space Flight Center (MSFC) has successfully completed the Critical Design Review (CDR) of the heavy lift Space Launch System (SLS) and is working towards first flight of the vehicle in 2018. SLS will begin flying crewed missions with an Orion to a lunar vicinity every year after the first 2 flights starting in the early 2020's. So as early as 2021 these Orion flights will deliver ancillary payload, termed "Co-Manifested Payload", with a mass of at least 5.5 metric tons and volume up to 280 cubic meters to a cis-lunar destination. Later SLS flights have a goal of delivering as much as 10 metric tons to a cis-lunar destination. This presentation will describe the ground and flight accommodations, interfaces, and resources planned to be made available to Co-Manifested Payload providers as part of the SLS system. An additional intention is to promote a two-way dialogue between vehicle developers and potential payload users in order to most efficiently evolve required SLS capabilities to meet diverse payload requirements.

  9. KSC-06pd1297

    NASA Image and Video Library

    2006-06-30

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility at NASA's Kennedy Space Center, flight crew systems technician Troy Mann and flight crew systems manager Jim Blake secure the storage boxes holding the food containers that will be stowed on Space Shuttle Discovery for the flight of mission STS-121. The containers hold meals prepared for the mission crew. Astronauts select their own menus from a large array of food items. Astronauts are supplied with three balanced meals, plus snacks. Foods flown on space missions are researched and developed at the Space Food Systems Laboratory at the Johnson Space Center (JSC) in Houston, which is staffed by food scientists, dietitians and engineers. Foods are analyzed through nutritional analysis, sensory evaluation, storage studies, packaging evaluations and many other methods. Each astronaut’s food is stored aboard the space shuttle and is identified by a colored dot affixed to each package. Launch of Space Shuttle Discovery on mission STS-121 is scheduled for July 1. Photo credit: NASA/Jack Pfaller

  10. Summary results of the first United States manned orbital space flight

    NASA Technical Reports Server (NTRS)

    Glenn, J. H. Jr

    1963-01-01

    This paper describes the principal findings of the first United States manned orbital space flight in light of the flight mission. Consideration is given to the coordinated tracking network, recovery forces and to the spacecraft and its several functional systems. These include mechanisms for heat protection, escape maneuvers, spacecraft control, power supply, communications, life support and landing. A few difficulties encountered in the flight and deviations from the planned sequence are described. Craft preparation, aeromedical studies, flight plan and particularly flight observations--including the color, light, horizon visibility by day and by night, cloud formations and sunrise and sunset effects are given in some detail. The general conclusion from the MA-6 flight is that man can adapt well to new conditions encountered in space flight and that man can contribute importantly to mission reliability and toward mission achievement through his capacities to control the spacecraft and its multiple systems contribute to decision making and adaptation of programming as well as to direct exploratory and experimental observations.

  11. Sub-orbital flights, a starting point for space tourism

    NASA Astrophysics Data System (ADS)

    Gaubatz, William A.

    2002-07-01

    While there is a growing awareness and interest by the general public in space travel neither the market nor the infrastructure exist to make a commercial space tourism business an attractive risk venture. In addition there is much to be learned about how the general public will respond to space flights and what physiological and psychological needs must be met to ensure a pleasurable as well as adventurous experience. Sub-orbital flights offer an incremental approach to develop the market and the infrastructure, demonstrate the safety of space flight, obtain real flight information regarding the needs of general public passengers and demonstrate the profitability of space tourism. This paper will summarize some of the system, operations, and financial aspects of creating a sub-orbital space tourism business as a stepping-stone to public space travel. A sample business case will be reviewed and impacts of markets, operations and vehicle costs and lifetimes will be assessed.

  12. Space Flight-Associated Neuro-ocular Syndrome.

    PubMed

    Lee, Andrew G; Mader, Thomas H; Gibson, C Robert; Tarver, William

    2017-09-01

    New and unique physiologic and pathologic systemic and neuro-ocular responses have been documented in astronauts during and after long-duration space flight. Although the precise cause remains unknown, space flight-associated neuro-ocular syndrome (SANS) has been adopted as an appropriate descriptive term. The Space Medicine Operations Division of the US National Aeronautics and Space Administration (NASA) has documented the variable occurrence of SANS in astronauts returning from long-duration space flight on the International Space Station. These clinical findings have included unilateral and bilateral optic disc edema, globe flattening, choroidal and retinal folds, hyperopic refractive error shifts, and nerve fiber layer infarcts. The clinical findings of SANS have been correlated with structural changes on intraorbital and intracranial magnetic resonance imaging and in-flight and terrestrial ultrasonographic studies and ocular optical coherence tomography. Further study of SANS is ongoing for consideration of future manned missions to space, including a return trip to the moon or Mars.

  13. A Synopsis of Ion Propulsion Development Projects in the United States: SERT 1 to Deep Space I

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Rawlin, Vincent K.; Patterson, Michael J.

    1999-01-01

    The historical background and characteristics of the experimental flights of ion propulsion systems and the major ground-based technology demonstrations were reviewed. The results of the first successful ion engine flight in 1964, SERT I which demonstrated ion beam neutralization, are discussed along with the extended operation of SERT II starting in 1970. These results together with the technology employed on the early cesium engine flights. the Applications Technology Satellite (ATS) series, and the ground-test demonstrations, have provided the evolutionary path for the development of xenon ion thruster component technologies, control systems, and power circuit implementations. In the 1997-1999 period, the communication satellite flights using ion engine systems and the Deep Space I flight confirmed that these auxiliary and primary propulsion systems have advanced to a high-level of flight-readiness.

  14. Experiment 9: ASTROCULTURE: Growth and Starch Accumulation of Potato Tuber

    NASA Technical Reports Server (NTRS)

    Tibbitts, Theodore W.; Brown, Christopher S.; Croxdale, Judith G.; Wheeler, Raymond M.

    1998-01-01

    Potato explants (leaf, small stem section, and axillary bud) flown on STS-73 developed tubers of 1.5 cm diameter and 1.7 g mass during the 16-day period of space flight. The experiment was undertaken in the ASTROCULTURE(TM) experiment package under controlled temperature, humidity, lighting, and carbon dioxide concentrations. The tubers that formed in the explant system under microgravity had the same gross morphology, the same anatomical configuration of cells and tissues, and the same sizes, shapes, and surface character of starch granules as tubers formed in a 1 g environment. The total accumulation of starch and other energy containing compounds was similar in space flight and ground control tubers. Enzyme activity of starch synthase, starch phosphorylase, and total hydrolase was similar in space flight and ground controls, but activity of ADP-glucose pyrophosphorylase was reduced in the space flight tuber tissue. This experiment documented that potatoes will metabolize and accumulate starch as effectively in space flight as on the ground. Thus, this data provides the potential for effective utilization of potatoes in life support systems of space bases.

  15. Developmental Flight Instrumentation System for the Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Crawford, Kevin; Thomas, John

    2006-01-01

    The National Aeronautics and Space Administration is developing a new launch vehicle to replace the Space Shuttle. The Crew Launch Vehicle (CLV) will be a combination of new design hardware and heritage Apollo and Space Shuttle hardware. The current CLV configuration is a 5 segment solid rocket booster first stage and a new upper stage design with a modified Apollo era J-2 engine. The current schedule has two test flights with a first stage and a structurally identical, but without engine, upper stage. Then there will be two more test flights with a full complement of flight hardware. After the completion of the test flights, the first manned flight to the International Space Station is scheduled for late 2012. To verify the CLV's design margins a developmental flight instrumentation (DFI) system is needed. The DFI system will collect environmental and health data from the various CLV subsystem's and either transmit it to the ground or store it onboard for later evaluation on the ground. The CLV consists of 4 major elements: the first stage, the upper stage, the upper stage engine and the integration of the first stage, upper stage and upper stage engine. It is anticipated that each of CLVs elements will have some version of DFI. This paper will discuss a conceptual DFI design for each element and also of an integrated CLV DFI system.

  16. Russian system of countermeasures on board of the International Space Station (ISS): the first results

    NASA Astrophysics Data System (ADS)

    Kozlovskaya, Inessa B.; Grigoriev, Anatoly I.

    2004-08-01

    The system of countermeasures used by Russian cosmonauts in space flights on board of International Space Station (ISS) was based on the developed and tested in flights on board of Russian space stations. It included as primary components: physical methods aimed to maintain the distribution of fluids at levels close to those experienced on Earth; physical exercises and loading suits aimed to load the musculoskeletal and the cardiovascular systems; measures that prevent the loss of fluids, mainly, water-salt additives which aid to maintain orthostatic tolerance and endurance to gravitational overloads during the return to Earth; well-balanced diet and medications directed to correct possible negative reactions of the body to weightlessness. Fulfillment of countermeasure's protocols inflight was thoroughly controlled. Efficacy of countermeasures used were assessed both in-and postflight. The results of studies showed that degrees of alterations recorded in different physiological systems after ISS space flights in Russian cosmonauts were significantly higher than those recorded after flights on the Russian space stations. This phenomenon was caused by the failure of the ISS crews to execute fully the prescribed countermeasures' protocols which was as a rule excused by technical imperfectness of exercise facilities, treadmill TVIS particularly.

  17. Fiber Optic Cable Assemblies for Space Flight 2: Thermal and Radiation Effects

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.

    1998-01-01

    Goddard Space Flight Center is conducting a search for space flight worthy fiber optic cable assemblies that will benefit all projects at all of the NASA centers. This paper is number two in a series of papers being issued as a result of this task to define and qualify space grade fiber optic cable assemblies. Though to qualify and use a fiber optic cable in space requires treatment of the cable assembly as a system, it is very important to understand the design and behavior of its parts. This paper addresses that need, providing information on cable components shrinkage testing and radiation testing results from recent experiments at Goddard Space Flight Center.

  18. Growth-rate periodicity of Streptomyces levoris during space flight

    NASA Technical Reports Server (NTRS)

    Rogers, T. D.; Brower, M. E.; Taylor, G. R.

    1977-01-01

    Streptomyces levoris provides a suitable biological test system to investigate the effects of space flight on the rhythms of vegetative and spore phase characteristics of both growth-rate periodicity and culture morphology during the pre-, in-, and post-flight periods of the Apollo-Soyuz Test Project. The objectives of the American participation were to study the effects of space flight on the biorhythms of Streptomyces levoris based on a comparison of the growth-rate periodicity of the vegetative and spore phase within each culture, to examine the possible alteration of spore morphology and development by SEM, and to compare the effects of a 12-hr phase shift on the periodic growth characteristics of this microorganism in cultures which were exchanged during the joint activities of the space flight. No uniform differences in the biorhythm of Streptomyces levoris during space flight were observed. It appears that the single most variable factor related to the experiment was the lack of temperature control for the space-flight specimens.

  19. [Micron]ADS-B Detect and Avoid Flight Tests on Phantom 4 Unmanned Aircraft System

    NASA Technical Reports Server (NTRS)

    Arteaga, Ricardo; Dandachy, Mike; Truong, Hong; Aruljothi, Arun; Vedantam, Mihir; Epperson, Kraettli; McCartney, Reed

    2018-01-01

    Researchers at the National Aeronautics and Space Administration Armstrong Flight Research Center in Edwards, California and Vigilant Aerospace Systems collaborated for the flight-test demonstration of an Automatic Dependent Surveillance-Broadcast based collision avoidance technology on a small unmanned aircraft system equipped with the uAvionix Automatic Dependent Surveillance-Broadcast transponder. The purpose of the testing was to demonstrate that National Aeronautics and Space Administration / Vigilant software and algorithms, commercialized as the FlightHorizon UAS"TM", are compatible with uAvionix hardware systems and the DJI Phantom 4 small unmanned aircraft system. The testing and demonstrations were necessary for both parties to further develop and certify the technology in three key areas: flights beyond visual line of sight, collision avoidance, and autonomous operations. The National Aeronautics and Space Administration and Vigilant Aerospace Systems have developed and successfully flight-tested an Automatic Dependent Surveillance-Broadcast Detect and Avoid system on the Phantom 4 small unmanned aircraft system. The Automatic Dependent Surveillance-Broadcast Detect and Avoid system architecture is especially suited for small unmanned aircraft systems because it integrates: 1) miniaturized Automatic Dependent Surveillance-Broadcast hardware; 2) radio data-link communications; 3) software algorithms for real-time Automatic Dependent Surveillance-Broadcast data integration, conflict detection, and alerting; and 4) a synthetic vision display using a fully-integrated National Aeronautics and Space Administration geobrowser for three dimensional graphical representations for ownship and air traffic situational awareness. The flight-test objectives were to evaluate the performance of Automatic Dependent Surveillance-Broadcast Detect and Avoid collision avoidance technology as installed on two small unmanned aircraft systems. In December 2016, four flight tests were conducted at Edwards Air Force Base. Researchers in the ground control station looking at displays were able to verify the Automatic Dependent Surveillance-Broadcast target detection and collision avoidance resolutions.

  20. LSRA

    NASA Image and Video Library

    1993-04-07

    A NASA CV-990, modified as a Landing Systems Research Aircraft (LSRA), in flight over NASA's Dryden Flight Research Center, Edwards, California, for a test of the space shuttle landing gear system. The space shuttle landing gear test unit, operated by a high-pressure hydraulic system, allowed engineers to assess and document the performance of space shuttle main and nose landing gear systems, tires and wheel assemblies, plus braking and nose wheel steering performance. The series of 155 test missions for the space shuttle program provided extensive data about the life and endurance of the shuttle tire systems and helped raise the shuttle crosswind landing limits at Kennedy.

  1. Lessons learned in creating spacecraft computer systems: Implications for using Ada (R) for the space station

    NASA Technical Reports Server (NTRS)

    Tomayko, James E.

    1986-01-01

    Twenty-five years of spacecraft onboard computer development have resulted in a better understanding of the requirements for effective, efficient, and fault tolerant flight computer systems. Lessons from eight flight programs (Gemini, Apollo, Skylab, Shuttle, Mariner, Voyager, and Galileo) and three reserach programs (digital fly-by-wire, STAR, and the Unified Data System) are useful in projecting the computer hardware configuration of the Space Station and the ways in which the Ada programming language will enhance the development of the necessary software. The evolution of hardware technology, fault protection methods, and software architectures used in space flight in order to provide insight into the pending development of such items for the Space Station are reviewed.

  2. Cosmonauts' haemostasis system status before and after space flights

    NASA Astrophysics Data System (ADS)

    Kuzichkin, Dmitry; Markin, Andrey; Morukov, Boris

    Introduction. It is known that cosmonauts expose themselves to psychophysical effort in different phases of space flights as well as in pre- and post-flight period. Stress affects different body systems functioning changes including haemostasis system. It is shown that adrenalin directly activates XII coagulation cascade factor [McKay D. G., Latour I. G., Parrish M. N.,1970], initiating intrinsic clotting pathway and affects fibrinogen concentration increase in plasma [Zubairov D. M., 1978]. A post-flight increase in the fibrinogen concentration was revealed with its drop up to the pre-flight level within rehabilitation period [T. Peter Stein, Margaret D., 2006]. Stress agents influence on haemostasis system is physiologically determined and directed to body preparation before probable blood loss. One can consider this process as a function of intrinsic clotting pathway. But in case of blood loss absence the preliminary permanent coagulation activation can lead to appearance of thrombosis risk. Purpose. The purpose was to study haemostasis system main components functional activity features before and after space flights. Methods. In the citrated plasma of astronauts who performed short-term (10 to 11 days) or long-term (196 to 199 days) the following values were determined: activated partial thrombin time (APTT); prothrombin time; prothrombin index; international normalized ratio; thrombin time (TT); activity of enzymes influencing the function of proteins involved in the formation and lysis of a clot such as antithrombin III, protein C, plasminogen, antiplasmin; content of fibrinogen, as well as intermediate products of formation and degradation of fibrin such as D-dimer, soluble fibrin-monomer complexes (SFMC). Sampling of biomaterial was perfomed 30 to 45 days prior to the flight, during the 1st day of the post flight period (all the examined persons), and in the 7th and 14th day (long-term flights member only) Results. In pre-flight period cosmonauts’ APTT indices was increased as compared with general population physiological norms. During the 1st day after long- and short-term flights a tendency for activation of coagulation system along inner and terminal pathways emerged (APTT, TT shortening, an increase in the SFMC concentration). After short-term space flights a tendency for activation of fibrin forming (an increase in the fibrin concentration) was evidenced, and, as a compensatory factor, for activation of fibrinolysis (an increase in fibrynolytic activity and D-dimer concentration). On the contrary, after long-term space flights, a tendency for fibrinolysys decline was observed (fibrinolytic activity and D-dimer concentration decreased at this the fibrinogen concentration remained virtually constant relative to the background level). During the 14th day of the post-flight period normalization of all studied parameters was observed. Discussion. After space flights a tendency for activation of haemostasis procoagulant component is observed. However, during short-term space flights compensatory systems become activated, which may be connected with developing of stress reactions of adaptation to weightlessness conditions and post-flight re-adaptation to ground conditions, while after long-term spaceflights the compensatory effect of fibrinolysis is not pronounced, possibly, due to metabolic process intensity reduction developing during long-duration stay in weightlessness conditions [Grigoriev A.I., Kaplansky A.S., Popova I.A., 1992]. Probably the relatively inactivated cosmonauts’ intrinsic pathway coagulation in pre-flight period (prolonged APTT) is one of the prerequisites of the high resistance to stress factors influence. Plausible this status of intrinsic pathway subject to consequent activation by adrenalin promotes body protection against thrombophilic tendency.

  3. Survey of cell biology experiments in reduced gravity

    NASA Technical Reports Server (NTRS)

    Taylor, G. R.

    1977-01-01

    The effects of spaceflight on terrestrial cell systems are discussed. With some important exceptions, static cell systems carried aboard U.S.A. and U.S.S.R. space flights have failed to reveal space related anomalies. Some sophisticated devices which were developed for viewing directly, or continuously recording, the growth of cells, tissue cultures and eggs in flight, are described and the results summarized. The unique presence of high energy, multicharged (HZE) particles and full-range ultraviolet irradiation in space prompted evaluation of the response of single cells to these factors. Summary results and general conclusions are presented. Potential areas of research in future space flights are identified.

  4. Orion Flight Test Preview Briefing

    NASA Image and Video Library

    2014-11-06

    In the Kennedy Space Center’s Press Site auditorium, members of the news media are briefed on the upcoming Orion flight test by Jeremy Graeber, Orion Recovery Director in Ground Systems Development and Operations at Kennedy. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.

  5. Investigation of Desiccants and CO2 Sorbents for Advanced Exploration Systems 2015-2016

    NASA Technical Reports Server (NTRS)

    Cmarik, Gregory E.; Knox, Jim

    2016-01-01

    Advanced Environmental Control and Life Support System (ECLSS) design is critical for human space flight beyond Earth. Current systems enable extended missions in low-Earth orbit, but for deep-space missions, not only will astronauts be outside the reach of resupply operations from Earth but they will also need to handle malfunctions and compensate for the degradation of materials. These two daunting challenges must be overcome for long-term independent space flight. In order to solve the first, separation and reuse of onboard atmosphere components is required. Current systems utilize space vacuum to fully regenerate adsorbent beds, but this is not sustainable thus necessitating a closed-loop system. The second challenge stems from material and performance degradation due to operational cycling and on-board contaminants. This report will review the recent work by the ECLSS team at Marshall Space Flight Center towards overcoming these challenges by characterizing materials via novel methods for use in future systems.

  6. JWST Flight Mirrors

    NASA Image and Video Library

    2011-05-25

    Project scientist Mark Clampin is reflected in the flight mirrors of the Webb Space Telescope at Marshall Space Flight Center. Portions of the Webb telescope are being built at NASA Goddard. Credit: Ball Aerospace/NASA NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook Find us on Instagram

  7. Space Launch System Spacecraft and Payload Elements: Progress Toward Crewed Launch and Beyond

    NASA Technical Reports Server (NTRS)

    Schorr, Andrew A.; Creech, Stephen D.

    2017-01-01

    While significant and substantial progress continues to be accomplished toward readying the Space Launch System (SLS) rocket for its first test flight, work is already also underway on preparations for the second flight - using an upgraded version of the vehicle - and beyond. Designed to support human missions into deep space, Space Launch System (SLS), is the most powerful human-rated launch vehicle the United States has ever undertaken, and is one of three programs being managed by the National Aeronautics and Space Administration's (NASA's) Exploration Systems Development division. The Orion spacecraft program is developing a new crew vehicle that will support human missions beyond low Earth orbit (LEO), and the Ground Systems Development and Operations program is transforming Kennedy Space Center into a next-generation spaceport capable of supporting not only SLS but also multiple commercial users. Together, these systems will support human exploration missions into the proving ground of cislunar space and ultimately to Mars. For its first flight, SLS will deliver a near-term heavy-lift capability for the nation with its 70-metric-ton (t) Block 1 configuration. Each element of the vehicle now has flight hardware in production in support of the initial flight of the SLS, which will propel Orion around the moon and back. Encompassing hardware qualification, structural testing to validate hardware compliance and analytical modeling, progress in on track to meet the initial targeted launch date. In Utah and Mississippi, booster and engine testing are verifying upgrades made to proven shuttle hardware. At Michoud Assembly Facility in Louisiana, the world's largest spacecraft welding tool is producing tanks for the SLS core stage. Providing the Orion crew capsule/launch vehicle interface and in-space propulsion via a cryogenic upper stage, the Spacecraft/Payload Integration and Evolution (SPIE) element serves a key role in achieving SLS goals and objectives. The SPIE element marked a major milestone in 2014 with the first flight of original SLS hardware, the Orion Stage Adapter (OSA) which was used on Exploration Flight Test-1 with a design that will be used again on the first flight of SLS. The element has overseen production of the Interim Cryogenic Propulsion Stage (ICPS), an in-space stage derived from the Delta Cryogenic Second Stage, which was manufactured at United Launch Alliance in Decatur, Alabama, prior to being shipped to Florida for flight preparations. Manufacture of the Orion Stage Adapter and the Launch Vehicle Stage Adapter (LVSA) took place at the Friction Stir Facility located at Marshall Space Flight Center in Huntsville, Alabama. Marshall is also home to the Integrated Structural Test of the ICPS, LVSA, and OSA, subjecting the stacked components to simulated stresses of launch. The SPIE Element is also overseeing integration of 13 "CubeSat" secondary payloads that will fly on the first flight of SLS, providing access to deep space regions in a way currently not available to the science community. At the same time as this preparation work is taking place toward the first launch of SLS, however, the Space Launch System Program is actively working toward its second launch. For its second flight, SLS will be upgraded to the more-capable Block 1B configuration. While the Block 1 configuration is capable of delivering more than 70 metric tons to low Earth orbit, the Block 1B vehicle will increase that capability to 105 t. For that flight, the new configuration introduces two major new elements to the vehicle - an Exploration Upper Stage (EUS) that will be used for both ascent and in-space propulsion, and a Universal Stage Adapter (USA) that serves as a "payload bay" for the rocket, allowing the launch of large exploration systems along with the Orion spacecraft. Already, flight hardware is being prepared for the Block 1B vehicle. Welding is taking place on the second rocket's core stage. Flight hardware production has begun on booster components. An RS-25 engine slated for that flight has been tested. Development work is taking place on the Exploration Upper Stage, with contracts in place for both the stage and the RL10 engines which will power it. (The EUS will use four RL10 engines, an increase from one on the ICPS.) For the crew configuration of the Block 1B vehicle, the SLS SPIE element is managing the USA and accompanying Payload Adapter, which will accommodate both large payloads co-manifested with Orion and small-satellite secondary payloads. This co-manifested payload capacity will be instrumental for missions into the Proving Ground around the moon, where NASA will test new systems and demonstrate new capabilities needed for human exploration farther into deep space.

  8. Ratioing methods for in-flight response calibration of space-based spectro-radiometers, operating in the solar spectral region

    NASA Astrophysics Data System (ADS)

    Lobb, Dan

    2017-11-01

    One of the most significant problems for space-based spectro-radiometer systems, observing Earth from space in the solar spectral band (UV through short-wave IR), is in achievement of the required absolute radiometric accuracy. Classical methods, for example using one or more sun-illuminated diffusers as reflectance standards, do not generally provide methods for monitoring degradation of the in-flight reference after pre-flight characterisation. Ratioing methods have been proposed that provide monitoring of degradation of solar attenuators in flight, thus in principle allowing much higher confidence in absolute response calibration. Two example methods are described. It is shown that systems can be designed for relatively low size and without significant additions to the complexity of flight hardware.

  9. Status of the National Space Transportation System

    NASA Technical Reports Server (NTRS)

    Abrahamson, J. A.

    1984-01-01

    The National Space Transportation System is a national resources serving the government, Department of Defense and commercial needs of the USA and others. Four orbital flight tests were completed July 4, 1982, and the first Operational Flight (STS-5) which placed two commercial communications into orbit was conducted November 11, 1982. February 1983 marked the first flight of the newest orbiter, Challenger. Planned firsts in 1983 include: use of higher performance main engines and solid rocket boosters, around-the-clock crew operations, a night landing, extra-vehicular activity, a dedicated DOD mission, and the first flight of a woman crew member. By the end of 1983, five commercial payloads and two tracking and data relay satellites should be deployed and thirty-seven crew members should have made flights aboard the space shuttle.

  10. Recent progress in the NASA-Goddard Space Flight Center atomic hydrogen standards program

    NASA Technical Reports Server (NTRS)

    Reinhardt, V. S.

    1981-01-01

    At NASA Goddard Space Flight Center and through associated contractors, a broad spectrum of work is being carried out to develop improved hydrogen maser frequency standards for field use, improved experimental hydrogen maser frequency standards, and improved frequency and time distribution and measurement systems for hydrogen maser use. Recent progress in the following areas is reported: results on the Nr masers built by the Applied Physics Laboratory of Johns Hopkins University, the development of a low cost hydrogen maser at Goddard Space Flight Center, and work on a low noise phase comparison system and digitally phase locked crystal oscillator called the distribution and measurement system.

  11. [Comparative efficacy of different regimens of locomotor training in long-term space flights by the data of biomechanical and electromyographic parametrs of walking].

    PubMed

    Shpakov, A V; Voronov, A V; Fomina, E V; Lysova, N Iu; Chernova, M V; Kozlovskaia, I B

    2013-01-01

    Biomechanical and electromyographic characteristics of locomotion were investigated before and after space flight on the 3rd, 7th and 10th day after landing in 18 cosmonauts--crewmembers of long-term ISS space flights. It was shown that microgravity causes the development of significant changes in biomechanical and electromyographic characteristics of walking. Decrease of the angular displacement amplitude in leg joints, reduction of the length of the double step, increase of the electromyographic cost of locomotion were recorded after flight. It was also shown that interval locomotor physical training in long-term space flights in the regimen of alternation running and walking prevents physiological cost of locomotor movements increase after space flight and provides more effective maintenance of the neuromuscular system functions after flight. After flight smaller changes of biomechanical and electromyographic characteristics of walking were observed in cosmonauts who used locomotor training in interval regimen.

