Sample records for space lessons learned

  1. Launch Vehicle Propulsion Life Cycle Cost Lessons Learned

    NASA Technical Reports Server (NTRS)

    Zapata, Edgar; Rhodes, Russell E.; Robinson, John W.

    2010-01-01

    This paper will review lessons learned for space transportation systems from the viewpoint of the NASA, Industry and academia Space Propulsion Synergy Team (SPST). The paper provides the basic idea and history of "lessons learned". Recommendations that are extremely relevant to NASA's future investments in research, program development and operations are"'provided. Lastly, a novel and useful approach to documenting lessons learned is recommended, so as to most effectively guide future NASA investments. Applying lessons learned can significantly improve access to space for cargo or people by focusing limited funds on the right areas and needs for improvement. Many NASA human space flight initiatives have faltered, been re-directed or been outright canceled since the birth of the Space Shuttle program. The reasons given at the time have been seemingly unique. It will be shown that there are common threads as lessons learned in many a past initiative.

  2. Lessons Learned and Technical Standards: A Logical Marriage for Future Space Systems Design

    NASA Technical Reports Server (NTRS)

    Gill, Paul S.; Garcia, Danny; Vaughan, William W.; Parker, Nelson C. (Technical Monitor)

    2002-01-01

    A comprehensive database of engineering lessons learned that corresponds with relevant technical standards will be a valuable asset to those engaged in studies on future space vehicle developments, especially for structures, materials, propulsion, control, operations and associated elements. In addition, this will enable the capturing of technology developments applicable to the design, development, and operation of future space vehicles as planned in the Space Launch Initiative. Using the time-honored tradition of passing on lessons learned while utilizing the newest information technology, NASA has launched an intensive effort to link lessons learned acquired through various Internet databases with applicable technical standards. This paper will discuss the importance of lessons learned, the difficulty in finding relevant lessons learned while engaged in a space vehicle development, and the new NASA effort to relate them to technical standards that can help alleviate this difficulty.

  3. Lessons Learned in Engineering

    NASA Technical Reports Server (NTRS)

    Blair, J. C.; Ryan, R. S.; Schutzenhofer, L. A.

    2011-01-01

    This Contractor Report (CR) is a compilation of Lessons Learned in approximately 55 years of engineering experience by each James C. Blair, Robert S. Ryan, and Luke A. Schutzenhofer. The lessons are the basis of a course on Lessons Learned that has been taught at Marshall Space Flight Center. The lessons are drawn from NASA space projects and are characterized in terms of generic lessons learned from the project experience, which are further distilled into overarching principles that can be applied to future projects. Included are discussions of the overarching principles followed by a listing of the lessons associated with that principle. The lesson with sub-lessons are stated along with a listing of the project problems the lesson is drawn from, then each problem is illustrated and discussed, with conclusions drawn in terms of Lessons Learned. The purpose of this CR is to provide principles learned from past aerospace experience to help achieve greater success in future programs, and identify application of these principles to space systems design. The problems experienced provide insight into the engineering process and are examples of the subtleties one experiences performing engineering design, manufacturing, and operations.

  4. Lessons Learned JSC Micro-Wireless Instrumentation Systems on Space Shuttle and International Space Station CANEUS 2006

    NASA Technical Reports Server (NTRS)

    Studor, George

    2007-01-01

    A viewgraph presentation on lessons learned from NASA Johnson Space Center's micro-wireless instrumentation is shown. The topics include: 1) Background, Rationale and Vision; 2) NASA JSC/Structural Engineering Approach & History; 3) Orbiter Wing Leading Edge Impact Detection System; 4) WLEIDS Confidence and Micro-WIS Lessons Learned; and 5) Current Projects and Recommendations.

  5. Lessons Learned in Engineering. Supplement

    NASA Technical Reports Server (NTRS)

    Blair, James C.; Ryan, Robert S.; Schultzenhofer, Luke A.

    2011-01-01

    This Contractor Report (CR) is a compilation of Lessons Learned in approximately 55 years of engineering experience by each James C. Blair, Robert S. Ryan, and Luke A. Schutzenhofer. The lessons are the basis of a course on Lessons Learned that has been taught at Marshall Space Flight Center. The lessons are drawn from NASA space projects and are characterized in terms of generic lessons learned from the project experience, which are further distilled into overarching principles that can be applied to future projects. Included are discussions of the overarching principles followed by a listing of the lessons associated with that principle. The lesson with sub-lessons are stated along with a listing of the project problems the lesson is drawn from, then each problem is illustrated and discussed, with conclusions drawn in terms of Lessons Learned. The purpose of this CR is to provide principles learned from past aerospace experience to help achieve greater success in future programs, and identify application of these principles to space systems design. The problems experienced provide insight into the engineering process and are examples of the subtleties one experiences performing engineering design, manufacturing, and operations. The supplemental CD contains accompanying PowerPoint presentations.

  6. Human Spaceflight Conjunction Assessment: Lessons Learned

    NASA Technical Reports Server (NTRS)

    Smith, Jason T.

    2011-01-01

    This viewgraph presentation reviews the process of a human space flight conjunction assessment and lessons learned from the more than twelve years of International Space Station (ISS) operations. Also, the application of these lessons learned to a recent ISS conjunction assessment with object 84180 on July 16, 2009 is also presented.

  7. Logistics Lessons Learned in NASA Space Flight

    NASA Technical Reports Server (NTRS)

    Evans, William A.; DeWeck, Olivier; Laufer, Deanna; Shull, Sarah

    2006-01-01

    The Vision for Space Exploration sets out a number of goals, involving both strategic and tactical objectives. These include returning the Space Shuttle to flight, completing the International Space Station, and conducting human expeditions to the Moon by 2020. Each of these goals has profound logistics implications. In the consideration of these objectives,a need for a study on NASA logistics lessons learned was recognized. The study endeavors to identify both needs for space exploration and challenges in the development of past logistics architectures, as well as in the design of space systems. This study may also be appropriately applied as guidance in the development of an integrated logistics architecture for future human missions to the Moon and Mars. This report first summarizes current logistics practices for the Space Shuttle Program (SSP) and the International Space Station (ISS) and examines the practices of manifesting, stowage, inventory tracking, waste disposal, and return logistics. The key findings of this examination are that while the current practices do have many positive aspects, there are also several shortcomings. These shortcomings include a high-level of excess complexity, redundancy of information/lack of a common database, and a large human-in-the-loop component. Later sections of this report describe the methodology and results of our work to systematically gather logistics lessons learned from past and current human spaceflight programs as well as validating these lessons through a survey of the opinions of current space logisticians. To consider the perspectives on logistics lessons, we searched several sources within NASA, including organizations with direct and indirect connections with the system flow in mission planning. We utilized crew debriefs, the John Commonsense lessons repository for the JSC Mission Operations Directorate, and the Skylab Lessons Learned. Additionally, we searched the public version of the Lessons Learned Information System (LLIS) and verified that we received the same result using the internal version of LLIS for our logistics lesson searches. In conducting the research, information from multiple databases was consolidated into a single spreadsheet of 300 lessons learned. Keywords were applied for the purpose of sorting and evaluation. Once the lessons had been compiled, an analysis of the resulting data was performed, first sorting it by keyword, then finding duplication and root cause, and finally sorting by root cause. The data was then distilled into the top 7 lessons learned across programs, centers, and activities.

  8. Selected Lessons Learned in Space Shuttle Orbiter Propulsion and Power Subsystems

    NASA Technical Reports Server (NTRS)

    Hernandez, Francisco J.; Martinez, Hugo; Ryan, Abigail; Westover, Shayne; Davies, Frank

    2011-01-01

    Over its 30 years of space flight history, plus the nearly 10 years of design, development test and evaluation, the Space Shuttle Orbiter is full of lessons learned in all of its numerous and complex subsystems. In the current paper, only selected lessons learned in the areas of the Orbiter propulsion and power subsystems will be described. The particular Orbiter subsystems include: Auxiliary Power Unit (APU), Hydraulics and Water Spray Boiler (WSB), Mechanical Flight Controls, Main Propulsion System (MPS), Fuel Cells and Power Reactant and Storage Devices (PRSD), Orbital Maneuvering System (OMS), Reaction Control System (RCS), Electrical Power Distribution (EPDC), electrical wiring and pyrotechnics. Given the complexity and extensive history of each of these subsystems, and the limited scope of this paper, it is impossible to include most of the lessons learned; instead the attempt will be to present a selected few or key lessons, in the judgment of the authors. Each subsystem is presented separate, beginning with an overview of the hardware and their function, a short description of a few historical problems and their lessons, followed by a more comprehensive table listing of the major subsystem problems and lessons. These tables serve as a quick reference for lessons learned in each subsystem. In addition, this paper will establish common lessons across subsystems as well as concentrate on those lessons which are deemed to have the highest applicability to future space flight programs.

  9. Skylab lessons learned as applicable to a large space station, 1967-1974. Ph.D. Thesis - Catholic Univ. of Am.

    NASA Technical Reports Server (NTRS)

    Schneider, W. C.

    1976-01-01

    This report records some of the lessons learned during Skylab development. The approach taken is to list lessons which could have wide application in the development of a large space station. The lessons are amplified and explained in light of the background and experiences of the Skylab development.

  10. Lessons learned from the Space Flyer Unit (SFU) mission.

    PubMed

    Kuriki, Kyoichi; Ninomiya, Keiken; Takei, Mitsuru; Matsuoka, Shinobu

    2002-11-01

    The Space Flyer Unit (SFU) system and mission chronology are briefly introduced. Lessons learned from the SFU mission are categorized as programmatic and engineering lessons. In the programmatic category are dealt with both international and domestic collaborations. As for the engineering lessons safety design, orbital operation, in-flight anomaly, and post flight analyses are the major topics reviewed. c2002 Elsevier Science Ltd. All rights reserved.

  11. Atmospheric/Space Environment Support Lessons Learned Regarding Aerospace Vehicle Design and Operations

    NASA Technical Reports Server (NTRS)

    Vaughan, William W.; Anderson, B. Jeffrey

    2005-01-01

    In modern government and aerospace industry institutions the necessity of controlling current year costs often leads to high mobility in the technical workforce, "one-deep" technical capabilities, and minimal mentoring for young engineers. Thus, formal recording, use, and teaching of lessons learned are especially important in the maintenance and improvement of current knowledge and development of new technologies, regardless of the discipline area. Within the NASA Technical Standards Program Website http://standards.nasa.gov there is a menu item entitled "Lessons Learned/Best Practices". It contains links to a large number of engineering and technical disciplines related data sets that contain a wealth of lessons learned information based on past experiences. This paper has provided a small sample of lessons learned relative to the atmospheric and space environment. There are many more whose subsequent applications have improved our knowledge of the atmosphere and space environment, and the application of this knowledge to the engineering and operations for a variety of aerospace programs.

  12. Lessons learned on the Skylab program

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Lessons learned in the Skylab program and their application and adaptation to other space programs are summarized. Recommendations and action taken on particular problems are described. The use of Skylab recommendations to identify potential problems of future space programs is discussed.

  13. Lessons Learned for Improving Spacecraft Ground Operations

    NASA Technical Reports Server (NTRS)

    Bell, Michael; Henderson, Gena; Stambolian, Damon

    2013-01-01

    NASA policy requires each Program or Project to develop a plan for how they will address Lessons Learned. Projects have the flexibility to determine how best to promote and implement lessons learned. A large project might budget for a lessons learned position to coordinate elicitation, documentation and archival of the project lessons. The lessons learned process crosses all NASA Centers and includes the contactor community. o The Office of The Chief Engineer at NASA Headquarters in Washington D.C., is the overall process owner, and field locations manage the local implementation. One tool used to transfer knowledge between program and projects is the Lessons Learned Information System (LLIS). Most lessons come from NASA in partnership with support contractors. A search for lessons that might impact a new design is often performed by a contractor team member. Knowledge is not found with only one person, one project team, or one organization. Sometimes, another project team, or person, knows something that can help your project or your task. Knowledge sharing is an everyday activity at the Kennedy Space Center through storytelling, Kennedy Engineering Academy presentations and through searching the Lessons Learned Information system. o Project teams search the lessons repository to ensure the best possible results are delivered. o The ideas from the past are not always directly applicable but usually spark new ideas and innovations. Teams have a great responsibility to collect and disseminate these lessons so that they are shared with future generations of space systems designers. o Leaders should set a goal for themselves to host a set numbers of lesson learned events each year and do more to promote multiple methods of lessons learned activities. o High performing employees are expected to share their lessons, however formal knowledge sharing presentation are not the norm for many employees.

  14. Space Shuttle Reusable Solid Rocket Motor Program Overview and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Graves, Stan R.; McCool, Alex (Technical Monitor)

    2001-01-01

    An overview of the Space Shuttle Reusable Solid Rocket Motor (RSRM) program is provided with a summary of lessons learned since the first test firing in 1977. Fifteen different lessons learned are discussed that fundamentally changed the motor's design, processing, and RSRM program risk management systems. The evolution of the rocket motor design is presented including the baseline or High Performance Solid Rocket Motor (HPM), the Filament Wound Case (FWC), the RSRM, and the proposed Five-Segment Booster (FSB).

  15. Lessons Learned From the Development, Operation, and Review of Mechanical Systems on the Space Shuttle, International Space Station, and Payloads

    NASA Technical Reports Server (NTRS)

    Dinsel, Alison; Jermstad, Wayne; Robertson, Brandan

    2006-01-01

    The Mechanical Design and Analysis Branch at the Johnson Space Center (JSC) is responsible for the technical oversight of over 30 mechanical systems flying on the Space Shuttle Orbiter and the International Space Station (ISS). The branch also has the responsibility for reviewing all mechanical systems on all Space Shuttle and International Space Station payloads, as part of the payload safety review process, through the Mechanical Systems Working Group (MSWG). These responsibilities give the branch unique insight into a large number of mechanical systems, and problems encountered during their design, testing, and operation. This paper contains narrative descriptions of lessons learned from some of the major problems worked on by the branch during the last two years. The problems are grouped into common categories and lessons learned are stated.

  16. Lessons Learned from the Node 1 Temperature and Humidity Control Subsystem Design

    NASA Technical Reports Server (NTRS)

    Williams, David E.

    2010-01-01

    Node 1 flew to the International Space Station (ISS) on Flight 2A during December 1998. To date the National Aeronautics and Space Administration (NASA) has learned a lot of lessons from this module based on its history of approximately two years of acceptance testing on the ground and currently its twelve years on-orbit. This paper will provide an overview of the ISS Environmental Control and Life Support (ECLS) design of the Node 1 Temperature and Humidity Control (THC) subsystem and it will document some of the lessons that have been learned to date for this subsystem and it will document some of the lessons that have been learned to date for these subsystems based on problems prelaunch, problems encountered on-orbit, and operational problems/concerns. It is hoped that documenting these lessons learned from ISS will help in preventing them in future Programs. 1

  17. Process Improvement for Next Generation Space Flight Vehicles: MSFC Lessons Learned

    NASA Technical Reports Server (NTRS)

    Housch, Helen

    2008-01-01

    This viewgraph presentation reviews the lessons learned from process improvement for Next Generation Space Flight Vehicles. The contents include: 1) Organizational profile; 2) Process Improvement History; 3) Appraisal Preparation; 4) The Appraisal Experience; 5) Useful Tools; and 6) Is CMMI working?

  18. Lessons learned for improving spacecraft ground operations

    NASA Astrophysics Data System (ADS)

    Bell, Michael; Stambolian, Damon; Henderson, Gena

    NASA has a unique history in processing the Space Shuttle fleet for launches. Some of this experience has been captured in the NASA Lessons Learned Information System (LLIS). This tool provides a convenient way for design engineers to review lessons from the past to prevent problems from reoccurring and incorporate positive lessons in new designs. At the Kennedy Space Center, the LLIS is being used to design ground support equipment for the next generation of launch and crewed vehicles. This paper describes the LLIS process and offers some examples.

  19. Lessons Learned for Improving Spacecraft Ground Operations

    NASA Technical Reports Server (NTRS)

    Bell, Michael A.; Stambolian, Damon B.; Henderson, Gena M.

    2012-01-01

    NASA has a unique history in processing the Space Shuttle fleet for launches. Some of this experience has been captured in the NASA Lessons Learned Information System (LLIS). This tool provides a convenient way for design engineers to review lessons from the past to prevent problems from reoccurring and incorporate positive lessons in new designs. At the Kennedy Space Center, the LLIS is being used to design ground support equipment for the next generation of launch and crewed vehicles. This paper describes the LLIS process and offers some examples.

  20. Distributing learning over time: the spacing effect in children's acquisition and generalization of science concepts.

    PubMed

    Vlach, Haley A; Sandhofer, Catherine M

    2012-01-01

    The spacing effect describes the robust finding that long-term learning is promoted when learning events are spaced out in time rather than presented in immediate succession. Studies of the spacing effect have focused on memory processes rather than for other types of learning, such as the acquisition and generalization of new concepts. In this study, early elementary school children (5- to 7-year-olds; N = 36) were presented with science lessons on 1 of 3 schedules: massed, clumped, and spaced. The results revealed that spacing lessons out in time resulted in higher generalization performance for both simple and complex concepts. Spaced learning schedules promote several types of learning, strengthening the implications of the spacing effect for educational practices and curriculum. © 2012 The Authors. Child Development © 2012 Society for Research in Child Development, Inc.

  1. The elements of a commercial human spaceflight safety reporting system

    NASA Astrophysics Data System (ADS)

    Christensen, Ian

    2017-10-01

    In its report on the SpaceShipTwo accident the National Transportation Safety Board (NTSB) included in its recommendations that the Federal Aviation Administration (FAA) ;in collaboration with the commercial spaceflight industry, continue work to implement a database of lessons learned from commercial space mishap investigations and encourage commercial space industry members to voluntarily submit lessons learned.; In its official response to the NTSB the FAA supported this recommendation and indicated it has initiated an iterative process to put into place a framework for a cooperative safety data sharing process including the sharing of lessons learned, and trends analysis. Such a framework is an important element of an overall commercial human spaceflight safety system.

  2. Qualification and Lessons Learned with Space Flight Fiber Optic Components

    NASA Technical Reports Server (NTRS)

    Ott, Melanie

    2007-01-01

    This presentation covers lessons learned during the design, development, manufacturing and qualification of space flight fiber optic components. Changes at NASA, including short-term projects and decreased budgets have brought about changes to vendors and parts. Most photonics for NASA needs are now commercial off the shelf (COTS) products. The COTS Tecnology Assurance approach for space flight and qualification plans are outlined.

  3. 75 FR 69152 - Agency Information Collection Activities: Requests for Comments; Clearance of a New Information...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-10

    ... 40863. The FAA/AST will collect lessons learned from members of the commercial space [[Page 69153... collection. Background: The FAA/AST collects lessons learned from members of the commercial space industry in... amateur rocket community, experimental permit holders, licensed launch and reentry operators, and licensed...

  4. Safety Assurances at Space Test Centres: Lessons Learned

    NASA Astrophysics Data System (ADS)

    Alarcon Ruiz, Raul; O'Neil, Sean; Valls, Rafel Prades

    2010-09-01

    The European Space Agency’s(ESA) experts in quality, cleanliness and contamination control, safety, test facilities and test methods have accumulated valuable experience during the performance of dedicated audits of space test centres in Europe over a period of 10 years. This paper is limited to a summary of the safety findings and provides a valuable reference to the lessons learned, identifying opportunities for improvement in the areas of risk prevention measures associated to the safety of all test centre personnel, the test specimen, the test facilities and associated infrastructure. Through the analysis of the audit results the authors present what are the main lessons learned, and conclude how an effective safety management system will contribute to successful test campaigns and have a positive impact on the cost and schedule of space projects.

  5. Orbiter Water Dump Nozzles Redesign Lessons Learned

    NASA Technical Reports Server (NTRS)

    Rotter, Hank

    2017-01-01

    Hank Rotter, NASA Technical Fellow for Environmental Control and Life Support System, will provide the causes and lessons learned for the two Space Shuttle Orbiter water dump icicles that formed on the side of the Orbiter. He will present the root causes and the criticality of these icicles, along with the redesign of the water dump nozzles and lessons learned during the redesign phase.

  6. Lessons Learned From The EMU Fire and How It Impacts CxP Suit Element Development and Testing

    NASA Technical Reports Server (NTRS)

    Metts, Jonathan; Hill, Terry

    2008-01-01

    During testing a Space Shuttle Extravehicular Mobility Unit (EMU) pressure garment and life-support backpack was destroyed in a flash fire in the Johnson Space Center's Crew systems laboratory. This slide presentation reviews the accident, probable causes, the lessons learned and the effect this has on the testing and the environment for testing of the Space Suit for the Constellation Program.

  7. Lessons Learned (3 Years of H2O2 Propulsion System Testing Efforts at NASA's John C. Stennis Space Center)

    NASA Technical Reports Server (NTRS)

    Taylor, Gary O.

    2001-01-01

    John C. Stennis Space Center continues to support the Propulsion community in an effort to validate High-Test Peroxide as an alternative to existing/future oxidizers. This continued volume of peroxide test/handling activity at Stennis Space Center (SSC) provides numerous opportunities for the SSC team to build upon previously documented 'lessons learned'. SSC shall continue to strive to document their experience and findings as H2O2 issues surface. This paper is intended to capture all significant peroxide issues that we have learned over the last three years. This data (lessons learned) has been formulated from practical handling, usage, storage, operations, and initial development/design of our systems/facility viewpoint. The paper is intended to be an information type tool and limited in technical rational; therefore, presenting the peroxide community with some issues to think about as the continued interest in peroxide evolves and more facilities/hardware are built. These lessons learned are intended to assist industry in mitigating problems and identifying potential pitfalls when dealing with the requirements for handling high-test peroxide.

  8. Building a quality culture in the Office of Space Flight: Approach, lessons learned and implications for the future

    NASA Astrophysics Data System (ADS)

    Roberts, C. Shannon

    The purpose of this paper is to describe the approach and lessons learned by the Office of Space Flight (OSF), National Aeronautics and Space Administration (NASA), in its introduction of quality. In particular, the experience of OSF Headquarters is discussed as an example of an organization within NASA that is considering both the business and human elements of the change and the opportunities the quality focus presents to improve continuously. It is hoped that the insights shared will be of use to those embarking upon similar cultural changes. The paper is presented in the following parts: the leadership challenge; background; context of the approach to quality; initial steps; current initiatives; lessons learned; and implications for the future.

  9. Building a quality culture in the Office of Space Flight: Approach, lessons learned and implications for the future

    NASA Technical Reports Server (NTRS)

    Roberts, C. Shannon

    1992-01-01

    The purpose of this paper is to describe the approach and lessons learned by the Office of Space Flight (OSF), National Aeronautics and Space Administration (NASA), in its introduction of quality. In particular, the experience of OSF Headquarters is discussed as an example of an organization within NASA that is considering both the business and human elements of the change and the opportunities the quality focus presents to improve continuously. It is hoped that the insights shared will be of use to those embarking upon similar cultural changes. The paper is presented in the following parts: the leadership challenge; background; context of the approach to quality; initial steps; current initiatives; lessons learned; and implications for the future.

  10. Lessons Learned from the Node 1 Atmosphere Control and Storage and Water Recovery and Management Subsystem Design

    NASA Technical Reports Server (NTRS)

    Williams, David E.

    2010-01-01

    Node 1 flew to the International Space Station (ISS) on Flight 2A during December 1998. To date the National Aeronautics and Space Administration (NASA) has learned a lot of lessons from this module based on its history of approximately two years of acceptance testing on the ground and currently its twelve years on-orbit. This paper will provide an overview of the ISS Environmental Control and Life Support (ECLS) design of the Node 1 Atmosphere Control and Storage (ACS) and Water Recovery and Management (WRM) subsystems and it will document some of the lessons that have been learned to date for these subsystems based on problems prelaunch, problems encountered on-orbit, and operational problems/concerns. It is hoped that documenting these lessons learned from ISS will help in preventing them in future Programs.

  11. Lessons Learned from the Node 1 Atmosphere Control and Storage and Water Recovery and Management Subsystem Design

    NASA Technical Reports Server (NTRS)

    Williams, David E.

    2011-01-01

    Node 1 flew to the International Space Station (ISS) on Flight 2A during December 1998. To date the National Aeronautics and Space Administration (NASA) has learned a lot of lessons from this module based on its history of approximately two years of acceptance testing on the ground and currently its twelve years on-orbit. This paper will provide an overview of the ISS Environmental Control and Life Support (ECLS) design of the Node 1 Atmosphere Control and Storage (ACS) and Water Recovery and Management (WRM) subsystems and it will document some of the lessons that have been learned to date for these subsystems based on problems prelaunch, problems encountered on-orbit, and operational problems/concerns. It is hoped that documenting these lessons learned from ISS will help in preventing them in future Programs.

  12. Importance Of Quality Control in Reducing System Risk, a Lesson Learned From The Shuttle and a Recommendation for Future Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Safie, Fayssal M.; Messer, Bradley P.

    2006-01-01

    This paper presents lessons learned from the Space Shuttle return to flight experience and the importance of these lessons learned in the development of new the NASA Crew Launch Vehicle (CLV). Specifically, the paper discusses the relationship between process control and system risk, and the importance of process control in improving space vehicle flight safety. It uses the External Tank (ET) Thermal Protection System (TPS) experience and lessons learned from the redesign and process enhancement activities performed in preparation for Return to Flight after the Columbia accident. The paper also, discusses in some details, the Probabilistic engineering physics based risk assessment performed by the Shuttle program to evaluate the impact of TPS failure on system risk and the application of the methodology to the CLV.

  13. Previous experience in manned space flight: A survey of human factors lessons learned

    NASA Technical Reports Server (NTRS)

    Chandlee, George O.; Woolford, Barbara

    1993-01-01

    Previous experience in manned space flight programs can be used to compile a data base of human factors lessons learned for the purpose of developing aids in the future design of inhabited spacecraft. The objectives are to gather information available from relevant sources, to develop a taxonomy of human factors data, and to produce a data base that can be used in the future for those people involved in the design of manned spacecraft operations. A study is currently underway at the Johnson Space Center with the objective of compiling, classifying, and summarizing relevant human factors data bearing on the lessons learned from previous manned space flights. The research reported defines sources of data, methods for collection, and proposes a classification for human factors data that may be a model for other human factors disciplines.

  14. Lessons Learned from the Design, Certification, and Operation of the Space Shuttle Integrated Main Propulsion System (IMPS)

    NASA Technical Reports Server (NTRS)

    Martinez, Hugo E.; Albright, John D.; D'Amico, Stephen J.; Brewer, John M.; Melcher, John C., IV

    2011-01-01

    The Space Shuttle Integrated Main Propulsion System (IMPS) consists of the External Tank (ET), Orbiter Main Propulsion System (MPS), and Space Shuttle Main Engines (SSMEs). The IMPS is tasked with the storage, conditioning, distribution, and combustion of cryogenic liquid hydrogen (LH2) and liquid oxygen (LO2) propellants to provide first and second stage thrust for achieving orbital velocity. The design, certification, and operation of the associated IMPS hardware have produced many lessons learned over the course of the Space Shuttle Program (SSP). A subset of these items will be discussed in this paper for consideration when designing, building, and operating future spacecraft propulsion systems. This paper will focus on lessons learned related to Orbiter MPS and is the first of a planned series to address the subject matter.

  15. Safety and Mission Assurance Knowledge Management Retention: Managing Knowledge for Successful Mission Operations

    NASA Technical Reports Server (NTRS)

    Johnson, Teresa A.

    2006-01-01

    Knowledge Management is a proactive pursuit for the future success of any large organization faced with the imminent possibility that their senior managers/engineers with gained experiences and lessons learned plan to retire in the near term. Safety and Mission Assurance (S&MA) is proactively pursuing unique mechanism to ensure knowledge learned is retained and lessons learned captured and documented. Knowledge Capture Event/Activities/Management helps to provide a gateway between future retirees and our next generation of managers/engineers. S&MA hosted two Knowledge Capture Events during 2005 featuring three of its retiring fellows (Axel Larsen, Dave Whittle and Gary Johnson). The first Knowledge Capture Event February 24, 2005 focused on two Safety and Mission Assurance Safety Panels (Space Shuttle System Safety Review Panel (SSRP); Payload Safety Review Panel (PSRP) and the latter event December 15, 2005 featured lessons learned during Apollo, Skylab, and Space Shuttle which could be applicable in the newly created Crew Exploration Vehicle (CEV)/Constellation development program. Gemini, Apollo, Skylab and the Space Shuttle promised and delivered exciting human advances in space and benefits of space in people s everyday lives on earth. Johnson Space Center's Safety & Mission Assurance team work over the last 20 years has been mostly focused on operations we are now beginning the Exploration development program. S&MA will promote an atmosphere of knowledge sharing in its formal and informal cultures and work processes, and reward the open dissemination and sharing of information; we are asking "Why embrace relearning the "lessons learned" in the past?" On the Exploration program the focus will be on Design, Development, Test, & Evaluation (DDT&E); therefore, it is critical to understand the lessons from these past programs during the DDT&E phase.

  16. MSFC Skylab lessons learned

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Key lessons learned during the Skylab Program that could have impact on on-going and future programs are presented. They present early and sometimes subjective opinions; however, they give insights into key areas of concern. These experiences from a complex space program management and space flight serve as an early assessment to provide the most advantage to programs underway. References to other more detailed reports are provided.

  17. Engineering Lessons Learned and Systems Engineering Applications

    NASA Technical Reports Server (NTRS)

    Gill, Paul S.; Garcia, Danny; Vaughan, William W.

    2005-01-01

    Systems Engineering is fundamental to good engineering, which in turn depends on the integration and application of engineering lessons learned and technical standards. Thus, good Systems Engineering also depends on systems engineering lessons learned from within the aerospace industry being documented and applied. About ten percent of the engineering lessons learned documented in the NASA Lessons Learned Information System are directly related to Systems Engineering. A key issue associated with lessons learned datasets is the communication and incorporation of this information into engineering processes. Systems Engineering has been defined (EINIS-632) as "an interdisciplinary approach encompassing the entire technical effort to evolve and verify an integrated and life-cycle balanced set of system people, product, and process solutions that satisfy customer needs". Designing reliable space-based systems has always been a goal for NASA, and many painful lessons have been learned along the way. One of the continuing functions of a system engineer is to compile development and operations "lessons learned" documents and ensure their integration into future systems development activities. They can produce insights and information for risk identification identification and characterization. on a new project. Lessons learned files from previous projects are especially valuable in risk

  18. Apollo 1 Lessons Learned Show

    NASA Image and Video Library

    2017-01-27

    Mike Ciannilli, at left, the Apollo, Challenger, Columbia Lessons Learned Program manager, presents a certificate to John Tribe, retired, Apollo 1 Reaction and Control System lead engineer, during the Apollo 1 Lessons Learned presentation in the Training Auditorium at NASA's Kennedy Space Center in Florida. The theme of the program was "To there and Back Again." The event helped pay tribute to the Apollo 1 crew, Gus Grissom, Ed White II, and Roger Chaffee.

  19. Apollo 1 Lessons Learned Show

    NASA Image and Video Library

    2017-01-27

    Mike Ciannilli, the Apollo, Challenger, Columbia Lessons Learned program manager, at left, presents a certificate to Ernie Reyes, retired, former Apollo 1 senior operations manager, during the Apollo 1 Lessons Learned presentation in the Training Auditorium at NASA's Kennedy Space Center in Florida. The theme of the program was "To there and Back Again." The event helped pay tribute to the Apollo 1 crew, Gus Grissom, Ed White II, and Roger Chaffee.

  20. Apollo 1 Lessons Learned Show

    NASA Image and Video Library

    2017-01-27

    Mike Ciannilli, the Apollo, Challenger, Columbia Lessons Learned Program manager, far right, is pictured with panelists from the Apollo 1 Lessons Learned event in the Training Auditorium at NASA's Kennedy Space Center in Florida. In the center, are Ernie Reyes, retired, former Apollo 1 senior operations manager; and John Tribe, retired, former Apollo 1 Reaction and Control System lead engineer. At far left is Zulie Cipo, the Apollo, Challenger, Columbia Lessons Learned Program event support team lead. The theme of the program was "To there and Back Again." The event helped pay tribute to the Apollo 1 crew, Gus Grissom, Ed White II, and Roger Chaffee.

  1. James Webb Space Telescope - Applying Lessons Learned to I&T

    NASA Technical Reports Server (NTRS)

    Johns, Alan; Seaton, Bonita; Gal-Edd, Jonathan; Jones, Ronald; Fatig, Curtis; Wasiak, Francis

    2008-01-01

    The James Webb Space Telescope (JWST) is part of a new generation of spacecraft acquiring large data volumes from remote regions in space. To support a mission such as the JWST, it is imperative that lessons learned from the development of previous missions such as the Hubble Space Telescope and the Earth Observing System mission set be applied throughout the development and operational lifecycles. One example of a key lesson that should be applied is that core components, such as the command and telemetry system and the project database, should be developed early, used throughout development and testing, and evolved into the operational system. The purpose of applying lessons learned is to reap benefits in programmatic or technical parameters such as risk reduction, end product quality, cost efficiency, and schedule optimization. In the cited example, the early development and use of the operational command and telemetry system as well as the establishment of the intended operational database will allow these components to be used by the developers of various spacecraft components such that development, testing, and operations will all use the same core components. This will reduce risk through the elimination of transitions between development and operational components and improve end product quality by extending the verification of those components through continual use. This paper will discuss key lessons learned that have been or are being applied to the JWST Ground Segment integration and test program.

  2. Lessons learned from evaluating launch-site processing problems of Space Shuttle payloads

    NASA Technical Reports Server (NTRS)

    Flores, Carlos A.; Heuser, Robert E.; Sales, Johnny R.; Smith, Anthony M.

    1992-01-01

    The authors discuss a trend analysis program that is being conducted on the problem reports written during the processing of Space Shuttle payloads at Kennedy Space Center. The program is aimed at developing lessons learned that can both improve the effectiveness of the current payload processing cycles as well as help to guide the processing strategies for Space Station Freedom. The payload processing reports from STS 26R and STS 41 are used. A two-tier evaluation activity is described, and some typical results from the tier one analyses are presented.

  3. Apollo 1 Lessons Learned Show

    NASA Image and Video Library

    2017-01-27

    Mike Ciannilli, at left, the Apollo, Challenger, Columbia Lessons Learned Program manager, presents a certificate to Charlie Duke, former Apollo 16 astronaut and member of the Apollo 1 Emergency Egress Investigation Team, during the Apollo 1 Lessons Learned presentation in the Training Auditorium at NASA's Kennedy Space Center in Florida. The program's theme was "To There and Back Again." The event helped pay tribute to the Apollo 1 crew, Gus Grissom, Ed White II, and Roger Chaffee.

  4. International Space Station Materials: Selected Lessons Learned

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.

    2007-01-01

    The International Space Station (ISS) program is of such complexity and scale that there have been numerous issues addressed regarding safety of materials: from design to manufacturing, test, launch, assembly on-orbit, and operations. A selection of lessons learned from the ISS materials perspective will be provided. Topics of discussion are: flammability evaluation of materials with connection to on-orbit operations; toxicity findings for foams; compatibility testing for materials in fluid systems; and contamination control in precision clean systems and critical space vehicle surfaces.

  5. Welding in Space: Lessons Learned for Future In Space Repair Development

    NASA Technical Reports Server (NTRS)

    Russell, C. K.; Nunes, A. C.; Zimmerman, F. R.

    2005-01-01

    Welds have been made in the harsh environment of space only twice in the history of manned space flight. The United States conducted the M5 12 experiment on Skylab and the former Soviet Union conducted an Extravehicular Activity. Both experiments demonstrated electron beam welding. A third attempt to demonstrate and advance space welding was made by the Marshall Space Flight Center in the 90's but the experiment was demanifested as a Space Shuttle payload. This presentation summarizes the lessons learned from these three historical experiences in the areas of safety, design, operations and implementation so that welding in space can become an option for in space repair applications.

  6. Commercial Orbital Transportation Services (COTS) Program Lessons Learned

    NASA Technical Reports Server (NTRS)

    Lindenmoyer, Alan; Horkachuck, Mike; Shotwell, Gwynne; Manners, Bruce; Culbertson, Frank

    2015-01-01

    This report has been developed by the National Aeronautics and Space Administration (NASA) Human Exploration and Operations Mission Directorate (HEOMD) Risk Management team in close coordination with the COTS Program. This document provides a point-in-time, cumulative, summary of actionable key lessons learned derived from the design project. Lessons learned invariably address challenges and risks and the way in which these areas have been addressed. Accordingly the risk management thread is woven throughout the document.

  7. Lessons Learned on Implementing Fault Detection, Isolation, and Recovery (FDIR) in a Ground Launch Environment

    NASA Technical Reports Server (NTRS)

    Ferell, Bob; Lewis, Mark; Perotti, Jose; Oostdyk, Rebecca; Goerz, Jesse; Brown, Barbara

    2010-01-01

    This paper's main purpose is to detail issues and lessons learned regarding designing, integrating, and implementing Fault Detection Isolation and Recovery (FDIR) for Constellation Exploration Program (CxP) Ground Operations at Kennedy Space Center (KSC).

  8. Lessons Learned and Technical Standards: A Logical Marriage

    NASA Technical Reports Server (NTRS)

    Gill, Paul; Vaughan, William W.; Garcia, Danny; Gill, Maninderpal S. (Technical Monitor)

    2001-01-01

    A comprehensive database of lessons learned that corresponds with relevant technical standards would be a boon to technical personnel and standards developers. The authors discuss the emergence of one such database within NASA, and show how and why the incorporation of lessons learned into technical standards databases can be an indispensable tool for government and industry. Passed down from parent to child, teacher to pupil, and from senior to junior employees, lessons learned have been the basis for our accomplishments throughout the ages. Government and industry, too, have long recognized the need to systematically document And utilize the knowledge gained from past experiences in order to avoid the repetition of failures and mishaps. The use of lessons learned is a principle component of any organizational culture committed to continuous improvement. They have formed the foundation for discoveries, inventions, improvements, textbooks, and technical standards. Technical standards are a very logical way to communicate these lessons. Using the time-honored tradition of passing on lessons learned while utilizing the newest in information technology, the National Aeronautics and Space Administration (NASA) has launched an intensive effort to link lessons learned with specific technical standards through various Internet databases. This article will discuss the importance of lessons learned to engineers, the difficulty in finding relevant lessons learned while engaged in an engineering project, and the new NASA project that can help alleviate this difficulty. The article will conclude with recommendations for more expanded cross-sectoral uses of lessons learned with reference to technical standards.

  9. Lessons Learned from the Advanced Topographic Laser Altimeter System

    NASA Technical Reports Server (NTRS)

    Garrison, Matt; Patel, Deepak; Bradshaw, Heather; Robinson, Frank; Neuberger, Dave

    2016-01-01

    The ICESat-2 Advanced Topographic Laser Altimeter System (ATLAS) instrument is an upcoming Earth Science mission focusing on the effects of climate change. The flight instrument passed all environmental testing at GSFC (Goddard Space Flight Center) and is now ready to be shipped to the spacecraft vendor for integration and testing. This presentation walks through the lessons learned from design, hardware, analysis and testing perspective. ATLAS lessons learned include general thermal design, analysis, hardware, and testing issues as well as lessons specific to laser systems, two-phase thermal control, and optical assemblies with precision alignment requirements.

  10. Habitability and Human Factors: Lessons Learned in Long Duration Space Flight

    NASA Technical Reports Server (NTRS)

    Baggerman, Susan D.; Rando, Cynthia M.; Duvall, Laura E.

    2006-01-01

    This study documents the investigation of qualitative habitability and human factors feedback provided by scientists, engineers, and crewmembers on lessons learned from the ISS Program. A thorough review and understanding of this data is critical in charting NASA's future path in space exploration. NASA has been involved in ensuring that the needs of crewmembers to live and work safely and effectively in space have been met throughout the ISS Program. Human factors and habitability data has been collected from every U.S. crewmember that has resided on the ISS. The knowledge gained from both the developers and inhabitants of the ISS have provided a significant resource of information for NASA and will be used in future space exploration. The recurring issues have been tracked and documented; the top 5 most critical issues have been identified from this data. The top 5 identified problems were: excessive onsrbit stowage; environment; communication; procedures; and inadequate design of systems and equipment. Lessons learned from these issues will be used to aid in future improvements and developments to the space program. Full analysis of the habitability and human factors data has led to the following recommendations. It is critical for human factors to be involved early in the design of space vehicles and hardware. Human factors requirements need to be readdressed and redefined given the knowledge gained during previous ISS and long-duration space flight programs. These requirements must be integrated into vehicle and hardware technical documentation and consistently enforced. Lastly, space vehicles and hardware must be designed with primary focus on the user/operator to successfully complete missions and maintain a safe working environment. Implementation of these lessons learned will significantly improve NASA's likelihood of success in future space endeavors.

  11. Systems Engineering Lessons Learned from Solar Array Structures and Mechanisms Deployment

    NASA Technical Reports Server (NTRS)

    Vipavetz, Kevin; Kraft, Thomas

    2013-01-01

    This report has been developed by the National Aeronautics and Space Administration (NASA) Human Exploration and Operations Mission Directorate (HEOMD) Risk Management team in close coordination with the Engineering Directorate at LaRC. This document provides a point-in-time, cumulative, summary of actionable key lessons learned derived from the design project. Lessons learned invariably address challenges and risks and the way in which these areas have been addressed. Accordingly the risk management thread is woven throughout the document.

  12. Space Station Control Moment Gyroscope Lessons Learned

    NASA Technical Reports Server (NTRS)

    Gurrisi, Charles; Seidel, Raymond; Dickerson, Scott; Didziulis, Stephen; Frantz, Peter; Ferguson, Kevin

    2010-01-01

    Four 4760 Nms (3510 ft-lbf-s) Double Gimbal Control Moment Gyroscopes (DGCMG) with unlimited gimbal freedom about each axis were adopted by the International Space Station (ISS) Program as the non-propulsive solution for continuous attitude control. These CMGs with a life expectancy of approximately 10 years contain a flywheel spinning at 691 rad/s (6600 rpm) and can produce an output torque of 258 Nm (190 ft-lbf)1. One CMG unexpectedly failed after approximately 1.3 years and one developed anomalous behavior after approximately six years. Both units were returned to earth for failure investigation. This paper describes the Space Station Double Gimbal Control Moment Gyroscope design, on-orbit telemetry signatures and a summary of the results of both failure investigations. The lessons learned from these combined sources have lead to improvements in the design that will provide CMGs with greater reliability to assure the success of the Space Station. These lessons learned and design improvements are not only applicable to CMGs but can be applied to spacecraft mechanisms in general.

  13. NASA Lessons Learned from Space Lubricated Mechanisms

    NASA Technical Reports Server (NTRS)

    Predmore, Roamer E.

    2000-01-01

    This document reviews the lessons learned from short-life and long life lubricated space mechanisms. A short-life lubricated mechanisms complete their life test qualification requirements after a few cycles. The mechanisms include the hinges, motors and bearings for deployment, release mechanisms, latches, release springs and support shops. Performance testing can be difficult and expensive but must be accomplished. A long-life lubricated mechanisms requires up to 5 years of life testing, or 10 to 100 years of successful flight. The long-life mechanisms include reaction wheels, momentum wheels, antenna gimbals, solar array drives, gyros and despin mechanisms. Several instances of how a mechanisms failed either in test, or in space use, and the lessons learned from these failures are reviewed. The effect of the movement away from CFC-113 cleaning solvent to ODC (Ozone-Depleting Chemical) -free is reviewed, and some of the alternatives are discussed.

  14. Lessons learned and their application to program development and cultural issues

    NASA Technical Reports Server (NTRS)

    Roth, Gilbert L.

    1991-01-01

    The main objectives of space product assurance are, in effect, the same as those of Total Quality Management (TQM) or its many variants. The most significant ingredients are the lessons learned and their application to ongoing and future programs as they are affected by changes in the cultural environment. The cultural issues which affect almost everything done in technical programs and projects are considered. Understanding the lessons learned and the synergism which results from this combination of knowledge, culture, and lessons learned is identified as crucial. A brief discussion of the closed loop linkage that should exist between the world of hands on activities and that of educational institutions is presented.

  15. Tactical Satellite-3 Mission Overview and Initial Lessons Learned (Postprint)

    DTIC Science & Technology

    2013-03-01

    current buses. The spacecraft bus includes the main structure; attitude control system (reaction wheels and torque rods); the thermal protection...Specific key areas are the relatively rapid checkout of the spacecraft and lessons from the responsive space development. 15. SUBJECT TERMS...relatively rapid checkout of the spacecraft and lessons from the responsive space development. INTRODUCTION The Tactical Satellite 3 mission was a

  16. Aeromedical Lessons from the Space Shuttle Columbia Accident Investigation

    NASA Technical Reports Server (NTRS)

    Pool, Sam L.

    2005-01-01

    This paper presents the aeromedical lessons learned from the Space Shuttle Columbia Accident Investigation. The contents include: 1) Introduction and Mission Response Team (MRT); 2) Primary Disaster Field Office (DFO); 3) Mishap Investigation Team (MIT); 4) Kennedy Space Center (KSC) Mishap Response Plan; 5) Armed Forces Institute of Pathology (AFIP); and 6) STS-107 Crew Surgeon.

  17. DSCOVR Contamination Lessons Learned

    NASA Technical Reports Server (NTRS)

    Graziani, Larissa

    2015-01-01

    The Triana observatory was built at NASA GSFC in the late 1990's, then placed into storage. After approximately ten years it was removed from storage and repurposed as the Deep Space Climate Observatory (DSCOVR). This presentation outlines the contamination control program lessons learned during the integration, test and launch of DSCOVR.

  18. Lessons Learned from Ares I Upper Stage Structures and Thermal Design

    NASA Technical Reports Server (NTRS)

    Ahmed, Rafiq

    2012-01-01

    The Ares 1 Upper Stage was part of the vehicle intended to succeed the Space Shuttle as the United States manned spaceflight vehicle. Although the Upper Stage project was cancelled, there were many lessons learned that are applicable to future vehicle design. Lessons learned that are briefly detailed in this Technical Memorandum are for specific technical areas such as tank design, common bulkhead design, thrust oscillation, control of flight and slosh loads, purge and hazardous gas system. In addition, lessons learned from a systems engineering and vehicle integration perspective are also included, such as computer aided design and engineering, scheduling, and data management. The need for detailed systems engineering in the early stages of a project is emphasized throughout this report. The intent is that future projects will be able to apply these lessons learned to keep costs down, schedules brief, and deliver products that perform to the expectations of their customers.

  19. Geometric House: A Beginning Lesson for First-Graders

    ERIC Educational Resources Information Center

    Joyce, Teri Dexheimer

    2009-01-01

    This article describes a lesson for first-grade art students. The lesson introduces geometric shapes in a fun and unique way. Students will learn the art elements of shape, texture, pattern, and space. They will also develop their skills in cutting and gluing.

  20. The Human in Space: Lesson from ISS

    NASA Technical Reports Server (NTRS)

    Sams, Clarence F.

    2009-01-01

    This viewgraph presentation reviews the lessons learned from manned space flight on the International Space Station. The contents include: 1) Overview of space flight effects on crewmembers; 2) General overview of immune system; 3) How does space flight alter immune system? 4) What factors associated with space flight inteact with crewmember immune function and impact health risks? 5) What is the current understanding of space flight effects on the immune system? and 6) Why should NASA be interested in immunology? Why is it significant?

  1. Lessons Learned from Optical Payload for Lasercomm Science (OPALS) Mission Operations

    NASA Technical Reports Server (NTRS)

    Sindiy, Oleg V.; Abrahamson, Matthew J.; Biswas, Abhijit; Wright, Malcolm W.; Padams, Jordan H.; Konyha, Alexander L.

    2015-01-01

    This paper provides an overview of Optical Payload for Lasercomm Science (OPALS) activities and lessons learned during mission operations. Activities described cover the periods of commissioning, prime, and extended mission operations, during which primary and secondary mission objectives were achieved for demonstrating space-to-ground optical communications. Lessons learned cover Mission Operations System topics in areas of: architecture verification and validation, staffing, mission support area, workstations, workstation tools, interfaces with support services, supporting ground stations, team training, procedures, flight software upgrades, post-processing tools, and public outreach.

  2. Apollo 1 Lessons Learned Show

    NASA Image and Video Library

    2017-01-27

    Mike Ciannilli, the Apollo, Challenger, Columbia Lessons Learned Program manager, welcomes participants to the Apollo 1 Lessons Learned presentation in the Training Auditorium at NASA’s Kennedy Space Center in Florida. The program's theme was "To There and Back Again." Guest panelists included Charlie Duke, former Apollo 16 astronaut and member of the Apollo 1 Emergency Egress Investigation Team; Ernie Reyes, retired, Apollo 1 senior operations engineer; and John Tribe, retired, Apollo 1 Reaction and Control System lead engineer. The event helped pay tribute to the Apollo 1 crew, Gus Grissom, Ed White II, and Roger Chaffee.

