Sample records for space interferometry mission

  1. The Path to Interferometry in Space

    NASA Technical Reports Server (NTRS)

    Rinehart, S. A.; Savini, G.; Holland, W.; Absil, O.; Defrere, D.; Spencer, L.; Leisawitz, D.; Rizzo, M.; Juanola-Parramon, R.; Mozurkewich, D.

    2016-01-01

    For over two decades, astronomers have considered the possibilities for interferometry in space. The first of these missions was the Space Interferometry Mission (SIM), but that was followed by missions for studying exoplanets (e.g Terrestrial Planet Finder, Darwin), and then far-infrared interferometers (e.g. the Space Infrared Interferometric Telescope, the Far-Infrared Interferometer). Unfortunately, following the cancellation of SIM, the future for space-based interferometry has been in doubt, and the interferometric community needs to reevaluate the path forward. While interferometers have strong potential for scientific discovery, there are technological developments still needed, and continued maturation of techniques is important for advocacy to the broader astronomical community. We review the status of several concepts for space-based interferometry, and look for possible synergies between missions oriented towards different science goals.

  2. Comparing Laser Interferometry and Atom Interferometry Approaches to Space-Based Gravitational-Wave Measurement

    NASA Technical Reports Server (NTRS)

    Baker, John; Thorpe, Ira

    2012-01-01

    Thoroughly studied classic space-based gravitational-wave missions concepts such as the Laser Interferometer Space Antenna (LISA) are based on laser-interferometry techniques. Ongoing developments in atom-interferometry techniques have spurred recently proposed alternative mission concepts. These different approaches can be understood on a common footing. We present an comparative analysis of how each type of instrument responds to some of the noise sources which may limiting gravitational-wave mission concepts. Sensitivity to laser frequency instability is essentially the same for either approach. Spacecraft acceleration reference stability sensitivities are different, allowing smaller spacecraft separations in the atom interferometry approach, but acceleration noise requirements are nonetheless similar. Each approach has distinct additional measurement noise issues.

  3. TOPSAT: Global space topographic mission

    NASA Technical Reports Server (NTRS)

    Vetrella, Sergio

    1993-01-01

    Viewgraphs on TOPSAT Global Space Topographic Mission are presented. Topics covered include: polar region applications; terrestrial ecosystem applications; stereo electro-optical sensors; space-based stereoscopic missions; optical stereo approach; radar interferometry; along track interferometry; TOPSAT-VISTA system approach; ISARA system approach; topographic mapping laser altimeter; and role of multi-beam laser altimeter.

  4. A Possible Future for Space-Based Interferometry

    NASA Technical Reports Server (NTRS)

    Labadie, L.; Leger, A.; Malbet, F.; Danchi, William C.; Lopez, B.

    2013-01-01

    We address the question of space interferometry following the recent outcome of the science themes selection by ESA for the L2/L3 missions slots. We review the current context of exoplanetary sciences and its impact for an interferometric mission. We argue that space interferometry will make a major step forward when the scientific communities interested in this technique will merge their efforts into a coherent technology development plan.

  5. Mask Design for the Space Interferometry Mission Internal Metrology

    NASA Technical Reports Server (NTRS)

    Marx, David; Zhao, Feng; Korechoff, Robert

    2005-01-01

    This slide presentation reviews the mask design used for the internal metrology of the Space Interferometry Mission (SIM). Included is information about the project, the method of measurements with SIM, the internal metrology, numerical model of internal metrology, wavefront examples, performance metrics, and mask design

  6. Space Interferometry Mission: Measuring the Universe

    NASA Technical Reports Server (NTRS)

    Marr, James; Dallas, Saterios; Laskin, Robert; Unwin, Stephen; Yu, Jeffrey

    1991-01-01

    The Space Interferometry Mission (SIM) will be the NASA Origins Program's first space based long baseline interferometric observatory. SIM will use a 10 m Michelson stellar interferometer to provide 4 microarcsecond precision absolute position measurements of stars down to 20th magnitude over its 5 yr. mission lifetime. SIM will also provide technology demonstrations of synthesis imaging and interferometric nulling. This paper describes the what, why and how of the SIM mission, including an overall mission and system description, science objectives, general description of how SIM makes its measurements, description of the design concepts now under consideration, operations concept, and supporting technology program.

  7. Global astrometry with the space interferometry mission

    NASA Technical Reports Server (NTRS)

    Boden, A.; Unwin, S.; Shao, M.

    1997-01-01

    The prospects for global astrometric measurements with the space interferometry mission (SIM) are discussed. The SIM mission will perform four microarcsec astrometric measurements on objects as faint as 20 mag using the optical interferometry technique with a 10 m baseline. The SIM satellite will perform narrow angle astrometry and global astrometry by means of an astrometric grid. The sensitivities of the SIM global astrometric performance and the grid accuracy versus instrumental parameters and sky coverage schemes are reported on. The problems in finding suitable astrometric grid objects to support microarcsec astrometry, and related ground-based observation programs are discussed.

  8. Design and fabrication of a brassboard optical bench structure for space interferometry mission

    NASA Technical Reports Server (NTRS)

    Buck, Stephanie

    2006-01-01

    The Space Interferometry Mission (SIM), consisting of an orbiting pair of telescopes, will be used for characterization of extrasolar planetary systems and for associated astrophysics research. To maximize the capabilities of this instrument, extensive technology development has been performed, much of it to understand and verify the performance of precision structures.

  9. Space Interferometry Science Working Group

    NASA Astrophysics Data System (ADS)

    Ridgway, Stephen T.

    1992-12-01

    Decisions taken by the astronomy and astrophysics survey committee and the interferometry panel which lead to the formation of the Space Interferometry Science Working Group (SISWG) are outlined. The SISWG was formed by the NASA astrophysics division to provide scientific and technical input from the community in planning for space interferometry and in support of an Astrometric Interferometry Mission (AIM). The AIM program hopes to measure the positions of astronomical objects with a precision of a few millionths of an arcsecond. The SISWG science and technical teams are described and the outcomes of its first meeting are given.

  10. FIR/THz Space Interferometry: Science Opportunities, Mission Concepts, and Technical Challenges

    NASA Technical Reports Server (NTRS)

    Leisawitz, David

    2007-01-01

    Sensitive far-IR imaging and spectroscopic measurements of astronomical objects on sub-arcsecond angular scales are essential to our understanding of star and planet formation, the formation and evolution of galaxies, and to the detection and characterization of extrasolar planets. Cold single-aperture telescopes in space, such as the Spitzer Space Telescope and the Herschel Space Observatory, are very sensitive, but they lack the necessary angular resolution by two or more orders of magnitude. Far-IR space interferometers will address this need in the coming decades. Several mission concepts have already been studied, including in the US the Space Infrared Interferometric Telescope (SPIRIT) and the more ambitious Submillimeter Probe of the Evolution of Cosmic Structure (SPECS). This talk will describe science goals and summarize alternative concepts for future FIR/THz space interferometry missions. Small arrays of sensitive, fast, direct detectors are a key enabling technology for SPIRIT and SPECS. I will describe the technology requirements for far-IR interferometry, including the detector requirements, and their derivation from the mission science goals and instrument concepts.

  11. Interferometry science center

    NASA Technical Reports Server (NTRS)

    Sargent, A. I.

    2002-01-01

    The Interferometry Science Center (ISC) is operated jointly by Caltech and JPL and is part of NASA's Navigator Program. The ISC has been created to facilitate the timely and successful execution of scientific investigations within the Navigator program, particularly those that rely on observations from NASA's interferometer projects. Currently, ISC is expected to provide full life cycle support for the Keck Interferometer, the Starlight mission, the Space Interferometry Mission, and the Terrestrial Planet Finder Mission. The nature and goals of ISc will be described.

  12. NASA's future plans for space astronomy and astrophysics

    NASA Technical Reports Server (NTRS)

    Kaplan, Mike

    1992-01-01

    A summary is presented of plans for the future NASA astrophysics missions called SIRTF (Space Infrared Telescope Facility), SOFIA (Stratospheric Observatory for Infrared Astronomy), SMIM (Submillimeter Intermdiate Mission), and AIM (Astrometric Interferometry Mission), the Greater Observatories, and MFPE (Mission From Planet Earth). Technology needs for these missions are briefly described.

  13. NASA's future plans for space astronomy and astrophysics

    NASA Technical Reports Server (NTRS)

    Kaplan, Michael S.

    1992-01-01

    NASA's plans in the field of space astronomy and astrophysics through the first decade of the next century are reviewed with reference to specific missions and mission concepts. The missions discussed include the Space Infrared Telescope Facility, the Stratospheric Observatory for Infrared Astronomy, the Submillimeter Intermediate Mission, the Astrometric Interferometry Mission, the Greater Observatories program, and Mission from Planet Earth. Plans to develop optics and sensors technology to enable these missions are also discussed.

  14. Developing Wide-Field Spatio-Spectral Interferometry for Far-Infrared Space Applications

    NASA Technical Reports Server (NTRS)

    Leisawitz, David; Bolcar, Matthew R.; Lyon, Richard G.; Maher, Stephen F.; Memarsadeghi, Nargess; Rinehart, Stephen A.; Sinukoff, Evan J.

    2012-01-01

    Interferometry is an affordable way to bring the benefits of high resolution to space far-IR astrophysics. We summarize an ongoing effort to develop and learn the practical limitations of an interferometric technique that will enable the acquisition of high-resolution far-IR integral field spectroscopic data with a single instrument in a future space-based interferometer. This technique was central to the Space Infrared Interferometric Telescope (SPIRIT) and Submillimeter Probe of the Evolution of Cosmic Structure (SPECS) space mission design concepts, and it will first be used on the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII). Our experimental approach combines data from a laboratory optical interferometer (the Wide-field Imaging Interferometry Testbed, WIIT), computational optical system modeling, and spatio-spectral synthesis algorithm development. We summarize recent experimental results and future plans.

  15. Picometer Level Modeling of a Shared Vertex Double Corner Cube in the Space Interferometry Mission Kite Testbed

    NASA Technical Reports Server (NTRS)

    Kuan, Gary M.; Dekens, Frank G.

    2006-01-01

    The Space Interferometry Mission (SIM) is a microarcsecond interferometric space telescope that requires picometer level precision measurements of its truss and interferometer baselines. Single-gauge metrology errors due to non-ideal physical characteristics of corner cubes reduce the angular measurement capability of the science instrument. Specifically, the non-common vertex error (NCVE) of a shared vertex, double corner cube introduces micrometer level single-gauge errors in addition to errors due to dihedral angles and reflection phase shifts. A modified SIM Kite Testbed containing an articulating double corner cube is modeled and the results are compared to the experimental testbed data. The results confirm modeling capability and viability of calibration techniques.

  16. The Path to Far-IR Interferometry in Space: Recent Developments, Plans, and Prospects

    NASA Technical Reports Server (NTRS)

    Leisawitz, David T.; Rinehart, Stephen A.

    2012-01-01

    The far-IR astrophysics community is eager to follow up Spitzer and Herschel observations with sensitive, highresolution imaging and spectroscopy, for such measurements are needed to understand merger-driven star formation and chemical enrichment in galaxies, star and planetary system formation, and the development and prevalence of waterbearing planets. The community is united in its support for a space-based interferometry mission. Through concerted efforts worldwide, the key enabling technologies are maturing. Two balloon-borne far-IR interferometers are presently under development. This paper reviews recent technological and programmatic developments, summarizes plans, and offers a vision for space-based far-IR interferometry involving international collaboration.

  17. An overview of VHF lightning observations by digital interferometry from ISS/JEM-GLIMS

    NASA Astrophysics Data System (ADS)

    Morimoto, Takeshi; Kikuchi, Hiroshi; Sato, Mitsuteru; Ushio, Tomoo; Yamazaki, Atsushi; Suzuki, Makoto; Ishida, Ryohei; Sakamoto, Yuji; Yoshida, Kazuya; Hobara, Yasuhide; Sano, Takuki; Abe, Takumi; Kawasaki, Zen-Ichiro

    2016-08-01

    The Global Lightning and sprIte MeasurementS (GLIMS) mission has been conducted at the Exposed Facility of Japanese Experiment Module (JEM-EF) of the International Space Station for more than 30 months. This paper focuses on an electromagnetic (EM) payload of JEM-GLIMS mission, the very high frequency (VHF) broadband digital InTerFerometer (VITF). The JEM-GLIMS mission is designed to conduct comprehensive observations with both EM and optical payloads for lightning activities and related transient luminous events. Its nominal operation continued from November 2012 to December 2014. The extended operation followed for eight months. Through the operation period, the VITF collected more than two million VHF EM waveforms in almost 18,700 datasets. The number of VITF observations synchronized with optical signal is 8049. Active VHF radiations are detected in about 70 % of optical observations without obvious regional or seasonal dependency. Estimations of the EM direction-of-arrival (DOA) are attempted using the broadband digital interferometry. Some results agree with the optical observations, even though DOA estimation is problematic because of a very short antenna baseline and multiple pulses over a short time period, namely burst-type EM waveforms. The world's first lightning observations by means of space-borne VHF interferometry are achieved in this mission. This paper summarizes VITF instruments, the recorded VHF EM signals, and the results of DOA estimations by means of digital interferometry as a preliminary report after termination of the mission.[Figure not available: see fulltext.

  18. Laser Development for Interferometry in Space

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Camp, Jordan

    2012-01-01

    We are developing a laser (master oscillator) and optical amplifier for interferometric space missions, including the gravitational-wave missions NGO and OpTIIX experiment on the international space station. Our system is based on optical fiber and semiconductor laser technologies, which have evolved dramatically in the past decade. We will report on the latest status of the development work, including noise measurements and space qualification tests.

  19. Sub-orbital Programs and their Influence upon Space Missions

    NASA Technical Reports Server (NTRS)

    Mather, John C.

    2009-01-01

    Sub-orbital programs can push science to new limits by deploying the very latest in instrument concepts and technologies. Many space missions have sprung from sub-orbital programs, scientifically, technologically, and personally. I will illustrate the sub-orbital potential with examples from cosmology, interferometry, high-energy astrophysics, and others foreseen in NASA roadmaps.

  20. Interferometry on a Balloon; Paving the Way for Space-based Interferometers

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.

    2008-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission, and SOFIA will continue to provide exciting new discoveries. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scale on which mid-to-far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths- a powerful tool for scientific discovery. We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII), an eight-meter baseline Michelson stellar interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers.

  1. SIM PlanetQuest: The TOM-3 (Thermo-Optical-Mechanical) Siderostat Mirror Test

    NASA Technical Reports Server (NTRS)

    Phillips, Charles J.

    2006-01-01

    This slide presentation reviews the Space Interferometry Mission (SIM) PlanetQuest mission. It describes the mission, shows diagrams of the instrument, the collector bays, the Siderostat mirrors, the COL bay thermal environment, the TOM-3 replicating COL Bay Environment, the thermal hardware for the SID heater control, and the results of the test are shown

  2. Astrometry VLBI in Space (AVS)

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen; Reyes, George

    1995-01-01

    This paper describes a proposal for a new space radio astronomy mission for astrometry using Very Long Baseline Interferometry (VLBI) called Astrometry VLBI in Space (AVS). The ultimate goals of AVS are improving the accuracy of radio astrometry measurements to the microarcsecond level in one epoch of measurements and improving the accuracy of the transformation between the inertial radio and optical coordinate reference frames. This study will also assess the impact of this mission on astrophysics astrometry and geophysics.

  3. Search for general relativistic effects in table-top displacement metrology

    NASA Technical Reports Server (NTRS)

    Halverson, Peter G.; Macdonald, Daniel R.; Diaz, Rosemary T.

    2004-01-01

    As displacement metrology accuracy improves, general relativistic effects will become noticeable. Metrology gauges developed for the Space Interferometry Mission were used to search for locally anisotropic space-time, with a null result at the 10 to the negative tenth power level.

  4. Status of the LISA On Table experiment: a electro-optical simulator for LISA

    NASA Astrophysics Data System (ADS)

    Laporte, M.; Halloin, H.; Bréelle, E.; Buy, C.; Grüning, P.; Prat, P.

    2017-05-01

    The LISA project is a space mission that aim at detecting gravitational waves in space. An electro-optical simulator called LISA On Table (LOT) is being developed at APC in order to test noise reduction techniques (such as Timed Delayed Interferometry) and instruments that will be used. This document presents its latest results: TimeDelayed Interferometry of 1st generation works in the case of a simulated white noise with static, unequal arms. Future and ongoing developments of the experiment are also addressed.

  5. Search for general relativistic effects in table-top displacement metrology

    NASA Technical Reports Server (NTRS)

    Halverson, Peter G.; Diaz, Rosemary T.; Macdonald, Daniel R.

    2004-01-01

    As displacement metrology accuracy improves, general relativistic effects will become noticeable. Metrology gauges developed for the Space Interferometry Mission, were used to search for locally anisotropic space-time, with a null result at the 10 to the negative 10th power level.

  6. Analysis of Spacelab-III Reconstructed Wavefronts by Non-Holographic Methods

    NASA Technical Reports Server (NTRS)

    Vikram, Chandra S.; Witherow, William K.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Holography has been used in several past space missions. One popular experimental mode deals with study of fluid refractive properties in the crystal growth cell. The perceived advantage of holography is that it stores and reconstructs wavefronts so that a complete information is available later on ground. That means the wavefront can be analyzed not only by traditional holographic interferometry but other means as well. We have successfully demonstrated two such means being described here. One is deflectometry using a Ronchi grating and the other confocal optical processing. These results, using holograms from Spacelab-III mission dealing with triglycine sulfate crystal growth clearly demonstrate that a single hardware (holography) can do the task of several fluid experimental systems. Finally, not experimentally demonstrated, the possibility of some other analysis modes like speckle techniques and video holography using the reconstructed wavefronts have been described. Since only traditional holographic interferometry has been used in the past leading to the argument that non-holographic interferometry hardware in space could do the job, the present study firmly establishes advantage of holography.

  7. Qualifying a Bonding Process for the Space Interferometry Mission

    NASA Technical Reports Server (NTRS)

    Joyce, Gretchen P.

    2005-01-01

    The Space Interferometry Mission consists of three parallel Michelson interferometers that will be capable of detecting extrasolar planets with a high degree of accuracy and precision. High levels of stability must be met in order to fulfill the scientific requirements of this mission. To attain successful measurements the coefficient of thermal expansion between optics and bonding material must be minimized without jeopardizing the integrity of the bonds. Optic-to-optic bonds have been analyzed to better understand variables such as the effects of the coefficient of thermal expansion differences between optics and bonding materials, and materials have been chosen for the project based on these analyses. A study was conducted to determine if a reliable, repeatable process for bonding by wicking adhesive could be obtained using a low-viscosity epoxy and ultra-low expansion glass. A process of creating a methodology of bonding fused silica optics with Z-6020 silane primer and Epo-Tek 301 epoxy will be discussed.

  8. Brassboard Astrometric Beam Combiner (ABC) Development for the Space Interferometry Mission (SIM)

    NASA Technical Reports Server (NTRS)

    Jeganathan, Muthu; Kuan, Gary; Rud, Mike; Lin, Sean; Sutherland, Kristen; Moore, James; An, Xin

    2008-01-01

    The Astrometric Beam Combiner (ABC) is a critical element of the Space Interferometry Mission (SIM) that performs three key functions: coherently combine starlight from two siderostats; individually detect starlight for angle tracking; and disperse and detect the interferometric fringes. In addition, the ABC contains: a stimulus, cornercubes and shutters for in-orbit calibration; several tip/tilt mirror mechanisms for in-orbit alignment; and internal metrology beam launcher for pathlength monitoring. The detailed design of the brassboard ABC (which has the form, fit and function of the flight unit) is complete, procurement of long-lead items is underway, and assembly and testing is expected to be completed in Spring 2009. In this paper, we present the key requirements for the ABC, details of the completed optical and mechanical design as well as plans for assembly and alignment.

  9. The Balloon Experimental Twin Telescope for Infrared Interferometry

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.

    2008-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission, and SOFIA will continue to provide exciting new discoveries. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scales on which mid- to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths, a powerful tool for scientific discovery, We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETII), an eight-meter baseline Michelson stellar interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers,

  10. Metrology Optical Power Budgeting in SIM Using Statistical Analysis Techniques

    NASA Technical Reports Server (NTRS)

    Kuan, Gary M

    2008-01-01

    The Space Interferometry Mission (SIM) is a space-based stellar interferometry instrument, consisting of up to three interferometers, which will be capable of micro-arc second resolution. Alignment knowledge of the three interferometer baselines requires a three-dimensional, 14-leg truss with each leg being monitored by an external metrology gauge. In addition, each of the three interferometers requires an internal metrology gauge to monitor the optical path length differences between the two sides. Both external and internal metrology gauges are interferometry based, operating at a wavelength of 1319 nanometers. Each gauge has fiber inputs delivering measurement and local oscillator (LO) power, split into probe-LO and reference-LO beam pairs. These beams experience power loss due to a variety of mechanisms including, but not restricted to, design efficiency, material attenuation, element misalignment, diffraction, and coupling efficiency. Since the attenuation due to these sources may degrade over time, an accounting of the range of expected attenuation is needed so an optical power margin can be book kept. A method of statistical optical power analysis and budgeting, based on a technique developed for deep space RF telecommunications, is described in this paper and provides a numerical confidence level for having sufficient optical power relative to mission metrology performance requirements.

  11. The LISA Pathfinder Mission: Sub-picometer Interferometry in Space

    NASA Astrophysics Data System (ADS)

    Slutsky, Jacob; LISA Pathfinder Collaboration

    2018-01-01

    The European Space Agency’s LISA Pathfinder was a mission built to demonstrate the technologies essential to implement a space-based gravitational wave observatory sensitive in the milli-Hertz frequency band. ESA recently selected the LISA mission as such a future observatory, scheduled to launch in the early 2030s. LISA Pathfinder launched in late 2015 and concluded its final extended mission in July 2017, during which time it placed the two test masses into free fall and successfully measured the relative acceleration between them to a sensitivity that validates a number of critical technologies for LISA. These include drag-free control of the test masses, low noise microNewton thrusters to control the spacecraft, and sub-picometer-level laser metrology in space. The mission also served as a sensitive probe of the environmenal conditions in which LISA will operate. This poster summarizes the recent analysis results, with an eye towards the implications for the LISA mission.

  12. The telecommunications and data acquisition

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A. (Editor)

    1980-01-01

    Radio astronomy and radio interferometry at microwave frequencies are discussed. Other topics concerning the Deep Space Network include program planning, planetary and interplanetary mission support, tracking and ground based navigation, communications, and station control and system technology.

  13. Adhesive Bonding for Optical Metrology Systems in Space Applications

    NASA Astrophysics Data System (ADS)

    Gohlke, Martin; Schuldt, Thilo; Döringshoff, Klaus; Peters, Achim; Johann, Ulrich; Weise, Dennis; Braxmaier, Claus

    2015-05-01

    Laser based metrology systems become more and more attractive for space applications and are the core elements of planned missions such as LISA (NGO, eLISA) or NGGM where laser interferometry is used for distance measurements between satellites. The GRACE-FO mission will for the first time demonstrate a Laser Ranging Instrument (LRI) in space, starting 2017. Laser based metrology also includes optical clocks/references, either as ultra-stable light source for high sensitivity interferometry or as scientific payload e.g. proposed in fundamental physics missions such as mSTAR (mini SpaceTime Asymmetry Research), a mission dedicated to perform a Kennedy-Thorndike experiment on a satellite in a low-Earth orbit. To enable the use of existing optical laboratory setups, optimization with respect to power consumption, weight and dimensions is necessary. At the same time the thermal and structural stability must be increased. Over the last few years we investigated adhesive bonding of optical components to thermally highly stable glass ceramics as an easy-to-handle assembly integration technology. Several setups were implemented and tested for potential later use in space applications. We realized a heterodyne LISA related interferometer with demonstrated noise levels in the pm-range for translation measurement and nano-radiant-range for tilt measurements and two iodine frequency references on Elegant Breadboard (EBB) and Engineering Model (EM) level with frequency stabilities in the 10-15 range for longer integration times. The EM setup was thermally cycled and vibration tested.

  14. Space Interferometry Mission: Dynamical Observations of Galaxies (SIMDOG)

    NASA Technical Reports Server (NTRS)

    Shaya, Edward J.; Borne, Kirk D.; Nusser, Adi; Peebles, P. J. E.; Tonry, John; Tully, Brent R.; Vogel, Stuart; Zaritsky, Dennis

    2004-01-01

    Space Interferometry Mission (SIM) will be used to obtain proper motions for a sample of 27 galaxies; the first proper motion measurements of galaxies beyond the satellite system of the Milky Way. SIM measurements lead to knowledge of the full 6-dimensional position and velocity vector of each galaxy. In conjunction with new gravitational flow models, the result will be the first total mass measurements of individual galaxies. The project, includes developnient of powerful theoretical methods for orbital calculations. This SIM study will lead to vastly improved determinations of individual galaxy masses, halo sizes, and the fractional contribution of dark matter. Astronomers have struggled to calculate the orbits of galaxies with only position and redshift information. Traditional N-body techniques are unsuitable for an analysis backward in time from a present distribution if any components of velocity or position are not very precisely known.

  15. Polarization Effects Aboard the Space Interferometry Mission

    NASA Technical Reports Server (NTRS)

    Levin, Jason; Young, Martin; Dubovitsky, Serge; Dorsky, Leonard

    2006-01-01

    For precision displacement measurements, laser metrology is currently one of the most accurate measurements. Often, the measurement is located some distance away from the laser source, and as a result, stringent requirements are placed on the laser delivery system with respect to the state of polarization. Such is the case with the fiber distribution assembly (FDA) that is slated to fly aboard the Space Interferometry Mission (SIM) next decade. This system utilizes a concatenated array of couplers, polarizers and lengthy runs of polarization-maintaining (PM) fiber to distribute linearly-polarized light from a single laser to fourteen different optical metrology measurement points throughout the spacecraft. Optical power fluctuations at the point of measurement can be traced back to the polarization extinction ration (PER) of the concatenated components, in conjunction with the rate of change in phase difference of the light along the slow and fast axes of the PM fiber.

  16. Atom interferometry in space: Thermal management and magnetic shielding

    NASA Astrophysics Data System (ADS)

    Milke, Alexander; Kubelka-Lange, André; Gürlebeck, Norman; Rievers, Benny; Herrmann, Sven; Schuldt, Thilo; Braxmaier, Claus

    2014-08-01

    Atom interferometry is an exciting tool to probe fundamental physics. It is considered especially apt to test the universality of free fall by using two different sorts of atoms. The increasing sensitivity required for this kind of experiment sets severe requirements on its environments, instrument control, and systematic effects. This can partially be mitigated by going to space as was proposed, for example, in the Spacetime Explorer and Quantum Equivalence Principle Space Test (STE-QUEST) mission. However, the requirements on the instrument are still very challenging. For example, the specifications of the STE-QUEST mission imply that the Feshbach coils of the atom interferometer are allowed to change their radius only by about 260 nm or 2.6 × 10-4 % due to thermal expansion although they consume an average power of 22 W. Also Earth's magnetic field has to be suppressed by a factor of 105. We show in this article that with the right design such thermal and magnetic requirements can indeed be met and that these are not an impediment for the exciting physics possible with atom interferometers in space.

  17. Design and Status of the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): An Interferometer at the Edge of Space

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.; Barclay, Richard B.; Barry, R. K.; Benford, D. J.; Calhoun, P. C.; Fixsen, D. J.; Gorman, E. T.; Jackson, M. L.; Jhabvala, C. A.; Leisawitz, D. T.; hide

    2012-01-01

    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter baseline far-infraredinterferometer designed to fly on a high altitude balloon. BETTII uses a double-Fourier Michelson interferometer tosimultaneously obtain spatial and spectral information on science targets; the long baseline permits subarcsecond angular resolution, a capability unmatched by other far-infrared facilities. Here, we present key aspects of the overall design of the mission and provide an overview of the current status of the project. We also discuss briefly the implications of this experiment for future space-based far-infrared interferometers.

  18. Multi-axial interferometry: demonstration of deep nulling

    NASA Astrophysics Data System (ADS)

    Buisset, Christophe; Rejeaunier, Xavier; Rabbia, Yves; Ruilier, Cyril; Barillot, Marc; Lierstuen, Lars; Perdigués Armengol, Josep Maria

    2017-11-01

    The ESA-Darwin mission is devoted to direct detection and spectroscopic characterization of earthlike exoplanets. Starlight rejection is achieved by nulling interferometry from space so as to make detectable the faintly emitting planet in the neighborhood. In that context, Alcatel Alenia Space has developed a nulling breadboard for ESA in order to demonstrate in laboratory conditions the rejection of an on-axis source. This device, the Multi Aperture Imaging Interferometer (MAII) demonstrated high rejection capability at a relevant level for exoplanets, in singlepolarized and mono-chromatic conditions. In this paper we report on the new multi-axial configuration of MAII and we summarize our late nulling results.

  19. Potential of balloon payloads for in flight validation of direct and nulling interferometry concepts

    NASA Astrophysics Data System (ADS)

    Demangeon, Olivier; Ollivier, Marc; Le Duigou, Jean-Michel; Cassaing, Frédéric; Coudé du Foresto, Vincent; Mourard, Denis; Kern, Pierre; Lam Trong, Tien; Evrard, Jean; Absil, Olivier; Defrere, Denis; Lopez, Bruno

    2010-07-01

    While the question of low cost / low science precursors is raised to validate the concepts of direct and nulling interferometry space missions, balloon payloads offer a real opportunity thanks to their relatively low cost and reduced development plan. Taking into account the flight capabilities of various balloon types, we propose in this paper, several concepts of payloads associated to their flight plan. We also discuss the pros and cons of each concepts in terms of technological and science demonstration power.

  20. Tone-assisted time delay interferometry on GRACE Follow-On

    NASA Astrophysics Data System (ADS)

    Francis, Samuel P.; Shaddock, Daniel A.; Sutton, Andrew J.; de Vine, Glenn; Ware, Brent; Spero, Robert E.; Klipstein, William M.; McKenzie, Kirk

    2015-07-01

    We have demonstrated the viability of using the Laser Ranging Interferometer on the Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) space mission to test key aspects of the interspacecraft interferometry proposed for detecting gravitational waves. The Laser Ranging Interferometer on GRACE-FO will be the first demonstration of interspacecraft interferometry. GRACE-FO shares many similarities with proposed space-based gravitational wave detectors based on the Laser Interferometer Space Antenna (LISA) concept. Given these similarities, GRACE-FO provides a unique opportunity to test novel interspacecraft interferometry techniques that a LISA-like mission will use. The LISA Experience from GRACE-FO Optical Payload (LEGOP) is a project developing tests of arm locking and time delay interferometry (TDI), two frequency stabilization techniques, that could be performed on GRACE-FO. In the proposed LEGOP TDI demonstration one GRACE-FO spacecraft will have a free-running laser while the laser on the other spacecraft will be locked to a cavity. It is proposed that two one-way interspacecraft phase measurements will be combined with an appropriate delay in order to produce a round-trip, dual one-way ranging (DOWR) measurement independent of the frequency noise of the free-running laser. This paper describes simulated and experimental tests of a tone-assisted TDI ranging (TDIR) technique that uses a least-squares fitting algorithm and fractional-delay interpolation to find and implement the delays needed to form the DOWR TDI combination. The simulation verifies tone-assisted TDIR works under GRACE-FO conditions. Using simulated GRACE-FO signals the tone-assisted TDIR algorithm estimates the time-varying interspacecraft range with a rms error of ±0.2 m , suppressing the free-running laser frequency noise by 8 orders of magnitude. The experimental results demonstrate the practicability of the technique, measuring the delay at the 6 ns level in the presence of a significant displacement signal.

  1. The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): Spatially Resolved Spectroscopy in the Far-Infrared

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen

    2009-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission, and SOFIA will continue to provide exciting new discoveries. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scale on which mid-to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths - a powerful tool for scientific discovery. We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII), an eight-meter baseline Michelson stellar interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers and for suborbital programs optimized for studying extrasolar planets.

  2. International mission planning for space Very Long Baseline Interferometry

    NASA Technical Reports Server (NTRS)

    Ulvestad, James S.

    1994-01-01

    Two spacecraft dedicated to Very Long Baseline Interferometry (VLBI) will be launched in 1996 and 1997 to make observations using baselines between the space telescopes and many of the world's ground radio telescopes. The Japanese Institute of Space and Astronautical Science (ISAS) will launch VSOP (VLBI Space Observatory Program) in September 1996, while the Russian Astro Space Center (ASC) is scheduled to launch RadioAstron in 1997. Both spacecraft will observe radio sources at frequencies near 1.7, 4.8, and 22 GHz; RadioAstron will also observe at 0.33 GHz. The baselines between space and ground telescopes will provide 3-10 times the resolution available for ground VLBI at the same observing frequencies. Ground tracking stations on four continents will supply the required precise frequency reference to each spacecraft measure the two-way residual phase and Doppler on the ground-space link, and record 128 Megabit/s of VLBI data downlinked from the spacecraft. The spacecraft data are meaningless without cross-correlation against the data from Earth-bound telescopes, which must take place at special-purpose VLBI correlation facilities. Therefore, participation by most of the world's radio observatories is needed to achieve substantial science return from VSOP and RadioAstron. The collaboration of several major space agencies and the ground observatories, which generally follow very different models for allocation of observing time and for routine operations, leads to great complexity in mission planning and in day-to-day operations. This paper describes some of those complications and the strategies being developed to assure productive scientific missions.

  3. Atom interferometry in space: Thermal management and magnetic shielding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milke, Alexander; Kubelka-Lange, André; Gürlebeck, Norman, E-mail: norman.guerlebeck@zarm.uni-bremen.de

    2014-08-15

    Atom interferometry is an exciting tool to probe fundamental physics. It is considered especially apt to test the universality of free fall by using two different sorts of atoms. The increasing sensitivity required for this kind of experiment sets severe requirements on its environments, instrument control, and systematic effects. This can partially be mitigated by going to space as was proposed, for example, in the Spacetime Explorer and Quantum Equivalence Principle Space Test (STE-QUEST) mission. However, the requirements on the instrument are still very challenging. For example, the specifications of the STE-QUEST mission imply that the Feshbach coils of themore » atom interferometer are allowed to change their radius only by about 260 nm or 2.6 × 10{sup −4} % due to thermal expansion although they consume an average power of 22 W. Also Earth's magnetic field has to be suppressed by a factor of 10{sup 5}. We show in this article that with the right design such thermal and magnetic requirements can indeed be met and that these are not an impediment for the exciting physics possible with atom interferometers in space.« less

  4. Concepts and technology development towards a platform for macroscopic quantum experiments in space

    NASA Astrophysics Data System (ADS)

    Kaltenbaek, Rainer

    Tremendous progress has been achieved in space technology over the last decade. This technological heritage promises enabling applications of quantum technology in space already now or in the near future. Heritage in laser and optical technologies from LISA Pathfinder comprises core technologies required for quantum optical experiments. Low-noise micro-thruster technology from GAIA allows achieving an impressive quality of microgravity, and passive radiative cooling approaches as in the James Webb Space Telescope may be adapted for achieving cryogenic temperatures. Developments like these have rendered space an increasingly attractive platform for quantum-enhanced sensing and for fundamental tests of physics using quantum technology. In particular, there already have been significant efforts towards ralizing atom interferometry and atomic clocks in space as well as efforts to harness space as an environment for fundamental tests of physics using quantum optomechanics and high-mass matter-wave interferometry. Here, we will present recent efforts in spacecraft design and technology development towards this latter goal in the context of the mission proposal MAQRO.

  5. Precision optical interferometry in space

    NASA Technical Reports Server (NTRS)

    Reasenberg, Robert D.

    1993-01-01

    POINTS, an astrometric Optical interferometer with a nominal measurement accuracy of 5 microarcseconds for the angle between a pair of stars separated by about 90 deg, is presently under consideration by two divisions of NASA-OSSA. It will be a powerful new multi-disciplinary tool for astronomical research. If chosen as the TOPS-1 (Toward Other Planetary Systems) instrument by the Solar-System Exploration Division, it will perform a definitive search for extra-solar planetary systems, either finding and characterizing a large number of them or showing that they are far less numerous than now believed. If chosen as the AIM (Astrometric Interferometry Mission) by the Astrophysics Division, POINTS will open new areas of astrophysical research and change the nature of the questions being asked in some old areas. In either case. it will be the first of a new class of powerful instruments in space and will prove the technology for the larger members of that class to follow. Based on a preliminary indication of the observational needs of the two missions, we find that a single POINTS mission will meet the science objectives of both TOPS-1 and AIM. The instrument detects dispersed fringe (channel led spectrum) and therefore can tolerate large pointing errors.

  6. Observational Model for Precision Astrometry with the Space Interferometry Mission

    NASA Technical Reports Server (NTRS)

    Turyshev, Slava G.; Milman, Mark H.

    2000-01-01

    The Space Interferometry Mission (SIM) is a space-based 10-m baseline Michelson optical interferometer operating in the visible waveband that is designed to achieve astrometric accuracy in the single digits of the microarcsecond domain. Over a narrow field of view SIM is expected to achieve a mission accuracy of 1 microarcsecond. In this mode SIM will search for planetary companions to nearby stars by detecting the astrometric "wobble" relative to a nearby reference star. In its wide-angle mode, SIM will provide 4 microarcsecond precision absolute position measurements of stars, with parallaxes to comparable accuracy, at the end of its 5-year mission. The expected proper motion accuracy is around 3 microarcsecond/year, corresponding to a transverse velocity of 10 m/ s at a distance of 1 kpc. The basic astrometric observable of the SIM instrument is the pathlength delay. This measurement is made by a combination of internal metrology measurements that determine the distance the starlight travels through the two arms of the interferometer, and a measurement of the white light stellar fringe to find the point of equal pathlength. Because this operation requires a non-negligible integration time, the interferometer baseline vector is not stationary over this time period, as its absolute length and orientation are time varying. This paper addresses how the time varying baseline can be "regularized" so that it may act as a single baseline vector for multiple stars, as required for the solution of the astrometric equations.

  7. Real-Time and Meter-Scale Absolute Distance Measurement by Frequency-Comb-Referenced Multi-Wavelength Interferometry.

    PubMed

    Wang, Guochao; Tan, Lilong; Yan, Shuhua

    2018-02-07

    We report on a frequency-comb-referenced absolute interferometer which instantly measures long distance by integrating multi-wavelength interferometry with direct synthetic wavelength interferometry. The reported interferometer utilizes four different wavelengths, simultaneously calibrated to the frequency comb of a femtosecond laser, to implement subwavelength distance measurement, while direct synthetic wavelength interferometry is elaborately introduced by launching a fifth wavelength to extend a non-ambiguous range for meter-scale measurement. A linearity test performed comparatively with a He-Ne laser interferometer shows a residual error of less than 70.8 nm in peak-to-valley over a 3 m distance, and a 10 h distance comparison is demonstrated to gain fractional deviations of ~3 × 10 -8 versus 3 m distance. Test results reveal that the presented absolute interferometer enables precise, stable, and long-term distance measurements and facilitates absolute positioning applications such as large-scale manufacturing and space missions.

  8. Real-Time and Meter-Scale Absolute Distance Measurement by Frequency-Comb-Referenced Multi-Wavelength Interferometry

    PubMed Central

    Tan, Lilong; Yan, Shuhua

    2018-01-01

    We report on a frequency-comb-referenced absolute interferometer which instantly measures long distance by integrating multi-wavelength interferometry with direct synthetic wavelength interferometry. The reported interferometer utilizes four different wavelengths, simultaneously calibrated to the frequency comb of a femtosecond laser, to implement subwavelength distance measurement, while direct synthetic wavelength interferometry is elaborately introduced by launching a fifth wavelength to extend a non-ambiguous range for meter-scale measurement. A linearity test performed comparatively with a He–Ne laser interferometer shows a residual error of less than 70.8 nm in peak-to-valley over a 3 m distance, and a 10 h distance comparison is demonstrated to gain fractional deviations of ~3 × 10−8 versus 3 m distance. Test results reveal that the presented absolute interferometer enables precise, stable, and long-term distance measurements and facilitates absolute positioning applications such as large-scale manufacturing and space missions. PMID:29414897

  9. Navigation of space VLBI missions: Radioastron and VSOP

    NASA Technical Reports Server (NTRS)

    Ellis, Jordan

    1993-01-01

    In the mid-1990s, Russian and Japanese space agencies will each place into highly elliptic earth orbit a radio telescope consisting of a large antenna and radio astronomy receivers. Very long baseline interferometry (VLBI) techniques will be used to obtain high resolution images of radio sources observed by the space and ground based antennas. Stringent navigation accuracy requirements are imposed on the space VLBI missions by the need to transfer an ultra-stable ground reference frequency standard to the spacecraft and by the demands of the VLBI correlation process. Orbit determination for the mission will be the joint responsibility of navigation centers in the U.S., Russia, and Japan with orbit estimates based on combining tracking data from NASA, Russian, and Japanese sites. This paper describes the operational plans, the inter-agency coordination, and data exchange between the navigation centers required for space VLBI navigation.

  10. M1 Mirror Print-Thru Investigation and Performance on the Thermo-Opto-Mechanical Testbed for the Space Interferometry Mission

    NASA Technical Reports Server (NTRS)

    Feria, V. Alfonso; Lam, Jonathan; Van Buren, Dave

    2006-01-01

    This paper presents the studies carried out to determine the source of the surface distortions on the M1 mirror as well as comparison and model validation during testing. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  11. Optimized Biasing of Pump Laser Diodes in a Highly Reliable Metrology Source for Long-Duration Space Missions

    NASA Technical Reports Server (NTRS)

    Poberezhskiy, Ilya; Chang, Daniel; Erlig, Hernan

    2011-01-01

    Non Planar Ring Oscillator (NPRO) lasers are highly attractive for metrology applications. NPRO reliability for prolonged space missions is limited by reliability of 808 nm pump diodes. Combined laser farm aging parameter allows comparing different bias approaches. Monte-Carlo software developed to calculate the reliability of laser pump architecture, perform parameter sensitivity studies To meet stringent Space Interferometry Mission (SIM) Lite lifetime reliability / output power requirements, we developed a single-mode Laser Pump Module architecture that: (1) provides 2 W of power at 808 nm with >99.7% reliability for 5.5 years (2) consists of 37 de-rated diode lasers operating at -5C, with outputs combined in a very low loss 37x1 all-fiber coupler

  12. The Balloon Experimental Twin Telescope for Infrared Interferometry

    NASA Technical Reports Server (NTRS)

    Silverburg, Robert

    2009-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission, and SOFIA will continue to provide exciting new discoveries. The comparatively low spatial resolution of these missions, however, is insufficient to resolve the physical scales on which mid- to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths. We have proposed a new high altitude balloon experiment, the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII). High altitude operation makes far-infrared (30- 300micron) observations possible, and BETTII's 8-meter baseline provides unprecedented angular resolution (approx. 0.5 arcsec) in this band. BETTII will use a double-Fourier instrument to simultaneously obtain both spatial and spectral information. The spatially resolved spectroscopy provided by BETTII will address key questions about the nature of disks in young cluster stars and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the groundwork for future space interferometers.

  13. The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): High Angular Resolution Astronomy at Far-Infrared Wavelengths

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.

    2008-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission. and SOFIA will continue to provide exciting new discoveries. The comparatively low spatial resolution of these missions, however. is insufficient to resolve the physical scales on which mid- to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths. We have proposed a new high altitude balloon experiment, the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII). High altitude operation makes far-infrared (30- 300micron) observations possible, and BETTII's 8-meter baseline provides unprecedented angular resolution (-0.5 arcsec) in this band. BETTII will use a double- Fourier instrument to simultaneously obtain both spatial and spectral informatioT. he spatially resolved spectroscopy provided by BETTII will address key questions about the nature of disks in young cluster stars and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the groundwork for future space interferometers.

  14. The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII)

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen

    2012-01-01

    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter baseline far-infrared interferometer to fly on a high altitude balloon. BETTII uses a double-Fourier Michelson interferometer to simultaneously obtain spatial and spectral information on science targets; the long baseline provides subarcsecond angular resolution, a capability unmatched by other far-infrared facilities. Here, we present key aspects of the overall design of the mission and provide an overview of the current status of the project. We also discuss briefly the implications of this experiment for future space-based far-infrared interferometers.

  15. The Wide-Field Imaging Interferometry Testbed: Recent Results

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen

    2006-01-01

    We present recent results from the Wide-Field Imaging Interferometry Testbed (WIIT). The data acquired with the WIIT is "double Fourier" data, including both spatial and spectral information within each data cube. We have been working with this data, and starting to develop algorithms, implementations, and techniques for reducing this data. Such algorithms and tools are of great importance for a number of proposed future missions, including the Space Infrared Interferometric Telescope (SPIRIT), the Submillimeter Probe of the Evolution of Cosmic Structure (SPECS), and the Terrestrial Planet Finder Interferometer (TPF-I)/Darwin. Recent results are discussed and future study directions are described.

  16. Fizeau interferometry from space: a challenging frontier in global astrometry

    NASA Astrophysics Data System (ADS)

    Loreggia, Davide; Gardiol, Daniele; Gai, Mario; Lattanzi, Mario G.; Busonero, Deborah

    2004-10-01

    The design and performance of a Fizeau interferometer with long focal length and large field of view are discussed. The optical scheme presented is well suited for very accurate astrometric measurements from space, being optimised, in terms of geometry and aberrations, to observe astronomical targets down to the visual magnitude mV=20, with a measurement accuracy of 10 microarcseconds at mV=15. This study is in the context of the next generation astrometric space missions, in particular for a mission profile similar to that of the Gaia mission of the European Space Agency. Beyond the accuracy goal, the great effort in optical aberrations reduction, particularly distortion, aims at the optimal exploitation of data acquisition done with CCD arrays working in Time Delay Integration mode. The design solution we present reaches the astrometric goals with a field of view of 0.5 square degrees.

  17. SPECS: the kilometer-baseline far-IR interferometer in NASA's space science roadmap

    NASA Astrophysics Data System (ADS)

    Leisawitz, David T.; Abel, Tom; Allen, Ronald J.; Benford, Dominic J.; Blain, Andrew; Bombardelli, Claudio; Calzetti, Daniela; DiPirro, Michael J.; Ehrenfreund, Pascale; Evans, Neal J., II; Fischer, Jacqueline; Harwit, Martin; Hyde, Tristram T.; Kuchner, Marc J.; Leitner, Jesse A.; Lorenzini, Enrico C.; Mather, John C.; Menten, Karl M.; Moseley, Samuel H., Jr.; Mundy, Lee G.; Nakagawa, Takao; Neufeld, David A.; Pearson, John C.; Rinehart, Stephen A.; Roman, Juan; Satyapal, Shobita; Silverberg, Robert F.; Stahl, H. Philip; Swain, Mark R.; Swanson, Theodore D.; Traub, Wesley A.; Wright, Edward L.; Yorke, Harold W.

    2004-10-01

    Ultimately, after the Single Aperture Far-IR (SAFIR) telescope, astrophysicists will need a far-IR observatory that provides angular resolution comparable to that of the Hubble Space Telescope. At such resolution galaxies at high redshift, protostars, and nascent planetary systems will be resolved, and theoretical models for galaxy, star, and planet formation and evolution can be subjected to important observational tests. This paper updates information provided in a 2000 SPIE paper on the scientific motivation and design concepts for interferometric missions SPIRIT (the Space Infrared Interferometric Telescope) and SPECS (the Submillimeter Probe of the Evolution of Cosmic Structure). SPECS is a kilometer baseline far-IR/submillimeter imaging and spectral interferometer that depends on formation flying, and SPIRIT is a highly-capable pathfinder interferometer on a boom with a maximum baseline in the 30 - 50 m range. We describe recent community planning activities, remind readers of the scientific rationale for space-based far-infrared imaging interferometry, present updated design concepts for the SPIRIT and SPECS missions, and describe the main issues currently under study. The engineering and technology requirements for SPIRIT and SPECS, additional design details, recent technology developments, and technology roadmaps are given in a companion paper in the Proceedings of the conference on New Frontiers in Stellar Interferometry.

  18. Artist concept of SIM PlanetQuest Artist Concept

    NASA Image and Video Library

    2002-12-21

    Artist's concept of the current mission configuration. SIM PlanetQuest (formerly called Space Interferometry Mission), currently under development, will determine the positions and distances of stars several hundred times more accurately than any previous program. This accuracy will allow SIM to determine the distances to stars throughout the galaxy and to probe nearby stars for Earth-sized planets. SIM will open a window to a new world of discoveries. http://photojournal.jpl.nasa.gov/catalog/PIA04248

  19. Summary of NASA Advanced Telescope and Observatory Capability Roadmap

    NASA Technical Reports Server (NTRS)

    Stahl, H. Phil; Feinberg, Lee

    2006-01-01

    The NASA Advanced Telescope and Observatory (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories operating in all electromagnetic bands, from x-rays to millimeter waves, and including gravity-waves. It lists capability priorities derived from current and developing Space Missions Directorate (SMD) strategic roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.

  20. Summary of NASA Advanced Telescope and Observatory Capability Roadmap

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Feinberg, Lee

    2007-01-01

    The NASA Advanced Telescope and Observatory (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories operating in all electromagnetic bands, from x-rays to millimeter waves, and including gravity-waves. It lists capability priorities derived from current and developing Space Missions Directorate (SMD) strategic roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.

  1. Quasar Astrophysics with the Space Interferometry Mission

    NASA Technical Reports Server (NTRS)

    Unwin, Stephen; Wehrle, Ann; Meier, David; Jones, Dayton; Piner, Glenn

    2007-01-01

    Optical astrometry of quasars and active galaxies can provide key information on the spatial distribution and variability of emission in compact nuclei. The Space Interferometry Mission (SIM PlanetQuest) will have the sensitivity to measure a significant number of quasar positions at the microarcsecond level. SIM will be very sensitive to astrometric shifts for objects as faint as V = 19. A variety of AGN phenomena are expected to be visible to SIM on these scales, including time and spectral dependence in position offsets between accretion disk and jet emission. These represent unique data on the spatial distribution and time dependence of quasar emission. It will also probe the use of quasar nuclei as fundamental astrometric references. Comparisons between the time-dependent optical photocenter position and VLBI radio images will provide further insight into the jet emission mechanism. Observations will be tailored to each specific target and science question. SIM will be able to distinguish spatially between jet and accretion disk emission; and it can observe the cores of galaxies potentially harboring binary supermassive black holes resulting from mergers.

  2. Sentinel-1 TOPS interferometry for along-track displacement measurement

    NASA Astrophysics Data System (ADS)

    Jiang, H. J.; Pei, Y. Y.; Li, J.

    2017-02-01

    The European Space Agency’s Sentinel-1 mission, a constellation of two C-band synthetic aperture radar (SAR) satellites, utilizes terrain observation by progressive scan (TOPS) antenna beam steering as its default operation mode to achieve wide-swath coverage and short revisit time. The beam steering during the TOPS acquisition provides a means to measure azimuth motion by using the phase difference between forward and backward looking interferograms within regions of burst overlap. Hence, there are two spectral diversity techniques for along-track displacement measurement, including multi-aperture interferometry (MAI) and “burst overlap interferometry”. This paper analyses the measurement accuracies of MAI and burst overlap interferometry. Due to large spectral separation in the overlap region, burst overlap interferometry is a more sensitive measurement. We present a TOPS interferometry approach for along-track displacement measurement. The phase bias caused by azimuth miscoregistration is first estimated by burst overlap interferometry over stationary regions. After correcting the coregistration error, the MAI phase and the interferometric phase difference between burst overlaps are recalculated to obtain along-track displacements. We test the approach with Sentinel-1 TOPS interferometric data over the 2015 Mw 7.8 Nepal earthquake fault. The results prove the feasibility of our approach and show the potential of joint estimation of along-track displacement with burst overlap interferometry and MAI.

  3. Phasemeter core for intersatellite laser heterodyne interferometry: modelling, simulations and experiments

    NASA Astrophysics Data System (ADS)

    Gerberding, Oliver; Sheard, Benjamin; Bykov, Iouri; Kullmann, Joachim; Esteban Delgado, Juan Jose; Danzmann, Karsten; Heinzel, Gerhard

    2013-12-01

    Intersatellite laser interferometry is a central component of future space-borne gravity instruments like Laser Interferometer Space Antenna (LISA), evolved LISA, NGO and future geodesy missions. The inherently small laser wavelength allows us to measure distance variations with extremely high precision by interfering a reference beam with a measurement beam. The readout of such interferometers is often based on tracking phasemeters, which are able to measure the phase of an incoming beatnote with high precision over a wide range of frequencies. The implementation of such phasemeters is based on all digital phase-locked loops (ADPLL), hosted in FPGAs. Here, we present a precise model of an ADPLL that allows us to design such a readout algorithm and we support our analysis by numerical performance measurements and experiments with analogue signals.

  4. Frequency stabilization for space-based missions using optical fiber interferometry.

    PubMed

    McRae, Terry G; Ngo, Silvie; Shaddock, Daniel A; Hsu, Magnus T L; Gray, Malcolm B

    2013-02-01

    We present measurement results for a laser frequency reference, implemented with an all-optical fiber Michelson interferometer, down to frequencies as low as 1 mHz. Optical fiber is attractive for space-based operations as it is physically robust, small and lightweight. The small free spectral range of fiber interferometers also provides the possibility to prestabilize two lasers on two distant spacecraft and ensures that the beatnote remains within the detector bandwidth. We demonstrate that these fiber interferometers are viable candidates for future laser-based gravity recovery and climate experiment missions requiring a stability of 30 Hz/√Hz over a 10 mHz-1 Hz bandwidth.

  5. The Space Infrared Interferometric Telescope (SPIRIT)

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen

    2007-01-01

    The Space Infrared Interferometric Telescope (SPIRIT) is a candidate NASA Origins Probe Mission. SPIRIT is a two-telescope Michelson interferometer covering wavelengths from 25-400 microns, providing simultaneously high spectral resolution and high angular resolution. With comparable sensitivity to Spitzer, but two orders of magnitude improvement in angular resolution, SPIRIT will enable us to address a wide array of compelling scientific questions, including how planetary systems form in disks and how new planets interact with the disk. Further, SPIRIT will lay the technological groundwork for an array of future interferometry missions with ambitious scientific goals, including the Terrestrial Planet Finder Interferometer / Darwin, and the Submillimeter Probe of the Evolution of Cosmic Structure.

  6. The Space Infrared Interferometric Telescope (SPIRIT)

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen

    2007-01-01

    The Space Infrared Interferometric Telescope (SPIRIT) is a candidate NASA Origins Probe Mission. SPIRIT is a two-telescope Michelson interferometer covering wavelengths from 25-400 microns, providing simultaneously high spectral resolution and high angular resolution. With comparable sensitivity to Spitzer, but two orders of magnitude improvement in angular resolution, SPIRIT will enable us to address a wide array of compelling scientific questions, including how planetary systems form in disks and how new planets interact with the disk. Further, SPIRIT will lay the technological groundwork for an array of future interferometry missions with ambitious scientific goals, including the Terrestrial Planet Finder Interferometer/Darwin, and the Submillimeter Probe of the Evolution of Cosmic Structure.

  7. Shuttle VLBI experiment. Technical working group summary report

    NASA Technical Reports Server (NTRS)

    Morgan, S. H. (Editor); Roberts, D. H. (Editor)

    1982-01-01

    The gain in interferometric resolution of extragalactic sources at radio frequencies which can be achieved by placing a very long baseline interferometry (VLBI) antenna in space is quantitatively described and a VLBI demonstration experiment using a large deployable antenna, which if realized could be a very acceptable first venture for VLBI in space is discussed. A tutorial on VLBI, a summary of the technology available for the experiment, and a preliminary mission scenario are included.

  8. The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII)

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.

    2010-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scale on which mid-to far-infrared emission arises. We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII), an eight-meter Michelson interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers.

  9. BETTII: The Balloon Experimental Twin Telescope for Infrared Interferometry

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen

    2011-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding the universe. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scale on which mid-to far-infrared emission arises. We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII),8oeight-meter Michelson interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks io young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers.

  10. Shuttle Radar Topography Mission (SRTM)

    USGS Publications Warehouse

    ,

    2009-01-01

    Under an agreement with the National Aeronautics and Space Administration (NASA) and the Department of Defense's National Geospatial-Intelligence Agency (NGA), the U.S. Geological Survey (USGS) is distributing elevation data from the Shuttle Radar Topography Mission (SRTM). The SRTM is a joint project of NASA and NGA to map the Earth's land surface in three dimensions at an unprecedented level of detail. As part of space shuttle Endeavour's flight during February 11-22, 2000, the SRTM successfully collected data over 80 percent of the Earth's land surface for most of the area between latitudes 60 degrees north and 56 degrees south. The SRTM hardware included the Spaceborne Imaging Radar-C (SIR-C) and X-band Synthetic Aperture Radar (X-SAR) systems that had flown twice previously on other space shuttle missions. The SRTM data were collected with a technique known as interferometry that allows image data from dual radar antennas to be processed for the extraction of ground heights.

  11. Research in space physics at the University of Iowa

    NASA Technical Reports Server (NTRS)

    Vanallen, J. A.

    1972-01-01

    The research is reported for current projects. Topics discussed include: study and analysis of data from Explorer 40, 43, and small scientific satellites; and the planned missions for Helios, UK-4, Pioneer R and H, and Hawkeye satellites. The progress in the theoretical studies of electron density of the solar corona, spectrophotometry, and interferometry are also reported.

  12. SIM PlanetQuest: Science with the Space Interferometry Mission

    NASA Technical Reports Server (NTRS)

    Unwin, Stephen (Editor); Turyshev, Slava (Editor)

    2004-01-01

    SIM - the Space Interferometry Mission - will perform precision optical astrometry on objects as faint as R magnitude 20. It will be the first space-based astrometric interferometer, operating in the optical band with a 10-m baseline. The Project is managed by the Jet Propulsion Laboratory, California Institute of Technology, in close collaboration with two industry partners, Lockheed Martin Missiles and Space, and TRW Inc., Space and Electronics Group. Launch of SIM is currently planned for 2009. In its wide-angle astrometric mode, SIM will yield 4 microarcsecond absolute position and parallax measurements. Astrometric planet searches will be done in a narrow-angle mode, with an accuracy of 4 microarcseconds or better in a single measurement. As a pointed rather than a survey instrument, SIM will maintain.its astrometric accuracy down to the faintest, magnitudes, opening up the opportunity for astrometry of active galactic nuclei to better than 10 pas. SIM will define a new astrometric reference frame, using a grid of approximately 1500 stars with positions accurate to 4 microarcseconds. The SIM Science Team comprises the Principal Investigators of ten Key Projects, and five Mission Scientists contributing their expertise to specific areas of the mission. Their science programs cover a wide range of topics in Galactic and extragalactic astronomy. They include: searches for low-mass planets - including analogs to our own solar system - tlie formation and dynamics of our Galaxy, calibration of the cosmic distance scale, and fundamental stellar astrophysics. All of the science observing on SIM is competitively awarded; the Science Team programs total about 40% of the total available, and the remainder will be assigned via future NASA competitions. This report is a compilation of science summaries by members of the Science Team, and it illustrates the wealth of scientific problems that microarcsecond-precision astrometry can contribute to. More information on SIM, including copies of this report, may be obtained from the project web site, at http://sim. jpl.nasa.gov.

  13. The Radiation Environment for the LISA/Laser Interferometry Space Antenna

    NASA Technical Reports Server (NTRS)

    Barth, Janet L.; Xapsos, Michael; Poivey, Christian

    2005-01-01

    The purpose of this document is to define the radiation environment for the evaluation of degradation due to total ionizing and non-ionizing dose and of single event effects (SEES) for the Laser Interferometry Space Antenna (LISA) instruments and spacecraft. The analysis took into account the radiation exposure for the nominal five-year mission at 20 degrees behind Earth's orbit of the sun, at 1 AU (astronomical unit) and assumes a launch date in 2014. The transfer trajectory out to final orbit has not yet been defined, therefore, this evaluation does not include the impact of passing through the Van Allen belts. Generally, transfer trajectories do not contribute significantly to degradation effects; however, single event effects and deep dielectric charging effects must be taken into consideration especially if critical maneuvers are planned during the van Allen belt passes.

  14. Goddard's Astrophysics Science Division Annual Report 2011

    NASA Technical Reports Server (NTRS)

    Centrella, Joan; Reddy, Francis; Tyler, Pat

    2012-01-01

    The Astrophysics Science Division(ASD) at Goddard Space Flight Center(GSFC)is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radiowavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contract imaging techniques to serch for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, and provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and suppport the astronomical community, and enable future missions by conceiving new conepts and inventing new technologies.

  15. The Astrophysics Science Division Annual Report 2009

    NASA Technical Reports Server (NTRS)

    Oegerle, William (Editor); Reddy, Francis (Editor); Tyler, Pat (Editor)

    2010-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum - from gamma rays to radio wavelengths - as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions - WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contrast imaging techniques to search for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and support the astronomical community, and enable future missions by conceiving new concepts and inventing new technologies.

  16. Goddard's Astrophysics Science Division Annual Report 2013

    NASA Technical Reports Server (NTRS)

    Weaver, Kimberly A. (Editor); Reddy, Francis J. (Editor); Tyler, Patricia A. (Editor)

    2014-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radio wavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for two orbiting astrophysics missions Fermi Gamma-ray Space Telescope and Swift as well as the Science Support Center for Fermi. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contrast imaging techniques to search for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and support the astronomical community, and enable future missions by conceiving new concepts and inventing new technologies.

  17. Mission definition study for a VLBI station utilizing the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Burke, B. F.

    1982-01-01

    The uses of the Space Shuttle transportation system for orbiting VeryLong-Baseline Interferometry (OVLBI) were examined, both with respect to technical feasibility and its scientific possibilities. The study consisted of a critical look at the adaptability of current technology to an orbiting environment, the suitability of current data reduction facilities for the new technique, and a review of the new science that is made possible by using the Space Shuttle as a moving platform for a VLBI terminal in space. The conclusions are positive in all respects: no technological deficiencies exist that would need remedy, the data processing problem can be handled easily by straightforward adaptations of existing systems, and there is a significant new research frontier to be explored, with the Space Shuttle providing the first step. The VLBI technique utilizes the great frequency stability of modern atomic time standards, the power of integrated circuitry to perform real-time signal conditioning, and the ability of magnetic tape recorders to provide essentially error-free data recording, all of which combine to permit the realization of radio interferometry at arbitrarily large baselines.

  18. Orbit Determination Issues for Libration Point Orbits

    NASA Technical Reports Server (NTRS)

    Beckman, Mark; Bauer, Frank (Technical Monitor)

    2002-01-01

    Libration point mission designers require knowledge of orbital accuracy for a variety of analyses including station keeping control strategies, transfer trajectory design, and formation and constellation control. Past publications have detailed orbit determination (OD) results from individual libration point missions. This paper collects both published and unpublished results from four previous libration point missions (ISEE (International Sun-Earth Explorer) -3, SOHO (Solar and Heliospheric Observatory), ACE (Advanced Composition Explorer) and MAP (Microwave Anisotropy Probe)) supported by Goddard Space Flight Center's Guidance, Navigation & Control Center. The results of those missions are presented along with OD issues specific to each mission. All past missions have been limited to ground based tracking through NASA ground sites using standard range and Doppler measurement types. Advanced technology is enabling other OD options including onboard navigation using seaboard attitude sensors and the use of the Very Long Baseline Interferometry (VLBI) measurement Delta Differenced One-Way Range (DDOR). Both options potentially enable missions to reduce coherent dedicated tracking passes while maintaining orbital accuracy. With the increased projected loading of the DSN (Deep Space Network), missions must find alternatives to the standard OD scenario.

  19. Medium and Small Aperture Speckle Interferometry for Geostationary On-Orbit-Servicing Space Surveillance

    NASA Astrophysics Data System (ADS)

    Scott, R.

    On-Orbit-Servicing (OOS) in Geostationary Equatorial Orbit (GEO) is likely to become a space mission reality provoking new problems for the optical space surveillance community. OOS’ close-proximity flight of servicer and client satellites with separations less than 1 kilometer in GEO challenge the metric measurement capabilities of medium and small aperture space surveillance instruments. This paper describes an OOS monitoring technique based on Cross-Spectrum speckle interferometry to compensate for atmospheric turbulence and measure the OOS satellites’ differential relative position. Cross-Spectrum speckle interferometry, an astronomical technique developed to measure the astrometric positions of binary stars, was adapted to the geostationary OOS problem and was tested using Sloan i’ observations of co-located geostationary satellites. Medium (1.6m) and small (0.35m) aperture telescopes were used to observe these satellites undergoing optical conjunctions where their apparent line-of-sight separation narrowed within 5 arcseconds. During the initial development of the Cross-Spectrum approach some weaknesses were identified where particle strikes, faint background stars, anomalous fringe orientation angles and high relative angular rates corrupt the relative position measurement process. In this paper, newly adjusted compensation techniques to remedy these issues are described and the data is reprocessed. The Cross-Spectrum’s performance is shown to work well on closely-spaced GEO satellites with separations less than 3 arcseconds and evidence is shown suggesting the technique can measure satellite separations within 1.8 arcseconds.