  12. KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities near KSC, NASA’s MESSENGER spacecraft from NASA’s Goddard Space Flight Center in Greenbelt, Md., is offloaded. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be taken into a high bay clean room and employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

    NASA Image and Video Library

    2004-03-10

    KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities near KSC, NASA’s MESSENGER spacecraft from NASA’s Goddard Space Flight Center in Greenbelt, Md., is offloaded. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be taken into a high bay clean room and employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

  13. KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities near KSC, a lift helps offload NASA’s MESSENGER spacecraft shipped from NASA’s Goddard Space Flight Center in Greenbelt, Md. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be taken into a high bay clean room and employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

    NASA Image and Video Library

    2004-03-10

    KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities near KSC, a lift helps offload NASA’s MESSENGER spacecraft shipped from NASA’s Goddard Space Flight Center in Greenbelt, Md. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be taken into a high bay clean room and employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

  14. KSC-2013-2918

    NASA Image and Video Library

    2013-06-27

    CAPE CANAVERAL, Fla. – Inside the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, members of the media receive an on activities in NASA’s Ground Systems Development and Operations, or GSDO, Program, Space Launch System and Orion crew module for Exploration Test Flight 1. Speaking to the media is Scott Wilson, manager of Orion Production Operations at Kennedy. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Jim Grossmann

  15. KSC-2013-2923

    NASA Image and Video Library

    2013-06-27

    CAPE CANAVERAL, Fla. – Inside the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, members of the media receive an on activities in NASA’s Ground Systems Development and Operations, or GSDO, Program, Space Launch System and Orion crew module for Exploration Test Flight 1. Speaking to the media is Jeremy Parsons, chief of the GSDO Operations Integration Office at Kennedy. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Jim Grossmann

  16. KSC-2013-2922

    NASA Image and Video Library

    2013-06-27

    CAPE CANAVERAL, Fla. – Inside the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, members of the media receive an on activities in NASA’s Ground Systems Development and Operations, or GSDO, Program, Space Launch System and Orion crew module for Exploration Test Flight 1. Speaking to the media is Jeremy Parsons, chief of the GSDO Operations Integration Office at Kennedy. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Jim Grossmann

  17. NASA Hardware Heads to Kennedy For Flight Preparations

    NASA Image and Video Library

    2018-01-24

    The Orion stage adapter will be part of the first integrated flight of NASA's heavy-lift rocket, the Space Launch System, and the Orion spacecraft. The adapter, approximately 5 feet tall and 18 feet in diameter, was designed and built at NASA's Marshall Space Flight Center in Huntsville, Alabama, with advanced friction stir welding technology. It will connect the SLS interim cryogenic propulsion stage to Orion on the first flight that will help engineers check out and verify the agency's new deep-space exploration systems. Inside the adapter, engineers installed special brackets and cabling for the 13 CubeSats that will fly as secondary payloads. The Cubesats are boot-box-sized science and technology investigations that will help pave the way for future human exploration in deep space. The Orion stage adapter flight article recently finished major testing of the avionics system that will deploy the CubeSats. Technicians at NASA's Kennedy Space Center, Florida, will install the secondary payloads and engineers will examine the hardware before it is stacked on the interim cryogenic propulsion stage in the Vehicle Assembly Building prior to launch. For more information about SLS hardware, visit nasa.gov/sls.

  18. Space Food Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Perchonok, Michele; Russo, Dane M. (Technical Monitor)

    2001-01-01

    The Space Food Systems Laboratory (SFSL) is a multipurpose laboratory responsible for space food and package research and development. It is located on-site at Johnson Space Center in Building 17. The facility supports the development of flight food, menus, packaging and food related hardware for Shuttle, International Space Station, and Advanced Life Support food systems. All foods used to support NASA ground tests and/or missions must meet the highest standards before they are 'accepted' for use on actual space flights. The foods are evaluated for nutritional content, sensory acceptability, safety, storage and shelf life, and suitability for use in micro-gravity. The food packaging is also tested to determine its functionality and suitability for use in space. Food Scientist, Registered Dieticians, Packaging Engineers, Food Systems Engineers, and Technicians staff the Space Food Systems Laboratory.

  19. Integrated Crew Health Care System for Space Flight

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.

    2007-01-01

    Dr. Davis' presentation includes a brief overview of space flight and the lessons learned for health care in microgravity. He will describe the development of policy for health care for international crews. He will conclude his remarks with a discussion of an integrated health care system.

  20. The next decade of space robotics

    NASA Technical Reports Server (NTRS)

    Lavery, Dave; Weisbin, Charles

    1994-01-01

    In the same way that the launch of Yuri Gagarin in April 1961 announced the beginning of human space flight, last year's flight of the German ROTEX robot flight experiment is heralding the start of a new era of space robotics. After a gap of twelve years since the introduction of a new capability in space remote manipulation, ROTEX is the first of at least ten new robotic systems and experiments which will fly before the year 2000.

  1. KENNEDY SPACE CENTER, FLA. -- Lanfang Levine, with Dynamac Corp., helps install a Dionex DX-500 IC/HPLC system in the Space Life Sciences Lab. The equipment will enable analysis of volatile compounds, such as from plants. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

    NASA Image and Video Library

    2004-01-05

    KENNEDY SPACE CENTER, FLA. -- Lanfang Levine, with Dynamac Corp., helps install a Dionex DX-500 IC/HPLC system in the Space Life Sciences Lab. The equipment will enable analysis of volatile compounds, such as from plants. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  2. 14 CFR Appendix B to Part 135 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplane Flight Recorder Specifications B Appendix B to Part 135 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION.... B Appendix B to Part 135—Airplane Flight Recorder Specifications Parameters Range Installed system 1...

  3. Chiao performs in-flight maintenance on the TVIS in the SM during Expedition 10

    NASA Image and Video Library

    2005-02-15

    ISS010-E-17815 (15 February 2005) --- Cosmonaut Salizhan S. Sharipov, Expedition 10 flight engineer representing Russia's Federal Space Agency, performs in-flight maintenance on the Treadmill Vibration Isolation System (TVIS) in the Zvezda Service Module of the International Space Station (ISS).

  4. 14 CFR Appendix B to Part 135 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplane Flight Recorder Specifications B Appendix B to Part 135 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION.... B Appendix B to Part 135—Airplane Flight Recorder Specifications Parameters Range Installed system 1...

  5. 14 CFR Appendix E to Part 91 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Airplane Flight Recorder Specifications E Appendix E to Part 91 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Appendix E to Part 91—Airplane Flight Recorder Specifications Parameters Range Installed system 1 minimum...

  6. 14 CFR Appendix E to Part 91 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Airplane Flight Recorder Specifications E Appendix E to Part 91 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Appendix E to Part 91—Airplane Flight Recorder Specifications Parameters Range Installed system 1 minimum...

  7. 14 CFR Appendix B to Part 135 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane Flight Recorder Specifications B Appendix B to Part 135 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION.... B Appendix B to Part 135—Airplane Flight Recorder Specifications Parameters Range Installed system 1...

  8. 14 CFR Appendix E to Part 91 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Airplane Flight Recorder Specifications E Appendix E to Part 91 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Appendix E to Part 91—Airplane Flight Recorder Specifications Parameters Range Installed system 1 minimum...

  9. 14 CFR Appendix B to Part 135 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplane Flight Recorder Specifications B Appendix B to Part 135 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION.... B Appendix B to Part 135—Airplane Flight Recorder Specifications Parameters Range Installed system 1...

  10. 14 CFR Appendix C to Part 135 - Helicopter Flight Recorder Specifications

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Helicopter Flight Recorder Specifications C Appendix C to Part 135 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION.... C Appendix C to Part 135—Helicopter Flight Recorder Specifications Parameters Range Installed system...

  11. Evolving the NASA Near Earth Network for the Next Generation of Human Space Flight

    NASA Technical Reports Server (NTRS)

    Roberts, Christopher J.; Carter, David L.; Hudiburg, John J.; Tye, Robert N.; Celeste, Peter B.

    2014-01-01

    The purpose of this paper is to present the planned development and evolution of the NASA Near Earth Network (NEN) launch communications services in support of the next generation of human space flight programs. Following the final space shuttle mission in 2011, the two NEN launch communications stations were decommissioned. Today, NASA is developing the next generation of human space flight systems focused on exploration missions beyond low-earth orbit, and supporting the emerging market for commercial crew and cargo human space flight services. The NEN is leading a major initiative to develop a modern high data rate launch communications ground architecture with support from the Kennedy Space Center Ground Systems Development and Operations Program and in partnership with the U.S. Air Force (USAF) Eastern Range. This initiative, the NEN Launch Communications Stations (LCS) development project, successfully completed its System Requirements Review in November 2013. This paper provides an overview of the LCS project and a summary of its progress. The LCS ground architecture, concept of operations, and driving requirements to support the new heavy-lift Space Launch System and Orion Multi-Purpose Crew Vehicle for Exploration Mission-1 are presented. Finally, potential future extensions to the ground architecture beyond EM-1 are discussed.

  12. Automated Rendezvous and Capture System Development and Simulation for NASA

    NASA Technical Reports Server (NTRS)

    Roe, Fred D.; Howard, Richard T.; Murphy, Leslie

    2004-01-01

    The United States does not have an Automated Rendezvous and Capture Docking (AR&C) capability and is reliant on manned control for rendezvous and docking of orbiting spacecraft. T h i s reliance on the labor intensive manned interface for control of rendezvous and docking vehicles has a significant impact on the cost of the operation of the International Space Station (ISS) and precludes the use of any U.S. expendable launch capabilities for Space Station resupply. The Marshall Space Flight Center (MSFC) has conducted pioneering research in the development of an automated rendezvous and capture (or docking) (AR&C) system for U.S. space vehicles. This A M C system was tested extensively using hardware-in-the-loop simulations in the Flight Robotics Laboratory, and a rendezvous sensor, the Video Guidance Sensor was developed and successfully flown on the Space Shuttle on flights STS-87 and STS-95, proving the concept of a video- based sensor. Further developments in sensor technology and vehicle and target configuration have lead to continued improvements and changes in AR&C system development and simulation. A new Advanced Video Guidance Sensor (AVGS) with target will be utilized as the primary navigation sensor on the Demonstration of Autonomous Rendezvous Technologies (DART) flight experiment in 2004. Realtime closed-loop simulations will be performed to validate the improved AR&C systems prior to flight.

  13. Life Cycle of a Mission

    NASA Technical Reports Server (NTRS)

    Bothwell, Mary

    2004-01-01

    A viewgraph presentation describing the the six phases of a space mission is shown. The contents include: 1) What Does Planning Involve?; 2) Designing the Flight System; 3) Building the Flight System; 4) Testing the Flight System; 5) Flying the Mission; and 6) Analyzing the Data.

  14. Hubble Space Telescope Program on STS-95 Supported by Space Acceleration Measurement System for Free Flyers

    NASA Technical Reports Server (NTRS)

    Kacpura, Thomas J.

    2000-01-01

    John Glenn's historic return to space was a primary focus of the STS 95 space shuttle mission; however, the 83 science payloads aboard were the focus of the flight activities. One of the payloads, the Hubble Space Telescope Orbital System Test (HOST), was flown in the cargo bay by the NASA Goddard Space Flight Center. It served as a space flight test of upgrade components for the telescope before they are installed in the shuttle for the next Hubble Space Telescope servicing mission. One of the upgrade components is a cryogenic cooling system for the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). The cooling is required for low noise in the receiver's sensitive electronic instrumentation. Originally, a passive system using dry ice cooled NICMOS, but the ice leaked away and must be replaced. The active cryogenic cooler can provide the cold temperatures required for the NICMOS, but there was a concern that it would create vibrations that would affect the fine pointing accuracy of the Hubble platform.

  15. KSC-2013-2925

    NASA Image and Video Library

    2013-06-27

    CAPE CANAVERAL, Fla. – Inside the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, members of the media receive an on activities in NASA’s Ground Systems Development and Operations, or GSDO, Program, Space Launch System and Orion crew module for Exploration Test Flight 1. Speaking to the media is Larry Price, Lockheed Martin deputy program manager for Orion. In the background, from left are Scott Wilson, manager of Orion Production Operations at Kennedy Jeremy Parsons, chief of the GSDO Operations Integration Office at Kennedy Tom Erdman, from Marshall Space Flight Center’s Kennedy resident office and Jules Schneider, Lockheed Martin manager of Orion Production Operations. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Jim Grossmann

  16. Orion flight test previewed on This Week @NASA - November 7, 2014

    NASA Image and Video Library

    2014-11-07

    A NASA media briefing on Nov. 6 at Kennedy Space Center highlighted the fully assembled Orion spacecraft and details of its first test flight, scheduled for Dec. 4. The 4 and-a-half hour flight, called Exploration Flight Test-1, will send Orion 3,600 miles from Earth on a two-orbit flight to confirm its critical systems are ready for the challenges of eventually sending astronauts on deep space missions to an asteroid and Mars. Also, Delta IV Heavy wet dress test, Next ISS crew trains, Space agency leaders support ISS, Curiosity confirms orbital data and more!

  17. International Space Station (ISS)

    NASA Image and Video Library

    2001-09-16

    Aboard the International Space Station (ISS), Cosmonaut and Expedition Three flight engineer Vladimir N. Dezhurov, representing Rosaviakosmos, talks with flight controllers from the Zvezda Service Module. Russian-built Zvezda is linked to the Functional Cargo Block (FGB), or Zarya, the first component of the ISS. Zarya was launched on a Russian Proton rocket prior to the launch of Unity. The third component of the ISS, Zvezda (Russian word for star), the primary Russian contribution to the ISS, was launched by a three-stage Proton rocket on July 12, 2000. Zvezda serves as the cornerstone for early human habitation of the Station, providing living quarters, a life support system, electrical power distribution, a data processing system, flight control system, and propulsion system. It also provides a communications system that includes remote command capabilities from ground flight controllers. The 42,000-pound module measures 43 feet in length and has a wing span of 98 feet. Similar in layout to the core module of Russia's Mir space station, it contains 3 pressurized compartments and 13 windows that allow ultimate viewing of Earth and space.

  18. Next-Generation RS-25 Engines for the NASA Space Launch System

    NASA Technical Reports Server (NTRS)

    Ballard, Richard O.

    2017-01-01

    The utilization of heritage RS-25 engine, also known as the Space Shuttle Main Engine (SSME), has enabled rapid progress in the development and certification of the NASA Space Launch System (SLS) toward operational flight status. The RS-25 brings design maturity and extensive experience gained through 135 missions, 3000+ ground tests, and over a million seconds total accumulated hot-fire time. In addition, there were also over a dozen functional flight assets remaining from the Space Shuttle program that could be leveraged to support the first four flights. Beyond these initial SLS flights, NASA must have a renewed supply of RS-25 engines that must reflect program affordability imperatives as well as technical requirements imposed by the SLS Block-1B vehicle (i.e., 111% RPL power level, reduced service life). Recognizing the long lead times needed for the fabrication, assembly and acceptance testing of flight engines, design activities are underway at NASA and the RS-25 engine provider, Aerojet Rocketdyne, to improve system affordability and eliminate obsolescence concerns. This paper describes how the achievement of these key objectives are enabled largely by utilizing modern materials and fabrication technologies, but also by innovations in systems engineering and integration (SE&I) practices.

  19. Ground System Harmonization Efforts at NASA's Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Smith, Dan

    2011-01-01

    This slide presentation reviews the efforts made at Goddard Space Flight Center in harmonizing the ground systems to assist in collaboration in space ventures. The key elements of this effort are: (1) Moving to a Common Framework (2) Use of Consultative Committee for Space Data Systems (CCSDS) Standards (3) Collaboration Across NASA Centers (4) Collaboration Across Industry and other Space Organizations. These efforts are working to bring into harmony the GSFC systems with CCSDS standards to allow for common software, use of Commercial Off the Shelf Software and low risk development and operations and also to work toward harmonization with other NASA centers

  20. Cosmonaut Dezhurov Talks With Flight Controllers

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Aboard the International Space Station (ISS), Cosmonaut and Expedition Three flight engineer Vladimir N. Dezhurov, representing Rosaviakosmos, talks with flight controllers from the Zvezda Service Module. Russian-built Zvezda is linked to the Functional Cargo Block (FGB), or Zarya, the first component of the ISS. Zarya was launched on a Russian Proton rocket prior to the launch of Unity. The third component of the ISS, Zvezda (Russian word for star), the primary Russian contribution to the ISS, was launched by a three-stage Proton rocket on July 12, 2000. Zvezda serves as the cornerstone for early human habitation of the Station, providing living quarters, a life support system, electrical power distribution, a data processing system, flight control system, and propulsion system. It also provides a communications system that includes remote command capabilities from ground flight controllers. The 42,000-pound module measures 43 feet in length and has a wing span of 98 feet. Similar in layout to the core module of Russia's Mir space station, it contains 3 pressurized compartments and 13 windows that allow ultimate viewing of Earth and space.

  1. NASA/DOD Flight Experiments Technical Interchange Meeting Proceedings

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This document contains the proceedings of the Flight Experiments Technical Interchange Meeting held in Monterey California, October 5-9, 1992. Technical sessions 4 through 8 addressing space structures, propulsion, space power systems, space environments and effects, and space operations are covered. Many of the papers are presented in outline and viewgraph form.

  2. Vectorcardiograph

    NASA Technical Reports Server (NTRS)

    Lintott, J.; Costello, M. J.

    1977-01-01

    A system for quantitating the cardiac electrical activity of Skylab crewmen was required for three medical experiments (M092, Lower Body Negative Pressure; M171, Metabolic Activity; and M093, In-flight Vectorcardiogram) designed to evaluate the effects of space flight on the human cardiovascular system. A Frank lead vectorcardiograph system was chosen for this task because of its general acceptability in the scientific community and its data quantification capabilities. To be used effectively in space flight, however, the system had to meet certain other requirements. The system was required to meet the specifications recommended by the American Heart Association. The vectorcardiograph had to withstand the extreme conditions of the space environment. The system had to provide features that permitted ease of use in the orbital environment. The vectorcardiograph system performed its intended function throughout all the Skylab missions without a failure. A description of this system follows.

  3. Senator Doug Jones (D-AL) Tour of MSFC Facilities

    NASA Image and Video Library

    2018-02-22

    Senator Doug Jones (D-AL.) and wife, Louise, tour Marshall Space Flight facilities. Steve Doering, manager, Stages Element, Space Launch System (SLS) program at MSFC, views the test stand 4693 where key SLS structural elements will be subjected to stress testing simulating space flight.

  4. Risk of Impaired Control of Spacecraft/Associated Systems and Decreased Mobility Due to Vestibular/Sensorimotor Alterations Associated with Space flight

    NASA Technical Reports Server (NTRS)

    Bloomberg, Jacob J.; Reschke, Millard F.; Clement, Gilles R.; Mulavara, Ajitkumar P.; Taylor, Laura C..

    2015-01-01

    Control of vehicles and other complex systems is a high-level integrative function of the central nervous system (CNS). It requires well-functioning subsystem performance, including good visual acuity, eye-hand coordination, spatial and geographic orientation perception, and cognitive function. Evidence from space flight research demonstrates that the function of each of these subsystems is altered by removing gravity, a fundamental orientation reference, which is sensed by vestibular, proprioceptive, and haptic receptors and used by the CNS for spatial orientation, posture, navigation, and coordination of movements. The available evidence also shows that the degree of alteration of each subsystem depends on a number of crew- and mission-related factors. There is only limited operational evidence that these alterations cause functional impacts on mission-critical vehicle (or complex system) control capabilities. Furthermore, while much of the operational performance data collected during space flight has not been available for independent analysis, those that have been reviewed are somewhat equivocal owing to uncontrolled (and/or unmeasured) environmental and/or engineering factors. Whether this can be improved by further analysis of previously inaccessible operational data or by development of new operational research protocols remains to be seen. The true operational risks will be estimable only after we have filled the knowledge gaps and when we can accurately assess integrated performance in off-nominal operational settings (Paloski et al. 2008). Thus, our current understanding of the Risk of Impaired Control of Spacecraft/Associated Systems and Decreased Mobility Due to Vestibular/Sensorimotor Alterations Associated with Space flight is limited primarily to extrapolation of scientific research findings, and, since there are limited ground-based analogs of the sensorimotor and vestibular changes associated with space flight, observation of their functional impacts is limited to studies performed in the space flight environment. Fortunately, many sensorimotor and vestibular experiments have been performed during and/or after space flight missions since 1959 (Reschke et al. 2007). While not all of these experiments were directly relevant to the question of vehicle/complex system control, most provide insight into changes in aspects of sensorimotor control that might bear on the physiological subsystems underlying this high-level integrated function.

  5. Orion Abort Flight Test

    NASA Technical Reports Server (NTRS)

    Hayes, Peggy Sue

    2010-01-01

    The purpose of NASA's Constellation project is to create the new generation of spacecraft for human flight to the International Space Station in low-earth orbit, the lunar surface, as well as for use in future deep-space exploration. One portion of the Constellation program was the development of the Orion crew exploration vehicle (CEV) to be used in spaceflight. The Orion spacecraft consists of a crew module, service module, space adapter and launch abort system. The crew module was designed to hold as many as six crew members. The Orion crew exploration vehicle is similar in design to the Apollo space capsules, although larger and more massive. The Flight Test Office is the responsible flight test organization for the launch abort system on the Orion crew exploration vehicle. The Flight Test Office originally proposed six tests that would demonstrate the use of the launch abort system. These flight tests were to be performed at the White Sands Missile Range in New Mexico and were similar in nature to the Apollo Little Joe II tests performed in the 1960s. The first flight test of the launch abort system was a pad abort (PA-1), that took place on 6 May 2010 at the White Sands Missile Range in New Mexico. Primary flight test objectives were to demonstrate the capability of the launch abort system to propel the crew module a safe distance away from a launch vehicle during a pad abort, to demonstrate the stability and control characteristics of the vehicle, and to determine the performance of the motors contained within the launch abort system. The focus of the PA-1 flight test was engineering development and data acquisition, not certification. In this presentation, a high level overview of the PA-1 vehicle is given, along with an overview of the Mobile Operations Facility and information on the White Sands tracking sites for radar & optics. Several lessons learned are presented, including detailed information on the lessons learned in the development of wind placards for flight. PA-1 flight data is shown, as well as a comparison of PA-1 flight data to nonlinear simulation Monte Carlo data.

  6. Design, Development and Pre-Flight Testing of the Communications, Navigation, and Networking Reconfigurable Testbed (Connect) to Investigate Software Defined Radio Architecture on the International Space Station

    NASA Technical Reports Server (NTRS)

    Over, Ann P.; Barrett, Michael J.; Reinhart, Richard C.; Free, James M.; Cikanek, Harry A., III

    2011-01-01

    The Communication Navigation and Networking Reconfigurable Testbed (CoNNeCT) is a NASA-sponsored mission, which will investigate the usage of Software Defined Radios (SDRs) as a multi-function communication system for space missions. A softwaredefined radio system is a communication system in which typical components of the system (e.g., modulators) are incorporated into software. The software-defined capability allows flexibility and experimentation in different modulation, coding and other parameters to understand their effects on performance. This flexibility builds inherent redundancy and flexibility into the system for improved operational efficiency, real-time changes to space missions and enhanced reliability/redundancy. The CoNNeCT Project is a collaboration between industrial radio providers and NASA. The industrial radio providers are providing the SDRs and NASA is designing, building and testing the entire flight system. The flight system will be integrated on the Express Logistics Carrier (ELC) on the International Space Station (ISS) after launch on the H-IIB Transfer Vehicle in 2012. This paper provides an overview of the technology research objectives, payload description, design challenges and pre-flight testing results.

  7. In-flight simulation studies at the NASA Dryden Flight Research Facility

    NASA Technical Reports Server (NTRS)

    Shafer, Mary F.

    1992-01-01

    Since the late 1950's, the National Aeronautics and Space Administration's Dryden Flight Research Facility has found in-flight simulation to be an invaluable tool. In-flight simulation has been used to address a wide variety of flying qualities questions, including low-lift-to-drag ratio approach characteristics for vehicles like the X-15, the lifting bodies, and the Space Shuttle; the effects of time delays on controllability of aircraft with digital flight-control systems, the causes and cures of pilot-induced oscillation in a variety of aircraft, and flight-control systems for such diverse aircraft as the X-15 and the X-29. In-flight simulation has also been used to anticipate problems and to avoid them and to solve problems once they appear. Presented here is an account of the in-flight simulation at the Dryden Flight Research Facility and some discussion. An extensive bibliography is included.

  8. In-flight simulation studies at the NASA Dryden Flight Research Facility

    NASA Technical Reports Server (NTRS)

    Shafer, Mary F.

    1994-01-01

    Since the late 1950's the National Aeronautics and Space Administration's Dryden Flight Research Facility has found in-flight simulation to be an invaluable tool. In-flight simulation has been used to address a wide variety of flying qualities questions, including low lift-to-drag ratio approach characteristics for vehicles like the X-15, the lifting bodies, and the space shuttle; the effects of time delays on controllability of aircraft with digital flight control systems; the causes and cures of pilot-induced oscillation in a variety of aircraft; and flight control systems for such diverse aircraft as the X-15 and the X-29. In-flight simulation has also been used to anticipate problems, avoid them, and solve problems once they appear. This paper presents an account of the in-flight simulation at the Dryden Flight Research Facility and some discussion. An extensive bibliography is included.

  9. NASA's Space Launch Initiative Targets Toxic Propellants

    NASA Technical Reports Server (NTRS)

    Hurlbert, Eric; McNeal, Curtis; Davis, Daniel J. (Technical Monitor)

    2001-01-01

    When manned and unmanned space flight first began, the clear and overriding design consideration was performance. Consequently, propellant combinations of all kinds were considered, tested, and, when they lifted the payload a kilometer higher, or an extra kilogram to the same altitude, they became part of our operational inventory. Cost was not considered. And with virtually all of the early work being performed by the military, safety was hardly a consideration. After all, fighting wars has always been dangerous. Those days are past now. With space flight, and the products of space flight, a regular part of our lives today, safety and cost are being reexamined. NASA's focus turns naturally to its Shuttle Space Transportation System. Designed, built, and flown for the first time in the 1970s, this system remains today America's workhorse for manned space flight. Without its tremendous lift capability and mission flexibility, the International Space Station would not exist. And the Hubble telescope would be a monument to shortsighted management, rather than the clear penetrating eye on the stars it is today. But the Shuttle system fully represents the design philosophy of its period: it is too costly to operate, and not safe enough for regular long term access to space. And one of the key reasons is the utilization of toxic propellants. This paper will present an overview of the utilization of toxic propellants on the current Shuttle system.

  10. Space flight nutrition research: platforms and analogs

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Uchakin, Peter N.; Tobin, Brian W.

    2002-01-01

    Conducting research during actual or simulated weightlessness is a challenging endeavor, where even the simplest activities may present significant challenges. This article reviews some of the potential obstacles associated with performing research during space flight and offers brief descriptions of current and previous space research platforms and ground-based analogs, including those for human, animal, and cell-based research. This review is intended to highlight the main issues of space flight research analogs and leave the specifics for each physiologic system for the other papers in this section.

  11. Visual-Vestibular Responses During Space Flight

    NASA Technical Reports Server (NTRS)

    Reschke, M. F.; Kozlovskaya, I. B.; Paloski, W. H.

    1999-01-01

    Given the documented disruptions that occur in spatial orientation during space flight and the putative sensory-motor information underlying eye and head spatial coding, the primary purpose of this paper is to examine components of the target acquisition system in subjects free to make head and eye movements in three dimensional space both during and following adaptation to long duration space flight. It is also our intention to suggest a simple model of adaptation that has components in common with cerebellar disorders whose neurobiological substrate has been identified.

  12. Columbia's first flight shakes down space transportation system

    NASA Technical Reports Server (NTRS)

    Garrett, D.; Young, D.; White, T.

    1981-01-01

    The first space shuttle mission is described. Topics include launch preparations, flight profile, trajectory, and landing operations. The spaceflight tracking and data network is discussed and the photography and television schedules are included.

  13. Effects of Space Flight on Rodent Tissues

    NASA Technical Reports Server (NTRS)

    Worgul, Basil V.

    1997-01-01

    As the inevitable expression of mankind's search for knowledge continues into space, the potential acute and long-term effects of space flight on human health must be fully appreciated. Despite its critical role relatively little is known regarding the effects of the space environment on the ocular system. Our proposed studies were aimed at determining whether or not space flight causes discernible disruption of the genomic integrity, cell kinetics, cytoarchitecture and other cytological parameters in the eye. Because of its defined and singular biology our main focus was on the lens and possible changes associated with its primary pathology, cataract. We also hoped to explore the possible effect of space flight on the preferred orientation of dividing cells in the perilimbal region of conjunctiva and cornea.

  14. NASA’s Super Guppy Transports SLS Flight Hardware to Kennedy Space Center

    NASA Image and Video Library

    2018-04-03

    NASA's Super Guppy aircraft prepares to depart the U.S. Army’s Redstone Airfield in Huntsville, Alabama, April 3, with flight hardware for NASA’s Space Launch System – the agency’s new, deep-space rocket that will enable astronauts to begin their journey to explore destinations far into the solar system. The Guppy will deliver the Orion stage adapter to NASA’s Kennedy Space Center in Florida for flight preparations. On Exploration Mission-1, the first integrated flight of the SLS and the Orion spacecraft, the adapter will connect Orion to the rocket and carry 13 CubeSats as secondary payloads. SLS will send Orion beyond the Moon, about 280,000 miles from Earth. This is farther from Earth than any spacecraft built for humans has ever traveled. For more information about SLS, visit nasa.gov/sls.