  3. Apollo 1 Lessons Learned Show

    NASA Image and Video Library

    2017-01-27

    NASA Kennedy Space Center Director Bob Cabana, at left, moderates a panel discussion during the Apollo 1 Lessons Learned event in the Training Auditorium at NASA’s Kennedy Space Center in Florida. The theme of the presentation was "To There and Back Again." Answering questions are Ernie Reyes, retired, Apollo 1 senior operations engineer; and John Tribe, retired, Apollo 1 Reaction and Control System lead engineer. The event helped pay tribute to the Apollo 1 crew, Gus Grissom, Ed White II, and Roger Chaffee.

  4. First Spacelab mission status and lessons learned

    NASA Technical Reports Server (NTRS)

    Craft, H. G., Jr.; Smith, M. J.; Mullinger, D.

    1982-01-01

    There are 38 experiments and/or facilities currently under development, or undergoing testing, which will be incorporated into Spacelab for its first mission. These experiments cover a range of scientific disciplines which includes atmospheric research, life sciences, space plasma research, materials science, and space industrialization technology. In addition to the full development of individual experiments, the final design of the integrated payload and the development of all requisite integration hardware have been accomplished. Attention is given to the project management lessons learned during payload integration development.

  5. Writing a success story: lessons learned from the Spitzer Space Telescope

    NASA Astrophysics Data System (ADS)

    Gehrz, R. D.; Roellig, T. L.; Werner, M. W.

    2010-08-01

    A key to the success of the Spitzer Space Telescope (formerly SIRTF) Mission was a unique management structure that promoted open communication and collaboration among scientific, engineering, and contractor personnel at all levels of the project. This helped us to recruit and maintain the very best people to work on Spitzer. We describe the management concept that led to the success of the mission. Specific examples of how the project benefited from the communication and reporting structure, and lessons learned about technology are described.

  6. Selected Lessons Learned through the ISS Design, Development, Assembly, and Operations: Applicability to International Cooperation for Standardization

    NASA Technical Reports Server (NTRS)

    Hirsch, David B.

    2009-01-01

    This slide presentation reviews selected lessons that were learned during the design, development, assembly and operation of the International Space Station. The critical importance of standards and common interfaces is emphasized to create a common operation environment that can lead to flexibility and adaptability.

  7. NASA Flight Planning Branch Space Shuttle Lessons Learned

    NASA Technical Reports Server (NTRS)

    Clevenger, Jennifer D.; Bristol, Douglas J.; Whitney, Gregory R.; Blanton, Mark R.; Reynolds, F. Fisher, III

    2011-01-01

    Planning products and procedures that allowed the mission Flight Control Teams and the Astronaut crews to plan, train and fly every Space Shuttle mission were developed by the Flight Planning Branch at the NASA Johnson Space Center in Houston, Texas. As the Space Shuttle Program came to a close, lessons learned were collected from each phase of the successful execution of these Space Shuttle missions. Specific examples of how roles and responsibilities of console positions that develop the crew and vehicle attitude timelines have been analyzed and will be discussed. Additionally, the relationships and procedural hurdles experienced through international collaboration have molded operations. These facets will be explored and related to current and future operations with the International Space Station and future vehicles. Along with these important aspects, the evolution of technology and continual improvement of data transfer tools between the Space Shuttle and ground team has also defined specific lessons used in improving the control team s effectiveness. Methodologies to communicate and transmit messages, images, and files from the Mission Control Center to the Orbiter evolved over several years. These lessons were vital in shaping the effectiveness of safe and successful mission planning and have been applied to current mission planning work in addition to being incorporated into future space flight planning. The critical lessons from all aspects of previous plan, train, and fly phases of Space Shuttle flight missions are not only documented in this paper, but are also discussed regarding how they pertain to changes in process and consideration for future space flight planning.

  8. MC-1 Engine Valves, Lessons Learned

    NASA Technical Reports Server (NTRS)

    Laszar, John

    2003-01-01

    Many lessons were learned during the development of the valves for the MC-1 engine. The purpose of this report is to focus on a variety of issues related to the engine valves and convey the lessons learned. This paper will not delve into detailed technical analysis of the components. None of the lessons learned are new or surprising, but simply reinforce the importance of addressing the details of the design early, at the component level. The Marshall Space Flight Center (MSFC), Huntsville, Alabama developed the MC-1 engine, a LOX / FW-1, 60,000 pound thrust engine. This engine was developed under the Low Cost Boost Technology office at MSFC and proved to be a very successful project for the MSFC Propulsion team and the various subcontractors working the development of the engine and its components.

  9. Apollo 1 Lessons Learned Show

    NASA Image and Video Library

    2017-01-27

    John Tribe, retired, Apollo 1 Reaction and Control System lead engineer, answers questions during the Apollo 1 Lessons Learned event in the Training Auditorium at NASA’s Kennedy Space Center in Florida. The theme of the presentation was "To There and Back Again." The event helped pay tribute to the Apollo 1 crew, Gus Grissom, Ed White II, and Roger Chaffee.

  10. Apollo 1 Lessons Learned Show

    NASA Image and Video Library

    2017-01-27

    Ernie Reyes, retired, former Apollo 1 senior operations manager, signs a book for a worker after the Apollo 1 Lessons Learned presentation in the Training Auditorium at NASA's Kennedy Space Center in Florida. The theme of the program was "To there and Back Again." The event helped pay tribute to the Apollo 1 crew, Gus Grissom, Ed White II, and Roger Chaffee.

  11. Photonic Component Qualification and Implementation Activities at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Jin, Xiaodan Linda; Chuska, Richard F.; LaRocca, Frank V.; MacMurphy, Shawn L.; Matuszeski, Adam J.; Zellar, Ronald S.; Friedberg, Patricia R.; Malenab, Mary C.

    2006-01-01

    The photonics group in Code 562 at NASA Goddard Space Flight Center supports a variety of space flight programs at NASA including the: International Space Station (ISS), Shuttle Return to Flight Mission, Lunar Reconnaissance Orbiter (LRO), Express Logistics Carrier, and the NASA Electronic Parts and Packaging Program (NEPP). Through research, development, and testing of the photonic systems to support these missions much information has been gathered on practical implementations for space environments. Presented here are the highlights and lessons learned as a result of striving to satisfy the project requirements for high performance and reliable commercial optical fiber components for space flight systems. The approach of how to qualify optical fiber components for harsh environmental conditions, the physics of failure and development lessons learned will be discussed.

  12. Report from the School of Experience: Lessons-Learned on NASA's EOS/ICESat Mission

    NASA Technical Reports Server (NTRS)

    Anselm, William

    2003-01-01

    Abstract-NASA s Earth Observing System EOS) Ice, Cloud, and Land Elevation Satellite (ICESat) mission was one of the first missions under Goddard Space Flight Center s (then-) new Rapid Spacecraft Development Office. This paper explores the lessons-learned under the ICESat successful implementation and launch, focusing on four areas: Procurement., Management, Technical, and Launch and Early Operations. Each of these areas is explored in a practical perspective of communication, the viewpoint of the players, and the interactions among the organizations. Conclusions and lessons-learned are summarized in the final section.

  13. Space shuttle launch vehicle aerodynamic uncertainties: Lessons learned

    NASA Technical Reports Server (NTRS)

    Hamilton, J. T.

    1983-01-01

    The chronological development and evolution of an uncertainties model which defines the complex interdependency and interaction of the individual Space Shuttle element and component uncertainties for the launch vehicle are presented. Emphasis is placed on user requirements which dictated certain concessions, simplifications, and assumptions in the analytical model. The use of the uncertainty model in the vehicle design process and flight planning support is discussed. The terminology and justification associated with tolerances as opposed to variations are also presented. Comparisons of and conclusions drawn from flight minus predicted data and uncertainties are given. Lessons learned from the Space Shuttle program concerning aerodynamic uncertainties are examined.

  14. Apollo 1 Lessons Learned Show

    NASA Image and Video Library

    2017-01-27

    Kennedy Space Center Director Bob Cabana welcomes participants to the Apollo 1 Lessons Learned presentation in the Training Auditorium at NASA’s Kennedy Space Center in Florida. The program's theme was "To There and Back Again." Guest panelists included Charlie Duke, former Apollo 16 astronaut and member of the Apollo 1 Emergency Egress Investigation Team; Ernie Reyes, retired, Apollo 1 senior operations engineer; and John Tribe, retired, Apollo 1 Reaction and Control System lead engineer. The event helped pay tribute to the Apollo 1 crew, Gus Grissom, Ed White II, and Roger Chaffee.

  15. Space Flight. Teacher Resources.

    ERIC Educational Resources Information Center

    2001

    This teacher's guide contains information, lesson plans, and diverse student learning activities focusing on space flight. The guide is divided into seven sections: (1) "Drawing Activities" (Future Flight; Space Fun; Mission: Draw); (2) "Geography" (Space Places); (3) "History" (Space and Time); (4)…

  16. Learning from near-misses to avoid future catastrophes

    NASA Astrophysics Data System (ADS)

    Dillon, Robin L.

    2014-11-01

    Organizations that fail to use known near-miss data when making operational decisions may be inadvertently rewarding risky behavior. Over time such risk taking compounds as similar near-misses are repeatedly observed and the ability to recognize anomalies and document the events decreases (i.e., normalization of deviance [1,2,3]). History from the space shuttle program shows that only the occasional large failure increases attention to anomalies again. This paper discusses prescriptions for project managers based on several on-going activities at NASA Goddard Space Flight Center (GSFC) to improve the lesson learning process for space missions. We discuss how these efforts can contribute to reducing near-miss bias and the normalization of deviance. This research should help organizations design learning processes that draw lessons from near-misses.

  17. Lessons Learned from the Crew Health Care System (CHeCS) Rack 1 Environmental Control and Life Support (ECLS) Design

    NASA Technical Reports Server (NTRS)

    Williams, David E.

    2006-01-01

    This paper will provide an overview of the International Space Station (ISS) Environmental Control and Life Support (ECLS) design of the Crew Health Care System (CHeCS) Rack 1 and it will document some of the lessons that have been learned to date for the ECLS equipment in this rack.

  18. Delta clipper lessons learned for increased operability in reusable space vehicles

    NASA Astrophysics Data System (ADS)

    Charette, Ray O.; Steinmeyer, Don A.; Smiljanic, Ray R.

    1998-01-01

    Important lessons were learned from the design, development, and test (DD&T), and operation of the Delta Clipper Experimental (DC-X/XA) Reusable Launch Vehicle (RLV) which apply to increased operability for the operational Reusable Space Vehicles (RSVs). Boeing maintains a continuous process improvement program that provides the opportunity to ``institutionalize'' the results from projects such as Delta Clipper for application to product improvement in future programs. During the design phase, operations and supportability (O&S) were emphasized to ensure aircraft-like operations, traceable to an operational RSV. The operations personnel, flight, and ground crew and crew chief were actively involved in the design, manufacture, and checkout of the systems. Changes and additions to capability were implemented as they evolved from knowledge gained in each phase of development. This paper presents key lessons learned with respect to design and implementation of flight systems, propulsion, airframe, hydraulics, avionics, and ground operations. Information was obtained from discussions with personnel associated with this program concerning their experience and lessons learned. Additionally, field process records and operations timelines were evaluated for applicability to RSVs. The DC-X program pursued reusability in all aspects of the design, a unique approach in rocket system development.

  19. International Space Station Passive Thermal Control System Analysis, Top Ten Lessons-Learned

    NASA Technical Reports Server (NTRS)

    Iovine, John

    2011-01-01

    The International Space Station (ISS) has been on-orbit for over 10 years, and there have been numerous technical challenges along the way from design to assembly to on-orbit anomalies and repairs. The Passive Thermal Control System (PTCS) management team has been a key player in successfully dealing with these challenges. The PTCS team performs thermal analysis in support of design and verification, launch and assembly constraints, integration, sustaining engineering, failure response, and model validation. This analysis is a significant body of work and provides a unique opportunity to compile a wealth of real world engineering and analysis knowledge and the corresponding lessons-learned. The analysis lessons encompass the full life cycle of flight hardware from design to on-orbit performance and sustaining engineering. These lessons can provide significant insight for new projects and programs. Key areas to be presented include thermal model fidelity, verification methods, analysis uncertainty, and operations support.

  20. Flight Planning Branch Space Shuttle Lessons Learned

    NASA Technical Reports Server (NTRS)

    Price, Jennifer B.; Scott, Tracy A.; Hyde, Crystal M.

    2011-01-01

    Planning products and procedures that allow the mission flight control teams and the astronaut crews to plan, train and fly every Space Shuttle mission have been developed by the Flight Planning Branch at the NASA Johnson Space Center. As the Space Shuttle Program ends, lessons learned have been collected from each phase of the successful execution of these Shuttle missions. Specific examples of how roles and responsibilities of console positions that develop the crew and vehicle attitude timelines will be discussed, as well as techniques and methods used to solve complex spacecraft and instrument orientation problems. Additionally, the relationships and procedural hurdles experienced through international collaboration have molded operations. These facets will be explored and related to current and future operations with the International Space Station and future vehicles. Along with these important aspects, the evolution of technology and continual improvement of data transfer tools between the shuttle and ground team has also defined specific lessons used in the improving the control teams effectiveness. Methodologies to communicate and transmit messages, images, and files from Mission Control to the Orbiter evolved over several years. These lessons have been vital in shaping the effectiveness of safe and successful mission planning that have been applied to current mission planning work in addition to being incorporated into future space flight planning. The critical lessons from all aspects of previous plan, train, and fly phases of shuttle flight missions are not only documented in this paper, but are also discussed as how they pertain to changes in process and consideration for future space flight planning.

  1. Unpressurized Logistics Carriers for the International Space Station: Lessons Learned

    NASA Technical Reports Server (NTRS)

    Robbins, William W., Jr.

    1999-01-01

    The International Space Station has been in development since 1984, and has recently begun on orbit assembly. Most of the hardware for the Space Station has been manufactured and the rest is well along in design. The major sets of hardware that are still to be developed for Space Station are the pallets and interfacing hardware for resupply of unpressurized spares and scientific payloads. Over the last ten years, there have been numerous starts, stops, difficulties and challenges encountered in this effort. The Space Station program is now entering the beginning of orbital operations. The Program is only now addressing plans to design and build the carriers that will be needed to carry the unpressurized cargo for the Space Station lifetime. Unpressurized carrier development has been stalled due to a broad range of problems that occurred over the years. These problems were not in any single area, but encompassed budgetary, programmatic, and technical difficulties. Some lessons of hindsight can be applied to developing carriers for the Space Station. Space Station teams are now attempting to incorporate the knowledge gained into the current development efforts for external carriers. In some cases, the impacts of these lessons are unrecoverable for Space Station, but can and should be applied to future programs. This paper examines the progress and problems to date with unpressurized carrier development identifies the lessons to be learned, and charts the course for finally accomplishing the delivery of these critical hardware sets.

  2. "Outlines" of History: Measured Spaces and Kinesthetics

    ERIC Educational Resources Information Center

    Morris, Ronald Vaughan

    2008-01-01

    What would happen if social studies student used spaces marked out on the floor and physical movement to learn social studies? Would such a lesson conform with the Vision of Powerful Teaching and Learning in the Social Studies? Students get out of their chairs and away from their desks to perform events within a defined space elsewhere in the room…

  3. Lessons Learned From Atomic Oxygen Interaction With Spacecraft Materials in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; deGroh, Kim, K.; Miller, Sharon K.; Waters, Deborah L.

    2008-01-01

    There have been five Materials International Space Station Experiment (MISSE) passive experiment carriers (PECs) (MISSE 1-5) to date that have been launched, exposed in space on the exterior of International Space Station (ISS) and then returned to Earth for analysis. An additional four MISSE PECs (MISSE 6A, 6B, 7A, and 7B) are in various stages of completion. The PECs are two-sided suitcase to size sample carriers that are intended to provide information on the effects of the low Earth orbital environment on a wide variety of materials and components. As a result of post retrieval analyses of the retrieved MISSE 2 experiments and numerous prior space experiments, there have been valuable lessons learned and needs identified that are worthy of being documented so that planning, design, and analysis of future space environment experiments can benefit from the experience in order to maximize the knowledge gained. Some of the lessons learned involve the techniques, concepts, and issues associated with measuring atomic oxygen erosion yields. These are presented along with several issues to be considered when designing experiments, such as the uncertainty in mission duration, scattering and contamination effects on results, and the accuracy of measuring atomic oxygen erosion.

  4. The Right Stuff: A Look Back at Three Decades of Flight Controller Training for Space Shuttle Mission Operations

    NASA Technical Reports Server (NTRS)

    Dittemore, Gary D.

    2011-01-01

    Operations of human spaceflight systems is extremely complex, therefore the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center, in Houston, Texas manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. This paper will give an overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams are trained and certified. The training methodology for developing flight controllers has evolved significantly over the last thirty years, while the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. These changes have been driven by many factors including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. Flight controllers will share their experiences in training and operating the Space Shuttle throughout the Program s history. A primary method used for training Space Shuttle flight control teams is by running mission simulations of the orbit, ascent, and entry phases, to truly "train like you fly." The reader will learn what it is like to perform a simulation as a shuttle flight controller. Finally, the paper will reflect on the lessons learned in training for the shuttle program, and how those could be applied to future human spaceflight endeavors. These endeavors could range from going to the moon or to Mars. The lessons learned from operating the space shuttle for over thirty years will help the space industry build the next human transport space vehicle and inspire the next generation of space explorers.

  5. Space-brain: The negative effects of space exposure on the central nervous system.

    PubMed

    Jandial, Rahul; Hoshide, Reid; Waters, J Dawn; Limoli, Charles L

    2018-01-01

    Journey to Mars will be a large milestone for all humankind. Throughout history, we have learned lessons about the health dangers associated with exploratory voyages to expand our frontiers. Travelling through deep space, the final frontier, is planned for the 2030s by NASA. The lessons learned from the adverse health effects of space exposure have been encountered from previous, less-lengthy missions. Prolonged multiyear deep space travel to Mars could be encumbered by significant adverse health effects, which could critically affect the safety of the mission and its voyagers. In this review, we discuss the health effects of the central nervous system by space exposure. The negative effects from space radiation and microgravity have been detailed. Future aims and recommendations for the safety of the voyagers have been discussed. With proper planning and anticipation, the mission to Mars can be done safely and securely.

  6. Selected Lessons Learned over the ISS Design, Development, Assembly, and Operations: Applicability to International Cooperation for Standardization

    NASA Technical Reports Server (NTRS)

    Hirsch, David B.

    2010-01-01

    This slide presentation reviews some of the lessons learned in the sphere of international cooperation during the development, assembly and operation of the International Space Station. From the begining all Partners shared a common objective to build, operate and utilize a crewed laboratory in low orbit as an international partnership. The importance of standards is emphasized.

  7. RT 128: New Project Incubator

    DTIC Science & Technology

    2015-09-04

    functionality for this UAV type encompasses space and ground communication radios , onboard plan, mission data collection, mission data transmission...culture linked to the Cold War-related fervor of the Apollo program, however, was not fully addressed. As a result, NASA suffered yet another loss with...Insufficient Use of Lessons Learned. It is perhaps an undisputed fact among the safety community that codification of data and lessons learned

  8. Shuttle Shortfalls and Lessons Learned for the Sustainment of Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Zapata, Edgar; Levack, Daniel J. H.; Rhodes, Russell E.; Robinson, John W.

    2009-01-01

    Much debate and national soul searching has taken place over the value of the Space Shuttle which first flew in 1981 and which is currently scheduled to be retired in 2010. Originally developed post-Saturn Apollo to emphasize affordability and safety, the reusable Space Shuttle instead came to be perceived as economically unsustainable and lacking the technology maturity to assure safe, routine access to low earth orbit (LEO). After the loss of two crews, aboard Challenger and Columbia, followed by the decision to retire the system in 2010, it is critical that this three decades worth of human space flight experience be well understood. Understanding of the past is imperative to further those goals for which the Space Shuttle was a stepping-stone in the advancement of knowledge. There was significant reduction in life cycle costs between the Saturn Apollo and the Space Shuttle. However, the advancement in life cycle cost reduction from Saturn Apollo to the Space Shuttle fell far short of its goal. This paper will explore the reasons for this shortfall. Shortfalls and lessons learned can be categorized as related to design factors, at the architecture, element and sub-system levels, as well as to programmatic factors, in terms of goals, requirements, management and organization. Additionally, no review of the Space Shuttle program and attempt to take away key lessons would be complete without a strategic review. That is, how do national space goals drive future space transportation development strategies? The lessons of the Space Shuttle are invaluable in all respects - technical, as in design, program-wise, as in organizational approach and goal setting, and strategically, within the context of the generational march toward an expanded human presence in space. Beyond lessons though (and the innumerable papers, anecdotes and opinions published on this topic) this paper traces tangible, achievable steps, derived from the Space Shuttle program experience, that must be a part of any 2l century initiatives furthering a growing human presence beyond earth.

  9. The Learning Space: Teachers Taking Charge.

    ERIC Educational Resources Information Center

    Steede-Terry, Karen

    2001-01-01

    Describes The Learning Space, a Seattle-based organization that provides support for classroom teachers by providing a means of communicating and collaborating with other teachers via the World Wide Web. Discusses the Web site that includes classroom lessons and considers growth of the organization to expand to other states. (LRW)

  10. The Final Count Down: A Review of Three Decades of Flight Controller Training Methods for Space Shuttle Mission Operations

    NASA Technical Reports Server (NTRS)

    Dittermore, Gary; Bertels, Christie

    2011-01-01

    Operations of human spaceflight systems is extremely complex; therefore, the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center in Houston, Texas, manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. An overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams are trained and certified, reveals that while the training methodology for developing flight controllers has evolved significantly over the last thirty years the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. Changes in methodology and tools have been driven by many factors, including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. Flight controllers share their experiences in training and operating the space shuttle. The primary training method throughout the program has been mission simulations of the orbit, ascent, and entry phases, to truly train like you fly. A review of lessons learned from flight controller training suggests how they could be applied to future human spaceflight endeavors, including missions to the moon or to Mars. The lessons learned from operating the space shuttle for over thirty years will help the space industry build the next human transport space vehicle.

  11. Bold endeavors: behavioral lessons from polar and space exploration

    NASA Technical Reports Server (NTRS)

    Stuster, J. W.

    2000-01-01

    Anecdotal comparisons frequently are made between expeditions of the past and space missions of the future. Spacecraft are far more complex than sailing ships, but from a psychological perspective, the differences are few between confinement in a small wooden ship locked in the polar ice cap and confinement in a small high-technology ship hurtling through interplanetary space. This paper discusses some of the behavioral lessons that can be learned from previous expeditions and applied to facilitate human adjustment and performance during future space expeditions of long duration.

  12. Scheduling lessons learned from the Autonomous Power System

    NASA Technical Reports Server (NTRS)

    Ringer, Mark J.

    1992-01-01

    The Autonomous Power System (APS) project at NASA LeRC is designed to demonstrate the applications of integrated intelligent diagnosis, control, and scheduling techniques to space power distribution systems. The project consists of three elements: the Autonomous Power Expert System (APEX) for Fault Diagnosis, Isolation, and Recovery (FDIR); the Autonomous Intelligent Power Scheduler (AIPS) to efficiently assign activities start times and resources; and power hardware (Brassboard) to emulate a space-based power system. The AIPS scheduler was tested within the APS system. This scheduler is able to efficiently assign available power to the requesting activities and share this information with other software agents within the APS system in order to implement the generated schedule. The AIPS scheduler is also able to cooperatively recover from fault situations by rescheduling the affected loads on the Brassboard in conjunction with the APEX FDIR system. AIPS served as a learning tool and an initial scheduling testbed for the integration of FDIR and automated scheduling systems. Many lessons were learned from the AIPS scheduler and are now being integrated into a new scheduler called SCRAP (Scheduler for Continuous Resource Allocation and Planning). This paper will service three purposes: an overview of the AIPS implementation, lessons learned from the AIPS scheduler, and a brief section on how these lessons are being applied to the new SCRAP scheduler.

  13. Exploring interspace: open space opportunities in dense urban areas

    Treesearch

    Paul H. Gobster; Kathleen E. Dickhut

    1995-01-01

    Using ideas from landscape ecology, this paper explores how small open spaces can aid urban forestry efforts in dense urban areas. A case study in Chicago illustrates the physical and social lessons learned in dealing with these spaces.

  14. Water Innovations and Lessons Learned From Water Recycling in Space

    NASA Technical Reports Server (NTRS)

    Flynn, Michael

    2013-01-01

    This Presentation will cover technology and knowledge transfers from space exploration to earth and the tourism industry, for example, water and air preservation, green buildings and sustainable cities.

  15. Loss of Signal, Aeromedical Lessons Learned for the STS-I07 Columbia Space Shuttle Mishap

    NASA Technical Reports Server (NTRS)

    Patlach, Robert; Stepaniak, Philip C.; Lane, Helen W.

    2014-01-01

    Loss of Signal, a NASA publication to be available in May 2014, presents the aeromedical lessons learned from the Columbia accident that will enhance crew safety and survival on human space flight missions. These lessons were presented to limited audiences at three separate Aerospace Medical Association (AsMA) conferences: in 2004 in Anchorage, Alaska, on the causes of the accident; in 2005 in Kansas City, Missouri, on the response, recovery, and identification aspects of the investigation; and in 2011, again in Anchorage, Alaska, on future implications for human space flight. As we embark on the development of new spacefaring vehicles through both government and commercial efforts, the NASA Johnson Space Center Human Health and Performance Directorate is continuing to make this information available to a wider audience engaged in the design and development of future space vehicles. Loss of Signal summarizes and consolidates the aeromedical impacts of the Columbia mishap process-the response, recovery, identification, investigative studies, medical and legal forensic analysis, and future preparation that are needed to respond to spacecraft mishaps. The goals of this book are to provide an account of the aeromedical aspects of the Columbia accident and the investigation that followed, and to encourage aerospace medical specialists to continue to capture information, learn from it, and improve procedures and spacecraft designs for the safety of future crews.

  16. Lessons Learned from the Space Shuttle Engine Cutoff System (ECO) Anomalies

    NASA Technical Reports Server (NTRS)

    Martinez, Hugo E.; Welzyn, Ken

    2011-01-01

    The Space Shuttle Orbiter's main engine cutoff (ECO) system first failed ground checkout in April, 2005 during a first tanking test prior to Return-to-Flight. Despite significant troubleshooting and investigative efforts that followed, the root cause could not be found and intermittent anomalies continued to plague the Program. By implementing hardware upgrades, enhancing monitoring capability, and relaxing the launch rules, the Shuttle fleet was allowed to continue flying in spite of these unexplained failures. Root cause was finally determined following the launch attempts of STS-122 in December, 2007 when the anomalies repeated, which allowed drag-on instrumentation to pinpoint the fault (the ET feedthrough connector). The suspect hardware was removed and provided additional evidence towards root cause determination. Corrective action was implemented and the system has performed successfully since then. This white paper presents the lessons learned from the entire experience, beginning with the anomalies since Return-to-Flight through discovery and correction of the problem. To put these lessons in better perspective for the reader, an overview of the ECO system is presented first. Next, a chronological account of the failures and associated investigation activities is discussed. Root cause and corrective action are summarized, followed by the lessons learned.

  17. Lessons Learned for Space Safety from the Fukushima Nuclear Power Plant Accident

    NASA Astrophysics Data System (ADS)

    Nogami, Manami; Miki, Masami; Mitsui, Masami; Kawada, Ysuhiro; Takeuchi, Nobuo

    2013-09-01

    On March 11 2011, Tohoku Region Pacific Coast Earthquake hit Japan and caused the devastating damage. The Fukushima Nuclear Power Station (NPS) was also severely damaged.The Japanese NPSs are designed based on the detailed safety requirements and have multiple-folds of hazard controls to the catastrophic hazards as in space system. However, according to the initial information from the Tokyo Electric Power Company (TEPCO) and the Japanese government, the larger-than-expected tsunami and subsequent events lost the all hazard controls to the release of radioactive materials.At the 5th IAASS, Lessons Learned from this disaster was reported [1] mainly based on the "Report of the Japanese Government to the IAEA Ministerial Conference on Nuclear Safety" [2] published by Nuclear Emergency Response Headquarters in June 2011, three months after the earthquake.Up to 2012 summer, the major investigation boards, including the Japanese Diet, the Japanese Cabinet and TEPCO, published their final reports, in which detailed causes of this accident and several recommendations are assessed from each perspective.In this paper, the authors examine to introduce the lessons learned to be applied to the space safety as findings from these reports.

  18. How Do Lessons Learned on the International Space Station (ISS) Help Plan Life Support for Mars?

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.; Hodgson, Edward W.; Gentry, Gregory J.; Kliss, Mark H.

    2016-01-01

    How can our experience in developing and operating the International Space Station (ISS) guide the design, development, and operation of life support for the journey to Mars? The Mars deep space Environmental Control and Life Support System (ECLSS) must incorporate the knowledge and experience gained in developing ECLSS for low Earth orbit, but it must also meet the challenging new requirements of operation in deep space where there is no possibility of emergency resupply or quick crew return. The understanding gained by developing ISS flight hardware and successfully supporting a crew in orbit for many years is uniquely instructive. Different requirements for Mars life support suggest that different decisions may be made in design, testing, and operations planning, but the lessons learned developing the ECLSS for ISS provide valuable guidance.

  19. The X-15 airplane - Lessons learned

    NASA Technical Reports Server (NTRS)

    Dana, William H.

    1993-01-01

    The X-15 rocket research airplane flew to an altitude of 354,000 ft and reached Mach 6.70. In almost 200 flights, this airplane was used to gather aerodynamic-heating, structural loads, stability and control, and atmospheric-reentry data. This paper describes the origins, design, and operation of the X-15 airplane. In addition, lessons learned from the X-15 airplane that are applicable to designing and testing the National Aero-Space Plane are discussed.

  20. Tracking change over time: River flooding

    USGS Publications Warehouse

    ,

    2014-01-01

    The objective of the Tracking Change Over Time lesson plan is to get students excited about studying the changing Earth. Intended for students in grades 5-8, the lesson plan is flexible and may be used as a student self-guided tutorial or as a teacher-led class lesson. Enhance students' learning of geography, map reading, earth science, and problem solving by seeing landscape changes from space.

  1. Lessons Learned from Biosphere 2: When Viewed as a Ground Simulation/Analogue for Long Duration Human Space Exploration and Settlement

    NASA Astrophysics Data System (ADS)

    MacCallum, T.; Poynter, J.; Bearden, D.

    A human mission to Mars, or a base on the Moon or Mars, is a longer and more complex mission than any space endeavor undertaken to date. Ground simulations provide a relevant, analogous environment for testing technologies and learning how to manage complex, long duration missions, while addressing inherent mission risks. Multiphase human missions and settlements that may preclude a rapid return to Earth, require high fidelity, end-to-end, at least full mission duration tests in order to evaluate a system's ability to sustain the crew for the entire mission and return the crew safely to Earth. Moreover, abort scenarios are essentially precluded in many mission scenarios, though certain risks may only become evident late in the mission. Aging and compounding effects cannot be simulated through accelerated tests for all aspects of the mission. Until such high fidelity long duration simulations are available, and in order to help prepare those simulations and mission designs, it is important to extract as many lessons as possible from analogous environments. Possibly the best analogue for a long duration space mission is the two year mission of Biosphere 2. Biosphere 2 is a three-acre materially closed ecological system that supported eight crewmembers with food, air and water in a sunlight driven bioregenerative system for two years. It was designed for research applicable to environmental management on Earth and the development of human life support for space. A brief overview of the two-year Biosphere 2 mission is presented, followed by select data and lessons learned that are applicable to the design and operation of a long duration human space mission, settlement or test bed. These lessons include technical, programmatic, and psychological issues

  2. Introduction of the Space Shuttle Columbia Accident, Investigation Details, Findings and Crew Survival Investigation Report

    NASA Technical Reports Server (NTRS)

    Chandler, Michael

    2010-01-01

    As the Space Shuttle Program comes to an end, it is important that the lessons learned from the Columbia accident be captured and understood by those who will be developing future aerospace programs and supporting current programs. Aeromedical lessons learned from the Accident were presented at AsMA in 2005. This Panel will update that information, closeout the lessons learned, provide additional information on the accident and provide suggestions for the future. To set the stage, an overview of the accident is required. The Space Shuttle Columbia was returning to Earth with a crew of seven astronauts on 1Feb, 2003. It disintegrated along a track extending from California to Louisiana and observers along part of the track filmed the breakup of Columbia. Debris was recovered from Littlefield, Texas to Fort Polk, Louisiana, along a 567 statute mile track; the largest ever recorded debris field. The Columbia Accident Investigation Board (CAIB) concluded its investigation in August 2003, and released their findings in a report published in February 2004. NASA recognized the importance of capturing the lessons learned from the loss of Columbia and her crew and the Space Shuttle Program managers commissioned the Spacecraft Crew Survival Integrated Investigation Team (SCSIIT) to accomplish this. Their task was to perform a comprehensive analysis of the accident, focusing on factors and events affecting crew survival, and to develop recommendations for improving crew survival, including the design features, equipment, training and procedures intended to protect the crew. NASA released the Columbia Crew Survival Investigation Report in December 2008. Key personnel have been assembled to give you an overview of the Space Shuttle Columbia accident, the medical response, the medico-legal issues, the SCSIIT findings and recommendations and future NASA flight surgeon spacecraft accident response training. Educational Objectives: Set the stage for the Panel to address the investigation, medico-legal issues, the Spacecraft Crew Survival Integrated Investigation Team report and training for accident response.

  3. Lessons learned from the design of chemical space networks and opportunities for new applications.

    PubMed

    Vogt, Martin; Stumpfe, Dagmar; Maggiora, Gerald M; Bajorath, Jürgen

    2016-03-01

    The concept of chemical space is of fundamental relevance in chemical informatics and computer-aided drug discovery. In a series of articles published in the Journal of Computer-Aided Molecular Design, principles of chemical space design were evaluated, molecular networks proposed as an alternative to conventional coordinate-based chemical reference spaces, and different types of chemical space networks (CSNs) constructed and analyzed. Central to the generation of CSNs was the way in which molecular similarity relationships were assessed and a primary focal point was the network-based representation of biologically relevant chemical space. The design and comparison of CSNs based upon alternative similarity measures can be viewed as an evolutionary path with interesting lessons learned along the way. CSN design has matured to the point that such chemical space representations can be used in practice. In this contribution, highlights from the sequence of CSN design efforts are discussed in context, providing a perspective for future practical applications.

  4. Lessons learned from the design of chemical space networks and opportunities for new applications

    NASA Astrophysics Data System (ADS)

    Vogt, Martin; Stumpfe, Dagmar; Maggiora, Gerald M.; Bajorath, Jürgen

    2016-03-01

    The concept of chemical space is of fundamental relevance in chemical informatics and computer-aided drug discovery. In a series of articles published in the Journal of Computer- Aided Molecular Design, principles of chemical space design were evaluated, molecular networks proposed as an alternative to conventional coordinate-based chemical reference spaces, and different types of chemical space networks (CSNs) constructed and analyzed. Central to the generation of CSNs was the way in which molecular similarity relationships were assessed and a primary focal point was the network-based representation of biologically relevant chemical space. The design and comparison of CSNs based upon alternative similarity measures can be viewed as an evolutionary path with interesting lessons learned along the way. CSN design has matured to the point that such chemical space representations can be used in practice. In this contribution, highlights from the sequence of CSN design efforts are discussed in context, providing a perspective for future practical applications.

  5. Lessons Learned from the Fukushima Nuclear Accident due to Tohoku Region Pacific Coast Earthquake

    NASA Astrophysics Data System (ADS)

    Miki, M.; Wada, M.; Takeuchi, N.

    2012-01-01

    On March 11 2011, Great Eastern Japan Earthquake hit Japan and caused the devastating damage. Fukushima Nuclear Power Station (NPS) also suffered damages and provided the environmental effect with radioactive products. The situation has been settled to some extent about two months after the accidents, and currently, the cooling of reactor is continuing towards settling the situation. Japanese NPSs are designed based on safety requirements and have multiple-folds of hazard controls. However, according to publicly available information, due to the lager-than-anticipated Tsunami, all the power supply were lost, which resulted in loss of hazard controls. Also, although nuclear power plants are equipped with system/procedure in case of loss of all controls, recovery was not made as planned in Fukushima NPSs because assumptions for hazard controls became impractical or found insufficient. In consequence, a state of emergency was declared. Through this accident, many lessons learned have been obtained from the several perspectives. There are many commonality between nuclear safety and space safety. Both industries perform thorough hazard assessments because hazards in both industries can result in loss of life. Therefore, space industry must learn from this accident and reconsider more robust space safety. This paper will introduce lessons learned from Fukushima nuclear accident described in the "Report of the Japanese Government to the IAEA Ministerial Conference on Nuclear Safety" [1], and discuss the considerations to establish more robust safety in the space systems. Detailed information of Fukushima Dai-ichi NPS are referred to this report.

  6. The Challenges and Success of Implementing Climate Studies Lessons for Pre-Professional Teachers at a Small Historically Black College to Engage Student Teaching of Science Pedagogy and Content Skill Based Learning.

    NASA Astrophysics Data System (ADS)

    Arnold, J.; Wider-Lewis, F.; Miller-Jenkins, A.

    2017-12-01

    This poster is a description of the challenges and success of implementing climate studies lessons for pre-service teachers to engage student teaching pedagogy and content skill based learning. Edward Waters College is a historical black college with an elementary education teacher program focused on urban elementary school teaching and learning. Pre-Service Elementary Educator Students often have difficulty with science and mathematics content and pedagogy. This poster will highlight the barriers and successes of using climate studies lessons to develop and enhance pre-service teachers' knowledge of elementary science principles particularly related to climate studies, physical and earth space science.

  7. Lessons learned in the development of the STOL intelligent tutoring system

    NASA Technical Reports Server (NTRS)

    Seamster, Thomas; Baker, Clifford; Ames, Troy

    1991-01-01

    Lessons learned during the development of the NASA Systems Test and Operations Language (STOL) Intelligent Tutoring System (ITS), being developed at NASA Goddard Space Flight Center are presented. The purpose of the intelligent tutor is to train STOL users by adapting tutoring based on inferred student strengths and weaknesses. This system has been under development for over one year and numerous lessons learned have emerged. These observations are presented in three sections, as follows. The first section addresses the methodology employed in the development of the STOL ITS and briefly presents the ITS architecture. The second presents lessons learned, in the areas of: intelligent tutor development; documentation and reporting; cost and schedule control; and tools and shells effectiveness. The third section presents recommendations which may be considered by other ITS developers, addressing: access, use and selection of subject matter experts; steps involved in ITS development; use of ITS interface design prototypes as part of knowledge engineering; and tools and shells effectiveness.

  8. Hypergolic Propellants: The Handling Hazards and Lessons Learned from Use

    NASA Technical Reports Server (NTRS)

    Nufer, Brian

    2010-01-01

    Several unintentional hypergolic fluid related spills, fires, and explosions from the Apollo Program, the Space Shuttle Program, the Titan Program, and a few others have occurred over the past several decades. Spill sites include the following government facilities: Kennedy Space Center (KSC), Johnson Space Center (JSC), White Sands Test Facility (WSTF), Vandenberg Air Force Base (VAFB), Cape Canaveral Air Force Station (CCAFS), Edwards Air Force Base (EAFB), Little Rock AFB, and McConnell AFB. Until now, the only method of capturing the lessons learned from these incidents has been "word of mouth" or by studying each individual incident report. Through studying several dozen of these incidents, certain root cause themes are apparent. Scrutinizing these themes could prove to be highly beneficial to future hypergolic system testing, checkout, and operational use.

  9. Ares Knowledge Capture: Summary and Key Themes Presentation

    NASA Technical Reports Server (NTRS)

    Coates, Ralph H.

    2011-01-01

    This report has been developed by the National Aeronautics and Space Administration (NASA) Human Exploration and Operations Mission Directorate (HEOMD) Risk Management team in close coordination with the MSFC Chief Engineers Office. This document provides a point-in-time, cumulative, summary of actionable key lessons learned derived from the design project. Lessons learned invariably address challenges and risks and the way in which these areas have been addressed. Accordingly the risk management thread is woven throughout the document.

  10. ESMD Risk Management Workshop: Systems Engineering and Integration Risks

    NASA Technical Reports Server (NTRS)

    Thomas, L. Dale

    2005-01-01

    This report has been developed by the National Aeronautics and Space Administration (NASA) Exploration Systems Mission Directorate (ESMD) Risk Management team in close coordination with the Systems Engineering Team. This document provides a point-in-time, cumulative, summary of key lessons learned derived from the SE RFP Development process. Lessons learned invariably address challenges and risks and the way in which these areas have been addressed. Accordingly the risk management thread is woven throughout the document.

  11. Staffing the ISS Control Centers: Lessons Learned from Long-Duration Human Space Flight

    NASA Technical Reports Server (NTRS)

    Olsen, Carrie D.; Horvath, Timothy J.; Davis, Sally P.

    2006-01-01

    The International Space Station (ISS) has been in operation with a permanent human presence in space for over five years, and plans for continued operations stretch ten years into the future. Ground control and support operations are, likewise, a 15-year enterprise. This long-term, 24-hour per day, 7 day per week support has presented numerous challenges in the areas of ground crew training, initial and continued certification, and console staffing. The Mission Control Center in Houston, Texas and the Payload Operations Center in Huntsville, Alabama have both tackled these challenges, with similar, yet distinct, approaches. This paper describes the evolution of the staffing and training policies of both control centers in a chronological progression. The relative merits and shortcomings of the various policies employed are discussed and a summary of "lessons learned" is presented. Finally, recommendations are made as best practices for future long-term space missions.

  12. Space Shuttle Guidance, Navigation, and Rendezvous Knowledge Capture Reports. Revision 1

    NASA Technical Reports Server (NTRS)

    Goodman, John L.

    2011-01-01

    This document is a catalog and readers guide to lessons learned, experience, and technical history reports, as well as compilation volumes prepared by United Space Alliance personnel for the NASA/Johnson Space Center (JSC) Flight Dynamics Division.1 It is intended to make it easier for future generations of engineers to locate knowledge capture documentation from the Shuttle Program. The first chapter covers observations on documentation quality and research challenges encountered during the Space Shuttle and Orion programs. The second chapter covers the knowledge capture approach used to create many of the reports covered in this document. These chapters are intended to provide future flight programs with insight that could be used to formulate knowledge capture and management strategies. The following chapters contain descriptions of each knowledge capture report. The majority of the reports concern the Space Shuttle. Three are included that were written in support of the Orion Program. Most of the reports were written from the years 2001 to 2011. Lessons learned reports concern primarily the shuttle Global Positioning System (GPS) upgrade and the knowledge capture process. Experience reports on navigation and rendezvous provide examples of how challenges were overcome and how best practices were identified and applied. Some reports are of a more technical history nature covering navigation and rendezvous. They provide an overview of mission activities and the evolution of operations concepts and trajectory design. The lessons learned, experience, and history reports would be considered secondary sources by historians and archivists.

  13. Development of Constellation's Launch Control System

    NASA Technical Reports Server (NTRS)

    Lougheed, Kirk D.; Peaden, Cary J.

    2010-01-01

    The paper focuses on the National Aeronautics and Space Administration (NASA) Constellation Program's Launch Control System (LCS) development effort at Kennedy Space Center (KSC). It provides a brief history of some preceding efforts to provide launch control and ground processing systems for other NASA programs, and some lessons learned from those experiences. It then provides high level descriptions of the LCS mission, objectives, organization, architecture, and progress. It discusses some of our development tenets, including our use of standards based design and use of off-the-shelf products whenever possible, incremental development cycles, and highly reliable, available, and supportable enterprise class system servers. It concludes with some new lessons learned and our plans for the future.

  14. Phase III Integrated Water Recovery Testing at MSFC - Closed hygiene and potable loop test results and lesson learned

    NASA Technical Reports Server (NTRS)

    Holder, Donald W., Jr.; Bagdigian, Robert M.

    1992-01-01

    A series of tests has been conducted at the NASA Marshall Space Flight Center (MSFC) to evaluate the performance of a Space Station Freedom (SSF) pre-development water recovery system. Potable, hygiene, and urine reclamation subsystems were integrated with end-use equipment items and successfully operated for a total of 35 days, including 23 days in closed-loop mode with man-in-the-loop. Although several significant subsystem physical anomalies were encountered, reclaimed potable and hygiene water routinely met current SSF water quality specifications. This paper summarizes the test objectives, system design, test activities/protocols, significant results/anomalies, and major lessons learned.

  15. Interactive Astronomy.

    ERIC Educational Resources Information Center

    Martin, Jean K.

    1997-01-01

    Presents guiding principles for developing interactive lessons for the World Wide Web. Describes "Amazing Space: Education Online from the Hubble Space Telescope", a program where students study spectacular Hubble Space Telescope images of stars and star-forming regions to learn about the life cycle of stars and the creation of atoms. (JRH)

  16. Commercial Crew Cost Estimating - A Look at Estimating Processes, Challenges and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Battle, Rick; Cole, Lance

    2015-01-01

    To support annual PPBE budgets and NASA HQ requests for cost information for commercial crew transportation to the International Space Station (ISS), the NASA ISS ACES team developed system development and per flight cost estimates for the potential providers for each annual PPBE submit from 2009-2014. This paper describes the cost estimating processes used, challenges and lessons learned to develop estimates for this key NASA project that diverted from the traditional procurement approach and used a new way of doing business

  17. Apollo 1 Lessons Learned Show

    NASA Image and Video Library

    2017-01-27

    Charlie Duke, former Apollo 16 astronaut and member of the Apollo 1 Emergency Egress Investigation Team, speaks to participants during the Apollo 1 Lessons Learned presentation in the Training Auditorium at NASA's Kennedy Space Center in Florida. The program's theme was "To There and Back Again." Other guest panelists included Ernie Reyes, retired, Apollo 1 senior operations engineer; and John Tribe, retired, Apollo 1 Reaction and Control System lead engineer. The event helped pay tribute to the Apollo 1 crew, Gus Grissom, Ed White II, and Roger Chaffee.

  18. Accident Case Study of Organizational Silence Communication Breakdown: Shuttle Columbia, Mission STS-107

    NASA Technical Reports Server (NTRS)

    Rocha, Rodney

    2011-01-01

    This report has been developed by the National Aeronautics and Space Administration (NASA) ESMD Risk and Knowledge Management team. This document provides a point-in-time, cumulative, summary of key lessons learned derived from the official Columbia Accident Investigation Board (CAIB). Lessons learned invariably address challenges and risks and the way in which these areas have been addressed. Accordingly the risk management thread is woven throughout the document. This report is accompanied by a video that will be sent at request

  19. Loss of Signal: Aeromedical Lessons Learned from the STS-107 Columbia Space Shuttle Mishap

    NASA Technical Reports Server (NTRS)

    Stepaniak, Philip C. (Editor); Lane, Helen W. (Editor); Davis, Jeffrey R.

    2014-01-01

    The editors of Loss of Signal wanted to document the aeromedical lessons learned from the Space Shuttle Columbia mishap. The book is intended to be an accurate and easily understood account of the entire process of recovering and analyzing the human remains, investigating and analyzing what happened to the crew, and using the resulting information to recommend ways to prevent mishaps and provide better protection to crewmembers. Our goal is to capture the passions of those who devoted their energies in responding to the Columbia mishap. We have reunited authors who were directly involved in each of these aspects. These authors tell the story of their efforts related to the Columbia mishap from their point of view. They give the reader an honest description of their responsibilities and share their challenges, their experiences, and their lessons learned on how to enhance crew safety and survival, and how to be prepared to support space mishap investigations. As a result of this approach, a few of the chapters have some redundancy of information and authors' opinions may differ. In no way did we or they intend to assign blame or criticize anyone's professional efforts. All those involved did their best to obtain the truth in the situations to which they were assigned.

  20. Changing the Rules: Making Space for Interactive Learning in the Galleries of the Detroit Institute of Arts

    ERIC Educational Resources Information Center

    Czajkowski, Jennifer Wild

    2011-01-01

    Three years after the Detroit Institute of Arts opened with all new, "visitor-centered" galleries, the museum's executive director of learning and interpretation shares the processes, successes, and lessons learned at an institution that embraced an array of hands-on learning models. The models are discussed as components of a…

  1. Use of a position-sensitive multi-anode photomultiplier tube for finding gamma-ray source direction

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Guss, Paul

    2014-09-01

    Organizations that fail to use known near-miss data when making operational decisions may be inadvertently rewarding risky behavior. Over time such risk taking compounds as similar near-misses are repeatedly observed and the ability to recognize anomalies and document the events decreases (i.e., normalization of deviance [1,2,3]). History from the space shuttle program shows that only the occasional large failure increases attention to anomalies again. This paper discusses prescriptions for project managers based on several on-going activities at NASA Goddard Space Flight Center (GSFC) to improve the lesson learning process for space missions. We discuss how these efforts can contribute to reducing near-miss bias and the normalization of deviance. This research should help organizations design learning processes that draw lessons from near-misses.

  2. Shuttle Lesson Learned - Toxicology

    NASA Technical Reports Server (NTRS)

    James, John T.

    2010-01-01

    This is a script for a video about toxicology and the space shuttle. The first segment is deals with dust in the space vehicle. The next segment will be about archival samples. Then we'll look at real time on-board analyzers that give us a lot of capability in terms of monitoring for combustion products and the ability to monitor volatile organics on the station. Finally we will look at other issues that are about setting limits and dealing with ground based lessons that pertain to toxicology.