  20. International data transfer for space very long baseline interferometry

    NASA Technical Reports Server (NTRS)

    Wiercigroch, Alexandria B.

    1994-01-01

    Space very long baseline interferometry (SVLBI) experiments using a TDRSS satellite have successfully demonstrated the capability of using spacecraft to extend the effective baseline length of VLBI observations beyond the diameter of the Earth, thereby improving the resolution for imaging of active galactic nuclei at centimeter wavelengths. As a result, two spacecraft dedicated to SVLBI, VSOP (Japan) and RadioAstron (Russia), are scheduled to be launched into high Earth orbit in 1996 and 1997. The success of these missions depends on the cooperation of the international community in providing support from ground tracking stations, ground radio telescopes, and correlation facilities. The timely exchange and monitoring of data among the participants requires a well-designed and automated international data transfer system. In this paper, we will discuss the design requirements, data types and flows, and the operational responsibilities associated with the SVLBI data transfer system.

  1. Multi-Axis Heterodyne Interferometry (MAHI)

    NASA Astrophysics Data System (ADS)

    Thorpe, James

    The detection and measurement of gravitational waves represents humanity’s next, and final, opportunity to open an entirely new spectrum with which to view the universe. The first steps of this process will likely take place later this decade when the second-generation ground-based instruments such as Advanced LIGO approach design sensitivity. While these events will be historic, it will take a space-based detector to access the milliHertz gravitational wave frequency band, a band that is rich in both number and variety of sources. The Laser Interferometer Space Antenna (LISA) concept has been developed over the past two decades in the US and Europe to provide access to this band. The European Space Agency recently selected The Gravitational Universe as the science theme for the 3rd Large-class mission in the Cosmic Visions Programme, with the assumption that a LISA-like instrument would be implemented for launch in 2034. NASA has expressed interest in partnering on this effort and the US community has made its own judgment on the scientific potential of a space-based gravitational wave observatory through the selection of LISA as the 3rd flagship mission in the 2010 Decadal Survey. Much of the effort has been in retiring risk for the unique technologies that comprise a gravitational wave detector. A prime focus of this effort is LISA Pathfinder (LPF), a dedicated technology demonstrator mission led by ESA with contributions from NASA and several member states. LPF’s primary objective is to validate drag-free flight as an approach to realizing an inertial reference mass. Along the way, several important technologies will be demonstrated, including picometer-level heterodyne interferometry. However, there are several important differences between the interferometry design for LISA and that for LPF. These mostly result from the fact that LISA interferometry involves multiple lasers on separate spacecraft whereas LPF can use a single laser on a single spacecraft. We propose to develop a laboratory prototype of a LISA-like interferometric metrology system capable of simultaneously making picometer-level position and nanoradian-level attitude measurements of a free-flying target. In the LISA application, this prototype would represent the short-arm interferometer, measuring the displacement and relative attitude between the gravitational test mass and the spacecraft. This measurement is used both to drive the drag-free attitude and control system as well as to extract the gravitational wave science signal. In addition to the LISA application, such a system would have broader applications in future geodesy and formation-flying missions. The prototype free-flying metrology system will consist of the following subcomponents: an optical bench providing stable pathlengths, an optical target mounted on a precision actuator, a low-noise quadrant photoreceiver for generating differential wavefront signals, and a phase measurement system to measure the individual heterodyne signals and convert them into quantities such as position and angle. In addition to the moving target, the optical bench will include a pair of fixed targets to be used as references. Comparing the two reference interferometers will provide an estimate of the noise performance of the measurement system, while comparing a reference interferometer with the free-flying target will allow us to demonstrate measurement over a large dynamic range. In addition to making performance measurements, we will use this prototype system to explore a number of system-level issues related to free-flying interferometry including initial acquisition, beam-walk effects, and jitter couplings.

  2. The Space Infrared Interferometric Telescope (SPIRIT)

    NASA Technical Reports Server (NTRS)

    Leisawitz, David T.

    2014-01-01

    The far-infrared astrophysics community is eager to follow up Spitzer and Herschel observations with sensitive, high-resolution imaging and spectroscopy, for such measurements are needed to understand merger-driven star formation and chemical enrichment in galaxies, star and planetary system formation, and the development and prevalence of water-bearing planets. The Space Infrared Interferometric Telescope (SPIRIT) is a wide field-of-view space-based spatio-spectral interferometer designed to operate in the 25 to 400 micron wavelength range. This talk will summarize the SPIRIT mission concept, with a focus on the science that motivates it and the technology that enables it. Without mentioning SPIRIT by name, the astrophysics community through the NASA Astrophysics Roadmap Committee recently recommended this mission as the first in a series of space-based interferometers. Data from a laboratory testbed interferometer will be used to illustrate how the spatio-spectral interferometry technique works.

  3. The DARWIN breadboard cryogenic optical delay line

    NASA Astrophysics Data System (ADS)

    van den Dool, T. C.; Gielesen, W.; Kamphues, F.; Loix, N.; Kooijman, P. P.; de Vries, C.; van Weers, H.; Fleury, K.; Stockman, Y.; Velsink, G.; Benoit, J.; Poupinet, A.; Sève, F.

    2017-11-01

    TNO, in cooperation with Micromega-Dynamics, SRON, Dutch Space and CSL, has designed a compact breadboard cryogenic delay line (figure 1) for use in future space interferometry missions. The work is performed under ESA contract 17.747/03 in preparation for the DARWIN mission. The breadboard (BB) delay line is representative of a flight mechanism. The delay line has a single stage voice coil actuator for Optical Path Difference (OPD) control, driving a twomirror cat's eye. Magnetic bearings provide frictionless and wear free operation with zero-hysteresis. The design of the BB delay line has been completed. The development test program, including operation at 100 K has been completed. The verification test programme is currently being carried out and will include functional testing at 40 K.

  4. NASA capabilities roadmap: advanced telescopes and observatories

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee D.

    2005-01-01

    The NASA Advanced Telescopes and Observatories (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories collecting all electromagnetic bands, ranging from x-rays to millimeter waves, and including gravity-waves. It has derived capability priorities from current and developing Space Missions Directorate (SMD) strategic roadmaps and, where appropriate, has ensured their consistency with other NASA Strategic and Capability Roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.

  5. Shuttle Radar Topography Mission (SRTM)

    USGS Publications Warehouse

    ,

    2003-01-01

    Under an agreement with the National Aeronautics and Space Administration (NASA) and the Department of Defense's National Imagery and Mapping Agency (NIMA), the U.S. Geological Survey (USGS) is now distributing elevation data from the Shuttle Radar Topography Mission (SRTM). The SRTM is a joint project between NASA and NIMA to map the Earth's land surface in three dimensions at a level of detail unprecedented for such a large area. Flown aboard the NASA Space Shuttle Endeavour February 11-22, 2000, the SRTM successfully collected data over 80 percent of the Earth's land surface, for most of the area between 60? N. and 56? S. latitude. The SRTM hardware included the Spaceborne Imaging Radar-C (SIR-C) and X-band Synthetic Aperture Radar (X-SAR) systems that had flown twice previously on other space shuttle missions. The SRTM data were collected specifically with a technique known as interferometry that allows image data from dual radar antennas to be processed for the extraction of ground heights.

  6. Laser system development for gravitational-wave interferometry in space

    NASA Astrophysics Data System (ADS)

    Numata, Kenji; Yu, Anthony W.; Camp, Jordan B.; Krainak, Michael A.

    2018-02-01

    A highly stable and robust laser system is a key component of the space-based Laser Interferometer Space Antenna (LISA) mission, which is designed to detect gravitational waves from various astronomical sources. The baseline architecture for the LISA laser consists of a low-power, low-noise Nd:YAG non-planar ring oscillator (NPRO) followed by a diode-pumped Yb-fiber amplifier with 2 W output. We are developing such laser system at the NASA Goddard Space Flight Center (GSFC), as well as investigating other laser options. In this paper, we will describe our progress to date and plans to demonstrate a technology readiness level (TRL) 6 LISA laser system.

  7. Autonomous formation flying sensor for the Star Light Mission

    NASA Technical Reports Server (NTRS)

    Aung, M.; Purcell, G.; Tien, J.; Young, L.; Srinivasan, J.; Ciminera, M. A.; Chong, Y. J.; Amaro, L. R.; Young, L. E.

    2002-01-01

    The StarLight Mission, an element of NASA's Origins Program, was designed for first-time demonstration of two technologies: formation flying optical interferometry between spacecraft and autonomous precise formation flying of an array of spacecraft to support optical interferometry. The design overview and results of the technology effort are presented in this paper.

  8. LISA Pathfinder Instrument Data Analysis

    NASA Technical Reports Server (NTRS)

    Guzman, Felipe

    2010-01-01

    LISA Pathfinder (LPF) is an ESA-launched demonstration mission of key technologies required for the joint NASA-ESA gravitational wave observatory in space, LISA. As part of the LPF interferometry investigations, analytic models of noise sources and corresponding noise subtraction techniques have been developed to correct for effects like the coupling of test mass jitter into displacement readout, and fluctuations of the laser frequency or optical pathlength difference. Ground testing of pre-flight hardware of the Optical Metrology subsystem is currently ongoing at the Albert Einstein Institute Hannover. In collaboration with NASA Goddard Space Flight Center, the LPF mission data analysis tool LTPDA is being used to analyze the data product of these tests. Furthermore, the noise subtraction techniques and in-flight experiment runs for noise characterization are being defined as part of the mission experiment master plan. We will present the data analysis outcome of preflight hardware ground tests and possible noise subtraction strategies for in-flight instrument operations.

  9. KSC-99pp0658

    NASA Image and Video Library

    1999-05-25

    STS-99 Mission Specialist Janice Voss conducts a system verification test on the Shuttle Radar Topography Mission in the Space Station Processing Facility. The primary payload on mission STS-99, the SRTM consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission targeted for launch Sept. 16, 1999. This radar system will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle

  10. Optical metrology for Starlight Separated Spacecraft Stellar Interferometry Mission

    NASA Technical Reports Server (NTRS)

    Dubovitsky, S.; Lay, O. P.; Peters, R. D.; Abramovici, A.; Asbury, C. G.; Kuhnert, A. C.; Mulder, J. L.

    2002-01-01

    We describe a high-precision inter-spacecraft metrology system designed for NASA 's StarLight mission, a space-based separated-spacecraft stellar interferometer. It consists of dual-target linear metrology, based on a heterodyne interferometer with carrier phase modulation, and angular metrology designed to sense the pointing of the laser beam and provides bearing information. The dual-target operation enables one metrology beam to sense displacement of two targets independently. We present the current design, breadboard implementation of the Metrology Subsystem in a stellar interferometer testbed and the present state of development of flight qualifiable subsystem components.

  11. Simultaneous two-wavelength holographic interferometry in a superorbital expansion tube facility.

    PubMed

    McIntyre, T J; Wegener, M J; Bishop, A I; Rubinsztein-Dunlop, H

    1997-11-01

    A new variation of holographic interferometry has been utilized to perform simultaneous two-wavelength measurements, allowing quantitative analysis of the heavy particle and electron densities in a superorbital facility. An air test gas accelerated to 12 km/s was passed over a cylindrical model, simulating reentry conditions encountered by a space vehicle on a superorbital mission. Laser beams with two different wavelengths have been overlapped, passed through the test section, and simultaneously recorded on a single holographic plate. Reconstruction of the hologram generated two separate interferograms at different angles from which the quantitative measurements were made. With this technique, a peak electron concentration of (5.5 +/- 0.5) x 10(23) m(-3) was found behind a bow shock on a cylinder.

  12. Nearby Red Dwarfs are Sexy for Planets and Life

    NASA Astrophysics Data System (ADS)

    Henry, T. J.; Jao, W.-C.; Subasavage, J. P.; RECONS Team

    2005-12-01

    The RECONS group continues to discover many nearby red dwarfs in the southern sky through a combination of proper motion surveys, literature review, and ultimately, our parallax program CTIOPI. Already, we have measured the first accurate parallaxes for 11 of the nearest 100 stellar systems, including four within 5 parsecs of the Sun. These nearby red dwarfs are prime candidates for NASA's Space Interferometry Mission (SIM) because the astrometric perturbations are largest for planets orbiting stars of low mass that are nearby. In addition, new multiple red dwarf systems can be targeted for mass determinations, thereby providing points on a comprehensive mass-luminosity relation for the most populous members of the Galaxy. Recent atmospheric modeling of planets orbiting red dwarfs indicates that even if the planets are tidally locked, heat distribution is highly effective in keeping the worlds balmy over the entire surface. Red dwarfs are therefore "back on the table" as viable hosts of life-bearing planets. Given their ubiquity, red dwarfs are being seriously considered as prime SETI targets, and will allow us to answer not only the question "Are We Alone?" but "Just How Alone Are We?" This work has been supported by the National Science Foundation, NASA's Space Interferometry Mission, and Georgia State University.

  13. LISA technologies in new light: exploring alternatives for charge management and optical bench construction

    NASA Astrophysics Data System (ADS)

    Ciani, Giacomo; Chilton, Andrew; Olatunde, Taiwo; Apple, Stephen; Conklin, John W.; Mueller, Guido

    2015-08-01

    A LISA-like gravitational wave observatory is the choice candidate for ESA's L3 large mission scheduled to launch in 2034. The LISA Test Package (LTP) mission will launch later this year and test many critical technologies needed for such an observatory, among which are picometer interferometry in space and UV charge management of the Test Mass (TM). The design of these subsystems has been frozen many years ago during the final formulation of the LTP mission; since then, the LISA mission concept has evolved and new technologies have become available, making it possible to re-think the way these subsystem are implemented. With the final formulation of the L3 mission still years in the future and the LTP results expected in about one year, now is an ideal time look for areas of possible improvement and explore alternative implementations that can enhance performance, reduce costs or mitigate risks.Recently developed UV LED are lighter, cheaper and more powerful than traditional mercury lamps; in addition, their fast response time can be used to implement AC discharge techniques that can save even more space and power, and provide a more precise control of the charge.The most recent iteration of the mission baseline design allows for eliminating some of the optical components initially deemed essential; paired with the use of polarization multiplexing, this permits a redesign of the optical bench that simplifies the layout and enables a modular approach to machining and assembly, thus reducing the risks and costs associated with the current monolithic design without compromising the picometer stability of the optical path.Leveraging on extensive previous experience with LISA interferometry and the availability of a torsion pendulum-based LISA test-bed, the University of Florida LISA group is working at developing, demonstrating and optimizing both these technologies. I will describe the most recent advancements and results.

  14. Characterization methods of integrated optics for mid-infrared interferometry

    NASA Astrophysics Data System (ADS)

    Labadie, Lucas; Kern, Pierre Y.; Schanen-Duport, Isabelle; Broquin, Jean-Emmanuel

    2004-10-01

    his article deals with one of the important instrumentation challenges of the stellar interferometry mission IRSI-Darwin of the European Space Agency: the necessity to have a reliable and performant system for beam combination has enlightened the advantages of an integrated optics solution, which is already in use for ground-base interferometry in the near infrared. Integrated optics provides also interesting features in terms of filtering, which is a main issue for the deep null to be reached by Darwin. However, Darwin will operate in the mid infrared range from 4 microns to 20 microns where no integrated optics functions are available on-the-shelf. This requires extending the integrated optics concept and the undergoing technology in this spectral range. This work has started with the IODA project (Integrated Optics for Darwin) under ESA contract and aims to provide a first component for interferometry. In this paper are presented the guidelines of the characterization work that is implemented to test and validate the performances of a component at each step of the development phase. We present also an example of characterization experiment used within the frame of this work, is theoretical approach and some results.

  15. LISA Mission Concept Study, Laser Interferometer Space Antenna for the Detection and Observation of Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Folkner, W. M.; Bender, P. L.; Stebbins, R. T.

    1998-01-01

    This document presents the results of a design feasibility study for LISA (Laser Interferometer Space Antenna). The goal of LISA is to detect and study low-frequency astrophysical gravitational radiation from strongly relativistic regions. Astrophysical sources potentially visible to LISA include extra-galactic massive black hole binaries at cosmological distances, binary systems composed of a compact star and a massive black hole, galactic neutron star-black hole binaries, and background radiation from the Big Bang. The LISA mission will comprise three spacecraft located five million kilometers apart forming an equilateral triangle in an Earth-trailing orbit. Fluctuations in separation between shielded test masses located within each spacecraft will be determined by optical interferometry which determines the phase shift of laser light transmitted between the test masses.

  16. Interferometry in the Era of Very Large Telescopes

    NASA Technical Reports Server (NTRS)

    Barry, Richard K.

    2010-01-01

    Research in modern stellar interferometry has focused primarily on ground-based observatories, with very long baselines or large apertures, that have benefited from recent advances in fringe tracking, phase reconstruction, adaptive optics, guided optics, and modern detectors. As one example, a great deal of effort has been put into development of ground-based nulling interferometers. The nulling technique is the sparse aperture equivalent of conventional coronography used in filled aperture telescopes. In this mode the stellar light itself is suppressed by a destructive fringe, effectively enhancing the contrast of the circumstellar material located near the star. Nulling interferometry has helped to advance our understanding of the astrophysics of many distant objects by providing the spatial resolution necessary to localize the various faint emission sources near bright objects. We illustrate the current capabilities of this technique by describing the first scientific results from the Keck Interferometer Nuller that combines the light from the two largest optical telescopes in the world including new, unpublished measurements of exozodiacal dust disks. We discuss prospects in the near future for interferometry in general, the capabilities of secondary masking interferometry on very large telescopes, and of nulling interferometry using outriggers on very large telescopes. We discuss future development of a simplified space-borne NIR nulling architecture, the Fourier-Kelvin Stellar Interferometer, capable of detecting and characterizing an Earth twin in the near future and how such a mission would benefit from the optical wavelength coverage offered by large, ground-based instruments.

  17. PlanetQuest: Engaging the Public and Students in NASA's Search for New Worlds

    NASA Astrophysics Data System (ADS)

    Greene, M.; Danner, R.

    2003-12-01

    NASA's Navigator Program consists of four ground-breaking missions that span a twenty-five year time horizon. Two space-based and two ground-based missions will contribute to the overall goal of detecting and characterizing Earth-like planets around stars other than the Sun. The Keck Interferometer began its science mission in 2002, and the Large Binocular Telescope Interferometer will become operational in 2006, while the two space-based missions, the Space Interferometry Mission and the Terrestrial Planet Finder, will launch in 2009 and 2015 respectively. The science operations and analysis of all missions will be supported by the Michelson Science Center, operated by the California Institute of Technology. Navigator Public Engagement initiatives (which can also be found under the heading of "PlanetQuest") span the areas of formal education, informal education, and general public outreach. Two initiatives-improving astronomy instruction at community colleges, and the "Night Sky Network: Engaging Amateur Astronomy Clubs"-stand out as significant new investments for Navigator, and may serve as platforms for the participation of more NASA missions in the future. Other programs involve creating activities for "girls in science," continuing to support minority university research experiences, and developing museum exhibits, a planetarium show and other visualizations. The core values of all Navigator E/PO initiatives include involving scientists and engineers, creating effective partnerships, reaching underserved populations, and evaluating and measuring program impact.

  18. Investigation of Space Interferometer Control Using Imaging Sensor Output Feedback

    NASA Technical Reports Server (NTRS)

    Leitner, Jesse A.; Cheng, Victor H. L.

    2003-01-01

    Numerous space interferometry missions are planned for the next decade to verify different enabling technologies towards very-long-baseline interferometry to achieve high-resolution imaging and high-precision measurements. These objectives will require coordinated formations of spacecraft separately carrying optical elements comprising the interferometer. High-precision sensing and control of the spacecraft and the interferometer-component payloads are necessary to deliver sub-wavelength accuracy to achieve the scientific objectives. For these missions, the primary scientific product of interferometer measurements may be the only source of data available at the precision required to maintain the spacecraft and interferometer-component formation. A concept is studied for detecting the interferometer's optical configuration errors based on information extracted from the interferometer sensor output. It enables precision control of the optical components, and, in cases of space interferometers requiring formation flight of spacecraft that comprise the elements of a distributed instrument, it enables the control of the formation-flying vehicles because independent navigation or ranging sensors cannot deliver the high-precision metrology over the entire required geometry. Since the concept can act on the quality of the interferometer output directly, it can detect errors outside the capability of traditional metrology instruments, and provide the means needed to augment the traditional instrumentation to enable enhanced performance. Specific analyses performed in this study include the application of signal-processing and image-processing techniques to solve the problems of interferometer aperture baseline control, interferometer pointing, and orientation of multiple interferometer aperture pairs.

  19. EXPLORATION OF SOURCE FREQUENCY PHASE REFERENCING TECHNIQUES FOR ASTROMETRY AND OBSERVATIONS OF WEAK SOURCES WITH HIGH FREQUENCY SPACE VERY LONG BASELINE INTERFEROMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rioja, M.; Dodson, R.; Malarecki, J.

    2011-11-15

    Space very long baseline interferometry (S-VLBI) observations at high frequencies hold the prospect of achieving the highest angular resolutions and astrometric accuracies, resulting from the long baselines between ground and satellite telescopes. Nevertheless, space-specific issues, such as limited accuracy in the satellite orbit reconstruction and constraints on the satellite antenna pointing operations, limit the application of conventional phase referencing. We investigate the feasibility of an alternative technique, source frequency phase referencing (SFPR), to the S-VLBI domain. With these investigations we aim to contribute to the design of the next generation of S-VLBI missions. We have used both analytical and simulationmore » studies to characterize the performance of SFPR in S-VLBI observations, applied to astrometry and increased coherence time, and compared these to results obtained using conventional phase referencing. The observing configurations use the specifications of the ASTRO-G mission for their starting point. Our results show that the SFPR technique enables astrometry at 43 GHz, using alternating observations with 22 GHz, regardless of the orbit errors, for most weathers and under a wide variety of conditions. The same applies to the increased coherence time for the detection of weak sources. Our studies show that the capability to carry out simultaneous dual frequency observations enables application to higher frequencies, and a general improvement of the performance in all cases, hence we recommend its consideration for S-VLBI programs.« less

  20. Mechanical Amplifier for a Piezoelectric Transducer

    NASA Technical Reports Server (NTRS)

    Moore, James; Swain, Mark; Lawson, Peter; Calvet, Robert

    2003-01-01

    A mechanical amplifier has been devised to multiply the stroke of a piezoelectric transducer (PZT) intended for use at liquid helium temperatures. Interferometry holds the key to high angular resolution imaging and astrometry in space. Future space missions that will detect planets around other solar systems and perform detailed studies of the evolution of stars and galaxies will use new interferometers that observe at mid- and far-infrared wavelengths. Phase-measurement interferometry is key to many aspects of astronomical interferometry, and PZTs are ideal modulators for most methods of phase measurement, but primarily at visible wavelengths. At far infrared wavelengths of 150 to 300 m, background noise is a severe problem and all optics must be cooled to about 4 K. Under these conditions, piezos are ill-suited as modulators, because their throw is reduced by as much as a factor of 2, and even a wavelength or two of modulation is beyond their capability. The largest commercially available piezo stacks are about 5 in. (12.7 cm) long and have a throw of about 180 m at room temperature and only 90 m at 4 K. It would seem difficult or impossible to use PZTs for phase measurements in the far infrared were it not for the new mechanical amplifier that was designed and built.

  1. Integrated optics for nulling interferometry in the thermal infrared: progress and recent achievements

    NASA Astrophysics Data System (ADS)

    Barillot, M.; Barthelemy, E.; Bastard, L.; Broquin, J.-E.; Hawkins, G.; Kirschner, V.; Ménard, S.; Parent, G.; Poinsot, C.; Pradel, A.; Vigreux, C.; Zhang, S.; Zhang, X.

    2017-11-01

    The search for Earth-like exoplanets, orbiting in the habitable zone of stars other than our Sun and showing biological activity, is one of the most exciting and challenging quests of the present time. Nulling interferometry from space, in the thermal infrared, appears as a promising candidate technique for the task of directly observing extra-solar planets. It has been studied for about 10 years by ESA and NASA in the framework of the Darwin and TPF-I missions respectively [1]. Nevertheless, nulling interferometry in the thermal infrared remains a technological challenge at several levels. Among them, the development of the "modal filter" function is mandatory for the filtering of the wavefronts in adequacy with the objective of rejecting the central star flux to an efficiency of about 105. Modal filtering [2] takes benefit of the capability of single-mode waveguides to transmit a single amplitude function, to eliminate virtually any perturbation of the interfering wavefronts, thus making very high rejection ratios possible. The modal filter may either be based on single-mode Integrated Optics (IO) and/or Fiber Optics. In this paper, we focus on IO, and more specifically on the progress of the on-going "Integrated Optics" activity of the European Space Agency.

  2. Demonstration of the Wide-Field Imaging Interferometer Testbed Using a Calibrated Hyperspectral Image Projector

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Leisawitz, David; Maher, Steve; Rinehart, Stephen

    2012-01-01

    The Wide-field Imaging Interferometer testbed (WIIT) at NASA's Goddard Space Flight Center uses a dual-Michelson interferometric technique. The WIIT combines stellar interferometry with Fourier-transform interferometry to produce high-resolution spatial-spectral data over a large field-of-view. This combined technique could be employed on future NASA missions such as the Space Infrared Interferometric Telescope (SPIRIT) and the Sub-millimeter Probe of the Evolution of Cosmic Structure (SPECS). While both SPIRIT and SPECS would operate at far-infrared wavelengths, the WIIT demonstrates the dual-interferometry technique at visible wavelengths. The WIIT will produce hyperspectral image data, so a true hyperspectral object is necessary. A calibrated hyperspectral image projector (CHIP) has been constructed to provide such an object. The CHIP uses Digital Light Processing (DLP) technology to produce customized, spectrally-diverse scenes. CHIP scenes will have approximately 1.6-micron spatial resolution and the capability of . producing arbitrary spectra in the band between 380 nm and 1.6 microns, with approximately 5-nm spectral resolution. Each pixel in the scene can take on a unique spectrum. Spectral calibration is achieved with an onboard fiber-coupled spectrometer. In this paper we describe the operation of the CHIP. Results from the WIIT observations of CHIP scenes will also be presented.

  3. A New Optical Bench Concept for Space-Based Laser Interferometric Gravitational Wave Missions

    NASA Astrophysics Data System (ADS)

    Chilton, Andrew; Apple, Stephen; Ciani, Giacomo; Olatunde, Taiwo; Conklin, John; Mueller, Guido

    2015-04-01

    Space-based interferometric gravitational wave detectors such as LISA have been proposed to detect low-frequency gravitational wave sources such as the inspirals of compact objects into massive black holes or two massive black holes into each other. The optical components used to perform the high-precision interferometry required to make these measurements have historically been bonded to Zerodur optical benches, which are thermally ultrastable but difficult and time-consuming to manufacture. More modern implementations of LISA-like interferometry have reduced the length stability requirement on these benches from 30fm/√{Hz} to a few pm √{ Hz}. We therefore propose to alter the design of the optical bench in such a way as to no longer require the use of Zerodur; instead, we plan to replace it with more easily-used materials such as titanium or molybdenum. In this presentation, we discuss the current status of and future plans for the construction and testing of such an optical bench.

  4. Effect of Ceramic Ball and Hybrid Stainless Steel Bearing/Wheel Combinations on the Lifetime of a Precision Translation Stage for the SIM Flight Project

    NASA Technical Reports Server (NTRS)

    Lo, C. John; Klein, Kerry; Jones, William R., Jr.; Jansen, Mark J.; Wemhoner, Jens

    2009-01-01

    A study of hybrid material couples using the Spiral Orbit Tribometer (SOT) was initiated to investigate both lubricated (Pennzane X2000 and Brayco 815Z) and unlubricated Si3N4, 440C SS, Rex 20, Cronidur X30 and X40 plates with Cerbec SN-101-C (Si3N4) and 440C balls. The hybrid wheel/bearing assembly will be used on the Linear Optical Delay Line (LODL) stage as an element of the NASA Space Interferometry Mission (SIM). SIM is an orbiting interferometer linking a pair of telescopes within the spacecraft and, by using an interferometry technique and several precision optical stages, is able to measure the motions of known stars much better than current ground or space based systems. This measurement will provide the data to "infer" the existence of any plants, undetectable by other methods, orbiting these known stars.

  5. An Overview of the StarLight Mission

    NASA Technical Reports Server (NTRS)

    Lay, Oliver; Blackwood, Gary; Dubovitsky, Serge; Duren, Riley

    2004-01-01

    An overview of the Starlight Mission is presented. Mission summary: June 2006 launch to heliocentric orbit; Nominal 6 month mission with option of additional 6 month extension; Validate autonomous formation flying system: range control to 10 cm bearing, control to 4 arcmin; Demonstrate formation flying optical interferometry.The original 3 spacecraft design did not fit the budget. 2 spacecraft concept demonstrates all key areas of formation flying interferometry. Collector flown on the surface of a virtual paraboloid, with combiner at the focus. It Gives a baseline of 125 m with a fixed delay of only 14 m.

  6. KSC-99pp0776

    NASA Image and Video Library

    1999-06-19

    In the Space Station Processing Facility, the STS-99 crew pose in front of the Shuttle Radar Topography Mission, the payload for their mission. From left are Mission Specialists Mamoru Mohri of Japan, Janet Lynn Kavandi (Ph.D.), and Janice Voss (Ph.D.); Commander Kevin R. Kregel; Mission Specialist Gerhard Thiele of Germany; and Pilot Dominic L. Pudwill Gorie. Mohri represents the National Space Development Agency of Japan and Thiele represents the European Space Agency. An international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR, the SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A

  7. From Monolithics to Tethers to Freeflyers: The Spectrum of Large Aperture Sensing from Space

    NASA Technical Reports Server (NTRS)

    Leitner, Jesse; Quinn, David; Bauer, Frank (Technical Monitor)

    2002-01-01

    As part of NASA's endeavor to push the envelope and go where we have never been before, the Space Science Enterprise has laid out a vision which includes several missions that revolutionize the collection of scientific data from space. Many of the missions designed to meet the objectives of these programs depend heavily on the ability to perform space-based interferometry, which has recently become a rapidly growing field of investigation for both the scientific and engineering communities. While scientists are faced with the challenges of designing high fidelity optical systems capable of making detailed observations, engineers wrestle with the problem of providing s-pace-based platforms that can permit this data gathering to occur. Observational data gathering is desired at's variety of spectral wavelengths and resolutions, calling for interferometers with a range of baseline requirements. Approaches to configuration design are as varied as the missions themselves from large monolithic spacecraft to multiple free-flying small spacecraft and everything in between. As will be discussed, no one approach provides a 'panacea' of solutions rather each has its place in terms of the mission requirements. The purpose here is to identify the advantages and disadvantages of the various approaches, to discuss the driving factors in design selection and determine the relative range of applicability of each design approach.

  8. Radioastron flight operations

    NASA Technical Reports Server (NTRS)

    Altunin, V. I.; Sukhanov, K. G.; Altunin, K. R.

    1993-01-01

    Radioastron is a space-based very-long-baseline interferometry (VLBI) mission to be operational in the mid-90's. The spacecraft and space radio telescope (SRT) will be designed, manufactured, and launched by the Russians. The United States is constructing a DSN subnet to be used in conjunction with a Russian subnet for Radioastron SRT science data acquisition, phase link, and spacecraft and science payload health monitoring. Command and control will be performed from a Russian tracking facility. In addition to the flight element, the network of ground radio telescopes which will be performing co-observations with the space telescope are essential to the mission. Observatories in 39 locations around the world are expected to participate in the mission. Some aspects of the mission that have helped shaped the flight operations concept are: separate radio channels will be provided for spacecraft operations and for phase link and science data acquisition; 80-90 percent of the spacecraft operational time will be spent in an autonomous mode; and, mission scheduling must take into account not only spacecraft and science payload constraints, but tracking station and ground observatory availability as well. This paper will describe the flight operations system design for translating the Radioastron science program into spacecraft executed events. Planning for in-orbit checkout and contingency response will also be discussed.

  9. KSC-99pp0999

    NASA Image and Video Library

    1999-07-28

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-99 Mission Specialists Janet Lynn Kavandi (Ph.D.) and Gerhard P.J. Thiele look over part of the Shuttle Radar Topography Mission (SRTM), primary payload for their mission, as part of a Crew Equipment Interface Test (CEIT). Also taking part in the CEIT are Commander Kevin R. Kregel, Pilot Dominic L. Pudwill Gorie, and Mission Specialists Janice Voss (Ph.D.) and Mamoru Mohri. Mohri is with the National Space Development Agency (NASDA) of Japan, and Thiele is with the European Space Agency. The CEIT provides an opportunity for crew members to check equipment and facilities that will be aboard the orbiter during their mission. The SRTM is a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A

  10. KSC-99pp0998

    NASA Image and Video Library

    1999-07-28

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-99 Mission Specialists Gerhard P.J. Thiele and Janet Lynn Kavandi (Ph.D.) look over part of the Shuttle Radar Topography Mission (SRTM), primary payload for their mission, as part of a Crew Equipment Interface Test (CEIT). Also taking part in the CEIT are Commander Kevin R. Kregel, Pilot Dominic L. Pudwill Gorie, and Mission Specialists Janice Voss (Ph.D.) and Mamoru Mohri. Mohri is with the National Space Development Agency (NASDA) of Japan, and Thiele is with the European Space Agency. The CEIT provides an opportunity for crew members to check equipment and facilities that will be aboard the orbiter during their mission. The SRTM is a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A

  11. KSC-99pp0774

    NASA Image and Video Library

    1999-06-19

    In the Space Station Processing Facility, STS-99 crew members inspect the Shuttle Radar Topography Mission (SRTM), the payload for their mission. At left is Commander Kevin R. Kregel talking to Mission Specialist Janice Voss (Ph.D.); and Mission Specialists Gerhard Thiele of Germany and Mamoru Mohri of Japan farther back. In the foreground (back to camera) is Mission Specialist Janet Lynn Kavandi (Ph.D.). The final crew member (not shown) is Pilot Dominic L. Pudwill Gorie. Thiele represents the European Space Agency and Mohri represents the National Space Agency of Japan. An international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR, the SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A

  12. KSC-99pp0996

    NASA Image and Video Library

    1999-07-28

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility (OPF), the STS-99 crew take part in a Crew Equipment Interface Test (CEIT). Facing the camera and pointing is Mission Specialist Gerhard P.J. Thiele, who is with the European Space Agency. Other crew members in the OPF are Commander Kevin R. Kregel, Pilot Dominic L. Pudwill Gorie, and Mission Specialists Janet Lynn Kavandi (Ph.D.), Janice Voss (Ph.D.), and Mamoru Mohri, who is with the National Space Development Agency (NASDA) of Japan. The CEIT provides an opportunity for crew members to check equipment and facilities that will be aboard the orbiter during their mission. The STS-99 mission is the Shuttle Radar Topography Mission (SRTM), a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A

  13. KSC-99pp0777

    NASA Image and Video Library

    1999-06-19

    In the Space Station Processing Facility, the STS-99 crew looks over the payload for their mission, the Shuttle Radar Topography Mission (SRTM). Pointing to the SRTM are Commander Kevin R. Kregel and Mission Specialist Gerhard Thiele of Germany. Behind them are (left to right) Pilot Dominic L. Pudwill Gorie and Mission Specialists Mamoru Mohri of Japan and Janet Lynn Kavandi (Ph.D.) The remaining crew member (not shown) is Mission Specialist Janice Voss (Ph.D.) Mohri represents the National Space Development Agency of Japan and Thiele represents the European Space Agency. An international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR, the SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A

  14. Numerical simulation of time delay interferometry for a LISA-like mission with the simplification of having only one interferometer

    NASA Astrophysics Data System (ADS)

    Dhurandhar, S. V.; Ni, W.-T.; Wang, G.

    2013-01-01

    In order to attain the requisite sensitivity for LISA, laser frequency noise must be suppressed below the secondary noises such as the optical path noise, acceleration noise etc. In a previous paper (Dhurandhar, S.V., Nayak, K.R., Vinet, J.-Y. Time delay interferometry for LISA with one arm dysfunctional. Class. Quantum Grav. 27, 135013, 2010), we have found a large family of second-generation analytic solutions of time delay interferometry with one arm dysfunctional, and we also estimated the laser noise due to residual time-delay semi-analytically from orbit perturbations due to Earth. Since other planets and solar-system bodies also perturb the orbits of LISA spacecraft and affect the time delay interferometry (TDI), we simulate the time delay numerically in this paper for all solutions with the generation number n ⩽ 3. We have worked out a set of 3-year optimized mission orbits of LISA spacecraft starting at January 1, 2021 using the CGC2.7 ephemeris framework. We then use this numerical solution to calculate the residual optical path differences in the second-generation solutions of our previous paper, and compare with the semi-analytic error estimate. The accuracy of this calculation is better than 1 cm (or 30 ps). The maximum path length difference, for all configuration calculated, is below 1 m (3 ns). This is well below the limit under which the laser frequency noise is required to be suppressed. The numerical simulation in this paper can be applied to other space-borne interferometers for gravitational wave detection with the simplification of having only one interferometer.

  15. Arm Locking for the Laser Interferometer Space Antenna

    NASA Technical Reports Server (NTRS)

    Maghami, P. G.; Thorpe, J. I.; Livas, J.

    2009-01-01

    The Laser Interferometer Space Antenna (LISA) mission is a planned gravitational wave detector consisting of three spacecraft in heliocentric orbit. Laser interferometry is used to measure distance fluctuations between test masses aboard each spacecraft to the picometer level over a 5 million kilometer separation. Laser frequency fluctuations must be suppressed in order to meet the measurement requirements. Arm-locking, a technique that uses the constellation of spacecraft as a frequency reference, is a proposed method for stabilizing the laser frequency. We consider the problem of arm-locking using classical optimal control theory and find that our designs satisfy the LISA requirements.

  16. Formation Control for the MAXIM Mission

    NASA Technical Reports Server (NTRS)

    Luquette, Richard J.; Leitner, Jesse; Gendreau, Keith; Sanner, Robert M.

    2004-01-01

    Over the next twenty years, a wave of change is occurring in the space-based scientific remote sensing community. While the fundamental limits in the spatial and angular resolution achievable in spacecraft have been reached, based on today s technology, an expansive new technology base has appeared over the past decade in the area of Distributed Space Systems (DSS). A key subset of the DSS technology area is that which covers precision formation flying of space vehicles. Through precision formation flying, the baselines, previously defined by the largest monolithic structure which could fit in the largest launch vehicle fairing, are now virtually unlimited. Several missions including the Micro-Arcsecond X-ray Imaging Mission (MAXIM), and the Stellar Imager will drive the formation flying challenges to achieve unprecedented baselines for high resolution, extended-scene, interferometry in the ultraviolet and X-ray regimes. This paper focuses on establishing the feasibility for the formation control of the MAXIM mission. MAXIM formation flying requirements are on the order of microns, while Stellar Imager mission requirements are on the order of nanometers. This paper specifically addresses: (1) high-level science requirements for these missions and how they evolve into engineering requirements; and (2) the development of linearized equations of relative motion for a formation operating in an n-body gravitational field. Linearized equations of motion provide the ground work for linear formation control designs.

  17. Antenna Technology Shuttle Experiment (ATSE)

    NASA Technical Reports Server (NTRS)

    Freeland, R. E.; Mettler, E.; Miller, L. J.; Rahmet-Samii, Y.; Weber, W. J., III

    1987-01-01

    Numerous space applications of the future will require mesh deployable antennas of 15 m in diameter or greater for frequencies up to 20 GHz. These applications include mobile communications satellites, orbiting very long baseline interferometry (VLBI) astrophysics missions, and Earth remote sensing missions. A Lockheed wrap rip antennas was used as the test article. The experiments covered a broad range of structural, control, and RF discipline objectives, which is fulfilled in total, would greatly reduce the risk of employing these antenna systems in future space applications. It was concluded that a flight experiment of a relatively large mesh deployable reflector is achievable with no major technological or cost drivers. The test articles and the instrumentation are all within the state of the art and in most cases rely on proven flight hardware. Every effort was made to design the experiments for low cost.

  18. The manufacturing, assembly and acceptance testing of the breadboard cryogenic Optical Delay Line for DARWIN

    NASA Astrophysics Data System (ADS)

    van den Dool, T. C.; Kamphues, F.; Gielesen, W.; Dorrepaal, M.; Doelman, N.; Loix, N.; Verschueren, J. P.; Kooijman, P. P.; Visser, M.; Velsink, G.; Fleury, K.

    2005-08-01

    TNO, in cooperation with Micromega-Dynamics, SRON, Dutch Space and CSL, has developed a compact breadboard cryogenic Optical Delay Line for use in future space interferometry missions. The work is performed under ESA contract in preparation for the DARWIN mission. The breadboard delay line is representative of a future flight mechanism, with all used materials and processes being flight representative. The delay line has a single stage voice coil actuator for Optical Path Difference (OPD) control, driving a two-mirror cat's eye. Magnetic bearings are used for guiding. They provide frictionless and wear free operation with zero-hysteresis. The manufacturing, assembly and acceptance testing have been completed and are reported in this paper. The verification program, including functional testing at 40 K, will start in the final quarter of 2005.

  19. Infrared Imaging and Characterization of Exoplanets: Can we Detect Earth-Twins on a Budget?

    NASA Technical Reports Server (NTRS)

    Danchi, William

    2010-01-01

    During the past decade considerable progress has been made developing techniques that can be used to detect and characterize Earth twins in the mid- infrared (7-20 microns). The principal technique is called nulling interferometry, and it was invented by Bracewell in the late 1970's. The nulling technique is an interferometric equivalent of an optical coronagraph. At the present time most of the technological hurdles have been overcome for a space mission to be able to begin Phase A early in the next decade, and it is possible to detect and characterize Earth-twins on a mid- sized strategic mission budget ($600-800 million). I will review progress on this exciting method of planet detection in the context of recent work on the Exoplanet Community Forum and the US Decadal Survey (Astro2010), including biomarkers, technological progress, mission concepts, the theory of these instruments, and a.comparison of the discovery space of this technique with others also under consideration.

  20. The design of a breadboard cryogenic optical delay line for DARWIN

    NASA Astrophysics Data System (ADS)

    van den Dool, Teun C.; Kamphues, Fred; Fouss, B.; Henrioulle, K.; Kooijman, P. P.; Visser, Martijn; Velsink, G.; Fleury, K.

    2004-09-01

    TNO TPD, in cooperation with Micromega-Dynamics, SRON, Dutch Space and CSL, has designed a compact breadboard cryogenic delay line for use in future space interferometry missions. The work is performed under ESA contract in preparation for the DARWIN mission. The breadboard (BB) delay line is representative of a flight mechanism, with all materials and processes used being flight representative. The delay line has a single stage voice coil actuator for Optical Path Difference (OPD) control, driving a two-mirror cat's eye. Magnetic bearings provide frictionless and wear free operation with zero-hysteresis. Overall power consumption is below the ESA specification of 2.5 W. The power dissipated on the optical bench at 40 K is considerably less than the maximum allowable 25 mW. The design of the BB delay line has been completed. Verification testing, including functional testing at 40 K, is planned to start in the 4th quarter of 2004. The current design could also be adapted to the needs of the TPF-I mission.

  1. Formation Control for the Maxim Mission.

    NASA Technical Reports Server (NTRS)

    Luquette, Richard J.; Leitner, Jesse; Gendreau, Keith; Sanner, Robert M.

    2004-01-01

    Over the next twenty years, a wave of change is occurring in the spacebased scientific remote sensing community. While the fundamental limits in the spatial and angular resolution achievable in spacecraft have been reached, based on today's technology, an expansive new technology base has appeared over the past decade in the area of Distributed Space Systems (DSS). A key subset of the DSS technology area is that which covers precision formation flying of space vehicles. Through precision formation flying, the baselines, previously defined by the largest monolithic structure which could fit in the largest launch vehicle fairing, are now virtually unlimited. Several missions including the Micro-Arcsecond X-ray Imaging Mission (MAXIM), and the Stellar Imager will drive the formation flying challenges to achieve unprecedented baselines for high resolution, extended-scene, interferometry in the ultraviolet and X-ray regimes. This paper focuses on establishing the feasibility for the formation control of the MAXIM mission. The Stellar Imager mission requirements are on the same order of those for MAXIM. This paper specifically addresses: (1) high-level science requirements for these missions and how they evolve into engineering requirements; (2) the formation control architecture devised for such missions; (3) the design of the formation control laws to maintain very high precision relative positions; and (4) the levels of fuel usage required in the duration of these missions. Specific preliminary results are presented for two spacecraft within the MAXIM mission.

  2. Deep Space Control Challenges of the New Millennium

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Burdick, Garry M.

    1999-01-01

    The exploration of deep space presents a variety of significant control challenges. Long communication delays coupled with challenging new science objectives require high levels of system autonomy and increasingly demanding pointing and control capabilities. Historically, missions based on the use of a large single spacecraft have been successful and popular since the early days of NASA. However, these large spacecraft missions are currently being displaced by more frequent and more focused missions based on the use of smaller and less expensive spacecraft designs. This trend drives the need to design smart software and good algorithms which together with the miniaturization of control components will improve performance while replacing the heavier and more expensive hardware used in the past. NASA's future space exploration will also include mission types that have never been attempted before, posing significant challenges to the underlying control system. This includes controlled landing on small bodies (e.g., asteroids and comets), sample return missions (where samples are brought back from other planets), robotic exploration of planetary surfaces (e.g., intelligent rovers), high precision formation flying, and deep space optical interferometry, While the control of planetary spacecraft for traditional flyby and orbiter missions are based on well-understood methodologies, control approaches for many future missions will be fundamentally different. This paradigm shift will require completely new control system development approaches, system architectures, and much greater levels of system autonomy to meet expected performance in the presence of significant environmental disturbances, and plant uncertainties. This paper will trace the motivation for these changes and will layout the approach taken to meet the new challenges. Emerging missions will be used to explain and illustrate the need for these changes.

  3. Nulling interferometry: impact of exozodiacal clouds on the performance of future life-finding space missions

    NASA Astrophysics Data System (ADS)

    Defrère, D.; Absil, O.; den Hartog, R.; Hanot, C.; Stark, C.

    2010-01-01

    Context. Earth-sized planets around nearby stars are being detected for the first time by ground-based radial velocity and space-based transit surveys. This milestone is opening the path toward the definition of instruments able to directly detect the light from these planets, with the identification of bio-signatures as one of the main objectives. In that respect, both the European Space Agency (ESA) and the National Aeronautics and Space Administration (NASA) have identified nulling interferometry as one of the most promising techniques. The ability to study distant planets will however depend on the amount of exozodiacal dust in the habitable zone of the target stars. Aims: We assess the impact of exozodiacal clouds on the performance of an infrared nulling interferometer in the Emma X-array configuration. The first part of the study is dedicated to the effect of the disc brightness on the number of targets that can be surveyed and studied by spectroscopy during the mission lifetime. In the second part, we address the impact of asymmetric structures in the discs such as clumps and offset which can potentially mimic the planetary signal. Methods: We use the DarwinSIM software which was designed and validated to study the performance of space-based nulling interferometers. The software has been adapted to handle images of exozodiacal discs and to compute the corresponding demodulated signal. Results: For the nominal mission architecture with 2-m aperture telescopes, centrally symmetric exozodiacal dust discs about 100 times denser than the solar zodiacal cloud can be tolerated in order to survey at least 150 targets during the mission lifetime. Considering modeled resonant structures created by an Earth-like planet orbiting at 1 AU around a Sun-like star, we show that this tolerable dust density goes down to about 15 times the solar zodiacal density for face-on systems and decreases with the disc inclination. Conclusions: Whereas the disc brightness only affects the integration time, the presence of clumps or offset is more problematic and can hamper the planet detection. Based on the worst-case scenario for debris disc structures, the upper limit on the tolerable exozodiacal dust density is approximately 15 times the density of the solar zodiacal cloud. This gives the typical sensitivity that we will need to reach on exozodiacal discs in order to prepare the scientific programme of future Earth-like planet characterisation missions. FNRS Postdoctoral Researcher

  4. The LISA benchtop simulator at the University of Florida

    NASA Astrophysics Data System (ADS)

    Thorpe, James; Cruz, Rachel; Guntaka, Sridhar; Mueller, Guido

    2006-11-01

    The Laser Interferometer Space Antenna (LISA) is a joint NASA-ESA mission to detect gravitational radiation in space. The detector is designed to see gravitational waves from various exciting sources in the frequency range of 3x10-5 to 1 Hz. LISA consists of three spacecraft forming a triangle with 5x10^9 m long arms. The spacecraft house proof masses and act to shield the proof masses from external forces so that they act as freely-falling test particles of the gravitational radiation. Laser interferometry is used to monitor the distance between proof masses on different spacecraft and will be designed to see variations on the order of 10 pm. Pre-stabilization, arm-locking, and time delay interferometry (TDI) will be employed to meet this sensitivity. At the University of Florida, we are developing an experimental LISA simulator to test aspects of LISA interferometry. The foundation of the simulator is a pair of cavity-stabilized lasers that provide realistic, LISA-like phase noise for our measurements. The light travel time between spacecraft is recreated in the lab by use of an electronic phase delay technique. Initial tests of the simulator have focused on phasemeter implementation, first-generation TDI, and arm-locking. We will present results from these experiments as well as discuss current and future upgrades in the effort to make the LISA simulator as realistic as possible.

  5. On the COSMO-SkyMed Exploitation for Interferometric DEM Generation

    NASA Astrophysics Data System (ADS)

    Teresa, C. M.; Raffaele, N.; Oscar, N. D.; Fabio, B.

    2011-12-01

    DEM products for Earth observation space-borne applications are being to play a role of increasing importance due to the new generation of high resolution sensors (both optical and SAR). These new sensors demand elevation data for processing and, on the other hand, they provide new possibilities for DEM generation. Till now, for what concerns interferometric DEM, the Shuttle Radar Topography Mission (SRTM) has been the reference product for scientific applications all over the world. SRTM mission [1] had the challenging goal to meet the requirements for a homogeneous and reliable DEM fulfilling the DTED-2 specifications. However, new generation of high resolution sensors (including SAR) pose new requirements for elevation data in terms of vertical precision and spatial resolution. DEM are usually used as ancillary input in different processing steps as for instance geocoding and Differential SAR Interferometry. In this context, the recent SAR missions of DLR (TerraSAR-X and TanDEM-X) and ASI (COSMO-SkyMed) can play a promising role thanks to their high resolution both in space and time. In particular, the present work investigates the potentialities of the COSMO/SkyMed (CSK) constellation for ground elevation measurement with particular attention devoted to the impact of the improved spatial resolution wrt the previous SAR sensors. The recent scientific works, [2] and [3], have shown the advantages of using CSK in the monitoring of terrain deformations caused by landslides, earthquakes, etc. On the other hand, thanks to the high spatial resolution, CSK appears to be very promising in monitoring man-made structures, such as buildings, bridges, railways and highways, thus enabling new potential applications (urban applications, precise DEM, etc.). We present results obtained by processing both SPOTLIGHT and STRIPMAP acquisitions through standard SAR Interferometry as well as multi-pass interferometry [4] with the aim of measuring ground elevation. Acknowledgments Work supported by ASI (Agenzia Spaziale Italiana) in the framework of the project "AO-COSMO Project ID-1462 - Feasibility of possible use of COSMO/SkyMed in bistatic SAR Earth observation - ASI Contract I/063/09/0". References [1] B. Rabus, M. Eineder, A. Roth, and R. Bamler, "The Shuttle Radar Topography Mission-A new class of digital elevation models acquired by spaceborne radar," ISPRS J. Photogramm. Remote Sens., vol. 57, no. 4, pp. 241-262, Feb. 2003. [2] F. BOVENGA, D. O. NITTI, R. NUTRICATO, M. T. CHIARADIA, "C- and X-band multi-pass InSAR analysis over Alpine and Apennine regions". In Proceedings of the European Space Agency Living Planet Symposium, June 28 - July 2, 2010, Bergen, Norway. [3] D. REALE, D. O. NITTI, D. PEDUTO, R. NUTRICATO, F. BOVENGA, G. FORNARO, "Postseismic Deformation Monitoring With The COSMO/SKYMED Constellation". IEEE Geoscience Remote Sensing Letters, 2011. DOI: 10.1109/LGRS.2010.2100364 [4] Nitti, D.O., Nutricato, R., Bovenga, F., Conte, D., Guerriero, L. & Milillo, G., "Quantitative Analysis of Stripmap And Spotlight SAR Interferometry with CosmoSkyMed constellation.", Proceedings if IEEE IGARSS 2009, July 13-17, 2009. Cape Town, South Africa.

  6. KSC-99pp0997

    NASA Image and Video Library

    1999-07-28

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, members of the STS-99 crew look over the Shuttle Radar Topography Mission (SRTM), primary payload for their mission, as part of a Crew Equipment Interface Test (CEIT). Participating are Commander Kevin R. Kregel, Pilot Dominic L. Pudwill Gorie, and Mission Specialists Janet Lynn Kavandi (Ph.D.), Janice Voss (Ph.D), Mamoru Mohri, and Gerhard P.J. Thiele. Mohri is with the National Space Development Agency (NASDA) of Japan, and Thiele is with the European Space Agency. The CEIT provides an opportunity for crew members to check equipment and facilities that will be aboard the orbiter during their mission. The SRTM is a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A

  7. KSC-99pp0778

    NASA Image and Video Library

    1999-06-19

    The STS-99 crew poses in front of the Shuttle Radar Topography Mission (SRTM) in the Space Station Processing Facility. The crew has been checking out the SRTM, which is the payload for their mission. From left are Mission Specialists Janet Lynn Kavandi (Ph.D.), Mamoru Mohri of Japan, and Gerhard Thiele of Germany; Pilot Dominic L. Pudwill Gorie; Mission Specialist Janice Voss (Ph.D.); and Commander Kevin R. Kregel. Mohri represents the National Space Development Agency of Japan and Thiele represents the European Space Agency. An international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR, the SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A

  8. The design of a breadboard cryogenic optical delay line for DARWIN

    NASA Astrophysics Data System (ADS)

    van den Dool, Teun; Kamphues, Fred; Fouss, B.; Henrioulle, K.; Kooijman, P. P.; Visser, Martijn; Velsink, G.; Fleury, K.

    2004-09-01

    TNO TPD, in cooperation with Micromega-Dynamics, SRON, Dutch Space and CSL, has designed a compact breadboard cryogenic delay line for use in future space interferometry missions. The work is performed under ESA contract in preparation for the DARWIN mission. The breadboard (BB) delay line is representative of a future flight mechanism, with all materials and processes used being flight representative. The delay line has a single stage voice coil actuator for Optical Path Difference (OPD) control, driving a two-mirror cat"s eye. Magnetic bearings provide frictionless and wear free operation with zero-hysteresis. Overall power consumption is below the ESA specification of 2.5 W. The power dissipated on the optical bench at 40 K is considerably less than the maximum allowable 25 mW. The BB delay line will be built in the second half of 2004. The manufacturing and assembly phase is followed by a comprehensive test program, including functional testing at 40 K in 2005. The tests will be carried out by Alcatel Space and SAGEIS-CSO.

  9. A starting point of an integrated optics concept for a space-based interferometer

    NASA Astrophysics Data System (ADS)

    Labadie, Lucas; Kern, Pierre; Schanen, Isabelle

    2017-11-01

    This article deals with instrumentation challenges of the stellar interferometry mission IRSI-Darwin of the European Space Agency. The necessity to have a reliable and performant system for beam recombination has enlightened the advantages of an integrated optics solution, which is already in use for ground-base interferomety in the near infrared. However, since Darwin will operate in the mid infrared, this requires extending the integrated optics concept in this spectral range. This paper presents the guiding lines of the characterization work that should validate a new integrated optics concept for the mid infrared. We present also one example of characterization experiment we are working on.

  10. Mission feasibility study of a very long baseline interferometer utilizing the space shuttle

    NASA Technical Reports Server (NTRS)

    Burke, B. F.

    1978-01-01

    An introductory overview of very long baseline interferometry (VLBI) as it exists and is used today is given and the scientific advances that have been achieved with this technique in the past decade are described. The report briefly reviews developments now in progress that will improve ground station VLBI in the next few years, and the limitations that still will exist. The advantages and the scientific return on investment that may be expected from a VLBI terminal in space are described. Practical problems that have to be faced range from system design through hardware implementation, to data recovery and analysis.

  11. A three-layer magnetic shielding for the MAIUS-1 mission on a sounding rocket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubelka-Lange, André, E-mail: andre.kubelka@zarm.uni-bremen.de; Herrmann, Sven; Grosse, Jens

    Bose-Einstein-Condensates (BECs) can be used as a very sensitive tool for experiments on fundamental questions in physics like testing the equivalence principle using matter wave interferometry. Since the sensitivity of these experiments in ground-based environments is limited by the available free fall time, the QUANTUS project started to perform BEC interferometry experiments in micro-gravity. After successful campaigns in the drop tower, the next step is a space-borne experiment. The MAIUS-mission will be an atom-optical experiment that will show the feasibility of experiments with ultra-cold quantum gases in microgravity in a sounding rocket. The experiment will create a BEC of 10{supmore » 5} {sup 87}Rb-atoms in less than 5 s and will demonstrate application of basic atom interferometer techniques over a flight time of 6 min. The hardware is specifically designed to match the requirements of a sounding rocket mission. Special attention is thereby spent on the appropriate magnetic shielding from varying magnetic fields during the rocket flight, since the experiment procedures are very sensitive to external magnetic fields. A three-layer magnetic shielding provides a high shielding effectiveness factor of at least 1000 for an undisturbed operation of the experiment. The design of this magnetic shielding, the magnetic properties, simulations, and tests of its suitability for a sounding rocket flight are presented in this article.« less

  12. A three-layer magnetic shielding for the MAIUS-1 mission on a sounding rocket.

    PubMed

    Kubelka-Lange, André; Herrmann, Sven; Grosse, Jens; Lämmerzahl, Claus; Rasel, Ernst M; Braxmaier, Claus

    2016-06-01

    Bose-Einstein-Condensates (BECs) can be used as a very sensitive tool for experiments on fundamental questions in physics like testing the equivalence principle using matter wave interferometry. Since the sensitivity of these experiments in ground-based environments is limited by the available free fall time, the QUANTUS project started to perform BEC interferometry experiments in micro-gravity. After successful campaigns in the drop tower, the next step is a space-borne experiment. The MAIUS-mission will be an atom-optical experiment that will show the feasibility of experiments with ultra-cold quantum gases in microgravity in a sounding rocket. The experiment will create a BEC of 10(5) (87)Rb-atoms in less than 5 s and will demonstrate application of basic atom interferometer techniques over a flight time of 6 min. The hardware is specifically designed to match the requirements of a sounding rocket mission. Special attention is thereby spent on the appropriate magnetic shielding from varying magnetic fields during the rocket flight, since the experiment procedures are very sensitive to external magnetic fields. A three-layer magnetic shielding provides a high shielding effectiveness factor of at least 1000 for an undisturbed operation of the experiment. The design of this magnetic shielding, the magnetic properties, simulations, and tests of its suitability for a sounding rocket flight are presented in this article.

  13. KSC-99pp1001

    NASA Image and Video Library

    1999-07-28

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-99 Mission Specialists Mamoru Mohri (left center), who is with the National Space Development Agency (NASDA) of Japan, and Janice Voss (Ph.D.) look over equipment during a Crew Equipment Interface Test (CEIT). The CEIT provides an opportunity for crew members to check equipment and facilities that will be aboard the orbiter during their mission. Others taking part are Commander Kevin R. Kregel, Pilot Dominic L. Pudwill Gorie, and Mission Specialists Janet Lynn Kavandi (Ph.D.) and Gerhard P.J. Thiele, who is with the European Space Agency. The SRTM is a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A

  14. Applications of atom interferometry - from ground to space

    NASA Astrophysics Data System (ADS)

    Schubert, Christian; Rasel, Ernst Maria; Gaaloul, Naceur; Ertmer, Wolfgang

    2016-07-01

    Atom interferometry is utilized for the measurement of rotations [1], accelerations [2] and for tests of fundamental physics [3]. In these devices, three laser light pulses separated by a free evolution time coherently manipulate the matter waves which resembles the Mach-Zehnder geometry in optics. Atom gravimeters demonstrated an accuracy of few microgal [2,4], and atom gradiometers showed a noise floor of 30 E Hz^{-1/2} [5]. Further enhancements of atom interferometers are anticipated by the integration of novel source concepts providing ultracold atoms, extending the free fall time of the atoms, and enhanced techniques for coherent manipulation. Sources providing Bose-Einstein condensates recently demontrated a flux compatible with precision experiments [6]. All of these aspects are studied in the transportable quantum gravimeter QG-1 and the very long baseline atom interferometry teststand in Hannover [7] with the goal of surpassing the microgal regime. Going beyond ground based setups, the QUANTUS collaboration exploits the unique features of a microgravity environment in drop tower experiments [8] and in a sounding rocket mission. The payloads are compact and robust atom optics experiments based on atom chips [6], enabling technology for transportable sensors on ground as a byproduct. More prominently, they are pathfinders for proposed satellite missions as tests of the universality of free fall [9] and gradiometry based on atom interferometers [10]. This work is supported by the German Space Agency (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under grant numbers DLR 50WM1552-1557 (QUANTUS-IV-Fallturm) and by the Deutsche Forschungsgemeinschaft in the framework of the SFB 1128 geo-Q. [1] PRL 114 063002 2015 [2] Nature 400 849 1999 [3] PRL 112 203002 2014 [4] NJP 13 065026 2011 [5] PRA 65 033608 2002 [6] NJP 17 065001 2015 [7] NJP 17 035011 2015 [8] PRL 110 093602 2013 [9] CQG 31 115010 2014 [10] MST 26 139 2014.

  15. State-of-the-art of photorefractive holographic interferometry and potentialities for space applications

    NASA Astrophysics Data System (ADS)

    Georges, Marc; Lemaire, Philippe; Pauliat, Gilles; Launay, Jean-Claude; Roosen, Gérald

    2018-04-01

    This paper, "State-of-the-art of photorefractive holographic interferometry and potentialities for space applications," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.

  16. Advances in Structures for Large Space Systems

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith

    2004-01-01

    The development of structural systems for scientific remote sensing and space exploration has been underway for four decades. The seminal work from 1960 to 1980 provided the basis for many of the design principles of modern space systems. From 1980- 2000 advances in active materials and structures and the maturing of composites technology led to high precision active systems such those used in the Space Interferometry Mission. Recently, thin-film membrane or gossamer structures are being investigated for use in large area space systems because of their low mass and high packaging efficiency. Various classes of Large Space Systems (LSS) are defined in order to describe the goals and system challenges in structures and materials technologies. With an appreciation of both past and current technology developments, future technology challenges are used to develop a list of technology investments that can have significant impacts on LSS development.

  17. Formations of Tethered Spacecraft as Stable Platforms for Far IR and Sub-mm Astronomy

    NASA Technical Reports Server (NTRS)

    Quadrelli, Marco B.; Hadaegh, Fred Y.; Shao, Michael; Lorenzini, Enrico C.

    2004-01-01

    In this paper we describe current research in tethered formations for interferometry, and a roadmap to demonstrating the required key technologies via on-ground and in-orbit testing. We propose an integrated kilometer-size tethered spacecraft formation flying concept which enables Far IR and Sub-mm astronomy observations from space. A rather general model is used to predict the dynamics, control, and estimation performance of formations of spacecraft connected by tethers in LEO and deep space. These models include the orbital and tethered formation dynamics, environmental models, and models of the formation estimator/controller/commander. Both centralized and decentralized control/sensing/estimation schemes are possible, and dynamic ranges of interest for sensing/control are described. Key component/subsystem technologies are described which need both ground-based and in-orbit demonstration prior to their utilization in precision space interferometry missions using tethered formations. Defining an orbiting formation as an ensemble of orbiting spacecraft performing a cooperative task, recent work has demonstrated the validity of the tethering the spacecraft to provide both the required formation rigidity and satisfy the formation reconfiguration needs such as interferometer baseline control. In our concept, several vehicles are connected and move along the tether, so that to reposition them the connecting tether links must vary in length. This feature enables variable and precise baseline control while the system spins around the boresight. The control architecture features an interferometer configuration composed of one central combiner spacecraft and two aligned collector spacecraft. The combiner spacecraft acts as the formation leader and is also where the centralized sensing and estimation functions reside. Some of the issues analyzed with the model are: dynamic modes of deformation of the distributed structure, architecture of the formation sensor, and sources of dynamical perturbation that need to be mitigated for precision operation in space. Examples from numerical simulation of an envisioned scenario in heliocentric orbit demonstrate the potential of the concept for space interferometry.