  15. KSC-08pd2090

    NASA Image and Video Library

    2008-07-21

    CAPE CANAVERAL, Fla. – In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, workers from NASA's Goddard Space Flight Center remove the protective wrapping from the Flight Support System for the Hubble Space Telescope. The Flight Support System, or FSS, is one of four carriers supporting hardware for space shuttle Atlantis' STS-125 mission to service the telescope. The Super Lightweight Interchangeable Carrier, or SLIC, and the Orbital Replacement Unit Carrier, or ORUC, have also arrived at Kennedy. The Multi-Use Lightweight Equipment carrier will be delivered in early August. The carriers will be prepared for the integration of telescope science instruments, both internal and external replacement components, as well as the flight support equipment to be used by the astronauts during the Hubble servicing mission, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller

  16. KSC-08pd2069

    NASA Image and Video Library

    2008-07-18

    CAPE CANAVERAL, Fla. – In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, the Flight Support System for the Hubble Space Telescope is positioned onto a work platform by workers from NASA's Goddard Space Flight Center. The Flight Support System, or FSS, is one of four carriers supporting hardware for space shuttle Atlantis' STS-125 mission to service the telescope. The Super Lightweight Interchangeable Carrier, or SLIC, and the Orbital Replacement Unit Carrier, or ORUC, have also arrived at Kennedy. The Multi-Use Lightweight Equipment carrier will be delivered in late July. The carriers will be prepared for the integration of telescope science instruments, both internal and external replacement components, as well as the flight support equipment to be used by the astronauts during the Hubble servicing mission, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller

  17. KSC-08pd2068

    NASA Image and Video Library

    2008-07-18

    CAPE CANAVERAL, Fla. – In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, the Flight Support System for the Hubble Space Telescope is positioned onto a work platform by workers from NASA's Goddard Space Flight Center. The Flight Support System, or FSS, is one of four carriers supporting hardware for space shuttle Atlantis' STS-125 mission to service the telescope. The Super Lightweight Interchangeable Carrier, or SLIC, and the Orbital Replacement Unit Carrier, or ORUC, have also arrived at Kennedy. The Multi-Use Lightweight Equipment carrier will be delivered in late July. The carriers will be prepared for the integration of telescope science instruments, both internal and external replacement components, as well as the flight support equipment to be used by the astronauts during the Hubble servicing mission, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller

  18. KSC-08pd2065

    NASA Image and Video Library

    2008-07-18

    CAPE CANAVERAL, Fla. – In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, the Flight Support System for the Hubble Space Telescope is lowered onto a work platform by workers from NASA's Goddard Space Flight Center. The Flight Support System, or FSS, is one of four carriers supporting hardware for space shuttle Atlantis' STS-125 mission to service the telescope. The Super Lightweight Interchangeable Carrier, or SLIC, and the Orbital Replacement Unit Carrier, or ORUC, have also arrived at Kennedy. The Multi-Use Lightweight Equipment carrier will be delivered in late July. The carriers will be prepared for the integration of telescope science instruments, both internal and external replacement components, as well as the flight support equipment to be used by the astronauts during the Hubble servicing mission, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller

  19. KSC-08pd2062

    NASA Image and Video Library

    2008-07-18

    CAPE CANAVERAL, Fla. – In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, the Flight Support System for the Hubble Space Telescope is lifted from its transportation canister by workers from NASA's Goddard Space Flight Center. The Flight Support System, or FSS, is one of four carriers supporting hardware for space shuttle Atlantis' STS-125 mission to service the telescope. The Super Lightweight Interchangeable Carrier, or SLIC, and the Orbital Replacement Unit Carrier, or ORUC, have also arrived at Kennedy. The Multi-Use Lightweight Equipment carrier will be delivered in late July. The carriers will be prepared for the integration of telescope science instruments, both internal and external replacement components, as well as the flight support equipment to be used by the astronauts during the Hubble servicing mission, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller

  20. KSC-08pd2060

    NASA Image and Video Library

    2008-07-18

    CAPE CANAVERAL, Fla. – In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, workers from NASA's Goddard Space Flight Center prepare to lift the Flight Support System for the Hubble Space Telescope from its transportation canister. The Flight Support System, or FSS, is one of four carriers supporting hardware for space shuttle Atlantis' STS-125 mission to service the telescope. The Super Lightweight Interchangeable Carrier, or SLIC, and the Orbital Replacement Unit Carrier, or ORUC, have also arrived at Kennedy. The Multi-Use Lightweight Equipment carrier will be delivered in late July. The carriers will be prepared for the integration of telescope science instruments, both internal and external replacement components, as well as the flight support equipment to be used by the astronauts during the Hubble servicing mission, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller

  1. KSC-08pd2061

    NASA Image and Video Library

    2008-07-18

    CAPE CANAVERAL, Fla. – In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, workers from NASA's Goddard Space Flight Center begin to lift the Flight Support System for the Hubble Space Telescope from its transportation canister. The Flight Support System, or FSS, is one of four carriers supporting hardware for space shuttle Atlantis' STS-125 mission to service the telescope. The Super Lightweight Interchangeable Carrier, or SLIC, and the Orbital Replacement Unit Carrier, or ORUC, have also arrived at Kennedy. The Multi-Use Lightweight Equipment carrier will be delivered in late July. The carriers will be prepared for the integration of telescope science instruments, both internal and external replacement components, as well as the flight support equipment to be used by the astronauts during the Hubble servicing mission, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller

  2. KSC-08pd2066

    NASA Image and Video Library

    2008-07-18

    CAPE CANAVERAL, Fla. – In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, the Flight Support System for the Hubble Space Telescope is lowered onto a work platform by workers from NASA's Goddard Space Flight Center. The Flight Support System, or FSS, is one of four carriers supporting hardware for space shuttle Atlantis' STS-125 mission to service the telescope. The Super Lightweight Interchangeable Carrier, or SLIC, and the Orbital Replacement Unit Carrier, or ORUC, have also arrived at Kennedy. The Multi-Use Lightweight Equipment carrier will be delivered in late July. The carriers will be prepared for the integration of telescope science instruments, both internal and external replacement components, as well as the flight support equipment to be used by the astronauts during the Hubble servicing mission, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller

  3. KSC-08pd2067

    NASA Image and Video Library

    2008-07-18

    CAPE CANAVERAL, Fla. – In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, the Flight Support System for the Hubble Space Telescope is positioned onto a work platform by workers from NASA's Goddard Space Flight Center. The Flight Support System, or FSS, is one of four carriers supporting hardware for space shuttle Atlantis' STS-125 mission to service the telescope. The Super Lightweight Interchangeable Carrier, or SLIC, and the Orbital Replacement Unit Carrier, or ORUC, have also arrived at Kennedy. The Multi-Use Lightweight Equipment carrier will be delivered in late July. The carriers will be prepared for the integration of telescope science instruments, both internal and external replacement components, as well as the flight support equipment to be used by the astronauts during the Hubble servicing mission, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller

  4. KSC-08pd2091

    NASA Image and Video Library

    2008-07-21

    CAPE CANAVERAL, Fla. – In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, workers from NASA's Goddard Space Flight Center remove the protective wrapping from the Flight Support System for the Hubble Space Telescope. The Flight Support System, or FSS, is one of four carriers supporting hardware for space shuttle Atlantis' STS-125 mission to service the telescope. The Super Lightweight Interchangeable Carrier, or SLIC, and the Orbital Replacement Unit Carrier, or ORUC, have also arrived at Kennedy. The Multi-Use Lightweight Equipment carrier will be delivered in early August. The carriers will be prepared for the integration of telescope science instruments, both internal and external replacement components, as well as the flight support equipment to be used by the astronauts during the Hubble servicing mission, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller

  5. KSC-08pd2063

    NASA Image and Video Library

    2008-07-18

    CAPE CANAVERAL, Fla. – In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, the Flight Support System for the Hubble Space Telescope is lifted from its transportation canister under the supervision of workers from NASA's Goddard Space Flight Center. The Flight Support System, or FSS, is one of four carriers supporting hardware for space shuttle Atlantis' STS-125 mission to service the telescope. The Super Lightweight Interchangeable Carrier, or SLIC, and the Orbital Replacement Unit Carrier, or ORUC, have also arrived at Kennedy. The Multi-Use Lightweight Equipment carrier will be delivered in late July. The carriers will be prepared for the integration of telescope science instruments, both internal and external replacement components, as well as the flight support equipment to be used by the astronauts during the Hubble servicing mission, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller

  6. KSC-08pd2064

    NASA Image and Video Library

    2008-07-18

    CAPE CANAVERAL, Fla. – In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, the Flight Support System for the Hubble Space Telescope is lifted from its transportation canister under the supervision of workers from NASA's Goddard Space Flight Center. The Flight Support System, or FSS, is one of four carriers supporting hardware for space shuttle Atlantis' STS-125 mission to service the telescope. The Super Lightweight Interchangeable Carrier, or SLIC, and the Orbital Replacement Unit Carrier, or ORUC, have also arrived at Kennedy. The Multi-Use Lightweight Equipment carrier will be delivered in late July. The carriers will be prepared for the integration of telescope science instruments, both internal and external replacement components, as well as the flight support equipment to be used by the astronauts during the Hubble servicing mission, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller

  7. 1998 IEEE Aerospace Conference. Proceedings.

    NASA Astrophysics Data System (ADS)

    The following topics were covered: science frontiers and aerospace; flight systems technologies; spacecraft attitude determination and control; space power systems; smart structures and dynamics; military avionics; electronic packaging; MEMS; hyperspectral remote sensing for GVP; space laser technology; pointing, control, tracking and stabilization technologies; payload support technologies; protection technologies; 21st century space mission management and design; aircraft flight testing; aerospace test and evaluation; small satellites and enabling technologies; systems design optimisation; advanced launch vehicles; GPS applications and technologies; antennas and radar; software and systems engineering; scalable systems; communications; target tracking applications; remote sensing; advanced sensors; and optoelectronics.

  8. 2016 Year in Review Video- NASA’s Marshall Space Flight Center

    NASA Image and Video Library

    2016-12-22

    The work underway today at NASA’s Marshall Space Flight Center is making it possible to send humans beyond Earth’s orbit and into deep space on bold new missions of space exploration. Marshall teams are designing and building NASA’s Space Launch System, the most powerful rocket ever built and the only launch vehicle capable of launching human explorers to Mars. Using the International Space Station’s orbiting lab, Marshall flight controllers provided round-the-clock oversight of science experiments, supporting the first-ever DNA sequencing in space, pioneering 3-D printing capabilities and advancing human health research. Several successful New Frontiers deep-space robotic missions including OSIRIS-REx, New Horizons and Juno, made new discoveries and refined theories of the solar system. And Marshall collaborations with outside partners are yielding innovative technologies and solving technical challenges that are making the Journey to Mars a reality.

  9. Space Physiology and Operational Space Medicine

    NASA Technical Reports Server (NTRS)

    Scheuring, Richard A.

    2009-01-01

    The objectives of this slide presentation are to teach a level of familiarity with: the effects of short and long duration space flight on the human body, the major medical concerns regarding future long duration missions, the environmental issues that have potential medical impact on the crew, the role and capabilities of the Space Medicine Flight Surgeon and the environmental impacts experienced by the Apollo crews. The main physiological effects of space flight on the human body reviewed in this presentation are: space motion sickness (SMS), neurovestibular, cardiovascular, musculoskeletal, immune/hematopoietic system and behavioral/psycho-social. Some countermeasures are discussed to these effects.

  10. The calibration and flight test performance of the space shuttle orbiter air data system

    NASA Technical Reports Server (NTRS)

    Dean, A. S.; Mena, A. L.

    1983-01-01

    The Space Shuttle air data system (ADS) is used by the guidance, navigation and control system (GN&C) to guide the vehicle to a safe landing. In addition, postflight aerodynamic analysis requires a precise knowledge of flight conditions. Since the orbiter is essentially an unpowered vehicle, the conventional methods of obtaining the ADS calibration were not available; therefore, the calibration was derived using a unique and extensive wind tunnel test program. This test program included subsonic tests with a 0.36-scale orbiter model, transonic and supersonic tests with a smaller 0.2-scale model, and numerous ADS probe-alone tests. The wind tunnel calibration was further refined with subsonic results from the approach and landing test (ALT) program, thus producing the ADS calibration for the orbital flight test (OFT) program. The calibration of the Space Shuttle ADS and its performance during flight are discussed in this paper. A brief description of the system is followed by a discussion of the calibration methodology, and then by a review of the wind tunnel and flight test programs. Finally, the flight results are presented, including an evaluation of the system performance for on-board systems use and a description of the calibration refinements developed to provide the best possible air data for postflight analysis work.

  11. Life sciences and space research XXI(1); Proceedings of the Topical Meeting, Graz, Austria, June 25-July 7, 1984

    NASA Technical Reports Server (NTRS)

    Klein, H. P. (Editor); Horneck, G. (Editor)

    1984-01-01

    Space research in biology is presented with emphasis on flight experiment results and radiation risks. Topics discussed include microorganisms and biomolecules in the space-environment experiment ES 029 on Spacelab-1, the preliminary characterization of persisting circadian rhythms during space flight; plant growth, development, and embryogenesis during the Salyut-7 flight, and the influence of space-flight factors on viability and mutability of plants. Consideration is also given to radiation-risk estimation and its application to human beings in space, the radiation situation in space and its modification by the geomagnetic field and shielding, the quantitative interpretation of cellular heavy-ion action, and the effects of heavy-ion radiation on the brain vascular system and embryonic development.

  12. [Habitability and life support systems].

    PubMed

    Nefedov, Iu G; Adamovich, B A

    1988-01-01

    This paper discusses various aspects of space vehicle habitability and life support systems. It describes variations in the chemical and microbial composition of an enclosed atmosphere during prolonged real and simulated flights. The paper gives a detailed description of life support systems and environmental investigations onboard the Mir station. It also outlines the development of space vehicle habitability and life support systems as related to future flights.

  13. KSC-08pd3666

    NASA Image and Video Library

    2008-11-13

    CAPE CANAVERAL, Fla. – In In the News Center at NASA's Kennedy Space Center in Florida, Bob Bagdigian (right) talks to the media about the Water Recovery System being delivered to the International Space Station on space shuttle Endeavour's STS-126 mission. Bagdigian is a project manager with NASA's Regenerative Environmental Control and Life Support System at Marshall Space Flight Center in Huntsville, Ala. Behind Bagdigian is a mockup of the two racks that will be used. The two units of the Water Recovery System are designed to provide drinking-quality water through the reclamation of wastewater, including urine and hygiene wastes. The water that’s produced will be used to support the crew and work aboard the station. STS-126 is the 124th space shuttle flight and the 27th flight to the International Space Station. The mission will feature four spacewalks and work that will prepare the space station to house six crew members for long- duration missions. Liftoff is scheduled for 7:55 p.m. EST Nov. 14. Photo credit: NASA/Dimitri Gerondidakis

  14. KSC-08pd3663

    NASA Image and Video Library

    2008-11-13

    CAPE CANAVERAL, Fla. – In the News Center at NASA's Kennedy Space Center in Florida, Bob Bagdigian talks to the media about the Water Recovery System being delivered to the International Space Station on space shuttle Endeavour's STS-126 mission. Bagdigian is a project manager with NASA's Regenerative Environmental Control and Life Support System at Marshall Space Flight Center in Huntsville, Ala. Behind Bagdigian is a mockup of the two racks that will be used. The two units of the Water Recovery System are designed to provide drinking-quality water through the reclamation of wastewater, including urine and hygiene wastes. The water that’s produced will be used to support the crew and work aboard the station. STS-126 is the 124th space shuttle flight and the 27th flight to the International Space Station. The mission will feature four spacewalks and work that will prepare the space station to house six crew members for long- duration missions. Liftoff is scheduled for 7:55 p.m. EST Nov. 14. Photo credit: NASA/Dimitri Gerondidakis

  15. KSC-08pd3664

    NASA Image and Video Library

    2008-11-13

    CAPE CANAVERAL, Fla. – In the News Center at NASA's Kennedy Space Center in Florida, Bob Bagdigian talks to the media about the Water Recovery System being delivered to the International Space Station on space shuttle Endeavour's STS-126 mission. Bagdigian is a project manager with NASA's Regenerative Environmental Control and Life Support System at Marshall Space Flight Center in Huntsville, Ala. Behind Bagdigian is a mockup of the two racks that will be used. The two units of the Water Recovery System are designed to provide drinking-quality water through the reclamation of wastewater, including urine and hygiene wastes. The water that’s produced will be used to support the crew and work aboard the station. STS-126 is the 124th space shuttle flight and the 27th flight to the International Space Station. The mission will feature four spacewalks and work that will prepare the space station to house six crew members for long- duration missions. Liftoff is scheduled for 7:55 p.m. EST Nov. 14. Photo credit: NASA/Dimitri Gerondidakis

  16. Payload Processing for Mice Drawer System

    NASA Technical Reports Server (NTRS)

    Brown, Judy

    2007-01-01

    Experimental payloads flown to the International Space Station provide us with valuable research conducted in a microgravity environment not attainable on earth. The Mice Drawer System is an experiment designed by Thales Alenia Space Italia to study the effects of microgravity on mice. It is designed to fly to orbit on the Space Shuttle Utilization Logistics Flight 2 in October 2008, remain onboard the International Space Station for approximately 100 days and then return to earth on a following Shuttle flight. The experiment apparatus will be housed inside a Double Payload Carrier. An engineering model of the Double Payload Carrier was sent to Kennedy Space Center for a fit check inside both Shuttles, and the rack that it will be installed in aboard the International Space Station. The Double Payload Carrier showed a good fit quality inside each vehicle, and Thales Alenia Space Italia will now construct the actual flight model and continue to prepare the Mice Drawer System experiment for launch.

  17. KSC-05PD-0364

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Preparing for Return to Flight, workers at KSC walk the grounds around Launch Pad 39B looking for Foreign Object Debris, or FOD. The pad was recently refurbished and any possible debris left behind must be removed from the area prior to launch. Foreign objects that are alien to flight systems may cause material damage or may make the system or equipment inoperable, unsafe or less efficient. The Return to Flight mission STS-114 aboard Space Shuttle Discovery will carry supplies and equipment to the International Space Station. Discovery is scheduled for launch in a window from May 15 to June 3.

  18. KSC-05PD-0366

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Preparing for Return to Flight, workers at KSC walk the grounds around Launch Pad 39B looking for Foreign Object Debris, or FOD. The pad was recently refurbished and any possible debris left behind must be removed from the area prior to launch. Foreign objects that are alien to flight systems may cause material damage or may make the system or equipment inoperable, unsafe or less efficient. The Return to Flight mission STS-114 aboard Space Shuttle Discovery will carry supplies and equipment to the International Space Station. Discovery is scheduled for launch in a window from May 15 to June 3.

  19. KSC-05PD-0363

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Preparing for Return to Flight, workers at KSC walk the grounds around Launch Pad 39B looking for Foreign Object Debris, or FOD. The pad was recently refurbished and any possible debris left behind must be removed from the area prior to launch. Foreign objects that are alien to flight systems may cause material damage or may make the system or equipment inoperable, unsafe or less efficient. The Return to Flight mission STS-114 aboard Space Shuttle Discovery will carry supplies and equipment to the International Space Station. Discovery is scheduled for launch in a window from May 15 to June 3.

  20. Long-duration space flight and bed rest effects on testosterone and other steroids.

    PubMed

    Smith, Scott M; Heer, Martina; Wang, Zuwei; Huntoon, Carolyn L; Zwart, Sara R

    2012-01-01

    Limited data suggest that testosterone is decreased during space flight, which could contribute to bone and muscle loss. The main objective was to assess testosterone and hormone status in long- and short-duration space flight and bed rest environments and to determine relationships with other physiological systems, including bone and muscle. Blood and urine samples were collected before, during, and after long-duration space flight. Samples were also collected before and after 12- to 14-d missions and from participants in 30- to 90-d bed rest studies. Space flight studies were conducted on the International Space Station and before and after Space Shuttle missions. Bed rest studies were conducted in a clinical research center setting. Data from Skylab missions are also presented. All of the participants were male, and they included 15 long-duration and nine short-duration mission crew members and 30 bed rest subjects. Serum total, free, and bioavailable testosterone were measured along with serum and urinary cortisol, serum dehydroepiandrosterone, dehydroepiandrosterone sulfate, and SHBG. Total, free, and bioavailable testosterone was not changed during long-duration space flight but were decreased (P < 0.01) on landing day after these flights and after short-duration space flight. There were no changes in other hormones measured. Testosterone concentrations dropped before and soon after bed rest, but bed rest itself had no effect on testosterone. There was no evidence for decrements in testosterone during long-duration space flight or bed rest.

  1. Aeronautics and Space Report of the President: Fiscal Year 1996 Activities

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Topics considered include: (1) Space launch activities: space shuttle missions; expendable launch vehicles. (2) Space science: astronomy and space physics; solar system exploration. (3) Space flight and technology: life and microgravity sciences; space shuttle technology; reuseable launch vehicles; international space station; energy; safety and mission assurance; commercial development and regulation of space; surveillance. (4) Space communications: communications satellites; space network; ground networks; mission control and data systems. (5) Aeronautical activities: technology developments; air traffic control and navigation; weather-related aeronautical activities; flight safety and security; aviation medicine and human factors. (6) Studies of the planet earth: terrestrial studies and applications: atmospheric studies: oceanographic studies; international aeronautical and space activities; and appendices.

  2. The National Aeronautics and Space Administration (NASA)/Goddard Space Flight Center (GSFC) sounding-rocket program

    NASA Technical Reports Server (NTRS)

    Guidotti, J. G.

    1976-01-01

    An overall introduction to the NASA sounding rocket program as managed by the Goddard Space Flight Center is presented. The various sounding rockets, auxiliary systems (telemetry, guidance, etc.), launch sites, and services which NASA can provide are briefly described.

  3. Effects of space flight and IGF-1 on immune function

    NASA Astrophysics Data System (ADS)

    1999-01-01

    We tested the hypothesis that insulin-like growth factor-1 (IGF-1) would ameliorate space flight-induced effects on the immune system. Twelve male, Sprague-Dawley rats, surgically implanted with mini osmotic pumps, were subjected to space flight for 10 days on STS-77. Six rats received 10 mg/kg/day of IGF-1 and 6 rats received saline. Flight animals had a lymphocytopenia and granulocytosis which were reversed by IGF-1. Flight animals had significantly higher corticosterone levels than ground controls but IGF-1 did not impact this stress hormone. Therefore, the reversed granulocytosis did not correlate with serum corticosterone. Space flight and IGF-1 also combined to induce a monocytopenia that was not evident in ground control animals treated with IGF-1 or in animals subjected to space flight but given physiological saline. There was a significant increase in spleen weights in vivarium animals treated with IGF-1, however, this change did not occur in flight animals. We observed reduced agonist-induced lymph node cell proliferation by cells from flight animals compared to ground controls. The reduced proliferation was not augmented by IGF-1 treatment. There was enhanced secretion of TNF, IL-6 and NO by flight-animal peritoneal macrophages compared to vivarium controls, however, O2- secretion was not affected. These data suggest that IGF-1 can ameliorate some of the effects of space flight but that space flight can also impact the normal response to IGF-1.

  4. Astrophysics space systems critical technology needs

    NASA Technical Reports Server (NTRS)

    Gartrell, C. F.

    1982-01-01

    This paper addresses an independent assessment of space system technology needs for future astrophysics flight programs contained within the NASA Space Systems Technology Model. The critical examination of the system needs for the approximately 30 flight programs in the model are compared to independent technology forecasts and possible technology deficits are discussed. These deficits impact the developments needed for spacecraft propulsion, power, materials, structures, navigation, guidance and control, sensors, communications and data processing. There are also associated impacts upon in-orbit assembly technology and space transportation systems. A number of under-utilized technologies are highlighted which could be exploited to reduce cost and enhance scientific return.

  5. Essentials for Team Based Rehearsals and the Differences Between Earth Orbiting and Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Gomez-Rosa, Carlos; Cifuentes, Juan; Wasiak, Francis; Alfonzo, Agustin

    2015-01-01

    The mission readiness environment is where spacecraft and ground systems converge to form the entire as built flight system for the final phase of operationally-themed testing. For most space missions, this phase starts between nine to twelve months prior to the planned launch. In the mission readiness environment, the goal is to perform sufficient testing to exercise the flight teams and systems through all mission phases in order to demonstrate that all elements are ready to support. As part of the maturation process, a mission rehearsal program is introduced to focus on team processes within the final flight system, in a more realistic operational environment. The overall goal for a mission rehearsal program is to: 1) ensure all flight system elements are able to meet mission objectives as a cohesive team; 2) reduce the risk in space based operations due to deficiencies in people, processes, procedures, or systems; and 3) instill confidence in the teams that will execute these first time flight activities. A good rehearsal program ensures critical events are exercised, discovers team or flight system nuances whose impact were previously unknown, and provides a real-time environment in which to interact with the various teams and systems. For flight team members, the rehearsal program provides experience and training in the event of planned (or unplanned) flight contingencies. To preserve the essence for team based rehearsals, this paper will explore the important elements necessary for a successful rehearsal program, document differences driven by Earth Orbiting (Aqua, Aura, Suomi-National Polar-orbiting Partnership (NPP)) and Deep Space missions (New Horizons, Mars Atmosphere and Volatile EvolutioN (MAVEN)) and discuss common challenges to both mission types. In addition, large scale program considerations and enhancements or additional steps for developing a rehearsal program will also be considered. For NASA missions, the mission rehearsal phase is a key milestone for predicting and ensuring on-orbit success.

  6. Using computer graphics to enhance astronaut and systems safety

    NASA Technical Reports Server (NTRS)

    Brown, J. W.

    1985-01-01

    Computer graphics is being employed at the NASA Johnson Space Center as a tool to perform rapid, efficient and economical analyses for man-machine integration, flight operations development and systems engineering. The Operator Station Design System (OSDS), a computer-based facility featuring a highly flexible and versatile interactive software package, PLAID, is described. This unique evaluation tool, with its expanding data base of Space Shuttle elements, various payloads, experiments, crew equipment and man models, supports a multitude of technical evaluations, including spacecraft and workstation layout, definition of astronaut visual access, flight techniques development, cargo integration and crew training. As OSDS is being applied to the Space Shuttle, Orbiter payloads (including the European Space Agency's Spacelab) and future space vehicles and stations, astronaut and systems safety are being enhanced. Typical OSDS examples are presented. By performing physical and operational evaluations during early conceptual phases. supporting systems verification for flight readiness, and applying its capabilities to real-time mission support, the OSDS provides the wherewithal to satisfy a growing need of the current and future space programs for efficient, economical analyses.

  7. Modeling Hubble Space Telescope flight data by Q-Markov cover identification

    NASA Technical Reports Server (NTRS)

    Liu, K.; Skelton, R. E.; Sharkey, J. P.

    1992-01-01

    A state space model for the Hubble Space Telescope under the influence of unknown disturbances in orbit is presented. This model was obtained from flight data by applying the Q-Markov covariance equivalent realization identification algorithm. This state space model guarantees the match of the first Q-Markov parameters and covariance parameters of the Hubble system. The flight data were partitioned into high- and low-frequency components for more efficient Q-Markov cover modeling, to reduce some computational difficulties of the Q-Markov cover algorithm. This identification revealed more than 20 lightly damped modes within the bandwidth of the attitude control system. Comparisons with the analytical (TREETOPS) model are also included.

  8. Orion Flight Test Preview Briefing

    NASA Image and Video Library

    2014-11-06

    In the Kennedy Space Center’s Press Site auditorium, members of the news media are briefed on the upcoming Orion flight test by Bill Hill, NASA deputy associate administrator for Exploration Systems Development. Mark Geyer, NASA Orion Program manager, is on the right. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.

  9. Semantic definitions of space flight control center languages using the hierarchical graph technique

    NASA Technical Reports Server (NTRS)

    Zaghloul, M. E.; Truszkowski, W.

    1981-01-01

    In this paper a method is described by which the semantic definitions of the Goddard Space Flight Control Center Command Languages can be specified. The semantic modeling facility used is an extension of the hierarchical graph technique, which has a major benefit of supporting a variety of data structures and a variety of control structures. It is particularly suited for the semantic descriptions of such types of languages where the detailed separation between the underlying operating system and the command language system is system dependent. These definitions were used in the definition of the Systems Test and Operation Language (STOL) of the Goddard Space Flight Center which is a command language that provides means for the user to communicate with payloads, application programs, and other ground system elements.