  3. Lessons Learned: Mechanical Component and Tribology Activities in Support of Return to Flight

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Zaretsky, Erwin V.

    2017-01-01

    The February 2003 loss of the Space Shuttle Columbia resulted in NASA Management revisiting every critical system onboard this very complex, reusable space vehicle in a an effort to Return to Flight. Many months after the disaster, contact between NASA Johnson Space Center and NASA Glenn Research Center evolved into an in-depth assessment of the actuator drive systems for the Rudder Speed Brake and Body Flap Systems. The actuators are CRIT 1-1 systems that classifies them as failure of any of the actuators could result in loss of crew and vehicle. Upon further evaluation of these actuator systems and the resulting issues uncovered, several research activities were initiated, conducted, and reported to the NASA Space Shuttle Program Management. The papers contained in this document are the contributions of many researchers from NASA Glenn Research Center and Marshall Space Flight Center as part of a Lessons Learned on mechanical actuation systems as used in space applications. Many of the findings contained in this document were used as a basis to safely Return to Flight for the remaining Space Shuttle Fleet until their retirement.

  4. Constellation Program: Lessons Learned. Volume 1; Executive Summary

    NASA Technical Reports Server (NTRS)

    Rhatigan, Jennifer L. (Editor)

    2011-01-01

    This document (Volume I) provides an executive summary of the lessons learned from the Constellation Program. A companion Volume II provides more detailed analyses for those seeking further insight and information. In this volume, Section 1.0 introduces the approach in preparing and organizing the content to enable rapid assimilation of the lessons. Section 2.0 describes the contextual framework in which the Constellation Program was formulated and functioned that is necessary to understand most of the lessons. Context of a former program may seem irrelevant in the heady days of new program formulation. However, readers should take some time to understand the context. Many of the lessons would be different in a different context, so the reader should reflect on the similarities and differences in his or her current circumstances. Section 3.0 summarizes key findings developed from the significant lessons learned at the program level that appear in Section 4.0. Readers can use the key findings in Section 3.0 to peruse for particular topics, and will find more supporting detail and analyses in Section 4.0 in a topical format. Appendix A contains a white paper describing the Constellation Program formulation that may be of use to readers wanting more context or background information. The reader will no doubt recognize some very similar themes from previous lessons learned, blue-ribbon committee reviews, National Academy reviews, and advisory panel reviews for this and other large-scale human spaceflight programs; including Apollo, Space Shuttle, Shuttle/Mir, and the ISS. This could represent an inability to learn lessons from previous generations; however, it is more likely that similar challenges persist in the Agency structure and approach to program formulation, budget advocacy, and management. Perhaps the greatest value of these Constellation lessons learned can be found in viewing them in context with these previous efforts to guide and advise the Agency and its stakeholders.

  5. Propulsion Ground Testing with High Test Peroxide: Lessons Learned

    NASA Technical Reports Server (NTRS)

    Bruce, Robert; Taylor, Gary; Taliancich, Paula

    2002-01-01

    Propulsion Ground Testing with High Test Peroxide (85 to 98% concentration) began at the NASA John C. Stennis Space Center in calendar year 1998, when the E3 Test Facility was modified to accomodate hydrogen peroxide (H2O2) in order to suport the research and development testing of the USAF Upper Stage Flight Experiment rocket engine. Since that time, efforts have continued to provide actual and planned test services to various customers, both U.S. Government and Commercial, in the ground test of many test articles, ranging from gas generators, to catalyst beds, to turbomachinery, to main injectors, to combustion chambers, to integrated rocket engines, to integrated stages. Along this path, and over the past 4 years, there has been both the rediscovery of previously learned lessons, through literature search, archive review, and personal interviews, as well as the learning of many new lessons as new areas are explored and new endeavors are tried. This paper will summarize those lessons learned in an effort to broaden the knowledge base as High Test Peroxide is considered more widely for use in rocket propulsion applications.

  6. Constellation Program Lessons Learned. Volume 2; Detailed Lessons Learned

    NASA Technical Reports Server (NTRS)

    Rhatigan, Jennifer; Neubek, Deborah J.; Thomas, L. Dale

    2011-01-01

    These lessons learned are part of a suite of hardware, software, test results, designs, knowledge base, and documentation that comprises the legacy of the Constellation Program. The context, summary information, and lessons learned are presented in a factual format, as known and described at the time. While our opinions might be discernable in the context, we have avoided all but factually sustainable statements. Statements should not be viewed as being either positive or negative; their value lies in what we did and what we learned that is worthy of passing on. The lessons include both "dos" and "don ts." In many cases, one person s "do" can be viewed as another person s "don t"; therefore, we have attempted to capture both perspectives when applicable and useful. While Volume I summarizes the views of those who managed the program, this Volume II encompasses the views at the working level, describing how the program challenges manifested in day-to-day activities. Here we see themes that were perhaps hinted at, but not completely addressed, in Volume I: unintended consequences of policies that worked well at higher levels but lacked proper implementation at the working level; long-term effects of the "generation gap" in human space flight development, the need to demonstrate early successes at the expense of thorough planning, and the consequences of problems and challenges not yet addressed because other problems and challenges were more immediate or manifest. Not all lessons learned have the benefit of being operationally vetted, since the program was cancelled shortly after Preliminary Design Review. We avoid making statements about operational consequences (with the exception of testing and test flights that did occur), but we do attempt to provide insight into how operational thinking influenced design and testing. The lessons have been formatted with a description, along with supporting information, a succinct statement of the lesson learned, and recommendations for future programs and projects that may be placed in similar circumstances.

  7. A History of Space Toxicology Mishaps: Lessons Learned and Risk Management

    NASA Technical Reports Server (NTRS)

    James, John T.

    2009-01-01

    After several decades of human spaceflight, the community of space-faring nations has accumulated a diverse and sometimes harrowing history of toxicological events that have plagued human space endeavors almost from the very beginning. Lessons have been learned in ground-based test beds and others were discovered the hard way - when human lives were at stake in space. From such lessons one can build a risk-management framework for toxicological events to minimize the probability of a harmful exposure, while recognizing that we cannot foresee all events. Space toxicologists have learned that relatively harmless compounds can be converted by air revitalization systems into compounds that cause serious harm to the crew. Our toxic risk management strategy now includes an assessment of the fate of any compound that might be released into the atmosphere. Propellants are highly toxic compounds, yet we have not always been able to thoroughly isolate the crew from exposure to these toxicants. Leakage of fluids from systems has resulted in hazardous conditions at times, and the behavior of such compounds inside a spacecraft has taught us how to manage potentially harmful escapes should they occur. Potential combustion events are an ever-present threat to the wellbeing of the crew. Such events have been sufficiently common that we have learned that one cannot judge the health threat of a given fire by the magnitude of the event. Management of such risks demands monitoring of combustion products. In the category of unpredictable toxic events, if one assumes that fires are predictable, we can place experience with toxic microbial metabolites, upsets during repair operations, and discharges from filters that have accumulated a substantial load of pollutants in their absorption beds. Management of such events requires a broad-spectrum, real-time analytical capability to discern the identity and concentrations of pollutants if they enter the atmosphere. Adverse events are an integral part of any human activity, and the spacefaring community must learn as much as possible from mistakes and near misses.

  8. Before the Tenure Track: Graduate School "Testimonios" and Their Importance in Our "Profesora"-ship Today

    ERIC Educational Resources Information Center

    Sanchez, Patricia; Ek, Lucila D.

    2013-01-01

    This article documents how the authors, two Chicana tenured professors from immigrant and working-class backgrounds, drew upon their graduate school experiences as resources for navigating the tenure track. They discuss lessons learned not in the official classroom but in other spaces inhabited by women of color. Such lessons included: networking…

  9. Lessons learned from and the future for NASA's Small Explorer Program

    NASA Technical Reports Server (NTRS)

    Newton, George P.

    1991-01-01

    NASA started the Small Explorer Program to provide space scientists with an opportunity to conduct space science research in the Explorer Program using scientific payloads launched on small-class expendable launch vehicles. A series of small payload, scientific missions was envisioned that could be launched at the rate of one to two missions per year. Three missions were selected in April 1989: Solar Anomalous and Magnetospheric Particle Explorer, Fast Auroral Snapshot Explorer, and Sub-millimeter Wave Astronomy. These missions are planned for launch in June 1992, September 1994 and June 1995, respectively. At a program level, this paper presents the history, objectives, status, and lessons learned which may be applicable to similar programs, and discusses future program plans.

  10. Space Shuttle Columbia and Fukushima Nuclear Plant, Similarities and Differences in Organizational Accidents and Lessons Learned

    NASA Astrophysics Data System (ADS)

    Mitsui, Masami; Takeuchi, Nobuo; Kawada, Yasuhiro; Kobayashi, Royoji; Nogami, Manami; Miki, Masami

    2013-09-01

    When records of success are accumulating, we should be most alert to maintain the safety culture we labored to establish and nurture.Space Shuttle Columbia Accident in 2002 and Fukushima Nuclear Power Station Accident in 2011 are seemingly unrelated. But, by studying the accident reports issued after these accidents, the authors found that the organizational causes that led to the accidents were surprisingly similar. The causes of these accidents were rooted in the history and culture of the respective organizations.In this paper, the authors will discuss differences and similarities in these two accidents based on the reports submitted by the accident investigation boards of these two accidents. This will be followed by the lessons learned the authors derived.

  11. Data management, archiving, visualization and analysis of space physics data

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1995-01-01

    A series of programs for the visualization and analysis of space physics data has been developed at UCLA. In the course of those developments, a number of lessons have been learned regarding data management and data archiving, as well as data analysis. The issues now facing those wishing to develop such software, as well as the lessons learned, are reviewed. Modern media have eased many of the earlier problems of the physical volume required to store data, the speed of access, and the permanence of the records. However, the ultimate longevity of these media is still a question of debate. Finally, while software development has become easier, cost is still a limiting factor in developing visualization and analysis software.

  12. Lessons learned from the development and manufacture of ceramic reusable surface insulation materials for the space shuttle orbiters

    NASA Technical Reports Server (NTRS)

    Banas, R. P.; Elgin, D. R.; Cordia, E. R.; Nickel, K. N.; Gzowski, E. R.; Aguiler, L.

    1983-01-01

    Three ceramic, reusable surface insulation materials and two borosilicate glass coatings were used in the fabrication of tiles for the Space Shuttle orbiters. Approximately 77,000 tiles were made from these materials for the first three orbiters, Columbia, Challenger, and Discovery. Lessons learned in the development, scale up to production and manufacturing phases of these materials will benefit future production of ceramic reusable surface insulation materials. Processing of raw materials into tile blanks and coating slurries; programming and machining of tiles using numerical controlled milling machines; preparing and spraying tiles with the two coatings; and controlling material shrinkage during the high temperature (2100-2275 F) coating glazing cycles are among the topics discussed.

  13. Flight Dynamics Operations: Methods and Lessons Learned from Space Shuttle Orbit Operations

    NASA Technical Reports Server (NTRS)

    Cutri-Kohart, Rebecca M.

    2011-01-01

    The Flight Dynamics Officer is responsible for trajectory maintenance of the Space Shuttle. This paper will cover high level operational considerations, methodology, procedures, and lessons learned involved in performing the functions of orbit and rendezvous Flight Dynamics Officer and leading the team of flight dynamics specialists during different phases of flight. The primary functions that will be address are: onboard state vector maintenance, ground ephemeris maintenance, calculation of ground and spacecraft acquisitions, collision avoidance, burn targeting for the primary mission, rendezvous, deorbit and contingencies, separation sequences, emergency deorbit preparation, mass properties coordination, payload deployment planning, coordination with the International Space Station, and coordination with worldwide trajectory customers. Each of these tasks require the Flight Dynamics Officer to have cognizance of the current trajectory state as well as the impact of future events on the trajectory plan in order to properly analyze and react to real-time changes. Additionally, considerations are made to prepare flexible alternative trajectory plans in the case timeline changes or a systems failure impact the primary plan. The evolution of the methodology, procedures, and techniques used by the Flight Dynamics Officer to perform these tasks will be discussed. Particular attention will be given to how specific Space Shuttle mission and training simulation experiences, particularly off-nominal or unexpected events such as shortened mission durations, tank failures, contingency deorbit, navigation errors, conjunctions, and unexpected payload deployments, have influenced the operational procedures and training for performing Space Shuttle flight dynamics operations over the history of the program. These lessons learned can then be extended to future vehicle trajectory operations.

  14. Loss of Signal, Aeromedical Lessons Learned from the STS-107 Columbia Space Shuttle Mishap

    NASA Technical Reports Server (NTRS)

    Stepaniak, Phillip C.; Patlach, Robert

    2014-01-01

    Loss of Signal, a NASA publication to be available in May 2014 presents the aeromedical lessons learned from the Columbia accident that will enhance crew safety and survival on human space flight missions. These lessons were presented to limited audiences at three separate Aerospace Medical Association (AsMA) conferences: in 2004 in Anchorage, Alaska, on the causes of the accident; in 2005 in Kansas City, Missouri, on the response, recovery, and identification aspects of the investigation; and in 2011, again in Anchorage, Alaska, on future implications for human space flight. As we embark on the development of new spacefaring vehicles through both government and commercial efforts, the NASA Johnson Space Center Human Health and Performance Directorate is continuing to make this information available to a wider audience engaged in the design and development of future space vehicles. Loss of Signal summarizes and consolidates the aeromedical impacts of the Columbia mishap process-the response, recovery, identification, investigative studies, medical and legal forensic analysis, and future preparation that are needed to respond to spacecraft mishaps. The goal of this book is to provide an account of the aeromedical aspects of the Columbia accident and the investigation that followed, and to encourage aerospace medical specialists to continue to capture information, learn from it, and improve procedures and spacecraft designs for the safety of future crews. This poster presents an outline of Loss of Signal contents and highlights from each of five sections - the mission and mishap, the response, the investigation, the analysis and the future.

  15. Enacting Key Skills-Based Curricula in Secondary Education: Lessons from a Technology-Mediated, Group-Based Learning Initiative

    ERIC Educational Resources Information Center

    Johnston, Keith; Conneely, Claire; Murchan, Damian; Tangney, Brendan

    2015-01-01

    Bridge21 is an innovative approach to learning for secondary education that was originally conceptualised as part of a social outreach intervention in the authors' third-level institution whereby participants attended workshops at a dedicated learning space on campus focusing on a particular model of technology-mediated group-based learning. This…

  16. CloudSat Anomaly and Return to the A-Train: Lessons Learned for Satellite Constellations

    NASA Technical Reports Server (NTRS)

    Vane, Deborah

    2015-01-01

    In April 2011, CloudSat suffered a severe battery anomaly, leaving the space-craft in emergency mode without the ability to command or maneuver the spacecraft. Before the team was able to recover spacecraft operability, CloudSat passed close to the Aqua satellite in the A-Train and then exited the A-Train. A new mode of operations, termed Daylight Only Operations (DO-Op) mode was developed to enable CloudSat to resume science operations in an orbit under the A-Train by November 2011, and in July 2012 CloudSat re-entered the A-Train. This paper describes challenges and lessons-learned during the anomaly, the exit from the A-Train and the return to the A-Train. These lessons-learned may ap-ply to other current and future satellite constellations in Earth orbit.

  17. Medical Challenges of the First Canadian Long-Duration Space Mission: Lessons Learned

    NASA Technical Reports Server (NTRS)

    Hamilton, Douglas R.; Thirsk, Robert; Gray, Gary; Lange, marv; Comtois, Jean Marc

    2009-01-01

    In 2008, Dr. Thirsk was assigned to the crew of Expedition 20/21. This Expedition represented a milestone for the Canadian Space Program since it was the first time that a Canadian would take part in a long-duration mission. Robert Thirsk had the privilege of expanding the boundaries of space exploration by living and working on board the International Space Station for six months. The launch took place on May 27, 2009 aboard a Soyuz rocket from the Cosmodrome in Baikonur, Kazakhstan. This abstract was written before Dr. Thirsk returned to Kazakhstan. Objective: To gather all medically relevant data needed to support the first Canadian long-duration mission in space, and process it to derive lessons learned for presentation and for public disclosure. Methods: Sources of data used for analysis for Expedition 20 on International Space Station included flight selection data, maintenance annual physicals, Flight Medicine Clinic visits, parabolic flight experiments, preflight exams and baseline data collections, daily in-flight exercise countermeasure and science payloads, weekly periodic fitness, nutrition, radiation and payload assessments, postflight medical exams, rehabilitation, and science activities.

  18. ISS Regenerative Life Support: Challenges and Success in the Quest for Long-Term Habitability in Space

    NASA Technical Reports Server (NTRS)

    Bazley, Jesse

    2015-01-01

    The International Space Station's (ISS) Regenerative Environmental Control and Life Support System (ECLSS) was launched in 2008 to continuously recycle urine and crew sweat into drinking water and oxygen using brand new technologies. This functionality was highly important to the ability of the ISS to transition to the long-term goal of 6-crew operations as well as being critical tests for long-term space habitability. Through the initial activation and long-term operations of these systems, important lessons were learned about the importance of system redundancy and operational workarounds that allow Systems Engineers to maintain functionality with limited on-orbit spares. This presentation will share some of these lessons learned including how to balance water through the different systems, store and use water for use in system failures and creating procedures to operate the systems in ways that they were not initially designed to do.

  19. Service Oriented Robotic Architecture for Space Robotics: Design, Testing, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Fluckiger, Lorenzo Jean Marc E; Utz, Hans Heinrich

    2013-01-01

    This paper presents the lessons learned from six years of experiments with planetary rover prototypes running the Service Oriented Robotic Architecture (SORA) developed by the Intelligent Robotics Group (IRG) at the NASA Ames Research Center. SORA relies on proven software engineering methods and technologies applied to space robotics. Based on a Service Oriented Architecture and robust middleware, SORA encompasses on-board robot control and a full suite of software tools necessary for remotely operated exploration missions. SORA has been eld tested in numerous scenarios of robotic lunar and planetary exploration. The experiments conducted by IRG with SORA exercise a large set of the constraints encountered in space applications: remote robotic assets, ight relevant science instruments, distributed operations, high network latencies and unreliable or intermittent communication links. In this paper, we present the results of these eld tests in regard to the developed architecture, and discuss its bene ts and limitations.

  20. MILSTAR's flexible substrate solar array: Lessons learned, addendum

    NASA Technical Reports Server (NTRS)

    Gibb, John

    1990-01-01

    MILSTAR's Flexible Substrate Solar Array (FSSA) is an evolutionary development of the lightweight, flexible substrate design pioneered at Lockheed during the seventies. Many of the features of the design are related to the Solar Array Flight Experiment (SAFE), flown on STS-41D in 1984. FSSA development has created a substantial technology base for future flexible substrate solar arrays such as the array for the Space Station Freedom. Lessons learned during the development of the FSSA can and should be applied to the Freedom array and other future flexible substrate designs.

  1. 1000 days on orbit: lessons learned from the ACTEX-I flight experiment

    NASA Astrophysics Data System (ADS)

    Erwin, R. Scott; Denoyer, Keith K.

    2000-06-01

    This paper presents a review of the Air Force Research Laboratory advanced controls technology experiment program. Representing the first space-demonstration of smart structures technology, the ACTEX-I program has met or exceeded all program goals at each stage, beginning with the program initiation in 1991 through launch in 1996 to the conclusion of the Guest Investigator program and program conclusion in 1999. This paper will provide a summary of the ACTEX-I program from the AFRL perspective, focusing on lessons learned from the program both positive and negative.

  2. Lessons Learned Study Final Report for the Exploration Systems Mission Directorate

    NASA Technical Reports Server (NTRS)

    Van Laak, Jim; Brumfield, M. Larry; Moore, Arlene A.; Anderson, Brooke; Dempsey, Jim; Gifford, Bob; Holloway, Chip; Johnson, Keith

    2004-01-01

    This report is the final product of a 90-day study performed for the Exploration Systems Mission Directorate. The study was to assemble lessons NASA has learned from previous programs that could help the Exploration Systems Mission Directorate pursue the Exploration vision. It focuses on those lessons that should have the greatest significance to the Directorate during the formulation of program and mission plans. The study team reviewed a large number of lessons learned reports and data bases, including the Columbia Accident Investigation Board and Rogers Commission reports on the Shuttle accidents, accident reports from robotic space flight systems, and a number of management reviews by the Defense Sciences Board, Government Accountability Office, and others. The consistency of the lessons, findings, and recommendations validate the adequacy of the data set. In addition to reviewing existing databases, a series of workshops was held at each of the NASA centers and headquarters that included senior managers from the current workforce as well as retirees. The full text of the workshop reports is included in Appendix A. A lessons learned website was opened up to permit current and retired NASA personnel and on-site contractors to input additional lessons as they arise. These new lessons, when of appropriate quality and relevance, will be brought to the attention of managers. The report consists of four parts: Part 1 provides a small set of lessons, called the Executive Lessons Learned, that represent critical lessons that the Exploration Systems Mission Directorate should act on immediately. This set of Executive Lessons and their supporting rationale have been reviewed at length and fully endorsed by a team of distinguished NASA alumni; Part 2 contains a larger set of lessons, called the Selected Lessons Learned, which have been chosen from the lessons database and center workshop reports on the basis of their specific significance and relevance to the near-term work of the Exploration Directorate. These lessons frequently support the Executive lessons but are more general in nature; Part 3 consists of the reports of the center workshops that were conducted as part of this activity. These reports are included in their entirety (approximately 200 pages) in Appendix G and have significance for specific managers; Part 4 consists of the remainder of the lessons that have been selected by this effort and assembled into a database for the use of the Explorations Directorate. The database is archived and hosted in the Lessons Learned Knowledge Network, which provides a flexible search capability using a wide variety of search terms. Finally, a spreadsheet lists databases searched and a bibliography identifies reports that have been reviewed as sources of lessons for this task. NASA has been presented with many learning opportunities. We have conducted numerous programs, some extremely successful and others total failures. Most have been documented with a formal lessons learned activity, but we have not always incorporated these learning opportunities into our normal modes of business. For example, the Robbins Report of 2001 clearly indicates that many project failures of the past two decades were the result of violating well documented best practices, often in direct violation of management instructions and directives. An overarching lesson emerges: that disciplined execution in accordance with proven best practices is the greatest single contributor to a successful program. The Lessons Learned task team offers a sincere hope that the lessons presented herein will be helpful to the Exploration Systems Directorate in charting and executing their course. The success of the Directorate and of NASA in general depends on our collective ability to move forward without having to relearn the lessons of those who have gone before.

  3. A study of the use of 6K ACTDP cryocoolers for the MIRI instrument on JWST

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.

    2004-01-01

    The Mid Infrared Instrument (MIRI) of the James Webb Space Telescope (JWST) is a demanding application for the use of space cryocoolers. This paper presents the lessons learned and performance achieved in the MIRI cryocooler application.

  4. Sequencing Strategies for Population and Cancer Epidemiology Studies (SeqSPACE) Webinar Series

    Cancer.gov

    The Sequencing Strategies for Population and Cancer Epidemiology Studies (SeqSPACE) Webinar Series provides an opportunity for our grantees and other interested individuals to share lessons learned and practical information regarding the application of next generation sequencing to cancer epidemiology studies.

  5. Making Information Overload Work: The Dragon Software System on a Virtual Reality Responsive Workbench

    DTIC Science & Technology

    1998-03-01

    Research Laboratory’s Virtual Reality Responsive Workbench (VRRWB) and Dragon software system which together address the problem of battle space...and describe the lessons which have been learned. Interactive graphics, workbench, battle space visualization, virtual reality , user interface.

  6. Cleared for Launch - Lessons Learned from the OSIRIS-REx System Requirements Verification Program

    NASA Technical Reports Server (NTRS)

    Stevens, Craig; Adams, Angela; Williams, Bradley; Goodloe, Colby

    2017-01-01

    Requirements verification of a large flight system is a challenge. It is especially challenging for engineers taking on their first role in space systems engineering. This paper describes our approach to verification of the Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (OSIRIS-REx) system requirements. It also captures lessons learned along the way from developing systems engineers embroiled in this process. We begin with an overview of the mission and science objectives as well as the project requirements verification program strategy. A description of the requirements flow down is presented including our implementation for managing the thousands of program and element level requirements and associated verification data. We discuss both successes and methods to improve the managing of this data across multiple organizational interfaces. Our approach to verifying system requirements at multiple levels of assembly is presented using examples from our work at instrument, spacecraft, and ground segment levels. We include a discussion of system end-to-end testing limitations and their impacts to the verification program. Finally, we describe lessons learned that are applicable to all emerging space systems engineers using our unique perspectives across multiple organizations of a large NASA program.

  7. Practical Applications of Cables and Ropes in the ISS Countermeasures System

    NASA Technical Reports Server (NTRS)

    Svetlik, Randall G.; Moore, Cherice; Williams, Antony

    2017-01-01

    National Aeronautics and Space Administration (NASA) uses exercise countermeasures on the International Space Station (ISS) to maintain crew health and combat the negative effects of long-duration spaceflight on the human body. Most ISS exercise countermeasures system (CMS) equipment rely heavily on the use of textile and wire ropes to transmit resistive loads and provide stability in a microgravity environment. For a variety of reasons, including challenges in simulating microgravity environments for testing and limits on time available for life cycle testing, the textiles and wire ropes have contributed significantly to on-orbit planned and unplanned maintenance time. As a result, continued ground testing and on-orbit experience since the first expedition on the ISS in 2000 provide valuable data and lessons learned in materials selection, applications, and design techniques to increase service life of these ropes. This paper will present a review of the development and failure history of textile and wire ropes for four exercise countermeasure systems-the Treadmill with Vibration Isolation and Stabilization (TVIS) System, Cycle Ergometer with Vibration Isolation and Stabilization (CEVIS) System, Interim Resistive Exercise Device (IRED), and the Advanced Resistive Exercise Device (ARED)-to identify lessons learned in order to improve future systems. These lessons learned, paired with thorough testing on the ground, offer a forward path towards reduced maintenance time and up-mass for future space missions.

  8. SPACE: Intermediate Level Modules.

    ERIC Educational Resources Information Center

    Indiana State Dept. of Education, Indianapolis. Center for School Improvement and Performance.

    These modules were developed to assist teachers at the intermediate level to move away from extensive skill practice and toward more meaningful interdisciplinary learning. This packet, to be used by teachers in the summer Extended Learning Program, provides detailed thematic lesson plans matched to the Indiana Curriculum Proficiency Guide. The…

  9. A Board Game about Space and Solar System for Primary School Students

    ERIC Educational Resources Information Center

    Kirikkaya, Esma Bulus; Iseri, Sebnem; Vurkaya, Gurbet

    2010-01-01

    Visual elements that used in lessons are necessary because they make learning more permanent. Also the visuals that used in evaluation part of the lesson should decrease the anxiety of students and provide them with correct evaluation. The board games among the visuals which can be used in evaluation part are quite effective for getting feedback…

  10. Informal Music Education: The Nature of a Young Child's Engagement in an Individual Piano Lesson Setting

    ERIC Educational Resources Information Center

    Kooistra, Lauren

    2016-01-01

    The purpose of this study was to gain insight into the nature of a young child's engagement in an individual music lesson setting based on principles of informal learning. The informal educational space allowed the child to observe, explore, and interact with a musical environment as a process of enculturation and development (Gordon, 2013;…

  11. A Summary of the Rendezvous, Proximity Operations, Docking, and Undocking (RPODU) Lessons Learned from the Defense Advanced Research Project Agency (DARPA) Orbital Express (OE) Demonstration System Mission

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.; Carpenter, James R.

    2011-01-01

    The Guidance, Navigation, and Control (GN&C) Technical Discipline Team (TDT) sponsored Dr. J. Russell Carpenter, a Navigation and Rendezvous Subject Matter Expert (SME) from NASA's Goddard Space Flight Center (GSFC), to provide support to the Defense Advanced Research Project Agency (DARPA) Orbital Express (OE) rendezvous and docking flight test that was conducted in 2007. When that DARPA OE mission was completed, Mr. Neil Dennehy, NASA Technical Fellow for GN&C, requested Dr. Carpenter document his findings (lessons learned) and recommendations for future rendezvous missions resulting from his OE support experience. This report captures lessons specifically from anomalies that occurred during one of OE's unmated operations.

  12. Integrated Crew Health Care System for Space Flight

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.

    2007-01-01

    Dr. Davis' presentation includes a brief overview of space flight and the lessons learned for health care in microgravity. He will describe the development of policy for health care for international crews. He will conclude his remarks with a discussion of an integrated health care system.

  13. SpaceBuoy: A University Nanosat Space Weather Mission

    DTIC Science & Technology

    2012-03-26

    for all four-side panels. One design and one machine set-up allows a CNC mill to build them almost automatically. Lessons learned from components...in a dual probe configuration, for in situ plasma density) and interfacing with the spacecraft has been completed. Engineering development is

  14. Bansho: Visually Sequencing Mathematical Ideas

    ERIC Educational Resources Information Center

    Kuehnert, Eloise R. A.; Eddy, Colleen M.; Miller, Daphyne; Pratt, Sarah S.; Senawongsa, Chanika

    2018-01-01

    In this article, the authors describe the Japanese term "bansho," which refers to the intentional use of board space for facilitating student learning. Bansho offers a structure for sequencing mathematics visually on the board. By purposefully organizing the board space alongside the lesson, teachers can provide students with a framework…

  15. NASA Space Mechanisms Handbook: Lessons Learned Documented

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1999-01-01

    The need to improve space mechanism reliability is underscored by a long history of flight failures and anomalies caused by malfunctioning mechanisms on spacecraft and launch vehicles. Some examples of these failures are listed in a table. Because much experience has been gained over the years, many specialized design practices have evolved and many unsatisfactory design approaches have been identified.NASA and the NASA Lewis Research Center conducted a Lessons Learned Study (refs. 1 and 2) and wrote a handbook to document what has been learned in the past. The primary goals of the handbook were to identify desirable and undesirable design practices for space mechanisms and to reduce the number of failures caused by the repetition of past design errors. Another goal was to identify a variety of design approaches for specific applications and to provide the associated considerations and caveats for each approach in an effort to help designers choose the approach most suitable for each application. This technical summary outlines the goals and objectives of the handbook and study as well as the contents of the handbook.

  16. NASA Astronaut Selection 2009: Behavioral Overview

    NASA Technical Reports Server (NTRS)

    Holland, A. W.; Sipes, W.; Beven, G.; Schmidt, L.; Slack, K.; Seaton, K.; Moomaw, R.; VanderArk, S.

    2010-01-01

    NASA's multi-phase U.S. astronaut selection process seeks to identify the most qualified astronaut candidates from a large number of applicants. With the approaching retirement of the Space Shuttle, NASA focused on selecting those individuals who were most suited to the unique demands of long-duration spaceflight. In total, NASA received 3,535 applications for the 2009 astronaut selection cycle. Of these, 123 were invited to NASA Johnson Space Center (JSC) for Round 1 initial screening and interviews, which consisted of an Astronaut Selection Board (ASB) preliminary interview, medical review, and psychological testing. Of these, 48 individuals were invited to return for Round 2. This round consisted of medical testing, further behavioral assessments, and a second ASB interview. Following this, nine astronaut candidates (ASCANs) were ultimately chosen to go forward to basic training. The contents, benefits, and lessons learned from implementing this phased process will be discussed. The lessons learned can benefit the future selection of space flyers, whether they are NASA or commercial. Learning Objective: 1) Familiarization with the 2009 NASA behavioral screening process for astronaut applicants.

  17. Phase III integrated water recovery testing at MSFC - Partially closed hygiene loop and open potable loop results and lessons learned

    NASA Technical Reports Server (NTRS)

    Bagdigian, R. M.; Traweek, M. S.; Griffith, G. K.; Griffin, M. R.

    1991-01-01

    A series of tests has been conducted at the NASA Marshall Space Flight Center (MSFC) to evaluate the performance of a predevelopment water recovery system. Potable, hygiene, and urine reclamation subsystems were integrated with end-use equipment items and successfully operated in open and partially closed-loop modes, with man-in-the-loop, for a total of 28 days. Several significant subsystem physical anomalies were encountered during testing. Reclaimed potable and hygiene water generally met the current Space Station Freedom (SSF) water quality specifications for inorganic and microbiological constituents, but exceeded the maximum allowable concentrations for Total Organic Carbon (TOC). This paper summarizes the test objectives, system design, test activities/protocols, significant results/anomalies, and major lessons learned.

  18. Visions for Space Exploration: ILS Issues and Approaches

    NASA Technical Reports Server (NTRS)

    Watson, Kevin

    2005-01-01

    This viewgraph presentation reviews some of the logistic issues that the Vision for Space Exploration will entail. There is a review of the vision and the timeline for the return to the moon that will lead to the first human exploration of Mars. The lessons learned from the International Space Station (ISS) and other such missions are also reviewed.

  19. Standards Advisor-Advanced Information Technology for Advanced Information Delivery

    NASA Technical Reports Server (NTRS)

    Hawker, J. Scott

    2003-01-01

    Developers of space systems must deal with an increasing amount of information in responding to extensive requirements and standards from numerous sources. Accessing these requirements and standards, understanding them, comparing them, negotiating them and responding to them is often an overwhelming task. There are resources to aid the space systems developer, such as lessons learned and best practices. Again, though, accessing, understanding, and using this information is often more difficult than helpful. This results in space systems that: 1. Do not meet all their requirements. 2. Do not incorporate prior engineering experience. 3. Cost more to develop. 4. Take longer to develop. The NASA Technical Standards Program (NTSP) web site at http://standards.nasa.gov has made significant improvements in making standards, lessons learned, and related material available to space systems developers agency-wide. The Standards Advisor was conceived to take the next steps beyond the current product, continuing to apply evolving information technology that continues to improve information delivery to space systems developers. This report describes the features of the Standards Advisor and suggests a technical approach to its development.

  20. Technology-Enhanced Learning and Community with Market Appeal.

    ERIC Educational Resources Information Center

    Young, Brian Alexander

    2000-01-01

    Describes the University of Dayton's Personalized Virtual Room. This Web interface to a virtual space that looks and feels like a campus residence was designed to encourage communication and connectivity among first-year students before they arrive on campus. Discusses the initiative's goals and successes, student reaction, and lessons learned.…

  1. Lessons Learned In Developing Multiple Distributed Planning Systems for the International Space Station

    NASA Technical Reports Server (NTRS)

    Maxwell, Theresa G.; McNair, Ann R. (Technical Monitor)

    2002-01-01

    The planning processes for the International Space Station (ISS) Program are quite complex. Detailed mission planning for ISS on-orbit operations is a distributed function. Pieces of the on-orbit plan are developed by multiple planning organizations, located around the world, based on their respective expertise and responsibilities. The "pieces" are then integrated to yield the final detailed plan that will be executed onboard the ISS. Previous space programs have not distributed the planning and scheduling functions to this extent. Major ISS planning organizations are currently located in the United States (at both the NASA Johnson Space Center (JSC) and NASA Marshall Space Flight Center (MSFC)), in Russia, in Europe, and in Japan. Software systems have been developed by each of these planning organizations to support their assigned planning and scheduling functions. Although there is some cooperative development and sharing of key software components, each planning system has been tailored to meet the unique requirements and operational environment of the facility in which it operates. However, all the systems must operate in a coordinated fashion in order to effectively and efficiently produce a single integrated plan of ISS operations, in accordance with the established planning processes. This paper addresses lessons learned during the development of these multiple distributed planning systems, from the perspective of the developer of one of the software systems. The lessons focus on the coordination required to allow the multiple systems to operate together, rather than on the problems associated with the development of any particular system. Included in the paper is a discussion of typical problems faced during the development and coordination process, such as incompatible development schedules, difficulties in defining system interfaces, technical coordination and funding for shared tools, continually evolving planning concepts/requirements, programmatic and budget issues, and external influences. Techniques that mitigated some of these problems will also be addressed, along with recommendations for any future programs involving the development of multiple planning and scheduling systems. Many of these lessons learned are not unique to the area of planning and scheduling systems, so may be applied to other distributed ground systems that must operate in concert to successfully support space mission operations.

  2. Lessons Learned in Developing Multiple Distributed Planning Systems for the International Space Station

    NASA Technical Reports Server (NTRS)

    Maxwell, Theresa G.

    2002-01-01

    The planning processes for the International Space Station (ISS) Program are quite complex. Detailed mission planning for ISS on-orbit operations is a distributed function. Pieces of the on-orbit plan are developed by multiple planning organizations, located around the world, based on their respective expertise and responsibilities. The pieces are then integrated to yield the final detailed plan that will be executed onboard the ISS. Previous space programs have not distributed the planning and scheduling functions to this extent. Major ISS planning organizations are currently located in the United States (at both the NASA Johnson Space Center (JSC) and NASA Marshall Space Flight Center (MSFC)), in Russia, in Europe, and in Japan. Software systems have been developed by each of these planning organizations to support their assigned planning and scheduling functions. Although there is some cooperative development and sharing of key software components, each planning system has been tailored to meet the unique requirements and operational environment of the facility in which it operates. However, all the systems must operate in a coordinated fashion in order to effectively and efficiently produce a single integrated plan of ISS operations, in accordance with the established planning processes. This paper addresses lessons learned during the development of these multiple distributed planning systems, from the perspective of the developer of one of the software systems. The lessons focus on the coordination required to allow the multiple systems to operate together, rather than on the problems associated with the development of any particular system. Included in the paper is a discussion of typical problems faced during the development and coordination process, such as incompatible development schedules, difficulties in defining system interfaces, technical coordination and funding for shared tools, continually evolving planning concepts/requirements, programmatic and budget issues, and external influences. Techniques that mitigated some of these problems will also be addressed, along with recommendations for any future programs involving the development of multiple planning and scheduling systems. Many of these lessons learned are not unique to the area of planning and scheduling systems, so may be applied to other distributed ground systems that must operate in concert to successfully support space mission operations.

  3. Lessons learned from KSC processing on STS science, applications, and commercial payloads

    NASA Technical Reports Server (NTRS)

    Williams, W. E.; Ragusa, J. M.

    1984-01-01

    The present investigation is concerned with an evaluation of the lessons learned in connection with the flights of the Shuttle orbiters Columbia, Challenger, and Discovery. A description is provided of several general and specific lessons related to the processing of free-flying and attached payloads. John F. Kennedy Space Center (KSC), as the prime launch and landing site, is responsible for managing all payload-to-payload, payload-to-simulated orbiter, and payload-to-orbiter operations. For each payload, a KSC Launch Site Support Manager (LSSM) is named as the primary point of contact for the customer. Attention is given to aspects of planning interaction, payload types, and problems of ground processing. The discussed lessons are partly related to the value of early contact between customers and KSC representatives, the primary point of contact, the launch site support plan, and the importance of customer participation.

  4. Shuttle Performance: Lessons Learned, Part 2

    NASA Technical Reports Server (NTRS)

    Arrington, J. P. (Compiler); Jones, J. J. (Compiler)

    1983-01-01

    Several areas of Space Shuttle technology were addressed including aerothermal environment, thermal protection, measurement and analysis, Shuttle carrier aerodynamics, entry analysis of the STS-3, and an overview of each section.

  5. GAS 450: A space payload for the People Central Coast Student Experimenters

    NASA Technical Reports Server (NTRS)

    Ray, Glen

    1988-01-01

    The Get Away Special 450 is described. This discussion includes the peoples efforts, the experiments, lessons learned, and a few powerful positive steps toward community involvement. The following is a list of experiment titles: Guppies in Space; Electrophoresis of Enzymes in Microgravity; Diffusion of Ions in Solution; Space Cement; Bubbles in Space; Small Particle Studies; and Liquid Separation in Microgravity.

  6. Space Shuttle Program Legacy Report

    NASA Technical Reports Server (NTRS)

    Johnson, Scott

    2012-01-01

    Share lessons learned on Space Shuttle Safety and Mission Assurance (S&MA) culture, processes, and products that can guide future enterprises to improve mission success and minimize the risk of catastrophic failures. Present the chronology of the Johnson Space Center (JSC) S&MA organization over the 40-year history of the Space Shuttle Program (SSP) and identify key factors and environments which contributed to positive and negative performance.

  7. GPS Lessons Learned from the International Space Station, Space Shuttle and X-38

    NASA Technical Reports Server (NTRS)

    Goodman, John L.

    2005-01-01

    This document is a collection of writings concerning the application of Global Positioning System (GPS) technology to the International Space Station (ISS), Space Shuttle, and X-38 vehicles. An overview of how GPS technology was applied is given for each vehicle, including rationale behind the integration architecture, and rationale governing the use (or non-use) of GPS data during flight.

  8. A New Lightning Instrumentation System for Pad 39B at the Kennedy Space Center Florida

    NASA Technical Reports Server (NTRS)

    Mata, C. T.; Rakov, V. A.

    2011-01-01

    This viewgraph presentation describes a new lightning instrumentation system for pad 39B at Kennedy Space Center Florida. The contents include: 1) Background; 2) Instrumentation; 3) Meteorological Instrumentation; and 4) Lessons learned. A presentation of the data acquired at Camp Blanding is also shown.

  9. Training Spaces

    ERIC Educational Resources Information Center

    Weinstein, Margery

    2010-01-01

    Creating a balanced learning space for employees is about more than trying different types of seating. It is a challenge that an affect how well employees absorb the lessons and whether they will be able to product better results for the company. The possible solutions are as diverse as the learners. This article describes how three companies…

  10. Design and implementation of an inter-agency, multi-mission space flight operations network interface

    NASA Technical Reports Server (NTRS)

    Byrne, R.; Scharf, M.; Doan, D.; Liu, J.; Willems, A.

    2004-01-01

    An advanced network interface was designed and implemented by a team from the Jet Propulsion Lab with support from the European Space Operations Center. This poster shows the requirements for the interface, the design, the topology, the testing and lessons learned from the whole implementation.

  11. Computer-Aided Corrosion Program Management

    NASA Technical Reports Server (NTRS)

    MacDowell, Louis

    2010-01-01

    This viewgraph presentation reviews Computer-Aided Corrosion Program Management at John F. Kennedy Space Center. The contents include: 1) Corrosion at the Kennedy Space Center (KSC); 2) Requirements and Objectives; 3) Program Description, Background and History; 4) Approach and Implementation; 5) Challenges; 6) Lessons Learned; 7) Successes and Benefits; and 8) Summary and Conclusions.

  12. Lessons learned in creating spacecraft computer systems: Implications for using Ada (R) for the space station

    NASA Technical Reports Server (NTRS)

    Tomayko, James E.

    1986-01-01

    Twenty-five years of spacecraft onboard computer development have resulted in a better understanding of the requirements for effective, efficient, and fault tolerant flight computer systems. Lessons from eight flight programs (Gemini, Apollo, Skylab, Shuttle, Mariner, Voyager, and Galileo) and three reserach programs (digital fly-by-wire, STAR, and the Unified Data System) are useful in projecting the computer hardware configuration of the Space Station and the ways in which the Ada programming language will enhance the development of the necessary software. The evolution of hardware technology, fault protection methods, and software architectures used in space flight in order to provide insight into the pending development of such items for the Space Station are reviewed.

  13. The Habitat Demonstration Unit Project: A Modular Instrumentation System for a Deep Space Habitat

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Kennedy, Kriss J.; Yim, Hester; Williamsn, Robert M.; Hafermalz, Scott; Wagner, Raymond S.

    2011-01-01

    NASA is focused on developing human exploration capabilities in low Earth orbit (LEO), expanding to near Earth asteroids (NEA), and finally to Mars. Habitation is a crucial aspect of human exploration, and a current focus of NASA activities. The Habitation Demonstration Unit (HDU) is a project focused on developing an autonomous habitation system that enables human exploration of space by providing engineers and scientists with a test bed to develop, integrate, test, and evaluate habitation systems. A critical feature of the HDU is the instrumentation system, which monitors key subsystems within the habitat. The following paper will discuss the HDU instrumentation system performance and lessons learned during the 2010 Desert Research and Technology Studies (D-RaTS). In addition, this paper will discuss the evolution of the instrumentation system to support the 2011 Deep Space Habitat configuration, the challenges, and the lessons learned of implementing this configuration. In 2010, the HDU was implemented as a pressurized excursion module (PEM) and was tested at NASA s D-RaTS in Arizona [1]. For this initial configuration, the instrumentation system design used features that were successful in previous habitat instrumentation projects, while also considering challenges, and implementing lessons learned [2]. The main feature of the PEM instrumentation system was the use of a standards-based wireless sensor node (WSN), implementing an IEEE 802.15.4 protocol. Many of the instruments were connected to several WSNs, which wirelessly transmitted data to the command and data handling system via a mesh network. The PEM instrumentation system monitored the HDU during field tests at D-RaTS, and the WSN data was later analyzed to understand the performance of this system. In addition, several lessons learned were gained from the field test experience, which fed into the instrumentation design of the next generation of the HDU.

  14. NASA Materials Related Lessons Learned

    NASA Technical Reports Server (NTRS)

    Garcia, Danny; Gill, Paul S.; Vaughan, William W.

    2003-01-01

    Lessons Learned have been the basis for our accomplishments throughout the ages. They have been passed down from father to son, mother to daughter, teacher to pupil, and older to younger worker. Lessons Learned have also been the basis for the nation s accomplishments for more than 200 years. Both government and industry have long recognized the need to systematically document and utilize the knowledge gained from past experiences in order to avoid the repetition of failures and mishaps. Through the knowledge captured and recorded in Lessons Learned from more than 80 years of flight in the Earth s atmosphere, NASA s materials researchers are constantly working to develop stronger, lighter, and more durable materials that can withstand the challenges of space. The Agency s talented materials engineers and scientists continue to build on that rich tradition by using the knowledge and wisdom gained from past experiences to create futuristic materials and technologies that will be used in the next generation of advanced spacecraft and satellites that may one day enable mankind to land men on another planet or explore our nearest star. These same materials may also have application here on Earth to make commercial aircraft more economical to build and fly. With the explosion in technical accomplishments over the last decade, the ability to capture knowledge and have the capability to rapidly communicate this knowledge at lightning speed throughout an organization like NASA has become critical. Use of Lessons Learned is a principal component of an organizational culture committed to continuous improvement.

  15. NASA Materials Related Lessons Learned

    NASA Technical Reports Server (NTRS)

    Garcia, Danny; Gill, Paul S.; Vaughan, William W.; Parker, Nelson C. (Technical Monitor)

    2002-01-01

    Lessons Learned have been the basis for our accomplishments throughout the ages. They have been passed down from father to son, mother to daughter, teacher to pupil, and older to younger worker. Lessons Learned have also been the basis for the nation's accomplishments for more than 200 years. Both government and industry have long recognized the need to systematically document and utilize the knowledge gained from past experiences in order to avoid the repetition of failures and mishaps. Through the knowledge captured and recorded in Lessons Learned from more than 80 years of flight in the Earth's atmosphere, NASA's materials researchers are constantly working to develop stronger, lighter, and more durable materials that can withstand the challenges of space. The Agency's talented materials engineers and scientists continue to build on that rich tradition by using the knowledge and wisdom gained from past experiences to create futurist materials and technologies that will be used in the next generation of advanced spacecraft and satellites that may one day enable mankind to land men on another planet or explore our nearest star. These same materials may also have application here on Earth to make commercial aircraft more economical to build and fly. With the explosion in technical accomplishments over the last decade, the ability to capture knowledge and have the capability to rapidly communicate this knowledge at lightning speed throughout an organization like NASA has become critical. Use of Lessons Learned is a principal component of an organizational culture committed to continuous improvement.

  16. Operations to Research: Communication of Lessons Learned

    NASA Technical Reports Server (NTRS)

    Fogarty, Jennifer

    2009-01-01

    This presentation explores ways to build upon previous spaceflight experience and communicate this knowledge to prepare for future exploration. An operational approach is highlighted, focusing on selection and retention standards (disease screening and obtaining medical histories); pre-, in-, and post-flight monitoring (establishing degrees of bone loss, skeletal muscle loss, cardiovascular deconditioning, medical conditions, etc.); prevention, mitigation, or treatment (in-flight countermeasures); and, reconditioning, recovery, and reassignment (post-flight training regimen, return to pre-flight baseline and flight assignment). Experiences and lessons learned from the Apollo, Skylab, Shuttle, Shuttle-Mir, International Space Station, and Orion missions are outlined.

  17. Lessons learned from trend analysis of Shuttle Payload Processing problem reports

    NASA Technical Reports Server (NTRS)

    Heuser, Robert E.; Pepper, Richard E., Jr.; Smith, Anthony M.

    1989-01-01

    In the wake of the Challenger accident, NASA has placed an increasing emphasis on trend analysis techniques. These analyses provide meaningful insights into system and hardware status, and also develop additional lessons learned from historical data to aid in the design and operation of future space systems. This paper presents selected results from such a trend analysis study that was conducted on the problem report data files for the Shuttle Payload Processing activities. Specifically, the results shown are for the payload canister system which interfaces with and transfers payloads from their processing facilities to the orbiter.