  18. Proceedings from the 2nd International Symposium on Formation Flying Missions and Technologies

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Topics discussed include: The Stellar Imager (SI) "Vision Mission"; First Formation Flying Demonstration Mission Including on Flight Nulling; Formation Flying X-ray Telescope in L2 Orbit; SPECS: The Kilometer-baseline Far-IR Interferometer in NASA's Space Science Roadmap Presentation; A Tight Formation for Along-track SAR Interferometry; Realization of the Solar Power Satellite using the Formation Flying Solar Reflector; SIMBOL-X : Formation Flying for High-Energy Astrophysics; High Precision Optical Metrology for DARWIN; Close Formation Flight of Micro-Satellites for SAR Interferometry; Station-Keeping Requirements for Astronomical Imaging with Constellations of Free-Flying Collectors; Closed-Loop Control of Formation Flying Satellites; Formation Control for the MAXIM Mission; Precision Formation Keeping at L2 Using the Autonomous Formation Flying Sensor; Robust Control of Multiple Spacecraft Formation Flying; Virtual Rigid Body (VRB) Satellite Formation Control: Stable Mode-Switching and Cross-Coupling; Electromagnetic Formation Flight (EMFF) System Design, Mission Capabilities, and Testbed Development; Navigation Algorithms for Formation Flying Missions; Use of Formation Flying Small Satellites Incorporating OISL's in a Tandem Cluster Mission; Semimajor Axis Estimation Strategies; Relative Attitude Determination of Earth Orbiting Formations Using GPS Receivers; Analysis of Formation Flying in Eccentric Orbits Using Linearized Equations of Relative Motion; Conservative Analytical Collision Probabilities for Orbital Formation Flying; Equations of Motion and Stability of Two Spacecraft in Formation at the Earth/Moon Triangular Libration Points; Formations Near the Libration Points: Design Strategies Using Natural and Non-Natural Ares; An Overview of the Formation and Attitude Control System for the Terrestrial Planet Finder Formation Flying Interferometer; GVE-Based Dynamics and Control for Formation Flying Spacecraft; GNC System Design for a New Concept of X-Ray Distributed Telescope; GNC System for the Deployment and Fine Control of the DARWIN Free-Flying Interferometer; Formation Algorithm and Simulation Testbed; and PLATFORM: A Formation Flying, RvD and Robotic Validation Test-bench.

  19. Post Alpbach-summerschool project: CARRINGTON MISSION FOR CME DETECTION TO IMPROVE SPACE WEATHER FORECAST

    NASA Astrophysics Data System (ADS)

    Scheucher, Markus; Urbar, Jaroslav; Musset, Sophie; Andersson, Viktor; Gini, Francesco; Gorski, Jedrzej; Jüstel, Peter; Kiefer, René; Lee, Arrow; Meskers, Arjan; Miles, Oscar; Perakis, Nikolas; Rußwurm, Michael; Scully, Stephen; Seifert, Bernhard; Sorba, Arianna

    2014-05-01

    The effects of solar activity, especially Coronal Mass Ejections (CMEs), on Earth- and satellite-based systems are well-known and can cause major damage to space-dependent infrastructure. The main problem in current space weather forecasting is the inability to determine necessary forecast parameters of CMEs and Corotating Interaction Regions (CIRs) early enough to react. We present the design for a novel space mission consisting of two spacecraft that is aimed to perform stereoscopic measurements on Earth-directed CMEs and in-situ measurements of CIRs. The magnetic field orientation and structure of CMEs will be measured close to the Sun, using spectro-polarimetry. Geoeffectiveness will be derived by remote sensing the CMEs magnetic field at 0.64AU from the Sun, determining the full magnetic field vector of a CME. This will be achieved by the novel concept of measuring its polarising effects on spacecraft to spacecraft laser beams based upon heterodyne interferometry. Overall structure and trajectory of CMEs will also be monitored by heliospheric imagers and in-situ plasma instruments. To achieve the mission objectives, the orbit is heliocentric at 1AU with a separation angle from the Earth of ±50°. The operational mission lifetime is 6 years with a proposed 6 year extension. If implemented, Carrington will serve as a forecast system which will significantly improve the minimum forecast time for the fastest CMEs with 2000 km/s, from 13 minutes based on current L1 satellites, to around 3 hours.

  20. Tribute to Jean-Marie Mariotti

    NASA Astrophysics Data System (ADS)

    Lena, Pierre J.

    2003-02-01

    Jean-Marie Mariotti (1955 - 1998) prematurely passed away after too short a career of optician and astronomer. With his students, his contributions to the nascent field of high angular resolution at optical wavelengths, and especially to interferometry, both on the ground and in space, have been remarkable. Pioneering the use of single-mode optical fibers and integrated optics, he pushed the accuracy of visibility (amplitude) measurements to a fraction of a percent. His vision of a Mauna Kea kilometric interferometer using the existing giant telescopes is now becoming a reality with the 'OHANA project. His role in the emergence of the Very Large Telescope Interferometer (VLTI) and in the birth of the space mission DARWIN for exoplanets studies has been essential.

  1. Metrology system for the Terrestrial Planet Finder Coronagraph

    NASA Technical Reports Server (NTRS)

    Shaklin, Stuart; Marchen, Luis; Zhao, Feng; Peters, Robert D.; Ho, Tim; Holmes, Buck

    2004-01-01

    The Terrestrial Planet Finder (TPF) employs an aggressive coronagraph designed to obtain better than 1e-10 contrast inside the third Airy ring. Minute changes in low-order aberration content scatter significant light at this position. One implication is the requirement to control low-order aberrations induced by motion of the secondary mirror relative to the primary mirror; sub-nanometer relative positional stability is required. We propose a 6-beam laser truss to monitor the relative positions of the two mirrors. The truss is based on laser metrology developed for the Space Interferometry Mission.

  2. Planetary Remote Sensing Science Enabled by MIDAS (Multiple Instrument Distributed Aperture Sensor)

    NASA Technical Reports Server (NTRS)

    Pitman, Joe; Duncan, Alan; Stubbs, David; Sigler, Robert; Kendrick, Rick; Chilese, John; Lipps, Jere; Manga, Mike; Graham, James; dePater, Imke

    2004-01-01

    The science capabilities and features of an innovative and revolutionary approach to remote sensing imaging systems, aimed at increasing the return on future space science missions many fold, are described. Our concept, called Multiple Instrument Distributed Aperture Sensor (MIDAS), provides a large-aperture, wide-field, diffraction-limited telescope at a fraction of the cost, mass and volume of conventional telescopes, by integrating optical interferometry technologies into a mature multiple aperture array concept that addresses one of the highest needs for advancing future planetary science remote sensing.

  3. Characterization of the Stabilized Test Bench of Nulling Interferometry PERSÉE

    NASA Astrophysics Data System (ADS)

    Lozi, Julien; Ollivier, M.; Cassaing, F.; Le Duigou, J.; CNES; Onera/Dota/HRA; IAS; LESIA; OCA; TAS

    2013-01-01

    There are two problems with the observation of exoplanets: the contrast between the planet and the star and their very low separation. One technique solving these problems is nulling interferometry: two pupils are recombined to make a destructive interference on the star, and their base is adjusted to create a constructive interference on the planet. However, to ensure a sufficient extinction of the star, the optical path difference between the beams must be around the nanometer, and the pointing must be better than one hundredth of Airy disk, despite the external disturbances.To validate the critical points of such a space mission, a laboratory demonstrator, PERSÉE, was defined by a consortium led by the french space agency CNES, including IAS, LESIA, ONERA, OCA and Thales Alenia Space and integrated in Paris Observatory. This bench simulates the entire space mission (interferometer and nanometric cophasing system). Its goal is to deliver and maintain an extinction of 10^-4 stable at better than 10^-5 over a few hours in the presence of typical injected disturbances.My thesis work consisted in integrating the bench in successive stages and to develop calibration procedures. This helped me to characterize the critical elements separately before grouping them. After having implemented the control loops of the cophasing system, their precise analysis helped me to reduce down to 0.3 nm rms the residual OPD, and 0.4 % of the Airy disk the residual tip/tilt, despite disturbances of tens of nanometers, consisting of several tens of vibrational frequencies between 1 and 100 Hz. This has been achieved by the implementation of a linear quadratic Gaussian controller, parameterized by the preliminary measurement of the disturbance to minimize. Thanks to these excellent results, I obtained on the band [1.65 - 2.45] µm a record null rate of 8.8x10^-6 stabilized at 9x10^-7 over a few hours, a decade better than the original specifications. An extrapolation of these results to the case of a space mission shows that the expected performance is achievable if the available flux is sufficiently important. With telescopes of 40 cm and a control frequency around 100 Hz, stars brighter than magnitude 9 should be observable.

  4. KSC-99pp1000

    NASA Image and Video Library

    1999-07-28

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-99 Mission Specialists Mamoru Mohri (center), who is with the National Space Development Agency (NASDA) of Japan, and Janice Voss (Ph.D.) (right) talk with a KSC worker (left) during a Crew Equipment Interface Test (CEIT). The CEIT provides an opportunity for crew members to check equipment and facilities that will be aboard the orbiter during their mission. Others taking part are Commander Kevin R. Kregel, Pilot Dominic L. Pudwill Gorie, and Mission Specialists Janet Lynn Kavandi (Ph.D.) and Gerhard P.J. Thiele, who is with the European Space Agency. The SRTM is a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A

  5. KSC-99pp0775

    NASA Image and Video Library

    1999-06-19

    In the Space Station Processing Facility, STS-99 crew members take part in a simulated flight check of the Shuttle Radar Topography Mission (SRTM), above and behind them. The SRTM is the payload for their mission. The crew members are Commander Kevin R. Kregel, Pilot Dominic L. Pudwill Gorie, and Mission Specialists Janet Lynn kavandi (Ph.D.), Janice Voss (Ph.D.), Mamoru Mohri of Japan and Gerhard Thiele of Germany. Mohri represents the National Space Development Agency of Japan and Thiele represents the European Space Agency. An international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR, the SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A

  6. Lasers in space

    NASA Astrophysics Data System (ADS)

    Michaelis, M. M.; Forbes, A.; Bingham, R.; Kellett, B. J.; Mathye, A.

    2008-05-01

    A variety of laser applications in space, past, present, future and far future are reviewed together with the contributions of some of the scientists and engineers involved, especially those that happen to have South African connections. Historically, two of the earliest laser applications in space, were atmospheric LIDAR and lunar ranging. These applications involved atmospheric physicists, several astronauts and many of the staff recruited into the Soviet and North American lunar exploration programmes. There is a strong interest in South Africa in both LIDAR and lunar ranging. Shortly after the birth of the laser (and even just prior) theoretical work on photonic propulsion and space propulsion by laser ablation was initiated by Georgii Marx, Arthur Kantrowitz and Eugen Saenger. Present or near future experimental programs are developing in the following fields: laser ablation propulsion, possibly coupled with rail gun or gas gun propulsion; interplanetary laser transmission; laser altimetry; gravity wave detection by space based Michelson interferometry; the de-orbiting of space debris by high power lasers; atom laser interferometry in space. Far future applications of laser-photonic space-propulsion were also pioneered by Carl Sagan and Robert Forward. They envisaged means of putting Saenger's ideas into practice. Forward also invented a laser based method for manufacturing solid antimatter or SANTIM, well before the ongoing experiments at CERN with anti-hydrogen production and laser-trapping. SANTIM would be an ideal propellant for interstellar missions if it could be manufactured in sufficient quantities. It would be equally useful as a power source for the transmission of information over light year distances. We briefly mention military lasers. Last but not least, we address naturally occurring lasers in space and pose the question: "did the Big Bang lase?"

  7. Sentinel-1 mission scientific exploitation activities

    NASA Astrophysics Data System (ADS)

    Desnos, Yves louis; Foumelis, Michael; Engdahl, Marcus

    2017-04-01

    The Sentinel-1 mission is the European Imaging Radar Observatory for the Copernicus joint initiative of the European Commission (EC) and the European Space Agency (ESA). Sentinel-1 mission is composed of a constellation of two satellites, Sentinel-1A and Sentinel-1B (launched in April 2014 and April 2016, respectively), sharing the same orbital plane and featuring a short repeat cycle of 6 days optimised for Synthetic Aperture Radar (SAR) interferometry science and applications. The full operation capacity was achieved after the completion of the Sentinel-1B in-orbit commissioning on 14 September 2016. Sentinel-1 data are freely available via the ESA's Sentinels Scientific Data Hub since October 2014. The data uptake by the science community has been unprecedented and numerous results have been published to date. The objective of the current paper is to provide a brief overview of the latest ESA activities, in the frame of the Scientific Exploitation of Operational Missions (SEOM) programme, aimed to facilitate the scientific exploitation of Sentinel-1 mission as well as discuss future opportunities for research.

  8. KSC-99pp1385

    NASA Image and Video Library

    1999-12-03

    KENNEDY SPACE CENTER, FLA. -- Lights frame the orbiter Endeavour as it is lowered onto the platform for mating with the external tank and solid rocket boosters. Space Shuttle Endeavour is targeted for launch on mission STS-99 Jan. 13, 2000, at 1:11 p.m. EST. STS-99 is the Shuttle Radar Topography Mission, an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle

  9. KSC-99pp1383

    NASA Image and Video Library

    1999-12-03

    KENNEDY SPACE CENTER, FLA. -- In high bay 1 of the VAB, the orbiter Endeavour is lowered for mating with the external tank below (on right), and the solid rocket boosters. Space Shuttle Endeavour is targeted for launch on mission STS-99 Jan. 13, 2000, at 1:11 p.m. EST. STS-99 is the Shuttle Radar Topography Mission, an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle

  10. KSC-99pp1373

    NASA Image and Video Library

    1999-12-02

    KENNEDY SPACE CENTER, FLA. -- Orbiter Endeavour rolls inside the Vehicle Assembly Building where it will be lifted to vertical and mated to the external tank and solid rocket boosters in high bay 1. Space Shuttle Endeavour is targeted for launch on mission STS-99 Jan. 13, 2000 at 1:11 p.m. EST. STS-99 is the Shuttle Radar Topography Mission, an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle

  11. KSC-99pp1381

    NASA Image and Video Library

    1999-12-03

    KENNEDY SPACE CENTER, FLA. -- Inside the VAB, orbiter Endeavour is lifted to a vertical position before being mated to the external tank (bottom of photo) and solid rocket boosters in high bay 1. Space Shuttle Endeavour is targeted for launch on mission STS-99 Jan. 13, 2000, at 1:11 p.m. EST. STS-99 is the Shuttle Radar Topography Mission, an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle

  12. KSC-99pp1372

    NASA Image and Video Library

    1999-12-02

    KENNEDY SPACE CENTER, FLA. -- Orbiter Endeavour rolls into the Vehicle Assembly Building on its orbiter transfer vehicle. In high bay 1 it will be mated to the external tank and solid rocket boosters. Space Shuttle Endeavour is targeted for launch on mission STS-99 Jan. 13, 2000 at 1:11 p.m. EST. STS-99 is the Shuttle Radar Topography Mission, an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle

  13. Towards testing quantum physics in deep space

    NASA Astrophysics Data System (ADS)

    Kaltenbaek, Rainer

    2016-07-01

    MAQRO is a proposal for a medium-sized space mission to use the unique environment of deep space in combination with novel developments in space technology and quantum technology to test the foundations of physics. The goal is to perform matter-wave interferometry with dielectric particles of up to 10^{11} atomic mass units and testing for deviations from the predictions of quantum theory. Novel techniques from quantum optomechanics with optically trapped particles are to be used for preparing the test particles for these experiments. The core elements of the instrument are placed outside the spacecraft and insulated from the hot spacecraft via multiple thermal shields allowing to achieve cryogenic temperatures via passive cooling and ultra-high vacuum levels by venting to deep space. In combination with low force-noise microthrusters and inertial sensors, this allows realizing an environment well suited for long coherence times of macroscopic quantum superpositions and long integration times. Since the original proposal in 2010, significant progress has been made in terms of technology development and in refining the instrument design. Based on these new developments, we submitted/will submit updated versions of the MAQRO proposal in 2015 and 2016 in response to Cosmic-Vision calls of ESA for a medium-sized mission. A central goal has been to address and overcome potentially critical issues regarding the readiness of core technologies and to provide realistic concepts for further technology development. We present the progress on the road towards realizing this ground-breaking mission harnessing deep space in novel ways for testing the foundations of physics, a technology pathfinder for macroscopic quantum technology and quantum optomechanics in space.

  14. The Shuttle Radar Topography Mission is moved to a workstand

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Workers inside the Space Station Processing Facility keep watch as an overhead crane begins lifting the Shuttle Radar Topography Mission (SRTM) from the transporter below. The SRTM is being moved to a workstand. The primary payload on mission STS-99, the SRTM consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission scheduled for launch in September 1999. The objective of this radar system is to obtain the most complete high-resolution digital topographic database of the Earth. It will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. SRTM will be making use of a technique called radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. To get two radar images taken from different locations, the SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle.

  15. The Shuttle Radar Topography Mission is moved to a workstand

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Inside the Space Station Processing Facility, workers watch as an overhead crane is lowered for lifting the Shuttle Radar Topography Mission (SRTM) from the transporter it is resting on. The SRTM is being moved to a workstand. The primary payload on mission STS-99, the SRTM consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission scheduled for launch in September 1999. The objective of this radar system is to obtain the most complete high-resolution digital topographic database of the Earth. It will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. SRTM will be making use of a technique called radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. To get two radar images taken from different locations, the SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle.

  16. KSC-99pp0995

    NASA Image and Video Library

    1999-07-28

    Under the watchful eyes of a KSC worker (far left), members of the STS-99 crew check out equipment in the Orbiter Processing Facility (OPF) Bay 2. From left are Mission Specialists Mamoru Mohri, Gerhard P.J. Thiele, and Janice Voss (Ph.D.). Mohri represents the National Space Development Agency (NASDA) of Japan, and Thiele the European Space Agency. Other crew members (not shown) are Commander Kevin R. Kregel, Pilot Dominic L. Pudwill Gorie, and Mission Specialist Janet Lynn Kavandi (Ph.D.). The crew are at KSC to take part in a Crew Equipment Interface Test (CEIT), which provides an opportunity for crew members to check equipment and facilities that will be aboard the orbiter during their mission. The STS-99 mission is the Shuttle Radar Topography Mission (SRTM), a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A

  17. Optical Telescope System-Level Design Considerations for a Space-Based Gravitational Wave Mission

    NASA Technical Reports Server (NTRS)

    Livas, Jeffrey C.; Sankar, Shannon R.

    2016-01-01

    The study of the Universe through gravitational waves will yield a revolutionary new perspective on the Universe, which has been intensely studied using electromagnetic signals in many wavelength bands. A space-based gravitational wave observatory will enable access to a rich array of astrophysical sources in the measurement band from 0.1 to 100 mHz, and nicely complement observations from ground-based detectors as well as pulsar timing arrays by sampling a different range of compact object masses and astrophysical processes. The observatory measures gravitational radiation by precisely monitoring the tiny change in the proper distance between pairs of freely falling proof masses. These masses are separated by millions of kilometers and, using a laser heterodyne interferometric technique, the change in their proper separation is detected to approx. 10 pm over timescales of 1000 seconds, a fractional precision of better than one part in 10(exp 19). Optical telescopes are essential for the implementation of this precision displacement measurement. In this paper we describe some of the key system level design considerations for the telescope subsystem in a mission context. The reference mission for this purpose is taken to be the enhanced Laser Interferometry Space Antenna mission (eLISA), a strong candidate for the European Space Agency's Cosmic Visions L3 launch opportunity in 2034. We will review the flow-down of observatory level requirements to the telescope subsystem, particularly pertaining to the effects of telescope dimensional stability and scattered light suppression, two performance specifications which are somewhat different from the usual requirements for an image forming telescope.

  18. Miniature Loop Heat Pipe (MLHP) Thermal Management System

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2004-01-01

    The MLHP Thermal Management System consists of a loop heat pipe (LHP) with multiple evaporators and condensers, thermal electrical coolers, and deployable radiators coated with variable emittance coatings (VECs). All components are miniaturized. It retains all the performance characteristics of state-of-the-art LHPs and offers additional advantages to enhance the functionality, versatility, and reliability of the system, including flexible locations of instruments and radiators, a single interface temperature for multiple instruments, cooling the on instruments and warming the off instruments simultaneously, improving. start-up success, maintaining a constant LHP operating temperature over a wide range of instrument powers, effecting automatic thermal switching and thermal diode actions, and reducing supplemental heater powers. It can fully achieve low mass, low power and compactness necessary for future small spacecraft. Potential applications of the MLHP thermal technology for future missions include: 1) Magnetospheric Constellation; 2) Solar Sentinels; 3) Mars Science Laboratory; 4) Mars Scouts; 5) Mars Telecom Orbiter; 6) Space Interferometry Mission; 7) Laser Interferometer Space Antenna; 8) Jupiter Icy Moon Orbiter; 9) Terrestrial Planet Finder; 10) Single Aperture Far-Infrared Observatory, and 11) Exploration Missions. The MLHP Thermal Management System combines the operating features of a variable conductance heat pipe, a thermal switch, a thermal diode, and a state-of-the-art LHP into a single integrated thermal system. It offers many advantages over conventional thermal control techniques, and can be a technology enabler for future space missions. Successful flight validation will bring the benefits of MLHP technology to the small satellite arena and will have cross-cutting applications to both Space Science and Earth Science Enterprises.

  19. KSC-99pp0522

    NASA Image and Video Library

    1999-05-13

    Inside the Space Station Processing Facility, the Shuttle Radar Topography Mission (SRTM) is maneuvered by an overhead crane toward a workstand below. The SRTM, which is the primary payload on mission STS-99, consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission scheduled for launch in September 1999. The objective of this radar system is to obtain the most complete high-resolution digital topographic database of the Earth. It will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. SRTM will be making use of a technique called radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. To get two radar images taken from different locations, the SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle

  20. KSC-99pp0524

    NASA Image and Video Library

    1999-05-13

    The move of the Shuttle Radar Topography Mission (SRTM) is nearly complete as it is lowered onto the workstand in the Space Station Processing Facility. The SRTM, which is the primary payload on mission STS-99, consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission scheduled for launch in September 1999. The objective of this radar system is to obtain the most complete high-resolution digital topographic database of the Earth. It will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. SRTM will be making use of a technique called radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. To get two radar images taken from different locations, the SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle

  1. KSC-99pp0521

    NASA Image and Video Library

    1999-05-13

    After being lifted off the transporter (lower right) in the Space Station Processing Facility, the Shuttle Radar Topography Mission (SRTM) moves across the floor toward a workstand. The SRTM, which is the primary payload on mission STS-99, consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission scheduled for launch in September 1999. The objective of this radar system is to obtain the most complete high-resolution digital topographic database of the Earth. It will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. SRTM will be making use of a technique called radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. To get two radar images taken from different locations, the SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle

  2. KSC-99pp0523

    NASA Image and Video Library

    1999-05-13

    Inside the Space Station Processing Facility, workers at each end of a workstand watch as the Shuttle Radar Topography Mission (SRTM) begins its descent onto it. The SRTM, which is the primary payload on mission STS-99, consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission scheduled for launch in September 1999. The objective of this radar system is to obtain the most complete high-resolution digital topographic database of the Earth. It will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. SRTM will be making use of a technique called radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. To get two radar images taken from different locations, the SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle

  3. Use of the VLBI delay observable for orbit determination of Earth-orbiting VLBI satellites

    NASA Technical Reports Server (NTRS)

    Ulvestad, J. S.

    1992-01-01

    Very long-baseline interferometry (VLBI) observations using a radio telescope in Earth orbit were performed first in the 1980s. Two spacecraft dedicated to VLBI are scheduled for launch in 1995; the primary scientific goals of these missions will be astrophysical in nature. This article addresses the use of space VLBI delay data for the additional purpose of improving the orbit determination of the Earth-orbiting spacecraft. In an idealized case of quasi-simultaneous observations of three radio sources in orthogonal directions, analytical expressions are found for the instantaneous spacecraft position and its error. The typical position error is at least as large as the distance corresponding to the delay measurement accuracy but can be much greater for some geometries. A number of practical considerations, such as system noise and imperfect calibrations, set bounds on the orbit-determination accuracy realistically achievable using space VLBI delay data. These effects limit the spacecraft position accuracy to at least 35 cm (and probably 3 m or more) for the first generation of dedicated space VLBI experiments. Even a 35-cm orbital accuracy would fail to provide global VLBI astrometry as accurate as ground-only VLBI. Recommended charges in future space VLBI missions are unlikely to make space VLBI competitive with ground-only VLBI in global astrometric measurements.

  4. Study of a High-Energy Upper Stage for Future Shuttle Missions

    NASA Technical Reports Server (NTRS)

    Dressler, Gordon A.; Matuszak, Leo W.; Stephenson, David D.

    2003-01-01

    Space Shuttle Orbiters are likely to remain in service to 2020 or beyond for servicing the International Space Station and for launching very high value spacecraft. There is a need for a new STS-deployable upper stage that can boost certain Orbiter payloads to higher energy orbits, up to and including Earth-escape trajectories. The inventory of solid rocket motor Inertial Upper Stages has been depleted, and it is unlikely that a LOX/LH2-fueled upper stage can fly on Shuttle due to safety concerns. This paper summarizes the results of a study that investigated a low cost, low risk approach to quickly developing a new large upper stage optimized to fly on the existing Shuttle fleet. Two design reference missions (DRMs) were specified: the James Webb Space Telescope (JWST) and the Space Interferometry Mission (SIM). Two categories of upper stage propellants were examined in detail: a storable liquid propellant and a storable gel propellant. Stage subsystems 'other than propulsion were based largely on heritage hardware to minimize cost, risk and development schedule span. The paper presents the ground rules and guidelines for conducting the study, the preliminary conceptual designs margins, assessments of technology readiness/risk, potential synergy with other programs, and preliminary estimates of development and production costs and schedule spans. Although the Orbiter Columbia was baselined for the study, discussion is provided to show how the results apply to the remaining STS Orbiter fleet.

  5. Instrument Pointing Control System for the Stellar Interferometry Mission - Planet Quest

    NASA Technical Reports Server (NTRS)

    Brugarolas, Paul B.; Kang, Bryan

    2006-01-01

    This paper describes the high precision Instrument Pointing Control System (PCS) for the Stellar Interferometry Mission (SIM) - Planet Quest. The PCS system provides front-end pointing, compensation for spacecraft motion, and feedforward stabilization, which are needed for proper interference. Optical interferometric measurements require very precise pointing (0.03 as, 1-(sigma) radial) for maximizing the interference pattern visibility. This requirement is achieved by fine pointing control of articulating pointing mirrors with feedback from angle tracking cameras. The overall pointing system design concept is presentcd. Functional requirements and an acquisition concept are given. Guide and Science pointing control loops are discussed. Simulation analyses demonstrate the feasibility of the design.

  6. Mission in the works promises precise global topographic data

    USGS Publications Warehouse

    Farr, T.; Evans, D.; Zebker, H.; Harding, D.; Bufton, J.; Dixon, T.; Vetrella, S.; Gesch, D.B.

    1995-01-01

    Significant deficiencies in the quality of today's topographic data severely limit scientific applications. Very few available data sets meet the stringent requirements of 10–30 m for global digital topography and 5 m or better vertical accuracy, and existing satellite systems are unlikely to fulfill these requirements. The Joint Topographic Science Working Group, appointed by NASA and the Italian Space Agency, concluded that radar interferometry coupled with a laser altimeter would be the most promising approach for improving data quality. By providing its own illumination at a wavelength Ion g enough to (e.g., λ = 25 cm) to penetrate clouds and rain, the interferometer would provide a global, uniform high-quality topographic data set. One mission under study, TOPSAT, is well positioned to fill this niche and promises to pave the way toward a more standardized and precise topographic database. TOPSAT would be an international mission, designed to make use of recent technology advances in such programs as NASA's New Millennium. It could be ready to launch by the end of this decade.

  7. STS-99 Shuttle Radar Topography Mission Stability and Control

    NASA Technical Reports Server (NTRS)

    Hamelin, Jennifer L.; Jackson, Mark C.; Kirchwey, Christopher B.; Pileggi, Roberto A.

    2001-01-01

    The Shuttle Radar Topography Mission (SRTM) flew aboard Space Shuttle Endeavor February 2000 and used interferometry to map 80% of the Earth's landmass. SRTM employed a 200-foot deployable mast structure to extend a second antenna away from the main antenna located in the Shuttle payload bay. Mapping requirements demanded precision pointing and orbital trajectories from the Shuttle on-orbit Flight Control System (PCS). Mast structural dynamics interaction with the FCS impacted stability and performance of the autopilot for attitude maneuvers and pointing during mapping operations. A damper system added to ensure that mast tip motion remained with in the limits of the outboard antenna tracking system while mapping also helped to mitigate structural dynamic interaction with the FCS autopilot. Late changes made to the payload damper system, which actually failed on-orbit, required a redesign and verification of the FCS autopilot filtering schemes necessary to ensure rotational control stability. In-flight measurements using three sensors were used to validate models and gauge the accuracy and robustness of the pre-mission notch filter design.

  8. Atomic Gravitational Wave Interferometric Sensors (AGIS) in Space

    NASA Astrophysics Data System (ADS)

    Sugarbaker, Alex; Hogan, Jason; Johnson, David; Dickerson, Susannah; Kovachy, Tim; Chiow, Sheng-Wey; Kasevich, Mark

    2012-06-01

    Atom interferometers have the potential to make sensitive gravitational wave detectors, which would reinforce our fundamental understanding of gravity and provide a new means of observing the universe. We focus here on the AGIS-LEO proposal [1]. Gravitational waves can be observed by comparing a pair of atom interferometers separated over an extended baseline. The mission would offer a strain sensitivity that would provide access to a rich scientific region with substantial discovery potential. This band is not currently addressed with the LIGO or LISA instruments. We analyze systematic backgrounds that are relevant to the mission and discuss how they can be mitigated at the required levels. Some of these effects do not appear to have been considered previously in the context of atom interferometry, and we therefore expect that our analysis will be broadly relevant to atom interferometric precision measurements. Many of the techniques relevant to an AGIS mission can be investigated in the Stanford 10-m drop tower.[4pt] [1] J.M. Hogan, et al., Gen. Rel. Grav. 43, 1953-2009 (2011).

  9. Integrated Optics Achromatic Nuller for Stellar Interferometry

    NASA Technical Reports Server (NTRS)

    Ksendzov, Alexander

    2012-01-01

    This innovation will replace a beam combiner, a phase shifter, and a mode conditioner, thus simplifying the system design and alignment, and saving weight and space in future missions. This nuller is a dielectric-waveguide-based, four-port asymmetric coupler. Its nulling performance is based on the mode-sorting property of adiabatic asymmetric couplers that are intrinsically achromatic. This nuller has been designed, and its performance modeled, in the 6.5-micrometer to 9.25-micrometer spectral interval (36% bandwidth). The calculated suppression of starlight for this 15-cm-long device is 10(exp -5) or better through the whole bandwidth. This is enough to satisfy requirements of a flagship exoplanet-characterization mission. Nulling interferometry is an approach to starlight suppression that will allow the detection and spectral characterization of Earth-like exoplanets. Nulling interferometers separate the light originating from a dim planet from the bright starlight by placing the star at the bottom of a deep, destructive interference fringe, where the starlight is effectively cancelled, or nulled, thus allowing the faint off-axis light to be much more easily seen. This process is referred to as nulling of the starlight. Achromatic nulling technology is a critical component that provides the starlight suppression in interferometer-based observatories. Previously considered space-based interferometers are aimed at approximately 6-to-20-micrometer spectral range. While containing the spectral features of many gases that are considered to be signatures of life, it also offers better planet-to-star brightness ratio than shorter wavelengths. In the Integrated Optics Achromatic Nuller (IOAN) device, the two beams from the interferometer's collecting telescopes pass through the same focusing optic and are incident on the input of the nuller.

  10. Connecting kinematic and dynamic reference frames by D-VLBI

    NASA Astrophysics Data System (ADS)

    Schuh, Harald; Plank, Lucia; Madzak, Matthias; Böhm, Johannes

    2012-08-01

    In geodetic and astrometric practice, terrestrial station coordinates are usually provided in the kinematic International Terrestrial Reference Frame (ITRF) and radio source coordinates in the International Celestial Reference Frame (ICRF), whereas measurements of space probes such as satellites and spacecrafts, or planetary ephemerides rest upon dynamical theories. To avoid inconsistencies and errors during measurement and calculation procedures, exact frame ties between quasi - inertial, kinematic and dynamic reference frames have to be secured. While the Earth Orientation Parameters (EOP), e.g. measured by VLBI, link the ITRF to the ICRF, the ties with the dynamic frames can be established with the differential Very Long Baseline Interferometry (D - VLBI) method. By observing space probes alternately t o radio sources, the relative position of the targets to each other on the sky can be determined with high accuracy. While D - VLBI is a common technique in astrophysics (source imaging) and deep space navigation, just recently there have been several effort s to use it for geodetic purposes. We present investigations concerning possible VLBI observations to satellites. This includes the potential usage of available GNNS satellites as well as specifically designed missions, as e.g. the GRASP mission proposed b y JPL/NASA and an international consortium, where the aspect of co - location in space of various techniques (VLBI, SLR, GNSS, DORIS) is the main focus.

  11. Present and Future Airborne and Space-borne Systems

    DTIC Science & Technology

    2007-02-01

    Present and Future Airborne and Space-borne Systems Wolfgang Keydel Microwaves and Radar Institute German Aerospace Research Centre (DLR...airborne and space-borne SAR systems with polarimetric interferometry capability, their technological, system technical and application related...interferometry accuracies in the cm range have been obtained. In order to reach these values an exact system calibration is indispensable. The calibration of

  12. Simulating laser interferometers for missions such as (E)Lisa, Lisa pathfinder and Grace follow-on

    NASA Astrophysics Data System (ADS)

    Wanner, Gudrun; Kochkina, Evgenia; Mahrdt, Christoph; Müller, Vitali; Schuster, Sönke; Heinzel, Gerhard; Danzmann, Karsten

    2017-11-01

    Sensing tiny distance variations interferometrically will be a key task in several future space missions. Interferometric detectors such as (e)LISA will observe gravitational waves from cosmic events such as for instance super novae and extreme mass ratio inspirals. The detection principle of such detectors is sensing phase variations due to tiny distance variations between two free floating test masses aboard two remote spacecraft originating from passing gravitational waves. This detection principle will be tested for the first time by LISA Pathfinder (launch 2015), where the interferometric readout of two free floating test masses aboard one single spacecraft will be demonstrated. Future geodesy missions will map Earths Gravity field, by interferometrically measuring distance variations between two spacecraft in low Earth orbit. This will be tested for the first time by the Laser Ranging Instrument (LRI) aboard GRACE Follow-On (launch 2017). The low noise laser interferometry of all these missions provides a number of challenging tasks. We will present optical simulations performed for the missions above. The interferometry of LISA Pathfinder is purely local (there do not exist any received beams from remote spacecraft), such that all beams can be approximated by fundamental Gaussian beams. We will present simulations regarding the coupling of residual test mass jitter (longitudinal and lateral as well as angular) to the phase readout, including Monte Carlo simulations to predict how misalignment affects resulting phase noise and estimate in-flight alignment of the test masses. In all of the mentioned missions, the local laser beams are delivered to the optical bench by fibers, resulting in laser beams in fiber modes. Besides local laser beams, the interferometry of missions such as (e)LISA and LRI involves also received beams from remote spacecraft. These beams have diameters in the range of tens of meters (LRI) or kilometers (LISA / eLISA and alike), before being clipped down to centimeter scale by the receiving aperture. The resulting top hat beams show strong diffraction effects and are therefore imaged on the optical benches. Key elements for simulations are therefore the propagation with diffraction of top hat beams and fiber modes in vacuum, as well as imaging optics causing aberration and astigmatism, with the central task to characterize the coupling of test mass or spacecraft jitter to optical readout noise, in presence of realistic alignment errors. A recurring and often limiting noise in the length measurement originates from the cross coupling of angular component jitter. This cross coupling will be briefly introduced with strategies for its mitigation in the various missions. To overcome the limitations of existing and commercial software, we have written and used for the simulations above as well as for general interferometer design purposes a dedicated software package called IfoCAD which is publicly available and will be presented as well.

  13. Gold coatings for cube-corner retro-reflectors

    NASA Astrophysics Data System (ADS)

    Dligatch, Svetlana; Gross, Mark; Netterfield, Roger P.; Pereira, Nathan; Platt, Benjamin C.; Nemati, Bijan

    2005-09-01

    The Space Interferometry Mission (SIM) PlanetQuest is managed by the Jet Propulsion Laboratory for the National Aeronautics and Space Administration. SIM requires, among other things, high precision double cube-corner retroreflectors. A test device has recently been fabricated for this project with demanding specifications on the optical surfaces and gold reflective coatings. Several gold deposition techniques were examined to meet the stringent specifications on uniformity, optical properties, micro-roughness and surface quality. We report on a comparative study of optical performance of gold films deposited by resistive and e-beam pvaporation, including measurements of the scattering from the coated surfaces. The effects of oxygen bombardment and titanium under-layer on optical properties and adhesion were evaluated. The influence of surface preparation on the optical properties was examined also.

  14. KSC-99pp0994

    NASA Image and Video Library

    1999-07-28

    In the Orbiter Processing Facility (OPF) Bay 2, under the watchful eyes of a KSC worker (far left) the STS-99 crew look over equipment as part of a Crew Equipment Interface Test (CEIT). From left (second from right) are Mission Specialists Janet Lynn Kavandi (Ph.D.), Mamoru Mohri, Gerhard P.J. Thiele, and Janice Voss (Ph.D.); behind Voss are Pilot Dominic L. Pudwill Gorie and Commander Kevin R. Kregel. Mohri is with the National Space Development Agency (NASDA) of Japan, and Thiele is with the European Space Agency. The CEIT provides an opportunity for crew members to check equipment and facilities that will be aboard the orbiter during their mission. The STS-99 mission is the Shuttle Radar Topography Mission (SRTM), a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A

  15. Laser Development for Gravitational-Wave Interferometry in Space

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Camp, Jordan

    2012-01-01

    We are reporting on our development work on laser (master oscillator) and optical amplifier systems for gravitational-wave interferometry in space. Our system is based on the mature, wave-guided optics technologies, which have advantages over bulk, crystal-based, free-space optics. We are investing in a new type of compact, low-noise master oscillator, called the planar-waveguide external cavity diode laser. We made measurements, including those of noise, and performed space-qualification tests.

  16. KSC-99pp1374

    NASA Image and Video Library

    1999-12-02

    KENNEDY SPACE CENTER, FLA. -- Orbiter Endeavour aims its nose toward the Vehicle Assembly Building (left) where it will be lifted to vertical and mated to the external tank and solid rocket boosters in high bay 1. Space Shuttle Endeavour is targeted for launch on mission STS-99 Jan. 13, 2000 at 1:11 p.m. EST. STS-99 is the Shuttle Radar Topography Mission, an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle

  17. KSC-99pp1382

    NASA Image and Video Library

    1999-12-03

    KENNEDY SPACE CENTER, FLA. -- In this dizzying view from overhead in high bay 1 of the VAB, the orbiter Endeavour is lowered for mating with the external tank below (on left), and the solid rocket boosters. Space Shuttle Endeavour is targeted for launch on mission STS-99 Jan. 13, 2000, at 1:11 p.m. EST. STS-99 is the Shuttle Radar Topography Mission, an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle

  18. KSC-99pp1371

    NASA Image and Video Library

    1999-12-02

    KENNEDY SPACE CENTER, FLA. -- Workers at KSC lead the way as Orbiter Endeavour, on an orbiter transfer vehicle, rolls from the Orbiter Processing Facility to the Vehicle Assembly Building, where it will be mated to the external tank and solid rocket boosters in high bay 1. Space Shuttle Endeavour is targeted for launch on mission STS-99 Jan. 13, 2000 at 1:11 p.m. EST. STS-99 is the Shuttle Radar Topography Mission, an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle

  19. KSC-99pp1370

    NASA Image and Video Library

    1999-12-02

    KENNEDY SPACE CENTER, FLA. -- Orbiter Endeavour rolls out of the Orbiter Processing Facility bay 2 for transfer to the Vehicle Assembly Building. There it will be mated to the external tank and solid rocket boosters in high bay 1. Space Shuttle Endeavour is targeted for launch on mission STS-99 Jan. 13, 2000 at 1:11 p.m. EST. STS-99 is the Shuttle Radar Topography Mission, an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle

  20. KSC-99pp1384

    NASA Image and Video Library

    1999-12-03

    KENNEDY SPACE CENTER, FLA. -- Viewed from the ground level in high bay 1 of the VAB, the orbiter Endeavour seems to float in mid-air as it is lowered for mating with the external tank and solid rocket boosters behind and below it. Space Shuttle Endeavour is targeted for launch on mission STS-99 Jan. 13, 2000, at 1:11 p.m. EST. STS-99 is the Shuttle Radar Topography Mission, an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle

  1. Hybrid Atom Electrostatic System for Satellite Geodesy

    NASA Astrophysics Data System (ADS)

    Zahzam, Nassim; Bidel, Yannick; Bresson, Alexandre; Huynh, Phuong-Anh; Liorzou, Françoise; Lebat, Vincent; Foulon, Bernard; Christophe, Bruno

    2017-04-01

    The subject of this poster comes within the framework of new concepts identification and development for future satellite gravity missions, in continuation of previously launched space missions CHAMP, GRACE, GOCE and ongoing and prospective studies like NGGM, GRACE 2 or E-GRASP. We were here more focused on the inertial sensors that complete the payload of such satellites. The clearly identified instruments for space accelerometry are based on the electrostatic technology developed for many years by ONERA and that offer a high level of performance and a high degree of maturity for space applications. On the other hand, a new generation of sensors based on cold atom interferometry (AI) is emerging and seems very promising in this context. These atomic instruments have already demonstrated on ground impressive results, especially with the development of state-of-the-art gravimeters, and should reach their full potential only in space, where the microgravity environment allows long interaction times. Each of these two types of instruments presents their own advantages which are, for the electrostatic sensors (ES), their demonstrated short term sensitivity and their high TRL, and for AI, amongst others, the absolute nature of the measurement and therefore no need for calibration processes. These two technologies seem in some aspects very complementary and a hybrid sensor bringing together all their assets could be the opportunity to take a big step in this context of gravity space missions. We present here the first experimental association on ground of an electrostatic accelerometer and an atomic accelerometer and underline the interest of calibrating the ES instrument with the AI. Some technical methods using the ES proof-mass as the Raman Mirror seem very promising to remove rotation effects of the satellite on the AI signal. We propose a roadmap to explore further in details and more rigorously this attractive hybridization scheme in order to assess its potential for a future geodesy space mission with theoretical and experimental work.

  2. Gravitational Reference Sensor Technology Development at the University of Florida

    NASA Astrophysics Data System (ADS)

    Conklin, John; Chilton, Andrew; Chiani, Giacomo; Mueller, Guido; Shelley, Ryan

    2013-04-01

    The Laser Interferometer Space Antenna (LISA), the most mature concept for detecting gravitational waves from space, consists of three Sun-orbiting spacecraft that form a million kilometer-scale equilateral triangle. Each spacecraft houses two free-floating test masses (TM), which are protected from disturbing forces so that they follow pure geodesics. A single TM together with its protective housing and associated components is referred to as a gravitational reference sensor (GRS). Laser interferometry is used to measure the minute variations in the distance, or light travel time, between these purely free-falling TMs, caused by gravitational waves. The demanding acceleration noise requirement of 3 x 10-15 m/sec^2Hz^1/2 for the LISA GRS has motivated a rigorous testing campaign in Europe and a dedicated technology mission, LISA Pathfinder, scheduled for launch in 2014. In order to increase U.S. competency in GRS technologies, various research activities at the University of Florida (UF) have been initiated. The first is the development of a nearly thermally noise limited torsion pendulum for testing the GRS and for understanding the dozens of acceleration noise sources that affect the performance of the LISA GRS. The team at UF also collaborates with Stanford and NASA Ames on a small satellite mission that will test the performance of UV LEDs for ac charge control in space. This presentation will describe the design of the GRS testing facility at UF, the status of the UV LED small satellite mission, and plans for UF participation in the LISA Pathfinder mission.

  3. GLINT. Gravitational-wave laser INterferometry triangle

    NASA Astrophysics Data System (ADS)

    Aria, Shafa; Azevedo, Rui; Burow, Rick; Cahill, Fiachra; Ducheckova, Lada; Holroyd, Alexa; Huarcaya, Victor; Järvelä, Emilia; Koßagk, Martin; Moeckel, Chris; Rodriguez, Ana; Royer, Fabien; Sypniewski, Richard; Vittori, Edoardo; Yttergren, Madeleine

    2017-11-01

    When the universe was roughly one billion years old, supermassive black holes (103-106 solar masses) already existed. The occurrence of supermassive black holes on such short time scales are poorly understood in terms of their physical or evolutionary processes. Our current understanding is limited by the lack of observational data due the limits of electromagnetic radiation. Gravitational waves as predicted by the theory of general relativity have provided us with the means to probe deeper into the history of the universe. During the ESA Alpach Summer School of 2015, a group of science and engineering students devised GLINT (Gravitational-wave Laser INterferometry Triangle), a space mission concept capable of measuring gravitational waves emitted by black holes that have formed at the early periods after the big bang. Morespecifically at redshifts of 15 < z < 30(˜ 0.1 - 0.3× 109 years after the big bang) in the frequency range 0.01 - 1 Hz. GLINT design strain sensitivity of 5× 10^{-24} 1/√ { {Hz}} will theoretically allow the study of early black holes formations as well as merging events and collapses. The laser interferometry, the technology used for measuring gravitational waves, monitors the separation of test masses in free-fall, where a change of separation indicates the passage of a gravitational wave. The test masses will be shielded from disturbing forces in a constellation of three geocentric orbiting satellites.

  4. The Wide-Field Imaging Interferometry Testbed: Enabling Techniques for High Angular Resolution Astronomy

    NASA Technical Reports Server (NTRS)

    Rinehart, S. A.; Armstrong, T.; Frey, Bradley J.; Jung, J.; Kirk, J.; Leisawitz, David T.; Leviton, Douglas B.; Lyon, R.; Maher, Stephen; Martino, Anthony J.; hide

    2007-01-01

    The Wide-Field Imaging Interferometry Testbed (WIIT) was designed to develop techniques for wide-field of view imaging interferometry, using "double-Fourier" methods. These techniques will be important for a wide range of future spacebased interferometry missions. We have provided simple demonstrations of the methodology already, and continuing development of the testbed will lead to higher data rates, improved data quality, and refined algorithms for image reconstruction. At present, the testbed effort includes five lines of development; automation of the testbed, operation in an improved environment, acquisition of large high-quality datasets, development of image reconstruction algorithms, and analytical modeling of the testbed. We discuss the progress made towards the first four of these goals; the analytical modeling is discussed in a separate paper within this conference.

  5. Unequal-Arm Interferometry and Ranging in Space

    NASA Technical Reports Server (NTRS)

    Tinto, Massimo

    2005-01-01

    Space-borne interferometric gravitational wave detectors, sensitive in the low-frequency (millihertz) band, will fly in the next decade. In these detectors the spacecraft-to-spacecraft light-traveltimes will necessarily be unequal, time-varying, and (due to aberration) have different time delays on up- and down-links. By using knowledge of the inter-spacecraft light-travel-times and their time evolution it is possible to cancel in post-processing the otherwise dominant laser phase noise and obtain a variety of interferometric data combinations sensitive to gravitational radiation. This technique, which has been named Time-Delay Interferometry (TDI), can be implemented with constellations of three or more formation-flying spacecraft that coherently track each other. As an example application we consider the Laser Interferometer Space Antenna (LISA) mission and show that TDI combinations can be synthesized by properly time-shifting and linearly combining the phase measurements performed on board the three spacecraft. Since TDI exactly suppresses the laser noises when the delays coincide with the light-travel-times, we then show that TDI can also be used for estimating the time-delays needed for its implementation. This is done by performing a post-processing non-linear minimization procedure, which provides an effective, powerful, and simple way for making measurements of the inter-spacecraft light-travel-times. This processing technique, named Time-Delay Interferometric Ranging (TDIR), is highly accurate in estimating the time-delays and allows TDI to be successfully implemented without the need of a dedicated ranging subsystem.

  6. KSC-99pp0519

    NASA Image and Video Library

    1999-05-13

    Inside the Space Station Processing Facility, workers watch as an overhead crane is lowered for lifting the Shuttle Radar Topography Mission (SRTM) from the transporter it is resting on. The SRTM is being moved to a workstand. The primary payload on mission STS-99, the SRTM consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission scheduled for launch in September 1999. The objective of this radar system is to obtain the most complete high-resolution digital topographic database of the Earth. It will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. SRTM will be making use of a technique called radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. To get two radar images taken from different locations, the SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle

  7. KSC-99pp0520

    NASA Image and Video Library

    1999-05-13

    Workers inside the Space Station Processing Facility keep watch as an overhead crane begins lifting the Shuttle Radar Topography Mission (SRTM) from the transporter below. The SRTM is being moved to a workstand. The primary payload on mission STS-99, the SRTM consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission scheduled for launch in September 1999. The objective of this radar system is to obtain the most complete high-resolution digital topographic database of the Earth. It will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. SRTM will be making use of a technique called radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. To get two radar images taken from different locations, the SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle

  8. STS-99 crew takes part in CEIT at KSC

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Orbiter Processing Facility, STS-99 Mission Specialists Mamoru Mohri (center), who is with the National Space Development Agency (NASDA) of Japan, and Janice Voss (Ph.D.) (right) talk with a KSC worker (left) during a Crew Equipment Interface Test (CEIT). The CEIT provides an opportunity for crew members to check equipment and facilities that will be aboard the orbiter during their mission. Others taking part are Commander Kevin R. Kregel, Pilot Dominic L. Pudwill Gorie, and Mission Specialists Janet Lynn Kavandi (Ph.D.) and Gerhard P.J. Thiele, who is with the European Space Agency. The SRTM is a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A.

  9. Space Radar Image of Saline Valley, California

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a three-dimensional perspective view of Saline Valley, about 30 km (19 miles) east of the town of Independence, California created by combining two spaceborne radar images using a technique known as interferometry. Visualizations like this one are helpful to scientists because they clarify the relationships of the different types of surfaces detected by the radar and the shapes of the topographic features such as mountains and valleys. The view is looking southwest across Saline Valley. The high peaks in the background are the Inyo Mountains, which rise more than 3,000 meters (10,000 feet) above the valley floor. The dark blue patch near the center of the image is an area of sand dunes. The brighter patches to the left of the dunes are the dry, salty lake beds of Saline Valley. The brown and orange areas are deposits of boulders, gravel and sand known as alluvial fans. The image was constructed by overlaying a color composite radar image on top of a digital elevation map. The radar image was taken by the Spaceborne Imaging Radar-C/X-bandSynthetic Aperture Radar (SIR-C/X-SAR) on board the space shuttleEndeavour in October 1994. The digital elevation map was producedusing radar interferometry, a process in which radar data are acquired on different passes of the space shuttle. The two data passes are compared to obtain elevation information. The elevation data were derived from a 1,500-km-long (930-mile) digital topographic map processed at JPL. Radar image data are draped over the topography to provide the color with the following assignments: red is L-band vertically transmitted, vertically received; green is C-band vertically transmitted, vetically received; and blue is the ratio of C-band vertically transmitted, vertically received to L-band vertically transmitted, vertically received. This image is centered near 36.8 degrees north latitude and 117.7 degrees west longitude. No vertical exaggeration factor has been applied to the data. SIR-C/X-SAR, a joint mission of the German, Italian, and the United States space agencies, is part of NASA's Mission to Planet Earth.

  10. Hardware Verification of Laser Noise Cancellation and Gravitational Wave Extraction using Time-Delay Interferometry

    NASA Astrophysics Data System (ADS)

    Mitryk, Shawn; Mueller, Guido

    The Laser Interferometer Space Antenna (LISA) is a space-based modified Michelson interfer-ometer designed to measure gravitational radiation in the frequency range from 30 uHz to 1 Hz. The interferometer measurement system (IMS) utilizes one-way laser phase measurements to cancel the laser phase noise, reconstruct the proof-mass motion, and extract the gravitational wave (GW) induced laser phase modulations in post-processing using a technique called time-delay interferometry (TDI). Unfortunately, there exist few hard-ware verification experiments of the IMS. The University of Florida LISA Interferometry Simulator (UFLIS) is designed to perform hardware-in-the-loop simulations of the LISA interferometry system, modeling the characteris-tics of the LISA mission as accurately as possible. This depends, first, on replicating the laser pre-stabilization by locking the laser phase to an ultra-stable Zerodur cavity length reference using the PDH locking method. Phase measurements of LISA-like photodetector beat-notes are taken using the UF-phasemeter (PM) which can measure the laser BN frequency to within an accuracy of 0.22 uHz. The inter-space craft (SC) laser links including the time-delay due to the 5 Gm light travel time along the LISA arms, the laser Doppler shifts due to differential SC motion, and the GW induced laser phase modulations are simulated electronically using the electronic phase delay (EPD) unit. The EPD unit replicates the laser field propagation between SC by measuring a photodetector beat-note frequency with the UF-phasemeter and storing the information in memory. After the requested delay time, the frequency information is added to a Doppler offset and a GW-like frequency modulation. The signal is then regenerated with the inter-SC laser phase affects applied. Utilizing these components, I will present the first complete TDI simulations performed using the UFLIS. The LISA model is presented along-side the simulation, comparing the generation and measurement of LISA-like signals. Phasemeter measurements are used in post-processing and combined in the linear combinations defined by TDI, thus, canceling the laser phase and phase-lock loop noise to extract the applied GW modulation buried under the noise. Nine order of magnitude common mode laser noise cancellation is achieved at a frequency of 1 mHz and the GW signal is clearly visible after the laser and PLL noise cancellation.

  11. Laser interferometer for space-based mapping of Earth's gravity field

    NASA Astrophysics Data System (ADS)

    Dehne, Marina; Sheard, Benjamin; Gerberding, Oliver; Mahrdt, Christoph; Heinzel, Gerhard; Danzmann, Karsten

    2010-05-01

    Laser interferometry will play a key role in the next generation of GRACE-type satellite gravity missions. The measurement concepts for future missions include a heterodyne laser interferometer. Furthermore, it is favourable to use polarising components in the laser interferometer for beam splitting. In the first step the influence of these components on the interferometer sensitivity has been investigated. Additionally, a length stability on a nm-scale has been validated. The next step will include a performance test of an interferometric SST system in an active symmetric transponder setup including two lasers and two optical benches. The design and construction of a quasi-monolithic interferometer for comparing the interferometric performance of non-polarising and polarising optics will be discussed. The results of the interferometric readout of a heterodyne configuration together with polarising optics will be presented to fulfil the phase sensitivity requirement of 1nm/√Hz-- for a typical SSI scenario.

  12. Numerical simulation of time delay Interferometry for LISA with one arm dysfunctional

    NASA Astrophysics Data System (ADS)

    Ni, Wei-Tou; Dhurandhar, Sanjeev V.; Nayak, K. Rajesh; Wang, Gang

    In order to attain the requisite sensitivity for LISA, laser frequency noise must be suppressed below the secondary noises such as the optical path noise, acceleration noise etc. In a previous paper(a), we have found an infinite family of second generation analytic solutions of time delay interferometry and estimated the laser noise due to residual time delay semi-analytically from orbit perturbations due to earth. Since other planets and solar-system bodies also perturb the orbits of LISA spacecraft and affect the time delay interferometry, we simulate the time delay numerically in this paper. To conform to the actual LISA planning, we have worked out a set of 10-year optimized mission orbits of LISA spacecraft using CGC3 ephemeris framework(b). Here we use this numerical solution to calculate the residual errors in the second generation solutions upto n 3 of our previous paper, and compare with the semi-analytic error estimate. The accuracy of this calculation is better than 1 m (or 30 ns). (a) S. V. Dhurandhar, K. Rajesh Nayak and J.-Y. Vinet, time delay Interferometry for LISA with one arm dysfunctional (b) W.-T. Ni and G. Wang, Orbit optimization for 10-year LISA mission orbit starting at 21 June, 2021 using CGC3 ephemeris framework

  13. Precision Linear Actuator for Space Interferometry Mission (SIM) Siderostat Pointing

    NASA Technical Reports Server (NTRS)

    Cook, Brant; Braun, David; Hankins, Steve; Koenig, John; Moore, Don

    2008-01-01

    'SIM PlanetQuest will exploit the classical measuring tool of astrometry (interferometry) with unprecedented precision to make dramatic advances in many areas of astronomy and astrophysics'(1). In order to obtain interferometric data two large steerable mirrors, or Siderostats, are used to direct starlight into the interferometer. A gimbaled mechanism actuated by linear actuators is chosen to meet the unprecedented pointing and angle tracking requirements of SIM. A group of JPL engineers designed, built, and tested a linear ballscrew actuator capable of performing submicron incremental steps for 10 years of continuous operation. Precise, zero backlash, closed loop pointing control requirements, lead the team to implement a ballscrew actuator with a direct drive DC motor and a precision piezo brake. Motor control commutation using feedback from a precision linear encoder on the ballscrew output produced an unexpected incremental step size of 20 nm over a range of 120 mm, yielding a dynamic range of 6,000,000:1. The results prove linear nanometer positioning requires no gears, levers, or hydraulic converters. Along the way many lessons have been learned and will subsequently be shared.

  14. The Space Elevator and Its Promise for Next Generation Exploration

    NASA Technical Reports Server (NTRS)

    Laubscher, Bryan E.

    2006-01-01

    Bryan E. Laubscher received his Ph.D. in physics in 1994 from the University of New Mexico with a concentration in astrophysics. He is currently on entrepreneurial leave from Los Alamos National Laboratory where he is a project leader and he has worked in various capacities for 16 years. His past projects include LANL's portion of the Sloan Digital Sky Survey, Magdalena Ridge Observatory and a project developing concepts and technologies for space situational awareness. Over the years Bryan has participated in research in astronomy, lidar, non-linear optics, space mission design, space-borne instrumentation design and construction, spacecraft design, novel electromagnetic detection concepts and technologies, detector/receiver system development, spectrometer development, interferometry and participated in many field experiments. Bryan led space elevator development at LANL until going on entrepreneurial leave in 2006. On entrepreneurial leave, Bryan is starting a company to build the strongest materials ever created. These materials are based upon carbon nanotubes, the strongest structures known in nature and the first material identified with sufficient strength-to-weight properties to build a space elevator.

  15. Advanced optical delay line demonstrator

    NASA Astrophysics Data System (ADS)

    van den Dool, Teun; Kamphues, Fred; Fouss, B.; Henrioulle, K.; Hogenhuis, Harm

    2004-09-01

    TNO TPD, in cooperation with Micromega-Dynamics and Dutch Space, has designed an advanced Optical Delay Line (ODL) for use in future ground based and space interferometry missions. The work is performed under NIVR contract in preparation for GENIE and DARWIN. Using the ESO PRIMA DDL requirements as a baseline, the delay line can be used for PRIMA and GENIE without any modifications. The delay line design is modular and flexible, which makes scaling for other applications a relatively easy task. The ODL has a single linear motor actuator for Optical Path Difference (OPD) control, driving a two-mirror cat"s eye with SiC mirrors and CFRP structure. Magnetic bearings provide frictionless and wear free operation with zerohysteresis. The delay line is currently being assembled and will be subjected to a comprehensive test program in the second half of 2004.

  16. Atom Interferometry for Fundamental Physics and Gravity Measurements in Space

    NASA Technical Reports Server (NTRS)

    Kohel, James M.

    2012-01-01

    Laser-cooled atoms are used as freefall test masses. The gravitational acceleration on atoms is measured by atom-wave interferometry. The fundamental concept behind atom interferometry is the quantum mechanical particle-wave duality. One can exploit the wave-like nature of atoms to construct an atom interferometer based on matter waves analogous to laser interferometers.

  17. Recent New Ideas and Directions for Space-Based Nulling Interferometry

    NASA Technical Reports Server (NTRS)

    Serabyn, Eugene (Gene)

    2004-01-01

    This document is composed of two viewgraph presentations. The first is entitled "Recent New Ideas and Directions for Space-Based Nulling Interferometry." It reviews our understanding of interferometry compared to a year or so ago: (1) Simpler options identified, (2) A degree of flexibility is possible, allowing switching (or degradation) between some options, (3) Not necessary to define every component to the exclusion of all other possibilities and (4) MIR fibers are becoming a reality. The second, entitled "The Fiber Nuller," reviews the idea of Combining beams in a fiber instead of at a beamsplitter.

  18. Deployment and Simulation of the Astrod-Gw Formation

    NASA Astrophysics Data System (ADS)

    Wu, An-Ming; Ni, Wei-Tou

    2013-01-01

    Constellation or formation flying is a common concept in space Gravitational Wave (GW) mission proposals for the required interferometry implementation. The spacecraft of most of these mission proposals go to deep space and many have Earthlike orbits around the Sun. Astrodynamical Space Test of Relativity using Optical Devices optimized for Gravitation Wave detection (ASTROD-GW), Big Bang Observer (BBO) and DECIGO have spacecraft distributed in Earthlike orbits in formation. The deployment of orbit formation is an important issue for these missions. ASTROD-GW is to focus on the goal of detection of GWs. The mission orbits of the three spacecraft forming a nearly equilateral triangular array are chosen to be near the Sun-Earth Lagrange points L3, L4 and L5. The three spacecraft range interferometrically with one another with arm length about 260 million kilometers with the scientific goals including detection of GWs from Massive Black Holes (MBH) and Extreme-Mass-Ratio Black Hole Inspirals (EMRI), and using these observations to find the evolution of the equation of state of dark energy and to explore the co-evolution of MBH with galaxies. In this paper, we review the formation flying for fundamental physics missions, design the preliminary transfer orbits of the ASTROD-GW spacecraft from the separations of the launch vehicles to the mission orbits, and simulate the arm lengths of the triangular formation. From our study, the optimal delta-Vs and propellant ratios of the transfer orbits could be within about 2.5 km/s and 0.55, respectively. From the simulation of the formation for 10 years, the arm lengths of the formation vary in the range 1.73210 ± 0.00015 AU with the arm length differences varying in the range ±0.00025 AU for formation with 1° inclination to the ecliptic plane. This meets the measurement requirements. Further studies on the optimizations of deployment and orbit configurations for a period of 20 years and with inclinations between 1° to 3° are currently ongoing.

  19. Protein Crystal Movements and Fluid Flows During Microgravity Growth

    NASA Technical Reports Server (NTRS)

    Boggon, Titus J.; Chayen, Naomi E.; Snell, Edward H.; Dong, Jun; Lautenschlager, Peter; Potthast, Lothar; Siddons, D. Peter; Stojanoff, Vivian; Gordon, Elspeth; Thompson, Andrew W.; hide

    1998-01-01

    The growth of protein crystals suitable for x-ray crystal structure analysis is an important topic. The quality (perfection) of protein crystals is now being evaluated by mosaicity analysis (rocking curves) and x-ray topographic images as well as the diffraction resolution limit and overall data quality. In yet another study, use of hanging drop vapour diffusion geometry on the IML-2 shuttle mission showed, again via CCD video monitoring, growing apocrustacyanin C(sub 1) protein crystal executing near cyclic movement, reminiscent of Marangoni convection flow of fluid, the crystals serving as "markers" of the fluid flow. A review is given here of existing results and experience over several microgravity missions. Some comment is given on gel protein crystal growth in attempts to 'mimic' the benefits of microgravity on Earth. Finally, the recent new results from our experiments on the shuttle mission LMS are described. These results include CCD video as well as interferometry during the mission, followed, on return to Earth, by reciprocal space mapping at the NSLS, Brookhaven, and full X-ray data collection on LMS and Earth control lysozyme crystals. Diffraction data recorded from LMS and ground control apocrustacyanin C(sub 1) crystals are also described.