  10. GPM High Gain Antenna System

    NASA Image and Video Library

    2013-11-14

    The GPM High Gain Antenna System (HGAS) in integration and testing at Goddard Space Flight Center. Credit: Craig E. Huber, Chief Engineer SGT Inc, NASA Goddard Space Flight Center The Global Precipitation Measurement (GPM) mission is an international partnership co-led by NASA and the Japan Aerospace Exploration Agency (JAXA) that will provide next-generation global observations of precipitation from space. GPM will study global rain, snow and ice to better understand our climate, weather, and hydrometeorological processes. As of Novermber 2013 the GPM Core Observatory is in the final stages of testing at NASA Goddard Space Flight Center. The satellite will be flown to Japan in the fall of 2013 and launched into orbit on an HII-A rocket in early 2014. For more on the GPM mission, visit gpm.gsfc.nasa.gov/. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. Orion Stage Adapter move to Redstone Airfield

    NASA Image and Video Library

    2018-04-03

    NASA's Super Guppy aircraft arrives to the U.S. Army’s Redstone Airfield in Huntsville, Alabama, April 2, to pick up flight hardware for NASA’s Space Launch System – its new, deep-space rocket that will enable astronauts to begin their journey to explore destinations far into the solar system. The Guppy will depart on Tuesday, April 3 to deliver the Orion stage adapter to NASA’s Kennedy Space Center in Florida for flight preparations. On Exploration Mission-1, the first integrated flight of the SLS and the Orion spacecraft, the adapter will connect Orion to the rocket and carry 13 CubeSats as secondary payloads. Rumaasha Maasha stands in front of the Orion stage adapter in the cargo hold of NASA's Super Guppy aircraft. The Orion stage adapter, the top of the rocket that connects the Space Lauch System to Orion, will carry 13 CubeSats as secondary payloads on Exploration Mission-1, the first integrated flight of SLS and the Orion spacecraft. Guppy transported the adapter to Kennedy Space Center April 3.

  12. Long-Duration Space Flight Provokes Pathologic Q-Tc Interval Prolongation

    NASA Technical Reports Server (NTRS)

    D'Aunno, DOminick S.; Dougherty, Anne H.; DeBlock, Heidi F.; Meck, Janice V.

    2002-01-01

    Space flight has a profound influence on the cardiovascular and autonomic nervous systems. Alterations in baroreflex function, plasma catecholamine concentrations, and arterial pressure regulation have been observed. Changes in autonomic regulation of cardiac function may lead to serious rhythm disturbances. In fact, ventricular tachycardia has been reported during long-duration space flight. The study aim was to determine the effects of space flight on cardiac conduction. Methods and Results: Electrocardiograms (ECGs) and serum electrolytes were obtained before and after short-duration (SD) (4-16 days) and long-duration (LD) (4-6 months) missions. Holter recordings were obtained from 3 different subjects before, during and after a 4-month mission. P-R, R-R, and Q-T intervals were measured manually in a random, blinded fashion and Bazzet's formula used to correct the Q-T interval (Q-Tc). Space flight had no clinically significant effect on electrolyte concentrations. P-R and RR intervals were decreased after SD flight (p<0.05) and recovered 3 days after landing. In the same subjects, P-R and Q-Tc intervals were prolonged after LD flight (p<0.01). Clinically significant Q-Tc prolongation (>0.44 sec) occurred during the first month of flight and persisted until 3 days after landing (p<0.01). Conclusions - Space flight alters cardiac conduction with more ominous changes seen with LD missions. Alterations in autonomic tone may explain ECG changes associated with space flight. Primary cardiac changes may also contribute to the conduction changes with LD flight. Q-Tc prolongation may predispose astronauts to ventricular arrhythmias during and after long-duration space flight.

  13. Formulation of detailed consumables management models for the development (preoperational) period of advanced space transportation system: Executive summary

    NASA Technical Reports Server (NTRS)

    Torian, J. G.

    1976-01-01

    Formulation of models required for the mission planning and scheduling function and establishment of the relation of those models to prelaunch, onboard, ground support, and postmission functions for the development phase of space transportation systems (STS) was conducted. The preoperational space shuttle is used as the design baseline for the subject model formulations. Analytical models were developed which consist of a mission planning processor with appropriate consumables data base and a method of recognizing potential constraint violations in both the planning and flight operations functions. A flight data file for storage/retrieval of information over an extended period which interfaces with a flight operations processor for monitoring of the actual flights was examined.

  14. Immune resistance of man in space flights

    NASA Astrophysics Data System (ADS)

    Irina, V.; Konstantinova, M. D.

    The immune system of 72 cosmonauts was studied after their flights on board Salyut 6, 7 and Mir orbital stations. PHA lymphocyte reactivity, T helper activity and NK capacity to recognize and kill the target were decreased on 1-7 days after prolonged (3-11 months) space flights. Certain alterations were found in the ultrastructure of the NK secretory and locomotor apparatuses. Decrement of IL 2 production was shown using the biological test. However immunoenzymatic analysis did not reveal a decrease in IL 2 synthesis. Production of α-interferon remained unchanged while that of γ-interferon either rose or was diminished. Several cosmonanauts displayed a trend towards increased OAF production. The observed decrease in immune system functioning may increase the risk of various diseases during prolonged space flights.

  15. An Overview of an Experimental Demonstration Aerotow Program

    NASA Technical Reports Server (NTRS)

    Murray, James E.; Bowers, Albion H.; Lokos, William A.; Peters, Todd L.; Gera, Joseph

    1998-01-01

    An overview of an experimental demonstration of aerotowing a delta-wing airplane with low-aspect ratio and relatively high wing loading is presented. Aerotowing of future space launch configurations is a new concept, and the objective of the work described herein is to demonstrate the aerotow operation using an airplane configuration similar to conceptual space launch vehicles. Background information on the use of aerotow for a space launch vehicle is presented, and the aerotow system used in this demonstration is described. The ground tests, analytical studies, and flight planning used to predict system behavior and to enhance flight safety are detailed. The instrumentation suite and flight test maneuvers flown are discussed, preliminary performance is assessed, and flight test results are compared with the preflight predictions.

  16. Reproduction in the space environment: Part II. Concerns for human reproduction

    NASA Technical Reports Server (NTRS)

    Jennings, R. T.; Santy, P. A.

    1990-01-01

    Long-duration space flight and eventual colonization of our solar system will require successful control of reproductive function and a thorough understanding of factors unique to space flight and their impact on gynecologic and obstetric parameters. Part II of this paper examines the specific environmental factors associated with space flight and the implications for human reproduction. Space environmental hazards discussed include radiation, alteration in atmospheric pressure and breathing gas partial pressures, prolonged toxicological exposure, and microgravity. The effects of countermeasures necessary to reduce cardiovascular deconditioning, calcium loss, muscle wasting, and neurovestibular problems are also considered. In addition, the impact of microgravity on male fertility and gamete quality is explored. Due to current constraints, human pregnancy is now contraindicated for space flight. However, a program to explore effective countermeasures to current constraints and develop the required health care delivery capability for extended-duration space flight is suggested. A program of Earth- and space-based research to provide further answers to reproductive questions is suggested.

  17. Space Communication and Navigation Testbed Communications Technology for Exploration

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard

    2013-01-01

    NASA developed and launched an experimental flight payload (referred to as the Space Communication and Navigation Test Bed) to investigate software defined radio, networking, and navigation technologies, operationally in the space environment. The payload consists of three software defined radios each compliant to NASAs Space Telecommunications Radio System Architecture, a common software interface description standard for software defined radios. The software defined radios are new technology developed by NASA and industry partners. The payload is externally mounted to the International Space Station truss and available to NASA, industry, and university partners to conduct experiments representative of future mission capability. Experiment operations include in-flight reconfiguration of the SDR waveform functions and payload networking software. The flight system communicates with NASAs orbiting satellite relay network, the Tracking, Data Relay Satellite System at both S-band and Ka-band and to any Earth-based compatible S-band ground station.

  18. Space Launch System Spacecraft and Payload Elements: Progress Toward Crewed Launch and Beyond

    NASA Technical Reports Server (NTRS)

    Schorr, Andrew A.; Smith, David Alan; Holcomb, Shawn; Hitt, David

    2017-01-01

    While significant and substantial progress continues to be accomplished toward readying the Space Launch System (SLS) rocket for its first test flight, work is already underway on preparations for the second flight - using an upgraded version of the vehicle - and beyond. Designed to support human missions into deep space, SLS is the most powerful human-rated launch vehicle the United States has ever undertaken, and is one of three programs being managed by the National Aeronautics and Space Administration's (NASA's) Exploration Systems Development division. The Orion spacecraft program is developing a new crew vehicle that will support human missions beyond low Earth orbit (LEO), and the Ground Systems Development and Operations (GSDO) program is transforming Kennedy Space Center (KSC) into a next-generation spaceport capable of supporting not only SLS but also multiple commercial users. Together, these systems will support human exploration missions into the proving ground of cislunar space and ultimately to Mars. For its first flight, SLS will deliver a near-term heavy-lift capability for the nation with its 70-metric-ton (t) Block 1 configuration. Each element of the vehicle now has flight hardware in production in support of the initial flight of the SLS, which will propel Orion around the moon and back. Encompassing hardware qualification, structural testing to validate hardware compliance and analytical modeling, progress is on track to meet the initial targeted launch date. In Utah and Mississippi, booster and engine testing are verifying upgrades made to proven shuttle hardware. At Michoud Assembly Facility (MAF) in Louisiana, the world's largest spacecraft welding tool is producing tanks for the SLS core stage. Providing the Orion crew capsule/launch vehicle interface and in-space propulsion via a cryogenic upper stage, the Spacecraft/Payload Integration and Evolution (SPIE) element serves a key role in achieving SLS goals and objectives. The SPIE element marked a major milestone in 2014 with the first flight of original SLS hardware, the Orion Stage Adapter (OSA) which was used on Exploration Flight Test-1 with a design that will be used again on the first flight of SLS. The element has overseen production of the Interim Cryogenic Propulsion Stage (ICPS), an in-space stage derived from the Delta Cryogenic Second Stage, which was manufactured at United Launch Alliance (ULA) in Decatur, Alabama, prior to being shipped to Florida for flight preparations. Manufacture of the OSA and the Launch Vehicle Stage Adapter (LVSA) took place at the Friction Stir Facility located at Marshall Space Flight Center (MSFC) in Huntsville, Alabama. Marshall is also home to the Integrated Structural Test of the ICPS, LVSA, and OSA, subjecting the stacked components to simulated stresses of launch. The SPIE Element is also overseeing integration of 13 "CubeSat" secondary payloads that will fly on the first flight of SLS, providing access to deep space regions in a way currently not available to the science community. At the same time as this preparation work is taking place toward the first launch of SLS, however, the Space Launch System Program is actively working toward its second launch. For its second flight, SLS will be upgraded to the more-capable Block 1B configuration. While the Block 1 configuration is capable of delivering more than 70 t to LEO, the Block 1B vehicle will increase that capability to 105 t. For that flight, the new configuration introduces two major new elements to the vehicle - an Exploration Upper Stage (EUS) that will be used for both ascent and in-space propulsion, and a Universal Stage Adapter (USA) that serves as a "payload bay" for the rocket, allowing the launch of large exploration systems along with the Orion spacecraft. Already, flight hardware is being prepared for the Block 1B vehicle. Welding is taking place on the second rocket's core stage. Flight hardware production has begun on booster components. An RS-25 engine slated for that flight has been tested. Development work is taking place on the EUS, with contracts in place for both the stage and the RL10 engines which will power it. (The EUS will use four RL10 engines, an increase from one on the ICPS.) For the crew configuration of the Block 1B vehicle, the SLS SPIE element is managing the USA and accompanying Payload Adapter, which will accommodate both large payloads co-manifested with Orion and small-satellite secondary payloads. This co-manifested payload capacity will be instrumental for missions into the proving ground around the moon, where NASA will test new systems and demonstrate new capabilities needed for human exploration farther into deep space.

  19. NASA's 3D Flight Computer for Space Applications

    NASA Technical Reports Server (NTRS)

    Alkalai, Leon

    2000-01-01

    The New Millennium Program (NMP) Integrated Product Development Team (IPDT) for Microelectronics Systems was planning to validate a newly developed 3D Flight Computer system on its first deep-space flight, DS1, launched in October 1998. This computer, developed in the 1995-97 time frame, contains many new computer technologies previously never used in deep-space systems. They include: advanced 3D packaging architecture for future low-mass and low-volume avionics systems; high-density 3D packaged chip-stacks for both volatile and non-volatile mass memory: 400 Mbytes of local DRAM memory, and 128 Mbytes of Flash memory; high-bandwidth Peripheral Component Interface (Per) local-bus with a bridge to VME; high-bandwidth (20 Mbps) fiber-optic serial bus; and other attributes, such as standard support for Design for Testability (DFT). Even though this computer system did not complete on time for delivery to the DS1 project, it was an important development along a technology roadmap towards highly integrated and highly miniaturized avionics systems for deep-space applications. This continued technology development is now being performed by NASA's Deep Space System Development Program (also known as X2000) and within JPL's Center for Integrated Space Microsystems (CISM).

  20. KENNEDY SPACE CENTER, FLA. - Armando Oliu, Final Inspection Team lead for the Shuttle program, speaks to reporters about the aid the Image Analysis Lab is giving the FBI in a kidnapping case. Oliu oversees the image lab that is using an advanced SGI® TP9500 data management system to review the tape of the kidnapping in progress in Sarasota, Fla. KSC installed the new $3.2 million system in preparation for Return to Flight of the Space Shuttle fleet. The lab is studying the Sarasota kidnapping video to provide any new information possible to law enforcement officers. KSC is joining NASA’s Marshall Space Flight Center in Alabama in reviewing the tape.

    NASA Image and Video Library

    2004-02-04

    KENNEDY SPACE CENTER, FLA. - Armando Oliu, Final Inspection Team lead for the Shuttle program, speaks to reporters about the aid the Image Analysis Lab is giving the FBI in a kidnapping case. Oliu oversees the image lab that is using an advanced SGI® TP9500 data management system to review the tape of the kidnapping in progress in Sarasota, Fla. KSC installed the new $3.2 million system in preparation for Return to Flight of the Space Shuttle fleet. The lab is studying the Sarasota kidnapping video to provide any new information possible to law enforcement officers. KSC is joining NASA’s Marshall Space Flight Center in Alabama in reviewing the tape.

  1. KENNEDY SPACE CENTER, FLA. - Reporters are eager to hear from Armando Oliu about the aid the Image Analysis Lab is giving the FBI in a kidnapping case. Oliu, Final Inspection Team lead for the Shuttle program, oversees the lab that is using an advanced SGI® TP9500 data management system to review the tape of the kidnapping in progress in Sarasota, Fla. KSC installed the new $3.2 million system in preparation for Return to Flight of the Space Shuttle fleet. The lab is studying the Sarasota kidnapping video to provide any new information possible to law enforcement officers. KSC is joining NASA’s Marshall Space Flight Center in Alabama in reviewing the tape.

    NASA Image and Video Library

    2004-02-04

    KENNEDY SPACE CENTER, FLA. - Reporters are eager to hear from Armando Oliu about the aid the Image Analysis Lab is giving the FBI in a kidnapping case. Oliu, Final Inspection Team lead for the Shuttle program, oversees the lab that is using an advanced SGI® TP9500 data management system to review the tape of the kidnapping in progress in Sarasota, Fla. KSC installed the new $3.2 million system in preparation for Return to Flight of the Space Shuttle fleet. The lab is studying the Sarasota kidnapping video to provide any new information possible to law enforcement officers. KSC is joining NASA’s Marshall Space Flight Center in Alabama in reviewing the tape.

  2. Biomedical results of the Skylab Program.

    PubMed

    Michel, E L; Johnston, R S; Dietlein, L F

    1976-01-01

    Skylab, the fourth in a logical sequence of USA manned space flight projects following Mercury, Gemini and Apollo, presented life scientists with their first opportunity for an in-depth study of man's response to the space environment. Extensive medical investigations were undertaken to increase our understanding of man's adaptation to the space environment and his readaptation to gravity upon return to earth. The flight durations of the three Skylab missions were progressively increased from 28 days to 59 days and, finally, 84 days. The results of these investigations of the various body systems clearly demonstrated that man can adapt to zero gravity and perform useful work during long-duration space flight. However, definite changes (some unexpected) in the vestibular, cardiovascular, musculo-skeletal, renal and electrolyte areas were documented. The most significant were: the occurrence of space motion sickness early in the missions; diminished orthostatic tolerance, both in-flight and post-flight; moderate losses of calcium, phosphorus and nitrogen; and decreased tolerance for exercise post-flight. The mechanisms responsible for these physiological responses must be understood and, if necessary, effective countermeasures developed before man can endure unlimited exposure to space flight.

  3. Systems definition study for shuttle demonstration flights of large space structures. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The development of large space structure technology is discussed, with emphasis on space fabricated structures which are automatically manufactured in space from sheet-strip materials and assembled on-orbit. Definition of a flight demonstration involving an Automated Beam Builder and the building and assembling of large structures is presented.

  4. Identification System

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Under a NASA Space Act Agreement with Marshall Space Flight Center, Symbology Research Center commercialized a new method of identifying products with invisible and virtually indestructible markings. This digital data matrix technology was developed at Marshall Space Flight Center to identify the millions of parts that comprise space shuttles. The laser-etched markings are seen as the next generation of product "bar codes."

  5. KENNEDY SPACE CENTER, FLA. - Doors are open on the air-conditioned transportation van that carried NASA’s MESSENGER spacecraft from NASA’s Goddard Space Flight Center in Greenbelt, Md., to the Astrotech Space Operations processing facilities near KSC. After offloading, MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be taken into a high bay clean room and employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

    NASA Image and Video Library

    2004-03-10

    KENNEDY SPACE CENTER, FLA. - Doors are open on the air-conditioned transportation van that carried NASA’s MESSENGER spacecraft from NASA’s Goddard Space Flight Center in Greenbelt, Md., to the Astrotech Space Operations processing facilities near KSC. After offloading, MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be taken into a high bay clean room and employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

  6. Inhabiting the solar system

    NASA Astrophysics Data System (ADS)

    Sherwood, Brent

    2011-03-01

    The new field of space architecture is introduced. Defined as the "theory and practice of designing and building inhabited environments in outer space," the field synthesizes human space flight systems engineering subjects with the long tradition of making environments that support human living, work, and aspiration. The scope of the field is outlined, and its three principal domains differentiated. The current state of the art is described in terms of executed projects. Foreseeable options for 21st century developments in human space flight provide a framework to tease out potential space architecture opportunities for the next century.

  7. National Space Transportation Systems Program mission report

    NASA Technical Reports Server (NTRS)

    Collins, M. A., Jr.; Aldrich, A. D.; Lunney, G. S.

    1984-01-01

    The 515-41B National Space Transportation Systems Program Mission Report contains a summary of the major activities and accomplishments of the sixth operational Shuttle flight and fourth flight of the OV-099 vehicle, Challenger. Since this flight was the first to land at Kennedy Space Center, the vehicle was towed directly to the OPF (Orbiter Processing Facility) where preparations for flight STS-41C, scheduled for early April 1984, began immediately. The significant problems that occurred during STS-41B are summarized and a problem tracking list that is a complete list of all problems that occurred during the flight is given. None of the problems will affect the STS 41C flight. The major objectives of flight STS-41B were to successfully deploy the Westar satellite and the Indonesian Communications Satellite-B2 (PALAPA-B2); to evaluate the MMU (Manned Maneuvering Unit) support for EVA (Extravehicular Activities); to exercise the MFR (Manipulator Foot Restraint); to demonstrate a closed loop rendezvous; and to operate the M.R (Monodisperse Latex Reactor), the ACES (Acoustic Containerless Experiment System) and the IEF (Isoelectric Focusing) in cabin experiments; and to obtain photographs with the Cinema 360 Cameras.

  8. Titan/Centaur D-1T TC-2, Helios A flight data report. [of space missions

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Background data of spacecraft launching and flight are presented. A system analysis of the space vehicles is included, specifically on: (1) electronic equipment, (2) hydraulic equipment, (3) telemetry, (4) propulsion systems, (5) software (computers), and (6) guidance. Spacecraft and launch vehicle configurations are shown and described.

  9. Design, fabrication and testing of a wet oxidation waste processing system. [for manned space flight

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The wet oxidation of sewage sludge during space flight was studied for water and gas recovery, and the elimination of overboard venting. The components of the system are described. Slurry and oxygen supply modules were fabricated and tested. Recommendations for redesign of the equipment are included.

  10. A prototype space flight intravenous injection system

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.

    1985-01-01

    Medical emergencies, especially those resulting from accidents, frequently require the administration of intravenous fluids to replace lost body liquids. The development of a prototype space flight intravenous injection system is presented. The definition of requirements, injectable concentrates development, water polisher, reconstitution hardware development, administration hardware development, and prototype fabrication and testing are discussed.

  11. Results of the Stable Microgravity Vibration Isolation Flight Experiment

    NASA Technical Reports Server (NTRS)

    Edberg, Donald; Boucher, Robert; Schenck, David; Nurre, Gerald; Whorton, Mark; Kim, Young; Alhorn, Dean

    1996-01-01

    This paper presents an overview of the STABLE microgravity isolation system developed and successfully flight tested in October 1995. A description of the hardware design and operational principles is given. A sample of the measured flight data is presented, including an evaluation of attenuation performance provided by the actively controlled electromagnetic isolation system. Preliminary analyses of flight data show that the acceleration environment aboard STABLE's isolated platform was attenuated by a factor of more than 25 between 0.1 and 100 Hz. STABLE was developed under a cooperative agreement between National Aeronautics and Space Administration, Marshall Space Flight Center, and McDonnell Douglas Aerospace. The flight hardware was designed, fabricated, integrated, tested, and delivered to the Cape during a five month period.

  12. Lindsey and Boe on forward flight deck

    NASA Image and Video Library

    2011-02-26

    S133-E-006081 (25 Feb. 2011) --- On space shuttle Discovery’s forward flight deck, astronauts Steve Lindsey (right), STS-133 commander, and Eric Boe, pilot, switch seats for a brief procedure as the crew heads toward a weekend docking with the International Space Station. Earlier the crew conducted thorough inspections of the shuttle’s thermal tile system using the Remote Manipulator System/Orbiter Boom Sensor System (RMS/OBSS) and special cameras. Photo credit: NASA or National Aeronautics and Space Administration

  13. NASA Associate Administrator for Space Flight Rothenberg addresses guests at ribbon cutting for the

    NASA Technical Reports Server (NTRS)

    2000-01-01

    NASA Associate Administrator for Space Flight Joseph Rothenberg addresses attendees at a ribbon cutting for the new Checkout and Launch Control System (CLCS) at the Hypergolic Maintenance Facility (HMF). The CLCS was declared operational in a ribbon cutting ceremony earlier. The new control room will be used to process the Orbital Maneuvering System pods and Forward Reaction Control System modules at the HMF. This hardware is removed from Space Shuttle orbiters and routinely taken to the HMF for checkout and servicing.

  14. Atmosphere, Magnetosphere and Plasmas in Space (AMPS). Space payload definition study. Volume 2: Mission support requirements document

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The flight payload, its operation, and the support required from the Space Transporatation System (STS) is defined including the flight objectives and requirements, the experiment operations, and the payload configurations. The support required from the STS includes the accommodation of the payload by the orbiter/Spacelab, use of the flight operations network and ground facilities, and the use of the launch site facilities.

  15. A Technology Plan for Enabling Commercial Space Business

    NASA Technical Reports Server (NTRS)

    Lyles, Garry M.

    1997-01-01

    The National Aeronautics and Space Administration's (NASA) Advanced Space Transportation Program is a customer driven, focused technology program that supports the NASA Strategic Plan and considers future commercial space business projections. The initial cycle of the Advanced Space Transportation Program implementation planning was conducted from December 1995 through February 1996 and represented increased NASA emphasis on broad base technology development with the goal of dramatic reductions in the cost of space transportation. The second planning cycle, conducted in January and February 1997, updated the program implementation plan based on changes in the external environment, increased maturity of advanced concept studies, and current technology assessments. The program has taken a business-like approach to technology development with a balanced portfolio of near, medium, and long-term strategic targets. Strategic targets are influenced by Earth science, space science, and exploration objectives as well as commercial space markets. Commercial space markets include those that would be enhanced by lower cost transportation as well as potential markets resulting in major increases in space business induced by reductions in transportation cost. The program plan addresses earth-to-orbit space launch, earth orbit operations and deep space systems. It also addresses all critical transportation system elements; including structures, thermal protection systems, propulsion, avionics, and operations. As these technologies are matured, integrated technology flight experiments such as the X-33 and X-34 flight demonstrator programs support near-term (one to five years) development or operational decisions. The Advanced Space Transportation Program and the flight demonstrator programs combine business planning, ground-based technology demonstrations and flight demonstrations that will permit industry and NASA to commit to revolutionary new space transportation systems beginning at the turn of the century and continuing far into the future.

  16. Systems definition study for shuttle demonstration flights of large space structures. Volume 3: Thermal analyses

    NASA Technical Reports Server (NTRS)

    1979-01-01

    the development of large space structure technology is discussed. A detailed thermal analysis of a model space fabricated 1 meter beam is presented. Alternative thermal coatings are evaluated, and deflections, stresses, and stiffness variations resulting from flight orientations and solar conditions are predicted.

  17. The 1981 NASA ASEE Summer Faculty Fellowship Program, volume 1

    NASA Technical Reports Server (NTRS)

    Robertson, N. G.; Huang, C. J.

    1981-01-01

    A review of NASA research programs related to developing and improving space flight technology is presented. Technical report topics summarized include: space flight feeding; aerospace medicine; reusable spacecraft; satellite soil, vegetation, and climate studies; microwave landing systems; anthropometric studies; satellite antennas; and space shuttle fuel cells.

  18. General view of the flight deck of the orbiter Discovery ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the flight deck of the orbiter Discovery looking forward and overhead at the overhead instrumentation and control panels. This view was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  19. Electronic systems failures and anomalies attributed to electromagnetic interference

    NASA Technical Reports Server (NTRS)

    Leach, R. D. (Editor); Alexander, M. B. (Editor)

    1995-01-01

    The effects of electromagnetic interference can be very detrimental to electronic systems utilized in space missions. Assuring that subsystems and systems are electrically compatible is an important engineering function necessary to assure mission success. This reference publication will acquaint the reader with spacecraft electronic systems failures and anomalies caused by electromagnetic interference and will show the importance of electromagnetic compatibility activities in conjunction with space flight programs. It is also hoped that the report will illustrate that evolving electronic systems are increasingly sensitive to electromagnetic interference and that NASA personnel must continue to diligently pursue electromagnetic compatibility on space flight systems.

  20. Porous tube plant nutrient delivery system development: A device for nutrient delivery in microgravity

    NASA Technical Reports Server (NTRS)

    Dreschel, T. W.; Brown, C. S.; Piastuch, W. C.; Hinkle, C. R.; Knott, W. M.

    1994-01-01

    The Porous Tube Plant Nutrient Delivery Systems or PTPNDS (U.S. Patent #4,926,585) has been under development for the past six years with the goal of providing a means for culturing plants in microgravity, specifically providing water and nutrients to the roots. Direct applications of the PTPNDS include plant space biology investigations on the Space Shuttle and plant research for life support in the Space Station Freedom. In the past, we investigated various configurations, the suitability of different porous materials, and the effects of pressure and pore size on plant growth. Current work is focused on characterizing the physical operation of the system, examining the effects of solution aeration, and developing prototype configurations for the Plant Growth Unit (PGU), the flight system for the Shuttle mid-deck. Future developments will involve testing on KC-135 parabolic flights, the design of flight hardware and testing aboard the Space Shuttle.

  1. 14 CFR 1214.502 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... and other critical space systems, including Space Station Freedom, designated Expendable Launch... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Definitions. 1214.502 Section 1214.502 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Mission Critical Space System...

  2. 14 CFR 1214.502 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... and other critical space systems, including Space Station Freedom, designated Expendable Launch... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Definitions. 1214.502 Section 1214.502 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Mission Critical Space System...

  3. 14 CFR 1214.502 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... and other critical space systems, including Space Station Freedom, designated Expendable Launch... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Definitions. 1214.502 Section 1214.502 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Mission Critical Space System...

  4. International Space Station Internal Thermal Control System Lab Module Simulator Build-Up and Validation

    NASA Technical Reports Server (NTRS)

    Wieland, Paul; Miller, Lee; Ibarra, Tom

    2003-01-01

    As part of the Sustaining Engineering program for the International Space Station (ISS), a ground simulator of the Internal Thermal Control System (ITCS) in the Lab Module was designed and built at the Marshall Space Flight Center (MSFC). To support prediction and troubleshooting, this facility is operationally and functionally similar to the flight system and flight-like components were used when available. Flight software algorithms, implemented using the LabVIEW(Registered Trademark) programming language, were used for monitoring performance and controlling operation. Validation testing of the low temperature loop was completed prior to activation of the Lab module in 2001. Assembly of the moderate temperature loop was completed in 2002 and validated in 2003. The facility has been used to address flight issues with the ITCS, successfully demonstrating the ability to add silver biocide and to adjust the pH of the coolant. Upon validation of the entire facility, it will be capable not only of checking procedures, but also of evaluating payload timelining, operational modifications, physical modifications, and other aspects affecting the thermal control system.