  18. Apollo 1 Lessons Learned Show

    NASA Image and Video Library

    2017-01-27

    Suzy Cunningham, with the Communication and Public Engagement Directorate, sings the National Anthem before the start of the Apollo 1 Lessons Learned presentation in the Training Auditorium at NASA’s Kennedy Space Center in Florida. The program's theme was "To There and Back Again." Guest panelists included Charlie Duke, former Apollo 16 astronaut and member of the Apollo 1 Emergency Egress Investigation Team; Ernie Reyes, retired, Apollo 1 senior operations engineer; and John Tribe, retired, Apollo 1 Reaction and Control System lead engineer. The event helped pay tribute to the Apollo 1 crew, Gus Grissom, Ed White II, and Roger Chaffee.

  19. Lessons Learned in the First Year Operating Software Defined Radios in Space

    NASA Technical Reports Server (NTRS)

    Chelmins, David; Mortensen, Dale; Shalkhauser, Mary Jo; Johnson, Sandra K.; Reinhart, Richard

    2014-01-01

    Operating three unique software defined radios (SDRs) in a space environment aboard the Space Communications and Navigation (SCaN) Testbed for over one year has provided an opportunity to gather knowledge useful for future missions considering using software defined radios. This paper provides recommendations for the development and use of SDRs, and it considers the details of each SDRs approach to software upgrades and operation. After one year, the SCaN Testbed SDRs have operated for over 1000 hours. During this time, the waveforms launched with the SDR were tested on-orbit to assure that they operated in space at the same performance level as on the ground prior to launch to obtain an initial on-orbit performance baseline. A new waveform for each SDR has been developed, implemented, uploaded to the flight system, and tested in the flight environment. Recommendations for SDR-based missions have been gathered from early development through operations. These recommendations will aid future missions to reduce the cost, schedule, and risk of operating SDRs in a space environment. This paper considers the lessons learned as they apply to SDR pre-launch checkout, purchasing space-rated hardware, flexibility in command and telemetry methods, on-orbit diagnostics, use of engineering models to aid future development, and third-party software. Each SDR implements the SCaN Testbed flight computer command and telemetry interface uniquely, allowing comparisons to be drawn. The paper discusses the lessons learned from these three unique implementations, with suggestions on the preferred approach. Also, results are presented showing that it is important to have full system performance knowledge prior to launch to establish better performance baselines in space, requiring additional test applications to be developed pre-launch. Finally, the paper presents the issues encountered with the operation and implementation of new waveforms on each SDR and proposes recommendations to avoid these issues.

  20. Lessons Learned in the First Year Operating Software Defined Radios in Space

    NASA Technical Reports Server (NTRS)

    Chelmins, David; Mortensen, Dale; Shalkhauser, Mary Jo; Johnson, Sandra K.; Reinhart, Richard

    2014-01-01

    Operating three unique software defined radios (SDRs) in a space environment aboard the Space Communications and Navigation (SCaN) Testbed for over one year has provided an opportunity to gather knowledge useful for future missions considering using software defined radios. This paper provides recommendations for the development and use of SDRs, and it considers the details of each SDR's approach to software upgrades and operation. After one year, the SCaN Testbed SDRs have operated for over 1000 hours. During this time, the waveforms launched with the SDR were tested on-orbit to assure that they operated in space at the same performance level as on the ground prior to launch to obtain an initial on-orbit performance baseline. A new waveform for each SDR has been developed, implemented, uploaded to the flight system, and tested in the flight environment. Recommendations for SDR-based missions have been gathered from early development through operations. These recommendations will aid future missions to reduce the cost, schedule, and risk of operating SDRs in a space environment. This paper considers the lessons learned as they apply to SDR pre-launch checkout, purchasing space-rated hardware, flexibility in command and telemetry methods, on-orbit diagnostics, use of engineering models to aid future development, and third-party software. Each SDR implements the SCaN Testbed flight computer command and telemetry interface uniquely, allowing comparisons to be drawn. The paper discusses the lessons learned from these three unique implementations, with suggestions on the preferred approach. Also, results are presented showing that it is important to have full system performance knowledge prior to launch to establish better performance baselines in space, requiring additional test applications to be developed pre-launch. Finally, the paper presents the issues encountered with the operation and implementation of new waveforms on each SDR and proposes recommendations to avoid these issues.

  1. Challenges and lessons learned in the application of autonomy to space operations

    NASA Technical Reports Server (NTRS)

    Forrest, David J.; Statman, Joseph I.

    2001-01-01

    NASA's Space Operations Management Office (SOMO) is working toward a goal of providing an integrated infrastructure of mission and data services for space missions undertaken by NASA enterprises. A significant portion of this effort is focused on reducing the cost of these services. We are interested in the potential of autonomy to reduce operations costs. Some attempts have already been made to apply autonomy and automation in these areas in the past with varying degrees of success. We present brief case histories and the lessons inferred from them. Combining this past experience with anticipated future needs, we attempt to clarify the challenges that must be met in order to realize the benefits of autonomy.

  2. ISS Training Best Practices and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Dempsey, Donna L.; Barshi, Immanuel

    2018-01-01

    Training our crew members for long-duration Deep Space Transport (DST) missions will have to be qualitatively and quantitatively different from current training practices. However, there is much to be learned from the extensive experience NASA has gained in training crew members for missions on board the International Space Station (ISS). Furthermore, the operational experience on board the ISS provides valuable feedback concerning training effectiveness. Keeping in mind the vast differences between current ISS crew training and training for DST missions, the needs of future crew members, and the demands of future missions, this ongoing study seeks to document current training practices and lessons learned. The goal of the study is to provide input to the design of future crew training that takes as much advantage as possible of what has already been learned and avoids as much as possible past inefficiencies. Results from this study will be presented upon its completion. By researching established training principles, examining future needs, and by using current practices in spaceflight training as test beds, this research project is mitigating program risks and generating templates and requirements to meet future training needs.

  3. Space Mechanisms Lessons Learned Study. Volume 2: Literature Review

    NASA Technical Reports Server (NTRS)

    Shapiro, Wilbur; Murray, Frank; Howarth, Roy; Fusaro, Robert

    1995-01-01

    Hundreds of satellites have been launched to date. Some have operated extremely well and others have not. In order to learn from past operating experiences, a study was conducted to determine the conditions under which space mechanisms (mechanically moving components) have previously worked or failed. The study consisted of an extensive literature review that included both government contractor reports and technical journals, communication and visits (when necessary) to the various NASA and DOD centers and their designated contractors (this included contact with project managers of current and prior NASA satellite programs as well as their industry counterparts), requests for unpublished information to NASA and industry, and a mail survey designed to acquire specific mechanism experience. The information obtained has been organized into two volumes. Volume 1 provides a summary of the lesson learned, the results of a needs analysis, responses to the mail survey, a listing of experts, a description of some available facilities, and a compilation of references. Volume 2 contains a compilation of the literature review synopsis.

  4. Space Mechanisms Lessons Learned Study. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Shapiro, Wilbur; Murray, Frank; Howarth, Roy; Fusaro, Robert

    1995-01-01

    Hundreds of satellites have been launched to date. Some have operated extremely well and others have not. In order to learn from past operating experiences, a study was conducted to determine the conditions under which space mechanisms (mechanically moving components) have previously worked or failed. The study consisted of: (1) an extensive literature review that included both government contractor reports and technical journals; (2) communication and visits (when necessary) to the various NASA and DOD centers and their designated contractors (this included contact with project managers of current and prior NASA satellite programs as well as their industry counterparts); (3) requests for unpublished information to NASA and industry; and (4) a mail survey designed to acquire specific mechanism experience. The information obtained has been organized into two volumes. Volume 1 provides a summary of the lessons learned, the results of a needs analysis, responses to the mail survey, a listing of experts, a description of some available facilities and a compilation of references. Volume 2 contains a compilation of the literature review synopsis.

  5. Lessons Learned During the Refurbishment and Testing of an Observatory After Long-Term Storage

    NASA Technical Reports Server (NTRS)

    Hawk, John; Peabody, Sharon; Stavely, Richard

    2015-01-01

    Thermal Fluids Analysis Workshop (TFAWS) 2015, Silver Spring, MD NCTS 21070-15. This paper addresses the lessons learned during the refurbishment and testing of the thermal control system for a spacecraft which was placed into long-term storage. The DSCOVR (Deep Space Climate Observatory) Observatory (formerly known as Triana) was originally scheduled to launch on the Space Shuttle in 2002. With the Triana spacecraft nearly complete, the mission was canceled and the satellite was abruptly put into storage in 2001. In 2008 the observatory was removed from storage to begin refurbishment and testing. Problems arose associated with hardware that was not currently manufactured, coatings degradation, and a significant lack of documentation. Also addressed is the conversion of the thermal and geometric math models for use with updated thermal analysis software tools.

  6. Environmentally-driven Materials Obsolescence: Material Replacements and Lessons Learned from NASA's Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Meinhold, Anne

    2013-01-01

    The Space Shuttle Program was terminated in 2011 with the last flight of the Shuttle Endeavour. During the 30 years of its operating history, the number of domestic and international environmental regulations increased rapidly and resulted in materials obsolescence risks to the program. Initial replacement efforts focused on ozone depleting substances. As pressure from environmental regulations increased, Shuttle worked on the replacement of heavy metals. volatile organic compounds and hazardous air pollutants. Near the end of the program. Shuttle identified potential material obsolescence driven by international regulations and the potential for suppliers to reformulate materials. During the Shuttle Program a team focused on environmentally-driven materials obsolescence worked to identify and mitigate these risks. Lessons learned from the Shuttle experience can be applied to new NASA Programs as well as other high reliability applications.

  7. Risk management and lessons learned solutions for satellite product assurance

    NASA Astrophysics Data System (ADS)

    Larrère, Jean-Luc

    2004-08-01

    The historic trend of the space industry towards lower cost programmes and more generally a better economic efficiency raises a difficult question to the quality assurance community: how to achieve the same—or better—mission success rate while drastically reducing the cost of programmes, hence the cost and level of quality assurance activities. EADS Astrium Earth Observation and Science (France) Business Unit have experimented Risk Management and Lessons Learned on their satellite programmes to achieve this goal. Risk analysis and management are deployed from the programme proposal phase through the development and operations phases. Results of the analysis and the corresponding risk mitigation actions are used to tailor the product assurance programme and activities. Lessons learned have been deployed as a systematic process to collect positive and negative experience from past and on-going programmes and feed them into new programmes. Monitoring and justification of their implementation in programmes is done under supervision from the BU quality assurance function. Control of the system is ensured by the company internal review system. Deployment of these methods has shown that the quality assurance function becomes more integrated in the programme team and development process and that its tasks gain focus and efficiency while minimising the risks associated with new space programmes.

  8. Orbit Determination During Spacecraft Emergencies with Sparse Tracking Data - THEMIS and TDRS-3 Lessons Learned

    NASA Technical Reports Server (NTRS)

    Morinelli, Patrick J.; Ward, Douglas T.; Blizzard, Michael R.; Mendelsohn, Chad R.

    2008-01-01

    This paper provides an overview of the lessons learned from the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center s (GSFC) Flight Dynamics Facility s (FDF) support of the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft emergency in February 2007, and the Tracking and Data Relay Satellite-3 (TDRS-3) spacecraft emergency in March 2006. A successful and timely recovery from both of these spacecraft emergencies depended on accurate knowledge of the orbit. Unfortunately, the combination of each spacecraft emergency with very little tracking data contributed to difficulties in estimating and predicting the orbit and delayed recovery efforts in both cases. In both the THEMIS and TDRS-3 spacecraft emergencies, numerous factors contributed to problems with obtaining nominal tracking data measurements. This paper details the various causative factors and challenges. This paper further enumerates lessons learned from FDF s recovery efforts involving the THEMIS and TDRS-3 spacecraft emergencies and scant tracking data, as well as recommendations for improvements and corrective actions. In addition, this paper describes the broad range of resources and complex navigation methods employed within the FDF for supporting critical navigation activities during all mission phases, including launch, early orbit, and on-orbit operations.

  9. Teacher in Space Project.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The materials in this guide were designed to help teachers and other adults maximize the learning experiences and other educational events scheduled on space shuttle Mission 51-L. They include: (1) a description of the live lessons to be conducted by Christa McAuliffe; (2) teaching-related events of Mission 51-L; (3) a list of key mission-related…

  10. The optical fiber array bundle assemblies for the NASA lunar reconnaissance orbiter; evaluation lessons learned for flight implementation from the NASA electronic parts and packaging program

    NASA Astrophysics Data System (ADS)

    Ott, Melanie N.; Switzer, Robert; Chuska, Richard; LaRocca, Frank; Thomes, William J.; Day, Lance W.; MacMurphy, Shawn

    2017-11-01

    The United States, National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC), Fiber Optics Team in the Electrical Engineering Division of the Applied Engineering and Technology Directorate, designed, developed and integrated the space flight optical fiber array hardware assemblies for the Lunar Reconnaissance Orbiter (LRO). The two new assemblies that were designed and manufacturing at NASA GSFC for the LRO exist in configurations that are unique in the world for the application of ranging and lidar. These assemblies were developed in coordination with Diamond Switzerland, and the NASA GSFC Mechanical Systems Division. The assemblies represent a strategic enhancement for NASA's Laser Ranging and Laser Radar (LIDAR) instrument hardware by allowing light to be moved to alternative locations that were not feasible in past space flight implementations. An account will be described of the journey and the lessons learned from design to integration for the Lunar Orbiter Laser Altimeter and the Laser Ranging Application on the LRO. The LRO is scheduled to launch end of 2008.

  11. Laser Tracker Utilization Methodology in Measuring Truth Trajectories for INS Testing on 6 Degree of Freedom Table at the Marshall Space Flight Center's Contact Dynamics Simulation Laboratory with Lessons Learned

    NASA Technical Reports Server (NTRS)

    Leggett, Jared O.; Bryant, Thomas C.; Cowen, Charles T.; Clifton, Billy W.

    2018-01-01

    When performing Inertial Navigation System (INS) testing at the Marshall Space Flight Center's (MSFC) Contact Dynamics Simulation Laboratory (CDSL) early in 2017, a Leica Geosystems AT901 Laser Tracker system (LLT) measured the twist & sway trajectories as generated by the 6 Degree Of Freedom (6DOF) Table in the CDSL. These LLT measured trajectories were used in the INS software model validation effort. Several challenges were identified and overcome during the preparation for the INS testing, as well as numerous lessons learned. These challenges included determining the position and attitude of the LLT with respect to an INS-shared coordinate frame using surveyed monument locations in the CDSL and the accompanying mathematical transformation, accurately measuring the spatial relationship between the INS and a 6DOF tracking probe due to lack of INS visibility from the LLT location, obtaining the data from the LLT during a test, determining how to process the results for comparison with INS data in time and frequency domains, and using a sensitivity analysis of the results to verify the quality of the results. While many of these challenges were identified and overcome before or during testing, a significant lesson on test set-up was not learned until later in the data analysis process. It was found that a combination of trajectory-dependent gimbal locking and environmental noise introduced non-negligible noise in the angular measurements of the LLT that spanned the evaluated frequency spectrum. The lessons learned in this experiment may be useful for others performing INS testing in similar testing facilities.

  12. Sunspots Resource--From Ancient Cultures to Modern Research

    NASA Astrophysics Data System (ADS)

    Craig, N.

    2000-10-01

    Sunspots is a web-based lesson that was developed by the Science Education Gateway (SEGway) program with participants from the Exploratorium, a well known science Museum in San Francisco, UC Berkeley Space Sciences Laboratory, and teachers from several California schools. This space science resource allows 8-12 grade students to explore the nature of sunspots and the history of solar physics in its effort to understand their nature. Interviews with solar physicists and archeo-astronomers, historic images, cutting-edge NASA images, movies, and research results, as well as a student-centered sunspot research activity using NASA space science data defines this lesson. The sunspot resource is aligned with the NCTM and National Science Education Standards. It emphasizes inquiry-based methods and mathematical exercises through measurement, graphic data representation, analysis of NASA data, lastly, interpreting results and drawing conclusions. These resources have been successfully classroom tested in 4 middle schools in the San Francisco Unified School District as part of the 3-week Summer School Science curricula. Lessons learned from the Summer School 1999 will be explained. This resource includes teacher-friendly lesson plans, space science background material and student worksheets. There will be Sunspots lesson CD-ROM and printed version of the relevant classroom-ready materials and a teacher resource booklet available. Sunspot resource is brought to you by, The Science Education Gateway - SEGway - Project, and the HESSI satellite and NASA's Office of Space Science Sun-Earth Connection Education Forum.

  13. User observations on information sharing (corporate knowledge and lessons learned)

    NASA Technical Reports Server (NTRS)

    Montague, Ronald A.; Gregg, Lawrence A.; Martin, Shirley A.; Underwood, Leroy H.; Mcgee, John M.

    1993-01-01

    The sharing of 'corporate knowledge' and lessons learned in the NASA aerospace community has been identified by Johnson Space Center survey participants as a desirable tool. The concept of the program is based on creating a user friendly information system that will allow engineers, scientists, and managers at all working levels to share their information and experiences with other users irrespective of location or organization. The survey addresses potential end uses for such a system and offers some guidance on the development of subsequent processes to ensure the integrity of the information shared. This system concept will promote sharing of information between NASA centers, between NASA and its contractors, between NASA and other government agencies, and perhaps between NASA and institutions of higher learning.

  14. Blue Sky Below My Feet. Adventures in Space Technology, Forces, Fibers, Foods. 4-H Leader/Teacher Handbook.

    ERIC Educational Resources Information Center

    Manholt, Donna; And Others

    This teaching guide for 4th through 6th grade classes integrates science, language arts, and math concepts into ready-to-use space and space technology lessons. Significant learning outcomes for this curriculum are linked to Ohio's educational objectives for science in an at-a-glance curriculum matrix. A summary of the significant 4-H life skills…

  15. "Ground Control to Deaf and Hard of Hearing Students...": Space Camp Provides Lessons in Science, Math, Teamwork, and Fun

    ERIC Educational Resources Information Center

    Perkins, Becky

    2007-01-01

    In this article, the author describes the Space Camp at the U.S. Space & Rocket Center in Huntsville, Alabama, where deaf and hard of hearing students can pilot spaceships, conduct experiments, and dodge meteorites. Each year in the spring, students from schools all over the United States attend a one-week, hands-on learning experience in…

  16. NASA Headquarters Space Operations Center: Providing Situational Awareness for Spaceflight Contingency Response

    NASA Technical Reports Server (NTRS)

    Maxwell, Theresa G.; Bihner, William J.

    2010-01-01

    This paper discusses the NASA Headquarters mishap response process for the Space Shuttle and International Space Station programs, and how the process has evolved based on lessons learned from the Space Shuttle Challenger and Columbia accidents. It also describes the NASA Headquarters Space Operations Center (SOC) and its special role in facilitating senior management's overall situational awareness of critical spaceflight operations, before, during, and after a mishap, to ensure a timely and effective contingency response.

  17. Lunar e-Library: Putting Space History to Work

    NASA Technical Reports Server (NTRS)

    McMahan, Tracy A.; Shea, Charlotte A.; Finckenor, Miria

    2006-01-01

    As NASA plans and implements the Vision for Space Exploration, managers, engineers, and scientists need historically important information that is readily available and easily accessed. The Lunar e-Library - a searchable collection of 1100 electronic (.PDF) documents - makes it easy to find critical technical data and lessons learned and put space history knowledge in action. The Lunar e-Library, a DVD knowledge database, was developed by NASA to shorten research time and put knowledge at users' fingertips. Funded by NASA's Space Environments and Effects (SEE) Program headquartered at Marshall Space Flight Center (MSFC) and the MSFC Materials and Processes Laboratory, the goal of the Lunar e- Library effort was to identify key lessons learned from Apollo and other lunar programs and missions and to provide technical information from those programs in an easy-to-use format. The SEE Program began distributing the Lunar e-Library knowledge database in 2006. This paper describes the Lunar e-Library development process (including a description of the databases and resources used to acquire the documents) and the contents of the DVD product, demonstrates its usefulness with focused searches, and provides information on how to obtain this free resource.

  18. Space Mechanisms Lessons Learned and Accelerated Testing Studies

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1997-01-01

    A number of mechanism (mechanical moving component) failures and anomalies have recently occurred on satellites. In addition, more demanding operating and life requirements have caused mechanism failures or anomalies to occur even before some satellites were launched (e.g., during the qualification testing of GOES-NEXT, CERES, and the Space Station Freedom Beta Joint Gimbal). For these reasons, it is imperative to determine which mechanisms worked in the past and which have failed so that the best selection of mechanically moving components can be made for future satellites. It is also important to know where the problem areas are so that timely decisions can be made on the initiation of research to develop future needed technology. To chronicle the life and performance characteristics of mechanisms operating in a space environment, a Space Mechanisms Lessons Learned Study was conducted. The work was conducted by the NASA Lewis Research Center and by Mechanical Technologies Inc. (MTI) under contract NAS3-27086. The expectation of the study was to capture and retrieve information relating to the life and performance of mechanisms operating in the space environment to determine what components had operated successfully and what components had produced anomalies.

  19. A Survey of Real-Time Operating Systems and Virtualization Solutions for Space Systems

    DTIC Science & Technology

    2015-03-01

    probe, an unmanned spacecraft orbiting Mercury (“Messenger,” n.d.; “VxWorks Space,” n.d.). SpaceX , the private space travel company, uses an unspecified...VxWorks platform on its Dragon reusable spacecraft (“ SpaceX ,” n.d.). 5 Supports the 1003.1 standard but does not provide process creation...2013, March 6). ELC: SpaceX lessons learned. Retrieved from http://lwn.net/ Articles/540368/ 112 Embedded hardware. (n.d.). Retrieved

  20. Swimming Lessons: Learning, New Materialisms, Posthumanism, and Post Qualitative Research Emerge through a Pool Poem

    ERIC Educational Resources Information Center

    McKnight, Lucinda

    2016-01-01

    This article shifts from the formal learning spaces of school and university to an Australian public swimming pool to playfully engage some of the dilemmas that recent theory poses for curriculum studies. The article enacts multiple diffractions (Barad, 2007) as theory becomes swimming and swimming becomes theory, and ideas and movements are…

  1. Changing Spaces, Changing Relationships: The Positive Impact of Learning Out of Doors

    ERIC Educational Resources Information Center

    Scott, Graham; Boyd, Margaret; Colquhoun, Derek

    2013-01-01

    We have used the experiences of teachers and their pupils to explore the impact of participation in a shared outdoor learning experience upon specific aspects of both the teacher/pupil and pupil/pupil relationship. Prior to their taking part in an out of classroom lesson the teachers involved in our project were relatively inexperienced in…

  2. Space Human Factors: Research to Application

    NASA Technical Reports Server (NTRS)

    Woolford, Barbara

    2008-01-01

    Human Factors has been instrumental in preventing potential on-orbit hazards and increasing overall crew safety. Poor performance & operational learning curves on-orbit are mitigated. Human-centered design is applied to optimize design and minimize potentially hazardous conditions, especially with larger crew sizes and habitat constraints. Lunar and Mars requirements and design developments are enhanced, based on ISS Lessons Learned.

  3. Conquering Space.

    ERIC Educational Resources Information Center

    Smith, Sylvia

    1990-01-01

    Designs a lesson to help secondary art students overcome the fear of a threatening blank page. Students learned proportional enlargement, how to evaluate objectively, and gained experience with visual balance. Displays three examples of student's artwork generated by geometric design problems. (DB)

  4. Lessons Learned in Thermal Coatings from the DSCOVR Mission

    NASA Technical Reports Server (NTRS)

    Abraham, Nithin S.

    2015-01-01

    Finding solutions to thermal coating issues on the Deep Space Climate Observatory (DSCOVR) mission was a very challenging and unique endeavor. As a passive thermal control system, coatings provide the desired thermal, optical, and electrical charging properties, while surviving a harsh space environment. DSCOVR mission hardware was repurposed from the late 1990s satellite known as Triana. As a satellite that was shelved for over a decade, the coating surfaces consequently degraded with age, and became fairly outdated. Although the mission successfully launched in February 2015, there were unfamiliar observations and unanticipated issues with the coating surfaces during the revival phases of the project. For example, the thermal coatings on DSCOVR experienced particulate contamination and resistivity requirement problems, among other issues. While finding solutions to these issues, valuable lessons were learned in thermal coatings that may provide great insight to future spaceflight missions in similar situations.

  5. Team Collaboration: Lessons Learned Report

    NASA Technical Reports Server (NTRS)

    Arterberrie, Rhonda Y.; Eubanks, Steven W.; Kay, Dennis R.; Prahst, Stephen E.; Wenner, David P.

    2005-01-01

    An Agency team collaboration pilot was conducted from July 2002 until June 2003 and then extended for an additional year. The objective of the pilot was to assess the value of collaboration tools and adoption processes as applied to NASA teams. In an effort to share knowledge and experiences, the lessons that have been learned thus far are documented in this report. Overall, the pilot has been successful. An entire system has been piloted - tools, adoption, and support. The pilot consisted of two collaboration tools, a team space and a virtual team meeting capability. Of the two tools that were evaluated, the team meeting tool has been more widely accepted. Though the team space tool has been met with a lesser degree of acceptance, the need for such a tool in the NASA environment has been evidenced. Both adoption techniques and support were carefully developed and implemented in a way that has been well received by the pilot participant community.

  6. Telescience testbed pilot program, volume 2: Program results

    NASA Technical Reports Server (NTRS)

    Leiner, Barry M.

    1989-01-01

    Space Station Freedom and its associated labs, coupled with the availability of new computing and communications technologies, have the potential for significantly enhancing scientific research. A Telescience Testbed Pilot Program (TTPP), aimed at developing the experience base to deal with issues in the design of the future information system of the Space Station era. The testbeds represented four scientific disciplines (astronomy and astrophysics, earth sciences, life sciences, and microgravity sciences) and studied issues in payload design, operation, and data analysis. This volume, of a 3 volume set, which all contain the results of the TTPP, contains the integrated results. Background is provided of the program and highlights of the program results. The various testbed experiments and the programmatic approach is summarized. The results are summarized on a discipline by discipline basis, highlighting the lessons learned for each discipline. Then the results are integrated across each discipline, summarizing the lessons learned overall.

  7. Integration and Testing Challenges of Small, Multiple Satellite Missions: Experiences From The Space Technology 5 Project

    NASA Technical Reports Server (NTRS)

    Sauerwein, Timothy A.; Gostomski, Thomas

    2007-01-01

    This brief presentation describes the mechanical and electrical integration activities and environmental testing challenges of the Space Technology 5 (ST5) Project. Lessons learned during this process are highlighted, including performing mechanical activities serially to gain efficiency through repetition and performing electrical activities based on the level of subsystem expertise available.

  8. Spiritual impacts of the space program on the world

    NASA Technical Reports Server (NTRS)

    Esch, M.

    1972-01-01

    The lessons learned from the space program in showing how fragile the environment is on earth are discussed. Examples are cited of the reactions of the astronauts to the unique features of earth. The reactions of the populace in seeking better living conditions and their concern with improving the environment are given as two outgrowths of the program.

  9. Tracking change over time

    USGS Publications Warehouse

    ,

    2011-01-01

    Landsat satellites capture images of Earth from space-and have since 1972! These images provide a long-term record of natural and human-induced changes on the global landscape. Comparing images from multiple years reveals slow and subtle changes as well as rapid and devastating ones. Landsat images are available over the Internet at no charge. Using the free software MultiSpec, students can track changes to the landscape over time-just like remote sensing scientists do! The objective of the Tracking Change Over Time lesson plan is to get students excited about studying the changing Earth. Intended for students in grades 5-8, the lesson plan is flexible and may be used as a student self-guided tutorial or as a teacher-led class lesson. Enhance students' learning of geography, map reading, earth science, and problem solving by seeing landscape changes from space.

  10. International R&M/Safety Cooperation Lessons Learned Between NASA and JAXA

    NASA Technical Reports Server (NTRS)

    Fernandez, Rene; Havenhill, Maria T.; Zampino, Edward J.; Kiefer, Dwayne E.

    2013-01-01

    Presented are a number of important experiences gained and lessons learned from the collaboration of the National Aeronautics and Space Administration (NASA) and the Japanese Aerospace Exploration Agency (JAXA) on the CoNNeCT (Communications, Navigation, and Networking re-Configurable Testbed) project. Both space agencies worked on the CoNNeCT Project to design, assemble, test, integrate, and launch a communications testbed facility mounted onto the International Space Station (ISS) truss. At the 2012 RAMS, two papers about CoNNeCT were presented: one on Ground Support Equipment Reliability & System Safety, and the other one on combined application of System Safety & Reliability for the flight system. In addition to the logistics challenges present when two organizations are on the opposite side of the world, there is also a language barrier. The language barrier encompasses not only the different alphabet, it encompasses the social interactions; these were addressed by techniques presented in the paper. The differences in interpretation and application of Spaceflight Requirements will be discussed in this paper. Although many, but definitely not all, of JAXA's Spaceflight Requirements were inspired by NASA, there were significant and critically important differences in how they were interpreted and applied. This paper intends to summarize which practices worked and which did not for an international collaborative effort so that future missions may benefit from our experiences. The CoNNeCT flight system has been successfully assembled, integrated, tested, shipped, launched and installed on the ISS without incident. This demonstrates that the steps taken to facilitate international understanding, communication, and coordination were successful and warrant discussion as lessons learned.

  11. Microbiological Lessons Learned from the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.; Ott, C. Mark; Bruce, Rebekah; Castro, Victoria A.; Mehta, Satish K.

    2011-01-01

    After 30 years of being the centerpiece of NASA s human spacecraft, the Space Shuttle will retire. This highly successful program provided many valuable lessons for the International Space Station (ISS) and future spacecraft. Major microbiological risks to crewmembers include food, water, air, surfaces, payloads, animals, other crewmembers, and ground support personnel. Adverse effects of microorganisms are varied and can jeopardize crew health and safety, spacecraft systems, and mission objectives. Engineering practices and operational procedures can minimize the negative effects of microorganisms. To minimize problems associated with microorganisms, appropriate steps must begin in the design phase of new spacecraft or space habitats. Spacecraft design must include requirements to control accumulation of water including humidity, leaks, and condensate on surfaces. Materials used in habitable volumes must not contribute to microbial growth. Use of appropriate materials and the implementation of robust housekeeping that utilizes periodic cleaning and disinfection will prevent high levels of microbial growth on surfaces. Air filtration can ensure low levels of bioaerosols and particulates in the breathing air. The use of physical and chemical steps to disinfect drinking water coupled with filtration can provide safe drinking water. Thorough preflight examination of flight crews, consumables, and the environment can greatly reduce pathogens in spacecraft. The advances in knowledge of living and working onboard the Space Shuttle formed the foundation for environmental microbiology requirements and operations for the International Space Station (ISS) and future spacecraft. Research conducted during the Space Shuttle Program resulted in an improved understanding of the effects of spaceflight on human physiology, microbial properties, and specifically the host-microbe interactions. Host-microbe interactions are substantially affected by spaceflight. Astronaut immune functions were found to be altered. Selected microorganisms were found to become more virulent during spaceflight. The increased knowledge gained on the Space Shuttle resulted in further studies of the host-microbe interactions on the ISS to determine if countermeasures were necessary. Lessons learned from the Space Shuttle Program were integrated into the ISS resulting in the safest space habitat to date.

  12. Logistics: An integral part of cost efficient space operations

    NASA Technical Reports Server (NTRS)

    Montgomery, Ann D.

    1996-01-01

    The logistics of space programs and its history within NASA are discussed, with emphasis on manned space flight and the Space Shuttle program. The lessons learned and the experience gained during these programs are reported on. Key elements of logistics are highlighted, and the problems and issues that can be expected to arise in relation to the support of long-term space operations and future space programs, are discussed. Such missions include the International Space Station program and the reusable launch vehicle. Possible solutions to the problems identified are outlined.

  13. Animated software training via the internet: lessons learned

    NASA Technical Reports Server (NTRS)

    Scott, C. J.

    2000-01-01

    The Mission Execution and Automation Section, Information Technologies and Software Systems Division at the Jet Propulsion Laboratory, recently delivered an animated software training module for the TMOD UPLINK Consolidation Task for operator training at the Deep Space Network.

  14. The Evolution of Failure Analysis at NASA's Kennedy Space Center and the Lessons Learned

    NASA Technical Reports Server (NTRS)

    Long, Victoria S.; Wright, M. Clara; McDanels, Steve

    2015-01-01

    The United States has had four manned launch programs and three station programs since the era of human space flight began in 1961. The launch programs, Mercury, Gemini, Apollo, and Shuttle, and the station programs, Skylab, Shuttle-Mir, and the International Space Station (ISS), have all been enormously successful, not only in advancing the exploration of space, but also in advancing related technologies. As each subsequent program built upon the successes of previous programs, they similarly learned from their predecessors' failures. While some failures were spectacular and captivated the attention of the world, most only held the attention of the dedicated men and women working to make the missions succeed.

  15. On the hitchhiker Robot Operated Materials Processing System: Experiment data system

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Jenstrom, Del

    1995-01-01

    The Space Shuttle Discovery STS-64 mission carried the first American autonomous robot into space, the Robot Operated Materials Processing System (ROMPS). On this mission ROMPS was the only Hitchhiker experiment and had a unique opportunity to utilize all Hitchhiker space carrier capabilities. ROMPS conducted rapid thermal processing of the one hundred semiconductor material samples to study how micro gravity affects the resulting material properties. The experiment was designed, built and operated by a small GSFC team in cooperation with industry and university based principal investigators who provided the material samples and data interpretation. ROMPS' success presents some valuable lessons in such cooperation, as well as in the utilization of the Hitchhiker carrier for complex applications. The motivation of this paper is to share these lessons with the scientific community interested in attached payload experiments. ROMPS has a versatile and intelligent material processing control data system. This paper uses the ROMPS data system as the guiding thread to present the ROMPS mission experience. It presents an overview of the ROMPS experiment followed by considerations of the flight and ground data subsystems and their architecture, data products generation during mission operations, and post mission data utilization. It then presents the lessons learned from the development and operation of the ROMPS data system as well as those learned during post-flight data processing.

  16. Research on the International Space Station: Understanding Future Potential from Current Accomplishments

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.

    2007-01-01

    In November 2007, the International Space Station (ISS) will have supported seven years of continuous presence in space, with 15 Expeditions completed. These years have been characterized by the numerous technical challenges of assembly as well as operational and logistical challenges related to the availability of transportation by the Space Shuttle. During this period, an active set of early research objectives have also been accomplished alongside the assembly. This paper will review the research accomplishments on ISS to date, with the objective of drawing insights on the potential of future research following completion of ISS assembly. By the end of Expedition 15, an expected 121 U.S.-managed investigations will have been conducted on ISS, with 91 of these completed. Many of these investigations include multiple scientific objectives, with an estimated total of 334 scientists served. Through February 2007, 101 scientific publications have been identified. Another 184 investigations have been sponsored by ISS international partners, which independently track their scientists served and results publication. Through this survey of U.S. research completed on ISS, three different themes will be addressed: (1) How have constraints on transportation of mass to orbit affected the types of research successfully completed on the ISS to date? What lessons can be learned for increasing the success of ISS as a research platform during the period following the retirement of the Space Shuttle? (2) How have constraints on crew time for research during assembly and the active participation of crewmembers as scientists affected the types of research successfully completed on the ISS to date? What lessons can be learned for optimizing research return following the increase in capacity from 3 to 6 crewmembers (planned for 2009)? What lessons can be learned for optimizing research return after assembly is complete? (3) What do early research results indicate about the various scientific disciplines represented in investigations on ISS? Are there lessons specific to human research, technology development, life sciences, and physical sciences that can be used to increase future research accomplishments? Research has been conducted and completed on ISS under a set of challenging constraints during the past 7 years. The history of research accomplished on ISS during this time serves as an indicator of the value and potential of ISS when full utilization begins. By learning from our early experience in completing research on ISS, NASA and our partners can be positioned to optimize research returns as a full crew complement comes onboard, assembly is completed, and research begins in full.

  17. Proceedings of the 2nd NASA Ada User's Symposium

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Several presentations, mostly in viewgraph form, on various topics relating to Ada applications are given. Topics covered include the use of Ada in NASA, Ada and the Space Station, the software support environment, Ada in the Software Engineering Laboratory, Ada at the Jet Propulsion Laboratory, the Flight Telerobotic Servicer, and lessons learned in prototyping the Space Station Remote Manipulator System control.

  18. 75 FR 40863 - Notice of Intent To Request Approval From the Office of Management and Budget of a New...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-14

    ... collection. The FAA/AST will collect lessons learned from members of the commercial space industry in order... space industry in order to carry out the safety responsibilities in 49 U.S.C Chapter 701 Section 70103(c... between members of the amateur rocket community, experimental permit holders, licensed launch and reentry...

  19. Evaluating Failures and near Misses in Human Spaceflight History for Lessons for Future Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Barr, Stephanie

    2010-01-01

    Studies done in the past have drawn on lessons learned with regard to human loss-of-life events. However, an examination of near-fatal accidents can be equally useful, not only in detecting causes, both proximate and systemic, but also for determining what factors averted disaster, what design decisions and/or operator actions prevented catastrophe. Binary pass/fail launch history is often used for risk, but this also has limitations. A program with a number of near misses can look more reliable than a consistently healthy program with a single out-of-family failure. Augmenting reliability evaluations with this near miss data can provide insight and expand on the limitations of a strictly pass/fail evaluation. This paper intends to show how near-miss lessons learned can provide crucial data for any new human spaceflight programs that are interested in sending man into space

  20. Evaluating Failures and Near Misses in Human Spaceflight History for Lessons for Future Human Spaceflight

    NASA Astrophysics Data System (ADS)

    Barr, Stephanie

    2010-09-01

    Studies done in the past have drawn on lessons learned with regard to human loss-of-life events. However, an examination of near-fatal accidents can be equally useful, not only in detecting causes, both proximate and systemic, but also for determining what factors averted disaster, what design decisions and/or operator actions prevented catastrophe. Binary pass/fail launch history is often used for risk, but this also has limitations. A program with a number of near misses can look more reliable than a consistently healthy program with a single out-of-family failure. Augmenting reliability evaluations with this near miss data can provide insight and expand on the limitations of a strictly pass/fail evaluation. This paper intends to show how near-miss lessons learned can provide crucial data for any new human spaceflight programs that are interested in sending man into space.

  1. Cutting More than Metal: Breaking Through the Development Cycle

    NASA Technical Reports Server (NTRS)

    Singer, Christopher E.; Onken, Jay

    2014-01-01

    NASA is advancing a new development approach and new technologies in the design construction, and testing of the next great launch vehicle for space exploration. The ability to use these new tools is made possible by a learning culture able to embrace innovation, flexibility, and prudent risk tolerance, while retaining the hard-won lessons learned through the successes and failures of the past. This paper provides an overview of the Marshall Space Flight Center's new approach to launch vehicle development, as well as examples of how that approach has been leveraged by NASA's Space Launch System (SLS) Program to achieve its key goals to safety, affordability, and sustainability.

  2. Lessons learned from case studies of inhalation exposures of workers to radioactive aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoover, M.D.; Fencl, A.F.; Newton, G.J.

    1995-12-01

    Various Department of Energy requirements, rules, and orders mandate that lessons learned be identified, evaluated, shared, and incorporated into current practices. The recently issued, nonmandatory DOE standard for Development of DOE Lessons Learned Program states that a DOE-wide lessons learned program will {open_quotes}help to prevent recurrences of negative experiences, highlight best practices, and spotlight innovative ways to solve problems or perform work more safely, efficiently, and cost effectively.{close_quotes} Additional information about the lessons learned program is contained in the recently issued DOE handbook on Implementing U.S. Department of Energy Lessons Learned Programs and in October 1995 DOE SAfety Notice onmore » Lessons Learned Programs. This report summarizes work in progress at ITRI to identify lessons learned for worker exposures to radioactive aerosols, and describes how this work will be incorporated into the DOE lessons learned program, including a new technical guide for measuring, modeling, and mitigating airborne radioactive particles. Follow-on work is focusing on preparation of {open_quotes}lessons learned{close_quotes} training materials for facility designers, managers, health protection professionals, line supervisors, and workers.« less

  3. Space Shuttle GN and C Development History and Evolution

    NASA Technical Reports Server (NTRS)

    Zimpfer, Douglas; Hattis, Phil; Ruppert, John; Gavert, Don

    2011-01-01

    Completion of the final Space Shuttle flight marks the end of a significant era in Human Spaceflight. Developed in the 1970 s, first launched in 1981, the Space Shuttle embodies many significant engineering achievements. One of these is the development and operation of the first extensive fly-by-wire human space transportation Guidance, Navigation and Control (GN&C) System. Development of the Space Shuttle GN&C represented first time inclusions of modern techniques for electronics, software, algorithms, systems and management in a complex system. Numerous technical design trades and lessons learned continue to drive current vehicle development. For example, the Space Shuttle GN&C system incorporated redundant systems, complex algorithms and flight software rigorously verified through integrated vehicle simulations and avionics integration testing techniques. Over the past thirty years, the Shuttle GN&C continued to go through a series of upgrades to improve safety, performance and to enable the complex flight operations required for assembly of the international space station. Upgrades to the GN&C ranged from the addition of nose wheel steering to modifications that extend capabilities to control of the large flexible configurations while being docked to the Space Station. This paper provides a history of the development and evolution of the Space Shuttle GN&C system. Emphasis is placed on key architecture decisions, design trades and the lessons learned for future complex space transportation system developments. Finally, some of the interesting flight operations experience is provided to inform future developers of flight experiences.

  4. From Bridges and Rockets, Lessons for Software Systems

    NASA Technical Reports Server (NTRS)

    Holloway, C. Michael

    2004-01-01

    Although differences exist between building software systems and building physical structures such as bridges and rockets, enough similarities exist that software engineers can learn lessons from failures in traditional engineering disciplines. This paper draws lessons from two well-known failures the collapse of the Tacoma Narrows Bridge in 1940 and the destruction of the space shuttle Challenger in 1986 and applies these lessons to software system development. The following specific applications are made: (1) the verification and validation of a software system should not be based on a single method, or a single style of methods; (2) the tendency to embrace the latest fad should be overcome; and (3) the introduction of software control into safety-critical systems should be done cautiously.

  5. Summary of Planned Implementation for the HTGR Lessons Learned Applicable to the NGNP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ian Mckirdy

    2011-09-01

    This document presents a reconciliation of the lessons learned during a 2010 comprehensive evaluation of pertinent lessons learned from past and present high temperature gas-cooled reactors that apply to the Next Generation Nuclear Plant Project along with current and planned activities. The data used are from the latest Idaho National Laboratory research and development plans, the conceptual design report from General Atomics, and the pebble bed reactor technology readiness study from AREVA. Only those lessons related to the structures, systems, and components of the Next Generation Nuclear Plant (NGNP), as documented in the recently updated lessons learned report are addressed.more » These reconciliations are ordered according to plant area, followed by the affected system, subsystem, or component; lesson learned; and finally an NGNP implementation statement. This report (1) provides cross references to the original lessons learned document, (2) describes the lesson learned, (3) provides the current NGNP implementation status with design data needs associated with the lesson learned, (4) identifies the research and development being performed related to the lesson learned, and (5) summarizes with a status of how the lesson learned has been addressed by the NGNP Project.« less

  6. Historical problem areas lessons learned

    NASA Technical Reports Server (NTRS)

    Sackheim, Bob; Fester, Dale A.

    1991-01-01

    Historical problem areas in space transportation propulsion technology are identified in viewgraph form. Problem areas discussed include materials compatibility, contamination, pneumatic/feed system flow instabilities, instabilities in rocket engine combustion and fuel sloshing, exhaust plume interference, composite rocket nozzle failure, and freeze/thaw damage.

  7. Third-space Architecture for Learning in 3D

    DTIC Science & Technology

    2011-01-01

    wind, and geothermal ( Fogg , 1997). A viable Mars ecosystem rests on whether energy resources can be harnessed profitably. In other words, net...Lessons in curriculum, instruction, assessment, and professional development. Mahwah, NJ: Erlbaum. Fogg , M. J. (1997). The utility of geothermal

  8. NASA philosophy concerning space stations as operations centers for construction and maintenance of large orbiting energy systems

    NASA Technical Reports Server (NTRS)

    Freitag, R. F.

    1976-01-01

    Future United States plans for manned space-flight activities are summarized, emphasizing the long-term goals of achieving permanent occupancy and limited self-sufficiency in space. NASA-sponsored studies of earth-orbiting Space Station concepts are reviewed along with lessons learned from the Skylab missions. Descriptions are presented of the Space Transportation System, the Space Construction Base, and the concept of space industrialization (the processing and manufacturing of goods in space). Future plans for communications satellites, solar-power satellites, terrestrial observations from space stations, and manned orbital-transfer vehicles are discussed.

  9. Analysis of large space structures assembly: Man/machine assembly analysis

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Procedures for analyzing large space structures assembly via three primary modes: manual, remote and automated are outlined. Data bases on each of the assembly modes and a general data base on the shuttle capabilities to support structures assembly are presented. Task element times and structure assembly component costs are given to provide a basis for determining the comparative economics of assembly alternatives. The lessons learned from simulations of space structures assembly are detailed.

  10. Lessons learned in control center technologies and non-technologies

    NASA Technical Reports Server (NTRS)

    Hansen, Elaine R.

    1991-01-01

    Information is given in viewgraph form on the Solar Mesosphere Explorer (SME) Control Center and the Oculometer and Automated Space Interface System (OASIS). Topics covered include SME mission operations functions; technical and non-technical features of the SME control center; general tasks and objects within the Space Station Freedom (SSF) ground system nodes; OASIS-Real Time for the control and monitoring of of space systems and subsystems; and OASIS planning, scheduling, and PC architecture.

  11. Space Station Freedom automation and robotics: An assessment of the potential for increased productivity

    NASA Technical Reports Server (NTRS)

    Weeks, David J.; Zimmerman, Wayne F.; Swietek, Gregory E.; Reid, David H.; Hoffman, Ronald B.; Stammerjohn, Lambert W., Jr.; Stoney, William; Ghovanlou, Ali H.

    1990-01-01

    This report presents the results of a study performed in support of the Space Station Freedom Advanced Development Program, under the sponsorship of the Space Station Engineering (Code MT), Office of Space Flight. The study consisted of the collection, compilation, and analysis of lessons learned, crew time requirements, and other factors influencing the application of advanced automation and robotics, with emphasis on potential improvements in productivity. The lessons learned data collected were based primarily on Skylab, Spacelab, and other Space Shuttle experiences, consisting principally of interviews with current and former crew members and other NASA personnel with relevant experience. The objectives of this report are to present a summary of this data and its analysis, and to present conclusions regarding promising areas for the application of advanced automation and robotics technology to the Space Station Freedom and the potential benefits in terms of increased productivity. In this study, primary emphasis was placed on advanced automation technology because of its fairly extensive utilization within private industry including the aerospace sector. In contrast, other than the Remote Manipulator System (RMS), there has been relatively limited experience with advanced robotics technology applicable to the Space Station. This report should be used as a guide and is not intended to be used as a substitute for official Astronaut Office crew positions on specific issues.

  12. Towards a Framework for Modeling Space Systems Architectures

    NASA Technical Reports Server (NTRS)

    Shames, Peter; Skipper, Joseph

    2006-01-01

    Topics covered include: 1) Statement of the problem: a) Space system architecture is complex; b) Existing terrestrial approaches must be adapted for space; c) Need a common architecture methodology and information model; d) Need appropriate set of viewpoints. 2) Requirements on a space systems model. 3) Model Based Engineering and Design (MBED) project: a) Evaluated different methods; b) Adapted and utilized RASDS & RM-ODP; c) Identified useful set of viewpoints; d) Did actual model exchanges among selected subset of tools. 4) Lessons learned & future vision.

  13. STS-114: Discovery Mission Status/Post MMT Briefing

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Bob Castle, Mission Operations Representative, and Wayne Hale, Space Shuttle Deputy Program Manager are seen during a post Mission Management Team (MMT) briefing. Bob Castle talks about the Multi-Purpose Logistics Module (MPLM) payload and its readiness for unberthing. Wayne Hale presents pictures of the Space Shuttle Thermal Blanket, Wind Tunnel Tests, and Space Shuttle Blanket Pre and Post Tests. Questions from the news media about the Thermal Protection System after undocking and re-entry of the Space Shuttle Discovery, and lessons learned are addressed.

  14. Evolved Expendable Launch Vehicle: The Air Force Needs to Adopt an Incremental Approach to Future Acquisition Planning to Enable Incorporation of Lessons Learned

    DTIC Science & Technology

    2015-08-01

    expressed interest in competing for national security launches, including ULA, Space Exploration Technologies, Inc. ( SpaceX ), and Orbital Sciences...launch offices, and launch service providers including ULA, SpaceX , and Orbital Sciences Corporation. We also reviewed past GAO reports on EELV...launch until 2019 at the earliest, and will still have to become certified. SpaceX earned certification for its Falcon 9 launch vehicle in May 2015, but

  15. Historical problem areas: Lessons learned for expendable and reusable vehicle propulsion systems

    NASA Technical Reports Server (NTRS)

    Fester, Dale A.

    1991-01-01

    The following subject areas are covered: expendable launch vehicle lessons learned, upper stage/transfer vehicle lessons learned, shuttle systems - reuse, and reusable system issues and lessons learned.

  16. Lessons Learned from a Decade of Sudden Oak Death in California: Evaluating Local Management

    NASA Astrophysics Data System (ADS)

    Alexander, Janice; Lee, Christopher A.