  20. Laser Interferometry for Gravitational Wave Observation: LISA and LISA Pathfinder

    NASA Technical Reports Server (NTRS)

    Guzman, Felipe

    2010-01-01

    The Laser Interferometer Space Antenna (LISA) is a planned NASA-ESA gravitational wave observatory in the frequency range of 0.1mHz-100mHz. This observation band is inaccessible to ground-based detectors due to the large ground motions of the Earth. Gravitational wave sources for LISA include galactic binaries, mergers of supermasive black-hole binaries, extreme-mass-ratio inspirals, and possibly from as yet unimagined sources. LISA is a constellation of three spacecraft separated by 5 million km in an equilateral triangle, whose center follows the Earth in a heliocentric orbit with an orbital phase offset oF 20 degrees. Challenging technology is required to ensure pure geodetic trajectories of the six onboard test masses, whose distance fluctuations will be measured by interspacecraft laser interferometers with picometer accuracy. LISA Pathfinder is an ESA-launched technology demonstration mission of key LISA subsystems such us spacecraft control with micro-newton thrusters, test mass drag-free control, and precision laser interferometry between free-flying test masses. Ground testing of flight hardware of the Gravitational Reference Sensor and Optical Metrology subsystems of LISA Pathfinder is currently ongoing. An introduction to laser interferometric gravitational wave detection, ground-based observatories, and a detailed description of the two missions together with an overview of current investigations conducted by the community will bc discussed. The current status in development and implementation of LISA Pathfinder pre-flight systems and latest results of the ongoing ground testing efforts will also be presented

  1. Advanced optical instruments technology

    NASA Technical Reports Server (NTRS)

    Shao, Mike; Chrisp, Michael; Cheng, Li-Jen; Eng, Sverre; Glavich, Thomas; Goad, Larry; Jones, Bill; Kaarat, Philip; Nein, Max; Robinson, William

    1992-01-01

    The science objectives for proposed NASA missions for the next decades push the state of the art in sensitivity and spatial resolution over a wide range of wavelengths, including the x-ray to the submillimeter. While some of the proposed missions are larger and more sensitive versions of familiar concepts, such as the next generation space telescope, others use concepts, common on the Earth, but new to space, such as optical interferometry, in order to provide spatial resolutions impossible with other concepts. However, despite their architecture, the performance of all of the proposed missions depends critically on the back-end instruments that process the collected energy to produce scientifically interesting outputs. The Advanced Optical Instruments Technology panel was chartered with defining technology development plans that would best improve optical instrument performance for future astrophysics missions. At this workshop the optical instrument was defined as the set of optical components that reimage the light from the telescope onto the detectors to provide information about the spatial, spectral, and polarization properties of the light. This definition was used to distinguish the optical instrument technology issues from those associated with the telescope, which were covered by a separate panel. The panel identified several areas for optical component technology development: diffraction gratings; tunable filters; interferometric beam combiners; optical materials; and fiber optics. The panel also determined that stray light suppression instruments, such as coronagraphs and nulling interferometers, were in need of general development to support future astrophysics needs.

  2. Advanced optical instruments technology

    NASA Astrophysics Data System (ADS)

    Shao, Mike; Chrisp, Michael; Cheng, Li-Jen; Eng, Sverre; Glavich, Thomas; Goad, Larry; Jones, Bill; Kaarat, Philip; Nein, Max; Robinson, William

    1992-08-01

    The science objectives for proposed NASA missions for the next decades push the state of the art in sensitivity and spatial resolution over a wide range of wavelengths, including the x-ray to the submillimeter. While some of the proposed missions are larger and more sensitive versions of familiar concepts, such as the next generation space telescope, others use concepts, common on the Earth, but new to space, such as optical interferometry, in order to provide spatial resolutions impossible with other concepts. However, despite their architecture, the performance of all of the proposed missions depends critically on the back-end instruments that process the collected energy to produce scientifically interesting outputs. The Advanced Optical Instruments Technology panel was chartered with defining technology development plans that would best improve optical instrument performance for future astrophysics missions. At this workshop the optical instrument was defined as the set of optical components that reimage the light from the telescope onto the detectors to provide information about the spatial, spectral, and polarization properties of the light. This definition was used to distinguish the optical instrument technology issues from those associated with the telescope, which were covered by a separate panel. The panel identified several areas for optical component technology development: diffraction gratings; tunable filters; interferometric beam combiners; optical materials; and fiber optics. The panel also determined that stray light suppression instruments, such as coronagraphs and nulling interferometers, were in need of general development to support future astrophysics needs.

  3. Recommendations for Technology Development and Validation Activities in Support of the Origins Program

    NASA Technical Reports Server (NTRS)

    Capps, Richard W. (Editor)

    1996-01-01

    The Office of Space Science (OSS) has initiated mission concept studies and associated technology roadmapping activities for future large space optical systems. The scientific motivation for these systems is the study of the origins of galaxies, stars, planetary systems and, ultimately, life. Collectively, these studies are part of the 'Astronomical Search for Origins and Planetary Systems Program' or 'Origins Program'. A series of at least three science missions and associated technology validation flights is currently envisioned in the time frame between the year 1999 and approximately 2020. These would be the Space Interferometry Mission (SIM), a 10-meter baseline Michelson stellar interferometer; the Next Generation Space Telescope (NGST), a space-based infrared optimized telescope with aperture diameter larger than four meters; and the Terrestrial Planet Finder (TPF), an 80-meter baseline-nulling Michelson interferometer described in the Exploration of Neighboring Planetary Systems (ExNPS) Study. While all of these missions include significant technological challenges, preliminary studies indicate that the technological requirements are achievable. However, immediate and aggressive technology development is needed. The Office of Space Access and Technology (OSAT) is the primary sponsor of NASA-unique technology for missions such as the Origins series. For some time, the OSAT Space Technology Program has been developing technologies for large space optical systems, including both interferometers and large-aperture telescopes. In addition, technology investments have been made by other NASA programs, including OSS; other government agencies, particularly the Department of Defense; and by the aerospace industrial community. This basis of prior technology investment provides much of the rationale for confidence in the feasibility of the advanced Origins missions. In response to the enhanced interest of both the user community and senior NASA management in large space optics, OSAT is moving to improve the focus of its sensor, spacecraft, and interferometer/telescope technology programs on the specific additional needs of the OSS Origins Program. To better define Origins mission technology and facilitate its development, OSAT and OSS called for a series of workshops with broad participation from industry, academia and the national laboratory community to address these issues. Responsibility for workshop implementation was assigned jointly to the two NASA field centers with primary Origins mission responsibility, the Goddard Space Flight Center and the Jet Propulsion Laboratory. The Origins Technology Workshop, held at Dana Point, California between June 4 and 6, 1996 was the first in the series of comprehensive workshops aimed at addressing the broad technological needs of the Origins Program. It was attended by 64 individuals selected to provide technical expertise relevant to the technology challenges of the Origins missions. This report summarizes the results of that meeting. A higher level executive summary was considered inappropriate because of the potential loss of important context for the recommendations. Subsequent to the Origins Technology Workshop and prior to publication of this report, NASA Headquarters reorganized the activities of the Of fice of Space Access and Technology. It appears likely that responsibility for the technology programs recommended in this document will move to the Office of Space Science.

  4. Frequency standards requirements of the NASA deep space network to support outer planet missions

    NASA Technical Reports Server (NTRS)

    Fliegel, H. F.; Chao, C. C.

    1974-01-01

    Navigation of Mariner spacecraft to Jupiter and beyond will require greater accuracy of positional determination than heretofore obtained if the full experimental capabilities of this type of spacecraft are to be utilized. Advanced navigational techniques which will be available by 1977 include Very Long Baseline Interferometry (VLBI), three-way Doppler tracking (sometimes called quasi-VLBI), and two-way Doppler tracking. It is shown that VLBI and quasi-VLBI methods depend on the same basic concept, and that they impose nearly the same requirements on the stability of frequency standards at the tracking stations. It is also shown how a realistic modelling of spacecraft navigational errors prevents overspecifying the requirements to frequency stability.

  5. Comparison of the results of refractometric measurements in the process of diffusion, obtained by means of the backgroundoriented schlieren method and the holographic interferometry method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraiskii, A V; Mironova, T V

    2015-08-31

    The results of the study of interdiffusion of two liquids, obtained using the holographic recording scheme with a nonstationary reference wave with the frequency linearly varying in space and time are compared with the results of correlation processing of digital photographs, made with a random background screen. The spatio-temporal behaviour of the signal in four basic representations ('space – temporal frequency', 'space – time', 'spatial frequency – temporal frequency' and 'spatial frequency – time') is found in the holographic experiment and calculated (in the appropriate coordinates) based on the background-oriented schlieren method. Practical coincidence of the results of the correlationmore » analysis and the holographic double-exposure interferometry is demonstrated. (interferometry)« less

  6. Development of realtime connected element interferometry at the Goldstone Deep Space Communications Complex

    NASA Technical Reports Server (NTRS)

    Edwards, C. D.

    1990-01-01

    Connected-element interferometry (CEI) has the potential to provide high-accuracy angular spacecraft tracking on short baselines by making use of the very precise phase delay observable. Within the Goldstone Deep Space Communications Complex (DSCC), one of three tracking complexes in the NASA Deep Space Network, baselines of up to 21 km in length are available. Analysis of data from a series of short-baseline phase-delay interferometry experiments are presented to demonstrate the potential tracking accuracy on these baselines. Repeated differential observations of pairs of angularly close extragalactic radio sources were made to simulate differential spacecraft-quasar measurements. Fiber-optic data links and a correlation processor are currently being developed and installed at Goldstone for a demonstration of real-time CEI in 1990.

  7. Amplitude and intensity spatial interferometry; Proceedings of the Meeting, Tucson, AZ, Feb. 14-16, 1990

    NASA Technical Reports Server (NTRS)

    Breckinridge, Jim B. (Editor)

    1990-01-01

    Attention is given to such topics as ground interferometers, space interferometers, speckle-based and interferometry-based astronomical observations, adaptive and atmospheric optics, speckle techniques, and instrumentation. Particular papers are presented concerning recent progress on the IR Michelson array; the IOTA interferometer project; a space interferometer concept for the detection of extrasolar earth-like planets; IR speckle imaging at Palomar; optical diameters of stars measured with the Mt. Wilson Mark III interferometer; the IR array camera for interferometry with the cophased Multiple Mirror Telescope; optimization techniques appliesd to the bispectrum of one-dimensional IR astronomical speckle data; and adaptive optical iamging for extended objects.

  8. Demonstration of sub-picometer length measurements and sub-nanoradian angular read-out in the millihertz-frequency range

    NASA Astrophysics Data System (ADS)

    Diekmann, Christian; Troebs, Michael; Steier, Frank; Bykov, Iouri; Heinzel, Gerhard; Danzmann, Karsten

    The space-based interferometric gravitational-wave detector Laser Interferometer Space An-tenna (LISA) requires interferometry with subpicometer and nanoradian sensitivity in the fre-quency range between 3 mHz and 1 Hz. Currently, a first prototype of the optical bench for LISA is being designed. We report on a pre-experiment with the aim to demonstrate the required sensitivities and to thoroughly characterise the equipment. For this purpose, a quasi-monolithic optical setup has been built with two Mach-Zehnder interferometers (MZI) on an optical bench made of zerodur. In a first step the relative length change between these two MZI will be measured with a heterodyne modulation scheme in the kHz-range and the angle between two laser beams will be read out via quadrant photodiodes and a technique called differential wavefront sensing. These techniques have already been used for the LISA prede-cessor mission LISA Pathfinder and their sensitivity needs to be further improved to fulfill the requirements of the LISA mission. We describe the experiment and the characterization of the basic components. Measurements of the length and angular noise will be presented.

  9. KSC-99pp1367

    NASA Image and Video Library

    1999-11-29

    KENNEDY SPACE CENTER, FLA. -- Orbiter Endeavour waits in the Orbiter Processing Facility bay 2 for the closing of its payload bay doors. The Ku-band antenna (upper right) is still in the open position, outside the payload bay. Endeavour is expected to roll over to the Vehicle Assembly Building in three days for mating to the external tank and solid rocket boosters in high bay 1. Space Shuttle Endeavour is targeted for launch on mission STS-99 Jan. 13, 2000 at 1:11 p.m. EST. STS-99 is the Shuttle Radar Topography Mission, an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle

  10. KSC-99pp1368

    NASA Image and Video Library

    1999-11-01

    KENNEDY SPACE CENTER, FLA. -- Orbiter Endeavour waits in the Orbiter Processing Facility bay 2 for the closing of its payload bay doors. The Ku-band antenna (upper right) is now in its closed position inside the payload bay. Endeavour is expected to roll over to the Vehicle Assembly Building in three days for mating to the external tank and solid rocket boosters in high bay 1. Space Shuttle Endeavour is targeted for launch on mission STS-99 Jan. 13, 2000 at 1:11 p.m. EST. STS-99 is the Shuttle Radar Topography Mission, an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle

  11. Delta-DOR: The One-Nanoradian Navigation Measurement System of the Deep Space Network --- History, Architecture, and Componentry

    NASA Astrophysics Data System (ADS)

    Curkendall, D. W.; Border, J. S.

    2013-05-01

    Doppler and range data alone supported navigation for the earliest missions into deep space. Though extremely precise in line-of-sight coordinates, the navigation system built on these data had a weakness for determining the spacecraft declination component. To address this, the Deep Space Network (DSN) developed the capability for very long baseline interferometry measurements beginning in the late 1970s. Both the implementation of the interferometric system and the importance of such measurements to flight projects have evolved significantly over the past three decades. Innovations introduced through research and development programs have led to continuous improvements in performance. Today's system provides data approaching one-nanoradian accuracy with reliability of 98 percent. This article provides an overview of the development and use of interferometric tracking techniques in the DSN starting with the Viking era and continuing with a description of the current system and its planned use to support interplanetary cruise navigation of the Mars Science Laboratory spacecraft.

  12. Flight phasemeter on the Laser Ranging Interferometer on the GRACE Follow-On mission

    NASA Astrophysics Data System (ADS)

    Bachman, B.; de Vine, G.; Dickson, J.; Dubovitsky, S.; Liu, J.; Klipstein, W.; McKenzie, K.; Spero, R.; Sutton, A.; Ware, B.; Woodruff, C.

    2017-05-01

    As the first inter-spacecraft laser interferometer, the Laser Ranging Interferometer (LRI) on the GRACE Follow-On Mission will demonstrate interferometry technology relevant to the LISA mission. This paper focuses on the completed LRI Laser Ranging Processor (LRP), which includes heterodyne signal phase tracking at μ {{cycle/}}\\sqrt{{{Hz}}} precision, differential wavefront sensing, offset frequency phase locking and Pound-Drever-Hall laser stabilization. The LRI design has characteristics that are similar to those for LISA: 1064 nm NPRO laser source, science bandwidth in the mHz range, MHz-range intermediate frequency and Doppler shift, detected optical power of tens of picoWatts. Laser frequency stabilization has been demonstrated at a level below 30{{Hz/}}\\sqrt{{{Hz}}}, better than the LISA requirement of 300{{Hz/}}\\sqrt{{{Hz}}}. The LRP has completed all performance testing and environmental qualification and has been delivered to the GRACE Follow-On spacecraft. The LRI is poised to test the LISA techniques of tone-assisted time delay interferometry and arm-locking. GRACE Follow-On launches in 2017.

  13. The evaluation of phasemeter prototype performance for the space gravitational waves detection.

    PubMed

    Liu, He-Shan; Dong, Yu-Hui; Li, Yu-Qiong; Luo, Zi-Ren; Jin, Gang

    2014-02-01

    Heterodyne laser interferometry is considered as the most promising readout scheme for future space gravitational wave detection missions, in which the gravitational wave signals disguise as small phase variances within the heterodyne beat note. This makes the phasemeter, which extracts the phase information from the beat note, the key device to this system. In this paper, a prototype of phasemeter based on digital phase-locked loop technology is developed, and the major noise sources which may contribute to the noise spectra density are analyzed in detail. Two experiments are also carried out to evaluate the performance of the phasemeter prototype. The results show that the sensitivity is achieved 2π μrad/√Hz in the frequency range of 0.04 Hz-10 Hz. Due to the effect of thermal drift, the noise obviously increases with the frequencies down to 0.1 mHz.

  14. The evaluation of phasemeter prototype performance for the space gravitational waves detection

    NASA Astrophysics Data System (ADS)

    Liu, He-Shan; Dong, Yu-Hui; Li, Yu-Qiong; Luo, Zi-Ren; Jin, Gang

    2014-02-01

    Heterodyne laser interferometry is considered as the most promising readout scheme for future space gravitational wave detection missions, in which the gravitational wave signals disguise as small phase variances within the heterodyne beat note. This makes the phasemeter, which extracts the phase information from the beat note, the key device to this system. In this paper, a prototype of phasemeter based on digital phase-locked loop technology is developed, and the major noise sources which may contribute to the noise spectra density are analyzed in detail. Two experiments are also carried out to evaluate the performance of the phasemeter prototype. The results show that the sensitivity is achieved 2π μrad/√Hz in the frequency range of 0.04 Hz-10 Hz. Due to the effect of thermal drift, the noise obviously increases with the frequencies down to 0.1 mHz.

  15. KSC-99pp0925

    NASA Image and Video Library

    1999-07-21

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, a crane lowers the Shuttle Radar Topography Mission (SRTM) toward the opening of the payload bay canister below. The canister will then be moved to the Orbiter Processing Facility and placed in the bay of the orbiter Endeavour. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A

  16. KSC-99pp0923

    NASA Image and Video Library

    1999-07-21

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, the Shuttle Radar Topography Mission (SRTM) is lifted for its move to a payload bay canister on the floor. The canister will then be moved to the Orbiter Processing Facility and placed in the bay of the orbiter Endeavour. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A

  17. KSC-99pp0968

    NASA Image and Video Library

    1999-07-21

    KENNEDY SPACE CENTER, FLA. -- A payload canister containing the Shuttle Radar Topography Mission (SRTM), riding atop a payload transporter, is moved from the Space Station Processing Facility to Orbiter Processing Facility (OPF) bay 2. Once there, the SRTM, the primary payload on STS-99, will be installed into the payload bay of the orbiter Endeavour. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation. The SRTM hardware includes one radar antenna in the Shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A

  18. Coseismic Displacement Analysis of the 12 November 2017 MW 7.3 Sarpol-E Zahab (iran) Earthquake from SAR Interferometry, Burst Overlap Interferometry and Offset Tracking

    NASA Astrophysics Data System (ADS)

    Vajedian, Sanaz; Motagh, Mahdi

    2018-04-01

    Interferometric wide-swath mode of Sentinel-1, which is implemented by Terrain Observation by Progressive Scan (TOPS) technique, is the main mode of SAR data acquisition in this mission. It aims at global monitoring of large areas with enhanced revisit frequency of 6 days at the expense of reduced azimuth resolution, compared to classical ScanSAR mode. TOPS technique is equipped by steering the beam from backward to forward along the heading direction for each burst, in addition to the steering along the range direction, which is the only sweeping direction in standard ScanSAR mode. This leads to difficulty in measuring along-track displacement by applying the conventional method of multi-aperture interferometry (MAI), which exploits a double difference interferometry to estimate azimuth offset. There is a possibility to solve this issue by a technique called "Burst Overlap Interferometry" which focuses on the region of burst overlap. Taking advantage of large squint angle diversity of 1° in burst overlapped area leads to improve the accuracy of ground motion measurement especially in along-track direction. We investigate the advantage of SAR Interferometry (InSAR), burst overlap interferometry and offset tracking to investigate coseismic deformation and coseismic-induced landslide related to 12 November 2017 Mw 7.3 Sarpol-e Zahab earthquake in Iran.

  19. Interferometry

    NASA Technical Reports Server (NTRS)

    Ridgway, Stephen; Wilson, Robert W.; Begelman, Mitchell C.; Bender, Peter; Burke, Bernard F.; Cornwell, Tim; Drever, Ronald; Dyck, H. Melvin; Johnston, Kenneth J.; Kibblewhite, Edward

    1991-01-01

    The following recommended programs are reviewed: (1) infrared and optical interferometry (a ground-based and space programs); (2) compensation for the atmosphere with adaptive optics (a program for development and implementation of adaptive optics); and (3) gravitational waves (high frequency gravitational wave sources (LIGO), low frequency gravitational wave sources (LAGOS), a gravitational wave observatory program, laser gravitational wave observatory in space, and technology development during the 1990's). Prospects for international collaboration and related issues are also discussed.

  20. Light and/or atomic beams to detect ultraweak gravitational effects

    NASA Astrophysics Data System (ADS)

    Tartaglia, Angelo; Belfi, Jacopo; Beverini, Nicolò; Di Virgilio, Angela; Ortolan, Antonello; Porzio, Alberto; Ruggiero, Matteo Luca

    2014-06-01

    We shall review the opportunities lent by ring lasers and atomic beams interferometry in order to reveal gravitomagnetic effects on Earth. Both techniques are based on the asymmetric propagation of waves in the gravitational field of a rotating mass; actually the times of flight for co- or counter-rotating closed paths turn out to be different. After discussing properties and limitations of the two approaches we shall describe the proposed GINGER experiment which is being developed for the Gran Sasso National Laboratories in Italy. The experimental apparatus will consist of a three-dimensional array of square rings, 6m × 6m, that is planned to reach a sensitivity in the order of 1prad/√Hertz or better. This sensitivity would be one order of magnitude better than the best existing ring, which is the G-ring in Wettzell, Bavaria, and would allow for the terrestrial detection of the Lense-Thirring effect and possibly of deviations from General Relativity. The possibility of using either the ring laser approach or atomic interferometry in a space mission will also be considered. The technology problems are under experimental study using both the German G-ring and the smaller G-Pisa ring, located at the Gran Sasso.

  1. THE APPLICATION OF MULTIVIEW METHODS FOR HIGH-PRECISION ASTROMETRIC SPACE VLBI AT LOW FREQUENCIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dodson, R.; Rioja, M.; Imai, H.

    2013-06-15

    High-precision astrometric space very long baseline interferometry (S-VLBI) at the low end of the conventional frequency range, i.e., 20 cm, is a requirement for a number of high-priority science goals. These are headlined by obtaining trigonometric parallax distances to pulsars in pulsar-black hole pairs and OH masers anywhere in the Milky Way and the Magellanic Clouds. We propose a solution for the most difficult technical problems in S-VLBI by the MultiView approach where multiple sources, separated by several degrees on the sky, are observed simultaneously. We simulated a number of challenging S-VLBI configurations, with orbit errors up to 8 mmore » in size and with ionospheric atmospheres consistent with poor conditions. In these simulations we performed MultiView analysis to achieve the required science goals. This approach removes the need for beam switching requiring a Control Moment Gyro, and the space and ground infrastructure required for high-quality orbit reconstruction of a space-based radio telescope. This will dramatically reduce the complexity of S-VLBI missions which implement the phase-referencing technique.« less

  2. A Transportable Gravity Gradiometer Based on Atom Interferometry

    NASA Technical Reports Server (NTRS)

    Yu, Nan; Thompson, Robert J.; Kellogg, James R.; Aveline, David C.; Maleki, Lute; Kohel, James M.

    2010-01-01

    A transportable atom interferometer-based gravity gradiometer has been developed at JPL to carry out measurements of Earth's gravity field at ever finer spatial resolutions, and to facilitate high-resolution monitoring of temporal variations in the gravity field from ground- and flight-based platforms. Existing satellite-based gravity missions such as CHAMP and GRACE measure the gravity field via precise monitoring of the motion of the satellites; i.e. the satellites themselves function as test masses. JPL's quantum gravity gradiometer employs a quantum phase measurement technique, similar to that employed in atomic clocks, made possible by recent advances in laser cooling and manipulation of atoms. This measurement technique is based on atomwave interferometry, and individual laser-cooled atoms are used as drag-free test masses. The quantum gravity gradiometer employs two identical atom interferometers as precision accelerometers to measure the difference in gravitational acceleration between two points (Figure 1). By using the same lasers for the manipulation of atoms in both interferometers, the accelerometers have a common reference frame and non-inertial accelerations are effectively rejected as common mode noise in the differential measurement of the gravity gradient. As a result, the dual atom interferometer-based gravity gradiometer allows gravity measurements on a moving platform, while achieving the same long-term stability of the best atomic clocks. In the laboratory-based prototype (Figure 2), the cesium atoms used in each atom interferometer are initially collected and cooled in two separate magneto-optic traps (MOTs). Each MOT, consisting of three orthogonal pairs of counter-propagating laser beams centered on a quadrupole magnetic field, collects up to 10(exp 9) atoms. These atoms are then launched vertically as in an atom fountain by switching off the magnetic field and introducing a slight frequency shift between pairs of lasers to create a moving rest frame for the trapped atoms. While still in this moving-frame molasses, the laser frequencies are further detuned from the atomic resonance (while maintaining this relative frequency shift) to cool the atom cloud's temperature to 2 K or below, corresponding to an rms velocity of less than 2 cm/s. After launch, the cold atoms undergo further state and velocity selection to prepare for atom interferometry. The atom interferometers are then realized using laser-induced stimulated Raman transitions to perform the necessary manipulations of each atom, and the resulting interferometer phase is measured using laser-induced fluorescence for state-normalized detection. More than 20 laser beams with independent controls of frequency, phase, and intensity are required for this measurement sequence. This instrument can facilitate the study of Earth's gravitational field from surface and air vehicles, as well as from space by allowing gravity mapping from a low-cost, single spacecraft mission. In addition, the operation of atom interferometer-based instruments in space offers greater sensitivity than is possible in terrestrial instruments due to the much longer interrogation times available in the microgravity environment. A space-based quantum gravity gradiometer has the potential to achieve sensitivities similar to the GRACE mission at long spatial wavelengths, and will also have resolution similar to GOCE for measurement at shorter length scales.

  3. Physical and non-physical energy in scattered wave source-receiver interferometry.

    PubMed

    Meles, Giovanni Angelo; Curtis, Andrew

    2013-06-01

    Source-receiver interferometry allows Green's functions between sources and receivers to be estimated by means of convolution and cross-correlation of other wavefields. Source-receiver interferometry has been observed to work surprisingly well in practical applications when theoretical requirements (e.g., complete enclosing boundaries of other sources and receivers) are contravened: this paper contributes to explain why this may be true. Commonly used inter-receiver interferometry requires wavefields to be generated around specific stationary points in space which are controlled purely by medium heterogeneity and receiver locations. By contrast, application of source-receiver interferometry constructs at least kinematic information about physically scattered waves between a source and a receiver by cross-convolution of scattered waves propagating from and to any points on the boundary. This reduces the ambiguity in interpreting wavefields generated using source-receiver interferometry with only partial boundaries (as is standard in practical applications), as it allows spurious or non-physical energy in the constructed Green's function to be identified and ignored. Further, source-receiver interferometry (which includes a step of inter-receiver interferometry) turns all types of non-physical or spurious energy deriving from inter-receiver interferometry into what appears to be physical energy. This explains in part why source-receiver interferometry may perform relatively well compared to inter-receiver interferometry when constructing scattered wavefields.

  4. SIM Configuration Evolution

    NASA Technical Reports Server (NTRS)

    Aaron, Kim M.

    2000-01-01

    The Space Interferometry Mission (SIM) is a space-based 10 m baseline Michelson interferometer. Planned for launch in 2005 aboard a Delta III launch vehicle, or equivalent, its primary objective is to measure the positions of stars and other celestial objects with an unprecedented accuracy of 4 micro arc seconds. With such an instrument, tremendous advancement can be expected in our understanding of stellar and galactic dynamics. Using triangulation from opposite sides of the orbit around the sun (i.e. by using parallax) one can measure the distance to any observable object in our galaxy. By directly measuring the orbital wobble of nearby stars, the mass and orbit of planets can be determined over a wide range of parameters. The distribution of velocity within nearby galaxies will be measurable. Observations of these and other objects will improve the calibration of distance estimators by more than an order of magnitude. This will permit a much better determination of the Hubble Constant as well as improving our overall understanding of the evolution of the universe. SIM has undergone several transformations, especially over the past year and a half since the start of Phase A. During this phase of a project, it is desirable to perform system-level trade studies, so the substantial evolution of the design that has occurred is quite appropriate. Part of the trade-off process has addressed two major underlying architectures: SIM Classic; and Son of SIM. The difference between these two architectures is related to the overall arrangement of the optical elements and the associated metrology system. Several different configurations have been developed for each architecture. Each configuration is the result of design choices that are influenced by many competing considerations. Some of the more important aspects will be discussed. The Space Interferometry Mission has some extremely challenging goals: millikelvin thermal stability, nanometer stabilization of optics, picometer measurement of wavefront, and others. In order to meet these goals, a significant amount of technological development is required. Although there has been a program operating for about a decade developing technologies specifically to address the challenges of space-based interferometry, there still remains a tremendous effort to achieve the incredible accuracy required of SIM. The projected viability of some of these areas has influenced design choices during the evolution of the many configurations that have been developed. For instance, the perceived complexity of the IR laser metrology system used to measure and control the positions of key optical elements was the strongest discriminator between the two architectures, and led to a decision to select SOS rather than Classic in early 1998. More recently, an appreciation of the sensitivity to beam-walk within the SOS architecture is forcing a reconsideration of that decision. At the time of submission of this abstract, there is some hope that a full-aperture metrology system may alleviate this issue. In addition to describing the current configuration of SIM, the influence of a few selected areas on the evolution of the configuration will be discussed.

  5. A Conceptual Design for a Small Deployer Satellite

    NASA Astrophysics Data System (ADS)

    Zumbo, S.

    2002-01-01

    In the last few years, the space scientific and industrial communities have demonstrated a renewed interest for small missions based on new categories of space platforms: micro &nano satellites. The cost reduction w.r.t. larger satellite missions, the shorter time from concept to launch, the risk distribution and the possibility to use this kind of bus both for stand-alone projects and as complementary to larger programs, are key factors that make this new kind of technology suitable for a wide range of space related activities. In particular it is now possible to conceive new mission philosophy implying the realisation of micro satellite constellations, with S/C flying in close formation to form a network of distributed sensors either for near-real time telecommunication or Earth remote sensing and disaster monitoring systems or physics and astronomical researches for Earth-Sun dynamics and high energy radiation studies. At the same time micro satellite are becoming important test- beds for new technologies that will eventually be used on larger missions, with relevant spin-offs potentialities towards other industrial fields. The foreseen social and economical direct benefits, the reduced mission costs and the possibility even for a small skilled team to manage all the project, represent very attractive arguments for universities and research institutes to invest funds and human resources to get first order technical and theoretical skills in the field of micro satellite design, with important influences on the training programs of motivated students that are directly involved in all the project's phases. In consideration of these space market important new trends and of the academic benefits that could be guaranteed by undertaking a micro satellite mission project, basing on its long space activities heritage, University of Rome "La Sapienza" - Aerospace and Astronautics Department, with the support of the Italian Space Agency, Alenia Spazio and of important industrial partners, has started the development of a space mission, named DeSat, focused on a new highly innovative micro satellite bus for LEO, entirely designed by an integrated team of students and researchers. The first mission is scheduled to fly at the end of 2003 on a converted Russian ICBM. The paper is intended to present the main features of DeSat mission, its goals and the activities that have been done by students and researchers to achieve the micro satellite platform design. The principal payload of the entire system is represented by a recirculating ball screw boom whose mass reaches one third of the total mass budget. The goal of the mission is to demonstrate the validity of its design also for space applications, which may range from precise off platform positioning of devices and instruments to GPS interferometry, sensor measurements and robotics. The satellite geometry, when the boom is in deployed configuration, is so stretched that the name "deployable satellite" has come out naturally. The large deployment mechanism, compared to the small bus, has influenced the design of every satellite subsystem leading to innovative solutions in terms of design, materials, equipment and instruments.

  6. Accuracy assessment of TanDEM-X IDEM using airborne LiDAR on the area of Poland

    NASA Astrophysics Data System (ADS)

    Woroszkiewicz, Małgorzata; Ewiak, Ireneusz; Lulkowska, Paulina

    2017-06-01

    The TerraSAR-X add-on for Digital Elevation Measurement (TanDEM-X) mission launched in 2010 is another programme - after the Shuttle Radar Topography Mission (SRTM) in 2000 - that uses space-borne radar interferometry to build a global digital surface model. This article presents the accuracy assessment of the TanDEM-X intermediate Digital Elevation Model (IDEM) provided by the German Aerospace Center (DLR) under the project "Accuracy assessment of a Digital Elevation Model based on TanDEM-X data" for the southwestern territory of Poland. The study area included: open terrain, urban terrain and forested terrain. Based on a set of 17,498 reference points acquired by airborne laser scanning, the mean errors of average heights and standard deviations were calculated for areas with a terrain slope below 2 degrees, between 2 and 6 degrees and above 6 degrees. The absolute accuracy of the IDEM data for the analysed area, expressed as a root mean square error (Total RMSE), was 0.77 m.

  7. KSC-99pp1010

    NASA Image and Video Library

    1999-08-05

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, a radar antenna, part of the Shuttle Radar Topography Mission (SRTM), is stored in the payload bay of the orbiter Endeavour before door closure. SRTM is the primary payload on mission STS-99, scheduled to launch Sept. 16 at 8:47 a.m. EDT from Launch Pad 39A. A specially modified radar system, the SRTM will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware consists of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR

  8. KSC-99pp1009

    NASA Image and Video Library

    1999-08-05

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, a radar antenna, part of the Shuttle Radar Topography Mission (SRTM), is ready to be stored in the payload bay of the orbiter Endeavour before door closure. SRTM is the primary payload on mission STS-99, scheduled to launch Sept. 16 at 8:47 a.m. EDT from Launch Pad 39A. A specially modified radar system, the SRTM will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware consists of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR

  9. KSC-99pp1008

    NASA Image and Video Library

    1999-08-05

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, a radar antenna, part of the Shuttle Radar Topography Mission (SRTM), is nestled in the cargo bay of the orbiter Endeavour just before door closure. SRTM is the primary payload on mission STS-99, scheduled to launch Sept. 16 at 8:47 a.m. EDT from Launch Pad 39A. A specially modified radar system, the SRTM will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware consists of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR

  10. The Wide-Field Imaging Interferometry Testbed: Recent Progress

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.

    2010-01-01

    The Wide-Field Imaging Interferometry Testbed (WIIT) at NASA's Goddard Space Flight Center was designed to demonstrate the practicality and application of techniques for wide-field spatial-spectral ("double Fourier") interferometry. WIIT is an automated system, and it is now producing substantial amounts of high-quality data from its state-of-the-art operating environment, Goddard's Advanced Interferometry and Metrology Lab. In this paper, we discuss the characterization and operation of the testbed and present the most recent results. We also outline future research directions. A companion paper within this conference discusses the development of new wide-field double Fourier data analysis algorithms.

  11. Integrated optics applied to astronomical aperture synthesis III: simulation of components optimized for astronomical interferometry

    NASA Astrophysics Data System (ADS)

    Nabias, Laurent; Schanen, Isabelle; Berger, Jean-Philippe; Kern, Pierre; Malbet, Fabien; Benech, Pierre

    2018-04-01

    This paper, "Integrated optics applied to astronomical aperture synthesis III: simulation of components optimized for astronomical interferometry," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.

  12. Space Radar Image of Owens Valley, California

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a three-dimensional perspective view of Owens Valley, near the town of Bishop, California that was created by combining two spaceborne radar images using a technique known as interferometry. Visualizations like this one are helpful to scientists because they clarify the relationships of the different types of surfaces detected by the radar and the shapes of the topographic features such as mountains and valleys. The view is looking southeast along the eastern edge of Owens Valley. The White Mountains are in the center of the image, and the Inyo Mountains loom in the background. The high peaks of the White Mountains rise more than 3,000 meters (10,000 feet) above the valley floor. The runways of the Bishop airport are visible at the right edge of the image. The meandering course of the Owens River and its tributaries appear light blue on the valley floor. Blue areas in the image are smooth, yellow areas are rock outcrops, and brown areas near the mountains are deposits of boulders, gravel and sand known as alluvial fans. The image was constructed by overlaying a color composite radar image on top of a digital elevation map. The radar data were taken by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on board the space shuttle Endeavour in October 1994. The digital elevation map was produced using radar interferometry, a process in which radar data are acquired on different passes of the space shuttle. The two data passes are compared to obtain elevation information. The elevation data were derived from a 1,500-km-long (930-mile) digital topographic map processed at JPL. Radar image data are draped over the topography to provide the color with the following assignments: red is L-band vertically transmitted, vertically received; green is C-band vertically transmitted, vertically received; and blue is the ratio of C-band vertically transmitted, vertically received to L-band vertically transmitted, vertically received. This image is centered near 37.4 degrees north latitude and 118.3 degrees west longitude. No vertical exaggeration factor has been applied to the data. SIR-C/X-SAR, a joint mission of the German, Italian, and the United States space agencies, is part of NASA's Mission to Planet Earth.

  13. Multi-link laser interferometry architecture for interspacecraft displacement metrology

    NASA Astrophysics Data System (ADS)

    Francis, Samuel P.; Lam, Timothy T.-Y.; McClelland, David E.; Shaddock, Daniel A.

    2018-03-01

    Targeting a future Gravity Recovery and Climate Experiment (GRACE) mission, we present a new laser interferometry architecture that can be used to recover the displacement between two spacecraft from multiple interspacecraft measurements. We show it is possible to recover the displacement between the spacecraft centers of mass in post-processing by forming linear combinations of multiple, spatially offset, interspacecraft measurements. By canceling measurement error due to angular misalignment of the spacecraft, we remove the need for precise placement or alignment of the interferometer, potentially simplifying spacecraft integration. To realize this multi-link architecture, we propose an all-fiber interferometer, removing the need for any ultrastable optical components such as the GRACE Follow-On mission's triple mirror assembly. Using digitally enhanced heterodyne interferometry, the number of links is readily scalable, adding redundancy to our measurement. We present the concept, an example multi-link implementation and the signal processing required to recover the center of mass displacement from multiple link measurements. Finally, in a simulation, we analyze the limiting noise sources in a 9 link interferometer and ultimately show we can recover the 80 {nm}/√{ {Hz}} displacement sensitivity required by the GRACE Follow-On laser ranging interferometer.

  14. Telecommunications and data acquisition support for the Pioneer Venus Project: Pioneers 12 and 13, prelaunch through March 1984

    NASA Technical Reports Server (NTRS)

    Miller, R. B.; Ryan, R. E.; Renzetti, N. A.; Traxler, M. R.

    1984-01-01

    The support provided by the Telecommunications and Data Acquisition organization of the Jet Propulsion Laboratory (JPL) to the Pioneer Venus missions is described. The missions were the responsibility of the Ames Research Center (ARC). The Pioneer 13 mission and its spacecraft design presented one of the greatest challenges to the Deep Space Network (DSN) in the implementation and operation of new capabilities. The four probes that were to enter the atmosphere of Venus were turned on shortly before arrival at Venus, and the DSN had to acquire each of these probes in order to recover the telemetry being transmitted. Furthermore, a science experiment involving these probes descending through the atmosphere required a completed new data type to be generated at the ground stations. This new data type is known as the differential very long baseline interferometry. Discussions between ARC and JPL of the implementation requirements involved trade-offs in spacecraft design and led to a very successful return of science data. Specific implementation and operational techniques are discussed, not only for the prime mission, but also for the extended support to the Pioneer 12 spacecraft (in orbit around Venus) with its science instruments including that for radar observations of the planet.

  15. Formations Near the Libration Points: Design Strategies Using Natural and Non-Natural Arcs

    NASA Technical Reports Server (NTRS)

    Howell, K. C.; Marchand, B. G.

    2004-01-01

    Space based observatory and interferometry missions, such as Terrestrial Planet Finder (TPF), Stellar Imager, and MAXIM, have sparked great interest in multi-spacecraft formation flight in the vicinity of the Sun-Earth/Moon (SEM) libration points. The initial phase of this research considered the formation keeping problem from the perspective of continuous control as applied to non-natural formations. In the present study, closer inspection of the flow, corresponding to the stable and center manifolds near the reference orbit, reveals some interesting natural relative motions as well as some discrete control strategies for deployment. A hybrid control strategy is also employed that combines both the natural formation dynamics with non-natural motions via input feedback linearization techniques.

  16. Probing the Invisible Universe: The Case for Far-IR/Submillimeter Interferometry

    NASA Technical Reports Server (NTRS)

    Leisawitz, D.; Armstrong, T.; Benford, D. J.; Blain, A.; Borne, K.; Danchi, W.; Evans, N.; Gardner, J.; Gezari, D.; Harwit, M.

    2004-01-01

    The question "How did we get here and what will the future bring?"captures the human imagination and the attention of the National Academy of Science's Astronomy and Astrophysics Survey Committee (AASC). Fulfillment of this fundamental goal requires astronomers to have sensitive, high angular and spectral resolution observations in the far-infrared/submillimeter (far- IR/sub-mm) spectral region. With half the luminosity of the universe and vital information about galaxy, star and planet formation, observations in this spectral region require capabilities similar to those currently available or planned at shorter wavelengths. In this paper we summarize the scientific motivation, some mission concepts and technology requirements for far-IR/sub-mm space interferometers that can be developed in the 2010-2020 timeframe.

  17. Probing The Invisible Universe: The Case for Far-IR/Submillimeter Interferometry

    NASA Technical Reports Server (NTRS)

    Leisawitz, D.; Armstrong, T; Benford, D.; Blain, A.; Borne, K.; Danchi, W.; Evans, N.; Gardner, J.; Gezari, D.; Harwit, M.

    2003-01-01

    The question "How did we get here and what will the future bring? captures the human imagination and the attention of the National Academy of Science s Astronomy and Astrophysics Survey Committee (AASC). Fulfillment of this fundamental goal requires astronomers to have sensitive, high angular and spectral resolution observations in the far-infrared submillimeter (far-IR-sub-mm) spectral region. With half the luminosity of the universe and vital information about galaxy, star and planet formation, observations in this spectral region require capabilities similar to those currently available or planned at shorter wavelengths. The scientific motivation, some mission concepts and technology requirements for far-IR-sub-mm space interferometers that can be developed in the 2010-2020 timeframe are summarized.

  18. Two-color holography concept (T-CHI)

    NASA Technical Reports Server (NTRS)

    Vikram, C. S.; Caulfield, H. J.; Workman, G. L.; Trolinger, J. D.; Wood, C. P.; Clark, R. L.; Kathman, A. D.; Ruggiero, R. M.

    1990-01-01

    The Material Processing in the Space Program of NASA-MSFC was active in developing numerous optical techniques for the characterization of fluids in the vicinity of various materials during crystallization and/or solidification. Two-color holographic interferometry demonstrates that temperature and concentration separation in transparent (T-CHI) model systems is possible. The experiments were performed for particular (succinonitrile) systems. Several solutions are possible in Microgravity Sciences and Applications (MSA) experiments on future Shuttle missions. The theory of the T-CHI concept is evaluated. Although particular cases are used for explanations, the concepts developed will be universal. A breadboard system design is also presented for ultimate fabrication and testing of theoretical findings. New developments in holography involving optical fibers and diode lasers are also incorporated.

  19. Nulling Stabilization in the Presence of Perturbation

    NASA Astrophysics Data System (ADS)

    Houairi, K.; Cassaing, F.; Le Duigou, J. M.; Barillot, M.; Coudé du Foresto, V.; Hénault, F.; Jacquinod, S.; Ollivier, M.; Reess, J.-M.; Sorrente, B.

    2007-07-01

    Nulling interferometry is one of the most promising methods to study habitable extrasolar systems. In this context, several projects have been proposed such as ALADDIN on ground or DARWIN and PEGASE in space. A first step towards these missions will be performed with a laboratory breadboard, named PERSEE, built by a consortium including CNES, IAS, LESIA, OCA, ONERA and TAS. Its main goals are the demonstration of a polychromatic null with a 10-4 rejection rate and a 10-5 stability despite the introduction of realistic perturbations, the study of the interfaces with the formation-flying spacecrafts and the joint operation of the cophasing system with the nuller. The broadboard integration should end in 2009, then PERSEE will be open to proposals from the scientific community.

  20. Cold Atom Optics on Ground and in Space

    NASA Astrophysics Data System (ADS)

    Rasel, E. M.

    Microgravity is the ultimate laboratory environment for experiments in fundamental physics based on cold atoms. The talk will give a survey of recent activities on atomic quantum sensors and atom lasers. Inertial atomic quantum sensors are a promising and complementary technique for experiments in fundamental physics. Pioneering experiments at Yale [1,2] and Stanford [3] displayed recently the fascinating potential of matter-wave interferometers for precision measurements. The talk will present the status of a transportable matter-wave sensor under development at the Institut für Quantenoptik in Hannover: CASI. CASI stands for Cold Atom Sagnac Interferometer. The use of cold atoms makes it possible to realise compact devices with sensitivities competitive with classical state-of-the-art sensors. CASI's projected sensitivity is about 10-9 rad/ssurd Hz at the projection noise limit. The heart of our set-up will be a 15cm-long Mach-Zehnder interferometer formed by coherently splitting the atoms with Raman-type interactions. CASI is designed as a movable device, that it can be compared with other matter-wave sensors such as the cold caesium atom gyroscope at the BNM-SYRTE in Paris [4]. CASI is intimately connected with HYPER, an European initiative to send four atom interferometers in space hosted on a drag-free satellite. Main emphasis of the mission is placed on the mapping of the Earth's Lense-Thirring effect. Tests of the Equivalence Principle is under consideration as an alternative goal of high scientific value. HYPER was selected three years ago by the European Space Agency (ESA) as candidate for a future small-satellite mission within the next 10 to 15 years and is supported with detailed feasibility studies [5]. The latest status of the mission will be given. [1] T.L. Gustavson, A. Landragin, M.A, Kasevich, Rotation sensing with a dual atom-interferometer Sagnac gyroscope, Class. Quantum Grav. 17, 2385-2398 (2000) [2] J.M. McGuirk, G.T. Foster, J.B. Fixler, M.J. Snadden, M.A. Kasevich, Sensitive absolute-gravity gradiometry using atom interferometry, Phys. Rev. A 65, 033608-1 (2002) [3] A. Peters, K.Y. Chung, S. Chu, High-precision gravity measurements using atom interferometry, Metrologia 38, 25-61 (2001) [4] F. Yver-Leduc, P. Cheinet, J. Fils, A. Clairon, N. Dimarcq, D. Holleville, P. Bouyer, and A. Landragin. A. J. Opt. B : Quant. Semiclass. Opt. 5, S136 (2003) [5] http://sci.esa.int/home/hyper/index.cfm

  1. NASA Laboratory Astrophysics Workshop 2006 Introductory Remarks

    NASA Technical Reports Server (NTRS)

    Hasan, Hashima

    2006-01-01

    NASA Laboratory Astrophysics Workshop 2006, is the fourth in a series of workshops held at four year intervals, to assess the laboratory needs of NASA's astrophysics missions - past, current and future. Investigators who need laboratory data to interpret their observations from space missions, theorists and modelers, experimentalists who produce the data, and scientists who compile databases have an opportunity to exchange ideas and understand each other's needs and limitations. The multi-wavelength character of these workshops allows cross-fertilization of ideas, raises awareness in the scientific community of the rapid advances in other fields, and the challenges it faces in prioritizing its laboratory needs in a tight budget environment. Currently, we are in the golden age of Space Astronomy, with three of NASA s Great Observatories, Hubble Space Telescope (HST), Chandra X-Ray Observatory (CXO), and Spitzer Space Telescope (SST), in operation and providing astronomers and opportunity to perform synergistic observations. In addition, the Far Ultraviolet Spectroscopic Explorer (FUSE), XMM-Newton, HETE-2, Galaxy Evolution Explorer (GALEX), INTEGRAL and Wilkinson Microwave Anisotropy Probe (WMAP), are operating in an extended phase, while Swift and Suzaku are in their prime phase of operations. The wealth of data from these missions is stretching the Laboratory Astrophysics program to its limits. Missions in the future, which also need such data include the James Webb Space Telescope (JWST), Space Interferometry Mission (SIM), Constellation-X (Con-X), Herschel, and Planck. The interpretation of spectroscopic data from these missions requires knowledge of atomic and molecular parameters such as transition probabilities, f-values, oscillator strengths, excitation cross sections, collision strengths, which have either to be measured in the laboratory by simulating space plasma and interactions therein, or by theoretical calculations and modeling. Once the laboratory data are obtained, a key step to making them available to the observer is the creation and maintenance of critically compiled databases. Other areas of study, that are important for understanding planet formation, and for detection of molecules that are indicators of life, are also supported by the Laboratory Astrophysics program. Some examples are: studies of ices and dust grains in a space environment; nature and evolution of interstellar carbon-rich dust; and polycyclic aromatic hydrocarbons. In addition, the program provides an opportunity for the investigation of novel ideas, such as simulating radiative shock instabilities in plasmas, in order to understand jets observed in space. A snapshot of the currently funded program, mission needs, and relevance of laboratory data to interpreting observations, will be obtained at this workshop through invited and contributed talks and poster papers. These will form the basis for discussions in splinter groups. The Science Organization Committee will integrate the results of the discussions into a coherent White Paper, which will provide guidance to NASA in structuring the Laboratory Astrophysics program in subsequent years, and also to the scientific community in submitting research proposals to NASA for funding.

  2. LISA pathfinder optical interferometry

    NASA Astrophysics Data System (ADS)

    Braxmaier, Claus; Heinzel, Gerhard; Middleton, Kevin F.; Caldwell, Martin E.; Konrad, W.; Stockburger, H.; Lucarelli, S.; te Plate, Maurice B.; Wand, V.; Garcia, A. C.; Draaisma, F.; Pijnenburg, J.; Robertson, D. I.; Killow, Christian; Ward, Harry; Danzmann, Karsten; Johann, Ulrich A.

    2004-09-01

    The LISA Technology Package (LTP) aboard of LISA pathfinder mission is dedicated to demonstrate and verify key technologies for LISA, in particular drag free control, ultra-precise laser interferometry and gravitational sensor. Two inertial sensor, the optical interferometry in between combined with the dimensional stable Glass ceramic Zerodur structure are setting up the LTP. The validation of drag free operation of the spacecraft is planned by measuring laser interferometrically the relative displacement and tilt between two test masses (and the optical bench) with a noise levels of 10pm/√Hz and 10 nrad/√Hz between 3mHz and 30mHz. This performance and additionally overall environmental tests was currently verified on EM level. The OB structure is able to support two inertial sensors (≍17kg each) and to withstand 25 g design loads as well as 0...40°C temperature range. Optical functionality was verified successfully after environmental tests. The engineering model development and manufacturing of the optical bench and interferometry hardware and their verification tests will be presented.

  3. Integrated Modeling Tools for Thermal Analysis and Applications

    NASA Technical Reports Server (NTRS)

    Milman, Mark H.; Needels, Laura; Papalexandris, Miltiadis

    1999-01-01

    Integrated modeling of spacecraft systems is a rapidly evolving area in which multidisciplinary models are developed to design and analyze spacecraft configurations. These models are especially important in the early design stages where rapid trades between subsystems can substantially impact design decisions. Integrated modeling is one of the cornerstones of two of NASA's planned missions in the Origins Program -- the Next Generation Space Telescope (NGST) and the Space Interferometry Mission (SIM). Common modeling tools for control design and opto-mechanical analysis have recently emerged and are becoming increasingly widely used. A discipline that has been somewhat less integrated, but is nevertheless of critical concern for high precision optical instruments, is thermal analysis and design. A major factor contributing to this mild estrangement is that the modeling philosophies and objectives for structural and thermal systems typically do not coincide. Consequently the tools that are used in these discplines suffer a degree of incompatibility, each having developed along their own evolutionary path. Although standard thermal tools have worked relatively well in the past. integration with other disciplines requires revisiting modeling assumptions and solution methods. Over the past several years we have been developing a MATLAB based integrated modeling tool called IMOS (Integrated Modeling of Optical Systems) which integrates many aspects of structural, optical, control and dynamical analysis disciplines. Recent efforts have included developing a thermal modeling and analysis capability, which is the subject of this article. Currently, the IMOS thermal suite contains steady state and transient heat equation solvers, and the ability to set up the linear conduction network from an IMOS finite element model. The IMOS code generates linear conduction elements associated with plates and beams/rods of the thermal network directly from the finite element structural model. Conductances for temperature varying materials are accommodated. This capability both streamlines the process of developing the thermal model from the finite element model, and also makes the structural and thermal models compatible in the sense that each structural node is associated with a thermal node. This is particularly useful when the purpose of the analysis is to predict structural deformations due to thermal loads. The steady state solver uses a restricted step size Newton method, and the transient solver is an adaptive step size implicit method applicable to general differential algebraic systems. Temperature dependent conductances and capacitances are accommodated by the solvers. In addition to discussing the modeling and solution methods. applications where the thermal modeling is "in the loop" with sensitivity analysis, optimization and optical performance drawn from our experiences with the Space Interferometry Mission (SIM), and the Next Generation Space Telescope (NGST) are presented.

  4. Recent Experiments Conducted with the Wide-Field Imaging Interferometry Testbed (WIIT)

    NASA Technical Reports Server (NTRS)

    Leisawitz, David T.; Juanola-Parramon, Roser; Bolcar, Matthew; Iacchetta, Alexander S.; Maher, Stephen F.; Rinehart, Stephen A.

    2016-01-01

    The Wide-field Imaging Interferometry Testbed (WIIT) was developed at NASA's Goddard Space Flight Center to demonstrate and explore the practical limitations inherent in wide field-of-view double Fourier (spatio-spectral) interferometry. The testbed delivers high-quality interferometric data and is capable of observing spatially and spectrally complex hyperspectral test scenes. Although WIIT operates at visible wavelengths, by design the data are representative of those from a space-based far-infrared observatory. We used WIIT to observe a calibrated, independently characterized test scene of modest spatial and spectral complexity, and an astronomically realistic test scene of much greater spatial and spectral complexity. This paper describes the experimental setup, summarizes the performance of the testbed, and presents representative data.

  5. Studying Star and Planet Formation with the Submillimeter Probe of the Evolution of Cosmic Structure

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.

    2005-01-01

    The Submillimeter Probe of the Evolution of Cosmic Structure (SPECS) is a far- infrared/submillimeter (40-640 micrometers) spaceborne interferometry concept, studied through the NASA Vision Missions program. SPECS is envisioned as a 1-km baseline Michelson interferometer with two 4- meter collecting mirrors. To maximize science return, SPECS will have three operational modes: a photometric imaging mode, an intermediate spectral resolution mode (R approximately equal to 1000-3000), and a high spectral resolution mode (R approximately equal to 3 x 10(exp 5)). The first two of these modes will provide information on all sources within a 1 arcminute field-of-view (FOV), while the the third will include sources in a small (approximately equal to 5 arcsec) FOV. With this design, SPECS will have angular resolution comparable to the Hubble Space Telescope (50 mas) and sensitivity more than two orders of magnitude better than Spitzer (5sigma in 10ks of approximately equal to 3 x 10(exp 7) Jy Hz). We present here some of the results of the recently-completed Vision Mission Study for SPECS, and discuss the application of this mission to future studies of star and planet formation.

  6. Comparative analysis of recent satellite missions for multi-temporal SAR interferometry

    NASA Astrophysics Data System (ADS)

    Bovenga, Fabio; Refice, Alberto; Belmonte, Antonella; Pasquariello, Guido

    2016-10-01

    Multi-temporal InSAR (MTI) applications pose challenges related to the availability of coherent scattering from the ground surface, the complexity of the ground deformations, the atmospheric artifacts, the visibility problems related to the ground elevation. Nowadays, several satellite missions are available providing interferometric SAR data at different wavelengths, spatial resolutions, and revisit time. A new interesting opportunity is provided by Sentinel-1 mission, which has a spatial resolution comparable to previous ESA C-band missions, and revisit times reduced to up to 6 days. It is envisioned that, by offering regular, global-scale coverage, improved temporal resolution and freely available imagery, Sentinel-1 will guarantee an increasing use of MTI for ground displacement investigations. According to these different SAR space-borne missions, the present work discusses current and future opportunities of MTI applications to ground instability monitoring. Issues related to coherent target detection and mean velocity precision will be addressed through a simple theoretical model assuming backscattering mechanisms related to point scatterers. The paper also presents an example of multi-sensor ground instability investigation over the site of Marina di Lesina, Southern Italy, a village lying over a gypsum diapir, where a hydration process, involving the underlying anhydride, causes a smooth uplift pattern affecting the entire village area, and the formation of scattered sinkholes. More than 20 years of MTI SAR data have been used, coming from both legacy ERS and ENVISAT missions, and last-generation Radarsat-2, COSMO-SkyMed, and Sentinel-1A sensors.

  7. TerraSAR-X mission

    NASA Astrophysics Data System (ADS)

    Werninghaus, Rolf

    2004-01-01

    The TerraSAR-X is a German national SAR- satellite system for scientific and commercial applications. It is the continuation of the scientifically and technologically successful radar missions X-SAR (1994) and SRTM (2000) and will bring the national technology developments DESA and TOPAS into operational use. The space segment of TerraSAR-X is an advanced high-resolution X-Band radar satellite. The system design is based on a sound market analysis performed by Infoterra. The TerraSAR-X features an advanced high-resolution X-Band Synthetic Aperture Radar based on the active phased array technology which allows the operation in Spotlight-, Stripmap- and ScanSAR Mode with various polarizations. It combines the ability to acquire high resolution images for detailed analysis as well as wide swath images for overview applications. In addition, experimental modes like the Dual Receive Antenna Mode allow for full-polarimetric imaging as well as along track interferometry, i.e. moving target identification. The Ground Segment is optimized for flexible response to (scientific and commercial) User requests and fast image product turn-around times. The TerraSAR-X mission will serve two main goals. The first goal is to provide the strongly supportive scientific community with multi-mode X-Band SAR data. The broad spectrum of scientific application areas include Hydrology, Geology, Climatology, Oceanography, Environmental Monitoring and Disaster Monitoring as well as Cartography (DEM Generation) and Interferometry. The second goal is the establishment of a commercial EO-market in Europe which is driven by Infoterra. The commercial goal is the development of a sustainable EO-business so that the e.g. follow-on systems can be completely financed by industry from the profit. Due to its commercial potential, the TerraSAR-X project will be implemented based on a public-private partnership with the Astrium GmbH. This paper will describe first the mission objectives as well as the project organisation and major milestones. Then an overview on the satellite as well as the SAR instrument is given followed by a description of the system design. Finally the principle layout of the TerraSAR-X Ground Segment and some remarks on the European context are presented.

  8. Forest biomass change estimated from height change in interferometric SAR height models.

    PubMed

    Solberg, Svein; Næsset, Erik; Gobakken, Terje; Bollandsås, Ole-Martin

    2014-12-01

    There is a need for new satellite remote sensing methods for monitoring tropical forest carbon stocks. Advanced RADAR instruments on board satellites can contribute with novel methods. RADARs can see through clouds, and furthermore, by applying stereo RADAR imaging we can measure forest height and its changes. Such height changes are related to carbon stock changes in the biomass. We here apply data from the current Tandem-X satellite mission, where two RADAR equipped satellites go in close formation providing stereo imaging. We combine that with similar data acquired with one of the space shuttles in the year 2000, i.e. the so-called SRTM mission. We derive height information from a RADAR image pair using a method called interferometry. We demonstrate an approach for REDD based on interferometry data from a boreal forest in Norway. We fitted a model to the data where above-ground biomass in the forest increases with 15 t/ha for every m increase of the height of the RADAR echo. When the RADAR echo is at the ground the estimated biomass is zero, and when it is 20 m above the ground the estimated above-ground biomass is 300 t/ha. Using this model we obtained fairly accurate estimates of biomass changes from 2000 to 2011. For 200 m 2 plots we obtained an accuracy of 65 t/ha, which corresponds to 50% of the mean above-ground biomass value. We also demonstrate that this method can be applied without having accurate terrain heights and without having former in-situ biomass data, both of which are generally lacking in tropical countries. The gain in accuracy was marginal when we included such data in the estimation. Finally, we demonstrate that logging and other biomass changes can be accurately mapped. A biomass change map based on interferometry corresponded well to a very accurate map derived from repeated scanning with airborne laser. Satellite based, stereo imaging with advanced RADAR instruments appears to be a promising method for REDD. Interferometric processing of the RADAR data provides maps of forest height changes from which we can estimate temporal changes in biomass and carbon.

  9. SWOT Oceanography and Hydrology Data Product Simulators

    NASA Technical Reports Server (NTRS)

    Peral, Eva; Rodriguez, Ernesto; Fernandez, Daniel Esteban; Johnson, Michael P.; Blumstein, Denis

    2013-01-01

    The proposed Surface Water and Ocean Topography (SWOT) mission would demonstrate a new measurement technique using radar interferometry to obtain wide-swath measurements of water elevation at high resolution over ocean and land, addressing the needs of both the hydrology and oceanography science communities. To accurately evaluate the performance of the proposed SWOT mission, we have developed several data product simulators at different levels of fidelity and complexity.

  10. KSC-99pp1369

    NASA Image and Video Library

    1999-11-29

    KENNEDY SPACE CENTER, FLA. -- Viewed end to end, the interior of orbiter Endeavour's payload bay can be seen with its cargo (center and right) in place, before the close of its payload bay doors. The Ku-band antenna (lower right) is now in its closed position inside the payload bay. Endeavour is expected to roll over to the Vehicle Assembly Building in three days for mating to the external tank and solid rocket boosters in high bay 1. Space Shuttle Endeavour is targeted for launch on mission STS-99 Jan. 13, 2000 at 1:11 p.m. EST. STS-99 is the Shuttle Radar Topography Mission, an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle

  11. CURIE: Cubesat Radio Interferometry Experiment

    NASA Astrophysics Data System (ADS)

    Sundkvist, D. J.; Saint-Hilaire, P.; Bain, H. M.; Bale, S. D.; Bonnell, J. W.; Hurford, G. J.; Maruca, B.; Martinez Oliveros, J. C.; Pulupa, M.

    2016-12-01

    The CUbesat Radio Interferometry Experiment (CURIE) is a proposed two-element radio interferometer, based on proven and developed digital radio receivers and designed to fit within a Cubesat platform. CURIE will launch as a 6U Cubesat and then separate into two 3U Cubesats once in orbit. CURIE measures radio waves from 0.1-19MHz, which must be measured from space, as those frequencies fall below the cutoff imposed by Earth's ionosphere. The principal science objective for CURIE is to use radio interferometry to study radio burst emissions from solar eruptive events such as flares and coronal mass ejections (CMEs) in the inner heliosphere, providing observations important for our understanding of the heliospheric space weather environment. The influence of space weather can be felt at Earth and other planets, as radiation levels increase and lead to auroral activity and geomagnetic effects. CURIE will be able to determine the location and size of radio burst source regions and then to track their movement outward from the Sun. In addition to the primary objective CURIE will measure the gradients of the local ionospheric density and electron temperature on the spatial scale of a few kilometers, as well as create an improved map of the radio sky at these unexplored frequencies. A space based radio interferometry observatory has long been envisioned, in orbit around the Earth or the Moon, or on the far side of the Moon. Beyond its important science objectives, CURIE will prove that the concept of a dedicated space-based interferometer can be realized by using relatively cheap Cubesats. CURIE will therefore not only provide new important science results but also serve as a pathfinder in the development of new space-based radio observation techniques for helio- and astro-physics.

  12. Simulation-based evaluation of a cold atom interferometry gradiometer concept for gravity field recovery

    NASA Astrophysics Data System (ADS)

    Douch, Karim; Wu, Hu; Schubert, Christian; Müller, Jürgen; Pereira dos Santos, Franck

    2018-03-01

    The prospects of future satellite gravimetry missions to sustain a continuous and improved observation of the gravitational field have stimulated studies of new concepts of space inertial sensors with potentially improved precision and stability. This is in particular the case for cold-atom interferometry (CAI) gradiometry which is the object of this paper. The performance of a specific CAI gradiometer design is studied here in terms of quality of the recovered gravity field through a closed-loop numerical simulation of the measurement and processing workflow. First we show that mapping the time-variable field on a monthly basis would require a noise level below 5mE /√{Hz } . The mission scenarios are therefore focused on the static field, like GOCE. Second, the stringent requirement on the angular velocity of a one-arm gradiometer, which must not exceed 10-6 rad/s, leads to two possible modes of operation of the CAI gradiometer: the nadir and the quasi-inertial mode. In the nadir mode, which corresponds to the usual Earth-pointing satellite attitude, only the gradient Vyy , along the cross-track direction, is measured. In the quasi-inertial mode, the satellite attitude is approximately constant in the inertial reference frame and the 3 diagonal gradients Vxx,Vyy and Vzz are measured. Both modes are successively simulated for a 239 km altitude orbit and the error on the recovered gravity models eventually compared to GOCE solutions. We conclude that for the specific CAI gradiometer design assumed in this paper, only the quasi-inertial mode scenario would be able to significantly outperform GOCE results at the cost of technically challenging requirements on the orbit and attitude control.

  13. Two color holographic interferometry for microgravity application

    NASA Technical Reports Server (NTRS)

    Trolinger, James D.

    1993-01-01

    Holographic interferometry is a primary candidate for the measurement of temperature and concentration in various crystal growth experiments destined for space. The method measures refractive index changes in the experiment test cell. A refractive index change can be caused by concentration changes, temperature changes, or a combination of temperature and concentration changes. If the refractive index changes are caused by temperature and concentration changes occurring simultaneously in the experiment test cell, the contributions by the two effects cannot be separated by conventional measurement methods. By using two wavelengths, two independent interferograms can be produced from the reconstruction of the hologram. The two interferograms will be different due to dispersion properties of fluid materials. These differences provide the additional information that allows the separation of simultaneously occurring temperature and concentration gradients. There is no other technique available that can provide this type of information. The primary objectives of this effort are to experimentally verify the mathematical theory of two color holographic interferometry and to determine the practical value of this technique for space application. To achieve these objectives, the accuracy and sensitivity of the technique must be determined for geometry's and materials that are relevant to the Materials Processing in the Space program of NASA. This will be achieved through the use of a specially designed two-color holographic interferometry breadboard optical system. In addition to experiments to achieve the primary goals, the breadboard will also provide inputs to the design of an optimum space flight system.