  5. Space Station Cathode Design, Performance, and Operating Specifications

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Verhey, Timothy R.; Soulas, George; Zakany, James

    1998-01-01

    A plasma contactor system was baselined for the International Space Station (ISS) to eliminate/mitigate damaging interactions with the space environment. The system represents a dual-use technology which is a direct outgrowth of the NASA electric propulsion program and, in particular, the technology development efforts on ion thruster systems. The plasma contactor includes a hollow cathode assembly (HCA), a power electronics unit, and a xenon gas feed system. Under a pre-flight development program, these subsystems were taken to the level of maturity appropriate for transfer to U.S. industry for final development. NASA's Lewis Research Center was subsequently requested by ISS to manufacture and deliver the engineering model, qualification model, and flight HCA units. To date, multiple units have been built. One cathode has demonstrated approximately 28,000 hours lifetime, two development unit HCAs have demonstrated over 10,000 hours lifetime, and one development unit HCA has demonstrated more than 32,000 ignitions. All 8 flight HCAs have been manufactured, acceptance tested, and are ready for delivery to the flight contractor. This paper discusses the requirements, mechanical design, performance, operating specifications, and schedule for the plasma contactor flight HCAs.

  6. The Integrated Medical Model: A Risk Assessment and Decision Support Tool for Space Flight Medical Systems

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric; Minard, Charles; Saile, Lynn; deCarvalho, Mary Freire; Myers, Jerry; Walton, Marlei; Butler, Douglas; Iyengar, Sriram; Johnson-Throop, Kathy; Baumann, David

    2009-01-01

    The Integrated Medical Model (IMM) is a decision support tool that is useful to mission planners and medical system designers in assessing risks and designing medical systems for space flight missions. The IMM provides an evidence based approach for optimizing medical resources and minimizing risks within space flight operational constraints. The mathematical relationships among mission and crew profiles, medical condition incidence data, in-flight medical resources, potential crew functional impairments, and clinical end-states are established to determine probable mission outcomes. Stochastic computational methods are used to forecast probability distributions of crew health and medical resource utilization, as well as estimates of medical evacuation and loss of crew life. The IMM has been used in support of the International Space Station (ISS) medical kit redesign, the medical component of the ISS Probabilistic Risk Assessment, and the development of the Constellation Medical Conditions List. The IMM also will be used to refine medical requirements for the Constellation program. The IMM outputs for ISS and Constellation design reference missions will be presented to demonstrate the potential of the IMM in assessing risks, planning missions, and designing medical systems. The implementation of the IMM verification and validation plan will be reviewed. Additional planned capabilities of the IMM, including optimization techniques and the inclusion of a mission timeline, will be discussed. Given the space flight constraints of mass, volume, and crew medical training, the IMM is a valuable risk assessment and decision support tool for medical system design and mission planning.

  7. Optical communication for space missions

    NASA Technical Reports Server (NTRS)

    Firtmaurice, M.

    1991-01-01

    Activities performed at NASA/GSFC (Goddard Space Flight Center) related to direct detection optical communications for space applications are discussed. The following subject areas are covered: (1) requirements for optical communication systems (data rates and channel quality; spatial acquisition; fine tracking and pointing; and transmit point-ahead correction); (2) component testing and development (laser diodes performance characterization and life testing; and laser diode power combining); (3) system development and simulations (The GSFC pointing, acquisition and tracking system; hardware description; preliminary performance analysis; and high data rate transmitter/receiver systems); and (4) proposed flight demonstration of optical communications.

  8. Aircraft flight simulation of spacelab experiment using an implanted telemetry system to obtain cardiovascular data from the monkey

    NASA Technical Reports Server (NTRS)

    Mccutcheon, E. P.; Miranda, R.; Fryer, T. B.; Hodges, G.; Newson, B. D.; Pace, N.

    1977-01-01

    The utility of a multichannel implantable telemetry system for obtaining cardiovascular data was tested in a monkey with a CV-990 aircraft flight simulation of a space flight experiment. Valuable data were obtained to aid planning and execution of flight experiments using chronically instrumented animals.

  9. National Space Transportation Systems Program mission report

    NASA Technical Reports Server (NTRS)

    Collins, M. A., Jr.; Aldrich, A. D.; Lunney, G. S.

    1984-01-01

    The STS 41-C National Space Transportation Systems Program Mission Report contains a summary of the major activities and accomplishments of the eleventh Shuttle flight and fifth flight of the OV-099 vehicle, Challenger. Also summarized are the significant problems that occurred during STS 41-C, and a problem tracking list that is a complete list of all problems that occurred during the flight. The major objectives of flight STS 41-C were to successfully deploy the LDEF (long duration exposure facility) and retrieve, repair and redeploy the SMM (Solar Maximum Mission) spacecraft, and perform functions of IMAX and Cinema 360 cameras.

  10. Space Communication and Navigation SDR Testbed, Overview and Opportunity for Experiments

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.

    2013-01-01

    NASA has developed an experimental flight payload (referred to as the Space Communication and Navigation (SCAN) Test Bed) to investigate software defined radio (SDR) communications, networking, and navigation technologies, operationally in the space environment. The payload consists of three software defined radios each compliant to NASAs Space Telecommunications Radio System Architecture, a common software interface description standard for software defined radios. The software defined radios are new technology developments underway by NASA and industry partners launched in 2012. The payload is externally mounted to the International Space Station truss to conduct experiments representative of future mission capability. Experiment operations include in-flight reconfiguration of the SDR waveform functions and payload networking software. The flight system will communicate with NASAs orbiting satellite relay network, the Tracking and Data Relay Satellite System at both S-band and Ka-band and to any Earth-based compatible S-band ground station. The system is available for experiments by industry, academia, and other government agencies to participate in the SDR technology assessments and standards advancements.

  11. Evolution of the Systems Engineering Education Development (SEED) Program at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Bagg, Thomas C., III; Brumfield, Mark D.; Jamison, Donald E.; Granata, Raymond L.; Casey, Carolyn A.; Heller, Stuart

    2003-01-01

    The Systems Engineering Education Development (SEED) Program at NASA Goddard Space Flight Center develops systems engineers from existing discipline engineers. The program has evolved significantly since the report to INCOSE in 2003. This paper describes the SEED Program as it is now, outlines the changes over the last year, discusses current status and results, and shows the value of human systems and leadership skills for practicing systems engineers.

  12. [CAT system and its application in training for manned space flight].

    PubMed

    Zhu, X Q; Chen, D M

    2000-02-01

    As aerospace missions get increasingly frequent and complex, training becomes ever more critical. Training devices in all levels are demanded. Computer-Aided Training (CAT) system, because its economic, efficient and flexible, is attracting more and more attention. In this paper, the basic factors of CAT system were discussed; the applications of CAT system in training for manned space flight were illustrated. Then we prospected further developments of CAT system.

  13. Soviet space flight: the human element.

    PubMed

    Garshnek, V

    1988-05-01

    Building on past experience and knowledge, the Soviet manned space flight effort has become broad, comprehensive, and forward-looking. Their long-running space station program has provided the capabilities to investigate long-term effects of microgravity on human physiology and behavior and test various countermeasures against microgravity-induced physiological deconditioning. Since the beginning of Soviet manned space flight, the biomedical training and preparation of cosmonauts has evolved from a process that increased human tolerance to space flight factors, to a system of interrelated measures to prepare cosmonauts physically and psychologically to live and work in space. Currently, the Soviet Union is constructing a multimodular space station, the Mir. With the emergence of dedicated laboratory modules, the Soviets have begun the transition from small-scale experimental research to large-scale production activities and specialized scientific work in space. In the future, additional laboratory modules will be added, including one dedicated to biomedical research, called the "Medilab." The longest manned space flight to date (326 days) has been completed by the Soviets. The biomedical effects of previous long-duration flights, and perhaps those of still greater length, may contribute important insight ito the possibility of extended missions beyond Earth, such as a voyage to Mars.

  14. Future Standardization of Space Telecommunications Radio System with Core Flight System

    NASA Technical Reports Server (NTRS)

    Briones, Janette C.; Hickey, Joseph P.; Roche, Rigoberto; Handler, Louis M.; Hall, Charles S.

    2016-01-01

    NASA Glenn Research Center (GRC) is integrating the NASA Space Telecommunications Radio System (STRS) Standard with the Core Flight System (cFS), an avionics software operating environment. The STRS standard provides a common, consistent framework to develop, qualify, operate and maintain complex, reconfigurable and reprogrammable radio systems. The cFS is a flexible, open architecture that features a plugand- play software executive called the Core Flight Executive (cFE), a reusable library of software components for flight and space missions and an integrated tool suite. Together, STRS and cFS create a development environment that allows for STRS compliant applications to reference the STRS application programmer interfaces (APIs) that use the cFS infrastructure. These APIs are used to standardize the communication protocols on NASAs space SDRs. The cFS-STRS Operating Environment (OE) is a portable cFS library, which adds the ability to run STRS applications on existing cFS platforms. The purpose of this paper is to discuss the cFS-STRS OE prototype, preliminary experimental results performed using the Advanced Space Radio Platform (ASRP), the GRC S- band Ground Station and the SCaN (Space Communication and Navigation) Testbed currently flying onboard the International Space Station (ISS). Additionally, this paper presents a demonstration of the Consultative Committee for Space Data Systems (CCSDS) Spacecraft Onboard Interface Services (SOIS) using electronic data sheets (EDS) inside cFE. This configuration allows for the data sheets to specify binary formats for data exchange between STRS applications. The integration of STRS with cFS leverages mission-proven platform functions and mitigates barriers to integration with future missions. This reduces flight software development time and the costs of software-defined radio (SDR) platforms. Furthermore, the combined benefits of STRS standardization with the flexibility of cFS provide an effective, reliable and modular framework to minimize software development efforts for spaceflight missions.

  15. Habitability and Human Factors Contributions to Human Space Flight

    NASA Technical Reports Server (NTRS)

    Sumaya, Jennifer Boyer

    2011-01-01

    This slide presentation reviews the work of the Habitability and Human Factors Branch in support of human space flight in two main areas: Applied support to major space programs, and Space research. The field of Human Factors applies knowledge of human characteristics for the design of safer, more effective, and more efficient systems. This work is in several areas of the human space program: (1) Human-System Integration (HSI), (2) Orion Crew Exploration Vehicle, (3) Extravehicular Activity (EVA), (4) Lunar Surface Systems, (5) International Space Station (ISS), and (6) Human Research Program (HRP). After detailing the work done in these areas, the facilities that are available for human factors work are shown.

  16. 1201014

    NASA Image and Video Library

    2012-09-21

    ENGINEERS USING A STATE-OF-THE-ART VERTICAL WELDING TOOL AT THE MARSHALL SPACE FLIGHT CENTER IN HUNTSVILLE, ALA., MOVE A "PATHFINDER" VERSION OF THE ADAPTER DESIGN THAT WILL BE USED ON TEST FLIGHTS OF THE ORION SPACECRAFT AND NASA'S SPACE LAUNCH SYSTEM

  17. 1201013

    NASA Image and Video Library

    2012-09-21

    ENGINEERS USING A STATE-OF-THE-ART VERTICAL WELDING TOOL AT THE MARSHALL SPACE FLIGHT CENTER IN HUNTSVILLE, ALA., MOVE A "PATHFINDER" VERSION OF THE ADAPTER DESIGN THAT WILL BE USED ON TEST FLIGHTS OF THE ORION SPACECRAFT AND NASA'S SPACE LAUNCH SYSTEM

  18. Tether dynamics and control results for tethered satellite system's initial flight

    NASA Astrophysics Data System (ADS)

    Chapel, Jim D.; Flanders, Howard

    The recent Tethered Satellite System-1 (TSS-1) mission has provided a wealth of data concerning the dynamics of tethered systems in space and has demonstrated the effectiveness of operational techniques designed to control these dynamics. In this paper, we review control techniques developed for managing tether dynamics, and discuss the results of using these techniques for the Tethered Satellite System's maiden flight on STS-46. In particular, the flight results of controlling libration dynamics, string dynamics, and slack tether are presented. These results show that tether dynamics can be safely managed. The overall stability of the system was found to be surprisingly good even at relatively short tether lengths. In fact, the system operated in passive mode at a tether length of 256 meters for over 9 hours. Only monitoring of the system was required during this time. Although flight anomalies prevented the planned deployment to 20 km, the extended operations at shorter tether lengths have proven the viability of using tethers in space. These results should prove invaluable in preparing for future missions with tethered objects in space.

  19. Tether dynamics and control results for tethered satellite system's initial flight

    NASA Technical Reports Server (NTRS)

    Chapel, Jim D.; Flanders, Howard

    1993-01-01

    The recent Tethered Satellite System-1 (TSS-1) mission has provided a wealth of data concerning the dynamics of tethered systems in space and has demonstrated the effectiveness of operational techniques designed to control these dynamics. In this paper, we review control techniques developed for managing tether dynamics, and discuss the results of using these techniques for the Tethered Satellite System's maiden flight on STS-46. In particular, the flight results of controlling libration dynamics, string dynamics, and slack tether are presented. These results show that tether dynamics can be safely managed. The overall stability of the system was found to be surprisingly good even at relatively short tether lengths. In fact, the system operated in passive mode at a tether length of 256 meters for over 9 hours. Only monitoring of the system was required during this time. Although flight anomalies prevented the planned deployment to 20 km, the extended operations at shorter tether lengths have proven the viability of using tethers in space. These results should prove invaluable in preparing for future missions with tethered objects in space.

  20. Space tug point design study. Volume 2: Operations, performance and requirements

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A design study to determine the configuration and characteristics of a space tug was conducted. Among the subjects analyzed in the study are: (1) flight and ground operations, (2) vehicle flight performance and performance enhancement techniques, (3) flight requirements, (4) basic design criteria, and (5) functional and procedural interface requirements between the tug and other systems.

  1. Masten Space Systems’ Completes Test of Surface Sampling Technology

    NASA Image and Video Library

    2018-06-13

    Honeybee Robotics in Pasadena, California, flight tested its pneumatic sampler collection system, PlanetVac, on Masten Space Systems’ Xodiac rocket on May 24, launching from Mojave, California, and landing to collect a sample of more than 320 grams of top soil from the surface of the desert floor. NASA Flight Opportunities program funded the test flight.

  2. Workshop on Exercise Prescription for Long-Duration Space Flight

    NASA Technical Reports Server (NTRS)

    Harris, Bernard A., Jr. (Editor); Stewart, Donald F. (Editor)

    1989-01-01

    The National Aeronautics and Space Administration has a dedicated history of ensuring human safety and productivity in flight. Working and living in space long term represents the challenge of the future. Our concern is in determining the effects on the human body of living in space. Space flight provides a powerful stimulus for adaptation, such as cardiovascular and musculoskeletal deconditioning. Extended-duration space flight will influence a great many systems in the human body. We must understand the process by which this adaptation occurs. The NASA is agressively involved in developing programs which will act as a foundation for this new field of space medicine. The hallmark of these programs deals with prevention of deconditioning, currently referred to as countermeasures to zero g. Exercise appears to be most effective in preventing the cardiovascular and musculoskeletal degradation of microgravity.

  3. Artificial Gravity as a Multi-System Countermeasure for Exploration Class Space Flight Missions

    NASA Technical Reports Server (NTRS)

    Paloski, William H.; Dawson, David L. (Technical Monitor)

    2000-01-01

    NASA's vision for space exploration includes missions of unprecedented distance and duration. However, during 30 years of human space flight experience, including numerous long-duration missions, research has not produced any single countermeasure or combination of countermeasures that is completely effective. Current countermeasures do not fully protect crews in low-Earth orbit, and certainly will not be appropriate for crews journeying to Mars and back over a three-year period. The urgency for exploration-class countermeasures is compounded by continued technical and scientific successes that make exploration class missions increasingly attractive. The critical and possibly fatal problems of bone loss, cardiovascular deconditioning, muscle weakening, neurovestibular disturbance, space anemia, and immune compromise may be alleviated by the appropriate application of artificial gravity (AG). However, despite a manifest need for new countermeasure approaches, concepts for applying AG as a countermeasure have not developed apace. To explore the utility of AG as a multi-system countermeasure during long-duration, exploration-class space flight, eighty-three members of the international space life science and space flight community met earlier this year. They concluded unanimously that the potential of AG as a multi-system countermeasure is indeed worth pursuing, and that the requisite AG research needs to be supported more systematically by NASA. This presentation will review the issues discussed and recommendations made.

  4. Flight Avionics Sequencing Telemetry (FAST) DIV Latching Display

    NASA Technical Reports Server (NTRS)

    Moore, Charlotte

    2010-01-01

    The NASA Engineering (NE) Directorate at Kennedy Space Center provides engineering services to major programs such as: Space Shuttle, Inter national Space Station, and the Launch Services Program (LSP). The Av ionics Division within NE, provides avionics and flight control syste ms engineering support to LSP. The Launch Services Program is respons ible for procuring safe and reliable services for transporting critical, one of a kind, NASA payloads into orbit. As a result, engineers mu st monitor critical flight events during countdown and launch to asse ss anomalous behavior or any unexpected occurrence. The goal of this project is to take a tailored Systems Engineering approach to design, develop, and test Iris telemetry displays. The Flight Avionics Sequen cing Telemetry Delta-IV (FAST-D4) displays will provide NASA with an improved flight event monitoring tool to evaluate launch vehicle heal th and performance during system-level ground testing and flight. Flight events monitored will include data from the Redundant Inertial Fli ght Control Assembly (RIFCA) flight computer and launch vehicle comma nd feedback data. When a flight event occurs, the flight event is ill uminated on the display. This will enable NASA Engineers to monitor c ritical flight events on the day of launch. Completion of this project requires rudimentary knowledge of launch vehicle Guidance, Navigatio n, and Control (GN&C) systems, telemetry, and console operation. Work locations for the project include the engineering office, NASA telem etry laboratory, and Delta launch sites.

  5. Immune System Dysregulation, Viral Reactivation and Stress During Short-Duration Space Flight

    NASA Technical Reports Server (NTRS)

    Crucian, Brian; Mehta, Satish; Stowe, Raymond; Uchakin, Peter; Quiriarte, Heather; Pierson, Duane; Sams, Clarence

    2010-01-01

    This slide presentation reviews a study that was conducted to ascertain if the immune system dysregulation, viral reactivation and stress from short duration space flight were a result of the stress of landing and readjustment to gravity. The objectives of the study were to replace several recent immune studies with one comprehensive study that will include in-flight sampling; address lack of in-flight data: (i.e., determine the in-flight status of immunity, physiological stress, viral immunity/reactivation); determine the clinical risk related to immune dysregulation for exploration class spaceflight; and determine the appropriate monitoring strategy for spaceflight-associated immune dysfunction, that could be used for the evaluation of countermeasures.

  6. Activity of the sympathetic-adrenomedullary system in rats after space flight on the COSMOS biosatellites

    NASA Astrophysics Data System (ADS)

    Kvetňanský, R.; Vigaš, M.; Németh, Š.; Macho, L.; Tigranyan, R. A.

    The indicators of adrenomedullary activity (catecholamine content (CA) and the activity of the catecholamine-synthesizing enzymes tyrosine hydroxylase (TH) and dopamine-β-hydroxylase (DBH)) were measured in the adrenal glands of rats living in a state of weightlessness for 18.5-19.5 days on board the biosatellites COSMOS 936 and COSMOS 1129. None of these indicators was significantly changed by space flight, neither in the group living in a state of weightlessness nor in the group living in a centrifuge on board the spacecraft and exposed to artificial gravity of 1 g (COSMOS 936). Animals exposed after space flight to repeated immobilization stress on Earth showed a significant decrease of adrenal adrenaline and an appreciable increase in adrenal TH activity compared to stressed animals which were not in space. These results suggest that a prolonged state of weightlessness during space flight does not by itself represent an intensive stressful stimulus for the adrenomedullary system but potentiates the response of cosmonauts to stress after return to Earth.

  7. 1400143

    NASA Image and Video Library

    2014-02-28

    From left, Wayne Arrington, a Boeing Company technician, and Steve Presti, a mechanical technician at NASA's Marshall Space Flight Center in Huntsville, Ala., install Developmental Flight Instrumentation Data Acquisition Units in Marshall's Systems Integration and Test Facility. The units are part of NASA's Space Launch System (SLS) core stage avionics, which will guide the biggest, most powerful rocket in history to deep space missions. When completed, the core stage will be more than 200 feet tall and store cryogenic liquid hydrogen and liquid oxygen that will feed the vehicle's RS-25 engines. The hardware, software and operating systems for the SLS are arranged in flight configuration in the facility for testing. The new Data Acquisition Units will monitor vehicle behavior in flight -- like acceleration, thermal environments, shock and vibration. That data will then be used to validate previous ground tests and analyses models that were used in the development of the SLS vehicle.

  8. Styx tours Marshall Space Flight Center

    NASA Image and Video Library

    2017-04-27

    Keith Parrish, left, of the Space Systems Department at NASA’s Marshall Space Flight Center, discusses the process of the Environmental Control and Life Support System with Marshall Center Director Todd May, second from left, and members of the legendary rock band Styx during a tour of Marshall April 27. Inspired by NASA’s goal of sending humans to Mars in the 2030s, the band’s upcoming album, "The Mission," musically chronicles a futuristic, crewed mission to Mars. While Styx’s mission may be only realized through their iconic sound, NASA’s mission is well underway with the new Space Launch System

  9. Vestibular-Somatosensory Convergence in Head Movement Control During Locomotion after Long-Duration Space Flight

    NASA Technical Reports Server (NTRS)

    Mulavara, Ajitkumar; Ruttley, Tara; Cohen, Helen; Peters, Brian; Miller, Chris; Brady, Rachel; Merkle, Lauren; Bloomberg, Jacob

    2010-01-01

    Exposure to the microgravity conditions of space flight induces adaptive modification in the control of vestibular-mediated reflexive head movement during locomotion after space flight. Space flight causes astronauts to be exposed to somatosensory adaptation in both the vestibular and body load-sensing (BLS) systems. The goal of these studies was to examine the contributions of vestibular and BLS-mediated somatosensory influences on head movement control during locomotion after long-duration space flight. Subjects were asked to walk on a treadmill driven at 1.8 m/s while performing a visual acuity task. Data were collected using the same testing protocol from three independent subject groups; 1) normal subjects before and after exposure to 30 minutes of 40% bodyweight unloaded treadmill walking, 2) bilateral labyrinthine deficient (LD) patients and 3) astronauts who performed the protocol before and after long duration space flight. Motion data from head and trunk segmental motion data were obtained to calculate the angular head pitch (HP) movements during walking trials while subjects performed the visual task, to estimate the contributions of vestibular reflexive mechanisms in HP movements. Results showed that exposure to unloaded locomotion caused a significant increase in HP movements, whereas in the LD patients the HP movements were significantly decreased. Astronaut subjects results showed a heterogeneous response of both increases and decreases in the amplitude of HP movement. We infer that BLS-mediated somatosensory input centrally modulates vestibular input and can adaptively modify head-movement control during locomotion. Thus, space flight may cause a central adaptation mediated by the converging vestibular and body load-sensing somatosensory systems.

  10. Large Space Antenna Systems Technology, part 1

    NASA Technical Reports Server (NTRS)

    Lightner, E. B. (Compiler)

    1983-01-01

    A compilation of the unclassified papers presented at the NASA Conference on Large Space Antenna Systems Technology covers the following areas: systems, structures technology, control technology, electromagnetics, and space flight test and evaluation.

  11. Spacelab

    NASA Image and Video Library

    1992-01-01

    Astronaut David C. Hilmers conducts the Microgravity Vestibular Investigations (MVI) sitting in its rotator chair inside the IML-1 science module. When environmental conditions change so that the body receives new stimuli, the nervous system responds by interpreting the incoming sensory information differently. In space, the free-fall environment of an orbiting spacecraft requires that the body adapts to the virtual absence of gravity. Early in flights, crewmembers may feel disoriented or experience space motion sickness. MVI examined the effects of orbital flight on the human orientation system to obtain a better understanding of the mechanisms of adaptation to weightlessness. By provoking interactions among the vestibular, visual, and proprioceptive systems and then measuring the perceptual and sensorimotor reactions, scientists can study changes that are integral to the adaptive process. The IML-1 mission was the first in a series of Shuttle flights dedicated to fundamental materials and life sciences research with the international partners. The participating space agencies included: NASA, the 14-nation European Space Agency (ESA), the Canadian Space Agency (CSA), the French National Center of Space Studies (CNES), the German Space Agency and the German Aerospace Research Establishment (DAR/DLR), and the National Space Development Agency of Japan (NASDA). Both life and materials sciences benefited from the extended periods of microgravity available inside the Spacelab science module in the cargo bay of the Space Shuttle Orbiter. Managed by the Marshall Space Flight Center, IML-1 was launched on January 22, 1992 aboard the Space Shuttle Orbiter Discovery (STS-42 mission).

  12. Space Launch System Launch Vehicle Stage Adapter Hardware Completes Manufacturing

    NASA Image and Video Library

    2017-08-28

    The Launch Vehicle Stage Adapter for the first flight of the Space Launch System, NASA’s new deeps space rocket, recently completed manufacturing at NASA’s Marshal Space Flight Center in Huntsville, Alabama. The LVSA, the largest piece of the rocket welded together in Marshall’s Huntsville manufacturing area, will connect two major sections of SLS – the 27.6-foot diameter core stage and the 16.4-foot interim cryogenic propulsion stage – for the first integrated flight of SLS and the Orion spacecraft. Teledyne Brown Engineering of Huntsville, the prime contractor for the adapter, has completed manufacturing, and engineers are preparing to apply thermal insulation. It will be the largest piece of hardware that Marshall. The LVSA was moved from the NASA welding area to NASA’s Center for Advanced Manufacturing where the thermal protection system will be applied.

  13. Qualification and issues with space flight laser systems and components

    NASA Astrophysics Data System (ADS)

    Ott, Melanie N.; Coyle, D. B.; Canham, John S.; Leidecker, Henning W., Jr.

    2006-02-01

    The art of flight quality solid-state laser development is still relatively young, and much is still unknown regarding the best procedures, components, and packaging required for achieving the maximum possible lifetime and reliability when deployed in the harsh space environment. One of the most important issues is the limited and unstable supply of quality, high power diode arrays with significant technological heritage and market lifetime. Since Spectra Diode Labs Inc. ended their involvement in the pulsed array business in the late 1990's, there has been a flurry of activity from other manufacturers, but little effort focused on flight quality production. This forces NASA, inevitably, to examine the use of commercial parts to enable space flight laser designs. System-level issues such as power cycling, operational derating, duty cycle, and contamination risks to other laser components are some of the more significant unknown, if unquantifiable, parameters that directly effect transmitter reliability. Designs and processes can be formulated for the system and the components (including thorough modeling) to mitigate risk based on the known failures modes as well as lessons learned that GSFC has collected over the past ten years of space flight operation of lasers. In addition, knowledge of the potential failure modes related to the system and the components themselves can allow the qualification testing to be done in an efficient yet, effective manner. Careful test plan development coupled with physics of failure knowledge will enable cost effect qualification of commercial technology. Presented here will be lessons learned from space flight experience, brief synopsis of known potential failure modes, mitigation techniques, and options for testing from the system level to the component level.

  14. Qualification and Issues with Space Flight Laser Systems and Components

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Coyle, D. Barry; Canham, John S.; Leidecker, Henning W.

    2006-01-01

    The art of flight quality solid-state laser development is still relatively young, and much is still unknown regarding the best procedures, components, and packaging required for achieving the maximum possible lifetime and reliability when deployed in the harsh space environment. One of the most important issues is the limited and unstable supply of quality, high power diode arrays with significant technological heritage and market lifetime. Since Spectra Diode Labs Inc. ended their involvement in the pulsed array business in the late 1990's, there has been a flurry of activity from other manufacturers, but little effort focused on flight quality production. This forces NASA, inevitably, to examine the use of commercial parts to enable space flight laser designs. System-level issues such as power cycling, operational derating, duty cycle, and contamination risks to other laser components are some of the more significant unknown, if unquantifiable, parameters that directly effect transmitter reliability. Designs and processes can be formulated for the system and the components (including thorough modeling) to mitigate risk based on the known failures modes as well as lessons learned that GSFC has collected over the past ten years of space flight operation of lasers. In addition, knowledge of the potential failure modes related to the system and the components themselves can allow the qualification testing to be done in an efficient yet, effective manner. Careful test plan development coupled with physics of failure knowledge will enable cost effect qualification of commercial technology. Presented here will be lessons learned from space flight experience, brief synopsis of known potential failure modes, mitigation techniques, and options for testing from the system level to the component level.