    2010-09-01

    Sudden Oak Death has been impacting California’s coastal forests for more than a decade. In that time, and in the absence of a centrally organized and coordinated set of mandatory management actions for this disease in California’s wildlands and open spaces, many local communities have initiated their own management programs. We present five case studies to explore how local-level management has attempted to control this disease. From these case studies, we glean three lessons: connections count, scale matters, and building capacity is crucial. These lessons may help management, research, and education planning for future pest and disease outbreaks.

  17. Lessons Learned from a Decade of Sudden Oak Death in California: Evaluating Local Management

    PubMed Central

    Alexander, Janice

    2010-01-01

    Sudden Oak Death has been impacting California’s coastal forests for more than a decade. In that time, and in the absence of a centrally organized and coordinated set of mandatory management actions for this disease in California’s wildlands and open spaces, many local communities have initiated their own management programs. We present five case studies to explore how local-level management has attempted to control this disease. From these case studies, we glean three lessons: connections count, scale matters, and building capacity is crucial. These lessons may help management, research, and education planning for future pest and disease outbreaks. PMID:20559634

  18. Earth Observation from the International Space Station -Remote Sensing in Schools-

    NASA Astrophysics Data System (ADS)

    Schultz, Johannes; Rienow, Andreas; Graw, Valerie; Heinemann, Sascha; Selg, Fabian; Menz, Gunter

    2016-04-01

    Since spring 2014, the NASA High Definition Earth Viewing (HDEV) mission at the International Space Station (ISS) is online. HDEV consists of four cameras mounted at ESA's Columbus laboratory and is recording the earth 24/7. The educational project 'Columbus Eye - Live-Imagery from the ISS in Schools' has published a learning portal for earth observation from the ISS (www.columbuseye.uni-bonn.de). Besides a video live stream, the portal contains an archive providing spectacular footage, web-GIS and an observatory with interactive materials for school lessons. Columbus Eye is carried out by the University of Bonn and funded by the German Aerospace Center (DLR) Space Administration. Pupils should be motivated to work with the footage in order to learn about patterns and processes of the coupled human-environment system like volcano eruptions or deforestation. The material is developed on the experiences of the FIS (German abbreviation for "Remote Sensing in Schools") project and its learning portal (http://www.fis.uni-bonn.de). Based on the ISS videos three different teaching material types are developed. The simplest teaching type are provided by worksheets, which have a low degree of interactivity. Alongside a short didactical commentary for teachers is included. Additionally, videos, ancillary information, maps, and instructions for interactive school experiments are provided. The observatory contains the second type of the Columbus Eye teaching materials. It requires a high degree of self-organisation and responsibility of the pupils. Thus, the observatory provides the opportunity for pupils to freely construct their own hypotheses based on a spatial analysis tool similar to those provided by commercial software. The third type are comprehensive learning and teaching modules with a high degree of interactivity, including background information, interactive animations, quizzes and different analysis tools (e.g. change detection, classification, polygon or NDVI tool). All materials and modules are developed based on the school curricular and can be used in lessons that are mainly based on self-reliant learning and require only minimal lead and instruction by the teacher. The poster presents new tools and strategies to educate pupils and to enhance their fascination of earth observation imagery in the light of problem-based learning in everyday school lessons.

  19. SABER on Orbit Performance Evaluation and Lessons Learned

    NASA Astrophysics Data System (ADS)

    Jensen, Scott M.; Batty, J. Clair

    2004-06-01

    The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument, launched into orbit December 7, 2001, utilized a miniature pulse-tube cryocooler to maintain the SABER focal plane assembly (FPA) at 75 K. The limited cooling capacity of the cryocooler necessitated the development of a new never before flown Fiber Support Technology (FiST) for supporting and thermally isolating the FPA. A very precise predictive thermal modeling effort to ensure successful operation was also needed due to the very small capacity margin of the cryocooler. A high performance thermal link that minimized the temperature difference between the FPA and the cryocooler cold block and also the mechanical dynamic loading on the fragile pulse tube was developed and space qualified. This paper presents a comparison of the thermal modeling predictions with on orbit measurements, and discusses the lessons learned concerning long term performance issues of thermal isolation systems which utilize cryocoolers for cooling focal plane assemblies (FPA's). The effect of ice deposition on the thermal blankets and other FPA cooled structures, as well as the lessons learned in dealing with this ice deposition, will also be presented.

  20. NASA/MOD Operations Impacts from Shuttle Program

    NASA Technical Reports Server (NTRS)

    Fitzpatrick, Michael; Mattes, Gregory; Grabois, Michael; Griffith, Holly

    2011-01-01

    Operations plays a pivotal role in the success of any human spaceflight program. This paper will highlight some of the core tenets of spaceflight operations from a systems perspective and use several examples from the Space Shuttle Program to highlight where the success and safety of a mission can hinge upon the preparedness and competency of the operations team. Further, awareness of the types of operations scenarios and impacts that can arise during human crewed space missions can help inform design and mission planning decisions long before a vehicle gets into orbit. A strong operations team is crucial to the development of future programs; capturing the lessons learned from the successes and failures of a past program will allow for safer, more efficient, and better designed programs in the future. No matter how well a vehicle is designed and constructed, there are always unexpected events or failures that occur during space flight missions. Preparation, training, real-time execution, and troubleshooting are skills and values of the Mission Operations Directorate (MOD) flight controller; these operational standards have proven invaluable to the Space Shuttle Program. Understanding and mastery of these same skills will be required of any operations team as technology advances and new vehicles are developed. This paper will focus on individual Space Shuttle mission case studies where specific operational skills, techniques, and preparedness allowed for mission safety and success. It will detail the events leading up to the scenario or failure, how the operations team identified and dealt with the failure and its downstream impacts. The various options for real-time troubleshooting will be discussed along with the operations team final recommendation, execution, and outcome. Finally, the lessons learned will be summarized along with an explanation of how these lessons were used to improve the operational preparedness of future flight control teams.

  1. The Value of Identifying and Recovering Lost GN&C Lessons Learned: Aeronautical, Spacecraft, and Launch Vehicle Examples

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.; Labbe, Steve; Lebsock, Kenneth L.

    2010-01-01

    Within the broad aerospace community the importance of identifying, documenting and widely sharing lessons learned during system development, flight test, operational or research programs/projects is broadly acknowledged. Documenting and sharing lessons learned helps managers and engineers to minimize project risk and improve performance of their systems. Often significant lessons learned on a project fail to get captured even though they are well known 'tribal knowledge' amongst the project team members. The physical act of actually writing down and documenting these lessons learned for the next generation of NASA GN&C engineers fails to happen on some projects for various reasons. In this paper we will first review the importance of capturing lessons learned and then will discuss reasons why some lessons are not documented. A simple proven approach called 'Pause and Learn' will be highlighted as a proven low-impact method of organizational learning that could foster the timely capture of critical lessons learned. Lastly some examples of 'lost' GN&C lessons learned from the aeronautics, spacecraft and launch vehicle domains are briefly highlighted. In the context of this paper 'lost' refers to lessons that have not achieved broad visibility within the NASA-wide GN&C CoP because they are either undocumented, masked or poorly documented in the NASA Lessons Learned Information System (LLIS).

  2. The Right Stuff: A Look Back at Three Decades of Flight Controller Training for Space Shuttle Mission Operations

    NASA Technical Reports Server (NTRS)

    Dittemore, Gary D.; Bertels, Christie

    2010-01-01

    This paper will summarize the thirty-year history of Space Shuttle operations from the perspective of training in NASA Johnson Space Center's Mission Control Center. It will focus on training and development of flight controllers and instructors, and how training practices have evolved over the years as flight experience was gained, new technologies developed, and programmatic needs changed. Operations of human spaceflight systems is extremely complex, therefore the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center, in Houston, Texas manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. This paper will give an overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams are trained and certified. The training methodology for developing flight controllers has evolved significantly over the last thirty years, while the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. These changes have been driven by many factors including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. Flight controllers will share their experiences in training and operating the Space Shuttle throughout the Program s history. A primary method used for training Space Shuttle flight control teams is by running mission simulations of the orbit, ascent, and entry phases, to truly "train like you fly." The audience will learn what it is like to perform a simulation as a shuttle flight controller. Finally, we will reflect on the lessons learned in training for the shuttle program, and how those could be applied to future human spaceflight endeavors.

  3. Building technological capability within satellite programs in developing countries

    NASA Astrophysics Data System (ADS)

    Wood, Danielle; Weigel, Annalisa

    2011-12-01

    This paper explores the process of building technological capability in government-led satellite programs within developing countries. The key message is that these satellite programs can learn useful lessons from literature in the international development community. These lessons are relevant to emerging satellite programs that leverage international partnerships in order to establish local capability to design, build and operate satellites. Countries with such programs include Algeria, Nigeria, Turkey, Malaysia and the United Arab Emirates. The paper first provides background knowledge about space activity in developing countries, and then explores the nuances of the lessons coming from the international development literature. Developing countries are concerned with satellite technology because satellites provide useful services in the areas of earth observation, communication, navigation and science. Most developing countries access satellite services through indirect means such as sharing data with foreign organizations. More countries, however, are seeking opportunities to develop satellite technology locally. There are objective, technically driven motivations for developing countries to invest in satellite technology, despite rich debate on this topic. The paper provides a framework to understand technical motivations for investment in satellite services, hardware, expertise and infrastructure in both short and long term. If a country decides to pursue such investments they face a common set of strategic decisions at the levels of their satellite program, their national context and their international relationships. Analysis of past projects shows that countries have chosen diverse strategies to address these strategic decisions and grow in technological capability. What is similar about the historical examples is that many countries choose to leverage international partnerships as part of their growth process. There are also historical examples from outside the space arena in which organizations have pursued technological capability. Scholars have analyzed these examples and developed insightful frameworks. The paper draws key concepts from this literature about the nature of development, technology, knowledge and organizational learning. These concepts are relevant to learning in new satellite programs, but the ideas must be applied cautiously because of the nature of satellite technology. The paper draws three major lessons from the international development literature regarding absorptive capacity, tacit knowledge and organizational learning; it synthesizes these lessons into a cohesive, original framework. The closing section proposes future work on a detailed study of technological learning in specific government satellite programs.

  4. LewiSpace: An Exploratory Study with a Machine Learning Model in an Educational Game

    ERIC Educational Resources Information Center

    Ghali, Ramla; Ouellet, Sébastien; Frasson, Claude

    2016-01-01

    The use of educational games as a tool for providing learners with a playful and educational aspect is widespread. In this paper, we present an educational game that we developed to teach a chemistry lesson, namely drawing a Lewis diagram. Our game is a 3D environment known as LewiSpace and aims at balancing between playful and educational…

  5. Columbia Quilt

    NASA Image and Video Library

    2018-02-22

    A certificate is on display that confirms the transfer of a giant hand-made quilt in honor of space shuttle Columbia and her crew from the Office of Procurement to the Columbia Preservation Room inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The quilt was made by Katherine Walsh, a lifelong NASA and space program fan originally from Kentucky. The quilt will be displayed with its certificate in the preservation room as part of NASA's Apollo, Challenger, Columbia Lessons Learned Program.

  6. Phase III Simplified Integrated Test (SIT) results - Space Station ECLSS testing

    NASA Technical Reports Server (NTRS)

    Roberts, Barry C.; Carrasquillo, Robyn L.; Dubiel, Melissa Y.; Ogle, Kathryn Y.; Perry, Jay L.; Whitley, Ken M.

    1990-01-01

    During 1989, phase III testing of Space Station Freedom Environmental Control and Life Support Systems (ECLSS) began at Marshall Space Flight Center (MSFC) with the Simplified Integrated Test. This test, conducted at the MSFC Core Module Integration Facility (CMIF), was the first time the four baseline air revitalization subsystems were integrated together. This paper details the results and lessons learned from the phase III SIT. Future plans for testing at the MSFC CMIF are also discussed.

  7. X-framework: Space system failure analysis framework

    NASA Astrophysics Data System (ADS)

    Newman, John Steven

    Space program and space systems failures result in financial losses in the multi-hundred million dollar range every year. In addition to financial loss, space system failures may also represent the loss of opportunity, loss of critical scientific, commercial and/or national defense capabilities, as well as loss of public confidence. The need exists to improve learning and expand the scope of lessons documented and offered to the space industry project team. One of the barriers to incorporating lessons learned include the way in which space system failures are documented. Multiple classes of space system failure information are identified, ranging from "sound bite" summaries in space insurance compendia, to articles in journals, lengthy data-oriented (what happened) reports, and in some rare cases, reports that treat not only the what, but also the why. In addition there are periodically published "corporate crisis" reports, typically issued after multiple or highly visible failures that explore management roles in the failure, often within a politically oriented context. Given the general lack of consistency, it is clear that a good multi-level space system/program failure framework with analytical and predictive capability is needed. This research effort set out to develop such a model. The X-Framework (x-fw) is proposed as an innovative forensic failure analysis approach, providing a multi-level understanding of the space system failure event beginning with the proximate cause, extending to the directly related work or operational processes and upward through successive management layers. The x-fw focus is on capability and control at the process level and examines: (1) management accountability and control, (2) resource and requirement allocation, and (3) planning, analysis, and risk management at each level of management. The x-fw model provides an innovative failure analysis approach for acquiring a multi-level perspective, direct and indirect causation of failures, and generating better and more consistent reports. Through this approach failures can be more fully understood, existing programs can be evaluated and future failures avoided. The x-fw development involved a review of the historical failure analysis and prevention literature, coupled with examination of numerous failure case studies. Analytical approaches included use of a relational failure "knowledge base" for classification and sorting of x-fw elements and attributes for each case. In addition a novel "management mapping" technique was developed as a means of displaying an integrated snapshot of indirect causes within the management chain. Further research opportunities will extend the depth of knowledge available for many of the component level cases. In addition, the x-fw has the potential to expand the scope of space sector lessons learned, and contribute to knowledge management and organizational learning.

  8. NASA System Safety Framework and Concepts for Implementation

    NASA Technical Reports Server (NTRS)

    Dezfuli, Homayoon

    2012-01-01

    This report has been developed by the National Aeronautics and Space Administration (NASA) Human Exploration and Operations Mission Directorate (HEOMD) Risk Management team knowledge capture forums.. This document provides a point-in-time, cumulative, summary of actionable key lessons learned in safety framework and concepts.

  9. Lessons Learned During Cryogenic Optical Testing of the Advanced Mirror System Demonstrators (AMSDs)

    NASA Technical Reports Server (NTRS)

    Hadaway, James; Reardon, Patrick; Geary, Joseph; Robinson, Brian; Stahl, Philip; Eng, Ron; Kegley, Jeff

    2004-01-01

    Optical testing in a cryogenic environment presents a host of challenges above and beyond those encountered during room temperature testing. The Advanced Mirror System Demonstrators (AMSDs) are 1.4 m diameter, ultra light-weight (<20 kg/mA2), off-axis parabolic segments. They are required to have 250 nm PV & 50 nm RMS surface figure error or less at 35 K. An optical testing system, consisting of an Instantaneous Phase Interferometer (PI), a diffractive null corrector (DNC), and an Absolute Distance Meter (ADM), was used to measure the surface figure & radius-of-curvature of these mirrors at the operational temperature within the X-Ray Calibration Facility (XRCF) at Marshall Space Flight Center (MSFC). The Ah4SD program was designed to improve the technology related to the design, fabrication, & testing of such mirrors in support of NASA s James Webb Space Telescope (JWST). This paper will describe the lessons learned during preparation & cryogenic testing of the AMSDs.

  10. Using Model-Based Reasoning for Autonomous Instrument Operation - Lessons Learned From IMAGE/LENA

    NASA Technical Reports Server (NTRS)

    Johnson, Michael A.; Rilee, Michael L.; Truszkowski, Walt; Bailin, Sidney C.

    2001-01-01

    Model-based reasoning has been applied as an autonomous control strategy on the Low Energy Neutral Atom (LENA) instrument currently flying on board the Imager for Magnetosphere-to-Aurora Global Exploration (IMAGE) spacecraft. Explicit models of instrument subsystem responses have been constructed and are used to dynamically adapt the instrument to the spacecraft's environment. These functions are cast as part of a Virtual Principal Investigator (VPI) that autonomously monitors and controls the instrument. In the VPI's current implementation, LENA's command uplink volume has been decreased significantly from its previous volume; typically, no uplinks are required for operations. This work demonstrates that a model-based approach can be used to enhance science instrument effectiveness. The components of LENA are common in space science instrumentation, and lessons learned by modeling this system may be applied to other instruments. Future work involves the extension of these methods to cover more aspects of LENA operation and the generalization to other space science instrumentation.

  11. Lessons learned in command environment development

    NASA Astrophysics Data System (ADS)

    Wallace, Daniel F.; Collie, Brad E.

    2000-11-01

    As we consider the issues associated with the development of an Integrated Command Environment (ICE), we must obviously consider the rich history in the development of control rooms, operations centers, information centers, dispatch offices, and other command and control environments. This paper considers the historical perspective of control environments from the industrial revolution through the information revolution, and examines the historical influences and the implications that that has for us today. Environments to be considered are military command and control spaces, emergency response centers, medical response centers, nuclear reactor control rooms, and operations centers. Historical 'lessons learned' from the development and evolution of these environments will be examined to determine valuable models to use, and those to be avoided. What are the pitfalls? What are the assumptions that drive the environment design? Three case histories will be presented, examining (1) the control room of the Three Mile Island power plant, (2) the redesign of the US Naval Space Command operations center, and (3) a testbed for an ICE aboard a naval surface combatant.

  12. Visualizing the inner product space ℝm×n in a MATLAB-assisted linear algebra classroom

    NASA Astrophysics Data System (ADS)

    Caglayan, Günhan

    2018-05-01

    This linear algebra note offers teaching and learning ideas in the treatment of the inner product space ? in a technology-supported learning environment. Classroom activities proposed in this note demonstrate creative ways of integrating MATLAB technology into various properties of Frobenius inner product as visualization tools that complement the algebraic approach. As implemented in linear algebra lessons in a university in the Unites States, the article also incorporates algebraic and visual work of students who experienced these activities with MATLAB software. The connection between the Frobenius norm and the Euclidean norm is also emphasized.

  13. Mission control team structure and operational lessons learned from the 2009 and 2010 NASA desert RATS simulated lunar exploration field tests

    NASA Astrophysics Data System (ADS)

    Bell, Ernest R.; Badillo, Victor; Coan, David; Johnson, Kieth; Ney, Zane; Rosenbaum, Megan; Smart, Tifanie; Stone, Jeffry; Stueber, Ronald; Welsh, Daren; Guirgis, Peggy; Looper, Chris; McDaniel, Randall

    2013-10-01

    The NASA Desert Research and Technology Studies (Desert RATS) is an annual field test of advanced concepts, prototype hardware, and potential modes of operation to be used on human planetary surface space exploration missions. For the 2009 and 2010 NASA Desert RATS field tests, various engineering concepts and operational exercises were incorporated into mission timelines with the focus of the majority of daily operations being on simulated lunar geological field operations and executed in a manner similar to current Space Shuttle and International Space Station missions. The field test for 2009 involved a two week lunar exploration simulation utilizing a two-man rover. The 2010 Desert RATS field test took this two week simulation further by incorporating a second two-man rover working in tandem with the 2009 rover, as well as including docked operations with a Pressurized Excursion Module (PEM). Personnel for the field test included the crew, a mission management team, engineering teams, a science team, and the mission operations team. The mission operations team served as the core of the Desert RATS mission control team and included certified NASA Mission Operations Directorate (MOD) flight controllers, former flight controllers, and astronaut personnel. The backgrounds of the flight controllers were in the areas of Extravehicular Activity (EVA), onboard mechanical systems and maintenance, robotics, timeline planning (OpsPlan), and spacecraft communicator (Capcom). With the simulated EVA operations, mechanized operations (the rover), and expectations of replanning, these flight control disciplines were especially well suited for the execution of the 2009 and 2010 Desert RATS field tests. The inclusion of an operations team has provided the added benefit of giving NASA mission operations flight control personnel the opportunity to begin examining operational mission control techniques, team compositions, and mission scenarios. This also gave the mission operations team the opportunity to gain insight into functional hardware requirements via lessons learned from executing the Desert RATS field test missions. This paper will detail the mission control team structure that was used during the 2009 and 2010 Desert RATS Lunar analog missions. It will also present a number of the lessons learned by the operations team during these field tests. Major lessons learned involved Mission Control Center (MCC) operations, pre-mission planning and training processes, procedure requirements, communication requirements, and logistic support for analogs. This knowledge will be applied to future Desert RATS field tests, and other Earth based analog testing for space exploration, to continue the evolution of manned space operations in preparation for human planetary exploration. It is important that operational knowledge for human space exploration missions be obtained during Earth-bound field tests to the greatest extent possible. This allows operations personnel the ability to examine various flight control and crew operations scenarios in preparation for actual space missions.

  14. Fifty Years of Observing Hardware and Human Behavior

    NASA Technical Reports Server (NTRS)

    McMann, Joe

    2011-01-01

    During this half-day workshop, Joe McMann presented the lessons learned during his 50 years of experience in both industry and government, which included all U.S. manned space programs, from Mercury to the ISS. He shared his thoughts about hardware and people and what he has learned from first-hand experience. Included were such topics as design, testing, design changes, development, failures, crew expectations, hardware, requirements, and meetings.

  15. Legacy of Operational Space Medicine During the Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Stepaniakm, P.; Gilmore, S.; Johnston, S.; Chandler, M.; Beven, G.

    2011-01-01

    The Johnson Space Center s Medical Science Division branches were involved in preparing astronauts for space flight during the 30 year period of the Space Shuttle Program. These branches included the Flight Medicine Clinic, Medical Operations and the Behavioral Health Program. The components of each facet of these support services were: the Flight Medicine Clinic s medical selection process and medical care; the Medical Operations equipment, training, procedures and emergency medical services; and the Behavioral Health and Performance operations. Each presenter will discuss the evolution of its operations, implementations, lessons learned and recommendations for future vehicles and short duration space missions.

  16. Rapid Spacecraft Development: Results and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Watson, William A.

    2002-01-01

    The Rapid Spacecraft Development Office (RSDO) at NASA's Goddard Space Flight Center is responsible for the management and direction of a dynamic and versatile program for the definition, competition, and acquisition of multiple indefinite delivery and indefinite quantity contracts - resulting in a catalog of spacecraft buses. Five spacecraft delivery orders have been placed by the RSDO and one spacecraft has been launched. Numerous concept and design studies have been performed, most with the intent of leading to a future spacecraft acquisition. A collection of results and lessons learned is recorded to highlight management techniques, methods and processes employed in the conduct of spacecraft acquisition. Topics include working relationships under fixed price delivery orders, price and value, risk management, contingency reserves, and information restrictions.

  17. Space Shuttle Program Primary Avionics Software System (PASS) Success Legacy -Major Accomplishments and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Orr, James K.

    2010-01-01

    This presentation has shown the accomplishments of the PASS project over three decades and highlighted the lessons learned. Over the entire time, our goal has been to continuously improve our process, implement automation for both quality and increased productivity, and identify and remove all defects due to prior execution of a flawed process in addition to improving our processes following identification of significant process escapes. Morale and workforce instability have been issues, most significantly during 1993 to 1998 (period of consolidation in aerospace industry). The PASS project has also consulted with others, including the Software Engineering Institute, so as to be an early evaluator, adopter, and adapter of state-of-the-art software engineering innovations.

  18. Status Report and Lessons Learned from the Univ. of Arizona NMSD

    NASA Technical Reports Server (NTRS)

    Baiocchi, Dave; Burge, Jim

    2003-01-01

    We will present the latest generation of space mirror technology being developed at the Univ. of Arizona (UA). Unlike conventional monolithic mirrors, the UA mirrors are completely active in their operation. This allows greater flexibility in the mass, volume and performance specifications. The UA mirror design uses a thin flexible substrate for the optical surface and an actuated lightweight structure for surface accuracy and support. We provide an update on the UA NGST Mirror System Demonstrator (NMSD). The 2-m, f/5 NMSD mirror uses a 2 mm thick glass substrate and weighs 86 pounds. We review the mirror's design, discuss the mythology schemes used to actuate the figure, and present a list of the lessons learned.

  19. XML technology planning database : lessons learned

    NASA Technical Reports Server (NTRS)

    Some, Raphael R.; Neff, Jon M.

    2005-01-01

    A hierarchical Extensible Markup Language(XML) database called XCALIBR (XML Analysis LIBRary) has been developed by Millennium Program to assist in technology investment (ROI) analysis and technology Language Capability the New return on portfolio optimization. The database contains mission requirements and technology capabilities, which are related by use of an XML dictionary. The XML dictionary codifies a standardized taxonomy for space missions, systems, subsystems and technologies. In addition to being used for ROI analysis, the database is being examined for use in project planning, tracking and documentation. During the past year, the database has moved from development into alpha testing. This paper describes the lessons learned during construction and testing of the prototype database and the motivation for moving from an XML taxonomy to a standard XML-based ontology.

  20. NASA Space Mechanisms Handbook and Reference Guide Expanded Into CD-ROM Set

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    2002-01-01

    Several NASA missions suffered failures and anomalies due to problems in applying space mechanisms technology to specific projects. Research shows that engineers often lack either adequate knowledge of mechanism design or sufficient understanding of how mechanisms affect sensitive systems. The Space Mechanisms Project conducted a Lessons Learned study and published a Space Mechanisms Handbook to help space industry engineers avoid recurring design, qualification, and application problems. The Space Mechanisms Handbook written at the NASA Glenn Research Center details the state-of-the-art in space mechanisms design as of 1998. NASA's objective in developing this Space Mechanisms Handbook was to provide readily accessible information on such areas as space mechanisms design, mechanical component availability and use, testing and qualification of mechanical systems, and a listing of worldwide space mechanisms experts and testing facilities in the United States. This handbook has been expanded into a two-volume CD-ROM set in an Adobe Acrobat format. In addition to the handbook, the CD's include (1) the two volume Space Mechanisms Lessons Learned Study, (2) proceedings from all the NASA hosted Aerospace Mechanisms Symposia held through the year 2000, (3) the Space Materials Handbook, (4) the Lubrication Handbook for the Space Industry, (5) the Structural & Mechanical Systems Long-Life Assurance Design Guidelines, (6) the Space Environments and Effects Source-Book, (7) the Spacecraft Deployable Appendages manual, (8) the Fastener Design Manual, (9) A Manual for Pyrotechnic Design, Development and Qualification, (10) the Report on Alternative Devices to Pyrotechnics on Spacecraft, and (11) Gearing (a manual). In addition, numerous other papers on tribology and lubrication are included.This technical summary of the project provides information on how to obtain the handbook and related information.

  1. Engineering Lessons Learned and Systems Engineering Applications

    NASA Technical Reports Server (NTRS)

    Gill, Paul S.; Garcia, Danny; Vaughan, William W.

    2005-01-01

    Systems Engineering is fundamental to good engineering, which in turn depends on the integration and application of engineering lessons learned. Thus, good Systems Engineering also depends on systems engineering lessons learned from within the aerospace industry being documented and applied. About ten percent of the engineering lessons learned documented in the NASA Lessons Learned Information System are directly related to Systems Engineering. A key issue associated with lessons learned datasets is the communication and incorporation of this information into engineering processes. As part of the NASA Technical Standards Program activities, engineering lessons learned datasets have been identified from a number of sources. These are being searched and screened for those having a relation to Technical Standards. This paper will address some of these Systems Engineering Lessons Learned and how they are being related to Technical Standards within the NASA Technical Standards Program, including linking to the Agency's Interactive Engineering Discipline Training Courses and the life cycle for a flight vehicle development program.

  2. ISS Solar Array Alpha Rotary Joint (SARJ) Bearing Failure and Recovery: Technical and Project Management Lessons Learned

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Krantz, Timothy L.; Dube, Michael J.

    2011-01-01

    The photovoltaic solar panels on the International Space Station (ISS) track the Sun through continuous rotating motion enabled by large bearings on the main truss called solar array alpha rotary joints (SARJs). In late 2007, shortly after installation, the starboard SARJ had become hard to turn and had to be shut down after exceeding drive current safety limits. The port SARJ, of the same design, had been working well for over 2 years. An exhaustive failure investigation ensued that included multiple extravehicular activities to collect information and samples for engineering forensics, detailed structural and thermal analyses, and a careful review of the build records. The ultimate root cause was determined to be kinematic design vulnerability coupled with inadequate lubrication, and manufacturing flaws; this was corroborated through ground tests, metallurgical studies, and modeling. A highly successful recovery plan was developed and implemented that included replacing worn and damaged components in orbit and applying space-compatible grease to improve lubrication. Beyond the technical aspects, however, lie several key programmatic lessons learned. These lessons, such as running ground tests to intentional failure to experimentally verify failure modes, are reviewed and discussed so they can be applied to future projects to avoid such problems.

  3. Challenges with Electrical, Electronics, and Electromechanical Parts for James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Jah, Muzar A.; Jeffers, Basil S.

    2016-01-01

    James Webb Space Telescope (JWST) is the space-based observatory that will extend the knowledge gained by the Hubble Space Telescope (HST). Hubble focuses on optical and ultraviolet wavelengths while JWST focuses on the infrared portion of the electromagnetic spectrum, to see the earliest stars and galaxies that formed in the Universe and to look deep into nearby dust clouds to study the formation of stars and planets. JWST, which commenced creation in 1996, is scheduled to launch in 2018. It includes a suite of four instruments, the spacecraft bus, optical telescope element, Integrated Science Instrument Module (ISIM, the platform to hold the instruments), and a sunshield. The mass of JWST is approximately 6200 kg, including observatory, on-orbit consumables and launch vehicle adaptor. Many challenges were overcome while providing the electrical and electronic components for the Goddard Space Flight Center hardware builds. Other difficulties encountered included developing components to work at cryogenic temperatures, failures of electronic components during development and flight builds, Integration and Test electronic parts problems, and managing technical issues with international partners. This paper will present the context of JWST from a EEE (electrical, electronic, and electromechanical) perspective with examples of challenges and lessons learned throughout the design, development, and fabrication of JWST in cooperation with our associated partners including the Canadian Space Agency (CSA), the European Space Agency (ESA), Lockheed Martin and their respective associated partners. Technical challenges and lessons learned will be discussed.

  4. Space Station Furnace Facility Management Information System (SSFF-MIS) Development

    NASA Technical Reports Server (NTRS)

    Mead, Robert M.

    1996-01-01

    Thios report summarizes the chronology, results, and lessons learned from the development of the SSFF-MIS. This system has been nearly two years in development and has yielded some valuable insights into specialized MIS development. Attachment A contains additions, corrections, and deletions by the COTR.

  5. The road to virtual: the Sauls Memorial Virtual Library journey.

    PubMed

    Waddell, Stacie; Harkness, Amy; Cohen, Mark L

    2014-01-01

    The Sauls Memorial Virtual Library closed its physical space in 2012. This article outlines the reasons for this change and how the library staff and hospital leadership planned and executed the enormous undertaking. Outcomes of the change and lessons learned from the process are discussed.

  6. Two to the sixth and counting: a lifetime of optical experiences

    NASA Astrophysics Data System (ADS)

    Mayo, Jim

    2014-12-01

    This presentation will cover 64 years of experience with telescopes, optical components, optical coatings, large optics, optical fabrication, lasers and related subjects. It will focus on five topic areas paying special attention to critical lessons learned in these areas. Part 1 will cover contributions and inherent value of mentoring in optical and astronomical sciences. This will include specific personal experiences and valuable lessons learned from teachers and mentors going back to the beginning of the space age and the first satellites. It will also cover selected examples from the author's mentoring and community optics and astronomy outreach efforts. Part 2 will delineate the lessons learned from the investigation and independent expert review and assessment of optical damage incidents over a period of five decades. It will also recount frequent optical misconceptions that have negatively impacted efficient system development and implementation over the years and how to avoid them. Part 3 will consist of a short tutorial on the tools, techniques, and the "how and why" of optical inspection. This will be interlinked with the previous optical damage and mistakes topic, where possible. Part 4 will consist of the author's involvement and experiences in optical education with emphasis on the founding and early years of the University of Arizona Optical Sciences Center, now the College of Optical Sciences. Part 5 will cover the enduring issues and challenges for managers, planners and contributing scientists for large optics and telescope projects. This brief overview will follow up and expand upon the author's presentation on this topic at the 1985 "SPIE Optical Fabrication and Testing Workshop: Large Telescope Optics", Albuquerque, NM. Throughout all topic areas presented, the author will stress the lessons learned and the value of these lessons to the planning, management and successful execution of future optics projects and programs.

  7. Columbia Quilt

    NASA Image and Video Library

    2018-02-22

    A certificate and quilt square are on display that confirms the transfer of a giant hand-made quilt in honor of space shuttle Columbia and her crew from the Office of Procurement to the Columbia Preservation Room inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The quilt was made by Katherine Walsh, a lifelong NASA and space program fan originally from Kentucky. The quilt will be displayed in the preservation room with its certificate as part of NASA's Apollo, Challenger, Columbia Lessons Learned Program.

  8. Introducing new technologies into Space Station subsystems

    NASA Technical Reports Server (NTRS)

    Wiskerchen, Michael J.; Mollakarimi, Cindy L.

    1989-01-01

    A new systems engineering technology has been developed and applied to Shuttle processing. The new engineering approach emphasizes the identification, quantitative assessment, and management of system performance and risk related to the dynamic nature of requirements, technology, and operational concepts. The Space Shuttle Tile Automation System is described as an example of the first application of the new engineering technology. Lessons learned from the Shuttle processing experience are examined, and concepts are presented which are applicable to the design and development of the Space Station Freedom.

  9. Implementation and Qualifications Lessons Learned for Space Flight Photonic Components

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.

    2010-01-01

    This slide presentation reviews the process for implementation and qualification of space flight photonic components. It discusses the causes for most common anomalies for the space flight components, design compatibility, a specific failure analysis of optical fiber that occurred in a cable in 1999-2000, and another ExPCA connector anomaly involving pins that broke off. It reviews issues around material selection, quality processes and documentation, and current projects that the Photonics group is involved in. The importance of good documentation is stressed.

  10. The Final Count Down: A Review of Three Decades of Flight Controller Training Methods for Space Shuttle Mission Operations

    NASA Technical Reports Server (NTRS)

    Dittemore, Gary D.; Bertels, Christie

    2011-01-01

    Operations of human spaceflight systems is extremely complex, therefore the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center, in Houston, Texas manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. As the space shuttle program ends in 2011, a review of how training for STS-1 was conducted compared to STS-134 will show multiple changes in training of shuttle flight controller over a thirty year period. This paper will additionally give an overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams have been trained certified over the life span of the space shuttle. The training methods for developing flight controllers have evolved significantly over the last thirty years, while the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. These changes have been driven by many factors including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. A primary method used for training Space Shuttle flight control teams is by running mission simulations of the orbit, ascent, and entry phases, to truly "train like you fly." The reader will learn what it is like to perform a simulation as a shuttle flight controller. Finally, the paper will reflect on the lessons learned in training for the shuttle program, and how those could be applied to future human spaceflight endeavors.

  11. Legacy of Biomedical Research During the Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Hayes, Judith C.

    2011-01-01

    The Space Shuttle Program provided many opportunities to study the role of spaceflight on human life for over 30 years and represented the longest and largest US human spaceflight program. Outcomes of the research were understanding the effect of spaceflight on human physiology and performance, countermeasures, operational protocols, and hardware. The Shuttle flights were relatively short, < 16 days and routinely had 4 to 6 crewmembers for a total of 135 flights. Biomedical research was conducted on the Space Shuttle using various vehicle resources. Specially constructed pressurized laboratories called Spacelab and SPACEHAB housed many laboratory instruments to accomplish experiments in the Shuttle s large payload bay. In addition to these laboratory flights, nearly every mission had dedicated human life science research experiments conducted in the Shuttle middeck. Most Shuttle astronauts participated in some life sciences research experiments either as test subjects or test operators. While middeck experiments resulted in a low sample per mission compared to many Earth-based studies, this participation allowed investigators to have repetition of tests over the years on successive Shuttle flights. In addition, as a prelude to the International Space Station (ISS), NASA used the Space Shuttle as a platform for assessing future ISS hardware systems and procedures. The purpose of this panel is to provide an understanding of science integration activities required to implement Shuttle research, review biomedical research, characterize countermeasures developed for Shuttle and ISS as well as discuss lessons learned that may support commercial crew endeavors. Panel topics include research integration, cardiovascular physiology, neurosciences, skeletal muscle, and exercise physiology. Learning Objective: The panel provides an overview from the Space Shuttle Program regarding research integration, scientific results, lessons learned from biomedical research and countermeasure development.

  12. The Second Annual Space Weather Community Operations Workshop: Advancing Operations Into the Next Decade

    NASA Astrophysics Data System (ADS)

    Meehan, Jennifer; Fulgham, Jared; Tobiska, W. Kent

    2012-07-01

    How can we continue to advance the space weather operational community from lessons already learned when it comes to data reliability, maintainability, accessibility, dependability, safety, and quality? How can we make space weather more easily accessible to each other and outside users? Representatives from operational, commercial, academic, and government organizations weighed in on these important questions at the second annual Space Weather Community Operations Workshop, held 22-23 March 2012 in Park City, Utah, with the unofficial workshop motto being Don’t Reinvent the Wheel.

  13. Emulating a flexible space structure: Modeling

    NASA Technical Reports Server (NTRS)

    Waites, H. B.; Rice, S. C.; Jones, V. L.

    1988-01-01

    Control Dynamics, in conjunction with Marshall Space Flight Center, has participated in the modeling and testing of Flexible Space Structures. Through the series of configurations tested and the many techniques used for collecting, analyzing, and modeling the data, many valuable insights have been gained and important lessons learned. This paper discusses the background of the Large Space Structure program, Control Dynamics' involvement in testing and modeling of the configurations (especially the Active Control Technique Evaluation for Spacecraft (ACES) configuration), the results from these two processes, and insights gained from this work.

  14. Reliability Practice at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Pruessner, Paula S.; Li, Ming

    2008-01-01

    This paper describes in brief the Reliability and Maintainability (R&M) Programs performed directly by the reliability branch at Goddard Space Flight Center (GSFC). The mission assurance requirements flow down is explained. GSFC practices for PRA, reliability prediction/fault tree analysis/reliability block diagram, FMEA, part stress and derating analysis, worst case analysis, trend analysis, limit life items are presented. Lessons learned are summarized and recommendations on improvement are identified.

  15. Public policies for managing urban growth and protecting open space: policy instruments and lessons learned in the United States

    Treesearch

    David N. Bengston; Jennifer O. Fletcher

    2003-01-01

    The public sector in the United States has responded to growing concern about the social and environmental costs of sprawling development patterns by creating a wide range of policy instruments designed to manage urban growth and protect open space. These techniques have been implemented at the local, regional, state and, to a limited extent, national levels. This...

  16. Safe Software for Space Applications: Building on the DO-178 Experience

    NASA Astrophysics Data System (ADS)

    Dorsey, Cheryl A.; Dorsey, Timothy A.

    2013-09-01

    DO-178, Software Considerations in Airborne Systems and Equipment Certification, is the well-known international standard dealing with the assurance of software used in airborne systems [1,2]. Insights into the DO-178 experiences, strengths and weaknesses can benefit the international space community. As DO-178 is an excellent standard for safe software development when used appropriately, this paper provides lessons learned and suggestions for using it effectively.

  17. Advanced Thermoplastic Polymers and Additive Manufacturing Applied to ISS Columbus Toolbox: Lessons Learnt and Results

    NASA Astrophysics Data System (ADS)

    Ferrino, Marinella; Secondo, Ottaviano; Sabbagh, Amir; Della Sala, Emilio

    2014-06-01

    In the frame of the International Space Station (ISS) Exploitation Program a new toolbox has been realized by TAS-I to accommodate the tools currently in use on the ISS Columbus Module utilizing full-scale prototypes obtained with 3D rapid prototyping. The manufacturing of the flight hardware by means of advanced thermoplastic polymer UL TEM 9085 and additive manufacturing Fused Deposition Modelling (FDM) technology represent innovative elements. In this paper, the results achieved and the lessons learned are analyzed to promote future technology know-how. The acquired experience confirmed that the additive manufacturing process allows to save time/cost and to realize new shapes/features to introduce innovation in products and future design processes for space applications.

  18. Lessons Learned from Application of System and Software Level RAMS Analysis to a Space Control System

    NASA Astrophysics Data System (ADS)

    Silva, N.; Esper, A.

    2012-01-01

    The work presented in this article represents the results of applying RAMS analysis to a critical space control system, both at system and software levels. The system level RAMS analysis allowed the assignment of criticalities to the high level components, which was further refined by a tailored software level RAMS analysis. The importance of the software level RAMS analysis in the identification of new failure modes and its impact on the system level RAMS analysis is discussed. Recommendations of changes in the software architecture have also been proposed in order to reduce the criticality of the SW components to an acceptable minimum. The dependability analysis was performed in accordance to ECSS-Q-ST-80, which had to be tailored and complemented in some aspects. This tailoring will also be detailed in the article and lessons learned from the application of this tailoring will be shared, stating the importance to space systems safety evaluations. The paper presents the applied techniques, the relevant results obtained, the effort required for performing the tasks and the planned strategy for ROI estimation, as well as the soft skills required and acquired during these activities.

  19. Building a GPS Receiver for Space Lessons Learned

    NASA Technical Reports Server (NTRS)

    Sirotzky, Steve; Heckler, G. W.; Boegner, G.; Roman, J.; Wennersten, M.; Butler, R.; Davis, M.; Lanham, A.; Winternitz, L.; Thompson, W.; hide

    2008-01-01

    Over the past 4 years the Component Systems and Hardware branch at NASA GSFC has pursued an inhouse effort to build a unique space-flight GPS receiver. This effort has resulted in the Navigator GPS receiver. Navigator's first flight opportunity will come with the STS-125 HST-SM4 mission in August 2008. This paper covers the overall hardware design for the receiver and the difficulties encountered during the transition from the breadboard design to the final flight hardware design. Among the different lessons learned, the paper stresses the importance of selecting and verifying parts that are appropriate for space applications, as well as what happens when these parts are not accurately characterized by their datasheets. Additionally, the paper discusses what analysis needs to be performed when deciding system frequencies and filters. The presentation also covers how to prepare for thermal vacuum testing, and problems that may arise during vibration testing. It also contains what criteria should be considered when determining which portions of a design to create in-house, and which portions to license from a third party. Finally, the paper shows techniques which have proven to be extraordinarily helpful in debugging and analysis.

  20. Applying lessons learned to enhance human performance and reduce human error for ISS operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, W.R.

    1999-01-01

    A major component of reliability, safety, and mission success for space missions is ensuring that the humans involved (flight crew, ground crew, mission control, etc.) perform their tasks and functions as required. This includes compliance with training and procedures during normal conditions, and successful compensation when malfunctions or unexpected conditions occur. A very significant issue that affects human performance in space flight is human error. Human errors can invalidate carefully designed equipment and procedures. If certain errors combine with equipment failures or design flaws, mission failure or loss of life can occur. The control of human error during operation ofmore » the International Space Station (ISS) will be critical to the overall success of the program. As experience from Mir operations has shown, human performance plays a vital role in the success or failure of long duration space missions. The Department of Energy{close_quote}s Idaho National Engineering and Environmental Laboratory (INEEL) is developing a systematic approach to enhance human performance and reduce human errors for ISS operations. This approach is based on the systematic identification and evaluation of lessons learned from past space missions such as Mir to enhance the design and operation of ISS. This paper will describe previous INEEL research on human error sponsored by NASA and how it can be applied to enhance human reliability for ISS. {copyright} {ital 1999 American Institute of Physics.}« less

  1. Applying lessons learned to enhance human performance and reduce human error for ISS operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, W.R.

    1998-09-01

    A major component of reliability, safety, and mission success for space missions is ensuring that the humans involved (flight crew, ground crew, mission control, etc.) perform their tasks and functions as required. This includes compliance with training and procedures during normal conditions, and successful compensation when malfunctions or unexpected conditions occur. A very significant issue that affects human performance in space flight is human error. Human errors can invalidate carefully designed equipment and procedures. If certain errors combine with equipment failures or design flaws, mission failure or loss of life can occur. The control of human error during operation ofmore » the International Space Station (ISS) will be critical to the overall success of the program. As experience from Mir operations has shown, human performance plays a vital role in the success or failure of long duration space missions. The Department of Energy`s Idaho National Engineering and Environmental Laboratory (INEEL) is developed a systematic approach to enhance human performance and reduce human errors for ISS operations. This approach is based on the systematic identification and evaluation of lessons learned from past space missions such as Mir to enhance the design and operation of ISS. This paper describes previous INEEL research on human error sponsored by NASA and how it can be applied to enhance human reliability for ISS.« less

  2. The Applied Meteorology Unit: Nineteen Years Successfully Transitioning Research into Operations for America's Space Program

    NASA Technical Reports Server (NTRS)

    Madura, John T.; Bauman, William H.; Merceret, Francis J.; Roeder, William P.; Brody, Frank C.; Hagemeyer, Bartlett C.

    2010-01-01

    The Applied Meteorology Unit (AMU) provides technology transition and technique development to improve operational weather support to the Space Shuttle and the entire American space program. The AMU is funded and managed by NASA and operated by a contractor that provides five meteorologists with a diverse mix of advanced degrees, operational experience, and associated skills including data processing, statistics, and the development of graphical user interfaces. The AMU's primary customers are the U.S. Air Force 45th Weather Squadron at Patrick Air Force Base, the National Weather Service Spaceflight Meteorology Group at NASA Johnson Space Center, and the National Weather Service Melbourne FL Forecast Office. The AMU has transitioned research into operations for nineteen years and worked on a wide range of topics, including new forecasting techniques for lightning probability, synoptic peak winds,.convective winds, and summer severe weather; satellite tools to predict anvil cloud trajectories and evaluate camera line of sight for Space Shuttle launch; optimized radar scan strategies; evaluated and implemented local numerical models; evaluated weather sensors; and many more. The AMU has completed 113 projects with 5 more scheduled to be completed by the end of 2010. During this rich history, the AMU and its customers have learned many lessons on how to effectively transition research into operations. Some of these lessons learned include collocating with the operational customer and periodically visiting geographically separated customers, operator submitted projects, consensus tasking process, use of operator primary advocates for each project, customer AMU liaisons with experience in both operations and research, flexibility in adapting the project plan based on lessons learned during the project, and incorporating training and other transition assistance into the project plans. Operator involvement has been critical to the AMU's remarkable success and many awards from NASA, the National Weather Association, and two citations from the Navy's Center of Excellence for Best Manufacturing Practices. This paper will present the AMU's proven methods and explain how they may be applied by other organizations to effectively transition research into operations.

  3. The Significant Incidents and Close Calls in Human Space Flight Chart: Lessons Learned Gone Viral

    NASA Technical Reports Server (NTRS)

    Wood, Bill; Pate, Dennis; Thelen, David

    2010-01-01

    This presentation will explore the surprising history and events that transformed a mundane spreadsheet of historical spaceflight incidents into a popular and widely distributed visual compendium of lessons learned. The Significant Incidents and Close Calls in Human Space Flight Chart (a.k.a. The Significant Incidents Chart) is a popular and visually captivating reference product that has arisen from the work of the Johnson Space Center (JSC) Safety and Mission Assurance (S&MA) Flight Safety Office (FSO). It began as an internal tool intended to increase our team s awareness of historical and modern space flight incidents. Today, the chart is widely recognized across the agency as a reference tool. It appears in several training and education programs. It is used in familiarization training in the JSC Building 9 Mockup Facility and is seen by hundreds of center visitors each week. The chart visually summarizes injuries, fatalities, and close calls sustained during the continuing development of human space flight. The poster-sized chart displays over 100 total events that have direct connections to human space flight endeavors. The chart is updated periodically. The update process itself has become a collaborative effort. Many people, spanning multiple NASA organizations, have provided suggestions for additional entries. The FSO maintains a growing list of subscribers who have requested to receive updates. The presenters will discuss the origins and motivations behind the significant incidents chart. A review of the inclusion criteria used to select events will be offered. We will address how the chart is used today by S&MA and offer a vision of how it might be used by other organizations now and in the future. Particular emphasis will be placed on features of the chart that have met with broad acceptance and have helped spread awareness of the most important lessons in human spaceflight.

  4. EVA design: lessons learned.

    PubMed

    Ross, J L

    1994-01-01

    Extravehicular Activities (EVAs) are very demanding and specialized space flight activities. There are many aspects to consider in the design of hardware, tools, and procedures to be used on an EVA mission. To help minimize costs and optimize the EVA productivity, experience shows that astronauts should become involved early in the design process.

  5. Analyzing a Mature Software Inspection Process Using Statistical Process Control (SPC)

    NASA Technical Reports Server (NTRS)

    Barnard, Julie; Carleton, Anita; Stamper, Darrell E. (Technical Monitor)

    1999-01-01

    This paper presents a cooperative effort where the Software Engineering Institute and the Space Shuttle Onboard Software Project could experiment applying Statistical Process Control (SPC) analysis to inspection activities. The topics include: 1) SPC Collaboration Overview; 2) SPC Collaboration Approach and Results; and 3) Lessons Learned.