  14. Stellar Interferometer Technology Experiment (SITE)

    NASA Technical Reports Server (NTRS)

    Crawley, Edward F.; Miller, David; Laskin, Robert; Shao, Michael

    1995-01-01

    The MIT Space Engineering Research Center and the Jet Propulsion Laboratory stand ready to advance science sensor technology for discrete-aperture astronomical instruments such as space-based optical interferometers. The objective of the Stellar Interferometer Technology Experiment (SITE) is to demonstrate system-level functionality of a space-based stellar interferometer through the use of enabling and enhancing Controlled-Structures Technologies (CST). SITE mounts to the Mission Peculiar Experiment Support System inside the Shuttle payload bay. Starlight, entering through two apertures, is steered to a combining plate where it is interferred. Interference requires 27 nanometer pathlength (phasing) and 0.29 archsecond wavefront-tilt (pointing) control. The resulting 15 milli-archsecond angular resolution exceeds that of current earth-orbiting telescopes while maintaining low cost by exploiting active optics and structural control technologies. With these technologies, unforeseen and time-varying disturbances can be rejected while relaxing reliance on ground alignment and calibration. SITE will reduce the risk and cost of advanced optical space systems by validating critical technologies in their operational environment. Moreover, these technologies are directly applicable to commercially driven applications such as precision matching, optical scanning, and vibration and noise control systems for the aerospace, medical, and automotive sectors. The SITE team consists of experienced university, government, and industry researchers, scientists, and engineers with extensive expertise in optical interferometry, nano-precision opto-mechanical control and spaceflight experimentation. The experience exists and the technology is mature. SITE will validate these technologies on a functioning interferometer science sensor in order to confirm definitely their readiness to be baselined for future science missions.

  15. KSC-99pp0924

    NASA Image and Video Library

    1999-07-21

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, the Shuttle Radar Topography Mission (SRTM) clears the railing on the right as a crane moves it toward the open payload bay canister in the background (left). The canister will then be moved to the Orbiter Processing Facility and placed in the bay of the orbiter Endeavour. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A

  16. Observational astrophysics.

    NASA Astrophysics Data System (ADS)

    Léna, P.; Lebrun, F.; Mignard, F.

    This book is the 2nd edition of an English translation published in 1988 (45.003.105) of the French original "Astrophysique: Méthodes physiques de l'observation" published in 1986 (42.003.048). Written specifically for physicists and graduate students in astronomy, this textbook focuses on astronomical observation and on the basic physical principles that astronomers use to conceive, build and exploit their instruments at their ultimate limits in sensitivity or resolution. This second edition has been entirely restructured and almost doubled in size, in order to improve its clarity and to account for the great progress achieved in the last 15 years. It deals with ground-based and space-based astronomy and their respective fields. It presents the new generation of giant ground-based telescopes, with the new methods of optical interferometry and adaptive optics, and also the ambitious concepts behind planned space missions for the next decades. Avoiding particulars, it covers the whole of the electromagnetic spectrum and touches upon the "new astronomies" becoming possible with gravitational waves and neutrinos.

  17. 2006 NASA Range Safety Annual Report

    NASA Technical Reports Server (NTRS)

    TenHaken, Ron; Daniels, B.; Becker, M.; Barnes, Zack; Donovan, Shawn; Manley, Brenda

    2007-01-01

    Throughout 2006, Range Safety was involved in a number of exciting and challenging activities and events, from developing, implementing, and supporting Range Safety policies and procedures-such as the Space Shuttle Launch and Landing Plans, the Range Safety Variance Process, and the Expendable Launch Vehicle Safety Program procedures-to evaluating new technologies. Range Safety training development is almost complete with the last course scheduled to go on line in mid-2007. Range Safety representatives took part in a number of panels and councils, including the newly formed Launch Constellation Range Safety Panel, the Range Commanders Council and its subgroups, the Space Shuttle Range Safety Panel, and the unmanned aircraft systems working group. Space based range safety demonstration and certification (formerly STARS) and the autonomous flight safety system were successfully tested. The enhanced flight termination system will be tested in early 2007 and the joint advanced range safety system mission analysis software tool is nearing operational status. New technologies being evaluated included a processor for real-time compensation in long range imaging, automated range surveillance using radio interferometry, and a space based range command and telemetry processor. Next year holds great promise as we continue ensuring safety while pursuing our quest beyond the Moon to Mars.

  18. Lunar Structure from Coda Wave Interferometry

    NASA Astrophysics Data System (ADS)

    Nunn, Ceri; Igel, Heiner

    2017-04-01

    As part of the Apollo lunar missions, four seismometers were deployed on the near-side of the Moon between 1969 and 1972, and operated continuously until 1977. There are many difficulties associated with determining lunar structure from these records. As a result, many properties of the moon, such as the thickness, density and porosity of the crust are poorly constrained. This hampers our ability to determine the structure, geochemical composition of the moon, its evolution, and ultimately the evolution of the solar system. We explore the use of coda wave interferometry to reconstruct the near surface structure within the strongly scattering lunar crust.

  19. Performance Analysis of Satellite Missions for Multi-Temporal SAR Interferometry

    PubMed Central

    Belmonte, Antonella; Nutricato, Raffaele; Nitti, Davide O.; Chiaradia, Maria T.

    2018-01-01

    Multi-temporal InSAR (MTI) applications pose challenges related to the availability of coherent scattering from the ground surface, the complexity of the ground deformations, atmospheric artifacts, and visibility problems related to ground elevation. Nowadays, several satellite missions are available providing interferometric SAR data at different wavelengths, spatial resolutions, and revisit time. A new and interesting opportunity is provided by Sentinel-1, which has a spatial resolution comparable to that of previous ESA C-band sensors, and revisit times improved by up to 6 days. According to these different SAR space-borne missions, the present work discusses current and future opportunities of MTI applications in terms of ground instability monitoring. Issues related to coherent target detection, mean velocity precision, and product geo-location are addressed through a simple theoretical model assuming backscattering mechanisms related to point scatterers. The paper also presents an example of a multi-sensor ground instability investigation over Lesina Marina, a village in Southern Italy lying over a gypsum diapir, where a hydration process, involving the underlying anhydride, causes a smooth uplift and the formation of scattered sinkholes. More than 20 years of MTI SAR data have been processed, coming from both legacy ERS and ENVISAT missions, and latest-generation RADARSAT-2, COSMO-SkyMed, and Sentinel-1A sensors. Results confirm the presence of a rather steady uplift process, with limited to null variations throughout the whole monitored time-period. PMID:29702588

  20. Performance Analysis of Satellite Missions for Multi-Temporal SAR Interferometry.

    PubMed

    Bovenga, Fabio; Belmonte, Antonella; Refice, Alberto; Pasquariello, Guido; Nutricato, Raffaele; Nitti, Davide O; Chiaradia, Maria T

    2018-04-27

    Multi-temporal InSAR (MTI) applications pose challenges related to the availability of coherent scattering from the ground surface, the complexity of the ground deformations, atmospheric artifacts, and visibility problems related to ground elevation. Nowadays, several satellite missions are available providing interferometric SAR data at different wavelengths, spatial resolutions, and revisit time. A new and interesting opportunity is provided by Sentinel-1, which has a spatial resolution comparable to that of previous ESA C-band sensors, and revisit times improved by up to 6 days. According to these different SAR space-borne missions, the present work discusses current and future opportunities of MTI applications in terms of ground instability monitoring. Issues related to coherent target detection, mean velocity precision, and product geo-location are addressed through a simple theoretical model assuming backscattering mechanisms related to point scatterers. The paper also presents an example of a multi-sensor ground instability investigation over Lesina Marina, a village in Southern Italy lying over a gypsum diapir, where a hydration process, involving the underlying anhydride, causes a smooth uplift and the formation of scattered sinkholes. More than 20 years of MTI SAR data have been processed, coming from both legacy ERS and ENVISAT missions, and latest-generation RADARSAT-2, COSMO-SkyMed, and Sentinel-1A sensors. Results confirm the presence of a rather steady uplift process, with limited to null variations throughout the whole monitored time-period.

  1. Development Towards a Space Qualified Laser Stabilization System in Support of Space-Based Optical Interferometers

    NASA Technical Reports Server (NTRS)

    Seidel, David J.; Dubovitsky, Serge

    2000-01-01

    We report on the development, functional performance and space-qualification status of a laser stabilization system supporting a space-based metrology source used to measure changes in optical path lengths in space-based stellar interferometers. The Space Interferometry Mission (SIM) and Deep Space 3 (DS-3) are two missions currently funded by the National Aeronautics and Space Administration (NASA) that are space-based optical interferometers. In order to properly recombine the starlight received at each telescope of the interferometer it is necessary to perform high resolution laser metrology to stabilize the interferometer. A potentially significant error source in performing high resolution metrology length measurements is the potential for fluctuations in the laser gauge itself. If the laser frequency or wavelength is changing over time it will be misinterpreted as a length change in one of the legs of the interferometer. An analysis of the frequency stability requirement for SIM resulted in a fractional frequency stability requirement of square root (S(sub y)(f)) = <2 x 10(exp -12)/square root(Hz) at Fourier frequencies between 10 Hz and 1000 Hz. The DS-3 mission stability requirement is further increased to square root (S(sub y)(f)) = <5 x 10(exp -14)/Square root(Hz) at Fourier frequencies between 0.2 Hz and 10 kHz with a goal of extending the low frequency range to 0.05 Hz. The free running performance of the Lightwave Electronics NPRO lasers, which are the baseline laser for both SIM and DS-3 vary in stability and we have measured them to perform as follows (9 x l0(exp -11)/ f(Hz))(Hz)/square root(Hz)) = <( square root (S(sub y)(f)) = <(1.3 x l0(exp -8)/ f(Hz))/Square root(Hz). In order to improve the frequency stability of the laser we stabilize the laser to a high finesse optical cavity by locking the optical frequency of the laser to one of the transmission modes of the cavity. At JPL we have built a prototype space-qualifiable system meeting the stability requirements of SIM, which has been delivered to one of the SIM testbeds. We have also started on the development of a system to meet the stability needs of DS-3.

  2. Space Radar Image of Karakax Valley, China 3-D

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This three-dimensional perspective of the remote Karakax Valley in the northern Tibetan Plateau of western China was created by combining two spaceborne radar images using a technique known as interferometry. Visualizations like this are helpful to scientists because they reveal where the slopes of the valley are cut by erosion, as well as the accumulations of gravel deposits at the base of the mountains. These gravel deposits, called alluvial fans, are a common landform in desert regions that scientists are mapping in order to learn more about Earth's past climate changes. Higher up the valley side is a clear break in the slope, running straight, just below the ridge line. This is the trace of the Altyn Tagh fault, which is much longer than California's San Andreas fault. Geophysicists are studying this fault for clues it may be able to give them about large faults. Elevations range from 4000 m (13,100 ft) in the valley to over 6000 m (19,700 ft) at the peaks of the glaciated Kun Lun mountains running from the front right towards the back. Scale varies in this perspective view, but the area is about 20 km (12 miles) wide in the middle of the image, and there is no vertical exaggeration. The two radar images were acquired on separate days during the second flight of the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour in October 1994. The interferometry technique provides elevation measurements of all points in the scene. The resulting digital topographic map was used to create this view, looking northwest from high over the valley. Variations in the colors can be related to gravel, sand and rock outcrops. This image is centered at 36.1 degrees north latitude, 79.2 degrees east longitude. Radar image data are draped over the topography to provide the color with the following assignments: Red is L-band vertically transmitted, vertically received; green is the average of L-band vertically transmitted, vertically received and C-band vertically transmitted, vertically received; and blue is C-band vertically transmitted, vertically received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth.

  3. Void-Filled SRTM Digital Elevation Model of Afghanistan

    USGS Publications Warehouse

    Chirico, Peter G.; Barrios, Boris

    2005-01-01

    EXPLANATION The purpose of this data set is to provide a single consistent elevation model to be used for national scale mapping, GIS, remote sensing applications, and natural resource assessments for Afghanistan's reconstruction. For 11 days in February of 2000, the National Aeronautics and Space Administration (NASA), the National Geospatial-Intelligence Agency ian Space Agency (ASI) flew X-band and C-band radar interferometry onboard the Space Shuttle Endeavor. The mission covered the Earth between 60?N and 57?S and will provide interferometric digital elevation models (DEMs) of approximately 80% of the Earth's land mass when processing is complete. The radar-pointing angle was approximately 55? at scene center. Ascending and descending orbital passes generated multiple interferometric data scenes for nearly all areas. Up to eight passes of data were merged to form the final processed Shuttle Radar Topography Mission (SRTM) DEMs. The effect of merging scenes averages elevation values recorded in coincident scenes and reduces, but does not completely eliminate, the amount of area with layover and terrain shadow effects. The most significant form of data processing for the Afghanistan DEM was gap-filling areas where the SRTM data contained a data void. These void areas are as a result of radar shadow, layover, standing water, and other effects of terrain as well as technical radar interferometry phase unwrapping issues. To fill these gaps, topographic contours were digitized from 1:200,000 - scale Soviet General Staff Topographic Maps which date from the middle to late 1980's. Digital contours were gridded to form elevation models for void areas and subsequently were merged with the SRTM data through GIS and image processing techniques. The data contained in this publication includes SRTM DEM quadrangles projected and clipped in geographic coordinates for the entire country. An index of all available SRTM DEM quadrangles is displayed here: Index_Geo_DD.pdf. Also included are quadrangles projected into their appropriate Universal Transverse Mercator (UTM) projection. The country of Afghanistan spans three UTM Zones: Zone 41, Zone 42, and Zone 43. Maps are stored in their respective UTM Zone projection. Indexes of all available SRTM DEM quadrangles in their respective UTM zone are displayed here: Index_UTM_Z41.pdf, Index_UTM_Z42.pdf, Index_UTM_Z43.pdf.

  4. Effects of Orbit and Pointing Geometry of a Spaceborne Formation for Monostatic-Bistatic Radargrammetry on Terrain Elevation Measurement Accuracy

    PubMed Central

    Renga, Alfredo; Moccia, Antonio

    2009-01-01

    During the last decade a methodology for the reconstruction of surface relief by Synthetic Aperture Radar (SAR) measurements – SAR interferometry – has become a standard. Different techniques developed before, such as stereo-radargrammetry, have been experienced from space only in very limiting geometries and time series, and, hence, branded as less accurate. However, novel formation flying configurations achievable by modern spacecraft allow fulfillment of SAR missions able to produce pairs of monostatic-bistatic images gathered simultaneously, with programmed looking angles. Hence it is possible to achieve large antenna separations, adequate for exploiting to the utmost the stereoscopic effect, and to make negligible time decorrelation, a strong liming factor for repeat-pass stereo-radargrammetric techniques. This paper reports on design of a monostatic-bistatic mission, in terms of orbit and pointing geometry, and taking into account present generation SAR and technology for accurate relative navigation. Performances of different methods for monostatic-bistatic stereo-radargrammetry are then evaluated, showing the possibility to determine the local surface relief with a metric accuracy over a wide range of Earth latitudes. PMID:22389594

  5. COSMO-SkyMed Interoperability, Expandability and Multi-Sensor Capabilities: The Keys for Full Multi-Mission Spectrum Operations

    DTIC Science & Technology

    2006-08-01

    constellation, SAR Bistatic for interferometry, L-band SAR data from Argentinean SAOCOM satellites, and optical imaging data from the French ‘ Pleiades ...a services federation (e.g. COSMO-SkyMed (SAR) and Pleiades (optical) constellation). Its main purpose is the elaboration of Programming Requests...on catalogue interoperability or on a federation of services (i.e. with French Pleiades optical satellites). The multi-mission objectives are

  6. Simultaneous immersion Mirau interferometry.

    PubMed

    Lyulko, Oleksandra V; Randers-Pehrson, Gerhard; Brenner, David J

    2013-05-01

    A novel technique for label-free imaging of live biological cells in aqueous medium that is insensitive to ambient vibrations is presented. This technique is a spin-off from previously developed immersion Mirau interferometry. Both approaches utilize a modified Mirau interferometric attachment for a microscope objective that can be used both in air and in immersion mode, when the device is submerged in cell medium and has its internal space filled with liquid. While immersion Mirau interferometry involves first capturing a series of images, the resulting images are potentially distorted by ambient vibrations. Overcoming these serial-acquisition challenges, simultaneous immersion Mirau interferometry incorporates polarizing elements into the optics to allow simultaneous acquisition of two interferograms. The system design and production are described and images produced with the developed techniques are presented.

  7. Motivation and Prospects for Spatio-spectral Interferometry in the Far-infrared

    NASA Technical Reports Server (NTRS)

    Leisawitz, David

    2013-01-01

    Consensus developed through a series of workshops, starting in 1998. Compelling science case for high angular resolution imaging and spectroscopy, and mission concepts. A robust plan - it has evolved over the years, but has consistently called for high resolution.

  8. A New Approach to Micro-arcsecond Astrometry with SIM Allowing Early Mission Narrow Angle Measurements of Compelling Astronomical Targets

    NASA Technical Reports Server (NTRS)

    Shaklan, Stuart; Pan, Xiaopei

    2004-01-01

    The Space Interferometry Mission (SIM) is capable of detecting and measuring the mass of terrestrial planets around stars other than our own. It can measure the mass of black holes and the visual orbits of radio and x-ray binary sources. SIM makes possible a new level of understanding of complex astrophysical processes. SIM achieves its high precision in the so-called narrow-angle regime. This is defined by a 1 degree diameter field in which the position of a target star is measured with respect to a set of reference stars. The observation is performed in two parts: first, SIM observes a grid of stars that spans the full sky. After a few years, repeated observations of the grid allow one to determine the orientation of the interferometer baseline. Second, throughout the mission, SIM periodically observes in the narrow-angle mode. Every narrow-angle observation is linked to the grid to determine the precise attitude and length of the baseline. The narrow angle process demands patience. It is not until five years after launch that SIM achieves its ultimate accuracy of 1 microarcsecond. The accuracy is degraded by a factor of approx. 2 at mid-mission. Our work proposes a technique for narrow angle astrometry that does not rely on the measurement of grid stars. This technique, called Gridless Narrow Angle Astrometry (GNAA) can obtain microarcsecond accuracy and can detect extra-solar planets and other exciting objects with a few days of observation. It can be applied as early as during the first six months of in-orbit calibration (IOC). The motivations for doing this are strong. First, and obviously, it is an insurance policy against a catastrophic mid-mission failure. Second, at the start of the mission, with several space-based interferometers in the planning or implementation phase, NASA will be eager to capture the public's imagination with interferometric science. Third, early results and a technique that can duplicate those results throughout the mission will give the analysts important experience in the proper use and calibration of SIM.

  9. Two color holographic interferometry for microgravity application

    NASA Technical Reports Server (NTRS)

    Trolinger, James D.; Weber, David C.

    1995-01-01

    Holographic interferometry is a primary candidate for determining temperature and concentration in crystal growth experiments designed for space. The method measures refractive index changes within the fluid of an experimental test cell resulting from temperature and/or concentration changes. When the refractive index changes are caused by simultaneous temperature and concentration changes, the contributions of the two effects cannot be separated by single wavelength interferometry. By using two wavelengths, however, two independent interferograms can provide the additional independent equation required to determine the two unknowns. There is no other technique available that provides this type of information. The primary objectives of this effort were to experimentally verify the mathematical theory of two color holographic interferometry (TCHI) and to determine the practical value of this technique for space application. In the foregoing study, the theory of TCHI has been tested experimentally over a range of interest for materials processing in space where measurements of temperature and concentration in a solution are required. New techniques were developed and applied to stretch the limits beyond what could be done with existing procedures. The study resulted in the production of one of the most advanced, enhanced sensitivity holographic interferometers in existence. The interferometric measurements made at MSFC represent what is believed to be the most accurate holographic interferometric measurements made in a fluid to date. The tests have provided an understanding of the limitations of the technique in practical use.

  10. VERSE - Virtual Equivalent Real-time Simulation

    NASA Technical Reports Server (NTRS)

    Zheng, Yang; Martin, Bryan J.; Villaume, Nathaniel

    2005-01-01

    Distributed real-time simulations provide important timing validation and hardware in the- loop results for the spacecraft flight software development cycle. Occasionally, the need for higher fidelity modeling and more comprehensive debugging capabilities - combined with a limited amount of computational resources - calls for a non real-time simulation environment that mimics the real-time environment. By creating a non real-time environment that accommodates simulations and flight software designed for a multi-CPU real-time system, we can save development time, cut mission costs, and reduce the likelihood of errors. This paper presents such a solution: Virtual Equivalent Real-time Simulation Environment (VERSE). VERSE turns the real-time operating system RTAI (Real-time Application Interface) into an event driven simulator that runs in virtual real time. Designed to keep the original RTAI architecture as intact as possible, and therefore inheriting RTAI's many capabilities, VERSE was implemented with remarkably little change to the RTAI source code. This small footprint together with use of the same API allows users to easily run the same application in both real-time and virtual time environments. VERSE has been used to build a workstation testbed for NASA's Space Interferometry Mission (SIM PlanetQuest) instrument flight software. With its flexible simulation controls and inexpensive setup and replication costs, VERSE will become an invaluable tool in future mission development.

  11. Astronomical Optical Interferometry. I. Methods and Instrumentation

    NASA Astrophysics Data System (ADS)

    Jankov, S.

    2010-12-01

    Previous decade has seen an achievement of large interferometric projects including 8-10m telescopes and 100m class baselines. Modern computer and control technology has enabled the interferometric combination of light from separate telescopes also in the visible and infrared regimes. Imaging with milli-arcsecond (mas) resolution and astrometry with micro-arcsecond (muas) precision have thus become reality. Here, I review the methods and instrumentation corresponding to the current state in the field of astronomical optical interferometry. First, this review summarizes the development from the pioneering works of Fizeau and Michelson. Next, the fundamental observables are described, followed by the discussion of the basic design principles of modern interferometers. The basic interferometric techniques such as speckle and aperture masking interferometry, aperture synthesis and nulling interferometry are disscused as well. Using the experience of past and existing facilities to illustrate important points, I consider particularly the new generation of large interferometers that has been recently commissioned (most notably, the CHARA, Keck, VLT and LBT Interferometers). Finally, I discuss the longer-term future of optical interferometry, including the possibilities of new large-scale ground-based projects and prospects for space interferometry.

  12. Lunar glass: interferometric evidence for low-temperature shock.

    PubMed

    Tolansky, S

    1972-05-12

    Glass objects in the fines from the Apollo 11 and Apollo 12 missions are shown, by two-beam reflection interferometry, to have been subject to shock at temperatures below the melting or softening point of the glass. Possible causes for the glass fragmentation are discussed.

  13. Error Analysis for High Resolution Topography with Bi-Static Single-Pass SAR Interferometry

    NASA Technical Reports Server (NTRS)

    Muellerschoen, Ronald J.; Chen, Curtis W.; Hensley, Scott; Rodriguez, Ernesto

    2006-01-01

    We present a flow down error analysis from the radar system to topographic height errors for bi-static single pass SAR interferometry for a satellite tandem pair. Because of orbital dynamics the baseline length and baseline orientation evolve spatially and temporally, the height accuracy of the system is modeled as a function of the spacecraft position and ground location. Vector sensitivity equations of height and the planar error components due to metrology, media effects, and radar system errors are derived and evaluated globally for a baseline mission. Included in the model are terrain effects that contribute to layover and shadow and slope effects on height errors. The analysis also accounts for nonoverlapping spectra and the non-overlapping bandwidth due to differences between the two platforms' viewing geometries. The model is applied to a 514 km altitude 97.4 degree inclination tandem satellite mission with a 300 m baseline separation and X-band SAR. Results from our model indicate that global DTED level 3 can be achieved.

  14. Lunar Structure from Ambient Noise and Coda Wave Interferometry

    NASA Astrophysics Data System (ADS)

    Nunn, C.; Igel, H.

    2016-12-01

    As part of the Apollo lunar missions, four seismometers were deployed on the near-side of the Moon between 1969 and 1972, and operated continuously until 1977. There are many difficulties associated with determining lunar structure from these records. As a result, many properties of the moon, such as the thickness, density and porosity of the crust are poorly constrained. This hampers our ability to determine the structure, geochemical composition of the moon, its evolution, and ultimately the evolution of the solar system. We explore the use of ambient noise and coda wave interferometry to reconstruct the near surface structure within the strongly scattering lunar crust.

  15. Navigation of the Galileo mission

    NASA Technical Reports Server (NTRS)

    Miller, L. J.; Miller, J. K.; Kirhofer, W. E.

    1983-01-01

    An overview of the navigation of the Galileo mission is given. Predicted navigation performance for the various mission phases is discussed with particular emphasis given to the tour phase. Orbit determination strategies and resulting accuracies are discussed for various data types. In particular, the results of combining a new Very Long Baseline Interferometry (VLBI) data type called Differential One-Way Range (DOR) with conventional radio and optical data types are presented. Maneuver strategy results include the effects of maneuver placement and various targeting methods on propellant consumption and delivery accuracy. Emphasis is placed on new results obtained using asymptote and split targeting.

  16. Simultaneous immersion Mirau interferometry

    PubMed Central

    Lyulko, Oleksandra V.; Randers-Pehrson, Gerhard; Brenner, David J.

    2013-01-01

    A novel technique for label-free imaging of live biological cells in aqueous medium that is insensitive to ambient vibrations is presented. This technique is a spin-off from previously developed immersion Mirau interferometry. Both approaches utilize a modified Mirau interferometric attachment for a microscope objective that can be used both in air and in immersion mode, when the device is submerged in cell medium and has its internal space filled with liquid. While immersion Mirau interferometry involves first capturing a series of images, the resulting images are potentially distorted by ambient vibrations. Overcoming these serial-acquisition challenges, simultaneous immersion Mirau interferometry incorporates polarizing elements into the optics to allow simultaneous acquisition of two interferograms. The system design and production are described and images produced with the developed techniques are presented. PMID:23742552

  17. DSN Scheduling Engine

    NASA Technical Reports Server (NTRS)

    Clement, Bradley; Johnston, Mark; Wax, Allan; Chouinard, Caroline

    2008-01-01

    The DSN (Deep Space Network) Scheduling Engine targets all space missions that use DSN services. It allows clients to issue scheduling, conflict identification, conflict resolution, and status requests in XML over a Java Message Service interface. The scheduling requests may include new requirements that represent a set of tracks to be scheduled under some constraints. This program uses a heuristic local search to schedule a variety of schedule requirements, and is being infused into the Service Scheduling Assembly, a mixed-initiative scheduling application. The engine resolves conflicting schedules of resource allocation according to a range of existing and possible requirement specifications, including optional antennas; start of track and track duration ranges; periodic tracks; locks on track start, duration, and allocated antenna; MSPA (multiple spacecraft per aperture); arraying/VLBI (very long baseline interferometry)/delta DOR (differential one-way ranging); continuous tracks; segmented tracks; gap-to-track ratio; and override or block-out of requirements. The scheduling models now include conflict identification for SOA(start of activity), BOT (beginning of track), RFI (radio frequency interference), and equipment constraints. This software will search through all possible allocations while providing a best-effort solution at any time. The engine reschedules to accommodate individual emergency tracks in 0.2 second, and emergency antenna downtime in 0.2 second. The software handles doubling of one mission's track requests over one week (to 42 total) in 2.7 seconds. Further tests will be performed in the context of actual schedules.

  18. Spatial heterodyne interferometry of VY Canis Major's, alpha Orionis, alpha Scorpii, and R leonis at 11 microns

    NASA Technical Reports Server (NTRS)

    Sutton, E. C.; Storey, J. W. V.; Betz, A. L.; Townes, C. H.; Spears, D. L.

    1977-01-01

    Using the technique of heterodyne interferometry, measurements were made of the spatial distribution of 11 micron radiation from four late type stars. The circumstellar shells surrounding VY Canis Majoris, alpha Orionis, and alpha Scorpii were resolved, whereas that of R Leonis was only partially resolved at a fringe spacing of 0.4 sec.

  19. RadioAstron Observations of the Quasar 3C273: A Challenge to the Brightness Temperature Limit

    NASA Astrophysics Data System (ADS)

    Kovalev, Y. Y.; Kardashev, N. S.; Kellermann, K. I.; Lobanov, A. P.; Johnson, M. D.; Gurvits, L. I.; Voitsik, P. A.; Zensus, J. A.; Anderson, J. M.; Bach, U.; Jauncey, D. L.; Ghigo, F.; Ghosh, T.; Kraus, A.; Kovalev, Yu. A.; Lisakov, M. M.; Petrov, L. Yu.; Romney, J. D.; Salter, C. J.; Sokolovsky, K. V.

    2016-03-01

    Inverse Compton cooling limits the brightness temperature of the radiating plasma to a maximum of 1011.5 K. Relativistic boosting can increase its observed value, but apparent brightness temperatures much in excess of 1013 K are inaccessible using ground-based very long baseline interferometry (VLBI) at any wavelength. We present observations of the quasar 3C 273, made with the space VLBI mission RadioAstron on baselines up to 171,000 km, which directly reveal the presence of angular structure as small as 26 μas (2.7 light months) and brightness temperature in excess of 1013 K. These measurements challenge our understanding of the non-thermal continuum emission in the vicinity of supermassive black holes and require a much higher Doppler factor than what is determined from jet apparent kinematics.

  20. KSC-99pp0974

    NASA Image and Video Library

    1999-07-21

    KENNEDY SPACE CENTER, FLA. -- A crane lowers the Shuttle Radar Topography Mission (SRTM), the primary payload on STS-99, into the payload bay of the orbiter Endeavour in Orbiter Processing Facility bay 2. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation. The SRTM hardware includes one radar antenna in the Shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A

  1. KSC-99pp0973

    NASA Image and Video Library

    1999-07-21

    KENNEDY SPACE CENTER, FLA. -- A crane lowers the Shuttle Radar Topography Mission (SRTM), the primary payload on STS-99, into the payload bay of the orbiter Endeavour in Orbiter Processing Facility (OPF) bay 2. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation. The SRTM hardware includes one radar antenna in the Shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A

  2. The application of satellite differential SAR interferometry-derived ground displacements in hydrogeology

    USGS Publications Warehouse

    Galloway, D.L.; Hoffmann, J.

    2007-01-01

    The application of satellite differential synthetic aperture radar (SAR) interferometry, principally coherent (InSAR) and to a lesser extent, persistent-scatterer (PSI) techniques to hydrogeologic studies has improved capabilities to map, monitor, analyze, and simulate groundwater flow, aquifer-system compaction and land subsidence. A number of investigations over the previous decade show how the spatially detailed images of ground displacements measured with InSAR have advanced hydrogeologic understanding, especially when a time series of images is used in conjunction with histories of changes in water levels and management practices. Important advances include: (1) identifying structural or lithostratigraphic boundaries (e.g. faults or transitional facies) of groundwater flow and deformation; (2) defining the material and hydraulic heterogeneity of deforming aquifer-systems; (3) estimating system properties (e.g. storage coefficients and hydraulic conductivities); and (4) constraining numerical models of groundwater flow, aquifer-system compaction, and land subsidence. As a component of an integrated approach to hydrogeologic monitoring and characterization of unconsolidated alluvial groundwater basins differential SAR interferometry contributes unique information that can facilitate improved management of groundwater resources. Future satellite SAR missions specifically designed for differential interferometry will enhance these contributions. ?? Springer-Verlag 2006.

  3. Sources of Artefacts in Synthetic Aperture Radar Interferometry Data Sets

    NASA Astrophysics Data System (ADS)

    Becek, K.; Borkowski, A.

    2012-07-01

    In recent years, much attention has been devoted to digital elevation models (DEMs) produced using Synthetic Aperture Radar Interferometry (InSAR). This has been triggered by the relative novelty of the InSAR method and its world-famous product—the Shuttle Radar Topography Mission (SRTM) DEM. However, much less attention, if at all, has been paid to sources of artefacts in SRTM. In this work, we focus not on the missing pixels (null pixels) due to shadows or the layover effect, but rather on outliers that were undetected by the SRTM validation process. The aim of this study is to identify some of the causes of the elevation outliers in SRTM. Such knowledge may be helpful to mitigate similar problems in future InSAR DEMs, notably the ones currently being developed from data acquired by the TanDEM-X mission. We analysed many cross-sections derived from SRTM. These cross-sections were extracted over the elevation test areas, which are available from the Global Elevation Data Testing Facility (GEDTF) whose database contains about 8,500 runways with known vertical profiles. Whenever a significant discrepancy between the known runway profile and the SRTM cross-section was detected, a visual interpretation of the high-resolution satellite image was carried out to identify the objects causing the irregularities. A distance and a bearing from the outlier to the object were recorded. Moreover, we considered the SRTM look direction parameter. A comprehensive analysis of the acquired data allows us to establish that large metallic structures, such as hangars or car parking lots, are causing the outliers. Water areas or plain wet terrains may also cause an InSAR outlier. The look direction and the depression angle of the InSAR system in relation to the suspected objects influence the magnitude of the outliers. We hope that these findings will be helpful in designing the error detection routines of future InSAR or, in fact, any microwave aerial- or space-based survey. The presence of outliers in SRTM was first reported in Becek, K. (2008). Investigating error structure of shuttle radar topography mission elevation data product, Geophys. Res. Lett., 35, L15403.

  4. Signal processing for order 10 PM accuracy displacement metrology in real-world scientific applications

    NASA Astrophysics Data System (ADS)

    Halverson, Peter G.; Loya, Frank M.

    2017-11-01

    Projects such as the Space Interferometry Mission (SIM) [1] and Terrestrial Planet Finder (TPF) [2] rely heavily on sub-nanometer accuracy metrology systems to define their optical paths and geometries. The James Web Space Telescope (JWST) is using this metrology in a cryogenic dilatometer for characterizing material properties (thermal expansion, creep) of optical materials. For all these projects, a key issue has been the reliability and stability of the electronics that convert displacement metrology signals into real-time distance determinations. A particular concern is the behavior of the electronics in situations where laser heterodyne signals are weak or noisy and subject to abrupt Doppler shifts due to vibrations or the slewing of motorized optics. A second concern is the long-term (hours to days) stability of the distance measurements under conditions of drifting laser power and ambient temperature. This paper describes heterodyne displacement metrology gauge signal processing methods that achieve satisfactory robustness against low signal strength and spurious signals, and good long-term stability. We have a proven displacement-measuring approach that is useful not only to space-optical projects at JPL, but also to the wider field of distance measurements.

  5. Atom Interferometry with Ultracold Quantum Gases in a Microgravity Environment

    NASA Astrophysics Data System (ADS)

    Williams, Jason; D'Incao, Jose; Chiow, Sheng-Wey; Yu, Nan

    2015-05-01

    Precision atom interferometers (AI) in space promise exciting technical capabilities for fundamental physics research, with proposals including unprecedented tests of the weak equivalence principle, precision measurements of the fine structure and gravitational constants, and detection of gravity waves and dark energy. Consequently, multiple AI-based missions have been proposed to NASA, including a dual-atomic-species interferometer that is to be integrated into the Cold Atom Laboratory (CAL) onboard the International Space Station. In this talk, I will discuss our plans and preparation at JPL for the proposed flight experiments to use the CAL facility to study the leading-order systematics expected to corrupt future high-precision measurements of fundamental physics with AIs in microgravity. The project centers on the physics of pairwise interactions and molecular dynamics in these quantum systems as a means to overcome uncontrolled shifts associated with the gravity gradient and few-particle collisions. We will further utilize the CAL AI for proof-of-principle tests of systematic mitigation and phase-readout techniques for use in the next-generation of precision metrology experiments based on AIs in microgravity. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  6. Application of Radar Data to Remote Sensing and Geographical Information Systems

    NASA Technical Reports Server (NTRS)

    vanZyl, Jakob J.

    2000-01-01

    The field of synthetic aperture radar changed dramatically over the past decade with the operational introduction of advance radar techniques such as polarimetry and interferometry. Radar polarimetry became an operational research tool with the introduction of the NASA/JPL AIRSAR system in the early 1980's, and reached a climax with the two SIR-C/X-SAR flights on board the space shuttle Endeavour in April and October 1994. Radar interferometry received a tremendous boost when the airborne TOPSAR system was introduced in 1991 by NASA/JPL, and further when data from the European Space Agency ERS-1 radar satellite became routinely available in 1991. Several airborne interferometric SAR systems are either currently operational, or are about to be introduced. Radar interferometry is a technique that allows one to map the topography of an area automatically under all weather conditions, day or night. The real power of radar interferometry is that the images and digital elevation models are automatically geometrically resampled, and could be imported into GIS systems directly after suitable reformatting. When combined with polarimetry, a technique that uses polarization diversity to gather more information about the geophysical properties of the terrain, a very rich multi-layer data set is available to the remote sensing scientist. This talk will discuss the principles of radar interferometry and polarimetry with specific application to the automatic categorization of land cover. Examples will include images acquired with the NASA/JPL AIRSAR/TOPSAR system in Australia and elsewhere.

  7. SweepSAR Sensor Technology for Dense Spatial and Temporal Coverage of Earth Change

    NASA Astrophysics Data System (ADS)

    Rosen, P. A.

    2016-12-01

    Since the 2007 National Academy of Science "Decadal Survey" report, NASA has been studying concepts for a Synthetic Aperture Radar (SAR) mission to determine Earth change in three disciplines - ecosystems, solid earth, and cryospheric sciences. NASA has joined forces with the Indian Space Research Organisation (ISRO) to fulfill these objectives. The NASA-ISRO SAR (NISAR) mission is now in development for a launch in 2021. The mission's primary science objectives are codified in a set of science requirements to study Earth land and ice deformation, and ecosystems, globally with 12-day sampling over all land and ice-covered surfaces throughout the mission life. The US and Indian science teams share global science objectives; in addition, India has developed a set of local objectives in agricultural biomass estimation, Himalayan glacier characterization, and coastal ocean measurements in and around India. Both the US and India have identified agricultural and infrastructure monitoring, and disaster response as high priority applications for the mission. With this range of science and applications objectives, NISAR has demanding coverage, sampling, and accuracy requirements. The system requires a swath of over 240 km at 3-10 m SAR imaging resolution, using full polarimetry where needed. Given the broad range of phenomena and wide range of sensitivities needed, NISAR carries two radars, one operating at L-band (24 cm wavelength) and the other at S-band (10 cm wavelength). The system uses a new "scan-on-receive" ("SweepSAR") technology at both L-band and S-band, that enables full swath coverage without loss of resolution or polarimetric diversity. Both radars can operate simultaneously. The L-band system is being designed to operate up to 50 minutes per orbit, and the S-band system up to 10 minutes per orbit. The orbit will be controlled to within 300 m for repeat-pass interferometry measurements. This unprecedented coverage in space, time, polarimetry, and frequency, will add a new and rich data set to the international constellation of sensors studying Earth surface change. In this talk, we will describe the mission's expected contributions to geodetic imaging in support of time-series analysis of dynamic changes of Earth's surface.

  8. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1984-01-01

    Developments in space communications, radio navigation, radio science, ground-base radio astronomy, reports on the Deep Space Network (DSN) and its Ground Communications Facility (GCF), and applications of radio interferometry at microwave frequencies are discussed.

  9. Mid-Infrared Imaging of Exo-Earths: Impact of Exozodiacal Disk Structures

    NASA Technical Reports Server (NTRS)

    Defrere, Denis; Absil, O.; Stark, C.; den Hartog, R.; Danchi, W.

    2011-01-01

    The characterization of Earth-like extrasolar planets in the mid-infrared is a significant observational challenge that could be tackled by future space-based interferometers. The presence of large amounts of exozodiacal dust around nearby main sequence stars represents however a potential hurdle to obtain mid-infrared spectra of Earth-like planets. Whereas the disk brightness only affects the integration time, the emission of resonant dust structures mixes with the planet signal at the output of the interferometer and could jeopardize the spectroscopic analysis of an Earth-like planet. Fortunately, the high angular resolution provided by space-based interferometry is sufficient to spatially distinguish most of the extended exozodiacal emission from the planetary signal and only the dust located near the planet significantly contributes to the noise level. Considering modeled resonant structures created by Earth-like planets, we address in this talk the role of exozodiacal dust in two different cases: the characterization of Super-Earth planets with single space-based Bracewell interferometers (e.g., the FKSI mission) and the characterization of Earth-like planets with 4-telescope space-based nulling interferometers (e.g., the TPF-I and Darwin projects). In each case, we derive constraints on the disk parameters that can be tolerated without jeopardizing the detection of Earth-like planets

  10. Link monitor and control operator assistant: A prototype demonstrating semiautomated monitor and control

    NASA Technical Reports Server (NTRS)

    Lee, L. F.; Cooper, L. P.

    1993-01-01

    This article describes the approach, results, and lessons learned from an applied research project demonstrating how artificial intelligence (AI) technology can be used to improve Deep Space Network operations. Configuring antenna and associated equipment necessary to support a communications link is a time-consuming process. The time spent configuring the equipment is essentially overhead and results in reduced time for actual mission support operations. The NASA Office of Space Communications (Code O) and the NASA Office of Advanced Concepts and Technology (Code C) jointly funded an applied research project to investigate technologies which can be used to reduce configuration time. This resulted in the development and application of AI-based automated operations technology in a prototype system, the Link Monitor and Control Operator Assistant (LMC OA). The LMC OA was tested over the course of three months in a parallel experimental mode on very long baseline interferometry (VLBI) operations at the Goldstone Deep Space Communications Center. The tests demonstrated a 44 percent reduction in pre-calibration time for a VLBI pass on the 70-m antenna. Currently, this technology is being developed further under Research and Technology Operating Plan (RTOP)-72 to demonstrate the applicability of the technology to operations in the entire Deep Space Network.

  11. ESA to test the smartest technique for detecting extrasolar planets from the ground

    NASA Astrophysics Data System (ADS)

    2002-03-01

    GENIE will use ESO's Very Large Telescopes Credits: European Southern Observatory This photo shows an aerial view of the observing platform on the top of Paranal mountain (from late 1999), with the four enclosu Three 1.8-m VLTI Auxiliary Telescopes (ATs) and paths of the light beams have been superposed on the photo. Also seen are some of the 30 'stations' where the ATs will be positioned for observations and from where the light beams from the telescopes can enter the Interferometric Tunnel below. The straight structures are supports for the rails on which the telescopes can move from one station to another. The Interferometric Laboratory (partly subterranean) is at the centre of the platform. How nulling interferometry works Credits: ESA 2002/Medialab How nulling interferometry works In nulling interferometry, light from a distant star (red beams) hits each telescope, labelled T1 and T2, simultaneously. Before the resultant light beams are combined, the beam from one telescope is delayed by half a wavelength. This means that when the rays are brought together, peaks from one telescope line up with troughs from the other and so are cancelled out (represented by the straight red line), leaving no starlight. Light from a planet (blue beams), orbiting the star, enters the telescopes at an angle. This introduces a delay in the light reaching the second telescope. So, even after the half wavelength change in one of the rays, when the beams are combined they are reinforced (represented by the large blue waves) rather than cancelled out. Illustration by Medialab. Nulling interferometry combines the signal from a number of different telescopes in such a way that the light from the central star is cancelled out, leaving the much fainter planet easier to see. This is possible because light is a wave with peaks and troughs. Usually when combining light from two or more telescopes, a technique called interferometry, the peaks are lined up with one another to boost the signal. In nulling interferometry, however, the peaks are lined up with the troughs so they cancel out to nothing and the star disappears. Planets in orbit around the star show up, however, because they are offset from the central star and their light takes different paths through the telescope system. ESA and ESO will build a new instrument called GENIE (Ground-based European Nulling Interferometer Experiment) to perform nulling interferometry using ESO's Very Large Telescope (VLT), a collection of four 8-metre telescopes in Chile. It will be the biggest investigation of nulling interferometry to date. "It's being tested in the lab in a number of places but we can do more," says Malcolm Fridlund, project scientist for the Darwin mission at the European Space Research and Technology Centre, the Netherlands. "We intend to use the world's largest telescope and the world's largest interferometer to get very high resolution." Using GENIE to perfect this technique will provide invaluable information for engineers about how to build the 'hub' spacecraft of the Darwin flotilla. Scheduled for launch in the middle of the next decade Darwin is a collection of six space telescopes and two other spacecraft, which will together search for Earth-like planets around nearby stars. The hub will combine the light from the telescopes. "If you see the way of getting to Darwin as being outlined by a number of technological milestones this is one of the most important ones," says Malcolm Fridlund. Once up and running, GENIE will also provide a training ground for astronomers who will later use Darwin. For example, it will allow them to perfect their methods of interpreting Darwin data because, as well as the engineering tests, GENIE will be capable of real science. One of its greatest tasks will be to develop the target list of stars for Darwin to study. As recently discovered by ESA's Ulysses spaceprobe, the signature of a planetary system is probably a ring of dust surrounding the central star. GENIE will be able to look for these dust rings and make sure that the dust is not so dense that it will mask the planets from view. GENIE will see failed stars, known as brown dwarfs and, if the instrument performs to expectations, may also see some of the already-discovered giant planets. So far, these worlds have never been seen, only inferred to exist by the effect they have on their parent stars. From Earth, two things handicap nulling interferometry. Firstly, the atmosphere smears out the starlight so that its cancellation is a hundred times less effective than it will be in space. Secondly, planets are most easily seen using infrared wavelengths because they are warm. So, observing from the surface of Earth, itself a planet emitting infrared radiation, is like peering through fog. In space, these two problems disappear and Darwin will be able to see smaller, Earth-like worlds. "We have calculated that with Darwin we could see an 'Earth' if it were ten light-years away with a few hours of observation time. With the VLT, it would be impossible because of the atmosphere. Even if the atmosphere weren't there it would take 450 days because of the infrared background released by the Earth. So we have to go into space," says Fridlund. GENIE is expected to be on-line by 2006.

  12. Exploring the potential of Sentinel-1 data for regional scale slope instability detection using multi-temporal interferometry

    NASA Astrophysics Data System (ADS)

    Wasowski, Janusz; Bovenga, Fabio; Nutricato, Raffaele; Nitti, Davide Oscar; Chiaradia, Maria Teresa; Refice, Alberto; Pasquariello, Guido

    2016-04-01

    Launched in 2014, the European Space Agency (ESA) Sentinel-1 satellite carrying a medium resolution (20 m) C-Band Synthetic Aperture Radar (SAR) sensor holds much promise for new applications of multi-temporal interferometry (MTI) in landslide assessment. Specifically, the regularity of acquisitions, timeliness of data delivery, shorter repeat cycle (currently 12 days with Sentinel-1A sensor), and flexible incidence angle geometry, all imply better practical utility of MTI relying on Sentinel-1 with respect to MTI based on data from earlier ESA's satellite radar C-band sensors (ERS1/2, ENVISAT). Furthermore, the upcoming launch of Sentinel-1B will cut down the repeat cycle to 6 days, thereby further improving temporal coherence and quality and coverage of MTI products. Taking advantage of the Interferometric Wide (IW) Swath acquisition mode of Sentinel-1 (images covering a 250 km swath on the ground), in this work we test the potential of such data for regional scale slope instability detection through MTI. Our test area includes the landslide-prone Apennine Mountains of Southern Italy. We rely on over 30 Sentinel-1 images, most of which acquired in 2015, and MTI processing through the SPINUA algorithm (Stable Points INterferometry in Un-urbanized Areas). The potential of MTI results based on Sentinel-1 data is assessed by comparing the detected ground surface displacements with the MTI results obtained for the same test area using the C-Band data acquired by ERS1/2 and ENVISAT in 1990s and 2000s. Although the initial results are encouraging, it seems evident that longer-term (few years) acquisitions of Sentinel-1 are necessary to reliably detect some extremely slow movements, which were observed in the last two decades and are likely to be still present in peri-urban areas of many hilltop towns in the Apennine Mts. The MTI results obtained from Sentinel-1 data are also locally compared with the MTI outcomes based on the high resolution (3 m) TerraSAR-X imagery. Again, even though there is lack of temporal overlap in the two datasets, the comparison shows some potential benefits of the exploitation different resolution sensor datasets. For example, when considering the costs of MTI applications, an effective approach to slope hazard assessment could rely on the use of coarser imagery MTI to secure long-term wide-area coverage, to be integrated by higher resolution MTI with more focus on urbanized or greater value areas (cf., Wasowski and Bovenga et al., 2014a,b). Now these approaches are facilitated by the regular global coverage and free medium resolution imagery guaranteed by the background satellite radar mission of Sentinel-1. Acknowledgments Study carried out in the framework of the Apulia Space project (PON&REC 2007-2013, Cod: PON03PE_00067_6). We also thank ESA and the German Space Agency (DLR) for providing us radar data. References Wasowski J., Bovenga F. 2014a. Investigating landslides and unstable slopes with satellite Multi Temporal Interferometry: Current issues and future perspectives. Engineering Geology 174: 103-138. http://dx.doi.org/10.1016/j.enggeo.2014.03.003 Wasowski J., Bovenga F. 2014. Remote Sensing of Landslide Motion with Emphasis on Satellite Multitemporal Interferometry Applications: An Overview. In T. Davies (Ed). Landslide Hazards, Risks and Disasters. p. 345-403. http://dx.doi.org/10.1016/B978-0-12-396452-6.00011-2

  13. The Wide-Field Imaging Interferometry Testbed (WIIT): Recent Progress and Results

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.; Frey, Bradley J.; Leisawitz, David T.; Lyon, Richard G.; Maher, Stephen F.; Martino, Anthony J.

    2008-01-01

    Continued research with the Wide-Field Imaging Interferometry Testbed (WIIT) has achieved several important milestones. We have moved WIIT into the Advanced Interferometry and Metrology (AIM) Laboratory at Goddard, and have characterized the testbed in this well-controlled environment. The system is now completely automated and we are in the process of acquiring large data sets for analysis. In this paper, we discuss these new developments and outline our future research directions. The WIIT testbed, combined with new data analysis techniques and algorithms, provides a demonstration of the technique of wide-field interferometric imaging, a powerful tool for future space-borne interferometers.

  14. Considerations and Architectures for Inter-Satellite Communications in Distributed Spacecraft Systems

    NASA Technical Reports Server (NTRS)

    Edwards, Bernard; Horne, William; Israel, David; Kwadrat, Carl; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    This paper will identify the important characteristics and requirements necessary for inter-satellite communications in distributed spacecraft systems and present analysis results focusing on architectural and protocol comparisons. Emerging spacecraft systems plan to deploy multiple satellites in various "distributed" configurations ranging from close proximity formation flying to widely separated constellations. Distributed spacecraft configurations provide advantages for science exploration and operations since many activities useful for missions may be better served by distributing them between spacecraft. For example, many scientific observations can be enhanced through spatially separated platforms, such as for deep space interferometry. operating multiple distributed spacecraft as a mission requires coordination that may be best provided through inter-satellite communications. For example, several future distributed spacecraft systems envision autonomous operations requiring relative navigational calculations and coordinated attitude and position corrections. To conduct these operations, data must be exchanged between spacecraft. Direct cross-links between satellites provides an efficient and practical method for transferring data and commands. Unlike existing "bent-pipe" relay networks supporting space missions, no standard or widely-used method exists for cross-link communications. Consequently, to support these future missions, the characteristics necessary for inter-satellite communications need to be examined. At first glance, all of the missions look extremely different. Some missions call for tens to hundreds of nano-satellites in constant communications in close proximity to each other. Other missions call for a handful of satellites communicating very slowly over thousands to hundreds of thousands of kilometers. The paper will first classify distributed spacecraft missions to help guide the evaluation and definition of cross-link architectures and approaches. Based on this general classification, the paper will examine general physical layer parameters, such as frequency bands and data rates, necessary to support the missions. The paper will also identify classes of communication architectures that may be employed, ranging from fully distributed to centralized topologies. Numerous factors, such as number of spacecraft, must be evaluated when attempting to pick a communications architecture. Also important is the stability of the formation from a communications standpoint. For example, do all of the spacecraft require equal bandwidth and are spacecraft allowed to enter and leave a formation? The type of science mission being attempted may also heavily influence the communications architecture. In addition, the paper will assess various parameters and characteristics typically associated with the data link layer. The paper will analyze the performance of various multiple access techniques given the operational scenario, requirements, and communication topologies envisioned for missions. This assessment will also include a survey of existing standards and their applicability for distributed spacecraft systems. An important consideration includes the interoperability of the lower layers (physical and data link) examined in this paper with the higher layer protocols(network) envisioned for future space internetworking. Finally, the paper will define a suggested path, including preliminary recommendations, for defining and developing a standard for intersatellite communications based on the classes of distributed spacecraft missions and analysis results.

  15. Galileo Jupiter approach orbit determination

    NASA Technical Reports Server (NTRS)

    Miller, J. K.; Nicholson, F. T.

    1984-01-01

    Orbit determination characteristics of the Jupiter approach phase of the Galileo mission are described. Predicted orbit determination performance is given for the various mission events that occur during Jupiter approach. These mission events include delivery of an atmospheric entry probe, acquisition of probe science data by the Galileo orbiter for relay to earth, delivery of an orbiter to a close encounter of the Galilean satellite Io, and insertion of the orbiter into orbit about Jupiter. The orbit determination strategy and resulting accuracies are discussed for the data types which include Doppler, range, optical imaging of Io, and a new Very Long Baseline Interferometry (VLBI) data type called Differential One-Way Range (DOR).

  16. Theoretical studies of association and dissociation of Feshbach molecules in a microgravity environment

    NASA Astrophysics Data System (ADS)

    D'Incao, Jose; Williams, Jason

    2017-04-01

    NASA's Cold Atom Laboratory (CAL) is a multi-user facility scheduled for launch to the ISS in 2017. Our flight experiments with CAL will characterize and mitigate leading-order systematics in dual-atomic-species atom interferometers in microgravity relevant for future fundamental physics missions in space. As part of the initial state preparation for interferometry studies, here, we study the RF association and dissociation of weakly bound heteronuclear Feshbach molecules for expected parameters relevant for the microgravity environment of CAL. This includes temperatures on the pico-Kelvin range and atomic densities as low as 108/cm3. We show that under such conditions, thermal and loss effects can be greatly suppressed, resulting in high efficiency in both association and dissociation of extremely weakly bound Feshbach molecules and allowing for high accuracy determination coherent properties of such processes. In addition we study the possibility to implement delta-kick cooling techniques for weakly bound heteronuclear molecules and explore numerically other methods for molecular association and dissociation including the effects of three-body interactions. This research is supported by the National Aeronautics and Space Administration.

  17. Waveguide Harmonic Generator for the SIM

    NASA Technical Reports Server (NTRS)

    Chang, Daniel; Poberezhskiy, Ilya; Mulder, Jerry

    2008-01-01

    A second-harmonic generator (SHG) serves as the source of the visible laser beam in an onboard calibration scheme for NASA's planned Space Interferometry Mission (SIM), which requires an infrared laser beam and a visible laser beam coherent with the infrared laser beam. The SHG includes quasi-phase-matched waveguides made of MgO-doped, periodically poled lithium niobate, pigtailed with polarization- maintaining optical fibers. Frequency doubling by use of such waveguides affords the required combination of coherence and sufficient conversion efficiency for the intended application. The spatial period of the poling is designed to obtain quasi-phase- matching at a nominal middle excitation wavelength of 1,319.28 nm. The SHG is designed to operate at a warm bias (ambient temperature between 20 and 25 C) that would be maintained in its cooler environment by use of electric heaters; the heater power would be adjusted to regulate the temperature precisely and thereby maintain the required precision of the spatial period. At the state of development at the time of this reporting, the SHG had been packaged and subjected to most of its planned space-qualification tests.

  18. Studying the inner regions of young stars and their disks with aperture masking interferometry

    NASA Astrophysics Data System (ADS)

    Greenbaum, Alexandra; Sivaramakrishnan, Anand; GPI Instrument Team; NIRISS Instrument Team

    2017-01-01

    High resolution aperture masking interferometry complements coronagraphic imagers to provide a unique perspective on star and planet formation at more moderate contrast. By targeting young stars, especially those with disks, we aim to understand complex protoplanetary environments. Ground-based non-redundant masking (NRM) paired with spectrographs and polarimeters probes both thermally emitting young companions, possibly embedded in the disk or gap and scattered light in protoplanetary disks. And soon the community will have access to the most stable NRM conditions yet, with the Near Infrared Imager and Slitless Spectrograph (NIRISS) Aperture Masking Interferometry (AMI) mode on the James Webb Space Telescope. I will present my thesis work commissioning the Gemini Planet Imager’s NRM, highlighting results through both its spectroscopy and polarimetry modes, which set the stage for future space-based imaging. I will also give an overview of NIRISS-AMI capabilities and performance predictions for imaging young low-mass companions and disks, and how it will complement other instruments on JWST.

  19. Ka-Band Autonomous Formation Flying Sensor

    NASA Technical Reports Server (NTRS)

    Tien, Jeffrey; Purcell, George, Jr.; Srinivasan, Jeffrey; Ciminera, Michael; Srinivasan, Meera; Meehan, Thomas; Young, Lawrence; Aung, MiMi; Amaro, Luis; Chong, Yong; hide

    2004-01-01

    Ka-band integrated range and bearing-angle formation sensor called the Autonomous Formation Flying (AFF) Sensor has been developed to enable deep-space formation flying of multiple spacecraft. The AFF Sensor concept is similar to that of the Global Positioning System (GPS), but the AFF Sensor would not use the GPS. The AFF Sensor would reside in radio transceivers and signal-processing subsystems aboard the formation-flying spacecraft. A version of the AFF Sensor has been developed for initial application to the two-spacecraft StarLight optical-interferometry mission, and several design investigations have been performed. From the prototype development, it has been concluded that the AFF Sensor can be expected to measure distances and directions with standard deviations of 2 cm and 1 arc minute, respectively, for spacecraft separations ranging up to about 1 km. It has also been concluded that it is necessary to optimize performance of the overall mission through design trade-offs among the performance of the AFF Sensor, the field of view of the AFF Sensor, the designs of the spacecraft and the scientific instruments that they will carry, the spacecraft maneuvers required for formation flying, and the design of a formation-control system.

  20. Subsurface Feature Mapping of Mars using a High Resolution Ground Penetrating Radar System

    NASA Astrophysics Data System (ADS)

    Wu, T. S.; Persaud, D. M.; Preudhomme, M. A.; Jurg, M.; Smith, M. K.; Buckley, H.; Tarnas, J.; Chalumeau, C.; Lombard-Poirot, N.; Mann, B.

    2015-12-01

    As the closest Earth-like, potentially life-sustaining planet in the solar system, Mars' future of human exploration is more a question of timing than possibility. The Martian surface remains hostile, but its subsurface geology holds promise for present or ancient astrobiology and future habitation, specifically lava tube (pyroduct) systems, whose presence has been confirmed by HiRISE imagery.The location and characterization of these systems could provide a basis for understanding the evolution of the red planet and long-term shelters for future manned missions on Mars. To detect and analyze the subsurface geology of terrestrial bodies from orbit, a novel compact (smallsat-scale) and cost-effective approach called the High-resolution Orbiter for Mapping gEology by Radar (HOMER) has been proposed. Adapting interferometry techniques with synthetic aperture radar (SAR) to a ground penetrating radar system, a small satellite constellation is able to achieve a theoretical resolution of 50m from low-Mars orbit (LMO). Alongside this initial prototype design of HOMER, proposed data processing methodology and software and a Mars mission design are presented. This project was developed as part of the 2015 NASA Ames Academy for Space Exploration.

  1. Regional Recovery of the Disturbing Gravitational Potential from Satellite Observations of First-, Second- and Third-order Radial Derivatives of the Disturbing Gravitational Potential

    NASA Astrophysics Data System (ADS)

    Novak, P.; Pitonak, M.; Sprlak, M.

    2015-12-01

    Recently realized gravity-dedicated satellite missions allow for measuring values of scalar, vectorial (Gravity Recovery And Climate Experiment - GRACE) and second-order tensorial (Gravity field and steady-state Ocean Circulation Explorer - GOCE) parameters of the Earth's gravitational potential. Theoretical aspects related to using moving sensors for measuring elements of a third-order gravitational tensor are currently under investigation, e.g. the gravity-dedicated satellite mission OPTIMA (OPTical Interferometry for global Mass change detection from space) should measure third-order derivatives of the Earth's gravitational potential. This contribution investigates regional recovery of the disturbing gravitational potential on the Earth's surface from satellite observations of first-, second- and third-order radial derivatives of the disturbing gravitational potential. Synthetic measurements along a satellite orbit at the altitude of 250 km are synthetized from the global gravitational model EGM2008 and polluted by the Gaussian noise. The process of downward continuation is stabilized by the Tikhonov regularization. Estimated values of the disturbing gravitational potential are compared with the same quantity synthesized directly from EGM2008. Finally, this contribution also discusses merging a regional solution into a global field as a patchwork.

  2. Possibilities of the regional gravity field recovery from first-, second- and third-order radial derivatives of the disturbing gravitational potential measured on moving platforms

    NASA Astrophysics Data System (ADS)

    Pitonak, Martin; Sprlak, Michal; Novak, Pavel; Tenzer, Robert

    2016-04-01

    Recently realized gravity-dedicated satellite missions allow for measuring values of scalar, vectorial (Gravity Recovery And Climate Experiment - GRACE) and second-order tensorial (Gravity field and steady-state Ocean Circulation Explorer - GOCE) parameters of the Earth's gravitational potential. Theoretical aspects related to using moving sensors for measuring elements of the third-order gravitational tensor are currently under investigation, e.g., the gravity field-dedicated satellite mission OPTIMA (OPTical Interferometry for global Mass change detection from space) should measure third-order derivatives of the Earth's gravitational potential. This contribution investigates regional recovery of the disturbing gravitational potential on the Earth's surface from satellite and aerial observations of the first-, second- and third-order radial derivatives of the disturbing gravitational potential. Synthetic measurements along a satellite orbit at the altitude of 250 km and along an aircraft track at the altitude of 10 km are synthetized from the global gravitational model EGM2008 and polluted by the Gaussian noise. The process of downward continuation is stabilized by the Tikhonov regularization. Estimated values of the disturbing gravitational potential are compared with the same quantity synthesized directly from EGM2008.

  3. Space Radar Image of Kilauea, Hawaii - interferometry 1

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This X-band image of the volcano Kilauea was taken on October 4, 1994, by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar. The area shown is about 9 kilometers by 13 kilometers (5.5 miles by 8 miles) and is centered at about 19.58 degrees north latitude and 155.55 degrees west longitude. This image and a similar image taken during the first flight of the radar instrument on April 13, 1994 were combined to produce the topographic information by means of an interferometric process. This is a process by which radar data acquired on different passes of the space shuttle is overlaid to obtain elevation information. Three additional images are provided showing an overlay of radar data with interferometric fringes; a three-dimensional image based on altitude lines; and, finally, a topographic view of the region. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR. The Instituto Ricerca Elettromagnetismo Componenti Elettronici (IRECE) at the University of Naples was a partner in interferometry analysis.

  4. An analysis and demonstration of clock synchronization by VLBI. [Very Long Baseline Interferometry for Deep Space Net

    NASA Technical Reports Server (NTRS)

    Hurd, W. J.

    1974-01-01

    A prototype of a semi-real time system for synchronizing the Deep Space Net station clocks by radio interferometry was successfully demonstrated on August 30, 1972. The system utilized an approximate maximum likelihood estimation procedure for processing the data, thereby achieving essentially optimum time sync estimates for a given amount of data, or equivalently, minimizing the amount of data required for reliable estimation. Synchronization accuracies as good as 100 ns rms were achieved between Deep Space Stations 11 and 12, both at Goldstone, Calif. The accuracy can be improved by increasing the system bandwidth until the fundamental limitations due to baseline and source position uncertainties and atmospheric effects are reached. These limitations are under 10 ns for transcontinental baselines.

  5. Resolving microstructures in Z pinches with intensity interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apruzese, J. P.; Kroupp, E.; Maron, Y.

    2014-03-15

    Nearly 60 years ago, Hanbury Brown and Twiss [R. Hanbury Brown and R. Q. Twiss, Nature 178, 1046 (1956)] succeeded in measuring the 30 nrad angular diameter of Sirius using a new type of interferometry that exploited the interference of photons independently emitted from different regions of the stellar disk. Its basis was the measurement of intensity correlations as a function of detector spacing, with no beam splitting or preservation of phase information needed. Applied to Z pinches, X pinches, or laser-produced plasmas, this method could potentially provide spatial resolution under one micron. A quantitative analysis based on the workmore » of Purcell [E. M. Purcell, Nature 178, 1449 (1956)] reveals that obtaining adequate statistics from x-ray interferometry of a Z-pinch microstructure would require using the highest-current generators available. However, using visible light interferometry would reduce the needed photon count and could enable its use on sub-MA machines.« less

  6. A VLBI resolution of the Pleiades distance controversy.

    PubMed

    Melis, Carl; Reid, Mark J; Mioduszewski, Amy J; Stauffer, John R; Bower, Geoffrey C

    2014-08-29

    Because of its proximity and its youth, the Pleiades open cluster of stars has been extensively studied and serves as a cornerstone for our understanding of the physical properties of young stars. This role is called into question by the "Pleiades distance controversy," wherein the cluster distance of 120.2 ± 1.5 parsecs (pc) as measured by the optical space astrometry mission Hipparcos is significantly different from the distance of 133.5 ± 1.2 pc derived with other techniques. We present an absolute trigonometric parallax distance measurement to the Pleiades cluster that uses very long baseline radio interferometry (VLBI). This distance of 136.2 ± 1.2 pc is the most accurate and precise yet presented for the cluster and is incompatible with the Hipparcos distance determination. Our results cement existing astrophysical models for Pleiades-age stars. Copyright © 2014, American Association for the Advancement of Science.