  15. Qualification and Issues with Space Flight Laser Systems and Components

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Coyle, D. Barry; Canham, John S.; Leidecker, Henning W.

    2006-01-01

    The art of flight quality solid-state laser development is still relatively young, and much is still unknown regarding the best procedures, components, and packaging required for achieving the maximum possible lifetime and reliability when deployed in the harsh space environment. One of the most important issues is the limited and unstable supply of quality, high power diode arrays with significant technological heritage and market lifetime. Since Spectra Diode Labs Inc. ended their involvement in the pulsed array business in the late 199O's, there has been a flurry of activity from other manufacturers, but little effort focused on flight quality production. This forces NASA, inevitably, to examine the use of commercial parts to enable space flight laser designs. System-level issues such as power cycling, operational derating, duty cycle, and contamination risks to other laser components are some of the more significant unknown, if unquantifiable, parameters that directly effect transmitter reliability. Designs and processes can be formulated for the system and the components (including thorough modeling) to mitigate risk based on the known failures modes as well as lessons learned that GSFC has collected over the past ten years of space flight operation of lasers. In addition, knowledge of the potential failure modes related to the system and the components themselves can allow the qualification testing to be done in an efficient yet, effective manner. Careful test plan development coupled with physics of failure knowledge will enable cost effect qualification of commercial technology. Presented here will be lessons learned from space flight experience, brief synopsis of known potential failure modes, mitigation techniques, and options for testing from the system level to the component level.

  16. Stratospheric Balloon Platforms for Near Space Access

    NASA Astrophysics Data System (ADS)

    Dewey, R. G.

    2012-12-01

    For over five decades, high altitude aerospace balloon platforms have provided a unique vantage point for space and geophysical research by exposing scientific instrument packages and experiments to space-like conditions above 99% of Earth's atmosphere. Reaching altitudes in excess of 30 km for durations ranging from hours to weeks, high altitude balloons offer longer flight durations than both traditional sounding rockets and emerging suborbital reusable launch vehicles. For instruments and experiments requiring access to high altitudes, engineered balloon systems provide a timely, responsive, flexible, and cost-effective vehicle for reaching near space conditions. Moreover, high altitude balloon platforms serve as an early means of testing and validating hardware bound for suborbital or orbital space without imposing space vehicle qualifications and certification requirements on hardware in development. From float altitudes above 30 km visible obscuration of the sky is greatly reduced and telescopes and other sensors function in an orbit-like environment, but in 1g. Down-facing sensors can take long-exposure atmospheric measurements and images of Earth's surface from oblique and nadir perspectives. Payload support subsystems such as telemetry equipment and command, control, and communication (C3) interfaces can also be tested and operationally verified in this space-analog environment. For scientific payloads requiring over-flight of specific areas of interests, such as an active volcano or forest region, advanced mission planning software allows flight trajectories to be accurately modeled. Using both line-of-sight and satellite-based communication systems, payloads can be tracked and controlled throughout the entire mission duration. Under NASA's Flight Opportunities Program, NSC can provide a range of high altitude flight options to support space and geophysical research: High Altitude Shuttle System (HASS) - A balloon-borne semi-autonomous glider carries payloads to high altitude and returns them safely to pre-selected landing sites, supporting quick recovery, refurbishment, and re-flight. Small Balloon System (SBS) - Controls payload interfaces via a standardized avionics system. Using a parachute for recovery, the SBS is well suited for small satellite and spacecraft subsystem developers wanting to raise their Technology Readiness Level (TRL) in an operationally relevant environment. Provides flexibility for scientific payloads requiring externally mounted equipment, such as telescopes and antennas. Nano Balloon System (NBS) - For smaller payloads (~CubeSats) with minimal C3 requirements, the Nano Balloon System (NBS) operates under less restrictive flight regulations with increased operational flexibility. The NBS is well suited for payload providers seeking a quick, simple, and cost effective solution for operating small ~passive payloads in near space. High altitude balloon systems offer the payload provider and experimenter a unique and flexible platform for geophysical and space research. Though new launch vehicles continue to expand access to suborbital and orbital space, recent improvements in high altitude balloon technology and operations provide a cost effective alternative to access space-like conditions.

  17. Atmospheric reentry flight test of winged space vehicle

    NASA Astrophysics Data System (ADS)

    Inatani, Yoshifumi; Akiba, Ryojiro; Hinada, Motoki; Nagatomo, Makoto

    A summary of the atmospheric reentry flight experiment of winged space vehicle is presented. The test was conducted and carried out by the Institute of Space and Astronautical Science (ISAS) in Feb. 1992 in Kagoshima Space Center. It is the first Japanese atmospheric reentry flight of the controlled lifting vehicle. A prime objective of the flight is to demonstrate a high speed atmospheric entry flight capability and high-angle-of-attack flight capability in terms of aerodynamics, flight dynamics and flight control of these kind of vehicles. The launch of the winged vehicle was made by balloon and solid propellant rocket booster which was also the first trial in Japan. The vehicle accomplishes the lfight from space-equivalent condition to the atmospheric flight condition where reaction control system (RCS) attitude stabilization and aerodynamic control was used, respectively. In the flight, the vehicle's attitude was measured by both an inertial measurement unit (IMU) and an air data sensor (ADS) which were employed into an auto-pilot flight control loop. After completion of the entry transient flight, the vehicle experienced unexpected instability during the atmospheric decelerating flight; however, it recovered the attitude orientation and completed the transonic flight after that. The latest analysis shows that it is due to the ADS measurement error and the flight control gain scheduling; what happened was all understood. Some details of the test and the brief summary of the current status of the post flight analysis are presented.

  18. How human sleep in space — investigations during space flights

    NASA Astrophysics Data System (ADS)

    Stoilova, I. M.; Zdravev, T. K.; Yanev, T. K.

    Sleep problems have been observed during many of the space flights. The existence of poor quality of sleep, fatigue, insomnia or different alterations in sleep structure, organization and sleep cyclicity have been established. Nevertheless results obtained from investigations of human sleep on board manned space vehicles show that it is possible to keep sleep patterns related to the restorative and adaptive processes. For the first time in the frame of the "Intercosmos" program a multi-channel system for recording and analysis of sleep in space was constructed by scientists of the Bulgarian Academy of Sciences and was installed on board the manned Mir orbiting station. In 1988 during the joint Bulgarian-Russian space flight continues recording of electro-physiological parameters necessary to estimate the sleep stages and sleep organization was made. These investigations were continued in next space flights of different prolongation. The results were compared with the findings obtained under the conditions during the pre- and post-flight periods.

  19. Applications of ANSYS/Multiphysics at NASA/Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Loughlin, Jim

    2007-01-01

    This viewgraph presentation reviews some of the uses that the ANSYS/Multiphysics system is used for at the NASA Goddard Space Flight Center. Some of the uses of the ANSYS system is used for is MEMS Structural Analysis of Micro-mirror Array for the James Web Space Telescope (JWST), Micro-shutter Array for JWST, MEMS FP Tunable Filter, AstroE2 Micro-calorimeter. Various views of these projects are shown in this presentation.

  20. Long-Duration Space Flight and Bed Rest Effects on Testosterone and Other Steroids

    PubMed Central

    Heer, Martina; Wang, Zuwei; Huntoon, Carolyn L.; Zwart, Sara R.

    2012-01-01

    Context: Limited data suggest that testosterone is decreased during space flight, which could contribute to bone and muscle loss. Objective: The main objective was to assess testosterone and hormone status in long- and short-duration space flight and bed rest environments and to determine relationships with other physiological systems, including bone and muscle. Design: Blood and urine samples were collected before, during, and after long-duration space flight. Samples were also collected before and after 12- to 14-d missions and from participants in 30- to 90-d bed rest studies. Setting: Space flight studies were conducted on the International Space Station and before and after Space Shuttle missions. Bed rest studies were conducted in a clinical research center setting. Data from Skylab missions are also presented. Participants: All of the participants were male, and they included 15 long-duration and nine short-duration mission crew members and 30 bed rest subjects. Main Outcome Measures: Serum total, free, and bioavailable testosterone were measured along with serum and urinary cortisol, serum dehydroepiandrosterone, dehydroepiandrosterone sulfate, and SHBG. Results: Total, free, and bioavailable testosterone was not changed during long-duration space flight but were decreased (P < 0.01) on landing day after these flights and after short-duration space flight. There were no changes in other hormones measured. Testosterone concentrations dropped before and soon after bed rest, but bed rest itself had no effect on testosterone. Conclusions: There was no evidence for decrements in testosterone during long-duration space flight or bed rest. PMID:22049169

  1. The Use of the Integrated Medical Model for Forecasting and Mitigating Medical Risks for a Near-Earth Asteroid Mission

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric; Saile, Lynn; Freire de Carvalho, Mary; Myers, Jerry; Walton, Marlei; Butler, Douglas; Lopez, Vilma

    2011-01-01

    Introduction The Integrated Medical Model (IMM) is a decision support tool that is useful to space flight mission managers and medical system designers in assessing risks and optimizing medical systems. The IMM employs an evidence-based, probabilistic risk assessment (PRA) approach within the operational constraints of space flight. Methods Stochastic computational methods are used to forecast probability distributions of medical events, crew health metrics, medical resource utilization, and probability estimates of medical evacuation and loss of crew life. The IMM can also optimize medical kits within the constraints of mass and volume for specified missions. The IMM was used to forecast medical evacuation and loss of crew life probabilities, as well as crew health metrics for a near-earth asteroid (NEA) mission. An optimized medical kit for this mission was proposed based on the IMM simulation. Discussion The IMM can provide information to the space program regarding medical risks, including crew medical impairment, medical evacuation and loss of crew life. This information is valuable to mission managers and the space medicine community in assessing risk and developing mitigation strategies. Exploration missions such as NEA missions will have significant mass and volume constraints applied to the medical system. Appropriate allocation of medical resources will be critical to mission success. The IMM capability of optimizing medical systems based on specific crew and mission profiles will be advantageous to medical system designers. Conclusion The IMM is a decision support tool that can provide estimates of the impact of medical events on human space flight missions, such as crew impairment, evacuation, and loss of crew life. It can be used to support the development of mitigation strategies and to propose optimized medical systems for specified space flight missions. Learning Objectives The audience will learn how an evidence-based decision support tool can be used to help assess risk, develop mitigation strategies, and optimize medical systems for exploration space flight missions.

  2. A review of the habitability aspects of prior space flights from the flight crew perspective with an orientation toward designing Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Stramler, J. H.

    1990-01-01

    Habitability is a very important issue in long-duration spaceflight. With this concern, a review of much of the existing U.S. Skylab, Spacelab, and some Soviet literature on habitability aspects of long-duratioin space flight was completed for the Astronaut Space Station Support Office. The data were organized to follow as closely as possible the SSF distributed systems, such as Life Support, Data Management, etc. A new definition of habitability is proposed.

  3. KSC-2014-4177

    NASA Image and Video Library

    2014-10-01

    CAPE CANAVERAL, Fla. – The United Launch Alliance Delta IV Heavy rocket for Exploration Flight Test-1 is being lifted to the vertical position at the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy is being readied to launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Daniel Casper

  4. EFT-1 Delta IV Heavy lift to vertical

    NASA Image and Video Library

    2014-10-01

    This close-up view shows the United Launch Alliance Delta IV Heavy rocket for Exploration Flight Test-1 being raised into the vertical position at the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy is being readied to launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014.

  5. EFT-1 Delta IV Heavy lift to vertical

    NASA Image and Video Library

    2014-10-01

    The United Launch Alliance Delta IV Heavy rocket for Exploration Flight Test-1 is lifted to the vertical position in the mobile service tower on the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy is being readied to launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014.

  6. KSC-2014-4176

    NASA Image and Video Library

    2014-10-01

    CAPE CANAVERAL, Fla. – The United Launch Alliance Delta IV Heavy rocket for Exploration Flight Test-1 is being lifted to the vertical position at the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy is being readied to launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Daniel Casper

  7. EFT-1 Delta IV Heavy lift to vertical

    NASA Image and Video Library

    2014-10-01

    The United Launch Alliance Delta IV Heavy rocket for Exploration Flight Test-1 is being lifted to the vertical position at the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy is being readied to launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014.

  8. KSC-2014-4170

    NASA Image and Video Library

    2014-09-30

    CAPE CANAVERAL, Fla. – The United Launch Alliance Delta IV Heavy rocket for Exploration Flight Test-1 arrives at the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The rocket is secured on the Elevated Platform Transporter. The Delta IV Heavy will launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Dimitri Gerondidakis

  9. KSC-2014-4174

    NASA Image and Video Library

    2014-09-30

    CAPE CANAVERAL, Fla. – The United Launch Alliance Delta IV Heavy rocket for Exploration Flight Test-1 has arrived at the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The rocket is secured on the Elevated Platform Transporter. The Delta IV Heavy will launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Dimitri Gerondidakis

  10. KSC-2014-4171

    NASA Image and Video Library

    2014-09-30

    CAPE CANAVERAL, Fla. – The United Launch Alliance Delta IV Heavy rocket for Exploration Flight Test-1 arrives at the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The rocket is secured on the Elevated Platform Transporter. The Delta IV Heavy will launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Dimitri Gerondidakis

  11. Status of the Node 3 Regenerative Environmental Cpntrol& Life Support System Water Recovery & Oxygen Generation Systems

    NASA Technical Reports Server (NTRS)

    Carrasquillo, Robyn L.

    2003-01-01

    NASA s Marshall Space Flight Center is providing three racks containing regenerative water recovery and oxygen generation systems (WRS and OGS) for flight on the lnternational Space Station s (ISS) Node 3 element. The major assemblies included in these racks are the Water Processor Assembly (WPA), Urine Processor Assembly (UPA), Oxygen Generation Assembly (OGA), and the Power Supply Module (PSM) supporting the OGA. The WPA and OGA are provided by Hamilton Sundstrand Space Systems lnternational (HSSSI), while the UPA and PSM are being designed and manufactured in-house by MSFC. The assemblies are currently in the manufacturing and test phase and are to be completed and integrated into flight racks this year. This paper gives an overview of the technologies and system designs, technical challenges encountered and solved, and the current status.

  12. Manned spacecraft electrical power systems

    NASA Technical Reports Server (NTRS)

    Simon, William E.; Nored, Donald L.

    1987-01-01

    A brief history of the development of electrical power systems from the earliest manned space flights illustrates a natural trend toward a growth of electrical power requirements and operational lifetimes with each succeeding space program. A review of the design philosophy and development experience associated with the Space Shuttle Orbiter electrical power system is presented, beginning with the state of technology at the conclusion of the Apollo Program. A discussion of prototype, verification, and qualification hardware is included, and several design improvements following the first Orbiter flight are described. The problems encountered, the scientific and engineering approaches used to meet the technological challenges, and the results obtained are stressed. Major technology barriers and their solutions are discussed, and a brief Orbiter flight experience summary of early Space Shuttle missions is included. A description of projected Space Station power requirements and candidate system concepts which could satisfy these anticipated needs is presented. Significant challenges different from Space Shuttle, innovative concepts and ideas, and station growth considerations are discussed. The Phase B Advanced Development hardware program is summarized and a status of Phase B preliminary tradeoff studies is presented.

  13. STS-70 Space Shuttle Mission Report - September 1995

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1995-01-01

    The STS-70 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventieth flight of the Space Shuttle Program, the forty-fifth flight since the return-to-flight, and the twenty-first flight of the Orbiter Discovery (OV-103). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-71; three SSMEs that were designated as serial numbers 2036, 2019, and 2017 in positions 1, 2, and 3, respectively; and two SRBs that were designated 81-073. The RSRMs, designated RSRM-44, were installed in each SRB and were designated as 36OL044A for the left SRB, and 36OL044B for the right SRB. The primary objective of this flight was to deploy the Tracking and Data Relay Satellite-G/Inertial Upper Stage (TDRS-G/IUS). The secondary objectives were to fulfill the requirements of the Physiological and Anatomical Rodent Experiment/National Institutes of Health-Rodents (PARE/NIH-R); Bioreactor Demonstration System (BDS); Commercial Protein Crystal Growth (CPCG) experiment; Space Tissue Loss/National Institutes of Health - Cells (STL/NIH-C) experiment; Biological Research in Canisters (BRIC) experiment; Shuttle Amateur Radio Experiment-2 (SAREX-2); Visual Function Tester-4 (VFT-4); Hand-Held, Earth-Oriented, Real-Time, Cooperative, User-Friendly Location-Targeting and Environmental System (HERCULES); Microencapsulation in Space-B (MIS-B) experiment; Window Experiment (WINDEX); Radiation Monitoring Equipment-3 (RME-3); and the Military Applications of Ship Tracks (MAST) payload.

  14. Technicians inspect external tank attachment fittings on the Space Shuttle Discovery as part of its post-flight processing at NASA DFRC

    NASA Image and Video Library

    2005-08-12

    Robert 'Skip' Garrett; main propulsion advanced systems technician, and Chris Jacobs; main propulsion systems engineering technician, inspect external tank attachment fittings on the Space Shuttle Discovery as part of it's post-flight processing at NASA's Dryden Flight Research Center. The Space Shuttles receive post-flight servicing in the Mate-Demate Device (MDD) following landings at NASA's Dryden Flight Research Center, Edwards, California. The gantry-like MDD structure is used for servicing the shuttle orbiters in preparation for their ferry flight back to the Kennedy Space Center in Florida, including mounting the shuttle atop NASA's modified Boeing 747 Shuttle Carrier Aircraft. Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base in California at 5:11:22 a.m. PDT, August 9, 2005, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items and returned to Shuttle pa

  15. Orion Flight Test Preview Briefing

    NASA Image and Video Library

    2014-11-06

    In the Kennedy Space Center’s Press Site auditorium, members of the news media are briefed on the upcoming Orion flight test by Mark Geyer, NASA Orion Program manager. Also participating in the news conference are Bill Hill, NASA deputy associate administrator for Exploration Systems Development, left, and Bryan Austin, Lockheed Martin mission manager. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.

  16. First flight test results of the Simplified Aid For EVA Rescue (SAFER) propulsion unit

    NASA Technical Reports Server (NTRS)

    Meade, Carl J.

    1995-01-01

    The Simplified Aid for EVA Rescue (SAFER) is a small, self-contained, propulsive-backpack system that provides free-flying mobility for an astronaut engaged in a space walk, also known as extravehicular activity (EVA.) SAFER contains no redundant systems and is intended for contingency use only. In essence, it is a small, simplified version of the Manned Maneuvering Unit (MMU) last flown aboard the Space Shuttle in 1985. The operational SAFER unit will only be used to return an adrift EVA astronaut to the spacecraft. Currently, if an EVA crew member inadvertently becomes separated from the Space Shuttle, the Orbiter will maneuver to within the crew member's reach envelope, allowing the astronaut to regain contact with the Orbiter. However, with the advent of operations aboard the Russian MIR Space Station and the International Space Station, the Space Shuttle will not be available to effect a timely rescue. Under these conditions, a SAFER unit would be worn by each EVA crew member. Flight test of the pre-production model of SAFER occurred in September 1994. The crew of Space Shuttle Mission STS-64 flew a 6.9 hour test flight which included performance, flying qualities, systems, and operational utility evaluations. We found that the unit offers adequate propellant and control authority to stabilize and enable the return of a tumbling/separating crew member. With certain modifications, production model of SAFER can provide self-rescue capability to a separated crew member. This paper will present the program background, explain the flight test results and provide some insight into the complex operations of flight test in space.

  17. KSC-05PD-0365

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Preparing for Return to Flight, workers at KSC walk the grounds around Launch Pad 39B looking for and picking up Foreign Object Debris, or FOD. The pad was recently refurbished and any possible debris left behind must be removed from the area prior to launch. Foreign objects that are alien to flight systems may cause material damage or may make the system or equipment inoperable, unsafe or less efficient. The Return to Flight mission STS-114 aboard Space Shuttle Discovery will carry supplies and equipment to the International Space Station. Discovery is scheduled for launch in a window from May 15 to June 3.

  18. Cost effective launch operations of the SSME

    NASA Technical Reports Server (NTRS)

    Klatt, F. P.

    1985-01-01

    The Space Shuttle Main Engine (SSME) represents the beginning of reusable rocket engine operations in the space transportation system (STS). Steps taken to reduce the overall cost of flight operations of the SSME by improving turnaround operations, extending the life of the engine, and improving the cost effectiveness of overhaul operations at the Canoga Park home plant are described. Ground certification testing to ensure safe launch operations is described, as well as certification extension testing that leads to a service life equivalent to 40 flights. The proven flight record of the SSME, which has demonstrated the utility of the SSME as a key component of America's space transportation system, is discussed.

  19. Orion Stage Adapter move to Redstone Airfield

    NASA Image and Video Library

    2018-04-03

    NASA's Super Guppy aircraft arrives to the U.S. Army’s Redstone Airfield in Huntsville, Alabama, April 2, to pick up flight hardware for NASA’s Space Launch System – its new, deep-space rocket that will enable astronauts to begin their journey to explore destinations far into the solar system. The Guppy will depart on Tuesday, April 3 to deliver the Orion stage adapter to NASA’s Kennedy Space Center in Florida for flight preparations. On Exploration Mission-1, the first integrated flight of the SLS and the Orion spacecraft, the adapter will connect Orion to the rocket and carry 13 CubeSats as secondary payloads.

  20. Orion Stage Adapter move to Redstone Airfield

    NASA Image and Video Library

    2018-04-02

    Caption: NASA's Super Guppy aircraft arrives to the U.S. Army’s Redstone Airfield in Huntsville, Alabama, April 2, to pick up flight hardware for NASA’s Space Launch System – its new, deep-space rocket that will enable astronauts to begin their journey to explore destinations far into the solar system. The Guppy will depart on Tuesday, April 3 to deliver the Orion stage adapter to NASA’s Kennedy Space Center in Florida for flight preparations. On Exploration Mission-1, the first integrated flight of the SLS and the Orion spacecraft, the adapter will connect Orion to the rocket and carry 13 CubeSats as secondary payloads.

  1. Changes in the central nervous system during long-duration space flight: implications for neuro-imaging

    NASA Astrophysics Data System (ADS)

    Newberg, A. B.; Alavi, A.

    The purpose of this paper is to review the potential functional and morphological effects of long duration space flight on the human central nervous system (CNS) and how current neuroimaging techniques may be utilized to study these effects. It must be determined if there will be any detrimental changes to the CNS from long term exposure to the space environment if human beings are to plan interplanetary missions or establish permanent space habitats. Research to date has focused primarily on the short term changes in the CNS as the result of space flight. The space environment has many factors such as weightlessness, electromagnetic fields, and radiation, that may impact upon the function and structure of the CNS. CNS changes known to occur during and after long term space flight include neurovestibular disturbances, cephalic fluid shifts, alterations in sensory perception, changes in proprioception, psychological disturbances, and cognitive changes. Animal studies have shown altered plasticity of the neural cytoarchitecture, decreased neuronal metabolism in the hypothalamus, and changes in neurotransmitter concentrations. Recent progress in the ability to study brain morphology, cerebral metabolism, and neurochemistry in vivo in the human brain would provide ample opportunity to investigate many of the changes that occur in the CNS as a result of space flight. These methods include positron emission tomography (PET), single photon emission computed tomography (SPECT), and magnetic resonance imaging (MRI).

  2. Eyharts performs TVIS maintenance

    NASA Image and Video Library

    2008-03-03

    ISS016-E-030559 (4 March 2008) --- European Space Agency (ESA) astronaut Leopold Eyharts, Expedition 16 flight engineer, works with the Treadmill Vibration Isolation System (TVIS) removed from the Zvezda Service Module floor during in-flight maintenance (IFM) on the International Space Station.

  3. NASA Earth-to-Orbit Engineering Design Challenges: Thermal Protection Systems

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration (NASA), 2010

    2010-01-01

    National Aeronautics and Space Administration (NASA) Engineers at Marshall Space Flight Center, Dryden Flight Research Center, and their partners at other NASA centers and in private industry are currently developing X-33, a prototype to test technologies for the next generation of space transportation. This single-stage-to-orbit reusable launch…

  4. Ingestible Thermometer Pill Aids Athletes in Beating the Heat

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Developed by Goddard Space Flight Center and the Johns Hopkins University Applied Physics Laboratory to monitor the core body temperature of astronauts during space flight, the ingestible "thermometer pill" has a silicone-coated exterior, with a microbattery, a quartz crystal temperature sensor, a space-aged telemetry system, and microminiaturized circuitry on the interior.

  5. Analysis of helicopter flight dynamics through modeling and simulation of primary flight control actuation system

    NASA Astrophysics Data System (ADS)

    Nelson, Hunter Barton

    A simplified second-order transfer function actuator model used in most flight dynamics applications cannot easily capture the effects of different actuator parameters. The present work integrates a nonlinear actuator model into a nonlinear state space rotorcraft model to determine the effect of actuator parameters on key flight dynamics. The completed actuator model was integrated with a swashplate kinematics where step responses were generated over a range of key hydraulic parameters. The actuator-swashplate system was then introduced into a nonlinear state space rotorcraft simulation where flight dynamics quantities such as bandwidth and phase delay analyzed. Frequency sweeps were simulated for unique actuator configurations using the coupled nonlinear actuator-rotorcraft system. The software package CIFER was used for system identification and compared directly to the linearized models. As the actuator became rate saturated, the effects on bandwidth and phase delay were apparent on the predicted handling qualities specifications.

  6. Hubble Space Telescope nickel-hydrogen battery testing: An update

    NASA Technical Reports Server (NTRS)

    Whitt, Thomas H.; Brewer, Jeffrey C.

    1995-01-01

    The Marshall Space Flight Center (MSFC) began testing the HST Ni-H2 Six Battery Test and the 'Flight Spare Battery' Tests approximately one year before the launch of the HST. These tests are operated and reported on by the MSFC, but are managed and funded by Goddard Space Flight Center in direct support of the HST program. The HST Ni-H2 batteries are built from Eagle Picher RNH-90-3 cells. The HST EPS (electrical power system) is a direct energy transfer power system. The HST Ni-H2 Six Battery Test is a breadboard of the HST EPS. The batteries in the test are composed of test module cells and packaged into three battery modules identical to the flight modules. This test is the HST EPS testbed. The 'Flight Spare Battery' Test is a simulation of one of the six battery channels on the HST. The cells in the test are from the flight spare lot of cells, which are the same lot of cells that three of the six HST flight batteries are made from. This test is the battery life test for the HST program.

  7. Langley applications experiments data management system study. [for space shuttles

    NASA Technical Reports Server (NTRS)

    Lanham, C. C., Jr.

    1975-01-01

    A data management system study is presented that defines, in functional terms, the most cost effective ground data management system to support Advanced Technology Laboratory (ATL) flights of the space shuttle. Results from each subtask performed and the recommended system configuration for reformatting the experiment instrumentation tapes to computer compatible tape are examined. Included are cost factors for development of a mini control center for real-time support of the ATL flights.

  8. Microgravity

    NASA Image and Video Library

    1998-09-30

    Dr. Rulison of Space System LORAl working with the Electrostatic Levitation (ESL) prior to the donation. Space System/LORAL donated the electrostatic containerless processing system to NASA's Marshall Space Flight Center (MSFC). The official hand over took place in July 1998.

  9. Launch Vehicle Manual Steering with Adaptive Augmenting Control In-flight Evaluations of Adverse Interactions Using a Piloted Aircraft

    NASA Technical Reports Server (NTRS)

    Hanson, Curt; Miller, Chris; Wall, John H.; Vanzwieten, Tannen S.; Gilligan, Eric; Orr, Jeb S.

    2015-01-01

    An adaptive augmenting control algorithm for the Space Launch System has been developed at the Marshall Space Flight Center as part of the launch vehicles baseline flight control system. A prototype version of the SLS flight control software was hosted on a piloted aircraft at the Armstrong Flight Research Center to demonstrate the adaptive controller on a full-scale realistic application in a relevant flight environment. Concerns regarding adverse interactions between the adaptive controller and a proposed manual steering mode were investigated by giving the pilot trajectory deviation cues and pitch rate command authority. Two NASA research pilots flew a total of twenty five constant pitch-rate trajectories using a prototype manual steering mode with and without adaptive control.