  6. Reducing cost with autonomous operations of the Deep Space Network radio science receiver

    NASA Technical Reports Server (NTRS)

    Asmar, S.; Anabtawi, A.; Connally, M.; Jongeling, A.

    2003-01-01

    This paper describes the Radio Science Receiver system and the savings it has brought to mission operations. The design and implementation of remote and autonomous operations will be discussed along with the process of including user feedback along the way and lessons learned and procedures avoided.

  7. Unmanned Ground Vehicle (UGV) Lessons Learned

    DTIC Science & Technology

    2001-11-01

    iii 1. INTRODUCTION ....................................................................................................... 1 1.1... INTRODUCTION 1.1 PURPOSE The purpose of this effort is to compile Lessons Learned from the unmanned ground vehicle (UGV) programs that could be relevant to... introduction of gunpowder, this lesson was no longer valid. Castles crumbled and new lessons had to be learned. One such lesson was that the faster

  8. Lesson Learning at JPL

    NASA Technical Reports Server (NTRS)

    Oberhettinger, David

    2011-01-01

    A lessons learned system is a hallmark of a mature engineering organization A formal lessons learned process can help assure that valuable lessons get written and published, that they are well-written, and that the essential information is "infused" into institutional practice. Requires high-level institutional commitment, and everyone's participation in gathering, disseminating, and using the lessons

  9. 77 FR 64565 - Solicitation of Feedback and Lessons-Learned from the Pilot of the Revised Construction Reactor...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0249] Solicitation of Feedback and Lessons-Learned from... or the Commission) is soliciting feedback and lessons-learned from members of the public, licensees... constructed in accordance with the licensing basis. The NRC has applied lessons- learned from the prior plants...

  10. Additive Manufacturing Design Considerations for Liquid Engine Components

    NASA Technical Reports Server (NTRS)

    Whitten, Dave; Hissam, Andy; Baker, Kevin; Rice, Darron

    2014-01-01

    The Marshall Space Flight Center's Propulsion Systems Department has gained significant experience in the last year designing, building, and testing liquid engine components using additive manufacturing. The department has developed valve, duct, turbo-machinery, and combustion device components using this technology. Many valuable lessons were learned during this process. These lessons will be the focus of this presentation. We will present criteria for selecting part candidates for additive manufacturing. Some part characteristics are 'tailor made' for this process. Selecting the right parts for the process is the first step to maximizing productivity gains. We will also present specific lessons we learned about feature geometry that can and cannot be produced using additive manufacturing machines. Most liquid engine components were made using a two-step process. The base part was made using additive manufacturing and then traditional machining processes were used to produce the final part. The presentation will describe design accommodations needed to make the base part and lessons we learned about which features could be built directly and which require the final machine process. Tolerance capabilities, surface finish, and material thickness allowances will also be covered. Additive Manufacturing can produce internal passages that cannot be made using traditional approaches. It can also eliminate a significant amount of manpower by reducing part count and leveraging model-based design and analysis techniques. Information will be shared about performance enhancements and design efficiencies we experienced for certain categories of engine parts.

  11. Pre- to Post- CubeSats

    NASA Astrophysics Data System (ADS)

    Cutler, J.

    2015-12-01

    CubeSats sprung from a formative picosatellite effort at a university in the heart of Silicon Valley, took root in a university-led university environment, and have grown into complex-shaped explorers in both near and soon-to-be deep space. Private citizens, businesses, government are building and launching a variety of science, technology demonstration, and service missions. A new generation of space explorers is gaining first hand experience in space missions at all educational levels. There is new life and new energy in the space program. However, space is still difficult. The environment is harsh. Funding is sparse. This talk explores this history and the future of CubeSats from the context of a university-centric laboratory that emphasizes teaching, research, and entrepreneurial impact. It will explore the following questions: What sparked the CubeSat innovation? What are longer lasting lessons of this community? Where are places we can go next? What does it take to get there? The talk will draw on lessons learned from building over six on-orbit CubeSat missions and training hundreds of space engineers.

  12. Teamwork situated in multiteam systems: Key lessons learned and future opportunities.

    PubMed

    Shuffler, Marissa L; Carter, Dorothy R

    2018-01-01

    Many important contexts requiring teamwork, including health care, space exploration, national defense, and scientific discovery, present important challenges that cannot be addressed by a single team working independently. Instead, the complex goals these contexts present often require effectively coordinated efforts of multiple specialized teams working together as a multiteam system (MTS). For almost 2 decades, researchers have endeavored to understand the novelties and nuances for teamwork and collaboration that ensue when teams operate together as "component teams" in these interdependent systems. In this special issue on the settings of teamwork, we aim to synthesize what is known thus far regarding teamwork situated in MTS contexts and offer new directions and considerations for developing, maintaining, and sustaining effective collaboration in MTSs. Our review of extant research on MTSs reveals 7 key lessons learned regarding teamwork situated in MTSs, but also reveals that much is left to learn about the science and practice of ensuring effective multiteam functioning. We elaborate these lessons and delineate 4 major opportunities for advancing the science of MTSs as a critical embedding context for collaboration and teamwork, now and in the future. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  13. Lessons learned from facilitating the state and tribal government working group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurstedt, H.A. Jr.

    1994-12-31

    Thirteen lessons learned from my experience in facilitating the State and Tribal Government Working Group for the U.S. Department of Energy have been identified. The conceptual base for supporting the veracity of each lesson has been developed and the lessons are believed to be transferable to any stakeholder group. The crux of stakeholder group success if the two-directional, two-mode empowerment required in this case. Most of the lessons learned deal with the scope of that empowerment. A few of the lessons learned deal with the operations of the group.

  14. Demonstrating and Evaluating an Action Learning Approach to Building Project Management Competence

    NASA Technical Reports Server (NTRS)

    Kotnour, Tim; Starr, Stan; Steinrock, T. (Technical Monitor)

    2001-01-01

    This paper contributes a description of an action-learning approach to building project management competence. This approach was designed, implemented, and evaluated for use with the Dynacs Engineering Development Contract at the Kennedy Space Center. The aim of the approach was to improve three levels of competence within the organization: individual project management skills, project team performance. and organizational capabilities such as the project management process and tools. The overall steps to the approach, evaluation results, and lessons learned are presented. Managers can use this paper to design a specific action-learning approach for their organization.

  15. Safety and Mission Assurance: A NASA Perspective

    NASA Technical Reports Server (NTRS)

    Higginbotham, Scott A.

    2016-01-01

    Manned spaceflight is an incredibly complex and inherently risky human endeavor. As the result of the lessons learned through years of triumph and tragedy, the National Aeronautics and Space Administration (NASA) has embraced a comprehensive and integrated approach to the challenge of ensuring safety and mission success. This presentation will provide an overview of some of the techniques employed in this effort, with a focus on the processing operations performed at the Kennedy Space Center (KSC).

  16. TES: A modular systems approach to expert system development for real time space applications

    NASA Technical Reports Server (NTRS)

    England, Brenda; Cacace, Ralph

    1987-01-01

    A major goal of the space station era is to reduce reliance on support from ground based experts. The TIMES Expert System (TES) is an application that monitors and evaluates real time data to perform fault detection and fault isolation as it would otherwise be carried out by a knowledgeable designer. The development process and primary features of the TES, the modular system and the lessons learned are discussed.

  17. An Integrated Science Glovebox for the Gateway Habitat

    NASA Technical Reports Server (NTRS)

    Calaway, M. J.; Evans, C. A.; Garrison, D. H.; Bell, M. S.

    2018-01-01

    Next generation habitats for deep space exploration of cislunar space, the Moon, and ultimately Mars will benefit from on-board glovebox capability. Such a glovebox facility will maintain sample integrity for a variety of scientific endeavors whether for life science, materials science, or astromaterials. Glovebox lessons learned from decades of astromaterials curation, ISS on-board sample handling, and robust analog missions provide key design and operational factors for inclusion in on-going habitat development.

  18. 77 FR 14446 - Changes to the Generic Aging Lessons Learned (GALL) Report Revision 2 AMP XI.M41, “Buried and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0055] Changes to the Generic Aging Lessons Learned (GALL... Aging Lessons Learned (GALL) Report,'' and the NRC staff's aging management review procedure and... into ADAMS. II. Background The NRC issues LR-ISGs to communicate insights and lessons learned and to...

  19. Learning from Lessons: Teachers' Insights and Intended Actions Arising from Their Learning about Student Thinking

    ERIC Educational Resources Information Center

    Roche, Anne; Clarke, Doug; Clarke, David; Chan, Man Ching Esther

    2016-01-01

    A central premise of this project is that teachers learn from the act of teaching a lesson and that this learning is evident in the planning and teaching of a subsequent lesson. We are studying the knowledge construction of mathematics teachers utilising multi-camera research techniques during lesson planning, classroom interactions and…

  20. Integrating Ubunifu, informal science, and community innovations in science classrooms in East Africa

    NASA Astrophysics Data System (ADS)

    Semali, Ladislaus M.; Hristova, Adelina; Owiny, Sylvia A.

    2015-12-01

    This study examines the relationship between informal science and indigenous innovations in local communities in which students matured. The discussion considers methods for bridging the gap that exists between parents' understanding of informal science ( Ubunifu) and what students learn in secondary schools in Kenya, Tanzania, and Uganda. In an effort to reconcile the difference between students' lived experiences and Science, Technology, Engineering, and Mathematics (STEM) taught in classrooms, this study presents an experiential iSPACES instructional model as an example of curriculum integration in science classrooms. The culmination is presentation of lessons learned from history, including Africa's unique contributions to science, theory, and indigenous innovations, in the hope that these lessons can spur the development of new instructional practices, standards, curriculum materials, professional and community development, and dialogue among nations.

  1. Lessons Learned in the Specification, Purchase, Validation and Final Installation Process of a Replacement PCM Bit Synchronizer

    NASA Technical Reports Server (NTRS)

    Price, Richard N.

    2007-01-01

    This paper intends to describe the lessons learned while specifying validating and installing a bit sync to replace the 30 year old Aydin Model 335a PCM bit sync used in the Space Shuttle Launch Control Center. The engineer had to analyze the original requirements and specifications and then create new requirements documentation that more correctly described our needs. One issue to consider was the removal of unnecessary requirements such as various data formats when only one format is used. The conversion to a system that no longer has an assortment of analog rotary switches required retraining of the operators. Finally, post-procurement corrections for undisclosed user requirements and missed design requirements required close contact with a manufacturer who was willing to accommodate the changes.

  2. The Space Shuttle focused-technology program - Lessons learned

    NASA Technical Reports Server (NTRS)

    Fitzgerald, P. E., Jr.; Gabris, E. A.

    1983-01-01

    The results of a focused technology program (FTP), its management structure, the development of the Space Shuttle, and lessons applicable to future space programs such as a space station are discussed. A committee was formed by NASA in 1969 to define the technologies necessary for a reusable spacecraft. Basic and applied research assessments were featured at the beginning of the process. Working groups were established to cover all necessary areas, e.g., Operations, Structures and Materials, Aerothermodynamics, etc., and tasks were distributed to appropriate NASA centers. Funding was drawn from existing budgets. The FTP proceeded successfully because of an understanding of the respective roles of industry and government, the willingness of industry to invest early in a new technology, and the unclassified status of information generated by the program. The in-house design and technology transfer methods that brought the project to a technology demonstration phase are explored, noting the necessity for users to take part in the development within their field.

  3. Lessons Learned from Real-Time, Event-Based Internet Science Communications

    NASA Technical Reports Server (NTRS)

    Phillips, T.; Myszka, E.; Gallagher, D. L.; Adams, M. L.; Koczor, R. J.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    For the last several years the Science Directorate at Marshall Space Flight Center has carried out a diverse program of Internet-based science communication. The Directorate's Science Roundtable includes active researchers, NASA public relations, educators, and administrators. The Science@NASA award-winning family of Web sites features science, mathematics, and space news. The program includes extended stories about NASA science, a curriculum resource for teachers tied to national education standards, on-line activities for students, and webcasts of real-time events. The focus of sharing science activities in real-time has been to involve and excite students and the public about science. Events have involved meteor showers, solar eclipses, natural very low frequency radio emissions, and amateur balloon flights. In some cases, broadcasts accommodate active feedback and questions from Internet participants. Through these projects a pattern has emerged in the level of interest or popularity with the public. The pattern differentiates projects that include science from those that do not, All real-time, event-based Internet activities have captured public interest at a level not achieved through science stories or educator resource material exclusively. The worst event-based activity attracted more interest than the best written science story. One truly rewarding lesson learned through these projects is that the public recognizes the importance and excitement of being part of scientific discovery. Flying a camera to 100,000 feet altitude isn't as interesting to the public as searching for viable life-forms at these oxygen-poor altitudes. The details of these real-time, event-based projects and lessons learned will be discussed.

  4. Learning from Lessons: Studying the Construction of Teacher Knowledge Catalysed by Purposefully-Designed Experimental Mathematics Lessons

    ERIC Educational Resources Information Center

    Clarke, Doug; Clarke, David; Roche, Anne; Chan, Man Ching Esther

    2015-01-01

    A central premise of this project is that teachers learn from the act of teaching a lesson and that this learning is evident in the planning and teaching of a subsequent lesson. In this project, the knowledge construction of mathematics teachers was examined utilising multi-camera research techniques during lesson planning, classroom interactions…

  5. Brownfields City of Cleveland: Deconstruction Lessons Learned Report

    EPA Pesticide Factsheets

    This technical memorandum presents an overview of Cleveland’s current deconstruction initiative goals and lessons learned (in the Cleveland area) and potential strategies for addressing lessons learned.

  6. 77 FR 46127 - Interim Staff Guidance on Changes to the Generic Aging Lessons Learned (GALL) Report Revision 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-02

    ... Aging Lessons Learned (GALL) Report Revision 2 AMP XI.M41, ``Buried and Underground Piping and Tanks... AMPs in NUREG-1801, Revision 2, ``Generic Aging Lessons Learned (GALL) Report,'' and the NRC staff's... issues LR-ISG to communicate insights and lessons learned and to address emergent issues not covered in...

  7. Integrated Risk and Knowledge Management Program -- IRKM-P

    NASA Technical Reports Server (NTRS)

    Lengyel, David M.

    2009-01-01

    The NASA Exploration Systems Mission Directorate (ESMD) IRKM-P tightly couples risk management and knowledge management processes and tools to produce an effective "modern" work environment. IRKM-P objectives include: (1) to learn lessons from past and current programs (Apollo, Space Shuttle, and the International Space Station); (2) to generate and share new engineering design, operations, and management best practices through preexisting Continuous Risk Management (CRM) procedures and knowledge-management practices; and (3) to infuse those lessons and best practices into current activities. The conceptual framework of the IRKM-P is based on the assumption that risks highlight potential knowledge gaps that might be mitigated through one or more knowledge management practices or artifacts. These same risks also serve as cues for collection of knowledge particularly, knowledge of technical or programmatic challenges that might recur.

  8. Failure Analysis at the Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Salazar, Victoria L.; Wright, M. Clara

    2010-01-01

    History has shown that failures occur in every engineering endeavor, and what we learn from those failures contributes to the knowledge base to safely complete future missions. The necessity of failure analysis is at its apex at the end of one aged program and at the beginning of a new and untested program. The information that we gain through failure analysis corrects the deficiencies in the current vehicle to make the next generation of vehicles more efficient and safe. The Failure Analysis and Materials Evaluation Branch in the Materials Science Division at the Kennedy Space Center performs metallurgical, mechanical, electrical, and non-metallic materials failure analyses and accident investigations on both flight hardware and ground support equipment for the Space Shuttle, International Space Station, Constellation, and Launch Services Programs. This paper will explore a variety of failure case studies at the Kennedy Space Center and the lessons learned that can be applied in future programs.

  9. A survey of acoustic conditions and noise levels in secondary school classrooms in England.

    PubMed

    Shield, Bridget; Conetta, Robert; Dockrell, Julie; Connolly, Daniel; Cox, Trevor; Mydlarz, Charles

    2015-01-01

    An acoustic survey of secondary schools in England has been undertaken. Room acoustic parameters and background noise levels were measured in 185 unoccupied spaces in 13 schools to provide information on the typical acoustic environment of secondary schools. The unoccupied acoustic and noise data were correlated with various physical characteristics of the spaces. Room height and the amount of glazing were related to the unoccupied reverberation time and therefore need to be controlled to reduce reverberation to suitable levels for teaching and learning. Further analysis of the unoccupied data showed that the introduction of legislation relating to school acoustics in England and Wales in 2003 approximately doubled the number of school spaces complying with current standards. Noise levels were also measured during 274 lessons to examine typical levels generated during teaching activities in secondary schools and to investigate the influence of acoustic design on working noise levels in the classroom. Comparison of unoccupied and occupied data showed that unoccupied acoustic conditions affect the noise levels occurring during lessons. They were also related to the time spent in disruption to the lessons (e.g., students talking or shouting) and so may also have an impact upon student behavior in the classroom.

  10. Teacher Responses to Learning Cycle Science Lessons for Early Childhood Education

    NASA Astrophysics Data System (ADS)

    Kraemer, Emily N.

    Three learning cycle science lessons were developed for preschoolers in an early childhood children's center in Costa Mesa, California. The lessons were field tested by both novice and experienced teachers with children ranging from three to five years old. Teachers were then interviewed informally to collect feedback on the structure and flow the lessons. The feedback was encouraging remarks towards the use of learning cycle science lessons for early childhood educators. Adjustments were made to the lessons based on teacher feedback. The lessons and their implications for preschool education are discussed.

  11. Managing External Relations: The Lifeblood of Mission Success

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.

    2007-01-01

    The slide presentation examines the role of customer and stakeholder relations in the success of space missions. Topics include agency transformation; an overview of project and program experience with a discussion of positions, technical accomplishments, and management lessons learned; and approaches to project success with emphasis on communication. Projects and programs discussed include the Space Shuttle Main Engine System, DC-XA Flight Demonstrator, X-33 Flight Demonstrator, Space Launch Initiative/2nd Generation Reusable Launch Vehicle, X-37 Flight Demonstrator, Constellation (pre Dr. Griffin), Safety and Mission Assurance, and Exploration Launch Projects.

  12. STS-71 Shuttle/Mir mission report

    NASA Technical Reports Server (NTRS)

    Zimpfer, Douglas J.

    1995-01-01

    The performance measurements of the space shuttle on-orbit flight control system from the STS-71 mission is presented in this post-flight analysis report. This system is crucial to the stabilization of large space structures and will be needed during the assembly of the International Space Station A mission overview is presented, including the in-orbit flight tests (pre-docking with Mir) and the systems analysis during the docking and undocking operations. Systems errors and lessons learned are discussed, with possible corrective procedures presented for the upcoming Mir flight tests.

  13. Space Shuttle Abort Evolution

    NASA Technical Reports Server (NTRS)

    Henderson, Edward M.; Nguyen, Tri X.

    2011-01-01

    This paper documents some of the evolutionary steps in developing a rigorous Space Shuttle launch abort capability. The paper addresses the abort strategy during the design and development and how it evolved during Shuttle flight operations. The Space Shuttle Program made numerous adjustments in both the flight hardware and software as the knowledge of the actual flight environment grew. When failures occurred, corrections and improvements were made to avoid a reoccurrence and to provide added capability for crew survival. Finally some lessons learned are summarized for future human launch vehicle designers to consider.

  14. The evolution of Orbiter depot support, with applications to future space vehicles

    NASA Technical Reports Server (NTRS)

    Mcclain, Michael L.

    1990-01-01

    The reasons for depot consolidation and the processes established to implement the Orbiter depot are presented. The Space Shuttle Orbiter depot support is presently being consolidated due to equipment suppliers leaving the program, escalating depot support costs, and increasing repair turnaround times. Details of the depot support program for orbiter hardware and selected pieces of support equipment are discussed. The benefits gained from this consolidation and the lessons learned are then applied to future reuseable space vehicles to provide program managers a forward look at the need for efficient depot support.

  15. Methodology of a Modern Foreign Language Lesson for Postgraduate Students of Technical Disciplines

    ERIC Educational Resources Information Center

    Toporkova, Olga; Novozhenina, Elena; Tchechet, Tamara; Likhacheva, Tatiana

    2014-01-01

    The integration of Russia into the international common space of research and education accompanied by modernization of the national system of education puts forward new demands to postgraduate education. The processes of integration and modernization increase the importance of learning a foreign language for a future scientist. The article deals…

  16. Making Space for the Act of Making: Creativity in the Engineering Design Classroom

    ERIC Educational Resources Information Center

    Lasky, Dorothea; Yoon, Susan A.

    2011-01-01

    Creativity continues to be an important goal for 21st century learning. However, teachers often have difficulties fostering creativity in their classrooms. Current creativity research suggests that the act of making can enhance the teaching of creativity. Hands-on engineering design lessons are ideal contexts for studying this effect. Through…

  17. Computer Aided Design: Instructional Manual. The North Dakota High Technology Mobile Laboratory Project.

    ERIC Educational Resources Information Center

    Cheng, Wan-Lee

    This instructional manual contains 12 learning activity packets for use in a workshop in computer-aided design and drafting (CADD). The lessons cover the following topics: introduction to computer graphics and computer-aided design/drafting; coordinate systems; advance space graphics hardware configuration and basic features of the IBM PC…

  18. Solar Dynamics Observatory Lessons Learned

    NASA Technical Reports Server (NTRS)

    Rivera, Rachel; Uhl, Andrew; Secunda, Mark

    2010-01-01

    Mission is to study how solar activity is created and how space weather results from that activity. Atmospheric Imaging Assembly (AIA): High Resolution Images of 10 wavelengths every 10 seconds. Extreme Ultraviolet Variability Experiment (EVE): Measure Sun's brightness in EUV. Helioseismic and Magnetic Imager (HMI): Measures Doppler shift to study waves of the Sun. Launched February 11, 2010.

  19. ACTEX flight experiment: development issues and lessons learned

    NASA Astrophysics Data System (ADS)

    Schubert, S. R.

    1993-09-01

    The ACTEX flight experiment is scheduled for launch and to begin its on orbit operations in early 1994. The objective of the ACTEX experiment is to demonstrate active vibration control in space, using the smart structure technology. This paper discusses primarily the hardware development and program management issues associated with delivering low cost flight experiments.

  20. Lessons learned from recent geomagnetic disturbance model validation activities

    NASA Astrophysics Data System (ADS)

    Pulkkinen, A. A.; Welling, D. T.

    2017-12-01

    Due to concerns pertaining to geomagnetically induced current impact on ground-based infrastructure, there has been significantly elevated interest in applying models for local geomagnetic disturbance or "delta-B" predictions. Correspondingly there has been elevated need for testing the quality of the delta-B predictions generated by the modern empirical and physics-based models. To address this need, community-wide activities were launched under the GEM Challenge framework and one culmination of the activities was the validation and selection of models that were transitioned into operations at NOAA SWPC. The community-wide delta-B action is continued under the CCMC-facilitated International Forum for Space Weather Capabilities Assessment and its "Ground Magnetic Perturbations: dBdt, delta-B, GICs, FACs" working group. The new delta-B working group builds on the past experiences and expands the collaborations to cover the entire international space weather community. In this paper, we discuss the key lessons learned from the past delta-B validation exercises and lay out the path forward for building on those experience under the new delta-B working group.

  1. After-Action Reports: Capturing Lessons Learned and Identifying Areas for Improvement. Lessons Learned from School Crises and Emergencies. Volume 2, Issue 1, 2007

    ERIC Educational Resources Information Center

    US Department of Education, 2007

    2007-01-01

    "Lessons Learned" is a series of publications that are a brief recounting of actual school emergencies and crises. This issue of "Lessons Learned" addresses after-action reports, which are an integral part of the emergency preparedness planning continuum and support effective crisis response. After-action reports have a threefold purpose. They…

  2. The Ares Launch Vehicles: Critical Capabilities for America's Continued Leadership in Space

    NASA Technical Reports Server (NTRS)

    Cook, Stephen A.

    2009-01-01

    The Constellation Program renews the nation's commitment to human space exploration a) Access to ISS. b) Human explorers to the Moon and beyond. c) Large telescopes and other hardware to LEO . Hardware is being built today. Development made easier by applying lessons learned from 50 years of spaceflight experience. Ares V heavy-lift capability will be a strategic asset for the nation. Constellation provides a means for world leadership through inspiration and strategic capability.

  3. Status of the Regenerative ECLSS Water Recovery System

    NASA Technical Reports Server (NTRS)

    Carter, Donald Layne

    2009-01-01

    NASA has completed the delivery of the regenerative Water Recovery System (WRS) for the International Space Station (ISS). The major assemblies included in this system are the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA). This paper summarizes the final effort to deliver the hardware to the Kennedy Space Center for launch on STS-126, the on-orbit status as of April 2009, and describes some of the technical challenges encountered and lessons learned over the past year.

  4. The challenge of logistics facilities development

    NASA Technical Reports Server (NTRS)

    Davis, James R.

    1987-01-01

    The paper discusses the experiences of a group of engineers and logisticians at John F. Kennedy Space center in the design, construction and activation of a consolidated logistics facility for support of Space Transportation System ground operations and maintenance. The planning, methodology and processes are covered, with emphasis placed on unique aspects and lessons learned. The project utilized a progressive design, baseline and build concept for each phase of construction, with the Government exercising funding and configuration oversight.

  5. Fire Performance of Shipboard Electronic Space Materials

    DTIC Science & Technology

    2006-09-15

    5d. PROJECT NUMBER 61-8513-0-6-5 John B. Hoover, Clarence L. Whitehurst, Eric B. Chang, and Frederick W. Williams 5e . TASK NUMBER 5f. WORK UNIT NUMBER...representative of current US Navy surface ship electronic spaces. It is expected that lessons learned from tests of this configuration will be applicable... NGSS ) for use on current construction DDG-51 class destroyers. The panels consist of a Nomex honeycomb core with a GRP (glass reinforced plastic

  6. The expanded role of computers in Space Station Freedom real-time operations

    NASA Technical Reports Server (NTRS)

    Crawford, R. Paul; Cannon, Kathleen V.

    1990-01-01

    The challenges that NASA and its international partners face in their real-time operation of the Space Station Freedom necessitate an increased role on the part of computers. In building the operational concepts concerning the role of the computer, the Space Station program is using lessons learned experience from past programs, knowledge of the needs of future space programs, and technical advances in the computer industry. The computer is expected to contribute most significantly in real-time operations by forming a versatile operating architecture, a responsive operations tool set, and an environment that promotes effective and efficient utilization of Space Station Freedom resources.

  7. NASA Crew Launch Vehicle Approach Builds on Lessons from Past and Present Missions

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.

    2006-01-01

    The United States Vision for Space Exploration, announced in January 2004, outlines the National Aeronautics and Space Administration's (NASA) strategic goals and objectives, including retiring the Space Shuttle and replacing it with a new human-rated system suitable for missions to the Moon and Mars. The Crew Exploration Vehicle (CEV) that the new Crew Launch Vehicle (CLV) lofts into space early next decade will initially ferry astronauts to the International Space Station and be capable of carrying crews back to lunar orbit and of supporting missions to Mars orbit. NASA is using its extensive experience gained from past and ongoing launch vehicle programs to maximize the CLV system design approach, with the objective of reducing total lifecycle costs through operational efficiencies. To provide in-depth data for selecting this follow-on launch vehicle, the Exploration Systems Architecture Study was conducted during the summer of 2005, following the confirmation of the new NASA Administrator. A team of aerospace subject matter experts used technical, budget, and schedule objectives to analyze a number of potential launch systems, with a focus on human rating for exploration missions. The results showed that a variant of the Space Shuttle, utilizing the reusable Solid Rocket Booster as the first stage, along with a new upper stage that uses a derivative of the RS-25 Space Shuttle Main Engine to deliver 25 metric tons to low-Earth orbit, was the best choice to reduce the risks associated with fielding a new system in a timely manner. The CLV Project, managed by the Exploration Launch Office located at NASA's Marshall Space Flight Center, is leading the design, development, testing, and operation of this new human-rated system. The CLV Project works closely with the Space Shuttle Program to transition hardware, infrastructure, and workforce assets to the new launch system . leveraging a wealth of lessons learned from Shuttle operations. The CL V is being designed to reduce costs through a number of methods, ranging from validating requirements to conducting trades studies against the concept design. Innovations such as automated processing will build on lessons learned from the Shuttle, other launch systems, Department of Defense operations experience, and subscale flight tests such as the Delta Clipper-Experimental Advanced (DCXA) vehicle operations that utilized minimal touch labor, automated cryogen ic propellant loading , and an 8-hour turnaround for a cryogenic propulsion system. For the CLV, the results of hazard analyses are contributing to an integrated vehicle health monitoring system that will troubleshoot anomalies and determine which ones can be solved without human intervention. Such advances will help streamline the mission operations process for pilots and ground controllers alike. In fiscal year 2005, NASA invested approximately $4.5 billion of its $16 bill ion budget on the Space Shuttle. The ultimate goal of the CLV Project is to deliver a safe, reliable system designed to minimize lifecycle costs so that NASA's budget can be invested in missions of scientific discovery. Lessons learned from developing the CLV will be applied to the growth path for future systems, including a heavy lift launch vehicle.

  8. Lessons from 30 Years of Flight Software

    NASA Technical Reports Server (NTRS)

    McComas, David C.

    2015-01-01

    This presentation takes a brief historical look at flight software over the past 30 years, extracts lessons learned and shows how many of the lessons learned are embodied in the Flight Software product line called the core Flight System (cFS). It also captures the lessons learned from developing and applying the cFS.

  9. Inflatable Habitat Health Monitoring: Implementation, Lessons Learned, and Application to Lunar or Martian Habitat Health Monitoring

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Hong, Todd; Hafermalz, Scott; Hunkins, Robert; Valle, Gerald; Toups, Larry

    2009-01-01

    NASA's exploration mission is to send humans to the Moon and Mars, in which the purpose is to learn how to live and work safely in those harsh environments. A critical aspect of living in an extreme environment is habitation, and within that habitation element there are key systems which monitor the habitation environment to provide a safe and comfortable living and working space for humans. Expandable habitats are one of the options currently being considered due to their potential mass and volume efficiencies. This paper discusses a joint project between the National Science Foundation (NSF), ILC Dover, and NASA in which an expandable habitat was deployed in the extreme environment of Antarctica to better understand the performance and operations over a one-year period. This project was conducted through the Innovative Partnership Program (IPP) where the NSF provided the location at McMurdo Station in Antarctica and support at the location, ILC Dover provided the inflatable habitat, and NASA provided the instrumentation and data system for monitoring the habitat. The outcome of this project provided lessons learned in the implementation of an inflatable habitat and the systems that support that habitat. These lessons learned will be used to improve current habitation capabilities and systems to meet the objectives of exploration missions to the moon and Mars.

  10. Communication and Collaboration During Natural Disasters: The Lessons Learned From Past Experience. Lessons Learned From School Crises and Emergencies, Volume 3, Issue 2, 2008

    ERIC Educational Resources Information Center

    US Department of Education, 2008

    2008-01-01

    "Lessons Learned" is a series of publications that are a brief recounting of actual school emergencies and crises. This "Lessons Learned" issue focuses on the response and recovery efforts to wildfires by the San Diego County Office of Education (SDCOE) and its school and community partners. Natural disasters such as floods,…

  11. Shaping NASA's Kennedy Space Center Safety for the Future

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, Paul; McDaniel, Laura; Smith, Maynette

    2011-01-01

    With the completion of the Space Shuttle Program, the Kennedy Space Center (KSC) safety function will be required to evolve beyond the single launch vehicle launch site focus that has held prominence for almost fifty years. This paper will discuss how that evolution is taking place. Specifically, we will discuss the future of safety as it relates to a site that will have multiple, very disparate, functions. These functions will include new business; KSC facilities not under the control of NASA; traditional payload and launch vehicle processing; and, operations conducted by NASA personnel, NASA contractors or a combination of both. A key element in this process is the adaptation of the current KSC set of safety requirements into a multi-faceted set that can address each of the functions above, while maintaining our world class safety environment. One of the biggest challenges that will be addressed is how to protect our personnel and property without dictating how other Non-NASA organizations protect their own employees and property. The past history of KSC Safety will be described and how the lessons learned from previous programs will be applied to the future. The lessons learned from this process will also be discussed as information for other locations that may undergo such a transformation.

  12. Profile of NASA software engineering: Lessons learned from building the baseline

    NASA Technical Reports Server (NTRS)

    Hall, Dana; Mcgarry, Frank

    1993-01-01

    It is critically important in any improvement activity to first understand the organization's current status, strengths, and weaknesses and, only after that understanding is achieved, examine and implement promising improvements. This fundamental rule is certainly true for an organization seeking to further its software viability and effectiveness. This paper addresses the role of the organizational process baseline in a software improvement effort and the lessons we learned assembling such an understanding for NASA overall and for the NASA Goddard Space Flight Center in particular. We discuss important, core data that must be captured and contrast that with our experience in actually finding such information. Our baselining efforts have evolved into a set of data gathering, analysis, and crosschecking techniques and information presentation formats that may prove useful to others seeking to establish similar baselines for their organization.

  13. The Double Flybys of the Cassini Mission: Navigation Challenges and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Wagner, Sean; Buffington, Brent

    2014-01-01

    Since 2004, the Cassini spacecraft has flown by Titan and other Saturn moons numerous times, successfully accomplishing its 100th targeted encounter of Titan in March 2014. The navigation of Cassini is challenging, even more so with "double flybys," two encounters separated by at most a few days. Because of this tight spacing, there is not enough time for a maneuver in between. Additionally, maneuvers prior to a double flyby only target one of the two encounters. This paper discusses the challenges faced by the Cassini Navigation Team with each double flyby, as well as lessons learned during operational support of each dual encounter. The strengths and weaknesses of the targeting strategies considered for each double flyby are also detailed, by comparing downstream ?V costs and changes to the non-targeted flyby conditions.

  14. Testing Planetary Rovers: Technologies, Perspectives, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Thomas, Hans; Lau, Sonie (Technical Monitor)

    1998-01-01

    Rovers are a vital component of NASA's strategy for manned and unmanned exploration of space. For the past five years, the Intelligent Mechanisms Group at the NASA Ames Research Center has conducted a vigorous program of field testing of rovers from both technology and science team productivity perspective. In this talk, I will give an overview of the the last two years of the test program, focusing on tests conducted in the Painted Desert of Arizona, the Atacama desert in Chile, and on IMG participation in the Mars Pathfinder mission. An overview of autonomy, manipulation, and user interface technologies developed in response to these missions will be presented, and lesson's learned in these missions and their impact on future flight missions will be presented. I will close with some perspectives on how the testing program has affected current rover systems.

  15. G254: USU student payload flown on STS-64 in September, 1994

    NASA Technical Reports Server (NTRS)

    Raghuram, Tumkur; Monje, Oscar A.; Evans, Brett; Droter, Matt; Lemon, Mark; Redd, Kristen; Hubble, Tina; Wilkinson, Mark; Wilkinson, Michael; Tebbs, Dan

    1995-01-01

    G254 is the culmination of USU Get Away Special (GAS) students' efforts to get back into space. After a hiatus of a decade, the USU GAS program flew its sixth canister on STS-64 in September 1994. Like its predecessor payloads, this one contained a diverse set of experiments, six in all. Each experiment has its own lessons learned, which hopefully can be passed on to the next generation of GAS students. This presentation will give a balanced view of the successes and failures of G254. Emphasis will be placed on describing the stumbling blocks and the many lessons learned that come from experience rather than academic training. G254 has once again taken a team of about fifteen USU students, plus about one hundred fourth and fifth graders, and given them an immeasurable education.

  16. Co-Creation Learning Procedures: Comparing Interactive Language Lessons for Deaf and Hearing Students.

    PubMed

    Hosono, Naotsune; Inoue, Hiromitsu; Tomita, Yutaka

    2017-01-01

    This paper discusses co-creation learning procedures of second language lessons for deaf students, and sign language lessons by a deaf lecturer. The analyses focus on the learning procedure and resulting assessment, considering the disability. Through questionnaires ICT-based co-creative learning technologies are effective and efficient and promote spontaneous learning motivation goals.

  17. ISS Training Best Practices and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Barshi, Immanuel; Dempsey, Donna L.

    2017-01-01

    Training our crew members for long duration exploration-class missions (LDEM) will have to be qualitatively and quantitatively different from current training practices. However, there is much to be learned from the extensive experience NASA has gained in training crew members for missions on board the International Space Station (ISS). Furthermore, the operational experience on board the ISS provides valuable feedback concerning training effectiveness. Keeping in mind the vast differences between current ISS crew training and training for LDEM, the needs of future crew members, and the demands of future missions, this ongoing study seeks to document current training practices and lessons learned. The goal of the study is to provide input to the design of future crew training that takes as much advantage as possible of what has already been learned and avoids as much as possible past inefficiencies. Results from this study will be presented upon its completion. By researching established training principles, examining future needs, and by using current practices in spaceflight training as test beds, this research project is mitigating program risks and generating templates and requirements to meet future training needs.

  18. Unintended knowledge learnt in primary science practical lessons

    NASA Astrophysics Data System (ADS)

    Park, Jisun; Abrahams, Ian; Song, Jinwoong

    2016-11-01

    This study explored the different kinds of unintended learning in primary school practical science lessons. In this study, unintended learning has been defined as student learning that was found to occur that was not included in the teachers learning objectives for that specific lesson. A total of 22 lessons, taught by five teachers in Korean primary schools with 10- to 12-year-old students, were audio-and video recorded. Pre-lesson interviews with the teachers were conducted to ascertain their intended learning objectives. Students were asked to write short memos after the lesson about what they learnt. Post-lesson interviews with students and teachers were undertaken. What emerged was that there were three types of knowledge that students learnt unintentionally: factual knowledge gained by phenomenon-based reasoning, conceptual knowledge gained by relation- or model-based reasoning, and procedural knowledge acquired by practice. Most unintended learning found in this study fell into the factual knowledge and only a few cases of conceptual knowledge were found. Cases of both explicit procedural knowledge and implicit procedural knowledge were found. This study is significant in that it suggests how unintended learning in practical work can be facilitated as an educative opportunity for meaningful learning by exploring what and how students learnt.

  19. Lessons learned from first year cistern monitoring in Camden ...

    EPA Pesticide Factsheets

    Invited panelist for Webinar 08/16/2016 by Office of Water : Lessons Learned from Past Green Infrastructure Projects Invited panelist for Webinar 08/16/2016 by Office of Water : Lessons Learned from Past Green Infrastructure Projects

  20. 77 FR 55230 - Japan Lessons-Learned Project Directorate Interim Staff Guidance JLD-ISG-2012-01; Compliance With...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-07

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0068] Japan Lessons-Learned Project Directorate Interim... Commission (NRC). ACTION: Japan Lessons-Learned Project Directorate interim staff guidance; issuance. SUMMARY...-Learned Project Directorate Interim Staff Guidance (JLD-ISG), JLD-ISG-2012-01, ``Compliance with Order EA...

  1. 77 FR 55232 - Japan Lessons-Learned Project Directorate Interim Staff Guidance JLD-ISG-2012-03; Compliance With...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-07

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0067] Japan Lessons-Learned Project Directorate Interim...-Learned Project Directorate Interim Staff Guidance; issuance. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC or the Commission) is issuing the Final Japan Lessons-Learned Project Directorate (JLD...

  2. 77 FR 55231 - Japan Lessons-Learned Project Directorate Interim Staff Guidance JLD-ISG-2012-02; Compliance With...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-07

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0069] Japan Lessons-Learned Project Directorate Interim...-Learned Project Directorate interim staff guidance; issuance. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC or the Commission) is issuing the Final Japan Lessons-Learned Project Directorate Interim...

  3. Mars Program Independent Assessment Team Report

    NASA Technical Reports Server (NTRS)

    Young, Thomas; Arnold, James; Brackey, Thomas; Carr, Michael; Dwoyer, Douglas; Fogleman, Ronald; Jacobson, Ralph; Kottler, Herbert; Lyman, Peter; Maguire, Joanne

    2000-01-01

    The Mars Climate Orbiter failed to achieve Mars orbit on September 23, 1999. On December 3, 1999, Mars Polar Lander and two Deep Space 2 microprobes failed. As a result, the NASA Administrator established the Mars Program Independent Assessment Team (MPIAT) with the following charter: 1) Review and analyze successes and failures of recent Mars and Deep Space Missions which include: a) Mars Global Surveyor, b) Mars Climate Orbiter, c) Pathfinder, d) Mars Polar Lander, e) Deep Space 1, and f) Deep Space 2; 2) Examine the relationship between and among, NASA Jet Propulsion Laboratory (JPL), California Institute of Technology (Caltech), NASA Headquarters, and industry partners; 3) Assess effectiveness of involvement of scientists; 4) Identify lessons learned from successes and failures; 5) Review revised Mars Surveyor Program to assure lessons learned are utilized; 6) Oversee Mars Polar Lander and Deep Space 2 failure reviews; and 7) Complete by March 15, 2000. In-depth reviews were conducted at NASA Headquarters, JPL, and Lockheed Martin Astronautics (LMA). Structured reviews, informal sessions with numerous Mars Program participants, and extensive debate and discussion within the MPIAT establish the basis for this report. The review process began on January 7, 2000, and concluded with a briefing to the NASA Administrator on March 14, 2000. This report represents the integrated views of the members of the MPIAT who are identified in the appendix. In total, three related reports have been produced: a summary report, this report entitled "Mars Program Independent Assessment Team Report," and the "Report on the Loss of the Mars Polar Lander and Deep Space 2 Missions".

  4. Capacity building in emerging space nations: Experiences, challenges and benefits

    NASA Astrophysics Data System (ADS)

    Jason, Susan; da Silva Curiel, Alex; Liddle, Doug; Chizea, Francis; Leloglu, Ugur Murat; Helvaci, Mustafa; Bekhti, Mohammed; Benachir, Djouad; Boland, Lee; Gomes, Luis; Sweeting, Martin

    2010-09-01

    This paper focuses on ways in which space is being used to build capacity in science and technology in order to: Offer increasing support for national and global solutions to current and emerging problems including: how to improve food security; resource management; understanding the impacts of climate change and how to deal with them; improving disaster mitigation, management and response. Support sustainable economic development. We present some of the experiences, lessons learned and benefits gained in capacity building projects undertaken by Surrey Satellite Technology Ltd. and our partners from developing and mature space nations. We focus on the Turkish, Algerian and Nigerian know-how and technology transfer programmes which form part of the first Disaster Monitoring Constellation (DMC) in orbit. From the lessons learned on Surrey's know-how and technology transfer partnership programmes, it is clear that space technology needs to be implemented responsibly as part of a long-term capacity building plan to be a sustainable one. It needs to be supported with appropriate policy and legal frameworks, institutional development, including community participation, human resources development and strengthening of managerial systems. In taking this on board, DMC has resulted in a strong international partnership combining national objectives, humanitarian aid and commerce. The benefits include: Ownership of space-based and supporting ground assets with low capital expenditure that is in line with national budgets of developing nations. Ownership of data and control over data acquisition. More for the money via collaborative consortium. Space related capacity building in organisations and nations with the goal of sustainable development. Opportunities for international collaboration, including disaster management and relief.

  5. Lessons learned from the Galileo and Ulysses flight safety review experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Gary L.

    In preparation for the launches of the Galileo and Ulysses spacecraft, a very comprehensive aerospace nuclear safety program and flight safety review were conducted. A review of this work has highlighted a number of important lessons which should be considered in the safety analysis and review of future space nuclear systems. These lessons have been grouped into six general categories: (1) establishment of the purpose, objectives and scope of the safety process; (2) establishment of charters defining the roles of the various participants; (3) provision of adequate resources; (4) provision of timely peer-reviewed information to support the safety program; (5)more » establishment of general ground rules for the safety review; and (6) agreement on the kinds of information to be provided from the safety review process.« less

  6. Space Mysteries: Making Science and Astronomy Learning Fun

    NASA Astrophysics Data System (ADS)

    Plait, P.; Tim, G.; Cominsky, L.

    2001-12-01

    How do you get and keep a student's attention during class? Make learning fun! Using a game to teach students ensures that they have fun, enjoy the lesson and remember it. We have developed a series of interactive web and CD based games called "Space Mysteries" to teach students math, physics and astronomy. Using real NASA data, the students must find out Who (or What) dunit in an engaging astronomy mystery. The games include video interviews with famous scientists, actors playing roles who give clues to the solution, and even a few blind alleys and red herrings. The first three games are currently online in beta release at http://mystery.sonoma.edu.

  7. Lessons Learned in Building the Ares Projects

    NASA Technical Reports Server (NTRS)

    Sumrall, John Phil

    2010-01-01

    Since being established in 2005, the Ares Projects at Marshall Space Flight Center have been making steady progress designing, building, testing, and flying the next generation of exploration launch vehicles. Ares is committed to rebuilding crucial capabilities from the Apollo era that made the first human flights to the Moon possible, as well as incorporating the latest in computer technology and changes in management philosophy. One example of an Apollo-era practice has been giving NASA overall authority over vehicle integration activities, giving civil service engineers hands-on experience in developing rocket hardware. This knowledge and experience help make the agency a "smart buyer" of products and services. More modern practices have been added to the management tool belt to improve efficiency, cost effectiveness, and institutional knowledge, including knowledge management/capture to gain better insight into design and decision making; earned value management, where Ares won a NASA award for its practice and implementation; designing for operability; and Lean Six Sigma applications to identify and eliminate wasted time and effort. While it is important to learn technical lessons like how to fly and control unique rockets like the Ares I-X flight test vehicle, the Ares management team also has been learning important lessons about how to manage large, long-term projects.

  8. Argumentation Tasks in Secondary English Language Arts, History, and Science: Variations in Instructional Focus and Inquiry Space

    ERIC Educational Resources Information Center

    Litman, Cindy; Greenleaf, Cynthia

    2018-01-01

    This study drew on observations of 40 secondary English language arts, history, and science lessons to describe variation in opportunities for students to engage in argumentation and possible implications for student engagement and learning. The authors focused their analysis on two broad dimensions of argumentation tasks: (1) "Instructional…

  9. Can a Rabbit Be a Scientist? Stimulating Philosophical Dialogue in Science Classes

    ERIC Educational Resources Information Center

    Dunlop, Lynda; de Schrijver, Jelle

    2018-01-01

    Philosophical dialogue requires an approach to teaching and learning in science that is focused on problem posing and provides space for meaning making, finding new ways of thinking and understanding and for linking science with broader human experiences. This article explores the role that philosophical dialogue can play in science lessons and…

  10. Bridging the Gap between Second Language Researchers and Teachers: Lessons Learned

    ERIC Educational Resources Information Center

    Mady, Callie

    2012-01-01

    With a view to bridging the gap between elementary (primary) and secondary school second language teachers and researchers, the study reported in this paper identified differences in language register, educators' lack of access to research articles and lack of shared space for researchers and educators to communicate as causes of the gap. There is…

  11. Making Space to Think with Others

    ERIC Educational Resources Information Center

    West, Linden

    2012-01-01

    Death is often a time of reappraisal for those left behind: of gifts a person may have given, and of lessons that might be learned from their struggles. A number of distinguished adult educators, whose lives were shaped by twentieth-century wars and fragilities, have recently died. They include Roy Shaw, one-time Director of Adult Education at the…

  12. Leaders of Sustainable Development Projects: Resources Used and Lessons Learned in a Context of Environmental Education?

    ERIC Educational Resources Information Center

    Pruneau, Diane; Lang, Mathieu; Kerry, Jackie; Fortin, Guillaume; Langis, Joanne; Liboiron, Linda

    2014-01-01

    In our day, leaders involved in ingenious sustainable development projects plan spaces and implement practices that are beneficial to the environment. These initiatives represent a fertile source of information on the competences linked to environmental design that we should nurture in our students. In view of improving our understanding of the…

  13. Getting to the Left of Sharp: Lessons Learned from West Point’s Efforts to Combat Sexual Harassment and Assault

    DTIC Science & Technology

    2015-01-01

    the same standards to pornographic materials in those spaces that they would in other work areas. This is clearly a sensitive area, but ample...precedent exists: General Order #1 for deployed forces prohibits purchasing, producing, or displaying any pornographic or sexu- ally explicit material

  14. Evaluation of installed solar systems at Navy, Army, and Air Force Bases. Final report, October 1984-September 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durlak, E.R.

    1986-05-01

    This report presents a summary of the results of site-evaluation inspection conducted at Navy, Army, and Air Force base. The solar systems evaluated included space heating, space cooling, and domestic hot water system. The systems range in size from small two-collector systems to large arrays installed on barracks, mess halls, office buildings, etc. These operational results are presented so that future designs will benefit from the lesson learned in this study.

  15. Space shuttle orbiter leading-edge flight performance compared to design goals

    NASA Technical Reports Server (NTRS)

    Curry, D. M.; Johnson, D. W.; Kelly, R. E.

    1983-01-01

    Thermo-structural performance of the Space Shuttle orbiter Columbia's leading-edge structural subsystem for the first five (5) flights is compared with the design goals. Lessons learned from thse initial flights of the first reusable manned spacecraft are discussed in order to assess design maturity, deficiencies, and modifications required to rectify the design deficiencies. Flight data and post-flight inspections support the conclusion that the leading-edge structural subsystem hardware performance was outstanding for the initial five (5) flights.