  7. KSC-99pp0972

    NASA Image and Video Library

    1999-07-21

    KENNEDY SPACE CENTER, FLA. -- A crane lifts the Shuttle Radar Topography Mission (SRTM), the primary payload on STS-99, from a payload canister used to transport it to Orbiter Processing Facility (OPF) bay 2 to the payload bay of the orbiter Endeavour. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation. The SRTM hardware includes one radar antenna in the Shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A

  8. KSC-99pp0969

    NASA Image and Video Library

    1999-07-21

    KENNEDY SPACE CENTER, FLA. -- A payload transporter, carrying a payload canister with the Shuttle Radar Topography Mission (SRTM) inside, pulls into Orbiter Processing Facility (OPF) bay 2. The SRTM, the primary payload on STS-99, will soon be installed into the payload bay of the orbiter Endeavour already undergoing processing in bay 2. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation. The SRTM hardware includes one radar antenna in the Shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A

  9. KSC-99pp0970

    NASA Image and Video Library

    1999-07-21

    KENNEDY SPACE CENTER, FLA. -- A crane is lowered over the payload canister with the Shuttle Radar Topography Mission (SRTM) inside in Orbiter Processing Facility (OPF) bay 2. The primary payload on STS-99, the SRTM will soon be lifted out of the canister and installed into the payload bay of the orbiter Endeavour. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation. The SRTM hardware includes one radar antenna in the Shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A

  10. KSC-99pp0971

    NASA Image and Video Library

    1999-07-21

    KENNEDY SPACE CENTER, FLA. -- A crane lifts the Shuttle Radar Topography Mission (SRTM), the primary payload on STS-99, from a payload canister used to transport it to Orbiter Processing Facility (OPF) bay 2. The SRTM will soon be installed into the payload bay of the orbiter Endeavour. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation. The SRTM hardware includes one radar antenna in the Shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A

  11. Towards a laboratory breadboard for PEGASE, the DARWIN pathfinder

    NASA Astrophysics Data System (ADS)

    Cassaing, F.; Le Duigou, J.-M.; Sorrente, B.; Fleury, B.; Gorius, N.; Brachet, F.; Buisset, C.; Ollivier, M.; Hénault, F.; Mourard, D.; Rabbia, Y.; Delpech, M.; Guidotti, P.-Y.; Léger, A.; Barillot, M.; Rouan, D.; Rousset, G.

    2017-11-01

    PEGASE, a spaceborne mission proposed to the CNES, is a 2-aperture interferometer for nulling and interferometric imaging. PEGASE is composed of 3 free-flying satellites (2 siderostats and 1 beam combiner) with baselines from 50 to 500 m. The goals of PEGASE are the spectroscopy of hot Jupiter (Pegasides) and brown dwarves, the exploration of the inner part of protoplanetary disks and the validation in real space conditions of nulling and visibility interferometry with formation flying. During a phase-0 study performed in 2005 at CNES, ONERA and in the laboratories, the critical subsystems of the optical payload have been investigated and a preliminary system integration has been performed. These subsystems are mostly the broadband (2.5-5 μm) nuller and the cophasing system (visible) dedicated to the real-time control of the OPD/tip/tilt inside the payload. A laboratory breadboard of the payload is under definition and should be built in 2007.

  12. NASA astrophysics - Optical systems to explore the universe

    NASA Technical Reports Server (NTRS)

    Pellerin, C. J., Jr.; Stencel, R. E.

    1983-01-01

    Major and minor NASA astrophysical research efforts in the near-term are outlined, together with projections of direction for future projects. The Space Telescope is being readied for a 1986 launch and will feature an f/24, 2.4 m aperture, an MgF2 mirror with better than 1/60 wavelength accuracy and will be diffraction-limited in the UV. Pointing accuracy is designed to be 0.007 arcsec for 24 hr. Optical, spectrometric, and photometric equipment will be included. Around 1990, Shuttle-based missions will include an IR telescope and a subarcsec solar surface imaging device. A free-flying X-ray observatory (AXAF) is planned and will include a sensitivity that exceeds that of the HEAO-2 spacecraft by two orders of magnitude. Instruments are under development for higher resolution UV, gamma-ray, and IR studies. In-orbit interferometry is being studied and will depend on in-orbit assembly and servicing of stable structures with segmented optics.

  13. PERSEE: a nulling interferometer with dynamic correction of external perturbations

    NASA Astrophysics Data System (ADS)

    Jacquinod, S.; Houairi, K.; Le Duigou, J.-M.; Barillot, M.; Cassaing, F.; Réess, J.-M.; Hénault, F.; Sorrente, B.; Morinaud, G.; Amans, J.-P.; Coudé du Foresto, V.; Ollivier, M.

    2017-11-01

    Nulling interferometry is one of the direct detection methods assessed to find and characterize extrasolar planets and particularly telluric ones. Several projects such as Darwin [1;2], TPF-I [3;4], PEGASE [5;6] or FKSI [7], are currently considered. One of the main issues is the feasibility of a stable polychromatic null despite the presence of significant disturbances, induced by vibrations, atmospheric turbulence on the ground or satellite drift. Satisfying all these requirements is a great challenge and a key issue of these missions. In the context of the PEGASE mission, it was decided (in 2006), to build a laboratory demonstrator named PERSEE. It is the first laboratory setup which couples deep nulling interferometry with a free flying GNC simulator [8]. It is developed by a consortium composed of CNES, IAS, LESIA, OCA, ONERA, and TAS. In this paper, we detail the main objectives, the set-up and the function of the bench. We describe all the subsystems and we focus particularly on two key points of PERSEE: the beam combiner and the Fringe tracker.

  14. Validation of SARAL/AltiKa data in the Amazon basin

    NASA Astrophysics Data System (ADS)

    Santos da Silva, Joecila; Calmant, Stephane; Medeiros Moreira, Daniel; Oliveira, Robson; Conchy, Taina; Gennero, Marie-Claude; Seyler, Frederique

    2015-04-01

    SARAL/AltiKa is a link between past missions (since it flies on the ERS-ENVISAT orbit with Ku band nadir altimeters in LRM) and future missions such as SWOT's Ka band interferometry swaths. In the present study, we compare the capability of its altimeter AltiKa to that of previous missions working in the Ku band such as ENVISAT and Jason-2 in retrieving water levels over the Amazon basin. Same as for the aforementioned preceding missions, the best results were obtained with the ICE-1 retracking algorithm. We qualitatively analyze the impact of rainfalls in the loss of measurements. Since making long -multi mission- time series is of major importance either for hydro-climatic studies or for basin management, we also present an estimate of the altimeter bias in order that the SARAL series of water level can be appended to those of these previous missions.

  15. Optical Distortion Evaluation in Large Area Windows using Interferometry

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.; Skow, Miles; Nurge, Mark A.

    2015-01-01

    It is important that imagery seen through large area windows, such as those used on space vehicles, not be substantially distorted. Many approaches are described in the literature for measuring the distortion of an optical window, but most suffer from either poor resolution or processing difficulties. In this paper a new definition of distortion is presented, allowing accurate measurement using an optical interferometer. This new definition is shown to be equivalent to the definitions provided by the military and the standards organizations. In order to determine the advantages and disadvantages of this new approach the distortion of an acrylic window is measured using three different methods; image comparison, Moiré interferometry, and phase-shifting interferometry.

  16. Seismic interferometry of the Bighorn Mountains: Using virtual source gathers to increase fold in sparse-source, dense-receiver data

    NASA Astrophysics Data System (ADS)

    Plescia, S. M.; Sheehan, A. F.; Haines, S. S.; Cook, S. W.; Worthington, L. L.

    2016-12-01

    The Bighorn Arch Seismic Experiment (BASE) was a combined active- and passive-source seismic experiment designed to image deep structures including the Moho beneath a basement-involved foreland arch. In summer 2010, over 1800 Texan receivers, with 4.5 Hz vertical component geophones, were deployed at 100-m to 1-km spacing in a region spanning the Bighorn Arch and the adjacent Bighorn and Powder River Basins. Twenty explosive sources were used to create seismic energy during a two-week acquisition period. Teleseismic earthquakes and mine blasts were also recorded during this time period. We utilize both virtual source interferometry and traditional reflection processing to better understand the deep crustal features of the region and the Moho. The large number of receivers, compared to the limited, widely spaced (10 - 30 km) active-source shots, makes the data an ideal candidate for virtual source seismic interferometry to increase fold. Virtual source interferometry results in data representing a geometry where receiver locations act as if they were seismic source positions. A virtual source gather, the product of virtual source interferometry, is produced by the cross correlation of one receiver's recording, the reference trace, with the recordings of all other receivers in a given shot gather. The cross correlation is repeated for all shot gathers and the resulting traces are stacked. This process is repeated until a virtual source gather has been determined for every real receiver location. Virtual source gathers can be processed with a standard reflection seismic processing flow to yield a reflection section. Improper static corrections can be detrimental to effective stacking, and determination of proper statics is often difficult in areas of significant contrast such as between basin and mountain areas. As such, a natural synergy exists between virtual source interferometry and modern industry reflection seismic processing, with its emphasis on detailed static correction and dense acquisition geometries.

  17. The Fourier-Kelvin Stellar Interferometer Mission Concept

    NASA Technical Reports Server (NTRS)

    Danchi, W. C.; Allen, R.; Benford, D.; Gezari, D.; Leisawitz, D.; Mundy, L.; Oegerle, William (Technical Monitor)

    2002-01-01

    The Fourier-Kelvin Stellar Interferometer (FKSI) is a mission concept for an imaging interferometer for the mid-infrared spectral region (5-30 microns). FKSI is conceived as a scientific and technological precursor to TPF as well as Space Infrared Interferometric Telescope (SPIRIT), Submillimeter Probe Evolution of Cosmic Structure (SPECS), and Single Aperture for Infrared Observatory (SAFIR). It will also be a high angular resolution system complementary to Next Generation Space Telescope (NGST). The scientific emphasis of the mission is on the evolution of protostellar systems, from just after the collapse of the precursor molecular cloud core, through the formation of the disk surrounding the protostar, the formation of planets in the disk, and eventual dispersal of the disk material. FKSI will also search for brown dwarfs and Jupiter mass and smaller planets, and could also play a very powerful role in the investigation of the structure of active galactic nuclei and extra-galactic star formation. We are in the process of studying alternative interferometer architectures and beam combination techniques, and evaluating the relevant science and technology tradeoffs. Some of the technical challenges include the development of the cryocooler systems necessary for the telescopes and focal plane array, light and stiff but well-damped truss systems to support the telescopes, and lightweight and coolable optical telescopes. The goal of the design study is to determine if a mid-infrared interferometry mission can be performed within the cost and schedule requirements of a Discovery class mission. At the present time we envision the FKSI as comprised of five one meter diameter telescopes arranged along a truss structure in a linear non-redundant array, cooled to 35 K. A maximum baseline of 20 meters gives a nominal resolution of 26 mas at 5 microns. Using a Fizeau beam combination technique, a simple focal plane camera could be used to obtain both Fourier and spectral data simultaneously for a given orientation of the array. The spacecraft will be rotated to give sufficient Fourier data to reconstruct complex images of a broad range of astrophysical sources.

  18. Lunar Reconnaissance Orbiter

    NASA Astrophysics Data System (ADS)

    Morgan, T.; Chin, G.

    2007-08-01

    NASA's Lunar Reconnaissance Orbiter (LRO) plans to launch in October 2008 with a companion secondary impactor mission, LCROSS, as the inaugural missions for the Exploration System Mission Directorate. LRO is a pathfinder whose objective is to obtain the needed information to prepare for eventual human return to the Moon. LRO will undertake at least one baseline year of operation with additional extended mission phase sponsored by NASA's Science Mission Directorate. LRO will employ six individual instruments to produce accurate maps and high-resolution images of future landing sites, to assess potential lunar resources, and to characterize the radiation environment. LRO will also test the feasibility of one advanced technology demonstration package. The LRO payload includes: Lunar Orbiter Laser Altimeter (LOLA) which will determine the global topography of the lunar surface at high resolution, measure landing site slopes, surface roughness, and search for possible polar surface ice in shadowed regions; Lunar Reconnaissance Orbiter Camera (LROC) which will acquire targeted narrow angle images of the lunar surface capable of resolving meter-scale features to support landing site selection, as well as wide-angle images to characterize polar illumination conditions and to identify potential resources; Lunar Exploration Neutron Detector (LEND) which will map the flux of neutrons from the lunar surface to search for evidence of water ice, and will provide space radiation environment measurements that may be useful for future human exploration; Diviner Lunar Radiometer Experiment (DLRE) which will chart the temperature of the entire lunar surface at approximately 300 meter horizontal resolution to identify cold-traps and potential ice deposits; Lyman-Alpha Mapping Project (LAMP) which will map the entire lunar surface in the far ultraviolet. LAMP will search for surface ice and frost in the polar regions and provide images of permanently shadowed regions illuminated only by starlight; Cosmic Ray Telescope for the Effects of Radiation (CRaTER), which will investigate the effect of galactic cosmic rays on tissue-equivalent plastics as a constraint on models of biological response to background space radiation. The technology demonstration is an advanced radar (mini-RF) that will demonstrate X- and S-band radar imaging and interferometry using a light-weight synthetic aperture radar.

  19. Tethered Formation Configurations: Meeting the Scientific Objectives of Large Aperture and Interferometric Science

    NASA Technical Reports Server (NTRS)

    Farley, Rodger E.; Quinn, David A.; Brodeur, Stephen J. (Technical Monitor)

    2001-01-01

    With the success of the Hubble Space Telescope, it has become apparent that new frontiers of science and discovery are made every time an improvement in imaging resolution is made. For the HST working primarily in the visible and near-visible spectrum, this meant designing, building, and launching a primary mirror approximately three meters in diameter. Conventional thinking tells us that accomplishing a comparable improvement in resolution at longer wavelengths for Earth and Space Science applications requires a corresponding increase in the size of the primary mirror. For wavelengths in the sub-millimeter range, a very large telescope with an effective aperture in excess of one kilometer in diameter would be needed to obtain high quality angular resolution. Realistically a single aperture this large is practically impossible. Fortunately such large apertures can be constructed synthetically. Possibly as few as three 34 meter diameter mirrors flying in precision formation could be used to collect light at these longer wavelengths permitting not only very large virtual aperture science to be carried out, but high-resolution interferometry as well. To ensure the longest possible mission duration, a system of tethered spacecraft will be needed to mitigate the need for a great deal of propellant. A spin-stabilized, tethered formation will likely meet these requirements. Several configurations have been proposed which possibly meet the needs of the Space Science community. This paper discusses two of them, weighing the relative pros and cons of each concept. The ultimate goal being to settle on a configuration which combines the best features of structure, tethers, and formation flying to meet the ambitious requirements necessary to make future large synthetic aperture and interferometric science missions successful.

  20. Tethered Formation Configurations: Meeting the Scientific Objectives of Large Aperture and Interferometric Science

    NASA Technical Reports Server (NTRS)

    Farley, Rodger E.; Quinn, David A.

    2004-01-01

    With the success of the Hubble Space Telescope, it has become apparent that new frontiers of science and discovery are made every time an improvement in imaging resolution is made. For the HST working primarily in the visible and near-visible spectrum, this meant designing, building and launching a primary mirror approximately three meters in diameter. Conventional thinking tells us that accomplishing a comparable improvement in resolution at longer wavelengths for Earth and Space Science applications requires a corresponding increase in the size of the primary mirror. For wavelengths in the sub-millimeter range, a very large telescope with an effective aperture in excess of one kilometer in diameter would be needed to obtain high quality angular resolution. Realistically a single aperture this large is practically impossible. Fortunately such large apertures can be constructed synthetically. Possibly as few as three 3 - 4 meter diameter mirrors flying in precision formation could be used to collect light at these longer wavelengths permitting not only very large virtual aperture science to be carried out, but high-resolution interferometry as well. To ensure the longest possible mission duration, a system of tethered spacecraft will be needed to mitigate the need for a great deal of propellant. A spin-stabilized, tethered formation will likely meet these requirements. Several configurations have been proposed which possibly meet the needs of the Space Science community. This paper discusses two of them, weighing the relative pros and cons of each concept. The ultimate goal being to settle on a configuration which combines the best features of structure, tethers and formation flying to meet the ambitious requirements necessary to make future large synthetic aperture and interferometric science missions successful.

  1. The simulation of lunar gravity field recovery from D-VLBI of Chang’E-1 and SELENE lunar orbiters

    NASA Astrophysics Data System (ADS)

    Yan, Jianguo; Ping, Jingsong; Matsumoto, K.; Li, Fei

    2008-07-01

    The lunar gravity field is a foundation to study the lunar interior structure, and to recover the evolution history of the Moon. It is still an open and key topic for lunar science. For above mentioned reasons, it becomes one of the important scientific objectives of recent lunar missions, such as KAGUYA (SELENE) the Japanese lunar mission and Chang’E-1, the Chinese lunar mission. The Chang’E-1 and the SELENE were successfully launched in 2007. It is estimated that these two missions can fly around the Moon longer than 6 months simultaneously. In these two missions, the Chinese new VLBI (Very Long Baseline Interferometry) network will be applied for precise orbit determination (POD) by using a differential VLBI (D-VLBI) method during the mission period. The same-beam D-VLBI technique will contribute to recover the lunar gravity field together with other conventional observables, i.e. R&RR (Range and Range Rate) and multi-way Doppler. Taking VLBI tracking conditions into consideration and using the GEODYNII/SOVLE software of GSFC/NASA/USA [Rowlands, D.D., Marshall, J.A., Mccarthy, J., et al. GEODYN II System Description, vols. 1 5. Contractor Report, Hughes STX Corp. Greenbelt, MD, 1997; Ullman, R.E. SOLVE program: mathematical formulation and guide to user input, Hughes/STX Contractor Report, Contract NAS5-31760. NASA Goddard Space Flight Center, Greenbelt, Maryland, 1994], we simulated the lunar gravity field recovering ability with and without D-VLBI between the Chang’E-1 and SELENE main satellite. The cases of overlapped flying and tracking period of 30 days, 60 days and 90 days have been analyzed, respectively. The results show that D-VLBI tracking between two lunar satellites can improve the gravity field recovery remarkably. The results and methods introduced in this paper will benefit the actual missions.

  2. Flow visualization of acoustic levitation experiment

    NASA Technical Reports Server (NTRS)

    Baroth, ED

    1987-01-01

    Acoustic levitation experiments for space applications were performed. Holographic interferometry is being used to study the heat transfer rates on a heated rod enclosed in a 6 cu in chamber. Acoustic waves at levels up to 150 db increased the heating rates to the rod by factors of three to four. High speed real time holographic interferometry was used to measure the boundary layer on the heated rod. Data reduction and digitization of the interferograms are being implemented.

  3. Real-time control using open source RTOS

    NASA Astrophysics Data System (ADS)

    Irwin, Philip C.; Johnson, Richard L., Jr.

    2002-12-01

    Complex telescope systems such as interferometers tend to rely heavily on hard real-time operating systems (RTOS). It has been standard practice at NASA's Jet Propulsion Laboratory (JPL) and many other institutions to use costly commercial RTOSs and hardware. After developing a real-time toolkit for VxWorks on the PowerPC platform (dubbed RTC), the interferometry group at JPL is porting this code to the real-time Application Interface (RTAI), an open source RTOS that is essentially an extension to the Linux kernel. This port has the potential to reduce software and hardware costs for future projects, while increasing the level of performance. The goals of this paper are to briefly describe the RTC toolkit, highlight the successes and pitfalls of porting the toolkit from VxWorks to Linux-RTAI, and to discuss future enhancements that will be implemented as a direct result of this port. The first port of any body of code is always the most difficult since it uncovers the OS-specific calls and forces "red flags" into those portions of the code. For this reason, It has also been a huge benefit that the project chose a generic, platform independent OS extension, ACE, and its CORBA counterpart, TAO. This port of RTC will pave the way for conversions to other environments, the most interesting of which is a non-real-time simulation environment, currently being considered by the Space Interferometry Mission (SIM) and the Terrestrial Planet Finder (TPF) Projects.

  4. Ka-band SAR interferometry studies for the SWOT mission

    NASA Astrophysics Data System (ADS)

    Fernandez, D. E.; Fu, L.; Rodriguez, E.; Hodges, R.; Brown, S.

    2008-12-01

    The primary objective of the NRC Decadal Survey recommended SWOT (Surface Water and Ocean Topography) Mission is to measure the water elevation of the global oceans, as well as terrestrial water bodies (such as rivers, lakes, reservoirs, and wetlands), to answer key scientific questions on the kinetic energy of ocean circulation, the spatial and temporal variability of the world's surface freshwater storage and discharge, and to provide societal benefits on predicting climate change, coastal zone management, flood prediction, and water resources management. The SWOT mission plans to carry the following suite of microwave instruments: a Ka-band interferometer, a dual-frequency nadir altimeter, and a multi-frequency water-vapor radiometer dedicated to measuring wet tropospheric path delay to correct the radar measurements. We are currently funded by the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP) to reduce the risk of the main technological drivers of SWOT, by addressing the following technologies: the Ka-band radar interferometric antenna design, the on-board interferometric SAR processor, and the internally calibrated high-frequency radiometer. The goal is to significantly enhance the readiness level of the new technologies required for SWOT, while laying the foundations for the next-generation missions to map water elevation for studying Earth. The first two technologies address the challenges of the Ka-band SAR interferometry, while the high- frequency radiometer addresses the requirement for small-scale wet tropospheric corrections for coastal zone applications. In this paper, we present the scientific rational, need and objectives behind these technology items currently under development.

  5. The use of holographic interferometry for measurements of temperature in a rectangular heat pipe. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Marn, Jure

    1989-01-01

    Holographic interferometry is a nonintrusive method and as such possesses considerable advantages such as not disturbing the velocity and temperature field by creating obstacles which would alter the flow field. These optical methods have disadvantages as well. Holography, as one of the interferometry methods, retains the accuracy of older methods, and at the same time eliminates the system error of participating components. The holographic interferometry consists of comparing the objective beam with the reference beam and observing the difference in lengths of optical paths, which can be observed during the propagation of the light through a medium with locally varying refractive index. Thus, change in refractive index can be observed as a family of nonintersecting surfaces in space (wave fronts). The object of the investigation was a rectangular heat pipe. The goal was to measure temperatures in the heat pipe, which yields data for computer code or model assessment. The results were obtained by calculating the temperatures by means of finite fringes.

  6. Development of Speckle Interferometry Algorithm and System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shamsir, A. A. M.; Jafri, M. Z. M.; Lim, H. S.

    2011-05-25

    Electronic speckle pattern interferometry (ESPI) method is a wholefield, non destructive measurement method widely used in the industries such as detection of defects on metal bodies, detection of defects in intergrated circuits in digital electronics components and in the preservation of priceless artwork. In this research field, this method is widely used to develop algorithms and to develop a new laboratory setup for implementing the speckle pattern interferometry. In speckle interferometry, an optically rough test surface is illuminated with an expanded laser beam creating a laser speckle pattern in the space surrounding the illuminated region. The speckle pattern is opticallymore » mixed with a second coherent light field that is either another speckle pattern or a smooth light field. This produces an interferometric speckle pattern that will be detected by sensor to count the change of the speckle pattern due to force given. In this project, an experimental setup of ESPI is proposed to analyze a stainless steel plate using 632.8 nm (red) wavelength of lights.« less

  7. Azimuthally sensitive hanbury brown-twiss interferometry in Au + Au collisions sqrt S sub NN = 200 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, J.; Adler, C.; Aggarwal, M.M.

    2004-06-30

    We present the results of a systematic study of the shape of the pion distribution in coordinate space at freeze-out in Au+Au collisions at RHIC using two-pion Hanbury Brown-Twiss (HBT) interferometry. Oscillations of the extracted HBT radii vs. emission angle indicate sources elongated perpendicular to the reaction plane. The results indicate that the pressure and expansion time of the collision system are not sufficient to completely quench its initial shape.

  8. Use of Holographic Fringe Linearization Interferometry (FLI) for Detection of Defects.

    DTIC Science & Technology

    1985-11-01

    ei FINAL REPORT on Contract F49620-82-C-0001 USE OF HOLOGRAPHIC FRINGE LINEARIZATION INTERFEROMETRY (FLI) FOR DETECTION OF DEFECTS...TECHNICAL RESULTS OF RESEARCH EFFORT ADDITIONAL TO THOSE IN APPENDIXES A THROUGH EI , •5.1 FINITE ELEMENT ANALYSIS OF FLI EXPERIMENTS Throughout this...between exposures in holographic F1.1 appear to and f(x’,t) = ei k,1(x") in Eq. (4). The revised image of Eq. (5) be localized in the space on and about

  9. Probing dark energy with atom interferometry

    NASA Astrophysics Data System (ADS)

    Burrage, Clare; Copeland, Edmund J.; Hinds, E. A.

    2015-03-01

    Theories of dark energy require a screening mechanism to explain why the associated scalar fields do not mediate observable long range fifth forces. The archetype of this is the chameleon field. Here we show that individual atoms are too small to screen the chameleon field inside a large high-vacuum chamber, and therefore can detect the field with high sensitivity. We derive new limits on the chameleon parameters from existing experiments, and show that most of the remaining chameleon parameter space is readily accessible using atom interferometry.

  10. Basis-neutral Hilbert-space analyzers

    PubMed Central

    Martin, Lane; Mardani, Davood; Kondakci, H. Esat; Larson, Walker D.; Shabahang, Soroush; Jahromi, Ali K.; Malhotra, Tanya; Vamivakas, A. Nick; Atia, George K.; Abouraddy, Ayman F.

    2017-01-01

    Interferometry is one of the central organizing principles of optics. Key to interferometry is the concept of optical delay, which facilitates spectral analysis in terms of time-harmonics. In contrast, when analyzing a beam in a Hilbert space spanned by spatial modes – a critical task for spatial-mode multiplexing and quantum communication – basis-specific principles are invoked that are altogether distinct from that of ‘delay’. Here, we extend the traditional concept of temporal delay to the spatial domain, thereby enabling the analysis of a beam in an arbitrary spatial-mode basis – exemplified using Hermite-Gaussian and radial Laguerre-Gaussian modes. Such generalized delays correspond to optical implementations of fractional transforms; for example, the fractional Hankel transform is the generalized delay associated with the space of Laguerre-Gaussian modes, and an interferometer incorporating such a ‘delay’ obtains modal weights in the associated Hilbert space. By implementing an inherently stable, reconfigurable spatial-light-modulator-based polarization-interferometer, we have constructed a ‘Hilbert-space analyzer’ capable of projecting optical beams onto any modal basis. PMID:28344331

  11. Optical bench development for LISA

    NASA Astrophysics Data System (ADS)

    d'Arcio, L.; Bogenstahl, J.; Dehne, M.; Diekmann, C.; Fitzsimons, E. D.; Fleddermann, R.; Granova, E.; Heinzel, G.; Hogenhuis, H.; Killow, C. J.; Perreur-Lloyd, M.; Pijnenburg, J.; Robertson, D. I.; Shoda, A.; Sohmer, A.; Taylor, A.; Tröbs, M.; Wanner, G.; Ward, H.; Weise, D.

    2017-11-01

    For observation of gravitational waves at frequencies between 30 μHz and 1 Hz, the LISA mission will be implemented in a triangular constellation of three identical spacecraft, which are mutually linked by laser interferometry in an active transponder scheme over a 5 million kilometer arm length. On the end point of each laser link, remote and local beam metrology with respect to inertial proof masses inside the spacecraft is realized by the LISA Optical Bench. It implements further- more various ancillary functions such as point-ahead correction, acquisition sensing, transmit beam conditioning, and laser redundancy switching. A comprehensive design of the Optical Bench has been developed, which includes all of the above mentioned functions and at the same time ensures manufacturability on the basis of hydroxide catalysis bonding, an ultrastable integration technology already perfected in the context of LISA's technology demonstrator mission LISA Pathfinder. Essential elements of this design have been validated by dedicated pre-investigations. These include the demonstration of polarizing heterodyne interferometry at the required Picometer and Nanoradian performance levels, the investigation of potential non-reciprocal noise sources in the so-called backlink fiber, as well as the development of a laser redundancy switch breadboard.

  12. Radio Occultation Experiments with Venus Express and Mars Express using the Planetary Radio Interferometry and Doppler Experiment (PRIDE) Technique

    NASA Astrophysics Data System (ADS)

    Bocanegra Bahamon, T.; Gurvits, L.; Molera Calves, G.; Cimo, G.; Duev, D.; Pogrebenko, S.; Dirkx, D.; Rosenblatt, P.

    2017-12-01

    The Planetary Radio Interferometry and Doppler Experiment (PRIDE) is a technique that can be used to enhance multiple radio science experiments of planetary missions. By 'eavesdropping' on the spacecraft signal using radio telescopes from different VLBI networks around the world, the PRIDE technique provides precise open-loop Doppler and VLBI observables to able to reconstruct the spacecraft's orbit. The application of this technique for atmospheric studies has been assessed by observing ESA's Venus Express (VEX) and Mars Express (MEX) during multiple Venus and Mars occultation events between 2012 and 2014. From these observing sessions density, temperature and pressure profiles of Venus and Mars neutral atmosphere and ionosphere have been retrieved. We present an error propagation analysis where the uncertainties of the atmospheric properties measured with this technique have been derived. These activities serve as demonstration of the applicability of the PRIDE technique for radio occultation studies, and provides a benchmark against the traditional Doppler tracking provided by the NASA's DSN and ESA's Estrack networks for these same purposes, in the framework of the upcoming ESA JUICE mission to the Jovian system.

  13. Spacecraft-spacecraft very long baseline interferometry. Part 1: Error modeling and observable accuracy

    NASA Technical Reports Server (NTRS)

    Edwards, C. D., Jr.; Border, J. S.

    1992-01-01

    In Part 1 of this two-part article, an error budget is presented for Earth-based delta differential one-way range (delta DOR) measurements between two spacecraft. Such observations, made between a planetary orbiter (or lander) and another spacecraft approaching that planet, would provide a powerful target-relative angular tracking data type for approach navigation. Accuracies of better than 5 nrad should be possible for a pair of spacecraft with 8.4-GHz downlinks, incorporating 40-MHz DOR tone spacings, while accuracies approaching 1 nrad will be possible if the spacecraft incorporate 32-GHz downlinks with DOR tone spacing on the order of 250 MHz; these accuracies will be available for the last few weeks or months of planetary approach for typical Earth-Mars trajectories. Operational advantages of this data type are discussed, and ground system requirements needed to enable spacecraft-spacecraft delta DOR observations are outlined. This tracking technique could be demonstrated during the final approach phase of the Mars '94 mission, using Mars Observer as the in-orbit reference spacecraft, if the Russian spacecraft includes an 8.4-GHz downlink incorporating DOR tones. Part 2 of this article will present an analysis of predicted targeting accuracy for this scenario.

  14. Testing the TPF Interferometry Approach before Launch

    NASA Technical Reports Server (NTRS)

    Serabyn, Eugene; Mennesson, Bertrand

    2006-01-01

    One way to directly detect nearby extra-solar planets is via their thermal infrared emission, and with this goal in mind, both NASA and ESA are investigating cryogenic infrared interferometers. Common to both agencies' approaches to faint off-axis source detection near bright stars is the use of a rotating nulling interferometer, such as the Terrestrial Planet Finder interferometer (TPF-I), or Darwin. In this approach, the central star is nulled, while the emission from off-axis sources is transmitted and modulated by the rotation of the off-axis fringes. Because of the high contrasts involved, and the novelty of the measurement technique, it is essential to gain experience with this technique before launch. Here we describe a simple ground-based experiment that can test the essential aspects of the TPF signal measurement and image reconstruction approaches by generating a rotating interferometric baseline within the pupil of a large singleaperture telescope. This approach can mimic potential space-based interferometric configurations, and allow the extraction of signals from off-axis sources using the same algorithms proposed for the space-based missions. This approach should thus allow for testing of the applicability of proposed signal extraction algorithms for the detection of single and multiple near-neighbor companions...

  15. Recovering the time-variable gravitational field using satellite gradiometry: requirements and gradiometer concept

    NASA Astrophysics Data System (ADS)

    Douch, Karim; Müller, Jürgen; Heinzel, Gerhard; Wu, Hu

    2017-04-01

    The successful GRACE mission and its far-reaching benefits have highlighted the interest to continue and extend the mapping of the Earth's time-variable gravitational field with follow-on missions and ideally a higher spatiotemporal resolution. Here, we would like to put forward satellite gravitational gradiometry as an alternative solution to satellite-to-satellite tracking for future missions. Besides the higher sensitivity to smaller scales compared to GRACE-like missions, a gradiometry mission would only require one satellite and would provide a direct estimation of a functional of the gravitational field. GOCE, the only gradiometry mission launched so far, was not sensitive enough to map the time-variable part of the gravity field. However, the unprecedented precision of the state-of-the-art optical metrology system on-board the LISA PATHFINDER satellite has opened the way to more performant space inertial sensors. We will therefore examine whether it is technically possible to go beyond GOCE performances and to quantify to what extent the time-variable gravitational field could be determined. First, we derive the requirements on the knowledge of the attitude and the position of the satellite and on the measured gradients in terms of sensitivity and calibration accuracy for a typical repeat low-orbit. We conclude in particular that a noise level smaller than 0.1 mE/√Hz- is required in the measurement bandwidth [5x10-4 ; 10-2]Hz so as to be sensitive to the time-variable gravity signal. We introduce then the design and characteristics of the new gradiometer concept and give an assessment of its noise budget. Contrary to the GOCE electrostatic gradiometer, the position of the test-mass in the accelerometer is measured here by laser interferometry rather than by a capacitive readout system, which improves the overall measurement chain. Finally, the first results of a performance analysis carried out thanks to an end-to-end simulator are discussed and compared to the previously defined requirements.

  16. Science Experiments of a Jupiter Trojan asteroid in the Solar Power Sail Mission

    NASA Astrophysics Data System (ADS)

    Okada, T.; Kebukawa, Y.; Aoki, J.; Kawai, Y.; Ito, M.; Yano, H.; Okamoto, C.; Matsumoto, J.; Bibring, J. P.; Ulamec, S.; Jaumann, R.; Iwata, T.; Mori, O.; Kawaguchi, J.

    2017-12-01

    A Jupiter Trojan asteroid mission using a large area solar power sail (SPS) is under study in JAXA in collaboration with DLR and CNES. The asteroid will be investigated through remote sensing, followed by in situ in-depth observations on the asteroid with a lander. A sample-return is also studied as an option. LUCY has been selected as the NASA's future Discovery class mission which aims at understanding the diversity of Jupiter Trojans by multiple flybys, complementally to the SPS mission. The SPS is a candidate of the next medium class space science mission in Japan. The 1.4-ton spacecraft will carry a 100-kg class lander and 20-kg mission payloads on it. Its launch is expected in mid 2020s, and will take at least 11 years to visit a Jupiter Trojan asteroid. During the cruise phase, science experiments will be performed such as an infrared astronomy, a very long baseline gamma ray interferometry, and dust and magnetic field measurements. A classical static model of solar system suggests that the Jupiter Trojans were formed around the Jupiter region, while a dynamical model such as Nice model indicates that they formed at the far end of the solar system and then scattered inward due to a dynamical migration of giant planets. The physical, mineralogical, organics and isotopic distribution in the heliocentric distance could solve their origin and evolution of the solar system. A global mapping of the asteroid from the mothership will be conducted such as high-resolved imaging, NIR and TIR imaging spectrometry, and radar soundings. The lander will characterize the asteroid with geological, mineralogical, and geophysical observations using a panoramic camera, an infrared hyperspectral imager, a magnetometer, and a thermal radiometer. These samples will be measured by a high resolved mass spectrometer (HRMS) to investigate isotopic ratios of hydrogen, nitrogen, oxygen, as well as organic species.

  17. An atomic gravitational wave interferometric sensor in low earth orbit (AGIS-LEO)

    NASA Astrophysics Data System (ADS)

    Hogan, Jason M.; Johnson, David M. S.; Dickerson, Susannah; Kovachy, Tim; Sugarbaker, Alex; Chiow, Sheng-Wey; Graham, Peter W.; Kasevich, Mark A.; Saif, Babak; Rajendran, Surjeet; Bouyer, Philippe; Seery, Bernard D.; Feinberg, Lee; Keski-Kuha, Ritva

    2011-07-01

    We propose an atom interferometer gravitational wave detector in low Earth orbit (AGIS-LEO). Gravitational waves can be observed by comparing a pair of atom interferometers separated by a 30 km baseline. In the proposed configuration, one or three of these interferometer pairs are simultaneously operated through the use of two or three satellites in formation flight. The three satellite configuration allows for the increased suppression of multiple noise sources and for the detection of stochastic gravitational wave signals. The mission will offer a strain sensitivity of {<10^{-18}/sqrt{Hz}} in the 50mHz-10Hz frequency range, providing access to a rich scientific region with substantial discovery potential. This band is not currently addressed with the LIGO, VIRGO, or LISA instruments. We analyze systematic backgrounds that are relevant to the mission and discuss how they can be mitigated at the required levels. Some of these effects do not appear to have been considered previously in the context of atom interferometry, and we therefore expect that our analysis will be broadly relevant to atom interferometric precision measurements. Finally, we present a brief conceptual overview of shorter-baseline ({lesssim100 m}) atom interferometer configurations that could be deployed as proof-of-principle instruments on the International Space Station (AGIS-ISS) or an independent satellite.

  18. Imaging a Black Hole - Maxim

    NASA Astrophysics Data System (ADS)

    Cash, W.

    With the general acceptance of black holes as real entities the astrophysics community has turned its attention to studying their behavior and properties. Because of the great distance and compact size of the central engine, astronomers are currently limited to spectroscopic analysis. But to take a picture, or better yet a movie, of the black hole in silhouette against its accretion disk would be a triumph of exploration and scientific inquiry. Probing to the event horizon is best accomplished in the x-ray band, where material primarily radiates in the last orbits before its final plunge. Not only will the signal be bright and minimally confused in the x-ray, but the size of the required interferometer drops dramatically. We describe MAXIM, the Micro-Arcsecond X-ray Imaging Mission, which is now being studied and developed by NASA. We will explain the preliminary mission concept which will use currently existing technology to achieve spatial resolution one million times higher than that of the Hubble Space Telescope and capture the image of an event horizon in a nearby Active Galactic Nucleus. We will also describe the Maxim Pathfinder. Designed as a stepping stone at resolution of 100 microarcseconds, it will demonstrate the techniques of x-ray interferometry and perform groundbreaking science like resolving the coronae of the nearby stars.

  19. Imaging a black hole - Maxim

    NASA Astrophysics Data System (ADS)

    Cash, W.

    With the general acceptance of black holes as real entities the astrophysics community has turned its attention to studying their behavior and properties. Because of the great distance and compact size of the central engine, astronomers are currently limited to spectroscopic analysis. But to take a picture, or better yet a movie, of the black hole in silhouette against its accretion disk would be a triumph of exploration and scientific inquiry. Probing to the event horizon is best accomplished in the x-ray band, where material primarily radiates in the last orbits before its final plunge. Not only will the signal be bright and minimally confused in the x-ray, but the size of the required interferometer drops dramatically. We describe MAXIM, the Micro-Arcsecond X-ray Imaging Mission, which is now being studied and developed by NASA. We will explain the preliminary mission concept which will use currently existing technology to achieve spatial resolution one million times higher than that of the Hubble Space Telescope and capture the image of an event horizon in a nearby Active Galactic Nucleus. We will also describe the Maxim Pathfinder. Designed as a stepping stone at resolution of 100 microarcseconds, it will demonstrate the techniques of xray- interferometry and perform groundbreaking science like resolving the coronae of the nearby stars.

  20. Imaging a black hole: MAXIM

    NASA Astrophysics Data System (ADS)

    Cash, W.

    With the general acceptance of black holes as real entities the astrophysics community has turned its attention to studying their behavior and properties. Because of the great distance and compact size of the central engine, astronomers are limited to spectroscopic analysis. But to take a picture, or better yet a movie, of the black hole in silhouette against its accretion disk would be a triumph of exploration and scientific inquiry. Probing to the event horizon is best accomplished in the X-ray band, where material primarily radiates in the last orbits before its final plunge. Not only will the signal be bright and minimally confused in the X-ray, but the size of the required interferometer drops dramatically. We describe MAXIM, the Micro-Arcsecond X-ray Imaging Mission, which is now being studied and developed by NASA. We will explain the preliminary mission concept which will use currently existing technology to achieve spatial resolution one million times higher than that of the Hubble Space Telescope and capture the image of an event horizon in a nearby Active Galactic Nucleus. We will also describe the MAXIM Pathfinder. Designed as a stepping stone at resolution of 100 micro-arcseconds, it will demonstrate the techniques of X-ray interferometry and perform groundbreaking science like resolving the coronae of the nearby stars.

  1. Multi-link laser interferometer architecture for a next generation GRACE

    NASA Astrophysics Data System (ADS)

    Francis, Samuel Peter

    When GRACE Follow-On (GRACE-FO) launches, it will be the first time a laser interferometer has been used to measure displacement between spacecraft. In the future, interspacecraft laser interferometry will be used in LISA, a space-based gravitational wave detector, that requires the change in separation between three spacecraft to be measured with a resolution of 1 pm/rtHz. The sensitivity of an interspacecraft interferometer is potentially limited by spacecraft degrees-of-freedom, such as rotation, coupling into the interspacecraft displacement measurement. GRACE-FO and LISA therefore have strict requirements placed on the positioning and alignment of the interferometers during spacecraft integration. Decades of work has gone into adapting traditionally lab-based techniques for these space applications. As an example, GRACE-FO stops rotation of the two spacecraft from coupling into displacement using the triple mirror assembly. The triple mirror assembly is a precision optic, comprised of three mirrors, that function as a retroreflector. Provided the triple mirror assembly vertex coincides with the spacecraft centre of mass, any spacecraft rotation will asymmetrically lengthen and shorten the optical pathlengths of the incoming and outgoing beams, ensuring that the round trip pathlength between the spacecraft is unaffected. To achieve the required displacement sensitivity, the triple mirror assembly vertex must be positioned within 0.5 mm of the spacecraft centre of mass, making spacecraft integration challenging. In this thesis a new, all-fibre interferometer architecture is presented that aims to simplify the positioning and alignment of space-based interferometers. Using multiple interspacecraft link measurements and high-speed signal processing the interspacecraft displacement is synthesised in post-processing. The multi-link interferometry concept is similar to the triple mirror assembly's symmetric suppression of rotation, however, since the rotation-to-pathlength cancellation is performed in post-processing, the weighting of each interspacecraft link measurement can be optimised to completely cancel any rotation coupled error. Consequently, any uncertainty in the positioning of the multi-link interferometer during spacecraft integration can be corrected for in post-processing. The strict hardware integration requirements of current interferometers can therefore be relaxed, enabling a new class of simpler, cheaper missions. (Abstract shortened by ProQuest.).

  2. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1985-01-01

    Reports on developments in space communications, radio navigation, radio science, and ground-based radio astronomy are presented. Activities of the Deep Space Network (DSN) are reported in the areas of planning, supporting research and technology, implementation and operations. The application of radio interferometry at microwave frequencies for geodynamic measurements is also discussed.

  3. SIM Planetquest Science and Technology: A Status Report

    NASA Technical Reports Server (NTRS)

    Edberg, Stephen J.; Laskin, Robert A.; Marr, James C., IV; Unwin, Stephen C.; Shao, Michael

    2007-01-01

    Optical interferometry will open new vistas for astronomy over the next decade. The Space Interferometry Mission (SIM-PlanetQuest), operating unfettered by the Earth's atmosphere, will offer unprecedented astrometric precision that promises the discovery of Earth-analog extra-solar planets as well as a wealth of important astrophysics. Results from SIM will permit the determination of stellar masses to accuracies of 2% or better for objects ranging from brown dwarfs through main sequence stars to evolved white dwarfs, neutron stars, and black holes. Studies of star clusters will yield age determinations and internal dynamics. Microlensing measurements will present the mass spectrum of the Milky Way internal to the Sun while proper motion surveys will show the Sun's orbital radius and speed. Studies of the Galaxy's halo component and companion dwarf galaxies permit the determination of the Milky Way's mass distribution, including its Dark Matter component and the mass distribution and Dark Matter component of the Local Group. Cosmology benefits from precision (1-2%) determination of distances to Cepheid and RR Lyrae standard candles. The emission mechanism of supermassive black holes will be investigated. Finally, radio and optical celestial reference frames will be tied together by an improvement of two orders of magnitude. Optical interferometers present severe technological challenges. The Jet Propulsion Laboratory, with the support of Lockheed Martin Advanced Technology Center (LM ATC) and Northrop Grumman Space Technology (NGST), has addressed these challenges with a technology development program that is now complete. The requirements for SIM have been satisfied, based on outside peer review, using a series of laboratory tests and appropriate computer simulations: laser metrology systems perform with 10 picometer precision; mechanical vibrations have been controlled to nanometers, demonstrating orders of magnitude disturbance rejection; and knowledge of component positions throughout the whole test assembly has been demonstrated to the required picometer level. Technology transfer to the SIM flight team is now well along.

  4. SIM PlanetQuest science and technology: a status report

    NASA Astrophysics Data System (ADS)

    Edberg, Stephen J.; Laskin, Robert A.; Marr, James C., IV; Unwin, Stephen C.; Shao, Michael

    2007-09-01

    Optical interferometry will open new vistas for astronomy over the next decade. The Space Interferometry Mission (SIM-PlanetQuest), operating unfettered by the Earth's atmosphere, will offer unprecedented astrometric precision that promises the discovery of Earth-analog extra-solar planets as well as a wealth of important astrophysics. Results from SIM will permit the determination of stellar masses to accuracies of 2% or better for objects ranging from brown dwarfs through main sequence stars to evolved white dwarfs, neutron stars, and black holes. Studies of star clusters will yield age determinations and internal dynamics. Microlensing measurements will present the mass spectrum of the Milky Way internal to the Sun while proper motion surveys will show the Sun's orbital radius and speed. Studies of the Galaxy's halo component and companion dwarf galaxies permit the determination of the Milky Way's mass distribution, including its Dark Matter component and the mass distribution and Dark Matter component of the Local Group. Cosmology benefits from precision (1-2%) determination of distances to Cepheid and RR Lyrae standard candles. The emission mechanism of supermassive black holes will be investigated. Finally, radio and optical celestial reference frames will be tied together by an improvement of two orders of magnitude. Optical interferometers present severe technological challenges. The Jet Propulsion Laboratory, with the support of Lockheed Martin Advanced Technology Center (LM ATC) and Northrop Grumman Space Technology (NGST), has addressed these challenges with a technology development program that is now complete. The requirements for SIM have been satisfied, based on outside peer review, using a series of laboratory tests and appropriate computer simulations: laser metrology systems perform with 10 picometer precision; mechanical vibrations have been controlled to nanometers, demonstrating orders of magnitude disturbance rejection; and knowledge of component positions throughout the whole test assembly has been demonstrated to the required picometer level. Technology transfer to the SIM flight team is now well along.

  5. Exozodiacal Dust Workshop

    NASA Technical Reports Server (NTRS)

    Backman, D. E. (Editor); Caroff, L. J. (Editor); Sandford, S. A. (Editor); Wooden, D. H. (Editor)

    1998-01-01

    The purpose of the workshop was to understand what effect circumstellar dust clouds will have on NASA's proposed Terrestrial Planet Finder (TPF) mission's ability to search for terrestrial-sized planets orbiting stars in the solar neighborhood. The workshop participants reviewed the properties of TPF, summarized what is known about the local zodiacal cloud and about exozodiacal clouds, and determined what additional knowledge must be obtained to help design TPF for maximum effectiveness within its cost constraint. Recommendations were made for ways to obtain that additional knowledge, at minimum cost. The workshop brought together approximately 70 scientists, from four different countries. The active participants included astronomers involved in the study of the local zodiacal cloud, in the formation of stars and planetary systems, and in the technologies and techniques of ground- and space-based infrared interferometry. During the course of the meeting, 15 invited talks and 20 contributed poster papers were presented, and there were four working sessions. This is a collection of the invited talks, contributed poster papers, and summaries of the working sessions.

  6. Interferometric observations of main-sequence stars: fundamental stellar astrophysics, circumstellar matter, and kinematics

    NASA Astrophysics Data System (ADS)

    Bakker, Eric J.; Eiroa, Carlos

    2003-10-01

    With our minds focussed on the direct detection of planets using the space interferometry mission DARWIN/TPF, we have made an attempt to identify how the set of ESO Very Large Telescope Interferometer instruments available now, and in the near future (VINCI, MIDI, AMBER, GENIE, FINITO and PRIMA) could contribute to the DARWIN/TPF precursory science program. In particular related to the identification of a short list of science stars to be observed with DARWIN/TPF. We have identified two research projects which can be viewed as DARWIN/TPF precursory science and can be embarked upon shortly using the available VLTI instruments: (1) the direct measurement of stellar angular diameters of a statistically meaningful sample of main-sequence stars with AMBER; (2) an interferometric study of those main-sequence stars that exhibit an infrared excess with either AMBER or MIDI. On the longer run, VLTI can obviously make a significant impact through the exploitation of the infrared nuller GENIE and the astrometric facility PRIMA.

  7. Next-generation Event Horizon Telescope developments: new stations for enhanced imaging

    NASA Astrophysics Data System (ADS)

    Palumbo, Daniel; Johnson, Michael; Doeleman, Sheperd; Chael, Andrew; Bouman, Katherine

    2018-01-01

    The Event Horizon Telescope (EHT) is a multinational Very Long Baseline Interferometry (VLBI) network of dishes joined to resolve general relativistic behavior near a supermassive black hole. The imaging quality of the EHT is largely dependent upon the sensitivity and spatial frequency coverage of the many baselines between its constituent telescopes. The EHT already contains many highly sensitive dishes, including the crucial Atacama Large Millimeter/Submillimeter Array (ALMA), making it viable to add smaller, cheaper telescopes to the array, greatly improving future capabilities of the EHT. We develop tools for optimizing the positions of new dishes in planned arrays. We also explore the feasibility of adding small orbiting dishes to the EHT, and develop orbital optimization tools for space-based VLBI imaging. Unlike the Millimetron mission planned to be at L2, we specifically treat near-earth orbiters, and find rapid filling of spatial frequency coverage across a large range of baseline lengths. Finally, we demonstrate significant improvement in image quality when adding small dishes to planned arrays in simulated observations.

  8. Error Modeling of Multibaseline Optical Truss: Part 1: Modeling of System Level Performance

    NASA Technical Reports Server (NTRS)

    Milman, Mark H.; Korechoff, R. E.; Zhang, L. D.

    2004-01-01

    Global astrometry is the measurement of stellar positions and motions. These are typically characterized by five parameters, including two position parameters, two proper motion parameters, and parallax. The Space Interferometry Mission (SIM) will derive these parameters for a grid of approximately 1300 stars covering the celestial sphere to an accuracy of approximately 4uas, representing a two orders of magnitude improvement over the most precise current star catalogues. Narrow angle astrometry will be performed to a 1uas accuracy. A wealth of scientific information will be obtained from these accurate measurements encompassing many aspects of both galactic (and extragalactic science. SIM will be subject to a number of instrument errors that can potentially degrade performance. Many of these errors are systematic in that they are relatively static and repeatable with respect to the time frame and direction of the observation. This paper and its companion define the modeling of the, contributing factors to these errors and the analysis of how they impact SIM's ability to perform astrometric science.

  9. The Least-Squares Calibration on the Micro-Arcsecond Metrology Test Bed

    NASA Technical Reports Server (NTRS)

    Zhai, Chengxing; Milman, Mark H.; Regehr, Martin W.

    2006-01-01

    The Space Interferometry Mission (S1M) will measure optical path differences (OPDs) with an accuracy of tens of picometers, requiring precise calibration of the instrument. In this article, we present a calibration approach based on fitting star light interference fringes in the interferometer using a least-squares algorithm. The algorithm is first analyzed for the case of a monochromatic light source with a monochromatic fringe model. Using fringe data measured on the Micro-Arcsecond Metrology (MAM) testbed with a laser source, the error in the determination of the wavelength is shown to be less than 10pm. By using a quasi-monochromatic fringe model, the algorithm can be extended to the case of a white light source with a narrow detection bandwidth. In SIM, because of the finite bandwidth of each CCD pixel, the effect of the fringe envelope can not be neglected, especially for the larger optical path difference range favored for the wavelength calibration.

  10. Speckle interferometry of Hipparcos link stars. III

    NASA Technical Reports Server (NTRS)

    White, Graeme L.; Jauncey, David L.; Reynolds, John E.; Blackmore, David R.; Matcher, Steven J.

    1991-01-01

    A third list of stars is presented which have been tested by speckle interferometry for use in the Hubble Space Telescope link between the Hipparcos astrometric reference frame and the extragalactic VLBI reference frame. Structural information on angular scales of 0.15-1.2 arcsec for 34 Southern Hemisphere stars is reported from observations made with the Imperial College Speckle Interferometer mounted on the Mount Stromlo 1.9-m telescope. Twenty-four percent of the stars (8 out of the 34) show evidence of multiplicity, in agreement with previous observations in this program.

  11. Photon interferometry of Au+Au collisions at the BNL Relativistic Heavy-Ion Collider.

    PubMed

    Bass, Steffen A; Müller, Berndt; Srivastava, Dinesh K

    2004-10-15

    We calculate the two-body correlation function of direct photons produced in central Au+Au collisions at the Relativistic Heavy-Ion Collider. Our calculation includes contributions from the early preequilibrium phase in which photons are produced via hard parton scatterings as well as radiation of photons from a thermalized quark-gluon plasma and the subsequent expanding hadron gas. We find that high energy photon interferometry provides a faithful probe of the details of the space-time evolution and of the early reaction stages of the system.

  12. Precise relative navigation using augmented CDGPS

    NASA Astrophysics Data System (ADS)

    Park, Chan-Woo

    2001-10-01

    Autonomous formation flying of multiple vehicles is a revolutionary enabling technology for many future space and earth science missions that require distributed measurements, such as sparse aperture radars and stellar interferometry. The techniques developed for the space applications will also have a significant impact on many terrestrial formation flying missions. One of the key requirements of formation flying is accurate knowledge of the relative positions and velocities between the vehicles. Several researchers have shown that the GPS is a viable sensor to perform this relative navigation. However, there are several limitations in the use of GPS because it requires adequate visibility to the NAVSTAR constellation. For some mission scenarios, such as MEO, GEO and tight formation missions, the visibility/geometry of the constellation may not be sufficient to accurately estimate the relative states. One solution to these problems is to include an RF ranging device onboard the vehicles in the formation and form a local constellation that augments the existing NAVSTAR constellation. These local range measurements, combined with the GPS measurements, can provide a sufficient number of measurements and adequate geometry to solve for the relative states. Furthermore, these RF ranging devices can be designed to provide substantially more accurate measures of the vehicle relative states than the traditional GPS pseudolites. The local range measurements also allow relative vehicle motion to be used to efficiently solve for the cycle ambiguities in real-time. This dissertation presents the development of an onboard ranging sensor and the extension of several related algorithms for a formation of vehicles with both GPS and local transmitters. Key among these are a robust cycle ambiguity estimation method and a decentralized relative navigation filter. The efficient decentralized approach to the GPS-only relative navigation problem is extended to an iterative cascade extended Kalman filtering (ICEKF) algorithm when the vehicles have onboard transmitters. Several ground testbeds were developed to demonstrate the feasibility of the augmentation concept and the relative navigation algorithms. The testbed includes the Stanford Pseudolite Transceiver Crosslink (SPTC), which was developed and extensively tested with a formation of outdoor ground vehicles.

  13. Actively stabilized optical fiber interferometry technique for online/in-process surface measurement.

    PubMed

    Wang, Kaiwei; Martin, Haydn; Jiang, Xiangqian

    2008-02-01

    In this paper, we report the recent progress in optical-beam scanning fiber interferometry for potential online nanoscale surface measurement based on the previous research. It attempts to generate a robust and miniature measurement device for future development into a multiprobe array measurement system. In this research, both fiber-optic-interferometry and the wavelength-division-multiplexing techniques have been used, so that the optical probe and the optical interferometer are well spaced and fast surface scanning can be carried out, allowing flexibility for online measurement. In addition, this system provides a self-reference signal to stabilize the optical detection with high common-mode noise suppression by adopting an active phase tracking and stabilization technique. Low-frequency noise was significantly reduced compared with unstabilized result. The measurement of a sample surface shows an attained repeatability of 3.3 nm.

  14. Return to the Moon: A New Strategic Evaluation

    NASA Technical Reports Server (NTRS)

    Lowman, Paul D., Jr.

    1999-01-01

    This paper reviews the value of a new lunar program, initially robotic and eventually manned, in the light of developments since the 1991 Synthesis Group study of the Space Exploration Initiative. The objective is to evaluate a return to the Moon in comparison to proposed Mars programs as a focus for American space exploration with humans in the next century. The Moon is demonstrably accessible, hospitable, useful, and interesting. Lunar programs are inherently faster and less risky from a programmatic viewpoint than comparable Mars programs such as Mars Direct. The dominant reason for a resumption of manned lunar missions, focussed on a single site such as Grimaldi, is to rebuild the infrastructure for missions beyond earth orbit, the last of which was in 1972. A transitional program, corresponding to the 10 Gemini missions that bridged the gap between Mercury and Apollo, was considered absolutely essential by the Synthesis Group. Further justification for a return to the Moon is the demonstrated feasibility of a robotic lunar observatory, concentrating on optical and infrared interferometry. Many unsolved scientific questions about the Moon itself remain, and could be investigated using telerobotic lunar rovers even before the return of humans. Mars is unquestionably more interesting scientifically and far more hospitable for long-term colonization. A new lunar program would be the most effective possible preparation for the human exploration, settlement, and eventually the terraforming of Mars. Lunar and Mars programs are complementary, not competitive. Both can be justified in the most fundamental terms as beginning the dispersal of the human species against uncontrollable natural disasters, cometary or asteroidal impacts in particular, to which mankind is vulnerable while confined to a single planet. Three specific programs are recommended for the 2001-2010 period: Ice Prospectors, to evaluate polar ice or hydrogen deposits; a robotic lunar observatory; and a manned lunar base and observatory.

  15. Return to the Moon: A New Strategic Evaluation

    NASA Technical Reports Server (NTRS)

    Lowman, Paul D., Jr.

    1999-01-01

    This paper reviews the value of a new lunar program, initially robotic and eventually manned, in the light of developments since the 1991 Synthes Group study of the Space Exploration Initiative. The objective is to evaluate a return to the Moon in comparison to proposed Mars programs as a focus for American space exploration with humans in the next century. The Moon is demonstrably accessible, hospitable, useful, and interesting. Lunar programs are inherently faster and less risky from a programmatic viewpoint than comparable Mars programs such as Mars Direct. The dominant reason for a resumption of manned lunar missions, focused on a single site such as Grimaldi, is to rebuild the infrastructure for missions beyond Earth orbit, the last of which was in 1972. A transitional prograrr@ corresponding to the 10 Gemini missions that bridged the gap between Mercury and Apollo, was considered absolutely essential by the Synthesis Group. Further justification for a return to the Moon is the demonstrated feasibility of a robotic lunar observatory, concentrating on optical and infrared interferometry. Many unsolved scientific questions about the Moon itself remain, and could be investigated using telerobotic lunar rovers even before the return of humans. Mars is unquestionably more interesting scientifically and far more hospitable for long-term colonization. A new lunar program would be the most effective possible preparation for the human exploration, settlement and eventually the terraforming of Mars. Lunar and Mars programs are complementary, not competitive. Both can be justified in the most fundamental terms as beginning the dispersal of the human species against uncontrollable natural disasters, cometary or asteroidal impacts in particular, to which mankind is vulnerable while confined to a single planet. Three specific programs are recommended for the 2001-2010 period: Ice Prospectors, to evaluate polar ice or hydrogen deposits; a robotic lunar observatory; and a manned lunar base and observatory.

  16. Return to the Moon: A New Strategic Evaluation

    NASA Technical Reports Server (NTRS)

    Lowman, Paul D., Jr.

    1999-01-01

    This paper reviews the value of a new lunar program, initially robotic and eventually manned, in the light of developments since the 1991 Synthes Group study of the Space Exploration Initiative. The objective is to evaluate a return to the Moon in comparison to proposed Mars programs as a focus for American space exploration with humans in the next century. The Moon is demonstrably accessible, hospitable, useful, and interesting. Lunar programs are inherently faster and less risky from a programmatic viewpoint than comparable Mars programs such as Mars Direct. The dominant reason for a resumption of manned lunar missions, focused on a single site such as Grimaldi, is to rebuild the infrastructure for missions beyond Earth orbit, the last of which was in 1972. A transitional program, corresponding to the 10 Gemini missions that bridged the gap between Mercury and Apollo, was considered absolutely essential by the Synthesis Group. Further justification for a return to the Moon is the demonstrated feasibility of a robotic lunar observatory, concentrating on optical and infrared interferometry. Many unsolved scientific questions about the Moon itself remain, and could be investigated using telerobotic lunar rovers even before the return of humans. Mars is unquestionably more interesting scientifically and far more hospitable for long-term colonization. A new lunar program would be the most effective possible preparation for the human exploration, settlement and eventually the terraforming of Mars. Lunar and Mars programs are complementary, not competitive. Both can be justified in the most fundamental terms as beginning the dispersal of the human species against uncontrollable natural disasters, cometary or asteroidal impacts in particular, to which mankind is vulnerable while confined to a single planet. Three specific programs are recommended for the 2001-2010 period: Ice Prospectors, to evaluate polar ice or hydrogen deposits; a robotic lunar observatory; and a manned lunar base and observatory.

  17. LISA Technology Development and Risk Reduction at NASA

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin T.

    2010-01-01

    The Laser Interferometer Space Antenna (LISA) is a joint ESA-NASA project to design, build and operate a space-based gravitational wave detector based on a laser interferometer. LISA relies on several technologies that are either new to spaceflight or must perform at levels not previously demonstrated in a spaceflight environment. The ESA-led LISA Pathfinder mission is the main effort to demonstrate LISA technology. NASA also supports complementary ground-based technology development and risk reduction activities. This presentation will report the status of NASA work on micronewton thrusters, the telescope, the optical pointing subsystem and mission formulation. More details on some of these topics will be given in posters. Other talks and posters will describe NASA-supported work on the laser subsystem, the phasemeter, and aspects of the interferometry. Two flight-qualified clusters of four colloid micronewton thrusters, each capable of thrust Levels between 5 and 30 microNewton with a resolution less than 0.l microNewton and a thrust noise less than 0.1 microNewton/vHz (0.001 to 4 Hz), have been integrated onto the LISA Pathfinder spacecraft. The complementary ground-based development focuses on lifetime demonstration. Laboratory verification of failure models and accelerated life tests are just getting started. LISA needs a 40 cm diameter, afocal telescope for beam expansion/reduction that maintains an optical pathlength stability of approximately 1 pm/vHz in an extremely stable thermal environment. A mechanical prototype of a silicon carbide primary-secondary structure has been fabricated for stability testing. Two optical assemblies must point at different distant spacecraft with nanoradian accuracy over approximately 1 degree annual variation in the angle between the distant spacecraft. A candidate piezo-inchworm actuator is being tested in a suitable testbed. In addition to technology development, NASA has carried out several studies in support of the mission formulation. The results of systems engineering work on flight software, avionics and reliability will be summarized.

  18. The Full-sky Astrometric Mapping Explorer - Astrometry for the New Millennium

    NASA Astrophysics Data System (ADS)

    Horner, S. D.; Germain, M. E.; Greene, T. P.; Harris, F. H.; Johnson, M. S.; Johnson, K. J.; Monet, D. G.; Murison, M. A.; Phillips, J. D.; Reasenberg, R. D.; Seidelmann, P. K.; Urban, S. E.; Vassar, R. H.

    FAME is designed to perform an all-sky, astrometric survey with unprecedented accuracy. It will create a rigid astrometric catalog of ~40,000,000 stars with visual band magnitudes 5 < V < 15. For bright stars, 5 < V < 9, FAME will determine positions and parallaxes accurate to < 50 microarcseconds, with proper motion errors < 50 microarcseconds/year. For fainter stars, 9 < V < 15, FAME will determine positions and parallaxes accurate to < 300 microarcseconds, with proper motion errors < 300 microarcseconds/year. It will also collect photometric data on these 40,000,000 stars in four Sloan DSS colors. The FAME data will provide a rigid, accurate, optical, astrometric grid. The proper motion data, combined with Hipparcos and other data should be ideal for use by the Space Interferometry Mission (SIM) to select its astrometric reference grid stars. FAME will also identify stars with nonlinear proper motions as candidates for further study by SIM, Terrestrial Planet Finder, and future ground based interferometers as possible planetary systems. The fundamental astrometric data provided at relatively low cost by FAME will help optimize the scientific return from these future projects. This is in addition to the considerable direct scientific return from FAME. It will redefine the extragalactic distance scale and provide a large, rich database of information on stellar properties that will enable numerous science investigations into stellar structure and evolution, the dynamics of the Milky Way, and stellar companions including brown dwarfs and giant planets. NASA has selected the Full-sky Astrometric Mapping Explorer (FAME) to be one of five MIDEX missions to be funded for a concept study. This concept study will be submitted to NASA on 18 June, with final selection, scheduled for September, of two of these missions for fli ght in 2003 or 2004. FAME is a joint development e ffort of the U.S. Naval Observatory, the Smithsonian Astrophysical Observatory, the Infrared Processing and Analysis Center, Lockheed Martin Missiles and Space, the Naval Research Laboratory, and Omitron Incorporated.