  10. Automated Rendezvous and Capture System Development and Simulation for NASA

    NASA Technical Reports Server (NTRS)

    Roe, Fred D.; Howard, Richard T.; Murphy, Leslie

    2004-01-01

    The United States does not have an Automated Rendezvous and Capture/Docking (AR and C) capability and is reliant on manned control for rendezvous and docking of orbiting spacecraft. This reliance on the labor intensive manned interface for control of rendezvous and docking vehicles has a significant impact on the cost of the operation of the International Space Station (ISS) and precludes the use of any U.S. expendable launch capabilities for Space Station resupply. The Soviets have the capability to autonomously dock in space, but their system produces a hard docking with excessive force and contact velocity. Automated Rendezvous and Capture/Docking has been identified as a key enabling technology for the Space Launch Initiative (SLI) Program, DARPA Orbital Express and other DOD Programs. The development and implementation of an AR&C capability can significantly enhance system flexibility, improve safety, and lower the cost of maintaining, supplying, and operating the International Space Station. The Marshall Space Flight Center (MSFC) has conducted pioneering research in the development of an automated rendezvous and capture (or docking) (AR and C) system for U.S. space vehicles. This AR&C system was tested extensively using hardware-in-the-loop simulations in the Flight Robotics Laboratory, and a rendezvous sensor, the Video Guidance Sensor was developed and successfully flown on the Space Shuttle on flights STS-87 and STS-95, proving the concept of a video- based sensor. Further developments in sensor technology and vehicle and target configuration have lead to continued improvements and changes in AR&C system development and simulation. A new Advanced Video Guidance Sensor (AVGS) with target will be utilized on the Demonstration of Autonomous Rendezvous Technologies (DART) flight experiment in 2004.

  11. KENNEDY SPACE CENTER, FLA. - Shipped in an air-conditioned transportation van from NASA’s Goddard Space Flight Center in Greenbelt, Md., NASA’s MESSENGER spacecraft, the first Mercury orbiter, arrives at the Astrotech Space Operations processing facilities near KSC. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be offloaded and taken into a high bay clean room. After the spacecraft is removed from its shipping container, employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

    NASA Image and Video Library

    2004-03-10

    KENNEDY SPACE CENTER, FLA. - Shipped in an air-conditioned transportation van from NASA’s Goddard Space Flight Center in Greenbelt, Md., NASA’s MESSENGER spacecraft, the first Mercury orbiter, arrives at the Astrotech Space Operations processing facilities near KSC. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be offloaded and taken into a high bay clean room. After the spacecraft is removed from its shipping container, employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

  12. Artificial intelligence and expert systems in-flight software testing

    NASA Technical Reports Server (NTRS)

    Demasie, M. P.; Muratore, J. F.

    1991-01-01

    The authors discuss the introduction of advanced information systems technologies such as artificial intelligence, expert systems, and advanced human-computer interfaces directly into Space Shuttle software engineering. The reconfiguration automation project (RAP) was initiated to coordinate this move towards 1990s software technology. The idea behind RAP is to automate several phases of the flight software testing procedure and to introduce AI and ES into space shuttle flight software testing. In the first phase of RAP, conventional tools to automate regression testing have already been developed or acquired. There are currently three tools in use.

  13. An Operational Wake Vortex Sensor Using Pulsed Coherent Lidar

    NASA Technical Reports Server (NTRS)

    Barker, Ben C., Jr.; Koch, Grady J.; Nguyen, D. Chi

    1998-01-01

    NASA and FAA initiated a program in 1994 to develop methods of setting spacings for landing aircraft by incorporating information on the real-time behavior of aircraft wake vortices. The current wake separation standards were developed in the 1970's when there was relatively light airport traffic and a logical break point by which to categorize aircraft. Today's continuum of aircraft sizes and increased airport packing densities have created a need for re-evaluation of wake separation standards. The goals of this effort are to ensure that separation standards are adequate for safety and to reduce aircraft spacing for higher airport capacity. Of particular interest are the different requirements for landing under visual flight conditions and instrument flight conditions. Over the years, greater spacings have been established for instrument flight than are allowed for visual flight conditions. Preliminary studies indicate that the airline industry would save considerable money and incur fewer passenger delays if a dynamic spacing system could reduce separations at major hubs during inclement weather to the levels routinely achieved under visual flight conditions. The sensor described herein may become part of this dynamic spacing system known as the "Aircraft VOrtex Spacing System" (AVOSS) that will interface with a future air traffic control system. AVOSS will use vortex behavioral models and short-term weather prediction models in order to predict vortex behavior sufficiently into the future to allow dynamic separation standards to be generated. The wake vortex sensor will periodically provide data to validate AVOSS predictions. Feasibility of measuring wake vortices using a lidar was first demonstrated using a continuous wave (CW) system from NASA Marshall Space Flight Sensor and tested at the Volpe National Transportation Systems Center's wake vortex test site at JFK International Airport. Other applications of CW lidar for wake vortex measurement have been made more recently, including a system developed by the MIT Lincoln Laboratory. This lidar has been used for detailed measurements of wake vortex velocities in support of wake vortex model validation. The first measurements of wake vortices using a pulsed, lidar were made by Coherent Technologies, Inc. (CTI) using a 2 micron solid-state, flashlamp-pumped system operating at 5 Hz. This system was first deployed at Denver's Stapleton Airport. Pulsed lidar has been selected as the baseline technology for an operational sensor due to its longer range capability.

  14. Subsonic stability and control flight test results of the Space Shuttle /tail cone off/

    NASA Technical Reports Server (NTRS)

    Cooke, D. R.

    1980-01-01

    The subsonic stability and control testing of the Space Shuttle Orbiter in its two test flights in the tailcone-off configuration is discussed, and test results are presented. Flight test maneuvers were designed to maximize the quality and quantity of stability and control data in the minimal time allotted using the Space Shuttle Functional Simulator and the Modified Maximum Likelihood Estimator (MMLE) programs, and coefficients were determined from standard sensor data sets using the MMLE, despite problems encountered in timing due to the different measurement systems used. Results are included for lateral directional and longitudinal maneuvers as well as the Space Shuttle aerodynamic data base obtained using the results of wind tunnel tests. The flight test data are found to permit greater confidence in the data base since the differences found are well within control system capability. It is suggested that the areas of major differences, including lateral directional data with open speedbrake, roll due to rudder and normal force due to elevon, be investigated in any further subsonic flight testing. Improvements in sensor data and data handling techniques for future orbital test flights are indicated.

  15. Bioculture System Validation

    NASA Technical Reports Server (NTRS)

    Sato, Kevin Y.

    2012-01-01

    The Bioculture System first flight will be to validate the performance of the hardware and its automated and manual operational capabilities in the space flight environment of the International Space Station. Biology, Engineering, and Operations tests will be conducted in the Bioculture System fully characterize its automated and manual functions to support cell culturing for short and long durations. No hypothesis-driven research will be conducted with biological sample, and the science leads have all provided their concurrence that none of the data they collect will be considered as proprietary and can be free distributed to the science community. The outcome of the validation flight will be to commission the hardware for use by the science community. This presentation will provide non-proprietary details about the Bioculture System and information about the activities for the first flight.

  16. Results of space environment measurement carried out by the Roscosmos monitoring system elements and their correlation with different space weather characteristics

    NASA Astrophysics Data System (ADS)

    Protopopov, Grigory; Anashin, Vasily; Elushov, Ilya; Kozyukova, Olga

    The Monitoring System of space radiation exposure on electronic components is developed by the Institute of Space Device Engineering by order Roscosmos. The key targets of the Monitoring System are space environment measurements, space model correction, space weather characteristics forecast, improvement of radiation hardness technical requirements and etc. The Monitoring System includes two parts: the ground-based and the space-born segments. The ground-based segment includes the forecast station, the analytic complex and the data output system. The space-born segment base elements are TID sensors operating by MNOSFET dosimetry principle. Sensor temperature stabilization is achieved by choosing of operational point according to the minimal change of sensor current-voltage curve. The set of 38 TID sensors is placed on 19 spacecrafts currently. The spacecrafts operate in Medium Earth Orbit (MEO) (approximately 20 000 km with inclination of 65(°) ). The flight data obtained perfectly correlate with total dose flight data registered using MOSFET placed on Van Allen Probe spacecraft functioning in high elliptical orbit (apogee is 37 000 km, perigee is 650 km, inclination is 10(°) ). Also coincidence with the dose data from GIOVE-B spacecraft (circular orbit 23200 km, inclination of 56(°) ) of Galileo system is observed. We have observed several abrupt dose rate increases from April, 2010. The flight data are compared with other monitoring system data and ground measurements. The comparison results show that high energy electrons (> 1 MeV) give general contribution in accumulated dose and anomalous dose rate increases. These results are in agreement with shielding stopping power calculation results. The high electron fluxes rise significantly in MEO as a result of Van Allen belts shifting during geomagnetic storms. The flight data were compared with calculation results obtained using different space models. The comparison shows that for some long-term interval the distinction between experimental and calculated results can be 7 times less or more.

  17. Space Shuttle Rudder Speed Brake Actuator-A Case Study Probabilistic Fatigue Life and Reliability Analysis

    NASA Technical Reports Server (NTRS)

    Oswald, Fred B.; Savage, Michael; Zaretsky, Erwin V.

    2015-01-01

    The U.S. Space Shuttle fleet was originally intended to have a life of 100 flights for each vehicle, lasting over a 10-year period, with minimal scheduled maintenance or inspection. The first space shuttle flight was that of the Space Shuttle Columbia (OV-102), launched April 12, 1981. The disaster that destroyed Columbia occurred on its 28th flight, February 1, 2003, nearly 22 years after its first launch. In order to minimize risk of losing another Space Shuttle, a probabilistic life and reliability analysis was conducted for the Space Shuttle rudder/speed brake actuators to determine the number of flights the actuators could sustain. A life and reliability assessment of the actuator gears was performed in two stages: a contact stress fatigue model and a gear tooth bending fatigue model. For the contact stress analysis, the Lundberg-Palmgren bearing life theory was expanded to include gear-surface pitting for the actuator as a system. The mission spectrum of the Space Shuttle rudder/speed brake actuator was combined into equivalent effective hinge moment loads including an actuator input preload for the contact stress fatigue and tooth bending fatigue models. Gear system reliabilities are reported for both models and their combination. Reliability of the actuator bearings was analyzed separately, based on data provided by the actuator manufacturer. As a result of the analysis, the reliability of one half of a single actuator was calculated to be 98.6 percent for 12 flights. Accordingly, each actuator was subsequently limited to 12 flights before removal from service in the Space Shuttle.

  18. Robust, Radiation Tolerant Command and Data Handling and Power System Electronics from NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Nguyen, Hanson C.; Fraction, James; Ortiz-Acosta, Melyane; Dakermanji, George; Kercheval, Bradford P.; Hernandez-Pellerano, Amri; Kim, David S.; Jung, David S.; Meyer, Steven E.; Mallik, Udayan; hide

    2016-01-01

    The Goddard Modular Smallsat Architecture (GMSA) is developed at NASA Goddard Space Flight Center (GSFC) to address future reliability along with minimizing cost and schedule challenges for NASA Cubesat and Smallsat missions.

  19. First reusable spaceship prepared for second mission

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The inspection, repair, and modification of the space shuttle Columbia prior vehicle assembly and roll out for the second space transportation system flight are described. The schedule for launch countdown and a preliminary sketch of plans for the second flight are presented.

  20. Development and flight test of a deployable precision landing system

    NASA Technical Reports Server (NTRS)

    Sim, Alex G.; Murray, James E.; Neufeld, David C.; Reed, R. Dale

    1994-01-01

    A joint NASA Dryden Flight Research Facility and Johnson Space Center program was conducted to determine the feasibility of the autonomous recovery of a spacecraft using a ram-air parafoil system for the final stages of entry from space that included a precision landing. The feasibility of this system was studied using a flight model of a spacecraft in the generic shape of a flattened biconic that weighed approximately 150 lb and was flown under a commercially available, ram-air parachute. Key elements of the vehicle included the Global Positioning System guidance for navigation, flight control computer, ultrasonic sensing for terminal altitude, electronic compass, and onboard data recording. A flight test program was used to develop and refine the vehicle. This vehicle completed an autonomous flight from an altitude of 10,000 ft and a lateral offset of 1.7 miles that resulted in a precision flare and landing into the wind at a predetermined location. At times, the autonomous flight was conducted in the presence of winds approximately equal to vehicle airspeed. Several novel techniques for computing the winds postflight were evaluated. Future program objectives are also presented.

  1. Living Together in Space: The International Space Station Internal Active Thermal Control System Issues and Solutions-Sustaining Engineering Activities at the Marshall Space Flight Center From 1998 to 2005

    NASA Technical Reports Server (NTRS)

    Wieland, P. O.; Roman, M. C.; Miller, L.

    2007-01-01

    On board the International Space Station, heat generated by the crew and equipment is removed by the internal active thermal control system to maintain a comfortable working environment and prevent equipment overheating. Test facilities simulating the internal active thermal control system (IATCS) were constructed at the Marshall Space Flight Center as part of the sustaining engineering activities to address concerns related to operational issues, equipment capability, and reliability. A full-scale functional simulator of the Destiny lab module IATCS was constructed and activated prior to launch of Destiny in 2001. This facility simulates the flow and thermal characteristics of the flight system and has a similar control interface. A subscale simulator was built, and activated in 2000, with special attention to materials and proportions of wetted surfaces to address issues related to changes in fluid chemistry, material corrosion, and microbial activity. The flight issues that have arisen and the tests performed using the simulator facilities are discussed in detail. In addition, other test facilities at the MSFC have been used to perform specific tests related to IATCS issues. Future testing is discussed as well as potential modifications to the simulators to enhance their utility.

  2. Renal hemodynamics in space.

    PubMed

    Kramer, H J; Heer, M; Cirillo, M; De Santo, N G

    2001-09-01

    Renal excretory function and hemodynamics are determined by the effective circulating plasma volume as well as by the interplay of systemic and local vasoconstrictors and vasodilators. Microgravity results in a headward shift of body fluid. Because the control conditions of astronauts were poorly defined in many studies, controversial results have been obtained regarding diuresis and natriuresis as well as renal hemodynamic changes in response to increased central blood volume, especially during the initial phase of space flight. Renal excretory function and renal hemodynamics in microgravity are affected in a complex fashion, because during the initial phase of space flight, variable mechanisms become operative to modulate the effects of increased central blood volume. They include interactions between vasodilators (dopamine, atrial natriuretic peptide, and prostaglandins) and vasoconstrictors (sympathetic nervous system and the renin-angiotensin system). The available data suggest a moderate rise in glomerular filtration rate during the first 2 days after launch without a significant increase in effective renal plasma flow. In contrast, too few data regarding the effects of space flight on renal function during the first 12 hours after launch are available and are, in addition, partly contradictory. Thus, detailed and well-controlled studies are required to shed more light on the role of the various factors besides microgravity that determine systemic and renal hemodynamics and renal excretory function during the different stages of space flight.

  3. Deployable antenna phase A study

    NASA Technical Reports Server (NTRS)

    Schultz, J.; Bernstein, J.; Fischer, G.; Jacobson, G.; Kadar, I.; Marshall, R.; Pflugel, G.; Valentine, J.

    1979-01-01

    Applications for large deployable antennas were re-examined, flight demonstration objectives were defined, the flight article (antenna) was preliminarily designed, and the flight program and ground development program, including the support equipment, were defined for a proposed space transportation system flight experiment to demonstrate a large (50 to 200 meter) deployable antenna system. Tasks described include: (1) performance requirements analysis; (2) system design and definition; (3) orbital operations analysis; and (4) programmatic analysis.

  4. Research Technology

    NASA Image and Video Library

    1999-10-21

    Travel to distant stars is a long-range goal of Marshall Space Flight Center's Advanced Concept Group. One of the many propulsion systems currently being studied is fusion power. The objective of this and many other alternative propulsion systems is to reduce the costs of space access and to reduce the travel time for planetary missions. One of the major factors is providing an alternate engery source for these missions. Pictured is an artist's concept of future interplanetary space flight using fusion power.

  5. KENNEDY SPACE CENTER, FLA. - Armando Oliu, Final Inspection Team lead for the Shuttle program, speaks to reporters about the aid the Image Analysis Lab is giving the FBI in a kidnapping case. Behind him at right is Mike Rein, External Affairs division chief. Oliu oversees the image lab that is using an advanced SGI® TP9500 data management system to review the tape of the kidnapping in progress in Sarasota, Fla. KSC installed the new $3.2 million system in preparation for Return to Flight of the Space Shuttle fleet. The lab is studying the Sarasota kidnapping video to provide any new information possible to law enforcement officers. KSC is joining NASA’s Marshall Space Flight Center in Alabama in reviewing the tape.

    NASA Image and Video Library

    2004-02-04

    KENNEDY SPACE CENTER, FLA. - Armando Oliu, Final Inspection Team lead for the Shuttle program, speaks to reporters about the aid the Image Analysis Lab is giving the FBI in a kidnapping case. Behind him at right is Mike Rein, External Affairs division chief. Oliu oversees the image lab that is using an advanced SGI® TP9500 data management system to review the tape of the kidnapping in progress in Sarasota, Fla. KSC installed the new $3.2 million system in preparation for Return to Flight of the Space Shuttle fleet. The lab is studying the Sarasota kidnapping video to provide any new information possible to law enforcement officers. KSC is joining NASA’s Marshall Space Flight Center in Alabama in reviewing the tape.

  6. KENNEDY SPACE CENTER, FLA. - One of the world’s highest performing visual film analysis systems, developed to review and analyze previous shuttle flight data (shown here) in preparation for the shuttle fleet’s return to flight, is being used today for another purpose. NASA has permitted its use in helping to analyze a film that shows a recent kidnapping in progress in Florida. The system, developed by NASA, United Space Alliance (USA) and Silicon Graphics Inc., allows multiple-person collaboration, highly detailed manipulation and evaluation of specific imagery. The system is housed in the Image Analysis Facility inside the Vehicle Assembly Building. [Photo taken Aug. 15, 2003, courtesy of Terry Wallace, SGI

    NASA Image and Video Library

    2004-02-04

    KENNEDY SPACE CENTER, FLA. - One of the world’s highest performing visual film analysis systems, developed to review and analyze previous shuttle flight data (shown here) in preparation for the shuttle fleet’s return to flight, is being used today for another purpose. NASA has permitted its use in helping to analyze a film that shows a recent kidnapping in progress in Florida. The system, developed by NASA, United Space Alliance (USA) and Silicon Graphics Inc., allows multiple-person collaboration, highly detailed manipulation and evaluation of specific imagery. The system is housed in the Image Analysis Facility inside the Vehicle Assembly Building. [Photo taken Aug. 15, 2003, courtesy of Terry Wallace, SGI

  7. Space Construction Experiment Definition Study (SCEDS), part 1. Volume 2: Study results

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A basic Space Shuttle flight experiment which will provide needed data on the construction of large space systems from the Orbiter was defined. The predicted dynamic behavior of a representative large structure, on-orbit construction operations, and Orbiter control during and after construction were studied. Evolutionary or supplemental flight experiments for the development or augmentation of a basic flight experiment were identified and defined. The study was divided into six major tasks with appropriate sub-tasks noted.

  8. Brown, Rominger and Curbeam conduct flight control systems checkout

    NASA Image and Video Library

    1997-08-29

    STS085-330-034 (7 - 19 August 1997) --- From the left, astronauts Curtis L. Brown, Jr., mission commander; Robert L. Curbeam, Jr., mission specialist; and Kent V. Rominger, pilot, are pictured on the Space Shuttle Discovery's flight deck during a checkout of flight control systems.

  9. Space Operations Center System Analysis: Requirements for a Space Operations Center, revision A

    NASA Technical Reports Server (NTRS)

    Woodcock, G. R.

    1982-01-01

    The system and program requirements for a space operations center as defined by systems analysis studies are presented as a guide for future study and systems definition. Topics covered include general requirements for safety, maintainability, and reliability, service and habitat modules, the health maintenance facility; logistics modules; the docking tunnel; and subsystem requirements (structures, electrical power, environmental control/life support; extravehicular activity; data management; communications and tracking; docking/berthing; flight control/propulsion; and crew support). Facilities for flight support, construction, satellite and mission servicing, and fluid storage are included as well as general purpose support equipment.

  10. KSC-05PD-0587

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. In the Orbiter Processing Facility bay 1 at NASAs Kennedy Space Center, a worker rolls the plastic cover removed from the Orbital Boom Sensor System (OBSS), at right, which will be installed in the payload bay of Atlantis. The 50- foot-long OBSS attaches to the Remote Manipulator System, or Shuttle robotic arm, and is one of the new safety measures for Return to Flight, equipping the orbiter with cameras and laser systems to inspect the Shuttles Thermal Protection System while in space. The Return to Flight mission STS-121 has a launch window of July 12 - July 31, 2005.

  11. The flights before the flight - An overview of shuttle astronaut training

    NASA Technical Reports Server (NTRS)

    Sims, John T.; Sterling, Michael R.

    1989-01-01

    Space shuttle astronaut training is centered at NASA's Johnson Space Center in Houston, Texas. Each astronaut receives many different types of training from many sources. This training includes simulator training in the Shuttle Mission Simulator, in-flight simulator training in the Shuttle Training Aircraft, Extravehicular Activity training in the Weightless Environment Training Facility and a variety of lectures and briefings. Once the training program is completed each shuttle flight crew is well-prepared to perform the normal operations required for their flight and deal with any shuttle system malfunctions that might occur.

  12. Electrostatic Levitator (ESL)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Dr. Rulison of Space System LORAl working with the Electrostatic Levitation (ESL) prior to the donation. Space System/LORAL donated the electrostatic containerless processing system to NASA's Marshall Space Flight Center (MSFC). The official hand over took place in July 1998.

  13. Medical considerations for extending human presence in space

    NASA Technical Reports Server (NTRS)

    Leach, C. S.; Dietlein, L. F.; Pool, S. L.; Nicogossian, A. E.

    1990-01-01

    The prospects for extending the length of time that humans can safely remain in space depend partly on resolution of a number of medical issues. Physiologic effects of weightlessness that may affect health during flight include loss of body fluid, functional alterations in the cardiovascular system, loss of red blood cells and bone mineral, compromised immune system function, and neurosensory disturbances. Some of the physiologic adaptations to weightlessness contribute to difficulties with readaptation to Earth's gravity. These include cardiovascular deconditioning and loss of body fluids and electrolytes; red blood cell mass; muscle mass, strength, and endurance; and bone mineral. Potentially harmful factors in space flight that are not related to weightlessness include radiation, altered circadian rhythms and rest/work cycles, and the closed, isolated environment of the spacecraft. There is no evidence that space flight has long-term effects on humans, except that bone mass lost during flight may not be replaced, and radiation damage is cumulative. However, the number of people who have spent several months or longer in space is still small. Only carefully-planned experiments in space preceded by thorough ground-based studies can provide the information needed to increase the amount of time humans can safely spend in space.

  14. Modeling, Analysis and Simulation Approaches Used in Development of the National Aeronautics and Space Administration Max Launch Abort System

    NASA Technical Reports Server (NTRS)

    Yuchnovicz, Daniel E.; Dennehy, Cornelius J.; Schuster, David M.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Engineering and Safety Center was chartered to develop an alternate launch abort system (LAS) as risk mitigation for the Orion Project. Its successful flight test provided data for the design of future LAS vehicles. Design of the flight test vehicle (FTV) and pad abort trajectory relied heavily on modeling and simulation including computational fluid dynamics for vehicle aero modeling, 6-degree-of-freedom kinematics models for flight trajectory modeling, and 3-degree-of-freedom kinematics models for parachute force modeling. This paper highlights the simulation techniques and the interaction between the aerodynamics, flight mechanics, and aerodynamic decelerator disciplines during development of the Max Launch Abort System FTV.

  15. KSC-2014-2830

    NASA Image and Video Library

    2014-05-30

    CAPE CANAVERAL, Fla. -- Lockheed Martin technicians and engineers attach the heat shield to the Orion crew module inside the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida. Technicians have installed more than 200 instrumentation sensors on the heat shield for Exploration Flight Test-1, or EFT-1. The flight test will provide engineers with data about the heat shield's ability to protect Orion and its future crews from the 4,000-degree heat of reentry and an ocean splashdown following the spacecraft’s 20,000-mph reentry from space. Data gathered during the flight will inform decisions about design improvements on the heat shield and other Orion systems, and authenticate existing computer models and new approaches to space systems design and development. This process is critical to reducing overall risks and costs of future Orion missions. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  16. KSC-2014-2831

    NASA Image and Video Library

    2014-05-30

    CAPE CANAVERAL, Fla. -- Lockheed Martin technicians and engineers attach the heat shield to the Orion crew module inside the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida. Technicians have installed more than 200 instrumentation sensors on the heat shield for Exploration Flight Test-1, or EFT-1. The flight test will provide engineers with data about the heat shield's ability to protect Orion and its future crews from the 4,000-degree heat of reentry and an ocean splashdown following the spacecraft’s 20,000-mph reentry from space. Data gathered during the flight will inform decisions about design improvements on the heat shield and other Orion systems, and authenticate existing computer models and new approaches to space systems design and development. This process is critical to reducing overall risks and costs of future Orion missions. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  17. Integrated Main Propulsion System Performance Reconstruction Process/Models

    NASA Technical Reports Server (NTRS)

    Lopez, Eduardo; Elliott, Katie; Snell, Steven; Evans, Michael

    2013-01-01

    The Integrated Main Propulsion System (MPS) Performance Reconstruction process provides the MPS post-flight data files needed for postflight reporting to the project integration management and key customers to verify flight performance. This process/model was used as the baseline for the currently ongoing Space Launch System (SLS) work. The process utilizes several methodologies, including multiple software programs, to model integrated propulsion system performance through space shuttle ascent. It is used to evaluate integrated propulsion systems, including propellant tanks, feed systems, rocket engine, and pressurization systems performance throughout ascent based on flight pressure and temperature data. The latest revision incorporates new methods based on main engine power balance model updates to model higher mixture ratio operation at lower engine power levels.

  18. 14 CFR 1214.302 - Background.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Background. 1214.302 Section 1214.302 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Payload Specialists for Space Transportation System (STS) Missions § 1214.302 Background. (a) The Space Transportation System (STS) has been...

  19. 14 CFR 1214.302 - Background.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Background. 1214.302 Section 1214.302 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Payload Specialists for Space Transportation System (STS) Missions § 1214.302 Background. (a) The Space Transportation System (STS) has been...

  20. 14 CFR 1214.302 - Background.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Background. 1214.302 Section 1214.302 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Payload Specialists for Space Transportation System (STS) Missions § 1214.302 Background. (a) The Space Transportation System (STS) has been...

  1. 14 CFR 1214.302 - Background.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Background. 1214.302 Section 1214.302 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Payload Specialists for Space Transportation System (STS) Missions § 1214.302 Background. (a) The Space Transportation System (STS) has been...

  2. 14 CFR 1214.501 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Applicability. 1214.501 Section 1214.501 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Mission Critical Space System... the safety and success of mission critical space systems. (b) The provisions of this regulation apply...

  3. 14 CFR 1214.501 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Applicability. 1214.501 Section 1214.501 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Mission Critical Space System... the safety and success of mission critical space systems. (b) The provisions of this regulation apply...

  4. 14 CFR 1214.501 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Applicability. 1214.501 Section 1214.501 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Mission Critical Space System... the safety and success of mission critical space systems. (b) The provisions of this regulation apply...

  5. 14 CFR 1214.501 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Applicability. 1214.501 Section 1214.501 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Mission Critical Space System... the safety and success of mission critical space systems. (b) The provisions of this regulation apply...

  6. Post-Flight Analysis of the Guidance, Navigation, and Control Performance During Orion Exploration Flight Test 1

    NASA Technical Reports Server (NTRS)

    Barth, Andrew; Mamich, Harvey; Hoelscher, Brian

    2015-01-01

    The first test flight of the Orion Multi-Purpose Crew Vehicle presented additional challenges for guidance, navigation and control as compared to a typical re-entry from the International Space Station or other Low Earth Orbit. An elevated re-entry velocity and steeper flight path angle were chosen to achieve aero-thermal flight test objectives. New IMU's, a GPS receiver, and baro altimeters were flight qualified to provide the redundant navigation needed for human space flight. The guidance and control systems must manage the vehicle lift vector in order to deliver the vehicle to a precision, coastal, water landing, while operating within aerodynamic load, reaction control system, and propellant constraints. Extensive pre-flight six degree-of-freedom analysis was performed that showed mission success for the nominal mission as well as in the presence of sensor and effector failures. Post-flight reconstruction analysis of the test flight is presented in this paper to show whether that all performance metrics were met and establish how well the pre-flight analysis predicted the in-flight performance.