  16. A Small Revolution in Space: An Analysis of the Challenges to US Military Adoption of Small Satellite Constellations

    DTIC Science & Technology

    2017-06-01

    IDd Descriptione Technical Analysisf Bridges 6 4.5 1.5 1 0.3 Communications Radar 3 1 0.3 0.15 0.015 Radio 3 1.5 0.3 0.15 0.015 Troop Units (in... communications . 11 This percentage was achieved despite demand exceeding supply in both bandwidth and 9 David N...Military Satellite Communications .” 11 Air Force Space Command, Desert Storm Hot Wash “AFSPACECOM Desert Shield/Desert Storm Lessons Learned,” (12

  17. Acquisition of Earth Science Remote Sensing Observations from Commercial Sources: Lessons Learned from the Space Imaging IKONOS Example

    NASA Technical Reports Server (NTRS)

    Goward, Samuel N.; Townshend, John R.; Zanoni, Vicki; Policelli, Fritz; Stanley, Tom; Ryan, Robert; Holekamp, Kara; Underwood, Lauren; Pagnutti, Mary; Fletcher, Rose

    2003-01-01

    In an effort to more full explore the potential of commercial remotely sensed land data sources, the NASA Earth Science Enterprise (ESE) implemented an experimental Scientific Data Purchase (SDP) that solicited bids from the private sector to meet ESE-user data needs. The images from the Space Imaging IKONOS system provided a particularly good match to the current ESE missions such as Terra and Landsat 7 and therefore serve as a focal point in this analysis.

  18. DT&E Forum for Best Practices and Lessons Learned

    DTIC Science & Technology

    2013-05-01

    E A N A L Y S E S IDA Paper P-4975 DT&E Forum for Best Practices and Lessons Learned L. B. Scheiber, Project Leader...and accessing from the DT&E Forum website. A. Collection of Lessons Learned and Best Practices We began the effort by reviewing approximately 30...Forum’s Home Page 1. Searching for BPLL Documents The DT&E Forum website contains DT&E Best Practice and Lessons Learned (BPLL) documents along with the

  19. Papermaking and Poetry. ArtsEdge Curricula, Lessons and Activities.

    ERIC Educational Resources Information Center

    Withroe, J.

    In this lesson, designed to be taught within a unit on China, primary-grade students will learn about the history of papermaking and its origins in China and even learn how to make their own paper. After learning about Chinese art and culture in the lesson, students will write their own "cinquain" poem about China. The lesson presents an…

  20. Planning to Serve: Using Backwards Planning to Design Service-Learning Lesson Plans in the Preservice Curriculum

    ERIC Educational Resources Information Center

    Stiler, Gary

    2009-01-01

    The author describes how the Understanding by Design (backwards planning) lesson plan format was used by his preservice K-12 students to develop service-learning lesson plans. Preservice teachers in a multicultural education course were given an assignment to develop service-learning lesson plans using the Understanding by Design planning process.…

  1. Learning from Lessons: studying the structure and construction of mathematics teacher knowledge in Australia, China and Germany

    NASA Astrophysics Data System (ADS)

    Chan, Man Ching Esther; Clarke, David J.; Clarke, Doug M.; Roche, Anne; Cao, Yiming; Peter-Koop, Andrea

    2018-03-01

    The major premise of this project is that teachers learn from the act of teaching a lesson. Rather than asking "What must a teacher already know in order to practice effectively?", this project asks "What might a teacher learn through their activities in the classroom and how might this learning be optimised?" In this project, controlled conditions are created utilising purposefully designed and trialled lesson plans to investigate the process of teacher knowledge construction, with teacher selective attention proposed as a key mediating variable. In order to investigate teacher learning through classroom practice, the project addresses the following questions: To what classroom objects, actions and events do teachers attend and with what consequence for their learning? Do teachers in different countries attend to different classroom events and consequently derive different learning benefits from teaching a lesson? This international project combines focused case studies with an online survey of mathematics teachers' selective attention and consequent learning in Australia, China and Germany. Data include the teacher's adaptation of a pre-designed lesson, the teacher's actions during the lesson, the teacher's reflective thoughts about the lesson and, most importantly, the consequences for the planning and delivery of a second lesson. The combination of fine-grained, culturally situated case studies and large-scale online survey provides mutually informing benefits from each research approach. The research design, so constituted, offers the means to a new and scalable vision of teacher learning and its promotion.

  2. Considerations for implementing an organizational lessons learned process.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fosshage, Erik D

    2013-05-01

    This report examines the lessons learned process by a review of the literature in a variety of disciplines, and is intended as a guidepost for organizations that are considering the implementation of their own closed-loop learning process. Lessons learned definitions are provided within the broader context of knowledge management and the framework of a learning organization. Shortcomings of existing practices are summarized in an attempt to identify common pitfalls that can be avoided by organizations with fledgling experiences of their own. Lessons learned are then examined through a dual construct of both process and mechanism, with emphasis on integrating intomore » organizational processes and promoting lesson reuse through data attributes that contribute toward changed behaviors. The report concludes with recommended steps for follow-on efforts.« less

  3. A Decade of Life Sciences Experiment Unique Equipment Development for Spacelab and Space Station, 1990-1999

    NASA Technical Reports Server (NTRS)

    Savage, Paul D.; Connolly, J. P.; Navarro, B. J.

    1999-01-01

    Ames Research Center's Life Sciences Division has developed and flown an extensive array of spaceflight experiment unique equipment (EUE) during the last decade of the twentieth century. Over this ten year span, the EUE developed at ARC supported a vital gravitational biology flight research program executed on several different platforms, including the Space Shuttle, Spacelab, and Space Station Mir. This paper highlights some of the key EUE elements developed at ARC and flown during the period 1990-1999. Resulting lessons learned will be presented that can be applied to the development of similar equipment for the International Space Station.

  4. Operational Use of GPS Navigation for Space Shuttle Entry

    NASA Technical Reports Server (NTRS)

    Goodman, John L.; Propst, Carolyn A.

    2008-01-01

    The STS-118 flight of the Space Shuttle Endeavour was the first shuttle mission flown with three Global Positioning System (GPS) receivers in place of the three legacy Tactical Air Navigation (TACAN) units. This marked the conclusion of a 15 year effort involving procurement, missionization, integration, and flight testing of a GPS receiver and a parallel effort to formulate and implement shuttle computer software changes to support GPS. The use of GPS data from a single receiver in parallel with TACAN during entry was successfully demonstrated by the orbiters Discovery and Atlantis during four shuttle missions in 2006 and 2007. This provided the confidence needed before flying the first all GPS, no TACAN flight with Endeavour. A significant number of lessons were learned concerning the integration of a software intensive navigation unit into a legacy avionics system. These lessons have been taken into consideration during vehicle design by other flight programs, including the vehicle that will replace the Space Shuttle, Orion.

  5. NASA's astrophysics archives at the National Space Science Data Center

    NASA Technical Reports Server (NTRS)

    Vansteenberg, M. E.

    1992-01-01

    NASA maintains an archive facility for Astronomical Science data collected from NASA's missions at the National Space Science Data Center (NSSDC) at Goddard Space Flight Center. This archive was created to insure the science data collected by NASA would be preserved and useable in the future by the science community. Through 25 years of operation there are many lessons learned, from data collection procedures, archive preservation methods, and distribution to the community. This document presents some of these more important lessons, for example: KISS (Keep It Simple, Stupid) in system development. Also addressed are some of the myths of archiving, such as 'scientists always know everything about everything', or 'it cannot possibly be that hard, after all simple data tech's do it'. There are indeed good reasons that a proper archive capability is needed by the astronomical community, the important question is how to use the existing expertise as well as the new innovative ideas to do the best job archiving this valuable science data.

  6. Hubble Space Telescope Deep Field Lesson Package. Teacher's Guide, Grades 6-8. Amazing Space: Education On-Line from the Hubble Space Telescope.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This lesson guide accompanies the Hubble Deep Field set of 10 lithographs and introduces 4 astronomy lesson plans for middle school students. Lessons include: (1) "How Many Objects Are There?"; (2) "Classifying and Identifying"; (3) "Estimating Distances in Space"; and (4) "Review and Assessment." Appendices…

  7. Lesson Study and Teachers Knowledge Development: Collaborative Critique of a Research Model and Methods.

    ERIC Educational Resources Information Center

    Lewis, Catherine; Perry, Rebecca; Murata, Aki

    During "lesson study" teachers formulate long-term goals for student learning and development, collaboratively work on "research lessons" to bring these goals to life, document and discuss student responses to these lessons, and revise the lessons in response to student learning. This document summarizes the content of a…

  8. A Checklist of Artillery Organizational Histories; A Compilation.

    DTIC Science & Technology

    1982-03-08

    Artillery. 3d Battalion. Ab Operational reports - Lessons learned. ( 3d ) 1966- . (Vietnam n.p.) APO 96318. 1. Vietnamese Conflict, 1961- I. Title. 11...1973. A631 U.S. Army. 18th Artillery. 3d Bn. A18 Operational report(s) - Lessons learned. ( 3d ) (Vietnam, n.p.) 1966- nos. 1. Vietnamese Conflict, 1961...1973. I. Title. II. T: Lessons learned. *DS557 Vietnamese Conflict, 1961-1973 A63A]8 ’U.S. Army. 18th Artillery. 3d Bn. Lessons learned. (Vietnam, n.p

  9. A Sustainable, Reliable Mission-Systems Architecture that Supports a System of Systems Approach to Space Exploration

    NASA Technical Reports Server (NTRS)

    Watson, Steve; Orr, Jim; O'Neil, Graham

    2004-01-01

    A mission-systems architecture based on a highly modular "systems of systems" infrastructure utilizing open-standards hardware and software interfaces as the enabling technology is absolutely essential for an affordable and sustainable space exploration program. This architecture requires (a) robust communication between heterogeneous systems, (b) high reliability, (c) minimal mission-to-mission reconfiguration, (d) affordable development, system integration, and verification of systems, and (e) minimum sustaining engineering. This paper proposes such an architecture. Lessons learned from the space shuttle program are applied to help define and refine the model.

  10. The Paving Stones: initial feed-back on an attempt to apply the AGILE principles for the development of a CubeSat space mission to Mars

    NASA Astrophysics Data System (ADS)

    Segret, Boris; Semery, Alain; Vannitsen, Jordan; Mosser, Benoît.; Miau, Jiun-Jih; Juang, Jyh-Ching; Deleflie, Florent

    2014-08-01

    The AGILE principles in the software industry seems well adapted to the paradigm of CubeSat missions that involve students for the development of space missions. Some of well-known engineering and program processes are revisited on the example of an interplanetary CubeSat mission profile that has been developed by several teams of students in various countries and at various educational levels since 02/2013. The lessons learned at adapting traditional space mission methods are emphasized and they produce a metaphoric image of paving stones.

  11. Lessons Learned from the Hubble Space Telescope (HST) Contamination Control Program

    NASA Technical Reports Server (NTRS)

    Hansen, Patricia A.; Townsend, Jacqueline A.; Hedgeland, Randy J.

    2004-01-01

    Over the past two decades, the Hubble Space Telescope (HST) Contamination Control Program has evolved from a ground-based integration program to a space-based science-sustaining program. The contamination controls from the new-generation Scientific Instruments and Orbital Replacement Units were incorporated into the HST Contamination Control Program to maintain scientific capability over the life of the telescope. Long-term on-orbit scientific data has shown that these contamination controls implemented for the instruments, Servicing Mission activities (Orbiter, Astronauts, and mission), and on-orbit operations successfully protected the HST &om contamination and the instruments from self-contamination.

  12. Lessons Learned from the Hubble Space Telescope (HST) Contamination Control Program

    NASA Technical Reports Server (NTRS)

    Hansen, Patricia A.; Townsend, Jacqueline A.; Hedgeland, Randy J.

    2004-01-01

    Over the past two decades, the Hubble Space Telescope (HST) Contamination Control Program has evolved from a ground-based integration program to a space-based science-sustaining program. The contamination controls from the new-generation Scientific Instruments and Orbital Replacement Units were incorporated into the HST Contamination Control Program to maintain scientific capability over the life of the telescope. Long-term on-orbit scientific data has shown that these contamination controls implemented for the instruments, Servicing Mission activities (Orbiter, Astronauts, and mission), and on-orbit operations successfully protected the HST from contamination and the instruments from self-contamination.

  13. Improving the primary school science learning unit about force and motion through lesson study

    NASA Astrophysics Data System (ADS)

    Phaikhumnam, Wuttichai; Yuenyong, Chokchai

    2018-01-01

    The study aimed to develop primary school science lesson plan based on inquiry cycle (5Es) through lesson study. The study focused on the development of 4 primary school science lesson plans of force and motion for Grade 3 students in KKU Demonstration Primary School (Suksasart), first semester of 2015 academic year. The methodology is mixed method. The Inthaprasitha (2010) lesson study cycle was implemented in group of KKU Demonstration Primary School. Instruments of reflection of lesson plan developing included participant observation, meeting and reflection report, lesson plan and other document. The instruments of examining students' learning include classroom observation and achievement test. Data was categorized from these instruments to find the issues of changing and improving the good lesson plan of Thai primary school science learning. The findings revealed that teachers could develop the lesson plans through lesson study. The issues of changing and improving were disused by considering on engaging students related to societal issues, students' prior knowledge, scientific concepts for primary school students, and what they learned from their changing. It indicated that the Lesson Study allowed primary school science teachers to share ideas and develop ideas to improve the lesson. The study may have implications for Thai science teacher education through Lesson Study.

  14. In space performance of the lunar orbiter laser altimeter (LOLA) laser transmitter

    NASA Astrophysics Data System (ADS)

    Yu, Anthony W.; Shaw, George B.; Novo-Gradac, Ann Marie; Li, Steven X.; Cavanaugh, John

    2011-11-01

    In this paper we present the final configuration of the space flight laser transmitter as delivered to the Lunar Orbiter Laser Altimeter (LOLA) instrument along with some in-space operation performance data. The LOLA instrument is designed to map the lunar surface and provide unprecedented data products in anticipation of future manned flight missions. The laser transmitter has been operating on orbit at the Moon continuously since July 2009 and accumulated over 1.8 billion laser shots in space. The LOLA laser transmitter design has heritage dated back to the MOLA laser transmitter launched more than 10 years ago and incorporates lessons learned from previous laser altimeter missions at NASA Goddard Space Flight Center.

  15. Learning to Lead, Leading to Learn: How Facilitators Learn to Lead Lesson Study

    ERIC Educational Resources Information Center

    Lewis, Jennifer M.

    2016-01-01

    This article presents research on how teacher developers in the United States learn to conduct lesson study. Although the practice of lesson study is expanding rapidly in the US, high-quality implementation requires skilled facilitation. In contexts such as the United States where this form of professional development is relatively novel, few…

  16. Solid-State Lighting: Early Lessons Learned on the Way to Market

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandahl, Linda J.; Cort, Katherine A.; Gordon, Kelly L.

    2013-12-31

    The purpose of this report is to document early challenges and lessons learned in the solid-state lighting (SSL) market development as part of the DOE’s SSL Program efforts to continually evaluate market progress in this area. This report summarizes early actions taken by DOE and others to avoid potential problems anticipated based on lessons learned from the market introduction of compact fluorescent lamps and identifies issues, challenges, and new lessons that have been learned in the early stages of the SSL market introduction. This study identifies and characterizes12 key lessons that have been distilled from DOE SSL program results.

  17. Utilization of Lesson Analysis as Teacher Self Reflection to Improve the Lesson Design on Chemical Equation Topic

    NASA Astrophysics Data System (ADS)

    Edyani, E. A.; Supriatna, A.; Kurnia; Komalasari, L.

    2017-02-01

    The research is aimed to investigate how lesson analysis as teacher’s self-reflection changes the teacher’s lesson design on chemical equation topic. Lesson Analysis has been used as part of teacher training programs to improve teacher’s ability in analyzing their own lesson. The method used in this research is a qualitative method. The research starts from build lesson design, implementation lesson design to senior high school student, utilize lesson analysis to get information about the lesson, and revise lesson design. The revised lesson design from the first implementation applied to the second implementation, resulting in better design. This research use lesson analysis Hendayana&Hidayat framework. Video tapped and transcript are employed on each lesson. After first implementation, lesson analysis result shows that teacher-centered still dominating the learning because students are less active in discussion, so the part of lesson design must be revised. After second implementation, lesson analysis result shows that the learning already student-centered. Students are very active in discussion. But some part of learning design still must be revised. In general, lesson analysis was effective for teacher to reflect the lessons. Teacher can utilize lesson analysis any time to improve the next lesson design.

  18. Constellation Program Design Challenges as Opportunities for Educational Outreach- Lessons Learned

    NASA Technical Reports Server (NTRS)

    Trevino, Robert C.

    2010-01-01

    The Texas Space Grant Consortium (TSGC) and the NASA Exploration Systems Mission Directorate (ESMD) Education Office both have programs that present design challenges for university senior design classes that offer great opportunities for educational outreach and workforce development. These design challenges have been identified by NASA engineers and scientists as actual design problems faced by the Constellation Program in its exploration missions and architecture. Student teams formed in their senior design class select and then work on a design challenge for one or two semesters. The senior design class follows the requirements set by their university, but it must also comply with the Accreditation Board for Engineering and Technology (ABET) in order to meet the class academic requirements. Based on a one year fellowship at a TSGC university under the NASA Administrator's Fellowship Program (NAFP) and several years of experience, lessons learned are presented on the NASA Design Challenge Program.

  19. Seal Technology for Hypersonic Vehicle and Propulsion: An Overview

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.

    2008-01-01

    Hypersonic vehicles and propulsion systems pose an extraordinary challenge for structures and materials. Airframes and engines require lightweight, high-temperature materials and structural configurations that can withstand the extreme environment of hypersonic flight. Some of the challenges posed include very high temperatures, heating of the whole vehicle, steady-state and transient localized heating from shock waves, high aerodynamic loads, high fluctuating pressure loads, potential for severe flutter, vibration, and acoustic loads and erosion. Correspondingly high temperature seals are required to meet these aggressive requirements. This presentation reviews relevant seal technology for both heritage (e.g. Space Shuttle, X-15, and X-38) vehicles and presents several seal case studies aimed at providing lessons learned for future hypersonic vehicle seal development. This presentation also reviews seal technology developed for the National Aerospace Plane propulsion systems and presents several seal case studies aimed at providing lessons learned for future hypersonic propulsion seal development.

  20. Acting on Lessons Learned: A NASA Glenn Acoustics Branch Perspective

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle

    2008-01-01

    Lessons learned from the International Space Station have indicated that early attention to acoustics will be key to achieving safer, more productive environments for new long duration missions. Fans are known to be dominant noise sources, and reducing fan noise poses challenges for fan manufacturers and systems engineers. The NASA Glenn Acoustics Branch has considered ways in which expertise and capabilities traditionally used to understand and mitigate aircraft engine noise can be used to address small fan noise issues in Exploration and Information Technology applications. Many could benefit if NASA can capture what is known about small fan aero and acoustic performance in a "Guide for the Design, Selection, and Installation of Fans for Spaceflight Applications." A draft outline for this document will be offered as a useful starting point for brainstorming ideas for the various smaller, near-term research projects that would need to be addressed first.

  1. Ontology Development and Evolution in the Accident Investigation Domain

    NASA Technical Reports Server (NTRS)

    Carvalho, Robert; Berrios, Dan; Williams, James

    2004-01-01

    InvestiigationOrganizer (IO) is a collaborative semantic web system designed to support the conduct of mishap investigations. IO provides a common repository for a wide range of mishap related information, allowing investigators to integrate evidence, causal models, and investigation results. IO has been used to support investigations ranging from a small property damage case to the loss of the Space Shuttle Columbia. Through IO'S use in these investigations, we have learned significant lessons? about the application of ontologies and semantic systems to solving real-world problems. This paper will describe the development of the ontology within IO, from the initial development, its growth in response to user requests during use in investigations, and the recent work that was done to control the results of that growth. This paper will also describe the lessons learned from this experience and how they may apply to the implementaton of future ontologies and semantic systems.

  2. Design, Qualification and Lessons Learned of the Shutter Calibration Mechanism for EnMAP Mission

    NASA Astrophysics Data System (ADS)

    Schmidt, Tilo; Muller, Silvio; Bergander, Arvid; Zajac, Kai; Seifart, Klaus

    2015-09-01

    The Shutter Calibration Mechanism (SCM) Assembly is one of three mechanisms which are developed by HTS for the EnMAP instrument in subcontract to OHB System AG Munich. EnMAP is the Environmental Mapping and Analysis Program of the German Space Agency DLR.The binary rotary encoder of the SCM using hall-effect sensors was already presented during ESMATS 2011. This paper summarizes the main functions and design features of the Hardware and focuses on qualification testing which has finished successfully in 2014. Of particular interest is the functional testing of the main drive including the precise hall-effect position sensing system and the test of the fail safe mechanism. In addition to standard test campaign required for QM also a shock emission measurement of the fail safe mechanism activation was conducted.Test conduction and results will be presented with focus on deviations from the expected behaviour, mitigation measures and on lessons learned.

  3. Sentinel-1 SAR Deployment Testing- Lessons Learned

    NASA Astrophysics Data System (ADS)

    Schwarz, Sebastian; Alberti, Mathias V.

    2015-09-01

    On April 3rd 2014, ESA has launched the Sentinel-1A spacecraft with its SAR instrument payload. During the first 12 hours in space, the antenna was released and successfully deployed to its operational configuration. Almost 6 years before that date, the first conceptual considerations regarding integration, alignment and on- ground deployment testing took place. Starting in these early phases of the project, the paper contains an overview of the concepts and trades which were performed to identify the most suitable off-loading MGSE for this heavy and fragile antenna. Following that, the challenges and lessons learned during the different developments of this test setup are discussed. This includes MGSE specific topics, such as the minimization of structural deformation under load or the optimization of the pulley arrangement as result of a coupled multibody analysis. On the other hand, load and deformation control strategies for the flight hardware, as well as safety related aspects are covered.

  4. Practical Applications of Cables and Ropes in the ISS Countermeasures System

    NASA Technical Reports Server (NTRS)

    Moore, Cherice; Svetlik, Randall; Williams, Antony

    2017-01-01

    As spaceflight durations have increased over the last four decades, the effects of weightlessness on the human body are far better understood, as are the countermeasures. A combination of aerobic and resistive exercise devices contribute to countering the losses in muscle strength, aerobic fitness, and bone strength of today's astronauts and cosmonauts that occur during their missions on the International Space Station. Creation of these systems has been a dynamically educational experience for designers and engineers. The ropes and cables in particular have experienced a wide range of challenges, providing a full set of lessons learned that have already enabled improvements in on-orbit reliability by initiating system design improvements. This paper examines the on-orbit experience of ropes and cables in several exercise devices and discusses the lessons learned from these hardware items, with the goal of informing future system design.

  5. Lessons Learned from the Wide Field Camera 3 TV1 Test Campaign and Correlation Effort

    NASA Technical Reports Server (NTRS)

    Peabody, Hume; Stavley, Richard; Bast, William

    2007-01-01

    In January 2004, shortly after the Columbia accident, future servicing missions to the Hubble Space Telescope (HST) were cancelled. In response to this, further work on the Wide Field Camera 3 instrument was ceased. Given the maturity level of the design, a characterization thermal test (TV1) was completed in case the mission was re-instated or an alternate mission found on which to fly the instrument. This thermal test yielded some valuable lessons learned with respect to testing configurations and modeling/correlation practices, including: 1. Ensure that the thermal design can be tested 2. Ensure that the model has sufficient detail for accurate predictions 3. Ensure that the power associated with all active control devices is predicted 4. Avoid unit changes for existing models. This paper documents the difficulties presented when these recommendations were not followed.

  6. Lesson Study: Evaluation Report and Executive Summary

    ERIC Educational Resources Information Center

    Murphy, Richard; Weinhardt, Felix; Wyness, Gill; Rolfe, Heather

    2017-01-01

    Lesson Study is a popular approach to teacher professional development used widely in Japan. It involves a small group of teachers co-planning a series of lessons based on a shared learning goal for the pupils, with one teacher leading the co-constructed lesson and their colleagues invited to observe pupil learning in the lesson. The team then…

  7. Lessons Learned to Date in Developing the Virtual Space Physics Observatory

    NASA Astrophysics Data System (ADS)

    Cornwell, C.; Roberts, D. A.; King, J.; Smith, A.

    2005-12-01

    We now have an operational Virtual Space Physics Observatory that provides users the ability to search for and retrieve data from hundreds of space and solar physics data products based on specific terms or a Google-like interface. Lessons learned in building VSPO include: (a) A very close and highly interactive collaboration between scientists and information technologists in the definition and development of services is essential. (b) Constructing a Data Model acceptable to a broad community is very important but very difficult. Variations in usage are inevitable and must be dealt with through translations; this is especially true for the description of variables within data products. (c) Higher-order queries (searches based on events, positions, comparisons of measurements, etc.) are possible, and have been implemented in various systems; currently we see these as being separate from the basic data finding and retrieval services. (d) Building a Virtual Observatory is often more a matter of the tedious details of product descriptions than an exercise in implementing fancy middleware. Paying a knowledgeable third party to build registries can be more efficient than working directly with providers, and automated tools can help but do not solve all the problems. (e) The success of the VO effort in space and solar physics, as elsewhere, will depend on whether the scientific communities involved use and critique the services so that they will come to meet a real need for the integration of resources to solve new scientific problems of perceived importance.

  8. Solid-State Lighting. Early Lessons Learned on the Way to Market

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandahl, L. J.; Cort, K. A.; Gordon, K. L.

    2014-01-01

    Analysis of issues and lessons learned during the early stages of solid-state lighting market introduction in the U.S., which also summarizes early actions taken to avoid potential problems anticipated based on lessons learned from the market introduction of compact fluorescent lamps.

  9. Geological trainings for analogue astronauts: Lessons learned from MARS2013 expedition, Morocco

    NASA Astrophysics Data System (ADS)

    Orgel, C.; Achorner, I.; Losiak, A.; Gołębiowska, I.; Rampey, M.; Groemer, G.

    2013-09-01

    The Austrian Space Forum (OeWF) is a national organisation for space professionals and space enthusiasts. In collaboration with internal partner organisations, the OeWF focuses on Mars analogue research with their space volunteers and organises space-related outreach/education activities and conducts field tests with the Aouda.X and Aouda.S spacesuit simulators in Mars analogue environment. The main project of OeWF is called "PolAres" [1]. As the result of lessons learned from the Río Tinto 2011 expedition [4], we started to organise geological training sessions for the analogue astronauts. The idea was to give them basic geological background to perform more efficiently in the field. This was done in close imitation of the Apollo astronaut trainings that included theoretical lectures (between Jan. 1963-Nov. 1972) about impact geology, igneous petrology of the Moon, geophysics and geochemistry as well as several field trips to make them capable to collect useful samples for the geoscientists on Earth [3] [5]. In the last year the OeWF has organised three geoscience workshops for analogue astronauts as the part of their "astronaut" training. The aim was to educate the participants to make them understand the fundamentals in geology in theory and in the field (Fig. 1.). We proposed the "Geological Experiment Sampling Usefulness" (GESU) experiment for the MARS2013 simulation to improve the efficiency of the geological trainings. This simulation was conducted during February 2013, a one month Mars analogue research was conducted in the desert of Morocco [2] (Fig. 2.).

  10. Novel Advancements in Internet-Based Real-Time Data Technologies

    NASA Technical Reports Server (NTRS)

    Myers, Gerry; Welch, Clara L. (Technical Monitor)

    2002-01-01

    AZ Technology has been working with NASA MSFC (Marshall Space Flight Center) to find ways to make it easier for remote experimenters (RPI's) to monitor their International Space Station (ISS) payloads in real-time from anywhere using standard/familiar devices. That effort resulted in a product called 'EZStream' which is in use on several ISS-related projects. Although the initial implementation is geared toward ISS, the architecture and lessons learned are applicable to other space-related programs. This paper begins with a brief history on why Internet-based real-time data is important and where EZStream or products like it fit in the flow of data from orbit to experimenter/researcher. A high-level architecture is then presented along with explanations of the components used. A combination of commercial-off-the-shelf (COTS), Open Source, and custom components are discussed. The use of standard protocols is shown along with some details on how data flows between server and client. Some examples are presented to illustrate how a system like EZStream can be used in real world applications and how care was taken to make the end-user experience as painless as possible. A system such as EZStream has potential in the commercial (non-ISS) arena and some possibilities are presented. During the development and fielding of EZStream, a lot was learned. Good and not so good decisions were made. Some of the major lessons learned will be shared. The development of EZStream is continuing and the future of EZStream will be discussed to shed some light over the technological horizon.

  11. Human Factors Throughout the Life Cycle: Lessons Learned from the Shuttle Program. [Human Factors in Ground Processing

    NASA Technical Reports Server (NTRS)

    Kanki, Barbara G.

    2011-01-01

    With the ending of the Space Shuttle Program, it is critical that we not forget the Human Factors lessons we have learned over the years. At every phase of the life cycle, from manufacturing, processing and integrating vehicle and payload, to launch, flight operations, mission control and landing, hundreds of teams have worked together to achieve mission success in one of the most complex, high-risk socio-technical enterprises ever designed. Just as there was great diversity in the types of operations performed at every stage, there was a myriad of human factors that could further complicate these human systems. A single mishap or close call could point to issues at the individual level (perceptual or workload limitations, training, fatigue, human error susceptibilities), the task level (design of tools, procedures and aspects of the workplace), as well as the organizational level (appropriate resources, safety policies, information access and communication channels). While we have often had to learn through human mistakes and technological failures, we have also begun to understand how to design human systems in which individuals can excel, where tasks and procedures are not only safe but efficient, and how organizations can foster a proactive approach to managing risk and supporting human enterprises. Panelists will talk about their experiences as they relate human factors to a particular phase of the shuttle life cycle. They will conclude with a framework for tying together human factors lessons-learned into system-level risk management strategies.

  12. Lesson Closure: An Important Piece of the Student Learning Puzzle

    ERIC Educational Resources Information Center

    Ganske, Kathy

    2017-01-01

    As we seek ways to improve literacy teaching and learning, we need to be careful not to overlook lesson closure as an opportunity to solidify student learning. This Teaching Tip describes the importance of taking time at the ends of lessons, days, and weeks to revisit what students have learned as a means for helping them synthesize and assimilate…

  13. Issues in NASA program and project management

    NASA Technical Reports Server (NTRS)

    Hoban, Francis T. (Editor)

    1989-01-01

    This new collection of papers on aerospace management issues contains a history of NASA program and project management, some lessons learned in the areas of management and budget from the Space Shuttle Program, an analysis of tools needed to keep large multilayer programs organized and on track, and an update of resources for NASA managers. A wide variety of opinions and techniques are presented.

  14. Status of the Regenerative ECLS Water Recovery System

    NASA Technical Reports Server (NTRS)

    Carter, Donald Layne

    2010-01-01

    The regenerative Water Recovery System (WRS) has completed its first full year of operation on the International Space Station (ISS). The major assemblies included in this system are the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA). This paper summarizes the on-orbit status as of May 2010, and describes the technical challenges encountered and lessons learned over the past year.

  15. Phase 1 Program Joint Report

    NASA Technical Reports Server (NTRS)

    Nield, George C. (Editor); Vorobiev, Pavel Mikhailovich (Editor)

    1999-01-01

    This report consists of inputs from each of the Phase I Program Joint Working Groups. The Working Groups were tasked to describe the organizational structure and work processes that they used during the program, joint accomplishments, lessons learned, and applications to the International Space Station Program. This report is a top-level joint reference document that contains information of interest to both countries.

  16. Applying Lessons Learned from Space Safety to Unmanned Aerial Vehicle Risk Assessments

    NASA Astrophysics Data System (ADS)

    Devoid, Wayne E.

    2013-09-01

    This paper will examine the application of current orbital launch risk methodology to assessing risk for unmanned aerial vehicle flights over populated areas. Major differences, such as the added complexity of lifting bodies, accounting for pilots-in-the-loop, and the complexity of using current population data to estimate risk for unmanned aerial vehicles, will be highlighted.

  17. Proceedings of the Seventeenth Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Proceedings of the Seventeenth Annual Software Engineering Workshop are presented. The software Engineering Laboratory (SEL) is an organization sponsored by NASA/Goddard Space Flight Center and created to investigate the effectiveness of software engineering technologies when applied to the development of applications software. Topics covered include: the Software Engineering Laboratory; process measurement; software reuse; software quality; lessons learned; and is Ada dying.

  18. Systems engineering and integration and management for manned space flight programs

    NASA Technical Reports Server (NTRS)

    Morris, Owen

    1993-01-01

    This paper discusses the history of SE&I management of the overall program architecture, organizational structure and the relationship of SE&I to other program organizational elements. A brief discussion of the method of executing the SE&I process, a summary of some of the major lessons learned, and identification of things that have proven successful are included.

  19. Encouraging Wildland Fire Preparedness: Lessons Learned from Three Wildfire Education Programs

    Treesearch

    Victoria Sturtevant; Sarah McCaffrey

    2006-01-01

    Managers may often wonder why some people do not choose to adopt defensible space practices despite understanding the benefits of doing so. Research has sought to understand why a new practice or innovation is or is not adopted. This paper will briefly discuss factors found to influence adoption rates and describe how three different fire education programs - Firewise...

  20. Systems engineering and integration and management for manned space flight programs

    NASA Astrophysics Data System (ADS)

    Morris, Owen

    This paper discusses the history of SE&I management of the overall program architecture, organizational structure and the relationship of SE&I to other program organizational elements. A brief discussion of the method of executing the SE&I process, a summary of some of the major lessons learned, and identification of things that have proven successful are included.

  1. The Spitzer science operations system : how well are we really doing?

    NASA Technical Reports Server (NTRS)

    Dodd, Suzanne R.

    2004-01-01

    This paper will describe how the SIRTF Science Operation System has performed since launch, and how the system has been adapted based upon in-flight performance. It will also discuss lessons learned which can be applied to future science operation systems. This work was performed at the California Institute of Technology under contract to the National Aeronautics and Space Administration.

  2. Demonstrations of LSS active vibration control technology on representative ground-based testbeds

    NASA Technical Reports Server (NTRS)

    Hyland, David C.; Phillips, Douglas J.; Collins, Emmanuel G., Jr.

    1991-01-01

    This paper describes two experiments which successfully demonstrate control of flexible structures. The first experiment involved control design and implementation for the ACES structure at NASA Marshall Space Flight Center, while the second experiment was conducted using the Multi-Hex Prototype structure. The paper concludes with some remarks on the lessons learned from conducting these experiments.

  3. Technology test bed review

    NASA Technical Reports Server (NTRS)

    Mcconnaughey, H. V.

    1992-01-01

    The topics are presented in viewgraph form and include the following: (1) Space Shuttle Main Engine (SSME) technology test bed (TTB) history; (2) TTB objectives; (3) TTB major accomplishments; (4) TTB contributions to SSME; (5) major impacts of 3001 testing; (6) some challenges to computational fluid dynamics (CFD); (7) the high pressure fuel turbopump (HPFTP); and (8) 3001 lessons learned in design and operations.

  4. MATD Operational Phase: Experiences and Lessons Learned

    NASA Astrophysics Data System (ADS)

    Messidoro, P.; Bader, M.; Brunner, O.; Cerrato, A.; Sembenini, G.

    2004-08-01

    The Model And Test Effectiveness Database (MATD) initiative is ending the first year of its operational phase. MATD represents a common repository of project data, Assembly Integration and Verification (AIV) data, on ground and flight anomalies data, of recent space projects, and offers, with the application of specific methodologies, the possibility to analyze the collected data in order to improve the test philosophies and the related standards. Basically the following type of results can be derived from the database: - Statistics on ground failures and flight anomalies - Feed-back from the flight anomalies to the Test Philosophies - Test Effectiveness evaluation at system and lower levels - Estimate of the index of effectiveness of a specific Model and Test Philosophy in comparison with the applicable standards - Simulation of different Test philosophies and related balancing of Risk/cost/schedule on the basis of MATD data The paper after a short presentation of the status of the MATD initiative, summarises the most recent lessons learned which are resulting from the data analysis and highlights how MATD is being utilized for the actual risk/cost/schedule/Test effectiveness evaluations of the past programmes so as for the prediction of the new space projects.

  5. SAGE III on ISS Lessons Learned on Thermal Interface Design

    NASA Technical Reports Server (NTRS)

    Davis, Warren

    2015-01-01

    The Stratospheric Aerosol and Gas Experiment III (SAGE III) instrument - the fifth in a series of instruments developed for monitoring vertical distribution of aerosols, ozone, and other trace gases in the Earth's stratosphere and troposphere - is currently scheduled for delivery to the International Space Station (ISS) via the SpaceX Dragon vehicle in 2016. The Instrument Adapter Module (IAM), one of many SAGE III subsystems, continuously dissipates a considerable amount of thermal energy during mission operations. Although a portion of this energy is transferred via its large radiator surface area, the majority must be conductively transferred to the ExPRESS Payload Adapter (ExPA) to satisfy thermal mitigation requirements. The baseline IAM-ExPA mechanical interface did not afford the thermal conductance necessary to prevent the IAM from overheating in hot on-orbit cases, and high interfacial conductance was difficult to achieve given the large span between mechanical fasteners, less than stringent flatness specifications, and material usage constraints due to strict contamination requirements. This paper will examine the evolution of the IAM-ExPA thermal interface over the course of three design iterations and will include discussion on design challenges, material selection, testing successes and failures, and lessons learned.

  6. Lesson Study as Professional Development within Secondary Physics Teacher Professional Learning Communities

    NASA Astrophysics Data System (ADS)

    Collins, Tonya Monique Nicki

    Two Professional Learning Communities of physics teachers from different high schools voluntarily participated in Lesson Study as a means of professional development. The five teacher-participants and one participant-researcher partook of two Lesson Study cycles, each of which focused on student physics misconceptions. The Lesson Study resulted in two topics of physics: projectiles and gravitation. The researcher aimed to determine what happens to secondary physics teachers who undergo Lesson Study through this phenomenological case study. Specifically, (1) What is the process of Lesson Study with secondary physics teachers? and (2) What are the teacher-reported outcomes of Lesson Study with secondary physics teachers? Overall, Lesson Study provided an avenue for secondary physics teachers to conduct inquiry on their students in an attempt to better understand student thinking and learning. As a result, teachers collaborated to learn how to better meet the needs of their students and self-reported growth in many areas of teaching and teacher knowledge. The study resulted in twelve hypotheses to be tested in later research centering on idealizing the process of Lesson Study and maximizing secondary physics teacher growth.

  7. Marshall Space Flight Center's role in EASE/ACCESS mission management

    NASA Technical Reports Server (NTRS)

    Hawkins, Gerald W.

    1987-01-01

    The Marshall Space Flight Center (MSFC) Spacelab Payload Project Office was responsible for the mission management and development of several successful payloads. Two recent space construction experiments, the Experimental Assembly of Structures in Extravehicular Activity (EASE) and the Assembly Concept for Construction of Erectable Space Structures (ACCESS), were combined into a payload managed by the center. The Ease/ACCESS was flown aboard the Space Shuttle Mission 61-B. The EASE/ACCESS experiments were the first structures assembled in space, and the method used to manage this successful effort will be useful for future space construction missions. The MSFC mission management responsibilities for the EASE/ACCESS mission are addressed and how the lessons learned from the mission can be applied to future space construction projects are discussed.

  8. Integrating Instruments of Power and Influence: Lessons Learned and Best Practices

    DTIC Science & Technology

    2008-01-01

    practices developed by ACT’s Joint Analysis and Lessons Learned Centre in Monsanto , Portugal. Summary xix European Union An increasing European role in...oversees the Joint Analysis and Lessons Learned Centre in Monsanto , Por- tugal, the mission of which is critical for the purposes of this report. These

  9. NASA's Lessons Learned and Technical Standards: A Logical Marriage

    NASA Technical Reports Server (NTRS)

    Gill, Paul; Vaughan, William W.; Garcia, Danny; Weinstein, Richard

    2001-01-01

    Lessons Learned have been the basis for our accomplishments throughout the ages. They have been passed down from father to son, mother to daughter, teacher to pupil, and older to younger worker. Lessons Learned have also been the basis for NASA's accomplishments for more than forty years. Both government and industry have long recognized the need to systematically document and utilize the knowledge gained from past experiences in order to avoid the repetition of failures and mishaps. Lessons Learned have formed the foundation for discoveries, inventions, improvements, textbooks, and Technical Standards.

  10. Demystifying Scientific Data ­ Using Earth Science to Teach the Scientific Method

    NASA Astrophysics Data System (ADS)

    Nassiff, P. J.; Santos, E. A.; Erickson, P. J.; Niell, A. E.

    2006-12-01

    The collection of large quantities of data and their subsequent analyses are important components of any scientific process, particularly at research institutes such as MIT's Haystack Observatory, where the collection and analyses of data is crucial to research efforts. Likewise, a recent study on science education concluded that students should be introduced to analyzing evidence and hypotheses, to critical thinking - including appropriate skepticism, to quantitative reasoning and the ability to make reasonable estimates, and to the role of uncertainty and error in science. In order to achieve this goal with grades 9-12 students and their instructors, we developed lesson plans and activities based on atmospheric science and geodetic research at Haystack Observatory. From the complex steps of experimental design, measurement, and data analysis, students and teachers will gain insight into the scientific research processes as they exist today. The use of these space weather and geodesy activities in classrooms will be discussed. Space Weather: After decades of data collection with multiple variables, space weather is about as complex an area of investigation as possible. Far from the passive relationship between the Sun and Earth often taught in the early grades, or the beautiful auroras discussed in high school, there are complex and powerful interactions between the Sun and Earth. In spite of these complexities, high school students can learn about space weather and the repercussions on our communication and power technologies. Starting from lessons on the basic method of observing space weather with incoherent scatter radar, and progressing to the use of simplified data sets, students will discover how space weather affects Earth over solar cycles and how severe solar activity is measured and affects the Earth over shorter time spans. They will see that even from complex, seemingly ambiguous data with many variables and unknowns, scientists can gain valuable insights into complicated processes. Geodesy: Students learn about tectonic plate theory in middle school to explain continental drift, but have no idea about how it is determined. By learning about the process, students become more familiar with measurement, uncertainty, and error. Students who analyze continental drift using observations from very long baseline interferometry (VLBI) will discover the current limits of scientific measurement (approximately one part in a billion) and see how even these data may contain unmodeled effects. In both projects the process of understanding data will give the students a better picture of how science works. These lessons and activities were created under the Research Experiences for Teachers program of the National Science Foundation.

  11. Space Exploration Technologies Developed through Existing and New Research Partnerships Initiatives

    NASA Technical Reports Server (NTRS)

    Nall, Mark; Casas, Joseph

    2004-01-01

    The Space Partnership Development Program of NASA has been highly successful in leveraging commercial research investments to the strategic mission and applied research goals of the Agency through industry academic partnerships. This program is currently undergoing an outward-looking transformation towards Agency wide research and discovery goals that leverage partnership contributions to the strategic research needed to demonstrate enabling space exploration technologies encompassing both robotic spacecraft missions and human space flight. New Space Partnership Initiatives with incremental goals and milestones will allow a continuing series of accomplishments to be achieved throughout the duration of each initiative, permit the "lessons learned" and capabilities acquired from previous implementation steps to be incorporated into subsequent phases of the initiatives, and allow adjustments to be made to the implementation of the initiatives as new opportunities or challenges arise. An Agency technological risk reduction roadmap for any required technologies not currently available will identify the initiative focus areas for the development, demonstration and utilization of space resources supporting the production of power, air, and water, structures and shielding materials. This paper examines the successes to date, lessons learned, and programmatic outlook of enabling sustainable exploration and discovery through governmental, industrial, academic, and international partnerships. Previous government and industry technology development programs have demonstrated that a focused research program that appropriately shares the developmental risk can rapidly mature low Technology Readiness Level (TRL) technologies to the demonstration level. This cost effective and timely, reduced time to discovery, partnership approach to the development of needed technological capabilities addresses the dual use requirements by the investing partners. In addition, these partnerships help to ensure the attainment of complimenting human and robotic exploration goals for NASA while providing additional capabilities for sustainable scientific research benefiting life and security on Earth.

  12. ISS Utilization Potential for 2011-2020 and Beyond

    NASA Astrophysics Data System (ADS)

    Askew, R.; Chabrow, J.; Nakagawa, R.

    The US concept for a permanent human presence in space as directed by President Ronald Reagan in 1984 was called Space Station Freedom. This was the precursor to the International Space Station (ISS) that now orbits the earth. The first element of the ISS, Zarya, was launched November 20, 1998. The launch of STS-133 provides the final component of the assembly, the Multi-Purpose Logistics Module (MPLM). During the assembly the ISS was utilized to the extent possible for the conduct of scientific research and technology development, and for the development of enhancements to the ISS capabilities. These activities have resulted in a significant database of lessons learned regarding operations, both of the ISS platform as well as in the conduct of research. For the coming decade utilization of the ISS will be impacted by how these lessons learned are used to improve operations. Access to the ISS and to its capabilities will determine the types of projects that can use the ISS. Perhaps the most critical limitation is the funds that must be invested by potential users of the ISS. This paper examines the elements that have been identified as impediments to utilization of the ISS by both basic researchers and by the private sector over the past decade and provides an assessment of which of these are likely to be satisfactorily altered and on what time scale.

  13. GIOVE-A: Two Years of Galileo Signals

    NASA Astrophysics Data System (ADS)

    Davies, P.; da Silva Curiel, A.; Rooney, E.; Sweeting, M.; Gattia, G.

    2008-08-01

    During 2007, the GIOVE-A mission has transitioned from an experimental mission into what is effectively an operational mission. The small satellite approach used in the development of the mission, and the lessons learned from this mission, are being applied in the development of SSTL's Geostationary communication satellite platform. Furthermore, ESA has also been considering the lessons learned from small low-cost, rapid-response missions such as GIOVE with a view to a new procurement approach for such "entry-level" missions. On 28 December 2005 the first satellite in the Galileo programme was launched into space. The satellite, GIOVE-A, was developed for the European Space Agency (ESA) under a contract signed in July 2003. Since January 2006 GIOVE-A has broadcast the Galileo signal enabling Europe to claim the ITU frequency filing, to qualify the Galileo payload equipment, to characterise the performance of the Galileo system and to develop ground receiving equipment. The satellite was built for a relatively low-cost, €28M, within a very rapid timescale - from contract signature to flight readiness in 28 months. In order to meet this timescale SSTL used a development approach similar to the one it uses for its range of microsatellites. Further, the GIOVE-A satellite carries many pieces of equipment from the microsatellite range integrated into a larger structure, and in-flight results with the COTS parts are now showing that these are holding up well in the harsh MEO environment. The development approach was very different from a typical ESA operational mission and formed one of the reference inputs to the "Lightsat" approach which ESA will employ on some of its future projects. The paper will cover the main results and lessons learned from the GIOVE-A mission. We will describe the small satellite approach to its development and the main lessons learned from the development phase. We will also cover the main results of the mission since launch concentrating on the initial phase during 2006 when the payload was exercised to achieve the initial mission goals. We will then describe the routine operations performed during 2007 which led to the satellite achieving close to 100% availability whilst employing a very low cost operational concept without full-time operations staff.

  14. Key Events in Student Leaders' Lives and Lessons Learned from Them

    ERIC Educational Resources Information Center

    Sessa, Valerie I.; Morgan, Brett V.; Kalenderli, Selin; Hammond, Fanny E.

    2014-01-01

    This descriptive study used an interview protocol developed by the Center for Creative Leadership with 50 college student leaders to determine what key developmental events young college leaders experience and the leadership lessons learned from these events. Students discussed 180 events and 734 lessons learned from them. Most events defined by…

  15. 75 FR 80857 - Notice of Availability of NUREG-1800, Revision 2; “Standard Review Plan for Review of License...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ..., Revision 2; ``Generic Aging Lessons Learned (GALL) Report'' AGENCY: Nuclear Regulatory Commission (NRC... Nuclear Power Plants'' and NUREG-1801, Revision 2; ``Generic Aging Lessons Learned (GALL) Report... Lessons Learned (GALL) Report.'' These revised documents describe methods acceptable to the NRC staff for...

  16. Reinventing Teacher Professional Norms and Identities: The Role of Lesson Study and Learning Communities

    ERIC Educational Resources Information Center

    Lieberman, Joanne

    2009-01-01

    The present article addresses how lesson study can facilitate changing traditional norms of individualism, conservatism and presentism that constrain American teachers from learning from one another. The article investigates how lesson study can serve as a vehicle for developing teacher learning communities by developing or redeveloping teachers'…

  17. The application of micromachined sensors to manned space systems

    NASA Technical Reports Server (NTRS)

    Bordano, Aldo; Havey, Gary; Wald, Jerry; Nasr, Hatem

    1993-01-01

    Micromachined sensors promise significant system advantages to manned space vehicles. Vehicle Health Monitoring (VHM) is a critical need for most future space systems. Micromachined sensors play a significant role in advancing the application of VHM in future space vehicles. This paper addresses the requirements that future VHM systems place on micromachined sensors such as: system integration, performance, size, weight, power, redundancy, reliability and fault tolerance. Current uses of micromachined sensors in commercial, military and space systems are used to document advantages that are gained and lessons learned. Based on these successes, the future use of micromachined sensors in space programs is discussed in terms of future directions and issues that need to be addressed such as how commercial and military sensors can meet future space system requirements.