  19. First results of the PERSEE experiment

    NASA Astrophysics Data System (ADS)

    Le Duigou, J.-M.; Lozi, J.; Cassaing, F.; Houairi, K.; Sorrente, B.; Montri, J.; Jacquinod, S.; Reess, J.-M.; Pham, L.; Lhomé, E.; Buey, T.; Hénault, F.; Marcotto, A.; Girard, P.; Mauclert, N.; Barillot, M.; Coudé du Foresto, V.; Ollivier, M.

    2017-11-01

    Although it has been recently postponed due to high cost and risks, nulling interferometry in space remains one of the very few direct detection methods able to characterize extrasolar planets and particularly telluric ones. Within this framework, several projects such as DARWIN [1], [2], TPF-I [3], [4], FKSI [5] or PEGASE [6], [7], have been proposed in the past years. Most of them are based on a free flying concept. It allows firstly to avoid atmosphere turbulence, and secondly to distribute instrumental function over many satellites flying in close formation. In this way, a very high angular resolution can be achieved with an acceptable launch mass. But the price to pay is to very precisely position and stabilize relatively the spacecrafts, in order to achieve a deep and stable extinction of the star. Understanding and mastering all these requirements are great challenges and key issues towards the feasibility of these missions. Thus, we decided to experimentally study this question and focus on some possible simplifications of the concept. Since 2006, PERSEE (PEGASE Experiment for Research and Stabilization of Extreme Extinction) laboratory test bench is under development by a consortium composed of Centre National d'Etudes Spatiales (CNES), Institut d'Astrophysique Spatiale (IAS), Observatoire de Paris-Meudon (LESIA), Observatoire de la Côte d'Azur (OCA), Office National d'Etudes et de Recherches Aérospatiales (ONERA), and Thalès Alénia Space (TAS) [8]. It is mainly funded by CNES R&D. PERSEE couples an infrared wide band nulling interferometer with local OPD and tip/tilt control loops and a free flying Guidance Navigation and Control (GNC) simulator able to introduce realistic disturbances. Although it was designed in the framework of the PEGASE free flying space mission, PERSEE can adapt very easily to other contexts like FKSI (in space, with a 10 m long beam structure) or ALADDIN [9] (on ground, in Antarctica) because the optical designs of all those missions are very similar. After a short description of the experimental setup, we will present first the results obtained in an intermediate configuration with monochromatic light. Then we will present some preliminary results with polychromatic light. Last, we discuss some very first more general lessons we can already learn from this experiment.

  20. Picometer resolution interferometric characterization of the dimensional stability of zero CTE CFRP

    NASA Astrophysics Data System (ADS)

    Cordero Machado, Jorge; Heinrich, Thomas; Schuldt, Thilo; Gohlke, Martin; Lucarelli, Stefano; Weise, Dennis; Johann, Ulrich; Peters, Achim; Braxmaier, Claus

    2008-07-01

    Highly stable but lightweight structural materials are essential for the realization of spaceborne optical instruments, for example telescopes. In terms of optical performance, usually tight tolerances on the absolute spacing between telescope mirrors have to be maintained from integration on ground to operation in final orbit. Furthermore, a certain stability of the telescope structure must typically be ensured in the measurement band. Particular challenging requirements have to be met for the LISA Mission (Laser Interferometer Space Antenna), where the spacing between primary and secondary mirror must be stable to a few picometers. Only few materials offer sufficient thermal stability to provide such performance. Candidates are for example Zerodur and Carbon-Fiber Reinforced Plastic (CFRP), where the latter is preferred in terms of mechanical stiffness and robustness. We are currently investigating the suitability of CFRP with respect to the LISA requirements by characterization of its dimensional stability with heterodyne laser interferometry. The special, highly symmetric interferometer setup offers a noise level of 2 pm/√Hz at 0.1Hz and above, and therefore represents a unique tool for this purpose. Various procedures for the determination of the coefficient of thermal expansion (CTE) have been investigated, both on a test sample with negative CTE, as well as on a CFRP tube specifically tuned to provide a theoretical zero expansion in the axial dimension.

  1. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Yuen, Joseph H. (Editor)

    1996-01-01

    This quarterly publication provides archival reports on developments in programs managed by JPL's Telecommunications and Mission Operations Directorate (TMOD), which now includes the former Telecommunications and Data Acquisition (TDA) Office. In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. The preceding work is all performed for NASA's Office of Space Communications (OSC). TMOD also performs work funded by other NASA program offices through and with the cooperation of OSC. The first of these is the Orbital Debris Radar Program funded by the Office of Space Systems Development. It exists at Goldstone only and makes use of the planetary radar capability when the antennas are configured as science instruments making direct observations of the planets, their satellites, and asteroids of our solar system. The Office of Space Sciences funds the data reduction and science analyses of data obtained by the Goldstone Solar System Radar. The antennas at all three complexes are also configured for radio astronomy research and, as such, conduct experiments funded by the National Science Foundation in the U.S. and other agencies at the overseas complexes. These experiments are either in microwave spectroscopy or very long baseline interferometry. Finally, tasks funded under the JPL Director's Discretionary Fund and the Caltech President's Fund that involve TMOD are included. This and each succeeding issue of 'The Telecommunications and Data Acquisition Progress Report' will present material in some, but not necessarily all, of the aforementioned programs.

  2. Gas Laser Interferometer in the Electric Conversion Laboratory

    NASA Image and Video Library

    1966-10-21

    Richard Lancashire operates a gas laser interferometer in the Electric Conversion Laboratory at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Lewis was in the midst of a long-term effort to develop methods of delivering electrical power to spacecraft using nuclear, solar, or electrochemical technologies. Lancashire was measuring the thermionic diode’s plasma particle density. The thermionic diodes were being studied for possible use in radioisotope thermoelectric generators for use in space. Microwave interferometry was one method of measuring transient plasmas. The interferometer measured the difference between the frequencies of two laser beams, one of which passed through the diode. The electron density was measured by revealing the phase shift of the transmitted microwave beam brought about by a change in the plasma refraction. Microwave interferometry, however, offers poor spatial resolution and has limited range of applicability.

  3. Differential tracking data types for accurate and efficient Mars planetary navigation

    NASA Technical Reports Server (NTRS)

    Edwards, C. D., Jr.; Kahn, R. D.; Folkner, W. M.; Border, J. S.

    1991-01-01

    Ways in which high-accuracy differential observations of two or more deep space vehicles can dramatically extend the power of earth-based tracking over conventional range and Doppler tracking are discussed. Two techniques - spacecraft-spacecraft differential very long baseline interferometry (S/C-S/C Delta(VLBI)) and same-beam interferometry (SBI) - are discussed. The tracking and navigation capabilities of conventional range, Doppler, and quasar-relative Delta(VLBI) are reviewed, and the S/C-S/C Delta (VLBI) and SBI types are introduced. For each data type, the formation of the observable is discussed, an error budget describing how physical error sources manifest themselves in the observable is presented, and potential applications of the technique for Space Exploration Initiative scenarios are examined. Requirements for spacecraft and ground systems needed to enable and optimize these types of observations are discussed.

  4. Technology Plan for the Terrestrial Planet Finder Interferometer

    NASA Technical Reports Server (NTRS)

    Lawson, Peter R. (Editor); Dooley, Jennifer A. (Editor)

    2005-01-01

    The technology plan for the Terrestrial Planet Finder Interferometer (TPF-I) describes the breadth of technology development currently envisaged to enable TPF-I to search for habitable worlds around nearby stars. TPF-I is currently in Pre-Phase A (the Advanced Study Phase) of its development. For planning purposes, it is expected to enter into Phase A in 2010 and be launched sometime before 2020. TPF-I is being developed concurrently with the Terrestrial Planet Finder Coronagraph (TPF-C), whose launch is anticipated in 201 6. The missions are being designed with the capability to detect Earth-like planets should they exist in the habitable zones of Sun-like (F,G, and K) stars out to a distance of about 60 light-years. Each mission will have the starlight-suppression and spectroscopic capability to enable the characterization of extrasolar planetary atmospheres, identifying biomarkers and signs of life. TPF-C is designed as a visible-light coronagraph; TPF-I is designed as a mid-infrared formation-flying interferometer. The two missions, working together, promise to yield unambiguous detections and characterizations of Earth-like planets. The challenges of planet detections with mid-infrared formation-flying interferometry are described within this technology plan. The approach to developing the technology is described through roadmaps that lead from our current state of the art through the different phases of mission development to launch. Technology metrics and milestones are given to measure progress. The emphasis of the plan is development and acquisition of technology during pre-Phase A to establish feasibility of the mission to enter Phase A sometime around 2010. Plans beyond 2010 are outlined. The plan contains descriptions of the development of new component technology as well as testbeds that demonstrate the viability of new techniques and technology required for the mission. Starlight-suppression (nulling) and formation-flying technology are highlighted. Although the techniques are described herein, the descriptions are only at a high-level, and tutorial material is not included. The reader is expected to have some familiarity with the principles of long-baseline mid-infrared interferometry. Selected references to existing literature are given where relevant.

  5. MAIUS-1- Vehicle, Subsystems Design and Mission Operations

    NASA Astrophysics Data System (ADS)

    Stamminger, A.; Ettl, J.; Grosse, J.; Horschgen-Eggers, M.; Jung, W.; Kallenbach, A.; Raith, G.; Saedtler, W.; Seidel, S. T.; Turner, J.; Wittkamp, M.

    2015-09-01

    In November 2015, the DLR Mobile Rocket Base will launch the MAIUS-1 rocket vehicle at Esrange, Northern Sweden. The MAIUS-A experiment is a pathfinder atom optics experiment. The scientific objective of the mission is the first creation of a BoseEinstein Condensate in space and performing atom interferometry on a sounding rocket [3]. MAIUS-1 comprises a two-stage unguided solid propellant VSB-30 rocket motor system. The vehicle consists of a Brazilian 53 1 motor as 1 st stage, a 530 motor as 2nd stage, a conical motor adapter, a despin module, a payload adapter, the MAIUS-A experiment consisting of five experiment modules, an attitude control system module, a newly developed conical service system, and a two-staged recovery system including a nosecone. In contrast to usual payloads on VSB-30 rockets, the payload has a diameter of 500 mm due to constraints of the scientific experiment. Because of this change in design, a blunted nosecone is necessary to guarantee the required static stability during the ascent phase of the flight. This paper will give an overview on the subsystems which have been built at DLR MORABA, especially the newly developed service system. Further, it will contain a description of the MAIUS-1 vehicle, the mission and the unique requirements on operations and attitude control, which is additionally required to achieve a required attitude with respect to the nadir vector. Additionally to a usual microgravity environment, the MAIUS-l payload requires attitude control to achieve a required attitude with respect to the nadir vector.

  6. Near-Earth Object Astrometric Interferometry

    NASA Technical Reports Server (NTRS)

    Werner, Martin R.

    2005-01-01

    Using astrometric interferometry on near-Earth objects (NEOs) poses many interesting and difficult challenges. Poor reflectance properties and potentially no significant active emissions lead to NEOs having intrinsically low visual magnitudes. Using worst case estimates for signal reflection properties leads to NEOs having visual magnitudes of 27 and higher. Today the most sensitive interferometers in operation have limiting magnitudes of 20 or less. The main reason for this limit is due to the atmosphere, where turbulence affects the light coming from the target, limiting the sensitivity of the interferometer. In this analysis, the interferometer designs assume no atmosphere, meaning they would be placed at a location somewhere in space. Interferometer configurations and operational uncertainties are looked at in order to parameterize the requirements necessary to achieve measurements of low visual magnitude NEOs. This analysis provides a preliminary estimate of what will be required in order to take high resolution measurements of these objects using interferometry techniques.

  7. Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range

    PubMed Central

    Jin, Wei; Cao, Yingchun; Yang, Fan; Ho, Hoi Lut

    2015-01-01

    Photothermal interferometry is an ultra-sensitive spectroscopic means for trace chemical detection in gas- and liquid-phase materials. Previous photothermal interferometry systems used free-space optics and have limitations in efficiency of light–matter interaction, size and optical alignment, and integration into photonic circuits. Here we exploit photothermal-induced phase change in a gas-filled hollow-core photonic bandgap fibre, and demonstrate an all-fibre acetylene gas sensor with a noise equivalent concentration of 2 p.p.b. (2.3 × 10−9 cm−1 in absorption coefficient) and an unprecedented dynamic range of nearly six orders of magnitude. The realization of photothermal interferometry with low-cost near infrared semiconductor lasers and fibre-based technology allows a class of optical sensors with compact size, ultra sensitivity and selectivity, applicability to harsh environment, and capability for remote and multiplexed multi-point detection and distributed sensing. PMID:25866015

  8. Line-scan spectrum-encoded imaging by dual-comb interferometry.

    PubMed

    Wang, Chao; Deng, Zejiang; Gu, Chenglin; Liu, Yang; Luo, Daping; Zhu, Zhiwei; Li, Wenxue; Zeng, Heping

    2018-04-01

    Herein, the method of spectrum-encoded dual-comb interferometry is introduced to measure a three-dimensional (3-D) profile with absolute distance information. By combining spectral encoding for wavelength-to-space mapping, dual-comb interferometry for decoding and optical reference for calibration, this system can obtain a 3-D profile of an object at a stand-off distance of 114 mm with a depth precision of 12 μm. With the help of the reference arm, the absolute distance, reflectivity distribution, and depth information are simultaneously measured at a 5 kHz line-scan rate with free-running carrier-envelope offset frequencies. To verify the concept, experiments are conducted with multiple objects, including a resolution test chart, a three-stair structure, and a designed "ECNU" letter chain. The results show a horizontal resolution of ∼22  μm and a measurement range of 1.93 mm.

  9. The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): Towards the First Flight

    NASA Technical Reports Server (NTRS)

    Rizzo, Maxime J.; Rinehart, S. A.; Dhabal, A.; Ade, P.; Benford, D. J.; Fixsen, D. J.; Griffin, M.; Juanola Parramon, R.; Leisawitz, D. T.; Maher, S. F.; hide

    2016-01-01

    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is a balloon-borne, far-infrared direct detection interferometer with a baseline of 8 m and two collectors of 50 cm. It is designed to study galactic clustered star formation by providing spatially-resolved spectroscopy of nearby star clusters. It is being assembled and tested at NASA Goddard Space Flight Center for a first flight in Fall 2016. We report on recent progress concerning the pointing control system and discuss the overall status of the project as it gets ready for its commissioning flight.

  10. Surface characterization and testing II; Proceedings of the Meeting, San Diego, CA, Aug. 10, 11, 1989

    NASA Technical Reports Server (NTRS)

    Greivenkamp, John E. (Editor); Young, Matt (Editor)

    1989-01-01

    Various papers on surface characterization and testing are presented. Individual topics addressed include: simple Hartmann test data interpretation, optimum configuration of the Offner null corrector, system for phase-shifting interferometry in the presence of vibration, fringe variation and visibility in speckle-shearing interferometry, functional integral representation of rough surfaces, calibration of surface heights in an interferometric optical profiler, image formation in common path differential profilometers, SEM of optical surfaces, measuring surface profiles with scanning tunneling microscopes, surface profile measurements of curved parts, high-resolution optical profiler, scanning heterodyne interferometer with immunity from microphonics, real-time crystal axis measurements of semiconductor materials, radial metrology with a panoramic annular lens, surface analysis for the characterization of defects in thin-film processes, Spacelab Optical Viewport glass assembly optical test program for the Starlab mission, scanning differential intensity and phase system for optical metrology.

  11. Wavefront tilt feedforward for the formation interferometer testbad (FIT)

    NASA Technical Reports Server (NTRS)

    Shields, J. F.; Liewer, K.; Wehmeier, U.

    2002-01-01

    Separated spacecraft interferometry is a candidate architecture for several future NASA missions. The Formation Interferometer Testbed (FIT) is a ground based testbed dedicated to the validation of this key technology for a formation of two spacecraft. In separated spacecraft interferometry, the residual relative motion of the component spacecraft must be compensated for by articulation of the optical components. In this paper, the design of the FIT interferometer pointing control system is described. This control system is composed of a metrology pointing loop that maintains an optical link between the two spacecraft and two stellar pointing loops for stabilizing the stellar wavefront at both the right and left apertures of the instrument. A novel feedforward algorithm is used to decouple the metrology loop from the left side stellar loop. Experimental results from the testbed are presented that verify this approach and that fully demonstrate the performance of the algorithm.

  12. Space Radar Image of Saline Valley, California

    NASA Image and Video Library

    1999-04-15

    This is a three-dimensional perspective view of Saline Valley, about 30 km 19 miles east of the town of Independence, California created by combining two spaceborne radar images using a technique known as interferometry.

  13. Dikes under Pressure - Monitoring the Vulnerability of Dikes by Means of SAR Interferometry

    NASA Astrophysics Data System (ADS)

    Marzahn, Philip; Seidel, Moritz; Ludwig, Ralf

    2016-04-01

    Dikes are the main man made structures in flood protection systems for the protection of humans and economic values. Usually dikes are built with a sandy core and clay or concrete layer covering the core. Thus, dikes are prone to a vertical shrinkage due to soil physical processes such as reduction of pore space and gravity increasing the risk of a crevasse during floods. In addition, this vulnerability is amplified by a sea level rise due to climate change. To guarantee the stability of dikes, a labourer intensive program is carried out by national authorities monitoring the dikes by visual inspection. In the presented study, a quantitative approach is presented using SAR Interferometry for the monitoring of the stability of dikes from space. In particular, the vertical movement of dikes due to shrinkage is monitored using persistent scatterer interferometry. Therefore three different types of dikes have been investigated: a sea coast dike with a concrete cover, a sea coast dike with short grass cover and a smaller river dike with grass cover. All dikes are located in Germany. Results show the potential of the monitoring technique as well as spatial differences in the stability of dikes with subsidence rates in parts of a dike up to 7 mm/a.

  14. Nulling interferometry for the darwin mission: laboratory demonstration experiment

    NASA Astrophysics Data System (ADS)

    Ollivier, Marc; Léger, Alain; Sekulic, Predrag; Labèque, Alain; Michel, Guy

    2017-11-01

    The DARWIN mission is a project of the European Space Agency that should allow around 2012 the search for extrasolar planets and a spectral analysis of their potential atmosphere in order to evidence gases and particularly tracers of life. The principle of the instrument is based on the Bracewell nulling interferometer. It allows high angular resolution and high dynamic range. However, this concept, proposed more than 20 years ago, has never been experimentally demonstrated in the thermal infrared with high levels of extinction. We present here a laboratory monochromatic experiment dedicated to this goal. A theoretical and numerical approach of the question highlights a strong difficulty: the need for very clean and homogeneous wavefronts, in terms of intensity, phase and polarisation distribution. A classical interferometric approach appears to be insufficient to reach our goals. We have shown theoretically then numerically that this difficulty can be surpassed if we perform an optical filtering of the interfering beams. This technique allows us to decrease strongly the optical requirements and to view very high interferometric contrast measurements with commercial optical pieces. We present here a laboratory interferometer working at 10,6 microns, and implementing several techniques of optical filtering (pinholes and single-mode waveguides), its realisation, and its first promising results. We particularly present measurements that exhibit stable visibility levels better than 99,9% that is to say extinction levels better than 1000.

  15. Interferometric Techniques for Gravitational Wave Detection in Space

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin T; Bender, Peter L.

    2000-01-01

    The Laser Interferometer Space Antenna (LISA) mission will detect gravitational waves from galactic and extragalactic sources, most importantly those involving supermassive black holes. The primary goal of this project is to investigate stability and robustness issues associated with LISA interferometry. We specifically propose to study systematic errors arising from: optical misalignments, optical surface errors, thermal effects and pointing tolerances. This report covers the first fiscal year of the grant, from January 1st to December 31st 1999. We have employed an optical modeling tool to evaluate the effect of misplaced and misaligned optical components. Preliminary results seem to indicate that positional tolerances of one micron and angular tolerances of 0.6 millirad produce no significant effect on the achievable contrast of the interference pattern. This report also outlines research plans for the second fiscal year of the grant, from January 1st to December 31st 2000. Since the work under NAG5-6880 has gone more rapidly than projected, our test bed interferometer is operational, and can be used for measurements of effects that cause beam motion. Hence, we will design, build and characterize a sensor for measuring beam motion, and then install it. We are also planning a differential wavefront sensor based on a quadrant photodiode as a first generation sensor.

  16. Modulating the amplitude and phase of the complex spectral degree of coherence with plasmonic interferometry

    NASA Astrophysics Data System (ADS)

    Li, Dongfang; Pacifici, Domenico

    The spectral degree of coherence describes the correlation of electromagnetic fields, which plays a key role in many applications, including free-space optical communications and speckle-free bioimaging. Recently, plasmonic interferometry, i.e. optical interferometry that employs surface plasmon polaritons (SPPs), has enabled enhanced light transmission and high-sensitivity biosensing, among other applications. It offers new ways to characterize and engineer electromagnetic fields using nano-structured thin metal films. Here, we employ plasmonic interferometry to demonstrate full control of spatial coherence at length scales comparable to the wavelength of the incident light. Specifically, by measuring the diffraction pattern of several double-slit plasmonic structures etched on a metal film, the amplitude and phase of the degree of spatial coherence is determined as a function of slit-slit separation distance and incident wavelength. When the SPP contribution is turned on (i.e., by changing the polarization of the incident light from TE to TM illumination mode), strong modulation of both amplitude and phase of the spatial coherence is observed. These findings may help design compact modulators of optical spatial coherence and other optical elements to shape the light intensity in the far-field.

  17. Research in space science and technology. [including X-ray astronomy and interplanetary plasma physics

    NASA Technical Reports Server (NTRS)

    Beckley, L. E.

    1977-01-01

    Progress in various space flight research programs is reported. Emphasis is placed on X-ray astronomy and interplanetary plasma physics. Topics covered include: infrared astronomy, long base line interferometry, geological spectroscopy, space life science experiments, atmospheric physics, and space based materials and structures research. Analysis of galactic and extra-galactic X-ray data from the Small Astronomy Satellite (SAS-3) and HEAO-A and interplanetary plasma data for Mariner 10, Explorers 47 and 50, and Solrad is discussed.

  18. Frequency References for Gravitational Wave Missions

    NASA Technical Reports Server (NTRS)

    Preston, Alix; Thrope, J. I.; Donelan, D.; Miner, L.

    2012-01-01

    The mitigation of laser frequency noise is an important aspect of interferometry for LISA-like missions. One portion of the baseline mitigation strategy in LISA is active stabilization utilizing opto-mechanical frequency references. The LISA optical bench is an attractive place to implement such frequency references due to its environmental stability and its access to primary and redundant laser systems. We have made an initial investigation of frequency references constructed using the techniques developed for the LISA and LISA Pathfinder optical benches. Both a Mach-Zehnder interferometer and triangular Fabry-Perot cavity have been successfully bonded to a Zerodur baseplate using the hydroxide bonding method. We will describe the construction of the bench along with preliminary stability results.

  19. Phase retrieval in digital speckle pattern interferometry by use of a smoothed space-frequency distribution.

    PubMed

    Federico, Alejandro; Kaufmann, Guillermo H

    2003-12-10

    We evaluate the use of a smoothed space-frequency distribution (SSFD) to retrieve optical phase maps in digital speckle pattern interferometry (DSPI). The performance of this method is tested by use of computer-simulated DSPI fringes. Phase gradients are found along a pixel path from a single DSPI image, and the phase map is finally determined by integration. This technique does not need the application of a phase unwrapping algorithm or the introduction of carrier fringes in the interferometer. It is shown that a Wigner-Ville distribution with a smoothing Gaussian kernel gives more-accurate results than methods based on the continuous wavelet transform. We also discuss the influence of filtering on smoothing of the DSPI fringes and some additional limitations that emerge when this technique is applied. The performance of the SSFD method for processing experimental data is then illustrated.

  20. Space beam combiner for long-baseline interferometry

    NASA Astrophysics Data System (ADS)

    Lin, Yao; Bartos, Randall D.; Korechoff, Robert P.; Shaklan, Stuart B.

    1999-04-01

    An experimental beam combiner (BC) is being developed to support the space interferometry program at the JPL. The beam combine forms the part of an interferometer where star light collected by the sidestats or telescopes is brought together to produce white light fringes, and to provide wavefront tilt information via guiding spots and beam walk information via shear spots. The assembly and alignment of the BC has been completed. The characterization test were performed under laboratory conditions with an artificial star and optical delay line. Part of each input beam was used to perform star tracking. The white light interference fringes were obtained over the selected wavelength range from 450 nm to 850 nm. A least-square fit process was used to analyze the fringe initial phase, fringe visibilities and shift errors of the optical path difference in the delay line using the dispersed white-light fringes at different OPD positions.

  1. Sub-atomic dimensional metrology: developments in the control of x-ray interferometers

    NASA Astrophysics Data System (ADS)

    Yacoot, Andrew; Kuetgens, Ulrich

    2012-07-01

    Within the European Metrology Research Programme funded project NANOTRACE, the nonlinearity of the next generation of optical interferometers has been measured using x-ray interferometry. The x-ray interferometer can be regarded as a ruler or translation stage whose graduations or displacement steps are based on the lattice spacing of the crystallographic planes from which the x-rays are diffracted: in this case the graduations are every 192 pm corresponding to the spacing between the (2 2 0) planes in silicon. Precise displacement of the x-ray interferometer's monolithic translation stage in steps corresponding to discrete numbers of x-ray fringes requires servo positioning capability at the picometre level. To achieve this very fine control, a digital control system has been developed which has opened up the potential for advances in metrology using x-ray interferometry that include quadrature counting of x-ray fringes.

  2. From a structural average to the conformational ensemble of a DNA bulge

    PubMed Central

    Shi, Xuesong; Beauchamp, Kyle A.; Harbury, Pehr B.; Herschlag, Daniel

    2014-01-01

    Direct experimental measurements of conformational ensembles are critical for understanding macromolecular function, but traditional biophysical methods do not directly report the solution ensemble of a macromolecule. Small-angle X-ray scattering interferometry has the potential to overcome this limitation by providing the instantaneous distance distribution between pairs of gold-nanocrystal probes conjugated to a macromolecule in solution. Our X-ray interferometry experiments reveal an increasing bend angle of DNA duplexes with bulges of one, three, and five adenosine residues, consistent with previous FRET measurements, and further reveal an increasingly broad conformational ensemble with increasing bulge length. The distance distributions for the AAA bulge duplex (3A-DNA) with six different Au-Au pairs provide strong evidence against a simple elastic model in which fluctuations occur about a single conformational state. Instead, the measured distance distributions suggest a 3A-DNA ensemble with multiple conformational states predominantly across a region of conformational space with bend angles between 24 and 85 degrees and characteristic bend directions and helical twists and displacements. Additional X-ray interferometry experiments revealed perturbations to the ensemble from changes in ionic conditions and the bulge sequence, effects that can be understood in terms of electrostatic and stacking contributions to the ensemble and that demonstrate the sensitivity of X-ray interferometry. Combining X-ray interferometry ensemble data with molecular dynamics simulations gave atomic-level models of representative conformational states and of the molecular interactions that may shape the ensemble, and fluorescence measurements with 2-aminopurine-substituted 3A-DNA provided initial tests of these atomistic models. More generally, X-ray interferometry will provide powerful benchmarks for testing and developing computational methods. PMID:24706812

  3. Image Reconstruction from Sparse Irregular Intensity Interferometry Measurements of Fourier Magnitude

    DTIC Science & Technology

    2013-09-01

    of baselines than would a pattern with equal spacing . Nevertheless, many of the telescope pairs have equivalent baselines resulting in...magnitude to a spatial domain representation of the object, sparse and irregular spacing of the measurements in the Fourier plane, and low SNR...any particular geometry of the telescope array configuration. Its inputs are a list of measurements, each

  4. Baseline-dependent sampling and windowing for radio interferometry: data compression, field-of-interest shaping, and outer field suppression

    NASA Astrophysics Data System (ADS)

    Atemkeng, M.; Smirnov, O.; Tasse, C.; Foster, G.; Keimpema, A.; Paragi, Z.; Jonas, J.

    2018-07-01

    Traditional radio interferometric correlators produce regular-gridded samples of the true uv-distribution by averaging the signal over constant, discrete time-frequency intervals. This regular sampling and averaging then translate to be irregular-gridded samples in the uv-space, and results in a baseline-length-dependent loss of amplitude and phase coherence, which is dependent on the distance from the image phase centre. The effect is often referred to as `decorrelation' in the uv-space, which is equivalent in the source domain to `smearing'. This work discusses and implements a regular-gridded sampling scheme in the uv-space (baseline-dependent sampling) and windowing that allow for data compression, field-of-interest shaping, and source suppression. The baseline-dependent sampling requires irregular-gridded sampling in the time-frequency space, i.e. the time-frequency interval becomes baseline dependent. Analytic models and simulations are used to show that decorrelation remains constant across all the baselines when applying baseline-dependent sampling and windowing. Simulations using MeerKAT telescope and the European Very Long Baseline Interferometry Network show that both data compression, field-of-interest shaping, and outer field-of-interest suppression are achieved.

  5. Planetary Radio Interferometry and Doppler Experiment (PRIDE) technique: A test case of the Mars Express Phobos Flyby. II. Doppler tracking: Formulation of observed and computed values, and noise budget

    NASA Astrophysics Data System (ADS)

    Bocanegra-Bahamón, T. M.; Molera Calvés, G.; Gurvits, L. I.; Duev, D. A.; Pogrebenko, S. V.; Cimò, G.; Dirkx, D.; Rosenblatt, P.

    2018-01-01

    Context. Closed-loop Doppler data obtained by deep space tracking networks, such as the NASA Deep Space Network (DSN) and the ESA tracking station network (Estrack), are routinely used for navigation and science applications. By shadow tracking the spacecraft signal, Earth-based radio telescopes involved in the Planetary Radio Interferometry and Doppler Experiment (PRIDE) can provide open-loop Doppler tracking data only when the dedicated deep space tracking facilities are operating in closed-loop mode. Aims: We explain the data processing pipeline in detail and discuss the capabilities of the technique and its potential applications in planetary science. Methods: We provide the formulation of the observed and computed values of the Doppler data in PRIDE tracking of spacecraft and demonstrate the quality of the results using an experiment with the ESA Mars Express spacecraft as a test case. Results: We find that the Doppler residuals and the corresponding noise budget of the open-loop Doppler detections obtained with the PRIDE stations compare to the closed-loop Doppler detections obtained with dedicated deep space tracking facilities.

  6. Space Operations Center system analysis study extension. Volume 4, book 1: SOC system analysis report

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Space Operations Center (SOC) orbital space station missions are analyzed. Telecommunications missions, space science, Earth sensing, and space testing missions, research and applications missions, defense missions, and satellite servicing missions are modeled and mission needs discussed. The satellite servicing missions are analyzed in detail, including construction and servicing equipment requirements, mission needs and benefits, differential drag characteristics of co-orbiting satellites, and satellite servicing transportation requirements.

  7. Observations of coupled seismicity and ground deformation at El Hierro Island (2011-2014)

    NASA Astrophysics Data System (ADS)

    Gonzalez, P. J.

    2015-12-01

    New insights into the magma storage and evolution at oceanic island volcanoes are now being achieved using remotely sensed space geodetic techniques, namely satellite radar interferometry. Differential radar interferometry is a technique tracking, at high spatial resolution, changes in the travel-time (distance) from the satellites to the ground surface, having wide applications in Earth sciences. Volcanic activity usually is accompanied by surface ground deformation. In many instances, modelling of surface deformation has the great advantage to estimate the magma volume change, a particularly interesting parameter prior to eruptions. Jointly interpreted with petrology, degassing and seismicity, it helps to understand the crustal magmatic systems as a whole. Current (and near-future) radar satellite missions will reduce the revisit time over global sub-aerial volcanoes to a sub-weekly basis, which will increase the potential for its operational use. Time series and filtering processing techniques of such streaming data would allow to track subsurface magma migration with high precision, and frequently update over vast areas (volcanic arcs, large caldera systems, etc.). As an example for the future potential monitoring scenario, we analyze multiple satellite radar data over El Hierro Island (Canary Islands, Spain) to measure and model surface ground deformation. El Hierro has been active for more than 3 years (2011 to 2014). Initial phases of the unrest culminated in a submarine eruption (late 2011 - early 2012). However, after the submarine eruption ended, its magmatic system still active and affected by pseudo-regular energetic seismic swarms, accompanied by surface deformation without resumed eruptions. Such example is a great opportunity to understand the crustal magmatic systems in low magma supply-rate oceanic island volcanoes. This new approach to measure surface deformation processes is yielding an ever richer level of information from volcanology to engineering and meteorological monitoring problems.

  8. Direct-phase and amplitude digitalization based on free-space interferometry

    NASA Astrophysics Data System (ADS)

    Kleiner, Vladimir; Rudnitsky, Arkady; Zalevsky, Zeev

    2017-12-01

    A novel ADC configuration that can be characterized as a photonic-domain flash analog-to-digital convertor operating based upon free-space interferometry is proposed and analysed. The structure can be used as the front-end of a coherent receiver as well as for other applications. Two configurations are considered: the first, ‘direct free-space interference’, allows simultaneous measuring of the optical phase and amplitude; the second, ‘extraction of the ac component of interference by means of pixel-by-pixel balanced photodetection’, allows only phase digitization but with significantly higher sensitivity. For both proposed configurations, we present Monte Carlo estimations of the performance limitations, due to optical noise and photo-current noise, at sampling rates of 60 giga-samples per second. In terms of bit resolution, we simulated multiple cases with growing complexity of up to 4 bits for the amplitude and up to 6 bits for the phase. The simulations show that the digitization errors in the optical domain can be reduced to levels close to the quantization noise limits. Preliminary experimental results validate the fundamentals of the proposed idea.

  9. The art and science of mission patches and their origins in society

    NASA Astrophysics Data System (ADS)

    Brumfitt, A.; Thompson, L. A.; Raitt, D.

    2008-06-01

    Space exploration utilizes some of the latest and highest technology available to human kind; synonymous with space exploration is the mission patch. This specialized art form popularizes the exploration of space with millions of mission patches sold around the world. Space tourism and education centres like the Kennedy Space Centre rely heavily on each space shuttle launch to support their merchandising of mission patches, from the traditional sew on badge to T shirts. Do mission patches tell a story? Are they Art? What is the origin and role of this art form in society? The art form of space mission patches combines the 21st century relevance with heraldic origins predating the ninth century. The space mission patch is designed by the astronauts themselves if it is a manned mission. As an education tool teachers and educators use the space mission patch to engage their students in the excitement of space exploration, the mission patch design is utilized as an education tool in literature, science and art. The space mission patch is a particularly powerful message medium. This paper looks at the origins of the space mission patch, its relevance to art and its impact on society.

  10. A new formula of the Gravitational Curvature for the prism

    NASA Astrophysics Data System (ADS)

    Grazia D'Urso, Maria

    2017-04-01

    Gravitational Curvatures (GC) are the components of the third-order gravitational tensor and physically represent the rate of change of the gravity gradient. While scalar, vector and second-order tensor quantities of the Earth's gravitational field have extensively been studied and their properties have been well understood [1], the first successful terrestrial measurements of the third-order vertical gravitational gradients have been recently performed in [2] by atom interferometry sensors in laboratory environment. Possible benefits of the airborne third-order gravitational gradients for exploration geophysics are discussed in [3] while Brieden et al. (2010) [4] have proposed a new satellite mission called OPTical Interferometry for global Mass change detection from space (OPTIMA) sensing the third-order gravitational gradients in space. Moreover, exploitation of GC for modelling the Earth's gravitational field has been object of recent studies [5-7]. We extend the approach presented by the author in previous papers [8-10] by evaluating the algebraic expression of the third-order gravitational tensor for a prism. Comparisons with previous results [11-12] are also included. [1] Freeden W, Schreiner M (2009) Spherical functions of mathematical geosciences. A scalar, vectorial, and tensorial setup. In: Advances in geophysical and environmental mechanics and mathematics. Springer, Berlin [2] Rosi G, Cacciapuoti L, Sorrentino F, Menchetti M, Prevedelli M, Tino GM (2015) Measurements of the gravity-field curvature by atom interferometry. Phys Rev Lett 114:013001 [3] Di Francesco D, Meyer T, Christensen A, FitzGerald D (2009) Gravity gradiometry - today and tomorrow. In: 11th SAGA Biennial technical meeting and exhibition, 13-18 September 2009, Switzerland, pp 80-83 [4] Brieden P, Müller J, Flury J, Heinzel G (2010) The mission OPTIMA - novelties and benefit. In: Geotechnologien science report No. 17, Potsdam, pp 134-139 [5] Šprlák M, Novák P (2015) Integral formulas for computing a third-order gravitational tensor from volumetric mass density, disturbing gravitational potential, gravity anomaly and gravity disturbance. J Geod 89:141-157 [6] Šprlák M, Novák P (2016) Spherical gravitational curvature boundary-value problem. J Geod 90:727-739 [7] Hamáčková E, Šprlák M , Pitoňák M, Novák P (2016) Non-singular expressions for the spherical harmonic synthesis of gravitational curvatures in a local north-oriented reference frame. Comp & Geosc 88: 152-162 [8] D'Urso MG (2012) New expressions of the gravitational potential and its derivates for the prism. In Hotine-Marussi International Symposium on Mathematical Geodesy, 7rd. Sneeuw N, Novak P, Crespi M, Sansò F. Springer-Verlag, Berlin Heidelberg pp. 251-256 [9] D'Urso MG (2013) On the evaluation of the gravity effects of polyhedral bodies and a consistent treatment of related singularities. J Geod 87:239-252 [10] D'Urso MG (2014)Analytical computation of gravity effects for polyhedral bodies. J Geod 88:13-29 [11] Nagy D, Papp G, Benedek J (2000) The gravitational potential and its derivatives for the prism. J Geod 74:552-560 [12] Holstein H, Fitzgerald DJ, H. Stefanov H (2013) Gravimagnetic similarity for homogeneous rectangular prisms. 75th EAGE Conference & Exhibition, London

  11. Measurement of the gravity-field curvature by atom interferometry.

    PubMed

    Rosi, G; Cacciapuoti, L; Sorrentino, F; Menchetti, M; Prevedelli, M; Tino, G M

    2015-01-09

    We present the first direct measurement of the gravity-field curvature based on three conjugated atom interferometers. Three atomic clouds launched in the vertical direction are simultaneously interrogated by the same atom interferometry sequence and used to probe the gravity field at three equally spaced positions. The vertical component of the gravity-field curvature generated by nearby source masses is measured from the difference between adjacent gravity gradient values. Curvature measurements are of interest in geodesy studies and for the validation of gravitational models of the surrounding environment. The possibility of using such a scheme for a new determination of the Newtonian constant of gravity is also discussed.

  12. Demodulation of moire fringes in digital holographic interferometry using an extended Kalman filter.

    PubMed

    Ramaiah, Jagadesh; Rastogi, Pramod; Rajshekhar, Gannavarpu

    2018-03-10

    This paper presents a method for extracting multiple phases from a single moire fringe pattern in digital holographic interferometry. The method relies on component separation using singular value decomposition and an extended Kalman filter for demodulating the moire fringes. The Kalman filter is applied by modeling the interference field locally as a multi-component polynomial phase signal and extracting the associated multiple polynomial coefficients using the state space approach. In addition to phase, the corresponding multiple phase derivatives can be simultaneously extracted using the proposed method. The applicability of the proposed method is demonstrated using simulation and experimental results.

  13. Damage Detection Using Holography and Interferometry

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.

    2003-01-01

    This paper reviews classical approaches to damage detection using laser holography and interferometry. The paper then details the modern uses of electronic holography and neural-net-processed characteristic patterns to detect structural damage. The design of the neural networks and the preparation of the training sets are discussed. The use of a technique to optimize the training sets, called folding, is explained. Then a training procedure is detailed that uses the holography-measured vibration modes of the undamaged structures to impart damage-detection sensitivity to the neural networks. The inspections of an optical strain gauge mounting plate and an International Space Station cold plate are presented as examples.

  14. Double-pulse digital speckle pattern interferometry for vibration analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Dazhi; Xue, Jingfeng; Chen, Lu; Wen, Juying; Wang, Jingjing

    2014-12-01

    The double-pulse Digital Speckle Pattern Interferometry (DSPI) in the laboratory is established. Two good performances have been achieved at the same time, which is uniform distribution of laser beam energy by space filter and recording two successive pictures by a CCD camera successfully. Then two-dimensional discrete orthogonal wavelet transform method is used for the process of filtering method. By using the DSPI, speckle pattern of a vibrated object is obtained with interval of (2~800)μs, and 3D plot of the transient vibration is achieved. Moreover, good agreements of the mode shapes and displacement are obtained by comparing with Laser Doppler Vibrometer (LDV) .

  15. Simulations of VLBI observations of a geodetic satellite providing co-location in space

    NASA Astrophysics Data System (ADS)

    Anderson, James M.; Beyerle, Georg; Glaser, Susanne; Liu, Li; Männel, Benjamin; Nilsson, Tobias; Heinkelmann, Robert; Schuh, Harald

    2018-02-01

    We performed Monte Carlo simulations of very-long-baseline interferometry (VLBI) observations of Earth-orbiting satellites incorporating co-located space-geodetic instruments in order to study how well the VLBI frame and the spacecraft frame can be tied using such measurements. We simulated observations of spacecraft by VLBI observations, time-of-flight (TOF) measurements using a time-encoded signal in the spacecraft transmission, similar in concept to precise point positioning, and differential VLBI (D-VLBI) observations using angularly nearby quasar calibrators to compare their relative performance. We used the proposed European Geodetic Reference Antenna in Space (E-GRASP) mission as an initial test case for our software. We found that the standard VLBI technique is limited, in part, by the present lack of knowledge of the absolute offset of VLBI time to Coordinated Universal Time at the level of microseconds. TOF measurements are better able to overcome this problem and provide frame ties with uncertainties in translation and scale nearly a factor of three smaller than those yielded from VLBI measurements. If the absolute time offset issue can be resolved by external means, the VLBI results can be significantly improved and can come close to providing 1 mm accuracy in the frame tie parameters. D-VLBI observations with optimum performance assumptions provide roughly a factor of two higher uncertainties for the E-GRASP orbit. We additionally simulated how station and spacecraft position offsets affect the frame tie performance.

  16. Mapping coastal sea level at high resolution with radar interferometry: the SWOT Mission

    NASA Astrophysics Data System (ADS)

    Fu, L. L.; Chao, Y.; Laignel, B.; Turki, I., Sr.

    2017-12-01

    The spatial resolution of the present constellation of radar altimeters in mapping two-dimensional sea surface height (SSH) variability is approaching 100 km (in wavelength). At scales shorter than 100 km, the eddies and fronts are responsible for the stirring and mixing of the ocean, especially important in the various coastal processes. A mission currently in development will make high-resolution measurement of the height of water over the ocean as well as on land. It is called Surface Water and Ocean Topography (SWOT), which is a joint mission of US NASA and French CNES, with contributions from Canada and UK. SWOT will carry a pair of interferometry radars and make 2-dimensional SSH measurements over a swath of 120 km with a nadir gap of 20 km in a 21-day repeat orbit. The synthetic aperture radar of SWOT will make SSH measurement at extremely high resolution of 10-70 m. SWOT will also carry a nadir looking conventional altimeter and make 1-dimensional SSH measurements along the nadir gap. The temporal sampling varies from 2 repeats per 21 days at the equator to more than 4 repeats at mid latitudes and more than 6 at high latitudes. This new mission will allow a continuum of fine-scale observations from the open ocean to the coasts, estuaries and rivers, allowing us to investigate a number of scientific and technical questions in the coastal and estuarine domain to assess the coastal impacts of regional sea level change, such as the interaction of sea level with river flow, estuary inundation, storm surge, coastal wetlands, salt water intrusion, etc. As examples, we will illustrate the potential impact of SWOT to the studies of the San Francisco Bay Delta, and the Seine River estuary, etc. Preliminary results suggest that the SWOT Mission will provide fundamental data to map the spatial variability of water surface elevations under different hydrodynamic conditions and at different scales (local, regional and global) to improve our knowledge of the complex physical processes in the coastal and estuarine systems in response to global sea level changes.

  17. Common mode noise rejection properties of amplitude and phase noise in a heterodyne interferometer.

    PubMed

    Hechenblaikner, Gerald

    2013-05-01

    High precision metrology systems based on heterodyne interferometry can measure the position and attitude of objects to accuracies of picometer and nanorad, respectively. A frequently found feature of the general system design is the subtraction of a reference phase from the phase of the position interferometer, which suppresses low frequency common mode amplitude and phase fluctuations occurring in volatile optical path sections shared by both the position and reference interferometer. Spectral components of the noise at frequencies around or higher than the heterodyne frequency, however, are generally transmitted into the measurement band and may limit the measurement accuracy. Detailed analytical calculations complemented with Monte Carlo simulations show that high frequency noise components may also be entirely suppressed, depending on the relative difference of measurement and reference phase, which may be exploited by corresponding design provisions. While these results are applicable to any heterodyne interferometer with certain design characteristics, specific calculations and related discussions are given for the example of the optical metrology system of the LISA Pathfinder mission to space.

  18. Excitation of Earth Rotation Variations "Observed" by Time-Variable Gravity

    NASA Technical Reports Server (NTRS)

    Chao, Ben F.; Cox, C. M.

    2005-01-01

    Time variable gravity measurements have been made over the past two decades using the space geodetic technique of satellite laser ranging, and more recently by the GRACE satellite mission with improved spatial resolutions. The degree-2 harmonic components of the time-variable gravity contain important information about the Earth s length-of-day and polar motion excitation functions, in a way independent to the traditional "direct" Earth rotation measurements made by, for example, the very-long-baseline interferometry and GPS. In particular, the (degree=2, order= 1) components give the mass term of the polar motion excitation; the (2,O) component, under certain mass conservation conditions, gives the mass term of the length-of-day excitation. Combining these with yet another independent source of angular momentum estimation calculated from global geophysical fluid models (for example the atmospheric angular momentum, in both mass and motion terms), in principle can lead to new insights into the dynamics, particularly the role or the lack thereof of the cores, in the excitation processes of the Earth rotation variations.

  19. Simulating Responses of Gravitational-Wave Instrumentation

    NASA Technical Reports Server (NTRS)

    Armstrong, John; Edlund, Jeffrey; Vallisneri. Michele

    2006-01-01

    Synthetic LISA is a computer program for simulating the responses of the instrumentation of the NASA/ESA Laser Interferometer Space Antenna (LISA) mission, the purpose of which is to detect and study gravitational waves. Synthetic LISA generates synthetic time series of the LISA fundamental noises, as filtered through all the time-delay-interferometry (TDI) observables. (TDI is a method of canceling phase noise in temporally varying unequal-arm interferometers.) Synthetic LISA provides a streamlined module to compute the TDI responses to gravitational waves, according to a full model of TDI (including the motion of the LISA array and the temporal and directional dependence of the arm lengths). Synthetic LISA is written in the C++ programming language as a modular package that accommodates the addition of code for specific gravitational wave sources or for new noise models. In addition, time series for waves and noises can be easily loaded from disk storage or electronic memory. The package includes a Python-language interface for easy, interactive steering and scripting. Through Python, Synthetic LISA can read and write data files in Flexible Image Transport System (FITS), which is a commonly used astronomical data format.

  20. Development and Validation of High Precision Thermal, Mechanical, and Optical Models for the Space Interferometry Mission

    NASA Technical Reports Server (NTRS)

    Lindensmith, Chris A.; Briggs, H. Clark; Beregovski, Yuri; Feria, V. Alfonso; Goullioud, Renaud; Gursel, Yekta; Hahn, Inseob; Kinsella, Gary; Orzewalla, Matthew; Phillips, Charles

    2006-01-01

    SIM Planetquest (SIM) is a large optical interferometer for making microarcsecond measurements of the positions of stars, and to detect Earth-sized planets around nearby stars. To achieve this precision, SIM requires stability of optical components to tens of picometers per hour. The combination of SIM s large size (9 meter baseline) and the high stability requirement makes it difficult and costly to measure all aspects of system performance on the ground. To reduce risks, costs and to allow for a design with fewer intermediate testing stages, the SIM project is developing an integrated thermal, mechanical and optical modeling process that will allow predictions of the system performance to be made at the required high precision. This modeling process uses commercial, off-the-shelf tools and has been validated against experimental results at the precision of the SIM performance requirements. This paper presents the description of the model development, some of the models, and their validation in the Thermo-Opto-Mechanical (TOM3) testbed which includes full scale brassboard optical components and the metrology to test them at the SIM performance requirement levels.

  1. Ionospheric Specifications for SAR Interferometry (ISSI)

    NASA Technical Reports Server (NTRS)

    Pi, Xiaoqing; Chapman, Bruce D; Freeman, Anthony; Szeliga, Walter; Buckley, Sean M.; Rosen, Paul A.; Lavalle, Marco

    2013-01-01

    The ISSI software package is designed to image the ionosphere from space by calibrating and processing polarimetric synthetic aperture radar (PolSAR) data collected from low Earth orbit satellites. Signals transmitted and received by a PolSAR are subject to the Faraday rotation effect as they traverse the magnetized ionosphere. The ISSI algorithms combine the horizontally and vertically polarized (with respect to the radar system) SAR signals to estimate Faraday rotation and ionospheric total electron content (TEC) with spatial resolutions of sub-kilometers to kilometers, and to derive radar system calibration parameters. The ISSI software package has been designed and developed to integrate the algorithms, process PolSAR data, and image as well as visualize the ionospheric measurements. A number of tests have been conducted using ISSI with PolSAR data collected from various latitude regions using the phase array-type L-band synthetic aperture radar (PALSAR) onboard Japan Aerospace Exploration Agency's Advanced Land Observing Satellite mission, and also with Global Positioning System data. These tests have demonstrated and validated SAR-derived ionospheric images and data correction algorithms.

  2. Imaging of Stellar Surfaces with the Navy Precision Optical Interferometer

    DTIC Science & Technology

    2015-09-18

    geostationary satel- lite with the Navy Prototype Optical Interferome- ter,” in Proc. Optical and Infrared Interferometry II, W. C. Danchi, F...Cormier, “Imag- ing of geostationary satellites with the MRO inter- ferometer,” in Proc. Advanced Maui Optical and Space Surveillance Technologies... geostationary satellites: Signal-to-noise considerations,” in Proc. Advanced Maui Optical and Space Surveillance Technologies Conference, 2011. 6. D

  3. Passive Standoff Super Resolution Imaging using Spatial-Spectral Multiplexing

    DTIC Science & Technology

    2017-08-14

    94 5.0 Four -Dimensional Object-Space Data Reconstruction Using Spatial...103 5.3 Four -dimensional scene reconstruction using SSM...transitioning to systems based on spectrally resolved longitudinal spatial coherence interferometry. This document also includes research related to four

  4. Airborne Imaging in the Yukon River Basin to Characterize SWOT Mission Phenomenology

    NASA Astrophysics Data System (ADS)

    Moller, D.; Pavelsky, T.; Arvesen, J. C.

    2015-12-01

    Remote sensing offers intriguing tools to track Arctic hydrology, but current techniques are largely limited to tracking either inundation or water surface elevation only. For the first time, the proposed Surface Water Ocean Topography (SWOT) satellite mission will provide regular, simultaneous observations of inundation extent and water level from space. SWOT is unique and distinct from precursor altimetry missions in some notable regards: 1) 100km+ of swath will provide complete ocean coverage, 2) in addition to the ocean product, land surface water will be mapped for storage measurement and discharge estimation and 3) Ka-band single-pass interferometry will produce the height measurements introducing a new measurement technique. This new approach introduces additional algorithmic, characterization and calibration/validation needs for which the Ka-band SWOT Phenomenology Airborne Radar (KaSPAR) was developed. In May 2015, AirSWOT (comprised of KaSPAR and a color infrared (CIR) high resolution aerial camera) was part of an intensive field campaign including observations of inundation extent and water level and in situ hydrologic measurements in two rivers and 20 lakes within the Yukon River Basin, Alaska. One goal is to explore the fundamental phenomenology of the SWOT measurement. This includes assessment of the effects of vegetation layover and attenuation, wind roughening and classification. Further KaSPAR-derived inundation extent will to be validated using a combination of ground surveys and coregistered CIR imagery. Ultimately, by combining measurements of changing inundation extent and water level between two collection dates, it will be possible to validate lake water storage variations against storage changes computed from in situ water levels and inundation area derived from AirSWOT. Our paper summarizes the campaign, the airborne and in situ measurements and presents some initial KaSPAR and CIR imagery from the Yukon flats region.

  5. Isotope-selective high-order interferometry with large organic molecules in free fall

    NASA Astrophysics Data System (ADS)

    Rodewald, Jonas; Dörre, Nadine; Grimaldi, Andrea; Geyer, Philipp; Felix, Lukas; Mayor, Marcel; Shayeghi, Armin; Arndt, Markus

    2018-03-01

    Interferometry in the time domain has proven valuable for matter-wave based measurements. This concept has recently been generalized to cold molecular clusters using short-pulse standing light waves which realized photo-depletion gratings, arranged in a time-domain Talbot–Lau interferometer (OTIMA). Here we extend this idea further to large organic molecules and demonstrate a new scheme to scan the emerging molecular interferogram in position space. The capability of analyzing different isotopes of the same monomer under identical conditions opens perspectives for studying the interference fringe shift as a function of time in gravitational free fall. The universality of OTIMA interferometry allows one to handle a large variety of particles. In our present work, quasi-continuous laser evaporation allows transferring fragile organic molecules into the gas phase, covering more than an order of magnitude in mass between 614 amu and 6509 amu, i.e. 300% more massive than in previous OTIMA experiments. For all masses, we find about 30% fringe visibility.

  6. Terahertz reflection interferometry for automobile paint layer thickness measurement

    NASA Astrophysics Data System (ADS)

    Rahman, Aunik; Tator, Kenneth; Rahman, Anis

    2015-05-01

    Non-destructive terahertz reflection interferometry offers many advantages for sub-surface inspection such as interrogation of hidden defects and measurement of layers' thicknesses. Here, we describe a terahertz reflection interferometry (TRI) technique for non-contact measurement of paint panels where the paint is comprised of different layers of primer, basecoat, topcoat and clearcoat. Terahertz interferograms were generated by reflection from different layers of paints on a metallic substrate. These interferograms' peak spacing arising from the delay-time response of respective layers, allow one to model the thicknesses of the constituent layers. Interferograms generated at different incident angles show that the interferograms are more pronounced at certain angles than others. This "optimum" angle is also a function of different paint and substrate combinations. An automated angular scanning algorithm helps visualizing the evolution of the interferograms as a function of incident angle and also enables the identification of optimum reflection angle for a given paint-substrate combination. Additionally, scanning at different points on a substrate reveals that there are observable variations from one point to another of the same sample over its entire surface area. This ability may be used as a quality control tool for in-situ inspection in a production line. Keywords: Terahertz reflective interferometry, Paint and coating layers, Non-destructive

  7. SWOT: A high-resolution wide-swath altimetry mission for oceanography and hydrology

    NASA Astrophysics Data System (ADS)

    Morrow, Rosemary; Fu, Lee-Lueng; Rodriguez, Ernesto

    2013-04-01

    A new satellite mission called Surface Water and Ocean Topography (SWOT) has been developed jointly by the U.S. National Aeronautics and Space Administration and France's Centre National d'Etudes Spatiales. Based on the success of nadir-looking altimetry missions in the past, SWOT will use the technique of radar interferometry to make wide-swath altimetric measurements of the elevation of surface water on land and the ocean's surface topography. The new measurements will provide information on the changing ocean currents that are key to the prediction of climate change, as well as the shifting fresh water resources resulting from climate change. Conventional satellite altimetry has revolutionized oceanography by providing nearly two decades' worth of global measurements of ocean surface topography. However, the noise level of radar altimeters limits the along-track spatial resolution to 50-100 km over the oceans. The large spacing between the satellite ground tracks limits the resolution of 2D gridded data to 200 km. Yet most of the kinetic energy of ocean circulation takes place at the scales unresolved by conventional altimetry. About 50% of the vertical transfer of heat and chemical properties of the ocean (e.g., dissolved CO2 and nutrients) is also accomplished by processes at these scales. SWOT observations will provide the critical new information at these scales for developing and testing ocean models that are designed for predicting future climate change. SWOT measurements will be in Ka band (~35 GHZ), chosen for the radar to achieve high precision with a much shorter inteferometry baseline of 10 m. Small look angles (~ 4 degrees) are required to minimize elevation errors, which limits the swath width to 120 km. An orbit with inclination of 78 degrees and 22 day repeat period was chosen for gapless coverage and good tidal aliasing properties. With this configuration, SWOT is expected to achieve 1 cm precision at 1 km x 1 km pixels over the ocean and 10 cm precision over 50 m x 50 m pixels over land waters. This presentation will be in two parts. Firstly we will give a brief overview of the SWOT mission and its sampling characteristics. We will then introduce a number of recent scientific results on our present understanding of ocean topography and surface geostropic velocities at mesoscales and sub-mesoscales, results which have been inspired by the upcoming SWOT measurements.

  8. Joint stars phased array radar antenna

    NASA Astrophysics Data System (ADS)

    Shnitkin, Harold

    1994-10-01

    The Joint STARS phased array radar system is capable of performing long range airborne surveillance and was used during the Persian Gulf war on two E8-A aircraft to fly many around-the-clock missions to monitor the Kuwait and Iraq battlefield from a safe distance behind the front lines. This paper is a follow-on to previous publications on the subject of the Joint STARS antenna and deals mainly with mission performance and technical aspects not previously covered. Radar data of troop movements and armament installations will be presented, a brief review of the antenna design is given, followed by technical discussions concerning the three-port interferometry, gain and sidelobe design approach, cost control, range test implementation and future improvements.

  9. Space Flight: The First 30 Years

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A history of space flight from Project Mercury to the Space Shuttle is told from the perspective of NASA flight programs. Details are given on Mercury missions, Gemini missions, Apollo missions, Skylab missions, the Apollo-Soyuz Test Project, and the Space Shuttle missions.

  10. Trapped strontium ion optical clock

    NASA Astrophysics Data System (ADS)

    Barwood, G. P.; Gill, P.; Klein, H. A.; Hosaka, K.; Huang, G.; Lea, S. N.; Margolis, H. S.; Szymaniec, K.; Walton, B. R.

    2017-11-01

    Increasingly stringent demands on atomic timekeeping, driven by applications such as global navigation satellite systems (GNSS), communications, and very-long baseline interferometry (VBLI) radio astronomy, have motivated the development of improved time and frequency standards. There are many scientific applications of such devices in space.

  11. Spacecraft formation keeping near the libration points of the Sun-Earth/Moon system

    NASA Astrophysics Data System (ADS)

    Marchand, Belinda G.

    Multi-spacecraft formations, evolving near the vicinity of the libration points of the Sun-Earth/Moon system, have drawn increased interest for a variety of applications. This is particularly true for space based interferometry missions such as Terrestrial Planet Finder (TPF) and the Micro Arcsecond X-Ray Imaging Mission (MAXIM). Recent studies in formation flight have focused, primarily, on the control of formations that evolve in the immediate vicinity of the Earth. However, the unique dynamical structure near the libration points requires that the effectiveness and feasibility of these methods be re-examined. The present study is divided into two main topics. First, a dynamical systems approach is employed to develop a better understanding of the natural uncontrolled formation dynamics in this region of space. The focus is formations that evolve near halo orbits and Lissajous trajectories, near the L1 and L2 libration points of the Sun-Earth/Moon system. This leads to the development of a Floquet controller designed to simplify the process of identifying naturally existing formations as well as the associated stable manifolds for deployment. The initial analysis is presented in the Circular Restricted Three-Body Problem, but the results are later transitioned into the more complete Ephemeris model. The next subject of interest in this investigation is non-natural formations. That is, formations that are not consistent with the natural dynamical flow near the libration points. Mathematically, precise formation keeping of a given nominal configuration requires continuous control. Hence, a detailed analysis is presented to contrast the effectiveness and issues associated with linear optimal control and feedback linearization methods. Of course, continuous operation of the thrusters, may not represent a feasible option for a particular mission. If discrete formation keeping is implemented, however, the formation keeping goal will be subject to increased tracking errors relative to the nominal path. With this in mind, the final phase of the analysis presented here is centered on discrete formation keeping. The initial analysis is devoted to both linear state and radial targeters. The results from these two methodologies are later employed as a starting solution for an optimal impulsive control algorithm.

  12. An approach to ground based space surveillance of geostationary on-orbit servicing operations

    NASA Astrophysics Data System (ADS)

    Scott, Robert (Lauchie); Ellery, Alex

    2015-07-01

    On Orbit Servicing (OOS) is a class of dual-use robotic space missions that could potentially extend the life of orbiting satellites by fuel replenishment, repair, inspection, orbital maintenance or satellite repurposing, and possibly reduce the rate of space debris generation. OOS performed in geostationary orbit poses a unique challenge for the optical space surveillance community. Both satellites would be performing proximity operations in tight formation flight with separations less than 500 m making atmospheric seeing (turbulence) a challenge to resolving a geostationary satellite pair when viewed from the ground. The two objects would appear merged in an image as the resolving power of the telescope and detector, coupled with atmospheric seeing, limits the ability to resolve the two objects. This poses an issue for obtaining orbital data for conjunction flight safety or, in matters pertaining to space security, inferring the intent and trajectory of an unexpected object perched very close to one's satellite asset on orbit. In order to overcome this problem speckle interferometry using a cross spectrum approach is examined as a means to optically resolve the client and servicer's relative positions to enable a means to perform relative orbit determination of the two spacecraft. This paper explores cases where client and servicing satellites are in unforced relative motion flight and examines the observability of the objects. Tools are described that exploit cross-spectrum speckle interferometry to (1) determine the presence of a secondary in the vicinity of the client satellite and (2) estimate the servicing satellite's motion relative to the client. Experimental observations performed with the Mont Mégantic 1.6 m telescope on co-located geostationary satellites (acting as OOS proxy objects) are described. Apparent angular separations between Anik G1 and Anik F1R from 5 to 1 arcsec were observed as the two satellites appeared to graze one another. Data reduction using differential angular measurements derived from speckle images collected by the 1.6 m telescope produced relative orbit estimates with better than 90 m accuracy in the cross-track and in-track directions but exhibited highly variable behavior in the radial component from 50 to 1800 m. Simulations of synthetic tracking data indicated that the radial component requires approximately six hours of tracking data for an Extended Kalman Filter to converge on an relative orbit estimate with less than 100 m overall uncertainty. The cross-spectrum approach takes advantage of the Fast Fourier Transform (FFT) permitting near real-time estimation of the relative orbit of the two satellites. This also enables the use of relatively larger detector arrays (>106 pixels) helping to ease acquisition process to acquire optical angular data.

  13. Topography and Landforms of Ecuador

    USGS Publications Warehouse

    Chirico, Peter G.; Warner, Michael B.

    2005-01-01

    EXPLANATION The digital elevation model of Ecuador represented in this data set was produced from over 40 individual tiles of elevation data from the Shuttle Radar Topography Mission (SRTM). Each tile was downloaded, converted from its native Height file format (.hgt), and imported into a geographic information system (GIS) for additional processing. Processing of the data included data gap filling, mosaicking, and re-projection of the tiles to form one single seamless digital elevation model. For 11 days in February of 2000, NASA, the National Geospatial-Intelligence Agency (NGA), the German Aerospace Center (DLR), and the Italian Space Agency (ASI) flew X-band and C-band radar interferometry onboard the Space Shuttle Endeavor. The mission covered the Earth between 60?N and 57?S and will provide interferometric digital elevation models (DEMs) of approximately 80% of the Earth's land mass when processing is complete. The radar-pointing angle was approximately 55? at scene center. Ascending and descending orbital passes generated multiple interferometric data scenes for nearly all areas. Up to eight passes of data were merged to form the final processed SRTM DEMs. The effect of merging scenes averages elevation values recorded in coincident scenes and reduces, but does not completely eliminate, the amount of area with layover and terrain shadow effects. The most significant form of data processing for the Ecuador DEM was gap-filling areas where the SRTM data contained a data void. These void areas are a result of radar shadow, layover, standing water, and other effects of terrain, as well as technical radar interferometry phase unwrapping issues. To fill these gaps, topographic contours were digitized from 1:50,000 - scale topographic maps which date from the mid-late 1980's (Souris, 2001). Digital contours were gridded to form elevation models for void areas and subsequently were merged with the SRTM data through GIS and remote sensing image-processing techniques. The data contained in this publication includes a gap filled, countrywide SRTM DEM of Ecuador projected in Universal Transverse Mercator (UTM) Zone 17 North projection, Provisional South American, 1956, Ecuador datum and a non gap filled SRTM DEM of the Galapagos Islands projected in UTM Zone 15 North projection. Both the Ecuador and Galapagos Islands DEMs are available as an ESRI Grid, stored as ArcInfo Export files (.e00), and in Erdas Imagine (IMG) file formats with a 90 meter pixel resolution. Also included in this publication are high and low resolution Adobe Acrobat (PDF) files of topography and landforms maps in Ecuador. The high resolution map should be used for printing and display, while the lower resolution map can be used for quick viewing and reference purposes.