  7. Mature data transport and command management services for the Space Station

    NASA Technical Reports Server (NTRS)

    Carper, R. D.

    1986-01-01

    The duplex space/ground/space data services for the Space Station are described. The need to separate the uplink data service functions from the command functions is discussed. Command management is a process shared by an operation control center and a command management system and consists of four functions: (1) uplink data communications, (2) management of the on-board computer, (3) flight resource allocation and management, and (4) real command management. The new data service capabilities provided by microprocessors, ground and flight nodes, and closed loop and open loop capabilities are studied. The need for and functions of a flight resource allocation management service are examined. The system is designed so only users can access the system; the problems encountered with open loop uplink access are analyzed. The procedures for delivery of operational, verification, computer, and surveillance and monitoring data directly to users are reviewed.

  8. Manned Systems Utilization Analysis. Study 2.1: Space Servicing Pilot Program Study. [for automated payloads

    NASA Technical Reports Server (NTRS)

    Wolfe, R. R.

    1975-01-01

    Space servicing automated payloads was studied for potential cost benefits for future payload operations. Background information is provided on space servicing in general, and on a pilot flight test program in particular. An fight test is recommended to demonstrate space servicing. An overall program plan is provided which builds upon the pilot program through an interim servicing capability. A multipayload servicing concept for the time when the full capability tug becomes operational is presented. The space test program is specifically designed to provide low-cost booster vehicles and a flight test platform for several experiments on a single flight.

  9. An Integrated Analysis of the Physiological Effects of Space Flight: Executive Summary

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1985-01-01

    A large array of models were applied in a unified manner to solve problems in space flight physiology. Mathematical simulation was used as an alternative way of looking at physiological systems and maximizing the yield from previous space flight experiments. A medical data analysis system was created which consist of an automated data base, a computerized biostatistical and data analysis system, and a set of simulation models of physiological systems. Five basic models were employed: (1) a pulsatile cardiovascular model; (2) a respiratory model; (3) a thermoregulatory model; (4) a circulatory, fluid, and electrolyte balance model; and (5) an erythropoiesis regulatory model. Algorithms were provided to perform routine statistical tests, multivariate analysis, nonlinear regression analysis, and autocorrelation analysis. Special purpose programs were prepared for rank correlation, factor analysis, and the integration of the metabolic balance data.

  10. Space Shuttle Main Engine (SSME) Evolution

    NASA Technical Reports Server (NTRS)

    Worlund, Len A.; Hastings, J. H.; McCool, Alex (Technical Monitor)

    2001-01-01

    The SSME when developed in the 1970's was a technological leap in space launch propulsion system design. The engine has safely supported the space shuttle for the last two decades and will be required for at least another decade to support human space flight to the international space station. This paper discusses the continued improvements and maturing of the system to its current state and future considerations for its critical role in the nations space program. Discussed are the initiatives of the late 1980's, which lead to three major upgrades through the 1990's. The current capabilities of the propulsion system are defined in the areas of highest programmatic importance: ascent risk, in-flight abort thrust, reusability, and operability. Future initiatives for improved shuttle safety, the paramount priority of the Space Shuttle program are discussed.

  11. EFT-1 Delta IV Heavy lift to vertical

    NASA Image and Video Library

    2014-10-01

    The United Launch Alliance Delta IV Heavy rocket for Exploration Flight Test-1 is being lifted to the vertical position in the mobile service tower on the pad at the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy is being readied to launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014.

  12. KSC-2014-4178

    NASA Image and Video Library

    2014-10-01

    CAPE CANAVERAL, Fla. – This close-up view shows the United Launch Alliance Delta IV Heavy rocket for Exploration Flight Test-1 being raised into the vertical position at the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy is being readied to launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Daniel Casper

  13. KSC-2014-4179

    NASA Image and Video Library

    2014-10-01

    CAPE CANAVERAL, Fla. – This close-up view shows the United Launch Alliance Delta IV Heavy rocket for Exploration Flight Test-1 being raised into the vertical position at the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy is being readied to launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Daniel Casper

  14. KSC-2014-4184

    NASA Image and Video Library

    2014-10-01

    CAPE CANAVERAL, Fla. – The United Launch Alliance Delta IV Heavy rocket for Exploration Flight Test-1 is lifted to the vertical position in the mobile service tower on the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy is being readied to launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Daniel Casper

  15. KSC-2014-4181

    NASA Image and Video Library

    2014-10-01

    CAPE CANAVERAL, Fla. – The United Launch Alliance Delta IV Heavy rocket for Exploration Flight Test-1 is being lifted to the vertical position in the mobile service tower on the pad at the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy is being readied to launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Daniel Casper

  16. KSC-2014-4180

    NASA Image and Video Library

    2014-10-01

    CAPE CANAVERAL, Fla. – The United Launch Alliance Delta IV Heavy rocket for Exploration Flight Test-1 is lifted to the vertical position in the mobile service tower on the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy is being readied to launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Daniel Casper

  17. EFT-1 Delta IV Heavy lift to vertical

    NASA Image and Video Library

    2014-10-01

    United Launch Alliance, or ULA, workers monitor the progress as the ULA Delta IV Heavy rocket for Exploration Flight Test-1 is lifted to the vertical position in the mobile service tower on the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy is being readied to launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014.

  18. Dynamics of physical performance during long-duration space flight (first results of "Countermeasure" experiment).

    PubMed

    Popov, D V; Khusnutdinova, D R; Shenkman, B S; Vinogradova, O L; Kozlovskaya, I B

    2004-07-01

    The efficacy of countermeasure exercise for diminishing disturbances induced by microgravity in motor system and its visceral supply during different stages of long-duration flight was evaluated. The results of both bicycle and locomotor testing indicate that physical fitness of cosmonaut does not become worse in the course of the long-duration flight. On the contrary, the lowest fitness was recorded at the first stage of mission, just after one month of flight. The "dead period" at the beginning of space flight seems to be a manifestation of the acute decrease in physical condition on transition from 1 G to microgravity, when none of the regular countermeasure regimes is sufficiently effective and acute increase of volume and intensity of training is impossible under the conditions of space flight.

  19. Thrust imbalance of solid rocket motor pairs on Space Shuttle flights

    NASA Technical Reports Server (NTRS)

    Foster, W. A., Jr.; Shu, P. H.; Sforzini, R. H.

    1986-01-01

    This analysis extends the investigation presented at the 17th Joint Propulsion Conference in 1981 to include fifteen sets of Space Shuttle flight data. The previous report dealt only with static test data and the first flight pair. The objective is to compare the authors' previous theoretical analysis of thrust imbalance with actual Space Shuttle performance. The theoretical prediction method, which involves a Monte Carlo technique, is reviewed briefly as are salient features of the flight instrumentation system and the statistical analysis. A scheme for smoothing flight data is discussed. The effects of changes in design parameters are discussed with special emphasis on the filament wound motor case being developed to replace the steel case. Good agreement between the predictions and the flight data is demonstrated.

  20. KSC-2014-4175

    NASA Image and Video Library

    2014-09-30

    CAPE CANAVERAL, Fla. – Launch pad lights give off a golden glow at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida, as the United Launch Alliance Delta IV Heavy rocket for Exploration Flight Test-1 arrives. The rocket is secured on the Elevated Platform Transporter. The Delta IV Heavy will launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Dimitri Gerondidakis

  1. KSC-2014-4172

    NASA Image and Video Library

    2014-09-30

    CAPE CANAVERAL, Fla. – Launch pad lights give off a golden glow at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida, as the United Launch Alliance Delta IV Heavy rocket for Exploration Flight Test-1 arrives. The rocket is secured on the Elevated Platform Transporter. The Delta IV Heavy will launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Dimitri Gerondidakis

  2. Space shuttle/food system study. Volume 2, Appendix F: Flight food and primary packaging

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The analysis and selection of food items and primary packaging, the development of menus, the nutritional analysis of diet, and the analyses of alternate food mixes and contingency foods is reported in terms of the overall food system design for space shuttle flight. Stowage weights and cubic volumes associated with each alternate mix were also evaluated.

  3. OAST-Flyer is deployed by the Remote Manipulator System (RMS) as viewed from the flight deck

    NASA Image and Video Library

    1996-01-14

    STS072-320-014 (17 Jan. 1996) --- The end effect of the Space Shuttle Endeavour's Remote Manipulator System (RMS) is about to grapple the Office of Aeronautics and Space Technology's (OAST) -- Flyer satellite. The view was recorded with a 35mm camera aimed through one of Endeavour's overheard windows on the aft flight deck.

  4. Flight Deck-Based Delegated Separation: Evaluation of an On-Board Interval Management System with Synthetic and Enhanced Vision Technology

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Shelton, Kevin J.; Kramer, Lynda J.; Arthur, Jarvis J.; Bailey, Randall E.; Norman, Rober M.; Ellis, Kyle K. E.; Barmore, Bryan E.

    2011-01-01

    An emerging Next Generation Air Transportation System concept - Equivalent Visual Operations (EVO) - can be achieved using an electronic means to provide sufficient visibility of the external world and other required flight references on flight deck displays that enable the safety, operational tempos, and visual flight rules (VFR)-like procedures for all weather conditions. Synthetic and enhanced flight vision system technologies are critical enabling technologies to EVO. Current research evaluated concepts for flight deck-based interval management (FIM) operations, integrated with Synthetic Vision and Enhanced Vision flight-deck displays and technologies. One concept involves delegated flight deck-based separation, in which the flight crews were paired with another aircraft and responsible for spacing and maintaining separation from the paired aircraft, termed, "equivalent visual separation." The operation required the flight crews to acquire and maintain an "equivalent visual contact" as well as to conduct manual landings in low-visibility conditions. The paper describes results that evaluated the concept of EVO delegated separation, including an off-nominal scenario in which the lead aircraft was not able to conform to the assigned spacing resulting in a loss of separation.

  5. A radar data processing and enhancement system

    NASA Technical Reports Server (NTRS)

    Anderson, K. F.; Wrin, J. W.; James, R.

    1986-01-01

    This report describes the space position data processing system of the NASA Western Aeronautical Test Range. The system is installed at the Dryden Flight Research Facility of NASA Ames Research Center. This operational radar data system (RADATS) provides simultaneous data processing for multiple data inputs and tracking and antenna pointing outputs while performing real-time monitoring, control, and data enhancement functions. Experience in support of the space shuttle and aeronautical flight research missions is described, as well as the automated calibration and configuration functions of the system.

  6. STS-103 Crew Training

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Hubble Space Telescope (HST) team is preparing for NASA's third scheduled service call to Hubble. This mission, STS-103, will launch from Kennedy Space Center aboard the Space Shuttle Discovery. The seven flight crew members are Commander Curtis L. Brown, Pilot Scott J. Kelly, European Space Agency (ESA) astronaut Jean-Francois Clervoy who will join space walkers Steven L. Smith, C. Michael Foale, John M. Grunsfeld, and ESA astronaut Claude Nicollier. The objectives of the HST Third Servicing Mission (SM3A) are to replace the telescope's six gyroscopes, a Fine-Guidance Sensor, an S-Band Single Access Transmitter, a spare solid-state recorder and a high-voltage/temperature kit for protecting the batteries from overheating. In addition, the crew plans to install an advanced computer that is 20 times faster and has six times the memory of the current Hubble Space Telescope computer. To prepare for these extravehicular activities (EVAs), the SM3A astronauts participated in Crew Familiarization sessions with the actual SM3A flight hardware. During these sessions the crew spent long hours rehearsing their space walks in the Guidance Navigation Simulator and NBL (Neutral Buoyancy Laboratory). Using space gloves, flight Space Support Equipment (SSE), and Crew Aids and Tools (CATs), the astronauts trained with and verified flight orbital replacement unit (ORU) hardware. The crew worked with a number of trainers and simulators, such as the High Fidelity Mechanical Simulator, Guidance Navigation Simulator, System Engineering Simulator, the Aft Shroud Door Trainer, the Forward Shell/Light Shield Simulator, and the Support Systems Module Bay Doors Simulator. They also trained and verified the flight Orbital Replacement Unit Carrier (ORUC) and its ancillary hardware. Discovery's planned 10-day flight is scheduled to end with a night landing at Kennedy.

  7. STS-114 Flight Day 3 Highlights

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Video coverage of Day 3 includes highlights of STS-114 during the approach and docking of Discovery with the International Space Station (ISS). The Return to Flight continues with space shuttle crew members (Commander Eileen Collins, Pilot James Kelly, Mission Specialists Soichi Noguchi, Stephen Robinson, Andrew Thomas, Wendy Lawrence, and Charles Camarda) seen in onboard activities on the fore and aft portions of the flight deck during the orbiter's approach. Camarda sends a greeting to his family, and Collins maneuvers Discovery as the ISS appears steadily closer in sequential still video from the centerline camera of the Orbiter Docking System. The approach includes video of Discovery from the ISS during the orbiter's Rendezvous Pitch Maneuver, giving the ISS a clear view of the thermal protection systems underneath the orbiter. Discovery docks with the Destiny Laboratory of the ISS, and the shuttle crew greets the Expedition 11 crew (Commander Sergei Krikalev and NASA ISS Science Officer and Flight Engineer John Phillips) of the ISS onboard the station. Finally, the Space Station Remote Manipulator System hands the Orbiter Boom Sensor System to its counterpart, the Shuttle Remote Manipulator System.

  8. Thermal protection system flight repair kit

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A thermal protection system (TPS) flight repair kit required for use on a flight of the Space Transportation System is defined. A means of making TPS repairs in orbit by the crew via extravehicular activity is discussed. A cure in place ablator, a precured ablator (large area application), and packaging design (containers for mixing and dispensing) for the TPS are investigated.

  9. STS-72 Space Shuttle Mission Report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1996-01-01

    The STS-72 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-fourth flight of the Space Shuttle Program, the forty-ninth flight since the return-to-flight, and the tenth flight of the Orbiter Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-75; three Block I SSME's that were designated as serial numbers 2028, 2039, and 2036 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-077. The RSRM's, designated RSRM-52, were installed in each SRB and the individual RSRM's were designated as 36OW052A for the left SRB, and 36OW052B for the right SRB. Appendix A lists the sources of data, both formal and informal, that were used to prepare this report. The primary objectives of this flight were to retrieve the Japanese Space Flyer Unit (JSFU) and deploy and retrieve the Office of Aeronautics and Space Technology-Flyer (OAST-Flyer). Secondary objectives were to perform the operations of the Shuttle Solar Backscatter Ultraviolet (SSBUV/A) experiment, Shuttle Laser Altimeter (SLA)/get-Away Special (GAS) payload, Physiological and Anatomical Rodent Experiment/National Institutes of Health-Cells (STL/NIH-C) experiment, Protein Crystal Growth-Single Locker Thermal Enclosure System (PCG-STES) experiment, Commercial Protein Crystal Growth (CPCG) payload and perform two extravehicular activities (EVA's) to demonstrate International Space Station Alpha (ISSA) assembly techniques). Appendix B provides the definition of acronyms and abbreviations used throughout the report. All times during the flight are given in Greenwich mean time (GMT) and mission elapsed time (MET).

  10. KENNEDY SPACE CENTER, FLA. - These towers are part of one of the world’s highest performing visual film analysis systems, developed to review and analyze previous shuttle flight data in preparation for the shuttle fleet’s return to flight. The system is being used today for another purpose. NASA has permitted its use in helping to analyze a film that shows a recent kidnapping in progress in Florida. Developed by NASA, United Space Alliance (USA) and Silicon Graphics Inc., the system allows multiple-person collaboration, highly detailed manipulation and evaluation of specific imagery. The system is housed in the Image Analysis Facility inside the Vehicle Assembly Building. [Photo taken Aug. 15, 2003, courtesy of Terry Wallace, SGI

    NASA Image and Video Library

    2004-02-04

    KENNEDY SPACE CENTER, FLA. - These towers are part of one of the world’s highest performing visual film analysis systems, developed to review and analyze previous shuttle flight data in preparation for the shuttle fleet’s return to flight. The system is being used today for another purpose. NASA has permitted its use in helping to analyze a film that shows a recent kidnapping in progress in Florida. Developed by NASA, United Space Alliance (USA) and Silicon Graphics Inc., the system allows multiple-person collaboration, highly detailed manipulation and evaluation of specific imagery. The system is housed in the Image Analysis Facility inside the Vehicle Assembly Building. [Photo taken Aug. 15, 2003, courtesy of Terry Wallace, SGI

  11. KSC-2013-3767

    NASA Image and Video Library

    2013-10-24

    CAPE CANAVERAL, Fla. – Inside the Orion Test and Launch Control Center at NASA’s Kennedy Space Center in Florida, engineers monitor data for the first Exploration Flight Test 1, or EFT-1, power up test. NASA’s first-ever deep space craft, Orion, was powered on for the first time, marking a major milestone in the final year of preparations for flight. Orion’s avionics system was installed on the crew module and powered up for a series of systems tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion, EFT-1, is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dimitri Gerondidakis

  12. KSC-2013-3766

    NASA Image and Video Library

    2013-10-24

    CAPE CANAVERAL, Fla. – Inside the Orion Test and Launch Control Center at NASA’s Kennedy Space Center in Florida, an engineer prepares for the first Exploration Flight Test 1, or EFT-1, power up test. NASA’s first-ever deep space craft, Orion, was powered on for the first time, marking a major milestone in the final year of preparations for flight. Orion’s avionics system was installed on the crew module and powered up for a series of systems tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion, EFT-1, is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dimitri Gerondidakis

  13. KSC-2013-3765

    NASA Image and Video Library

    2013-10-24

    CAPE CANAVERAL, Fla. – Inside the Orion Test and Launch Control Center at NASA’s Kennedy Space Center in Florida, engineers prepare for the first Exploration Flight Test 1, or EFT-1, power up test. NASA’s first-ever deep space craft, Orion, was powered on for the first time, marking a major milestone in the final year of preparations for flight. Orion’s avionics system was installed on the crew module and powered up for a series of systems tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion, EFT-1, is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dimitri Gerondidakis

  14. KSC-2013-3763

    NASA Image and Video Library

    2013-10-24

    CAPE CANAVERAL, Fla. – Inside the Orion Test and Launch Control Center at NASA’s Kennedy Space Center in Florida, engineers prepare for the first Exploration Flight Test 1, or EFT-1, power up test. NASA’s first-ever deep space craft, Orion, was powered on for the first time, marking a major milestone in the final year of preparations for flight. Orion’s avionics system was installed on the crew module and powered up for a series of systems tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion, EFT-1, is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dimitri Gerondidakis

  15. KSC-2013-3768

    NASA Image and Video Library

    2013-10-24

    CAPE CANAVERAL, Fla. – Inside the Orion Test and Launch Control Center at NASA’s Kennedy Space Center in Florida, engineers monitor data during the first Exploration Flight Test 1, or EFT-1, power up test. NASA’s first-ever deep space craft, Orion, was powered on for the first time, marking a major milestone in the final year of preparations for flight. Orion’s avionics system was installed on the crew module and powered up for a series of systems tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion, EFT-1, is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dimitri Gerondidakis

  16. KSC-2013-3764

    NASA Image and Video Library

    2013-10-24

    CAPE CANAVERAL, Fla. – Inside the Orion Test and Launch Control Center at NASA’s Kennedy Space Center in Florida, engineers prepare for the first Exploration Flight Test 1, or EFT-1, power up test. NASA’s first-ever deep space craft, Orion, was powered on for the first time, marking a major milestone in the final year of preparations for flight. Orion’s avionics system was installed on the crew module and powered up for a series of systems tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion, EFT-1, is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dimitri Gerondidakis

  17. KSC-2013-3816

    NASA Image and Video Library

    2013-10-24

    CAPE CANAVERAL, Fla. – At the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, the launch abort system, or LAS, for the Orion Exploration Flight Test-1, is being moved by flatbed truck from the high bay. The LAS will be moved to a low bay at the facility to complete processing. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The LAS is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  18. KSC-2013-3814

    NASA Image and Video Library

    2013-10-24

    CAPE CANAVERAL, Fla. – Inside the Launch Abort System Facility high bay at NASA’s Kennedy Space Center in Florida, the launch abort system, or LAS, for the Orion Exploration Flight Test-1 mission is being loaded onto a flatbed truck. The LAS will be moved to a low bay at the facility to complete processing. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The LAS is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  19. KSC-2013-3797

    NASA Image and Video Library

    2013-09-27

    CAPE CANAVERAL, Fla. – Inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, the launch abort system, or LAS, components are horizontally stacked as processing continues for the Orion Exploration Flight Test-1 mission. Components of the LAS are the launch abort motor, the attitude control motor, the jettison motor and the fairing. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The LAS is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Jim Grossmann

  20. KSC-2013-3798

    NASA Image and Video Library

    2013-09-27

    CAPE CANAVERAL, Fla. – Inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, the launch abort system, or LAS, components are horizontally stacked as processing continues for the Orion Exploration Flight Test-1 mission. Components of the LAS are the launch abort motor, the attitude control motor, the jettison motor and the fairing. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The LAS is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Jim Grossmann

  1. KSC-2013-3818

    NASA Image and Video Library

    2013-10-24

    CAPE CANAVERAL, Fla. – At the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, the launch abort system, or LAS, for the Orion Exploration Flight Test-1, is backed by flatbed truck into a low bay at the facility. The low bay has been prepared for additional LAS processing. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The LAS is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  2. KSC-2013-3815

    NASA Image and Video Library

    2013-10-24

    CAPE CANAVERAL, Fla. – At the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, the launch abort system, or LAS, for the Orion Exploration Flight Test-1, is being moved by flatbed truck from the high bay. The LAS will be moved to a low bay at the facility to complete processing. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The LAS is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  3. KSC-2013-3813

    NASA Image and Video Library

    2013-10-24

    CAPE CANAVERAL, Fla. – Inside the Launch Abort System Facility high bay at NASA’s Kennedy Space Center in Florida, the launch abort system, or LAS, for the Orion Exploration Flight Test-1 mission is being loaded onto a flatbed truck. The LAS will be moved to a low bay at the facility to complete processing. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The LAS is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  4. 14 CFR 27.674 - Interconnected controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Interconnected controls. 27.674 Section 27.674 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Interconnected controls. Each primary flight control system must provide for safe flight and landing and operate...

  5. 14 CFR 29.674 - Interconnected controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Interconnected controls. 29.674 Section 29.674 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Interconnected controls. Each primary flight control system must provide for safe flight and landing and operate...

  6. 14 CFR 27.674 - Interconnected controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Interconnected controls. 27.674 Section 27.674 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Interconnected controls. Each primary flight control system must provide for safe flight and landing and operate...

  7. 14 CFR 29.674 - Interconnected controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Interconnected controls. 29.674 Section 29.674 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Interconnected controls. Each primary flight control system must provide for safe flight and landing and operate...

  8. The Functional Task Test (FTT): An Interdisciplinary Testing Protocol to Investigate the Factors Underlying Changes in Astronaut Functional Performance

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Lawrence, E. L.; Arzeno, N. M.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Lee, S. M. C.; Mulavara, A. P.; Peters, B. T.; Platts. S. H.; hide

    2011-01-01

    Exposure to space flight causes adaptations in multiple physiological systems including changes in sensorimotor, cardiovascular, and neuromuscular systems. These changes may affect a crewmember s ability to perform critical mission tasks immediately after landing on a planetary surface. The overall goal of this project is to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. To achieve this goal we developed an interdisciplinary testing protocol (Functional Task Test, FTT) that evaluates both astronaut functional performance and related physiological changes. Functional tests include ladder climbing, hatch opening, jump down, manual manipulation of objects and tool use, seat egress and obstacle avoidance, recovery from a fall and object translation tasks. Physiological measures include assessments of postural and gait control, dynamic visual acuity, fine motor control, plasma volume, orthostatic intolerance, upper- and lower-body muscle strength, power, endurance, control, and neuromuscular drive. Crewmembers perform this integrated test protocol before and after short (Shuttle) and long-duration (ISS) space flight. Data are collected on two sessions before flight, on landing day (Shuttle only) and 1, 6 and 30 days after landing. Preliminary results from both Shuttle and ISS crewmembers indicate decrement in performance of the functional tasks after both short and long-duration space flight. On-going data collection continues to improve the statistical power required to map changes in functional task performance to alterations in physiological systems. The information obtained from this study will be used to design and implement countermeasures that specifically target the physiological systems most responsible for the altered functional performance associated with space flight.

  9. Assessment of in-flight anomalies of long life outer plant mission

    NASA Technical Reports Server (NTRS)

    Hoffman, Alan R.; Green, Nelson W.; Garrett, Henry B.

    2004-01-01

    Thee unmanned planetary spacecraft to the outer planets have been controlled and operated successfully in space for an accumulated total of 66 years. The Voyager 1 and 2 spacecraft each have been in space for more than 26 years. The Galileo spacecraft was in space for 14 years, including eight years in orbit about Jupiter. During the flight operations for these missions, anomalies for the ground data system and the flight systems have been tracked using the anomaly reporting tool at the Jet Propulsion Laboratory. A total of 3300 incidents, surprises, and anomaly reports have been recorded in the database. This paper describes methods and results for classifying and identifying trends relative to ground system vs. flight system, software vs. hardware, and corrective actions. There are several lessons learned from these assessments that significantly benefit the design and planning for long life missions of the future. These include the necessity for having redundancy for successful operation of the spacecraft, awareness that anomaly reporting is dependent on mission activity not the age of the spacecraft, and the need for having a program to maintain and transfer operation knowledge and tools to replacement flight team members.

  10. Orion Flight Test Preview Briefing

    NASA Image and Video Library

    2014-11-06

    In the Kennedy Space Center’s Press Site auditorium, members of the news media are briefed on the upcoming Orion flight test by Jeremy Graeber, Orion Recovery Director in Ground Systems Development and Operations at Kennedy. Also participating in the news conference are Bryan Austin, Lockheed Martin mission manager, left, and Ron Fortson, United Launch Alliance director of Mission Management. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.

  11. Orion Flight Test Preview Briefing

    NASA Image and Video Library

    2014-11-06

    In the Kennedy Space Center’s Press Site auditorium, members of the news media are briefed on the upcoming Orion flight test by Mark Geyer, NASA Orion Program manager. Also participating in the news conference are Bryan Austin, Lockheed Martin mission manager, center, and Jeremy Graeber, Orion Recovery Director in Ground Systems Development and Operations at Kennedy. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.

  12. 14 CFR 1214.504 - Screening requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 1214.504 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Mission... persons who are certified under the PRP will have unescorted access to mission critical space systems... regulation provides for unescorted access to mission critical space systems areas, it does not preclude the...

  13. 14 CFR 1214.505 - Program implementation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 1214.505 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Mission... each NASA Installation will designate mission critical space systems areas. (b) NASA installations will... space systems. (e) NASA Headquarters Office of Safety and Mission Quality (Code Q) will act as the...

  14. 14 CFR 1214.505 - Program implementation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 1214.505 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Mission... each NASA Installation will designate mission critical space systems areas. (b) NASA installations will... space systems. (e) NASA Headquarters Office of Safety and Mission Quality (Code Q) will act as the...

  15. 14 CFR 1214.505 - Program implementation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 1214.505 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Mission... each NASA Installation will designate mission critical space systems areas. (b) NASA installations will... space systems. (e) NASA Headquarters Office of Safety and Mission Quality (Code Q) will act as the...

  16. 14 CFR 1214.505 - Program implementation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 1214.505 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Mission... each NASA Installation will designate mission critical space systems areas. (b) NASA installations will... space systems. (e) NASA Headquarters Office of Safety and Mission Quality (Code Q) will act as the...

  17. 14 CFR 1214.504 - Screening requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 1214.504 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Mission... persons who are certified under the PRP will have unescorted access to mission critical space systems... regulation provides for unescorted access to mission critical space systems areas, it does not preclude the...

  18. 14 CFR 1214.504 - Screening requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 1214.504 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Mission... persons who are certified under the PRP will have unescorted access to mission critical space systems... regulation provides for unescorted access to mission critical space systems areas, it does not preclude the...

  19. Improved Orbiter Waste Collection System Study, Appendix D

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Basic requirements for a space shuttle orbiter waste collection system are established. They are intended to be an aid in the development and procurement of a representative flight test article. Orbiter interface requirements, performance requirements, flight crew operational requirements, flight environmental requirements, and ground operational and environmental requirements are considered.

  20. Coding, testing and documentation of processors for the flight design system

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The general functional design and implementation of processors for a space flight design system are briefly described. Discussions of a basetime initialization processor; conic, analytical, and precision coasting flight processors; and an orbit lifetime processor are included. The functions of several utility routines are also discussed.

Top