  14. Space Station needs, attributes and architectural options. Volume 2, book 1, part 1: Mission requirements

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The baseline mission model used to develop the space station mission-related requirements is described as well as the 90 civil missions that were evaluated, (including the 62 missions that formed the baseline model). Mission-related requirements for the space station baseline are defined and related to space station architectural development. Mission-related sensitivity analyses are discussed.

  15. UAVSAR: Airborne L-band Radar for Repeat Pass Interferometry

    NASA Technical Reports Server (NTRS)

    Moes, Timothy R.

    2009-01-01

    The primary objectives of the UAVSAR Project were to: a) develop a miniaturized polarimetric L-band synthetic aperture radar (SAR) for use on an unmanned aerial vehicle (UAV) or piloted vehicle. b) develop the associated processing algorithms for repeat-pass differential interferometric measurements using a single antenna. c) conduct measurements of geophysical interest, particularly changes of rapidly deforming surfaces such as volcanoes or earthquakes. Two complete systems were developed. Operational Science Missions began on February 18, 2009 ... concurrent development and testing of the radar system continues.

  16. Speckle interferometry of asteroids. I - 433 Eros

    NASA Technical Reports Server (NTRS)

    Drummond, J. D.; Cocke, W. J.; Hege, E. K.; Strittmatter, P. A.; Lambert, J. V.

    1985-01-01

    Analytical expressions are derived for the semimajor and semiminor axes and orientation angle of the ellipse projected by a triaxial asteroid, and the results are applied speckle-interferometry observations of the 433 Eros asteroid. The expressions were calculated as functions of the dimensions and pole of the body and of the asterocentric position of the earth and the sun. On the basis of the analytical expressions, the dimensions of 433 Eros are obtained. The light curve from December 18, 1981 is compared to the dimensions to obtain a geometric albedo of 0.156 (+ or - 0.010). A series of two-dimensional power spectra and autocorrelation functions for 433 Eros show that it is spinning in space.

  17. Deep frequency modulation interferometry.

    PubMed

    Gerberding, Oliver

    2015-06-01

    Laser interferometry with pm/Hz precision and multi-fringe dynamic range at low frequencies is a core technology to measure the motion of various objects (test masses) in space and ground based experiments for gravitational wave detection and geodesy. Even though available interferometer schemes are well understood, their construction remains complex, often involving, for example, the need to build quasi-monolithic optical benches with dozens of components. In recent years techniques have been investigated that aim to reduce this complexity by combining phase modulation techniques with sophisticated digital readout algorithms. This article presents a new scheme that uses strong laser frequency modulations in combination with the deep phase modulation readout algorithm to construct simpler and easily scalable interferometers.

  18. A Comparison of Three Methods for Measuring Distortion in Optical Windows

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.; Nurge, Mark A.; Skow, Miles

    2015-01-01

    It's important that imagery seen through large-area windows, such as those used on space vehicles, not be substantially distorted. Many approaches are described in the literature for measuring the distortion of an optical window, but most suffer from either poor resolution or processing difficulties. In this paper a new definition of distortion is presented, allowing accurate measurement using an optical interferometer. This new definition is shown to be equivalent to the definitions provided by the military and the standards organizations. In order to determine the advantages and disadvantages of this new approach, the distortion of an acrylic window is measured using three different methods: image comparison, moiré interferometry, and phase-shifting interferometry.

  19. Science objectives for ground- and space-based optical/IR interferometry

    NASA Technical Reports Server (NTRS)

    Ridgway, Stephen T.

    1992-01-01

    Ground-based interferometry will make spectacular strides in the next decade. However, it will always be limited by the turbulence of the terrestrial atmosphere. Some of the most exciting and subtle problems may only be addressed from a stable platform above the atmosphere. The lunar surface offers such a platform, nearly ideal in many respects. Once built, such a telescope array will not only resolve key fundamental problems, but will revolutionize virtually every topic in observational astronomy. Estimates of the possible performance of lunar and ground-based interferometers of the 21st century shows that the lunar interferometer reaches the faintest sources of all wavelengths, but has the most significant advantage in the infrared.

  20. Model-Based Trade Space Exploration for Near-Earth Space Missions

    NASA Technical Reports Server (NTRS)

    Cohen, Ronald H.; Boncyk, Wayne; Brutocao, James; Beveridge, Iain

    2005-01-01

    We developed a capability for model-based trade space exploration to be used in the conceptual design of Earth-orbiting space missions. We have created a set of reusable software components to model various subsystems and aspects of space missions. Several example mission models were created to test the tools and process. This technique and toolset has demonstrated itself to be valuable for space mission architectural design.

  1. Simultaneous estimation of multiple phases in digital holographic interferometry using state space analysis

    NASA Astrophysics Data System (ADS)

    Kulkarni, Rishikesh; Rastogi, Pramod

    2018-05-01

    A new approach is proposed for the multiple phase estimation from a multicomponent exponential phase signal recorded in multi-beam digital holographic interferometry. It is capable of providing multidimensional measurements in a simultaneous manner from a single recording of the exponential phase signal encoding multiple phases. Each phase within a small window around each pixel is appproximated with a first order polynomial function of spatial coordinates. The problem of accurate estimation of polynomial coefficients, and in turn the unwrapped phases, is formulated as a state space analysis wherein the coefficients and signal amplitudes are set as the elements of a state vector. The state estimation is performed using the extended Kalman filter. An amplitude discrimination criterion is utilized in order to unambiguously estimate the coefficients associated with the individual signal components. The performance of proposed method is stable over a wide range of the ratio of signal amplitudes. The pixelwise phase estimation approach of the proposed method allows it to handle the fringe patterns that may contain invalid regions.

  2. Estimating the Deep Space Network modification costs to prepare for future space missions by using major cost drivers

    NASA Technical Reports Server (NTRS)

    Remer, Donald S.; Sherif, Josef; Buchanan, Harry R.

    1993-01-01

    This paper develops a cost model to do long range planning cost estimates for Deep Space Network (DSN) support of future space missions. The paper focuses on the costs required to modify and/or enhance the DSN to prepare for future space missions. The model is a function of eight major mission cost drivers and estimates both the total cost and the annual costs of a similar future space mission. The model is derived from actual cost data from three space missions: Voyager (Uranus), Voyager (Neptune), and Magellan. Estimates derived from the model are tested against actual cost data for two independent missions, Viking and Mariner Jupiter/Saturn (MJS).

  3. Seperating Long-term Hydrological Loading and Tectonic Deformation Observed with Multi-temporal SAR Interferometry and GPS in Qinghai-Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    LI, G.; Lin, H.

    2014-12-01

    From 2000 till present, most endorheic lakes in Tibetan plateau experienced quick increasing. Several largest lakes, gathered several meters depth water during one decade. Such massive mass increasing will lead to elastic and visco-elastic deformation of the ground. Qinghai-Tibetan Plateau is one the most active tectonic places in the world; monitoring its ground deformation is essential, when loading effect is a nuisance item. Due to the sparse distribution of GPS sites and most are roving sites, it is hard to distinguish tectonic component from mass loading effect. In this research we took Selin Co Lake located at Nujiang-Bangoin suture zone and evaluated long time ground deformation at hundred kilometers scale by multi-temporal SAR interferometry and simulate the ground deformation by loading history evaluated by multi mission satellite altimetry and optical images observation. At Nujiang-Bangoin suture zone, where GPS presented the maximum ground subsidence in Qinghai-Tibetan Plateau of 3.6mm/a which was found at the shore of Selin Co Lake from 1999 to 2011, when it experienced water level increasing of 0.7m/a. A model of elastic plate lying over Newtonian viscous half-space matches well with the results of multi-temporal SAR interferometry and GPS observations. We concluded that near Selin Co Lake area, ground deformation is composed by both tectonic and hydrological loading part. As SAR image coverage is much smaller than tectonic scale, we contribute the deformation detected by InSAR to loading effect. After evaluating and removing the hydrological loading effect, we founds that Nujiang-Bangoin suture zone did not experience quick subsidence, but only limited to 0.5mm/a. Selin Co Lake's quick volume increasing caused 3mm/a subsidence rate to the nearest GPS site. The Second nearest site showed the 1.4mm/a subsidence totally, which were composed by 1.05mm/a hydrological loading effect and the rest was tectonic. We also found that Young's Modulus is the most essential parameter for loading effect simulation, and our simulation gave the similar Young's Modulus as the previous seismic tomographic INDEPTH III program did. Therefore with accurate seismic tomographic results and loading history detected by remote sensing could accurately simulate ground deformation caused by hydrological loading.

  4. Trajectory and navigation system design for robotic and piloted missions to Mars

    NASA Technical Reports Server (NTRS)

    Thurman, S. W.; Matousek, S. E.

    1991-01-01

    Future Mars exploration missions, both robotic and piloted, may utilize Earth to Mars transfer trajectories that are significantly different from one another, depending upon the type of mission being flown and the time period during which the flight takes place. The use of new or emerging technologies for future missions to Mars, such as aerobraking and nuclear rocket propulsion, may yield navigation requirements that are much more stringent than those of past robotic missions, and are very difficult to meet for some trajectories. This article explores the interdependencies between the properties of direct Earth to Mars trajectories and the Mars approach navigation accuracy that can be achieved using different radio metric data types, such as ranging measurements between an approaching spacecraft and Mars orbiting relay satellites, or Earth based measurements such as coherent Doppler and very long baseline interferometry. The trajectory characteristics affecting navigation performance are identified, and the variations in accuracy that might be experienced over the range of different Mars approach trajectories are discussed. The results predict that three sigma periapsis altitude navigation uncertainties of 2 to 10 km can be achieved when a Mars orbiting satellite is used as a navigation aid.

  5. Marshall Space Flight Center's role in EASE/ACCESS mission management

    NASA Technical Reports Server (NTRS)

    Hawkins, Gerald W.

    1987-01-01

    The Marshall Space Flight Center (MSFC) Spacelab Payload Project Office was responsible for the mission management and development of several successful payloads. Two recent space construction experiments, the Experimental Assembly of Structures in Extravehicular Activity (EASE) and the Assembly Concept for Construction of Erectable Space Structures (ACCESS), were combined into a payload managed by the center. The Ease/ACCESS was flown aboard the Space Shuttle Mission 61-B. The EASE/ACCESS experiments were the first structures assembled in space, and the method used to manage this successful effort will be useful for future space construction missions. The MSFC mission management responsibilities for the EASE/ACCESS mission are addressed and how the lessons learned from the mission can be applied to future space construction projects are discussed.

  6. A study of a space-station-associated multiple spacecraft Michelson spatial interferometer

    NASA Technical Reports Server (NTRS)

    Stachnik, R. V.

    1983-01-01

    One approach to Michelson spatial interferometry at optical wavelengths involves use of an array of spacecraft in which two widely-separated telescopes collect light from a star and direct it to a third, centrally-located, device which combines the beams in order to detect and measure interference fringes. The original version of a spacecraft array for Michelson spatial interferometry (SAMSI) was modified so that the system uses the fuel resupply capability of a space station. The combination of this fuel resupply capability with a method of obtaining image Fourier transform phase information, necessary for full image reconstruction, permits SAMSI to be used to synthesize images equivalent to those produced by huge apertures in space. Synthesis of apertures in the 100 to 500 meter range is discussed. Reconstruction can be performed to a visual magnitude of at least 8 for a 100 A passband in 9 hours. Data are simultaneously collected for image generation from 0.1 micron to 18 microns. In the one-dimensional mode, measurements can be made every 90 minutes (including acquisition and repointing time) for objects as faint as 19th magnitude in the visible.

  7. Space shuttle. [a transportation system for low orbit space missions

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The space shuttle is discussed as a reusable space vehicle operated as a transportation system for space missions in low earth orbit. Space shuttle studies and operational capabilities are reported for potential missions indicating that about 38 percent are likely to be spacelab missions with the remainder being the replacement, revisit, or retrieval of automated spacecraft.

  8. Probing the Innermost Regions of AGN Jets and Their Magnetic Fields with RadioAstron. I. Imaging BL Lacertae at 21 Microarcsecond Resolution

    NASA Astrophysics Data System (ADS)

    Gómez, José L.; Lobanov, Andrei P.; Bruni, Gabriele; Kovalev, Yuri Y.; Marscher, Alan P.; Jorstad, Svetlana G.; Mizuno, Yosuke; Bach, Uwe; Sokolovsky, Kirill V.; Anderson, James M.; Galindo, Pablo; Kardashev, Nikolay S.; Lisakov, Mikhail M.

    2016-02-01

    We present the first polarimetric space very long baseline interferometry (VLBI) imaging observations at 22 GHz. BL Lacertae was observed in 2013 November 10 with the RadioAstron space VLBI mission, including a ground array of 15 radio telescopes. The instrumental polarization of the space radio telescope is found to be less than 9%, demonstrating the polarimetric imaging capabilities of RadioAstron at 22 GHz. Ground-space fringes were obtained up to a projected baseline distance of 7.9 Earth diameters in length, allowing us to image the jet in BL Lacertae with a maximum angular resolution of 21 μas, the highest achieved to date. We find evidence for emission upstream of the radio core, which may correspond to a recollimation shock at about 40 μas from the jet apex, in a pattern that includes other recollimation shocks at approximately 100 and 250 μas from the jet apex. Polarized emission is detected in two components within the innermost 0.5 mas from the core, as well as in some knots 3 mas downstream. Faraday rotation analysis, obtained from combining RadioAstron 22 GHz and ground-based 15 and 43 GHz images, shows a gradient in rotation measure and Faraday-corrected polarization vector as a function of position angle with respect to the core, suggesting that the jet in BL Lacertae is threaded by a helical magnetic field. The intrinsic de-boosted brightness temperature in the unresolved core exceeds 3× {10}12 K, suggesting, at the very least, departure from equipartition of energy between the magnetic field and radiating particles.

  9. STS-118 Space Shuttle Crew Honored

    NASA Image and Video Library

    2007-09-10

    Members of the space shuttle mission STS-118 crew march down Main Street at Walt Disney World in Orlando. From left are Mission Specialists Alvin Drew, Barbara R. Morgan and Dave Williams, Pilot Charlie Hobaugh, Mission Specialist Tracy Caldwell and Commander Scott Kelly. Not pictured but present is Mission Specialist Rick Mastracchio. The event also honored teacher-turned-astronaut Morgan, who dedicated a plaque outside the Mission: Space attraction. Other activities included meeting with the media and students. Mission STS-118 was the 119th shuttle program flight and the 22nd flight to the International Space Station. Space shuttle Endeavour launched from NASA's Kennedy Space Center on Aug. 8 and landed Aug. 21. The mission delivered the S5 truss, continuing the assembly of the space station.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burrage, Clare; Kuribayashi-Coleman, Andrew; Stevenson, James

    We apply the new constraints from atom-interferometry searches for screening mechanisms to the symmetron model, finding that these experiments exclude a previously unexplored region of the parameter space. We discuss the possibility of networks of domain walls forming in the vacuum chamber, and how this could be used to discriminate between models of screening.

  11. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1983-01-01

    Developments in programs in telecommunication and data acquisition in space communications, radio navigation, radio science, and ground based radio astronomy are reported. Activities of the deep space network (DSN) and its associated ground communication facility (GCF) in planning, supporting research and technology, implementation, and in operations are outlined. The publication of reports on the application of radio interferometry at microwave frequencies for geodynamic measurements are presented. Implementation and operation for searching the microwave spectrum is reported.

  12. Numerical simulations of imaging satellites with optical interferometry

    NASA Astrophysics Data System (ADS)

    Ding, Yuanyuan; Wang, Chaoyan; Chen, Zhendong

    2015-08-01

    Optical interferometry imaging system, which is composed of multiple sub-apertures, is a type of sensor that can break through the aperture limit and realize the high resolution imaging. This technique can be utilized to precisely measure the shapes, sizes and position of astronomical objects and satellites, it also can realize to space exploration and space debris, satellite monitoring and survey. Fizeau-Type optical aperture synthesis telescope has the advantage of short baselines, common mount and multiple sub-apertures, so it is feasible for instantaneous direct imaging through focal plane combination.Since 2002, the researchers of Shanghai Astronomical Observatory have developed the study of optical interferometry technique. For array configurations, there are two optimal array configurations proposed instead of the symmetrical circular distribution: the asymmetrical circular distribution and the Y-type distribution. On this basis, two kinds of structure were proposed based on Fizeau interferometric telescope. One is Y-type independent sub-aperture telescope, the other one is segmented mirrors telescope with common secondary mirror.In this paper, we will give the description of interferometric telescope and image acquisition. Then we will mainly concerned the simulations of image restoration based on Y-type telescope and segmented mirrors telescope. The Richardson-Lucy (RL) method, Winner method and the Ordered Subsets Expectation Maximization (OS-EM) method are studied in this paper. We will analyze the influence of different stop rules too. At the last of the paper, we will present the reconstruction results of images of some satellites.

  13. Measurement Of The Deformation Of Rail Track Fastening Clips By Holographic Interferometry

    NASA Astrophysics Data System (ADS)

    Ennos, A. E.

    1985-01-01

    One method of attaching railway rails to the sleepers (ties) is to use spring steel clips, mounted on either side of the rail, that exert a downward force on the foot of the rail. In service these will flex with the passing of a train. Holographic interferometry has been used to measure quantitatively the manner in which the spring clips deform when the rail is given a displacement in a prescribed direction. The information can be used both to provide data on the bending and torsion of the clip, and as a means of testing the validity of finite element analysis calculations. Measurements on three different designs of commercial clip were carried out on a section of sleeper holding a short length of rail. A controlled upward displacement of the rail was achieved pneumatically by means of plastic pipes interposed between rail and concrete sleeper. Double exposure holograms were recorded on large photographic plates, allowing views of the fringe patterns from widely spaced directions. The three components of displacement at points along the length of the clip were calculated from fringe information taken from nine directions, using least squares fit to obtain increased accuracy. Rotations of the surface were calculated from the fringe directions and spacings. In addition to deformation measurements of the clip under service conditions, information on local yielding of the clip under increasing stress was also obtained by means of real-time interferometry, using an instant hologram camera.

  14. Beyond the Kepler/K2 bright limit: variability in the seven brightest members of the Pleiades

    NASA Astrophysics Data System (ADS)

    White, T. R.; Pope, B. J. S.; Antoci, V.; Pápics, P. I.; Aerts, C.; Gies, D. R.; Gordon, K.; Huber, D.; Schaefer, G. H.; Aigrain, S.; Albrecht, S.; Barclay, T.; Barentsen, G.; Beck, P. G.; Bedding, T. R.; Fredslund Andersen, M.; Grundahl, F.; Howell, S. B.; Ireland, M. J.; Murphy, S. J.; Nielsen, M. B.; Silva Aguirre, V.; Tuthill, P. G.

    2017-11-01

    The most powerful tests of stellar models come from the brightest stars in the sky, for which complementary techniques, such as astrometry, asteroseismology, spectroscopy and interferometry, can be combined. The K2 mission is providing a unique opportunity to obtain high-precision photometric time series for bright stars along the ecliptic. However, bright targets require a large number of pixels to capture the entirety of the stellar flux, and CCD saturation, as well as restrictions on data storage and bandwidth, limit the number and brightness of stars that can be observed. To overcome this, we have developed a new photometric technique, which we call halo photometry, to observe very bright stars using a limited number of pixels. Halo photometry is simple, fast and does not require extensive pixel allocation, and will allow us to use K2 and other photometric missions, such as TESS, to observe very bright stars for asteroseismology and to search for transiting exoplanets. We apply this method to the seven brightest stars in the Pleiades open cluster. Each star exhibits variability; six of the stars show what are most likely slowly pulsating B-star pulsations, with amplitudes ranging from 20 to 2000 ppm. For the star Maia, we demonstrate the utility of combining K2 photometry with spectroscopy and interferometry to show that it is not a `Maia variable', and to establish that its variability is caused by rotational modulation of a large chemical spot on a 10 d time-scale.

  15. Definition of technology development missions for early space stations. Large space structures, phase 2, midterm review

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The large space structures technology development missions to be performed on an early manned space station was studied and defined and the resources needed and the design implications to an early space station to carry out these large space structures technology development missions were determined. Emphasis is being placed on more detail in mission designs and space station resource requirements.

  16. KSC-07pd2415

    NASA Image and Video Library

    2007-09-10

    KENNEDY SPACE CENTER, FLA. -- Members of the space shuttle mission STS-118 crew march down Main Street at Walt Disney World in Orlando. From left are Mission Specialists Alvin Drew, Barbara R. Morgan and Dave Williams, Pilot Charlie Hobaugh, Mission Specialist Tracy Caldwell and Commander Scott Kelly. Not pictured but present is Mission Specialist Rick Mastracchio. The event also honored teacher-turned-astronaut Morgan, who dedicated a plaque outside the Mission: Space attraction. Other activities included meeting with the media and students. Mission STS-118 was the 119th shuttle program flight and the 22nd flight to the International Space Station. Space shuttle Endeavour launched from NASA's Kennedy Space Center on Aug. 8 and landed Aug. 21. The mission delivered the S5 truss, continuing the assembly of the space station. Photo credit: NASA/George Shelton

  17. Non-linear quantization error reduction for the temperature measurement subsystem on-board LISA Pathfinder

    NASA Astrophysics Data System (ADS)

    Sanjuan, J.; Nofrarias, M.

    2018-04-01

    Laser Interferometer Space Antenna (LISA) Pathfinder is a mission to test the technology enabling gravitational wave detection in space and to demonstrate that sub-femto-g free fall levels are possible. To do so, the distance between two free falling test masses is measured to unprecedented sensitivity by means of laser interferometry. Temperature fluctuations are one of the noise sources limiting the free fall accuracy and the interferometer performance and need to be known at the ˜10 μK Hz-1/2 level in the sub-millihertz frequency range in order to validate the noise models for the future space-based gravitational wave detector LISA. The temperature measurement subsystem on LISA Pathfinder is in charge of monitoring the thermal environment at key locations with noise levels of 7.5 μK Hz-1/2 at the sub-millihertz. However, its performance worsens by one to two orders of magnitude when slowly changing temperatures are measured due to errors introduced by analog-to-digital converter non-linearities. In this paper, we present a method to reduce this effect by data post-processing. The method is applied to experimental data available from on-ground validation tests to demonstrate its performance and the potential benefit for in-flight data. The analog-to-digital converter effects are reduced by a factor between three and six in the frequencies where the errors play an important role. An average 2.7 fold noise reduction is demonstrated in the 0.3 mHz-2 mHz band.

  18. Non-linear quantization error reduction for the temperature measurement subsystem on-board LISA Pathfinder.

    PubMed

    Sanjuan, J; Nofrarias, M

    2018-04-01

    Laser Interferometer Space Antenna (LISA) Pathfinder is a mission to test the technology enabling gravitational wave detection in space and to demonstrate that sub-femto-g free fall levels are possible. To do so, the distance between two free falling test masses is measured to unprecedented sensitivity by means of laser interferometry. Temperature fluctuations are one of the noise sources limiting the free fall accuracy and the interferometer performance and need to be known at the ∼10 μK Hz -1/2 level in the sub-millihertz frequency range in order to validate the noise models for the future space-based gravitational wave detector LISA. The temperature measurement subsystem on LISA Pathfinder is in charge of monitoring the thermal environment at key locations with noise levels of 7.5 μK Hz -1/2 at the sub-millihertz. However, its performance worsens by one to two orders of magnitude when slowly changing temperatures are measured due to errors introduced by analog-to-digital converter non-linearities. In this paper, we present a method to reduce this effect by data post-processing. The method is applied to experimental data available from on-ground validation tests to demonstrate its performance and the potential benefit for in-flight data. The analog-to-digital converter effects are reduced by a factor between three and six in the frequencies where the errors play an important role. An average 2.7 fold noise reduction is demonstrated in the 0.3 mHz-2 mHz band.

  19. 14 CFR 1214.301 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... mission specialist, when designated for a flight, will participate in the planning of the mission and will... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Payload Specialists for Space... goals. A single mission might require more than one flight or more than one mission might be...

  20. 14 CFR 1214.301 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... mission specialist, when designated for a flight, will participate in the planning of the mission and will... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Payload Specialists for Space... goals. A single mission might require more than one flight or more than one mission might be...

  1. 14 CFR 1214.301 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... mission specialist, when designated for a flight, will participate in the planning of the mission and will... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Payload Specialists for Space... goals. A single mission might require more than one flight or more than one mission might be...

  2. Experimental Design for the LATOR Mission

    NASA Technical Reports Server (NTRS)

    Turyshev, Slava G.; Shao, Michael; Nordtvedt, Kenneth, Jr.

    2004-01-01

    This paper discusses experimental design for the Laser Astrometric Test Of Relativity (LATOR) mission. LATOR is designed to reach unprecedented accuracy of 1 part in 10(exp 8) in measuring the curvature of the solar gravitational field as given by the value of the key Eddington post-Newtonian parameter gamma. This mission will demonstrate the accuracy needed to measure effects of the next post-Newtonian order (near infinity G2) of light deflection resulting from gravity s intrinsic non-linearity. LATOR will provide the first precise measurement of the solar quadrupole moment parameter, J(sub 2), and will improve determination of a variety of relativistic effects including Lense-Thirring precession. The mission will benefit from the recent progress in the optical communication technologies the immediate and natural step above the standard radio-metric techniques. The key element of LATOR is a geometric redundancy provided by the laser ranging and long-baseline optical interferometry. We discuss the mission and optical designs, as well as the expected performance of this proposed mission. LATOR will lead to very robust advances in the tests of Fundamental physics: this mission could discover a violation or extension of general relativity, or reveal the presence of an additional long range interaction in the physical law. There are no analogs to the LATOR experiment; it is unique and is a natural culmination of solar system gravity experiments.

  3. GSFC VLBI Analysis Center

    NASA Technical Reports Server (NTRS)

    Gordon, David; Ma, Chopo; Petrov, Leonid; MacMillan, Dan

    2001-01-01

    This report presents the activities of the Goddard Space Flight Center's Very Long Base Interferometry (VLBI) Analysis Center during the period from March 1, 1999 through December 31, 2000. The center's primary software development, analysis, and research activities axe reported, and the responsible staff members are described. Plans for 2001 are also presented.

  4. Ice-shelf Dynamics Near the Front of Filchner-Ronne Ice Shelf, Antarctica, Revealed by SAR Interferometry

    NASA Technical Reports Server (NTRS)

    Rignot, E.; MacAyeal, D. R.

    1998-01-01

    Fifteen synthetic-aperture radar (SAR) images of the Ronne Ice Shelf, Antarctica, obtained by the European Space Agency (ESA)'s Earth Remote Sensing satellites (ERS) 1 & 2 are used to study ice-shelf dynamics near two ends of the iceberg-calving front.

  5. Time-Delay Interferometry for Space-based Gravitational Wave Searches

    NASA Technical Reports Server (NTRS)

    Armstrong, J.; Estabrook, F.; Tinto, M.

    1999-01-01

    Ground-based, equal-arm-length laser interferometers are being built to measure high-frequency astrophysical graviatational waves. Because of the arm-length equality, laser light experiences the same delay in each arm and thus phase or frequency noise from the laser itself precisely cancels at the photodetector.

  6. Measuring Crustal Deformation in the American West.

    ERIC Educational Resources Information Center

    Jordan, Thomas H.; Minster, J. Bernard

    1988-01-01

    Suggests that there is a close relationship between deformation in the western United States and the large-scale motions of tectonic plates. Introduces very-long-baseline interferometry (VLBI) as one of the space-geodetic techniques, vector addition of the VLBI data and geological data, and a new geodetic network. (YP)

  7. Microarcsecond Astrometry As A Probe Of Circumstellar Structure

    NASA Astrophysics Data System (ADS)

    Velusamy, T.; Turyshev, S. G.

    1999-12-01

    The Space Interferometry Mission (SIM) is a space-based long-baseline optical interferometer for precision astrometry. This mission will open up many areas of astrophysics, via astrometry with unprecedented accuracy. Wide-angle measurements, which include annual parallax, will reach a design accuracy of 4 μ as. Over a narrow field of view the relative accuracy is better, and SIM is expected to achieve an accuracy of 1 μ as. In this mode, SIM will search for planetary companions to nearby stars, by detecting the astrometric `wobble' relative to a nearby (<= 1o) reference star. The expected proper motion accuracy is 2 μ as yr-1, corresponding to a transverse velocity of 10 m s-1 at a distance of 1 kpc. Such an accuracy of the future SIM instrument provides a very useful astrometric tool for probing the circumstellar structure. The motion of the photo center as detected by SIM is not necessarily that of the center of mass. It is expected that unmodelled dynamics of the stellar systems may be a potential source for systematic astrometric errors. In this paper we discuss the possibility of using SIM's precision astrometry not only to detect Keplerian signatures due to the planetary motion around nearby stars, but also to characterize the structure of the planetary and proto-planetary orbits, accretions disks, debris disks, circumstellar material, jets and other types of the mass transfer mechanisms. We evaluate possible astrometric signatures due to different types of dynamical processes (both gravitational, non-gravitational) and characterize the magnitude of the corresponding astrometric signal. We attempt to address the most natural scenario of non-Keplerian motion, caused by an extended structure and complex dynamics of the stellar systems that may produce a detectable wobble in the motion of the optical center of a target star. We examine the use of μ as astrometry, as complementary to high resolution imaging, to detect some of the structures present around stars. This work was performed by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  8. Pre-Hardware Optimization and Implementation Of Fast Optics Closed Control Loop Algorithms

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Lyon, Richard G.; Herman, Jay R.; Abuhassan, Nader

    2004-01-01

    One of the main heritage tools used in scientific and engineering data spectrum analysis is the Fourier Integral Transform and its high performance digital equivalent - the Fast Fourier Transform (FFT). The FFT is particularly useful in two-dimensional (2-D) image processing (FFT2) within optical systems control. However, timing constraints of a fast optics closed control loop would require a supercomputer to run the software implementation of the FFT2 and its inverse, as well as other image processing representative algorithm, such as numerical image folding and fringe feature extraction. A laboratory supercomputer is not always available even for ground operations and is not feasible for a night project. However, the computationally intensive algorithms still warrant alternative implementation using reconfigurable computing technologies (RC) such as Digital Signal Processors (DSP) and Field Programmable Gate Arrays (FPGA), which provide low cost compact super-computing capabilities. We present a new RC hardware implementation and utilization architecture that significantly reduces the computational complexity of a few basic image-processing algorithm, such as FFT2, image folding and phase diversity for the NASA Solar Viewing Interferometer Prototype (SVIP) using a cluster of DSPs and FPGAs. The DSP cluster utilization architecture also assures avoidance of a single point of failure, while using commercially available hardware. This, combined with the control algorithms pre-hardware optimization, or the first time allows construction of image-based 800 Hertz (Hz) optics closed control loops on-board a spacecraft, based on the SVIP ground instrument. That spacecraft is the proposed Earth Atmosphere Solar Occultation Imager (EASI) to study greenhouse gases CO2, C2H, H2O, O3, O2, N2O from Lagrange-2 point in space. This paper provides an advanced insight into a new type of science capabilities for future space exploration missions based on on-board image processing for control and for robotics missions using vision sensors. It presents a top-level description of technologies required for the design and construction of SVIP and EASI and to advance the spatial-spectral imaging and large-scale space interferometry science and engineering.

  9. Deep Space Gateway - Enabling Missions to Mars

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle; Connolly, John

    2017-01-01

    There are many opportunities for commonality between Lunar vicinity and Mars mission hardware and operations. Best approach: Identify Mars mission risks that can be bought down with testing in the Lunar vicinity, then explore hardware and operational concepts that work for both missions with minimal compromise. Deep Space Transport will validate the systems and capabilities required to send humans to Mars orbit and return to Earth. Deep Space Gateway provides a convenient assembly, checkout, and refurbishment location to enable Mars missions Current deep space transport concept is to fly missions of increasing complexity: Shakedown cruise, Mars orbital mission, Mars surface mission; Mars surface mission would require additional elements.

  10. Sensitivity of Atom Interferometry to Ultralight Scalar Field Dark Matter.

    PubMed

    Geraci, Andrew A; Derevianko, Andrei

    2016-12-23

    We discuss the use of atom interferometry as a tool to search for dark matter (DM) composed of virialized ultralight fields (VULFs). Previous work on VULF DM detection using accelerometers has considered the possibility of equivalence-principle-violating effects whereby gradients in the dark matter field can directly produce relative accelerations between media of differing composition. In atom interferometers, we find that time-varying phase signals induced by coherent oscillations of DM fields can also arise due to changes in the atom rest mass that can occur between light pulses throughout the interferometer sequence as well as changes in Earth's gravitational field. We estimate that several orders of magnitude of unexplored phase space for VULF DM couplings can be probed due to these new effects.

  11. Spatially continuous distributed fiber optic sensing using optical carrier based microwave interferometry.

    PubMed

    Huang, Jie; Lan, Xinwei; Luo, Ming; Xiao, Hai

    2014-07-28

    This paper reports a spatially continuous distributed fiber optic sensing technique using optical carrier based microwave interferometry (OCMI), in which many optical interferometers with the same or different optical path differences are interrogated in the microwave domain and their locations can be unambiguously determined. The concept is demonstrated using cascaded weak optical reflectors along a single optical fiber, where any two arbitrary reflectors are paired to define a low-finesse Fabry-Perot interferometer. While spatially continuous (i.e., no dark zone), fully distributed strain measurement was used as an example to demonstrate the capability, the proposed concept may also be implemented on other types of waveguide or free-space interferometers and used for distributed measurement of various physical, chemical and biological quantities.

  12. The Wide-Field Imaging Interferometry Testbed (WIIT): Recent Progress in the Simulation and Synthesis of WIIT Data

    NASA Technical Reports Server (NTRS)

    Juanola Parramon, Roser; Leisawitz, David T.; Bolcar, Matthew R.; Maher, Stephen F.; Rinehart, Stephen A.; Iacchetta, Alex; Savini, Giorgio

    2016-01-01

    The Wide-field Imaging Interferometry Testbed (WIIT) is a double Fourier (DF) interferometer operating at optical wavelengths, and provides data that are highly representative of those from a space-based far-infrared interferometer like SPIRIT. This testbed has been used to measure both a geometrically simple test scene and an astronomically representative test scene. Here we present the simulation of recent WIIT measurements using FIInS (the Far-infrared Interferometer Instrument Simulator), the main goal of which is to simulate both the input and the output of a DFM system. FIInS has been modified to perform calculations at optical wavelengths and to include an extended field of view due to the presence of a detector array.

  13. Hubble Space Telescope

    NASA Image and Video Library

    2017-12-08

    The Hubble Space Telescope in a picture snapped by a Servicing Mission 4 crewmember just after the Space Shuttle Atlantis captured Hubble with its robotic arm on May 13, 2009, beginning the mission to upgrade and repair the telescope. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute conducts Hubble science operations. Goddard is responsible for HST project management, including mission and science operations, servicing missions, and all associated development activities. To learn more about the Hubble Space Telescope go here: www.nasa.gov/mission_pages/hubble/main/index.html

  14. Space Mission Human Reliability Analysis (HRA) Project

    NASA Technical Reports Server (NTRS)

    Boyer, Roger

    2014-01-01

    The purpose of the Space Mission Human Reliability Analysis (HRA) Project is to extend current ground-based HRA risk prediction techniques to a long-duration, space-based tool. Ground-based HRA methodology has been shown to be a reasonable tool for short-duration space missions, such as Space Shuttle and lunar fly-bys. However, longer-duration deep-space missions, such as asteroid and Mars missions, will require the crew to be in space for as long as 400 to 900 day missions with periods of extended autonomy and self-sufficiency. Current indications show higher risk due to fatigue, physiological effects due to extended low gravity environments, and others, may impact HRA predictions. For this project, Safety & Mission Assurance (S&MA) will work with Human Health & Performance (HH&P) to establish what is currently used to assess human reliabiilty for human space programs, identify human performance factors that may be sensitive to long duration space flight, collect available historical data, and update current tools to account for performance shaping factors believed to be important to such missions. This effort will also contribute data to the Human Performance Data Repository and influence the Space Human Factors Engineering research risks and gaps (part of the HRP Program). An accurate risk predictor mitigates Loss of Crew (LOC) and Loss of Mission (LOM).The end result will be an updated HRA model that can effectively predict risk on long-duration missions.

  15. KENNEDY SPACE CENTER, FLA. - - In the Space Station Processing Facility, STS-114 Mission Specialist Stephen Robinson (left) learns about the Japanese Experiment Module (JEM) from Jennifer Goldsmith (center), with United Space Alliance at Johnson Space Center, and Louise Kleba (right), with USA at KSC. Crew members are at KSC to become familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - - In the Space Station Processing Facility, STS-114 Mission Specialist Stephen Robinson (left) learns about the Japanese Experiment Module (JEM) from Jennifer Goldsmith (center), with United Space Alliance at Johnson Space Center, and Louise Kleba (right), with USA at KSC. Crew members are at KSC to become familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  16. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-114 Mission Specialist Stephen Robinson (right) learns about the Japanese Experiment Module (JEM) from Louise Kleba (left), with United Space Alliance at KSC, and Jennifer Goldsmith (center), with USA at Johnson Space Center. Crew members are at KSC becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-114 Mission Specialist Stephen Robinson (right) learns about the Japanese Experiment Module (JEM) from Louise Kleba (left), with United Space Alliance at KSC, and Jennifer Goldsmith (center), with USA at Johnson Space Center. Crew members are at KSC becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  17. 48 CFR 1852.246-70 - Mission Critical Space System Personnel Reliability Program.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false Mission Critical Space... CONTRACT CLAUSES Texts of Provisions and Clauses 1852.246-70 Mission Critical Space System Personnel Reliability Program. As prescribed in 1846.370(a), insert the following clause: Mission Critical Space System...

  18. 48 CFR 1852.246-70 - Mission Critical Space System Personnel Reliability Program.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 6 2012-10-01 2012-10-01 false Mission Critical Space... CONTRACT CLAUSES Texts of Provisions and Clauses 1852.246-70 Mission Critical Space System Personnel Reliability Program. As prescribed in 1846.370(a), insert the following clause: Mission Critical Space System...

  19. 48 CFR 1852.246-70 - Mission Critical Space System Personnel Reliability Program.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 6 2013-10-01 2013-10-01 false Mission Critical Space... CONTRACT CLAUSES Texts of Provisions and Clauses 1852.246-70 Mission Critical Space System Personnel Reliability Program. As prescribed in 1846.370(a), insert the following clause: Mission Critical Space System...

  20. 48 CFR 1852.246-70 - Mission Critical Space System Personnel Reliability Program.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Mission Critical Space... CONTRACT CLAUSES Texts of Provisions and Clauses 1852.246-70 Mission Critical Space System Personnel Reliability Program. As prescribed in 1846.370(a), insert the following clause: Mission Critical Space System...

  1. 48 CFR 1852.246-70 - Mission Critical Space System Personnel Reliability Program.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 6 2014-10-01 2014-10-01 false Mission Critical Space... CONTRACT CLAUSES Texts of Provisions and Clauses 1852.246-70 Mission Critical Space System Personnel Reliability Program. As prescribed in 1846.370(a), insert the following clause: Mission Critical Space System...

  2. The Telecommunications and Data Acquisition

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A. (Editor)

    1981-01-01

    Progress in the development and operations of the Deep Space Network is reported including developments in Earth based radio technology as applied to other research programs. These programs include application of radio interferometry at microwave frequencies to geodetic measurements and geodynamics, use of deep space stations individually and in pairs as an interferometer by radio astronomers for astrophysics research by direct observations of radio sources, and radio search for extraterrestrial intelligence in the microwave region of the electromagnetic spectrum.

  3. Absolute metrology for space interferometers

    NASA Astrophysics Data System (ADS)

    Salvadé, Yves; Courteville, Alain; Dändliker, René

    2017-11-01

    The crucial issue of space-based interferometers is the laser interferometric metrology systems to monitor with very high accuracy optical path differences. Although classical high-resolution laser interferometers using a single wavelength are well developed, this type of incremental interferometer has a severe drawback: any interruption of the interferometer signal results in the loss of the zero reference, which requires a new calibration, starting at zero optical path difference. We propose in this paper an absolute metrology system based on multiplewavelength interferometry.

  4. Fine Ice Sheet margins topography from swath processing of CryoSat SARIn mode data

    NASA Astrophysics Data System (ADS)

    Gourmelen, N.; Escorihuela, M. J.; Shepherd, A.; Foresta, L.; Muir, A.; Briggs, K.; Hogg, A. E.; Roca, M.; Baker, S.; Drinkwater, M. R.

    2014-12-01

    Reference and repeat-observations of Glacier and Ice Sheet Margin (GISM) topography are critical to identify changes in ice thickness, provide estimates of mass gain or loss and thus quantify the contribution of the cryosphere to sea level change. The lack of such sustained observations was identified in the Integrated Global Observing Strategy (IGOS) Cryosphere Theme Report as a major shortcoming. Conventional altimetry measurements over GISMs exist, but coverage has been sparse and characterized by coarse ground resolution. Additionally, and more importantly, they proved ineffective in the presence of steep slopes, a typical feature of GISM areas. Since the majority of Antarctic and Greenland ice sheet mass loss is estimated to lie within 100 km from the coast, but only about 10% is surveyed, there is the need for more robust and dense observations of GISMs, in both time and space. The ESA Altimetry mission CryoSat aims at gaining better insight into the evolution of the Cryosphere. CryoSat's revolutionary design features a Synthetic Interferometric Radar Altimeter (SIRAL), with two antennas for interferometry. The corresponding SAR Interferometer (SARIn) mode of operation increases spatial resolution while resolving the angular origin of off-nadir echoes occurring over sloping terrain. The SARIn mode is activated over GISMs and the elevation for the Point Of Closest Approach (POCA) is a standard product of the CryoSat mission. Here we present an approach for more comprehensively exploiting the SARIn mode of CryoSat and produce an ice elevation product with enhanced spatial resolution compared to standard CryoSat-2 height products. In this so called L2-swath processing approach, the full CryoSat waveform is exploited under specific conditions of signal and surface characteristics. We will present the rationale, validation exercises and preliminary results from the Eurpean Space Agency's STSE CryoTop study over selected test regions of the margins of the Greenland and Antarctic Ice Sheets.

  5. The Space Station as a Construction Base for Large Space Structures

    NASA Technical Reports Server (NTRS)

    Gates, R. M.

    1985-01-01

    The feasibility of using the Space Station as a construction site for large space structures is examined. An overview is presented of the results of a program entitled Definition of Technology Development Missions (TDM's) for Early Space Stations - Large Space Structures. The definition of LSS technology development missions must be responsive to the needs of future space missions which require large space structures. Long range plans for space were assembled by reviewing Space System Technology Models (SSTM) and other published sources. Those missions which will use large space structures were reviewed to determine the objectives which must be demonstrated by technology development missions. The three TDM's defined during this study are: (1) a construction storage/hangar facility; (2) a passive microwave radiometer; and (3) a precision optical system.

  6. Life sciences interests in Mars missions

    NASA Technical Reports Server (NTRS)

    Rummel, John D.; Griffiths, Lynn D.

    1989-01-01

    NASA's Space Life Sciences research permeates plans for Mars missions and the rationale for the exploration of the planet. The Space Life Sciences program has three major roles in Mars mission studies: providing enabling technology for piloted missions, conducting scientific exploration related to the origin and evolution of life, and protecting space crews from the adverse physiological effects of space flight. This paper presents a rationale for exploration and some of the issues, tradeoffs, and visions being addressed in the Space Life Sciences program in preparation for Mars missions.

  7. A study of space station needs, attributes and architectural options. Volume 2: Technical. Book 1: Mission requirements

    NASA Technical Reports Server (NTRS)

    Steinbronn, O.

    1983-01-01

    The following types of space missions were evaluated to determine those that require, or will be benefited materially, by a manned space station: (1) science and applications, (2) commercial, (3) technology development, (4) space operations, and (5) national security. Integrated mission requirements for man-operated and man-tended free-flying missions were addressed. A manned space station will provide major performance and economic benefits to a wide range of missions planned for the 1990s.

  8. Extensibility of Human Asteroid Mission to Mars and Other Destinations

    NASA Technical Reports Server (NTRS)

    McDonald, Mark A.; Caram, Jose M.; Lopez, Pedro; Hinkel, Heather D.; Bowie, Jonathan T.; Abell, Paul A.; Drake, Bret G.; Martinez, Roland M.; Chodas, Paul W.; Hack, Kurt; hide

    2014-01-01

    This paper will describe the benefits of execution of the Asteroid Redirect Mission as an early mission in deep space, demonstrating solar electric propulsion, deep space robotics, ground and on-board navigation, docking, and EVA. The paper will also discuss how staging in trans-lunar space and the elements associated with this mission are excellent building blocks for subsequent deep space missions to Mars or other destinations.

  9. Space Shuttle Projects

    NASA Image and Video Library

    1999-07-01

    The STS-103 crew portrait includes (from left) C. Michael Foale, mission specialist; Claude Nicollier, mission specialist representing the European Space Agency (ESA) ; Scott J. Kelly, pilot; Curtis L. Brown, commander; and mission specialists Jean-Francois Clervoy (ESA), John M. Grunsfeld, and Steven L. Smith. Launched aboard the Space Shuttle Discovery on December 19, 1999 at 6:50 p.m. (CST), the STS-103 mission served as the third Hubble Space Telescope (HST) servicing mission.

  10. Mars Radiation Risk Assessment and Shielding Design for Long-term Exposure to Ionizing Space Radiation

    NASA Technical Reports Server (NTRS)

    Tripathi, Ram K.; Nealy, John E.

    2007-01-01

    NASA is now focused on the agency's vision for space exploration encompassing a broad range of human and robotic missions including missions to Moon, Mars and beyond. As a result, there is a focus on long duration space missions. NASA is committed to the safety of the missions and the crew, and there is an overwhelming emphasis on the reliability issues for space missions and the habitat. The cost-effective design of the spacecraft demands a very stringent requirement on the optimization process. Exposure from the hazards of severe space radiation in deep space and/or long duration missions is a critical design constraint and a potential 'show stopper'. Thus, protection from the hazards of severe space radiation is of paramount importance to the agency's vision. It is envisioned to have long duration human presence on the Moon for deep space exploration. The exposures from ionizing radiation - galactic cosmic radiation and solar particle events - and optimized shield design for a swing-by and a long duration Mars mission have been investigated. It is found that the technology of today is inadequate for safe human missions to Mars, and revolutionary technologies need to be developed for long duration and/or deep space missions. The study will provide a guideline for radiation exposure and protection for long duration missions and career astronauts and their safety.

  11. Predicting Mission Success in Small Satellite Missions

    NASA Technical Reports Server (NTRS)

    Saunders, Mark; Richie, Wayne; Rogers, John; Moore, Arlene

    1992-01-01

    In our global society with its increasing international competition and tighter financial resources, governments, commercial entities and other organizations are becoming critically aware of the need to ensure that space missions can be achieved on time and within budget. This has become particularly true for the National Aeronautics and Space Administration's (NASA) Office of Space Science (OSS) which has developed their Discovery and Explorer programs to meet this need. As technologies advance, space missions are becoming smaller and more capable than their predecessors. The ability to predict the mission success of these small satellite missions is critical to the continued achievement of NASA science mission objectives. The NASA Office of Space Science, in cooperation with the NASA Langley Research Center, has implemented a process to predict the likely success of missions proposed to its Discovery and Explorer Programs. This process is becoming the basis for predicting mission success in many other NASA programs as well. This paper describes the process, methodology, tools and synthesis techniques used to predict mission success for this class of mission.

  12. Predicting Mission Success in Small Satellite Missions

    NASA Technical Reports Server (NTRS)

    Saunders, Mark; Richie, R. Wayne; Moore, Arlene; Rogers, John

    1999-01-01

    In our global society with its increasing international competition and tighter financial resources, governments, commercial entities and other organizations are becoming critically aware of the need to ensure that space missions can be achieved on time and within budget. This has become particularly true for the National Aeronautics and Space Administration's (NASA's) Office of Space Science (OSS) which has developed their Discovery and Explorer programs to meet this need. As technologies advance, space missions are becoming smaller and more capable than their predecessors. The ability to predict the mission success of these small satellite missions is critical to the continued achievement of NASA science mission objectives. The NASA Office of Space Science, in cooperation with the NASA Langley Research Center, has implemented a process to predict the likely success of missions proposed to its Discovery and Explorer Programs. This process is becoming the basis for predicting mission success in many other NASA programs as well. This paper describes the process, methodology, tools and synthesis techniques used to predict mission success for this class of mission.

  13. Research and Development of Electrostatic Accelerometers for Space Science Missions at HUST.

    PubMed

    Bai, Yanzheng; Li, Zhuxi; Hu, Ming; Liu, Li; Qu, Shaobo; Tan, Dingyin; Tu, Haibo; Wu, Shuchao; Yin, Hang; Li, Hongyin; Zhou, Zebing

    2017-08-23

    High-precision electrostatic accelerometers have achieved remarkable success in satellite Earth gravity field recovery missions. Ultralow-noise inertial sensors play important roles in space gravitational wave detection missions such as the Laser Interferometer Space Antenna (LISA) mission, and key technologies have been verified in the LISA Pathfinder mission. Meanwhile, at Huazhong University of Science and Technology (HUST, China), a space accelerometer and inertial sensor based on capacitive sensors and the electrostatic control technique have also been studied and developed independently for more than 16 years. In this paper, we review the operational principle, application, and requirements of the electrostatic accelerometer and inertial sensor in different space missions. The development and progress of a space electrostatic accelerometer at HUST, including ground investigation and space verification are presented.

  14. Research and Development of Electrostatic Accelerometers for Space Science Missions at HUST

    PubMed Central

    Bai, Yanzheng; Li, Zhuxi; Hu, Ming; Liu, Li; Qu, Shaobo; Tan, Dingyin; Tu, Haibo; Wu, Shuchao; Yin, Hang; Li, Hongyin; Zhou, Zebing

    2017-01-01

    High-precision electrostatic accelerometers have achieved remarkable success in satellite Earth gravity field recovery missions. Ultralow-noise inertial sensors play important roles in space gravitational wave detection missions such as the Laser Interferometer Space Antenna (LISA) mission, and key technologies have been verified in the LISA Pathfinder mission. Meanwhile, at Huazhong University of Science and Technology (HUST, China), a space accelerometer and inertial sensor based on capacitive sensors and the electrostatic control technique have also been studied and developed independently for more than 16 years. In this paper, we review the operational principle, application, and requirements of the electrostatic accelerometer and inertial sensor in different space missions. The development and progress of a space electrostatic accelerometer at HUST, including ground investigation and space verification are presented. PMID:28832538

  15. Kite: Status of the External Metrology Testbed for SIM

    NASA Technical Reports Server (NTRS)

    Dekens, Frank G.; Alvarez-Salazar, Oscar; Azizi, Alireza; Moser, Steven; Nemati, Bijan; Negron, John; Neville, Timothy; Ryan, Daniel

    2004-01-01

    Kite is a system level testbed for the External Metrology system of the Space Interferometry Mission (SIM). The External Metrology System is used to track the fiducial that are located at the centers of the interferometer's siderostats. The relative changes in their positions needs to be tracked to tens of picometers in order to correct for thermal measurements, the Kite testbed was build to test both the metrology gauges and out ability to optically model the system at these levels. The Kite testbed is an over-constraint system where 6 lengths are measured, but only 5 are needed to determine the system. The agreement in the over-constrained length needs to be on the order of 140 pm for the SIM Wide-Angle observing scenario and 8 pm for the Narrow-Angle observing scenario. We demonstrate that we have met the Wide-Angle goal with our current setup. For the Narrow-Angle case, we have only reached the goal for on-axis observations. We describe the testbed improvements that have been made since our initial results, and outline the future Kite changes that will add further effects that SIM faces in order to make the testbed more SIM like.

  16. 14 CFR 1214.504 - Screening requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 1214.504 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Mission... persons who are certified under the PRP will have unescorted access to mission critical space systems... regulation provides for unescorted access to mission critical space systems areas, it does not preclude the...

  17. 14 CFR 1214.505 - Program implementation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 1214.505 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Mission... each NASA Installation will designate mission critical space systems areas. (b) NASA installations will... space systems. (e) NASA Headquarters Office of Safety and Mission Quality (Code Q) will act as the...

  18. 14 CFR 1214.505 - Program implementation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 1214.505 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Mission... each NASA Installation will designate mission critical space systems areas. (b) NASA installations will... space systems. (e) NASA Headquarters Office of Safety and Mission Quality (Code Q) will act as the...

  19. 14 CFR 1214.505 - Program implementation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 1214.505 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Mission... each NASA Installation will designate mission critical space systems areas. (b) NASA installations will... space systems. (e) NASA Headquarters Office of Safety and Mission Quality (Code Q) will act as the...

  20. 14 CFR 1214.505 - Program implementation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 1214.505 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Mission... each NASA Installation will designate mission critical space systems areas. (b) NASA installations will... space systems. (e) NASA Headquarters Office of Safety and Mission Quality (Code Q) will act as the...

  1. 14 CFR 1214.504 - Screening requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 1214.504 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Mission... persons who are certified under the PRP will have unescorted access to mission critical space systems... regulation provides for unescorted access to mission critical space systems areas, it does not preclude the...

  2. 14 CFR 1214.504 - Screening requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 1214.504 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Mission... persons who are certified under the PRP will have unescorted access to mission critical space systems... regulation provides for unescorted access to mission critical space systems areas, it does not preclude the...

  3. 14 CFR 431.3 - Types of reusable launch vehicle mission licenses.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Types of reusable launch vehicle mission licenses. 431.3 Section 431.3 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION...) General § 431.3 Types of reusable launch vehicle mission licenses. (a) Mission-specific license. A mission...

  4. 14 CFR 431.3 - Types of reusable launch vehicle mission licenses.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Types of reusable launch vehicle mission licenses. 431.3 Section 431.3 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION...) General § 431.3 Types of reusable launch vehicle mission licenses. (a) Mission-specific license. A mission...

  5. 14 CFR 431.3 - Types of reusable launch vehicle mission licenses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Types of reusable launch vehicle mission licenses. 431.3 Section 431.3 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION...) General § 431.3 Types of reusable launch vehicle mission licenses. (a) Mission-specific license. A mission...

  6. 14 CFR 431.3 - Types of reusable launch vehicle mission licenses.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Types of reusable launch vehicle mission licenses. 431.3 Section 431.3 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION...) General § 431.3 Types of reusable launch vehicle mission licenses. (a) Mission-specific license. A mission...

  7. 14 CFR 431.3 - Types of reusable launch vehicle mission licenses.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Types of reusable launch vehicle mission licenses. 431.3 Section 431.3 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION...) General § 431.3 Types of reusable launch vehicle mission licenses. (a) Mission-specific license. A mission...

  8. Challenges and Issues of Radiation Damage Tools for Space Missions

    NASA Astrophysics Data System (ADS)

    Tripathi, Ram; Wilson, John

    2006-04-01

    NASA has a new vision for space exploration in the 21st Century encompassing a broad range of human and robotic missions including missions to Moon, Mars and beyond. Exposure from the hazards of severe space radiation in deep space long duration missions is `the show stopper.' Thus, protection from the hazards of severe space radiation is of paramount importance for the new vision. Accurate risk assessments critically depend on the accuracy of the input information about the interaction of ions with materials, electronics and tissues. A huge amount of essential experimental information for all the ions in space, across the periodic table, for a wide range of energies of several (up to a Trillion) orders of magnitude are needed for the radiation protection engineering for space missions that is simply not available (due to the high costs) and probably never will be. In addition, the accuracy of the input information and database is very critical and of paramount importance for space exposure assessments particularly in view the agency's vision for deep space exploration. The vital role and importance of nuclear physics, related challenges and issues, for space missions will be discussed, and a few examples will be presented for space missions.

  9. 14 CFR § 1214.505 - Program implementation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... § 1214.505 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Mission... each NASA Installation will designate mission critical space systems areas. (b) NASA installations will... space systems. (e) NASA Headquarters Office of Safety and Mission Quality (Code Q) will act as the...

  10. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-114 Mission Specialist Stephen Robinson (left) looks at an area overhead in the Japanese Experiment Module (JEM). In the center is Jennifer Goldsmith, with United Space Alliance at Johnson Space Center, and at right is Louise Kleba, with USA at KSC. Crew members are at KSC becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-114 Mission Specialist Stephen Robinson (left) looks at an area overhead in the Japanese Experiment Module (JEM). In the center is Jennifer Goldsmith, with United Space Alliance at Johnson Space Center, and at right is Louise Kleba, with USA at KSC. Crew members are at KSC becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  11. An Architecture to Promote the Commercialization of Space Mission Command and Control

    NASA Technical Reports Server (NTRS)

    Jones, Michael K.

    1996-01-01

    This paper describes a command and control architecture that encompasses space mission operations centers, ground terminals, and spacecraft. This architecture is intended to promote the growth of a lucrative space mission operations command and control market through a set of open standards used by both gevernment and profit-making space mission operators.

  12. Satellite SAR interferometric techniques applied to emergency mapping

    NASA Astrophysics Data System (ADS)

    Stefanova Vassileva, Magdalena; Riccardi, Paolo; Lecci, Daniele; Giulio Tonolo, Fabio; Boccardo Boccardo, Piero; Chiesa, Giuliana; Angeluccetti, Irene

    2017-04-01

    This paper aim to investigate the capabilities of the currently available SAR interferometric algorithms in the field of emergency mapping. Several tests have been performed exploiting the Copernicus Sentinel-1 data using the COTS software ENVI/SARscape 5.3. Emergency Mapping can be defined as "creation of maps, geo-information products and spatial analyses dedicated to providing situational awareness emergency management and immediate crisis information for response by means of extraction of reference (pre-event) and crisis (post-event) geographic information/data from satellite or aerial imagery". The conventional differential SAR interferometric technique (DInSAR) and the two currently available multi-temporal SAR interferometric approaches, i.e. Permanent Scatterer Interferometry (PSI) and Small BAseline Subset (SBAS), have been applied to provide crisis information useful for the emergency management activities. Depending on the considered Emergency Management phase, it may be distinguished between rapid mapping, i.e. fast provision of geospatial data regarding the area affected for the immediate emergency response, and monitoring mapping, i.e. detection of phenomena for risk prevention and mitigation activities. In order to evaluate the potential and limitations of the aforementioned SAR interferometric approaches for the specific rapid and monitoring mapping application, five main factors have been taken into account: crisis information extracted, input data required, processing time and expected accuracy. The results highlight that DInSAR has the capacity to delineate areas affected by large and sudden deformations and fulfills most of the immediate response requirements. The main limiting factor of interferometry is the availability of suitable SAR acquisition immediately after the event (e.g. Sentinel-1 mission characterized by 6-day revisiting time may not always satisfy the immediate emergency request). PSI and SBAS techniques are suitable to produce monitoring maps for risk prevention and mitigation purposes. Nevertheless, multi-temporal techniques require large SAR temporal datasets, i.e. 20 and more images. Being the Sentinel-1 missions operational only since April 2014, multi-mission SAR datasets should be therefore exploited to carry out historical analysis.

  13. Multi-static MIMO along track interferometry (ATI)

    NASA Astrophysics Data System (ADS)

    Knight, Chad; Deming, Ross; Gunther, Jake

    2016-05-01

    Along-track interferometry (ATI) has the ability to generate high-quality synthetic aperture radar (SAR) images and concurrently detect and estimate the positions of ground moving target indicators (GMTI) with moderate processing requirements. This paper focuses on several different ATI system configurations, with an emphasis on low-cost configurations employing no active electronic scanned array (AESA). The objective system has two transmit phase centers and four receive phase centers and supports agile adaptive radar behavior. The advantages of multistatic, multiple input multiple output (MIMO) ATI system configurations are explored. The two transmit phase centers can employ a ping-pong configuration to provide the multistatic behavior. For example, they can toggle between an up and down linear frequency modulated (LFM) waveform every other pulse. The four receive apertures are considered in simple linear spatial configurations. Simulated examples are examined to understand the trade space and verify the expected results. Finally, actual results are collected with the Space Dynamics Laboratorys (SDL) FlexSAR system in diverse configurations. The theory, as well as the simulated and actual SAR results, are presented and discussed.

  14. Advancing differential atom interferometry for space applications

    NASA Astrophysics Data System (ADS)

    Chiow, Sheng-Wey; Williams, Jason; Yu, Nan

    2016-05-01

    Atom interferometer (AI) based sensors exhibit precision and accuracy unattainable with classical sensors, thanks to the inherent stability of atomic properties. Dual atomic sensors operating in a differential mode further extend AI applicability beyond environmental disturbances. Extraction of the phase difference between dual AIs, however, typically introduces uncertainty and systematic in excess of that warranted by each AI's intrinsic noise characteristics, especially in practical applications and real time measurements. In this presentation, we report our efforts in developing practical schemes for reducing noises and enhancing sensitivities in the differential AI measurement implementations. We will describe an active phase extraction method that eliminates the noise overhead and demonstrates a performance boost of a gravity gradiometer by a factor of 3. We will also describe a new long-baseline approach for differential AI measurements in a laser ranging assisted AI configuration. The approach uses well-developed AIs for local measurements but leverage the mature schemes of space laser interferometry for LISA and GRACE. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a Contract with NASA.

  15. Space Shuttle Discovery lifts off successfully

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Tree branches on the Space Coast frame Space Shuttle Discovery's liftoff from Launch Pad 39B at 2:19 p.m. EST Oct. 29 on mission STS-95. Making his second voyage into space after 36 years is Payload Specialist John H. Glenn Jr., senator from Ohio. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.

  16. 14 CFR § 1214.504 - Screening requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... § 1214.504 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Mission... persons who are certified under the PRP will have unescorted access to mission critical space systems... regulation provides for unescorted access to mission critical space systems areas, it does not preclude the...

  17. Spaceport operations for deep space missions

    NASA Technical Reports Server (NTRS)

    Holt, Alan C.

    1990-01-01

    Space Station Freedom is designed with the capability to cost-effectively evolve into a transportation node which can support manned lunar and Mars missions. To extend a permanent human presence to the outer planets (moon outposts) and to nearby star systems, additional orbiting space infrastructure and great advances in propulsion system and other technologies will be required. To identify primary operations and management requirements for these deep space missions, an interstellar design concept was developed and analyzed. The assembly, test, servicing, logistics resupply, and increment management techniques anticipated for lunar and Mars missions appear to provide a pattern which can be extended in an analogous manner to deep space missions. A long range, space infrastructure development plan (encompassing deep space missions) coupled with energetic, breakthrough level propulsion research should be initiated now to assist in making the best budget and schedule decisions.

  18. Water vapor radiometry research and development phase

    NASA Technical Reports Server (NTRS)

    Resch, G. M.; Chavez, M. C.; Yamane, N. L.; Barbier, K. M.; Chandlee, R. C.

    1985-01-01

    This report describes the research and development phase for eight dual-channel water vapor radiometers constructed for the Crustal Dynamics Project at the Goddard Space Flight Center, Greenbelt, Maryland, and for the NASA Deep Space Network. These instruments were developed to demonstrate that the variable path delay imposed on microwave radio transmissions by atmospheric water vapor can be calibrated, particularly as this phenomenon affects very long baseline interferometry measurement systems. Water vapor radiometry technology can also be used in systems that involve moist air meteorology and propagation studies.

  19. Polarization Considerations for the Laser Interferometer Space Antenna

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene; Pedersen, Tracy R.; McNamara, Paul

    2005-01-01

    A polarization ray trace model of the Laser Interferometer Space Antenna s (LISA) optical path is being created. The model will be able to assess the effects of various polarizing elements and the optical coatings on the required, very long path length, picometer level dynamic interferometry. The computational steps are described. This should eliminate any ambiguities associated with polarization ray tracing of interferometers and provide a basis for determining the computer model s limitations and serve as a clearly defined starting point for future work.

  20. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1984-01-01

    This publication provides reports on work performed for the Office of Space Tracking and Data Systems (OSTDS). It reports on the activities of the deep space network (DSN) and the Ground Communications Facility (GCF). Topics discussed on the operation of the DSN include: (1) spacecraft-ground communications; (2) station control and system technology; and (3) capabilities for new projects for systems implementation. The GCF compatibility with packets and data compression is discussed. In geodynamics, the publication reports on the application of radio interferometry at microwave frequencies for geodynamic measurements.

Top