  18. Operational Concept for the NASA Constellation Program's Ares I Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Best, Joel; Chavers, Greg; Richardson, Lea; Cruzen, Craig

    2008-01-01

    Ares I design brings together innovation and new technologies with established infrastructure and proven heritage hardware to achieve safe, reliable, and affordable human access to space. NASA has 50 years of experience from Apollo and Space Shuttle. The Marshall Space Flight Center's Mission Operations Laboratory is leading an operability benchmarking effort to compile operations and supportability lessons learned from large launch vehicle systems, both domestically and internationally. Ares V will be maturing as the Shuttle is retired and the Ares I design enters the production phase. More details on the Ares I and Ares V will be presented at SpaceOps 2010 in Huntsville, Alabama, U.S.A., April 2010.

  19. Learning from Space Entrepreneurs

    NASA Technical Reports Server (NTRS)

    Pomerantz, William

    2008-01-01

    The early days of rocketry and space exploration in the United States were marked by incredibly rapid progress: a seemingly endless parade of firsts. Not coincidentally, this period also saw more than its fair share of failure, especially in the infamous "kaputnik" days prior to the successful launch of Explorer. Without a standard canon of known quantities to turn to, the early pioneers of rocketry and space flight were forced to dream up new ideas that ranged from the elegant to the bizarre and to accept the fact that the price of radical progress is occasional failure. Nowadays, rapid prototyping and testing have slowed, as we rely more and more on the extensive knowledge pined by our predecessors and on the embarrassment of riches modern engineers get from computational modeling and computer assisted design. In many cases, this leads to much improved or phenomenally more efficient designs. It also, however, fosters a culture so terrified of failure that we over-engineer and overanalyze everything, often tweaking designs for decades before a new system takes flight. (This is not a problem unique to rockets; the same phenomenon seems to have occurred in high-performance jets.) This is one reason why it was possible for President Kennedy to dream of the completion of the Mercury and Gemini missions and a successful landing on the moon in under a decade, while returning to the moon may take nearly twice as long. Lacking access to the tremendous computational resources of the national space program-and, just as importantly, removed from the harsh judgment of public shareholders or congressional appropriations committees-the hungry entrepreneurs who compete for our prizes tend not to display such fear of failure. Instead, most of them follow a rapid "build, test, fly" program. They are willing to throw a handful of concepts against the wall and see what sticks. They often go from drawing on the back of a napkin to firing engines or even flying vehicles in a matter of weeks or months, learning valuable lessons along the way. Indeed, our teams have repeatedly learned many of the most valuable lessons after only a few moments of working with real hardware-lessons that could never have been learned from a CAD drawing, like finding the failure modes of different welding practices or tracking down the interference between an onboard camera and a GPS unit. As Paul Breed, the leader of a Northrop Grumman Lunar Lander Challenge team (playfully called Unreasonable Rocket), is fond of saying, "In computer simulations the plumbing never leaks. In real life, it always does."

  20. The History of Orbiter Corrosion Control (1981 - 2011)

    NASA Technical Reports Server (NTRS)

    Russell, Richard W.

    2014-01-01

    After 135 missions and 30 years the Orbiter fleet was retired in 2011. Working with Orbiter project management and a world class engineering team the CCRB was successful in providing successful sustaining engineering support for approximately 20 years. Lessons learned from the Orbiter program have aided NASA and contractor engineers in the design and manufacture of new spacecraft so that exploration of space can continue. The Orbiters are proudly being displayed for all the public to see in New York City, Washington D.C., Los Angeles, and at the Kennedy Space Center in Florida.

  1. Leveraging Lesson Learning in Tactical Units

    DTIC Science & Technology

    1997-01-01

    then it may be a lesson, but as Vetock points out, determining useful lessons requires analysis. Discovery of the wrong lesson can be as bad as not...34lesson learning is a very dangerous business.൘ Distinguishing a good" lesson from a " bad " one requires experience, a good grasp of doctrine, and...section - - boasted 3 cigarette lighters, 1 bar of soap, 2 wallets, 40 bottles, 1 suspender, and 11 French toothpaste .55 49 As Vetock points out, the

  2. Learning from the Mars Rover Mission: Scientific Discovery, Learning and Memory

    NASA Technical Reports Server (NTRS)

    Linde, Charlotte

    2005-01-01

    Purpose: Knowledge management for space exploration is part of a multi-generational effort. Each mission builds on knowledge from prior missions, and learning is the first step in knowledge production. This paper uses the Mars Exploration Rover mission as a site to explore this process. Approach: Observational study and analysis of the work of the MER science and engineering team during rover operations, to investigate how learning occurs, how it is recorded, and how these representations might be made available for subsequent missions. Findings: Learning occurred in many areas: planning science strategy, using instrumen?s within the constraints of the martian environment, the Deep Space Network, and the mission requirements; using software tools effectively; and running two teams on Mars time for three months. This learning is preserved in many ways. Primarily it resides in individual s memories. It is also encoded in stories, procedures, programming sequences, published reports, and lessons learned databases. Research implications: Shows the earliest stages of knowledge creation in a scientific mission, and demonstrates that knowledge management must begin with an understanding of knowledge creation. Practical implications: Shows that studying learning and knowledge creation suggests proactive ways to capture and use knowledge across multiple missions and generations. Value: This paper provides a unique analysis of the learning process of a scientific space mission, relevant for knowledge management researchers and designers, as well as demonstrating in detail how new learning occurs in a learning organization.

  3. Improving the quality of learning in science through optimization of lesson study for learning community

    NASA Astrophysics Data System (ADS)

    Setyaningsih, S.

    2018-03-01

    Lesson Study for Learning Community is one of lecturer profession building system through collaborative and continuous learning study based on the principles of openness, collegiality, and mutual learning to build learning community in order to form professional learning community. To achieve the above, we need a strategy and learning method with specific subscription technique. This paper provides a description of how the quality of learning in the field of science can be improved by implementing strategies and methods accordingly, namely by applying lesson study for learning community optimally. Initially this research was focused on the study of instructional techniques. Learning method used is learning model Contextual teaching and Learning (CTL) and model of Problem Based Learning (PBL). The results showed that there was a significant increase in competence, attitudes, and psychomotor in the four study programs that were modelled. Therefore, it can be concluded that the implementation of learning strategies in Lesson study for Learning Community is needed to be used to improve the competence, attitude and psychomotor of science students.

  4. Achievements and challenges of Space Station Freedom's safety review process

    NASA Technical Reports Server (NTRS)

    Robinson, David W.

    1993-01-01

    The most complex space vehicle in history, Space Station Freedom, is well underway to completion, and System Safety is a vital part of the program. The purpose is to summarize and illustrate the progress that over one-hundred System Safety engineers have made in identifying, documenting, and controlling the hazards inherent in the space station. To date, Space Station Freedom has been reviewed by NASA's safety panels through the first six assembly flights, when Freedom achieves a configuration known as Man Tended Capability. During the eight weeks of safety reviews spread out over a year and a half, over 200 preliminary hazard reports were presented. Along the way NASA and its contractors faced many challenges, made much progress, and even learned a few lessons.

  5. Achievements and challenges of Space Station Freedom's safety review process

    NASA Astrophysics Data System (ADS)

    Robinson, David W.

    1993-07-01

    The most complex space vehicle in history, Space Station Freedom, is well underway to completion, and System Safety is a vital part of the program. The purpose is to summarize and illustrate the progress that over one-hundred System Safety engineers have made in identifying, documenting, and controlling the hazards inherent in the space station. To date, Space Station Freedom has been reviewed by NASA's safety panels through the first six assembly flights, when Freedom achieves a configuration known as Man Tended Capability. During the eight weeks of safety reviews spread out over a year and a half, over 200 preliminary hazard reports were presented. Along the way NASA and its contractors faced many challenges, made much progress, and even learned a few lessons.

  6. Accelerating Exploration Through the Sharing of Best Practices in Research Partnerships

    NASA Technical Reports Server (NTRS)

    Nall, Mark; Casas, Joseph

    2004-01-01

    This paper proposes the formation of an international panel of space related public/private partnerships for the purposes of sharing best practices among members. The exploration and development of space is too costly to be conducted by governments alone. Private industry has a significant role in creating needed technologies, and developing commercial space infrastructure, thereby allowing sustainable exploration to take place. Public/private partnerships between government and industry are key to fostering industrial participation in space. The spacefaring nations have, or are developing these partnerships. Those organizations forming these partnerships can benefit from sharing among each other best practices and lessons learned. In this way the common goal of space exploration and development can be more effectively pursued.

  7. Flight Dynamics and GN&C for Spacecraft Servicing Missions

    NASA Technical Reports Server (NTRS)

    Naasz, Bo; Zimpfer, Doug; Barrington, Ray; Mulder, Tom

    2010-01-01

    Future human exploration missions and commercial opportunities will be enabled through In-space assembly and satellite servicing. Several recent efforts have developed technologies and capabilities to support these exciting future missions, including advances in flight dynamics and Guidance, Navigation and Control. The Space Shuttle has demonstrated significant capabilities for crewed servicing of the Hubble Space Telescope (HST) and assembly of the International Space Station (ISS). Following the Columbia disaster NASA made significant progress in developing a robotic mission to service the HST. The DARPA Orbital Express mission demonstrated automated rendezvous and capture, In-space propellant transfer, and commodity replacement. This paper will provide a summary of the recent technology developments and lessons learned, and provide a focus for potential future missions.

  8. A Science Information Infrastructure for Access to Earth and Space Science Data through the Nation's Science Museums

    NASA Technical Reports Server (NTRS)

    Murray, S.

    1999-01-01

    In this project, we worked with the University of California at Berkeley/Center for Extreme Ultraviolet Astrophysics and five science museums (the National Air and Space Museum, the Science Museum of Virginia, the Lawrence Hall of Science, the Exploratorium., and the New York Hall of Science) to formulate plans for computer-based laboratories located at these museums. These Science Learning Laboratories would be networked and provided with real Earth and space science observations, as well as appropriate lesson plans, that would allow the general public to directly access and manipulate the actual remote sensing data, much as a scientist would.

  9. Space Shuttle Orbiter logistics - Managing in a dynamic environment

    NASA Technical Reports Server (NTRS)

    Renfroe, Michael B.; Bradshaw, Kimberly

    1990-01-01

    The importance and methods of monitoring logistics vital signs, logistics data sources and acquisition, and converting data into useful management information are presented. With the launch and landing site for the Shuttle Orbiter project at the Kennedy Space Center now totally responsible for its own supportability posture, it is imperative that logistics resource requirements and management be continually monitored and reassessed. Detailed graphs and data concerning various aspects of logistics activities including objectives, inventory operating levels, customer environment, and data sources are provided. Finally, some lessons learned from the Shuttle Orbiter project and logistics options which should be considered by other space programs are discussed.

  10. Materials Research Conducted Aboard the International Space Station: Facilities Overview, Operational Procedures, and Experimental Outcomes

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Luz, Paul; Smith, Guy; Spivey, Reggie; Jeter, Linda; Gillies, Donald; Hua, Fay; Anikumar, A. V.

    2007-01-01

    The Microgravity Science Glovebox (MSG) and Maintenance Work Area (MWA) are facilities aboard the International Space Station (ISS) that were used to successfully conduct experiments in support of, respectively, the Pore Formation and Mobility Investigation (PFMI) and the In-Space Soldering Investigation (ISSI). The capabilities of these facilities are briefly discussed and then demonstrated by presenting "real-time" and subsequently down-linked video-taped examples from the abovementioned experiments. Data interpretation, ISS telescience, some lessons learned, and the need of such facilities for conducting work in support of understanding materials behavior, particularly fluid processing and transport scenarios, in low-gravity environments is discussed.

  11. Materials Research Conducted Aboard the International Space Station: Facilities Overview, Operational Procedures, and Experimental Outcomes

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Luz, P.; Smith, G. A.; Spivey, R.; Jeter, L.; Gillies, D. C.; Hua, F.; Anilkumar, A. V.

    2006-01-01

    The Microgravity Science Glovebox (MSG) and Maintenance Work Area (MWA) are facilities aboard the International Space Station (ISS) that were used to successfully conduct experiments in support of, respectively, the Pore Formation and Mobility Investigation (PFMI) and the In-Space Soldering Investigation (ISSI). The capabilities of these facilities are briefly discussed and then demonstrated by presenting real-time and subsequently down-linked video-taped examples from the abovementioned experiments. Data interpretation, ISS telescience, some lessons learned, and the need of such facilities for conducting work in support of understanding materials behavior, particularly fluid processing and transport scenarios, in low-gravity environments is discussed.

  12. Responding To School Walkout Demonstrations. Lessons Learned From School Crises and Emergencies, Volume 3, Issue 1, 2008

    ERIC Educational Resources Information Center

    US Department of Education, 2008

    2008-01-01

    "Lessons Learned" is a series of publications that are a brief recounting of actual school emergencies and crises. This "Lessons Learned" issue examines the incidence of student walkout demonstrations and the various ways in which administrators, school staff, law enforcement, and the community at large can help keep youths…

  13. Lessons Learned from School Crises and Emergencies, Vol. 1, Issue 2, Fall 2006

    ERIC Educational Resources Information Center

    US Department of Education, 2006

    2006-01-01

    "Lessons Learned" is a series of publications that are a brief recounting of actual school emergencies and crises. School and student names have been changed to protect identities. Information for this publication was gathered through a series of interviews with school stakeholders involved in the actual incident. This "Lessons Learned" issue…

  14. 75 FR 27838 - Notice of Availability of Draft NUREG-1800, Revision 2; “Standard Review Plan for Review of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-18

    ... Draft NUREG-1801, Revision 2; ``Generic Aging Lessons Learned (GALL) Report'' AGENCY: Nuclear Regulatory... Applications for Nuclear Power Plants ''and draft NUREG-1801, ``Generic Aging Lessons Learned (GALL) Report... Power Plants'' (SRP-LR); and the revised NUREG-1801, ``Generic Aging Lessons Learned (GALL) Report'' for...

  15. 77 FR 21813 - Changes to the Generic Aging Lessons Learned (GALL) Report Revision 2 AMP XI.M41, “Buried and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0055] Changes to the Generic Aging Lessons Learned (GALL) Report Revision 2 AMP XI.M41, ``Buried and Underground Piping and Tanks'' AGENCY: Nuclear Regulatory... NUREG-1801, Revision 2, ``Generic Aging Lessons Learned (GALL) Report,'' and the NRC staff's aging...

  16. Teaching from Objects and Stories: Learning about the Bering Sea Eskimo People. Smithsonian in Your Classroom.

    ERIC Educational Resources Information Center

    Smigielski, Alan

    The three lesson plans in this issue feature the Eskimos of the Bering Sea and their culture. The lesson plans are: (1) "Learning about a Culture from Its Objects"; (2) "Learning about a Culture from a Story"; and (3) "Everyday Objects." Each lesson cites student objectives; lists materials needed; gives subjects…

  17. Issues in NASA Program and Project Management. Special Report: 1997 Conference. Project Management Now and in the New Millennium

    NASA Technical Reports Server (NTRS)

    Hoffman, Edward J. (Editor); Lawbaugh, William M. (Editor)

    1997-01-01

    Topics Considered Include: NASA's Shared Experiences Program; Core Issues for the Future of the Agency; National Space Policy Strategic Management; ISO 9000 and NASA; New Acquisition Initiatives; Full Cost Initiative; PM Career Development; PM Project Database; NASA Fast Track Studies; Fast Track Projects; Earned Value Concept; Value-Added Metrics; Saturn Corporation Lessons Learned; Project Manager Credibility.

  18. Distributed operations as applied in a large multi-instrument space mission: lessons learned from the Cassini-Huygens Program

    NASA Technical Reports Server (NTRS)

    Cheng, L. Y.; Larsen, B.

    2004-01-01

    Launched in 1997, the Cassini-Huygens Mission sent the largest interplanetary spacecraft ever built in the service of science. Carrying a suite of 12 scientific instruments and an atmospheric entry probe, this complex spacecraft to explore the Saturn system may not have gotten off the ground without undergoing significant design changes and cost reductions.

  19. Information Security: Federal Guidance Needed to Address Control Issues With Implementing Cloud Computing

    DTIC Science & Technology

    2010-05-01

    Figure 2: Cloud Computing Deployment Models 13 Figure 3: NIST Essential Characteristics 14 Figure 4: NASA Nebula Container 37...Access Computing Environment (RACE) program, the National Aeronautics and Space Administration’s (NASA) Nebula program, and the Department of...computing programs: the DOD’s RACE program; NASA’s Nebula program; and Department of Transportation’s CARS program, including lessons learned related

  20. The NASA "Why?" Files: The Case of the Inhabitable Habitat. A Lesson Guide with Activities in Mathematics, Science, and Technology.

    ERIC Educational Resources Information Center

    Ricles, Shannon

    The National Aeronautics and Space Administration (NASA) has produced a distance learning series of four 60-minute video programs with an accompanying Web site and companion teacher guides. The story lines of each program or episode involve six inquisitive school children who meet in a treehouse. They seek the solution of a particular problem, and…

  1. Shuttle Performance: Lessons Learned, part 1

    NASA Technical Reports Server (NTRS)

    Arrington, J. P. (Compiler); Jones, J. J. (Compiler)

    1983-01-01

    Beginning with the first orbital flight of the Space Shuttle, a great wealth of flight data became available to the aerospace community. These data were immediately subjected to analyses by several different groups with different viewpoints and motivations. The results were collected and presented in several papers in the subject areas of ascent and entry aerodynaics; guidance, navigation, and control; aerothermal environment prediction; thermal protection systems; and measurement techniques.

  2. Space Shuttle Reusable Solid Rocket Motor

    NASA Technical Reports Server (NTRS)

    Moore, Dennis; Phelps, Jack; Perkins, Fred

    2010-01-01

    RSRM is a highly reliable human-rated Solid Rocket Motor: a) Largest diameter SRM to achieve flight status; b) Only human-rated SRM. RSRM reliability achieved by: a)Applying special attention to Process Control, Testing, and Postflight; b) Communicating often; c) Identifying and addressing issues in a disciplined approach; d) Identifying and fully dispositioning "out-of-family" conditions; e) Addressing minority opinions; and f) Learning our lessons.

  3. 2007 Stability, Security, Transition and Reconstruction Operations Conference

    DTIC Science & Technology

    2007-11-28

    narcotics Foster sustainable economy U.S.PRT tasks Jalalabad June 2007 Who can respond to which challeges ? 2. Battlespace or Humanitarian Space...Education Integrated Interagency Stabilization and Reconstruction Training Plug and Play System Lessons Learned from the Field USAID NGOs World Bank ...World Bank , IMF? Expanding the Focus… At the US and NATO Strategic/Operational Level Enhanced/new structures and procedures to improve: Interaction

  4. Effective Schedule and Cost Management as a Product Development Lead

    NASA Technical Reports Server (NTRS)

    Simmons, Cynthia

    2015-01-01

    The presentation will be given at the 26th Annual Thermal Fluids Analysis Workshop (TFAWS 2015) hosted by the Goddard SpaceFlight Center (GSFC) Thermal Engineering Branch (Code 545). This course provides best practices, helpful tools and lessons learned for staying on plan and day-to-day management of Subsystem flight development after getting Project approval for your Subsystem schedule and budget baseline.

  5. Standing to Preach, Moving to Teach: What TAs Learned from Teaching in Flexible and Less-Flexible Spaces

    ERIC Educational Resources Information Center

    Chen, Victoria; Leger, Andy; Riel, Annie

    2016-01-01

    This paper examines the effect of the architectural layout of two classrooms (one flexible and one less-flexible) on Teaching Assistants' (TAs) movement and interactions with students. Four TAs from a first-year undergraduate introductory course were chosen for the two studies. In study 1, the TAs taught the same lesson twice to two groups of…

  6. Clean access platform for orbiter

    NASA Technical Reports Server (NTRS)

    Morrison, H.; Harris, J.

    1990-01-01

    The design of the Clean Access Platform at the Kennedy Space Center, beginning with the design requirements and tracing the effort throughout development and manufacturing is described. Also examined are: (1) A system description; (2) Testing requirements and conclusions; (3) Safety and reliability features; (4) Major problems experienced during the project; and (5) Lessons learned, including features necessary for the effective design of mechanisms used in clean systems.

  7. Value pricing pilot program : lessons learned

    DOT National Transportation Integrated Search

    2008-08-01

    This "Lessons Learned Report" provides a summary of projects sponsored by the Federal Highway Administration's (FHWA's) Congestion and Value Pricing Pilot Programs from 1991 through 2006 and draws lessons from a sample of projects with the richest an...

  8. Lessons about Virtual-Environment Software Systems from 20 years of VE building

    PubMed Central

    Taylor, Russell M.; Jerald, Jason; VanderKnyff, Chris; Wendt, Jeremy; Borland, David; Marshburn, David; Sherman, William R.; Whitton, Mary C.

    2010-01-01

    What are desirable and undesirable features of virtual-environment (VE) software architectures? What should be present (and absent) from such systems if they are to be optimally useful? How should they be structured? To help answer these questions we present experience from application designers, toolkit designers, and VE system architects along with examples of useful features from existing systems. Topics are organized under the major headings of: 3D space management, supporting display hardware, interaction, event management, time management, computation, portability, and the observation that less can be better. Lessons learned are presented as discussion of the issues, field experiences, nuggets of knowledge, and case studies. PMID:20567602

  9. Welcome to Lotus 1-2-3 Advanced. Learning Activity Packets.

    ERIC Educational Resources Information Center

    Mills, Steven; And Others

    This learning activity packet (LAP) contains five self-paced study lessons that allow students to study advanced concepts of Lotus 1-2-3 at their own pace. The lessons used in the LAP are organized in the following way: lesson name, lesson number, objectives, completion standard, performance standard, required materials, unit test, and exercises.…

  10. Preliminary Analysis of ISS Maintenance History and Implications for Supportability of Future Missions

    NASA Technical Reports Server (NTRS)

    Watson, Kevin J.; Robbins, William W.

    2004-01-01

    The International Space Station (ISS) enables the study of supportability issues associated with long-duration human spaceflight. The ISS is a large, complex spacecraft that must be maintained by its crew. In contrast to the Space Shuttle Orbiter vehicle, but similar to spacecraft that will be component elements of future missions beyond low-Earth orbit, ISS does not return to the ground for servicing and provisioning of spares is severely constrained by transportation limits. Although significant technical support is provided by ground personnel, all hands-on maintenance tasks are performed by the crew. It is expected that future missions to distant destinations will be further limited by lack of resupply opportunities and will, eventually, become largely independent of ground support. ISS provides an opportunity to begin learning lessons that will enable future missions to be successful. Data accumulated over the first several years of ISS operations have been analyzed to gain a better understanding of maintenance-related workload. This analysis addresses both preventive and corrective maintenance and includes all U.S segment core systems. Systems and tasks that are major contributors to workload are identified. As further experience accrues, lessons will be learned that will influence future system designs so that they require less maintenance and, when maintenance is required, it can be performed more efficiently. By heeding the lessons of ISS it will be possible to identify system designs that should be more robust and point towards advances in both technology and design that will offer the greatest return on investment.

  11. Lessons Learned from the Space Shuttle Engine Hydrogen Flow Control Valve Poppet Breakage

    NASA Technical Reports Server (NTRS)

    Martinez, Hugo E.; Damico, Stephen; Brewer, John

    2011-01-01

    The Main Propulsion System (MPS) uses three Flow Control Valves (FCV) to modulate the flow of pressurant hydrogen gas from the Space Shuttle Main Engines (SSME) to the hydrogen External Tank (ET). This maintains pressure in the ullage volume as the liquid level drops, preserving ET structural integrity and assuring the engines receive a sufficient amount of head pressure. On Space Transportation System (STS)-126 (2009), with only a handful of International Space Station (ISS) assembly flights from the end of the Shuttle program, a portion of a single FCV?s poppet head broke off at about a minute and a half after liftoff. The risk of the poppet head failure is that the increased flow area through the FCV could result in excessive gaseous hydrogen flow back to the external tank, which could result in overboard venting of hydrogen ullage pressure. If the hydrogen venting were to occur in first stage (i.e., lower atmosphere), a flammability hazard exists that could lead to catastrophic loss of crew and vehicle. Other failure risks included particle impact damage to MPS downstream hardware. Although the FCV design had been plagued by contamination-related sluggish valve response problems prior to a redesign at STS-80 (1996), contamination was ruled out as the cause of the STS-126 failure. Employing a combination of enhanced hardware inspection and a better understanding of the consequences of a poppet failure, safe flight rationale for subsequent flights (STS-119 and later) was achieved. This paper deals with the technical lessons learned during the investigation and mitigation of this problem at a time when assembly flights were each in the critical path to Space Station success.

  12. Qualification and issues with space flight laser systems and components

    NASA Astrophysics Data System (ADS)

    Ott, Melanie N.; Coyle, D. B.; Canham, John S.; Leidecker, Henning W., Jr.

    2006-02-01

    The art of flight quality solid-state laser development is still relatively young, and much is still unknown regarding the best procedures, components, and packaging required for achieving the maximum possible lifetime and reliability when deployed in the harsh space environment. One of the most important issues is the limited and unstable supply of quality, high power diode arrays with significant technological heritage and market lifetime. Since Spectra Diode Labs Inc. ended their involvement in the pulsed array business in the late 1990's, there has been a flurry of activity from other manufacturers, but little effort focused on flight quality production. This forces NASA, inevitably, to examine the use of commercial parts to enable space flight laser designs. System-level issues such as power cycling, operational derating, duty cycle, and contamination risks to other laser components are some of the more significant unknown, if unquantifiable, parameters that directly effect transmitter reliability. Designs and processes can be formulated for the system and the components (including thorough modeling) to mitigate risk based on the known failures modes as well as lessons learned that GSFC has collected over the past ten years of space flight operation of lasers. In addition, knowledge of the potential failure modes related to the system and the components themselves can allow the qualification testing to be done in an efficient yet, effective manner. Careful test plan development coupled with physics of failure knowledge will enable cost effect qualification of commercial technology. Presented here will be lessons learned from space flight experience, brief synopsis of known potential failure modes, mitigation techniques, and options for testing from the system level to the component level.

  13. Qualification and Issues with Space Flight Laser Systems and Components

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Coyle, D. Barry; Canham, John S.; Leidecker, Henning W.

    2006-01-01

    The art of flight quality solid-state laser development is still relatively young, and much is still unknown regarding the best procedures, components, and packaging required for achieving the maximum possible lifetime and reliability when deployed in the harsh space environment. One of the most important issues is the limited and unstable supply of quality, high power diode arrays with significant technological heritage and market lifetime. Since Spectra Diode Labs Inc. ended their involvement in the pulsed array business in the late 1990's, there has been a flurry of activity from other manufacturers, but little effort focused on flight quality production. This forces NASA, inevitably, to examine the use of commercial parts to enable space flight laser designs. System-level issues such as power cycling, operational derating, duty cycle, and contamination risks to other laser components are some of the more significant unknown, if unquantifiable, parameters that directly effect transmitter reliability. Designs and processes can be formulated for the system and the components (including thorough modeling) to mitigate risk based on the known failures modes as well as lessons learned that GSFC has collected over the past ten years of space flight operation of lasers. In addition, knowledge of the potential failure modes related to the system and the components themselves can allow the qualification testing to be done in an efficient yet, effective manner. Careful test plan development coupled with physics of failure knowledge will enable cost effect qualification of commercial technology. Presented here will be lessons learned from space flight experience, brief synopsis of known potential failure modes, mitigation techniques, and options for testing from the system level to the component level.

  14. Qualification and Issues with Space Flight Laser Systems and Components

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Coyle, D. Barry; Canham, John S.; Leidecker, Henning W.

    2006-01-01

    The art of flight quality solid-state laser development is still relatively young, and much is still unknown regarding the best procedures, components, and packaging required for achieving the maximum possible lifetime and reliability when deployed in the harsh space environment. One of the most important issues is the limited and unstable supply of quality, high power diode arrays with significant technological heritage and market lifetime. Since Spectra Diode Labs Inc. ended their involvement in the pulsed array business in the late 199O's, there has been a flurry of activity from other manufacturers, but little effort focused on flight quality production. This forces NASA, inevitably, to examine the use of commercial parts to enable space flight laser designs. System-level issues such as power cycling, operational derating, duty cycle, and contamination risks to other laser components are some of the more significant unknown, if unquantifiable, parameters that directly effect transmitter reliability. Designs and processes can be formulated for the system and the components (including thorough modeling) to mitigate risk based on the known failures modes as well as lessons learned that GSFC has collected over the past ten years of space flight operation of lasers. In addition, knowledge of the potential failure modes related to the system and the components themselves can allow the qualification testing to be done in an efficient yet, effective manner. Careful test plan development coupled with physics of failure knowledge will enable cost effect qualification of commercial technology. Presented here will be lessons learned from space flight experience, brief synopsis of known potential failure modes, mitigation techniques, and options for testing from the system level to the component level.

  15. 2000 Worldwide Joint Lessons Learned Conference. Forging a Future Joint Lessons Learned System. (Joint Center for Lessons Learned Special Bulletin. Volume 3, Special Issue 1, January 2001)

    DTIC Science & Technology

    2001-01-01

    Management System (JTIMS) followed, and generated spirited discussion regarding the respective roles of JTIMS and the JLLP. The discussion concluded...waiting for the Director, Joint Staff�s signature and should be in official distribution by January 2001. An update on the Joint Training Information

  16. The 2015 Nepal earthquake disaster: lessons learned one year on.

    PubMed

    Hall, M L; Lee, A C K; Cartwright, C; Marahatta, S; Karki, J; Simkhada, P

    2017-04-01

    The 2015 earthquake in Nepal killed over 8000 people, injured more than 21,000 and displaced a further 2 million. One year later, a national workshop was organized with various Nepali stakeholders involved in the response to the earthquake. The workshop provided participants an opportunity to reflect on their experiences and sought to learn lessons from the disaster. One hundred and thirty-five participants took part and most had been directly involved in the earthquake response. They included representatives from the Ministry of Health, local and national government, the armed forces, non-governmental organizations, health practitioners, academics, and community representatives. Participants were divided into seven focus groups based around the following topics: water, sanitation and hygiene, hospital services, health and nutrition, education, shelter, policy and community. Facilitated group discussions were conducted in Nepalese and the key emerging themes are presented. Participants described a range of issues encountered, some specific to their area of expertize but also more general issues. These included logistics and supply chain challenges, leadership and coordination difficulties, impacts of the media as well as cultural beliefs on population behaviour post-disaster. Lessons identified included the need for community involvement at all stages of disaster response and preparedness, as well as the development of local leadership capabilities and community resilience. A 'disconnect' between disaster management policy and responses was observed, which may result in ineffective, poorly planned disaster response. Finding time and opportunity to reflect on and identify lessons from disaster response can be difficult but are fundamental to improving future disaster preparedness. The Nepal Earthquake National Workshop offered participants the space to do this. It garnered an overwhelming sense of wanting to do things better, of the need for a Nepal-centric approach and the need to learn the lessons of the past to improve disaster management for the future. Copyright © 2016.

  17. Spitzer Space Telescope Sequencing Operations Software, Strategies, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Bliss, David A.

    2006-01-01

    The Space Infrared Telescope Facility (SIRTF) was launched in August, 2003, and renamed to the Spitzer Space Telescope in 2004. Two years of observing the universe in the wavelength range from 3 to 180 microns has yielded enormous scientific discoveries. Since this magnificent observatory has a limited lifetime, maximizing science viewing efficiency (ie, maximizing time spent executing activities directly related to science observations) was the key operational objective. The strategy employed for maximizing science viewing efficiency was to optimize spacecraft flexibility, adaptability, and use of observation time. The selected approach involved implementation of a multi-engine sequencing architecture coupled with nondeterministic spacecraft and science execution times. This approach, though effective, added much complexity to uplink operations and sequence development. The Jet Propulsion Laboratory (JPL) manages Spitzer s operations. As part of the uplink process, Spitzer s Mission Sequence Team (MST) was tasked with processing observatory inputs from the Spitzer Science Center (SSC) into efficiently integrated, constraint-checked, and modeled review and command products which accommodated the complexity of non-deterministic spacecraft and science event executions without increasing operations costs. The MST developed processes, scripts, and participated in the adaptation of multi-mission core software to enable rapid processing of complex sequences. The MST was also tasked with developing a Downlink Keyword File (DKF) which could instruct Deep Space Network (DSN) stations on how and when to configure themselves to receive Spitzer science data. As MST and uplink operations developed, important lessons were learned that should be applied to future missions, especially those missions which employ command-intensive operations via a multi-engine sequence architecture.

  18. Developing Noticing of Reasoning through Demonstration Lessons

    ERIC Educational Resources Information Center

    Bragg, Leicha A.; Vale, Colleen

    2014-01-01

    Observation of fellow educators conducting demonstration lessons is one avenue for teachers to develop sensitivity to noticing students' reasoning. We examined teachers' noticing of children's learning behaviours in one demonstration lesson of the "Mathematical Reasoning Professional Learning Research Program" (MRPLRP). The observations…

  19. Lessons Learned from the NASA Plum Brook Reactor Facility Decommissioning

    NASA Technical Reports Server (NTRS)

    2010-01-01

    NASA has been conducting decommissioning activities at its PBRF for the last decade. As a result of all this work there have been several lessons learned both good and bad. This paper presents some of the more exportable lessons.

  20. Initial impressions from the Northern California 2008 lightning siege: A report by a Wildland Fire Lessons Learned Center Information Collection Team

    Treesearch

    Jonetta T. Holt; David Christenson; Anne Black; Brett Fay; Kim Round

    2009-01-01

    This event in NorCal is another of the major events we have experienced in fire management. In line with our desire to learn, we ought to line up a team to help us capture lessons learned from this event." This statement, and a regional delegation, was the impetus for an information collection team from the Wildland Fire Lessons Learned Center to visit with...

  1. Learning To Serve, Serving To Learn: A View from Higher Education. Integrating Service-Learning into Curriculum: Lessons Learned. Teacher Education Consortium in Service-Learning.

    ERIC Educational Resources Information Center

    2003

    This collection of papers includes lessons learned from a 3-year collaboration among faculty who had pursued a scholarly inquiry of service-learning, integrated service-learning into their curricula, altered their teaching, forged partnerships with community based organizations, and developed measures and methodologies for assessing results. The…

  2. Defining a risk-informed framework for whole-of-government lessons learned: A Canadian perspective.

    PubMed

    Friesen, Shaye K; Kelsey, Shelley; Legere, J A Jim

    Lessons learned play an important role in emergency management (EM) and organizational agility. Virtually all aspects of EM can derive benefit from a lessons learned program. From major security events to exercises, exploiting and applying lessons learned and "best practices" is critical to organizational resilience and adaptiveness. A robust lessons learned process and methodology provides an evidence base with which to inform decisions, guide plans, strengthen mitigation strategies, and assist in developing tools for operations. The Canadian Safety and Security Program recently supported a project to define a comprehensive framework that would allow public safety and security partners to regularly share event response best practices, and prioritize recommendations originating from after action reviews. This framework consists of several inter-locking elements: a comprehensive literature review/environmental scan of international programs; a survey to collect data from end users and management; the development of a taxonomy for organizing and structuring information; a risk-informed methodology for selecting, prioritizing, and following through on recommendations; and standardized templates and tools for tracking recommendations and ensuring implementation. This article discusses the efforts of the project team, which provided "best practice" advice and analytical support to ensure that a systematic approach to lessons learned was taken by the federal community to improve prevention, preparedness, and response activities. It posits an approach by which one might design a systematic process for information sharing and event response coordination-an approach that will assist federal departments to institutionalize a cross-government lessons learned program.

  3. Apollo: Learning From the Past, For the Future

    NASA Technical Reports Server (NTRS)

    Grabois, Michael R.

    2009-01-01

    This paper shares an interesting and unique case study of knowledge capture by the National Aeronautics and Space Administration (NASA), an ongoing project to recapture and make available the lessons learned from the Apollo lunar landing project so that those working on future projects do not have to "reinvent the wheel". NASA's new Constellation program, the successor to the Space Shuttle program, proposes a return to the Moon using a new generation of vehicles. The Orion Crew Vehicle and the Altair Lunar Lander will use hardware, practices, and techniques descended and derived from Apollo, Shuttle and the International Space Station. However, the new generation of engineers and managers who will be working with Orion and Altair are largely from the decades following Apollo, and are likely not well aware of what was developed in the 1960s. In 2006 a project at NASA's Johnson Space Center was begun to find pertinent Apollo-era documentation and gather it, format it, and present it using modern tools for today's engineers and managers. This "Apollo Mission Familiarization for Constellation Personnel" project is accessible via the web from any NASA center for those interested in learning "how did we do this during Apollo?"

  4. Apollo: Learning From the Past, For the Future

    NASA Technical Reports Server (NTRS)

    Grabois, Michael R.

    2010-01-01

    This paper shares an interesting and unique case study of knowledge capture by the National Aeronautics and Space Administration (NASA), an ongoing project to recapture and make available the lessons learned from the Apollo lunar landing project so that those working on future projects do not have to "reinvent the wheel". NASA's new Constellation program, the successor to the Space Shuttle program, proposes a return to the Moon using a new generation of vehicles. The Orion Crew Vehicle and the Altair Lunar Lander will use hardware, practices, and techniques descended and derived from Apollo, Shuttle and the International Space Station. However, the new generation of engineers and managers who will be working with Orion and Altair are largely from the decades following Apollo, and are likely not well aware of what was developed in the 1960s. In 2006 a project at NASA's Johnson Space Center was begun to find pertinent Apollo-era documentation and gather it, format it, and present it using modern tools for today's engineers and managers. This "Apollo Mission Familiarization for Constellation Personnel" project is accessible via the web from any NASA center for those interested in learning "how did we do this during Apollo?"

  5. Unintended Learning in Primary School Practical Science Lessons from Polanyi's Perspective of Intellectual Passion

    ERIC Educational Resources Information Center

    Park, Jisun; Song, Jinwoong; Abrahams, Ian

    2016-01-01

    This study explored, from the perspective of intellectual passion developed by Michael Polanyi, the unintended learning that occurred in primary practical science lessons. We use the term "unintended" learning to distinguish it from "intended" learning that appears in teachers' learning objectives. Data were collected using…

  6. Seizing the Moment: State Lessons for Transforming Professional Learning

    ERIC Educational Resources Information Center

    Learning Forward, 2013

    2013-01-01

    Explore this first look at lessons learned through Learning Forward's ongoing initiative to develop a comprehensive system of professional learning that spans the distance from the statehouse to the classroom. This policy brief underscores the importance of a coordinated state professional learning strategy, the adoption of professional learning…

  7. Astronautics degrees for the space industry

    NASA Astrophysics Data System (ADS)

    Gruntman, M.; Brodsky, R. F.; Erwin, D. A.; Kunc, J. A.

    2004-01-01

    The Astronautics Program (http://astronautics.usc.edu) of the University of Southern California (USC) offers a full set of undergraduate and graduate degree programs in Aerospace Engineering with emphasis in Astronautics. The Bachelor of Science and Master of Science degree programs in Astronautics combine basic science and engineering classes with specialized classes in space technology. The Certificate in Astronautics targets practicing engineers and scientists who enter space-related fields and/or who want to obtain training in specific space-related areas. Many specialized graduate classes are taught by adjunct faculty working at the leading space companies. The Master of Science degree and Certificate are available entirely through the USC Distance Education Network (DEN). Today, the Internet allows us to reach students anywhere in the world through webcasting. The majority of our graduate students, as well as those pursuing the Certificate, work full time as engineers in the space industry and government research and development centers while earning their degrees. The new world of distance learning presents new challenges and opens new opportunities. Distance learning, and particularly the introduction of webcasting, transform the organization of the graduate program and class delivery. We describe in detail the program's academic focus, student reach, and structure of program components. Program development is illustrated by the student enrollment dynamics and related industrial trends; the lessons learned emphasize the importance of feedback from the students and from the space industry.

  8. NASA Astronauts on Soyuz: Experience and Lessons for the Future

    NASA Technical Reports Server (NTRS)

    2010-01-01

    The U. S., Russia, and, China have each addressed the question of human-rating spacecraft. NASA's operational experience with human-rating primarily resides with Mercury, Gemini, Apollo, Space Shuttle, and International Space Station. NASA s latest developmental experience includes Constellation, X38, X33, and the Orbital Space Plane. If domestic commercial crew vehicles are used to transport astronauts to and from space, Soyuz is another example of methods that could be used to human-rate a spacecraft and to work with commercial spacecraft providers. For Soyuz, NASA's normal assurance practices were adapted. Building on NASA's Soyuz experience, this report contends all past, present, and future vehicles rely on a range of methods and techniques for human-rating assurance, the components of which include: requirements, conceptual development, prototype evaluations, configuration management, formal development reviews (safety, design, operations), component/system ground-testing, integrated flight tests, independent assessments, and launch readiness reviews. When constraints (cost, schedule, international) limit the depth/breadth of one or more preferred assurance means, ways are found to bolster the remaining areas. This report provides information exemplifying the above safety assurance model for consideration with commercial or foreign-government-designed spacecraft. Topics addressed include: U.S./Soviet-Russian government/agency agreements and engineering/safety assessments performed with lessons learned in historic U.S./Russian joint space ventures

  9. Planning and scheduling lessons learned study, executive summary

    NASA Technical Reports Server (NTRS)

    Robinson, Toni

    1990-01-01

    The study was performed to document the lessons on planning and scheduling activities for a number of missions and institutional facilities in such a way that they can be applied to future missions; to provide recommendations to both projects and Code 500 that will improve the end-to-end planning and scheduling process; and to identify what, if any, mission characteristics might be related to certain lessons learned. The results are a series of recommendations of both a managerial and technical nature related to the underlying lessons learned.

  10. Providing Community Education: Lessons Learned from Native Patient Navigators

    PubMed Central

    Burhansstipanov, Linda; Krebs, Linda U.; Harjo, Lisa; Watanabe-Galloway, Shinobu; Pingatore, Noel; Isham, Debra; Duran, Florence Tinka; Denny, Loretta; Lindstrom, Denise; Crawford, Kim

    2014-01-01

    Native Navigators and the Cancer Continuum (NNACC) was a community-based participatory research study among five American Indian organizations. The intervention required lay Native Patient Navigators (NPNs) to implement and evaluate community education workshops in their local settings. Community education was a new role for the NPNs and resulted in many lessons learned. NPNs met quarterly from 2008 through 2013 and shared lessons learned with one another and with the administrative team. In July 2012, the NPNs prioritized lessons learned throughout the study that were specific to implementing the education intervention. These were shared to help other navigators who may be including community education within their scope of work. The NPNs identified eight lessons learned that can be divided into three categories: NPN education and training, workshop content and presentation, and workshop logistics and problem-solving. A ninth overarching lesson for the entire NNACC study identified meeting community needs as an avenue for success. This project was successful due to the diligence of the NPNs in understanding their communities’ needs and striving to meet them through education workshops. Nine lessons were identified by the NPNs who provided community education through the NNACC project. Most are relevant to all patient navigators, regardless of patient population, who are incorporating public education into navigation services. Due to their intervention and budget implications, many of these lessons also are relevant to those who are developing navigation research. PMID:25087698

  11. Science is Cool with NASA's "Space School Musical"

    NASA Astrophysics Data System (ADS)

    Asplund, S.

    2011-12-01

    To help young learners understand basic solar system science concepts and retain what they learn, NASA's Discovery Program collaborated with KidTribe to create "Space School Musical," an innovative approach to teaching about the solar system that combines science content with music, fun lyrics, and choreography. It's an educational "hip-hopera" that moves and grooves its way into the minds and memories of students and educators alike. Kids can watch the videos, learn the songs, do the cross-curricular activities, and perform the show themselves. "Space School Musical" captures students attention as it brings the solar system to life, introducing the planets, moons, asteroids and more. The musical uses many different learning styles, helping to assure retention. Offering students an engaging, creative, and interdisciplinary learning opportunity helps them remember the content and may lead them to wonder about the universe around them and even inspire children to want to learn more, to dare to consider they can be the scientists, technologists, engineers or mathematicians of tomorrow. The unique Activity Guide created that accompanies "Space School Musical" includes 36 academic, fitness, art, and life skills lessons, all based on the content in the songs. The activities are designed to be highly engaging while helping students interact with the information. Whether students absorb information best with their eyes, ears, or body, each lesson allows for their learning preferences and encourages them to interact with both the content and each other. A guide on How to Perform the Play helps instructors lead students in performing their own version of the musical. The guide has suggestions to help with casting, auditions, rehearsing, creating the set and costumes, and performing. The musical is totally flexible - the entire play can be performed or just a few selected numbers; students can sing to the karaoke versions or lip-sync to the original cast. After learning about the solar system, students can even write their own lyrics. The play is not about perfection! It's designed to be inclusive and fun, to give every child a chance to shine. "Space School Musical" commands attention! It is a great tool for scientists who are visiting classrooms or afterschool programs, addressing school assemblies, or offering professional development workshops. Showing one or more videos brings engagement, smiles, and information to all. Specific songs can be shown to reinforce space science topics. The "Planetary Posse" introduces the planets and dwarf planets. "The Asteroids Gang" can initiate a discussion about accretion and why small bodies are so important to understanding the origin and evolution of our solar system. "MoonDance" provides compelling information about our moon and can introduce lunar missions. "We're the Scientists" is intended to build self confidence. "Space School Musical" is an innovative, universal, and timeless approach to teaching about the solar system, making it a valuable addition to programs and presentations for students and the public. The videos, lyrics, and guides are all available free on the Internet.

  12. Coping with Multiple Suicides among Middle School Students. Lessons Learned from School Crises and Emergencies. Volume 2, Issue 2

    ERIC Educational Resources Information Center

    US Department of Education, 2007

    2007-01-01

    "Lessons Learned" is a series of publications that are a brief recounting of actual school emergencies and crises. This "Lessons Learned" issue addresses the experience of a school district where three middle school students hung themselves within a three-week timeframe. Although deaths were apparently unconnected, the school district is part of a…

  13. Managing an Infectious Disease Outbreak in a School. Lessons Learned from School Crises and Emergencies. Volume 2, Issue 3

    ERIC Educational Resources Information Center

    US Department of Education, 2007

    2007-01-01

    "Lessons Learned" is a series of publications that are a brief recounting of actual school emergencies and crises. This "Lessons Learned" issue focuses on an infectious disease incident, which resulted in the death of a student, closure of area schools and the operation of an on-site school vaccine clinic. The report highlights the critical need…

  14. Learning with and about Advertising in Chemistry Education with a Lesson Plan on Natural Cosmetics--A Case Study

    ERIC Educational Resources Information Center

    Belova, Nadja; Eilks, Ingo

    2015-01-01

    This paper describes a case study on the chemistry behind natural cosmetics in five chemistry learning groups (grades 7-11, age range 13-17) in a German comprehensive school. The lesson plan intends to promote critical media literacy in the chemistry classroom and specifically emphasizes learning with and about advertising. The lessons of four…

  15. Real-Time Meteorological Battlespace Characterization in Support of Sea Power 21

    DTIC Science & Technology

    2011-02-04

    32  5.3  LESSONS LEARNED ....................................................................................... 44  6.  FUTURE WORK...problem with the SWR alignment, which is sometimes re- set during SWR maintenance (see Section 6 ‘Lessons Learned ’ for a case in point). Fig...ground clutter present (discussed in Section 6 ‘Lessons Learned ’), along with the lowest-tilt, quality controlled velocity. Bottom panel shows the

  16. Space Activities for the Visually Impaired

    NASA Astrophysics Data System (ADS)

    Ries, J. G.; Baguio, M.

    2005-12-01

    To a visually impaired person celestial objects or concepts of space exploration are likely to be more abstract than to other people, but they encounter news about the universe through their daily life. A partnership between Texas Space Grant Consortium, The University of Texas at Austin, and the Texas School for the Blind and Visually Impaired provided the opportunity to assist visually impaired students increase their understanding of astronomy and space science. The activities helped visually impaired students activity engage in inquiry-based, hands-on astronomy activities. The experiences provided during the educator workshops, adapted instructional classroom activities, and tactile learning aids will be shared in the hopes that others may be able to incorporate these lessons into their regular teaching activities.

  17. Structural Design of Glass and Ceramic Components for Space System Safety

    NASA Technical Reports Server (NTRS)

    Bernstein, Karen S.

    2007-01-01

    Manned space flight programs will always have windows as part of the structural shell of the crew compartment. Astronauts and cosmonauts need to and enjoy looking out of the spacecraft windows at Earth, at approaching vehicles, at scientific objectives and at the stars. With few exceptions spacecraft windows have been made of glass, and the lessons learned over forty years of manned space flight have resulted in a well-defined approach for using this brittle, unforgiving material in NASA's vehicles, in windows and other structural applications. This chapter will outline the best practices that have developed at NASA for designing, verifying and accepting glass (and ceramic) windows and other components for safe and reliable use in any space system.

  18. STS-121: Discovery Entry Flight Director Post Landing Press Conference

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Steve Stitch, STS-121 Entry Flight Director, and Wayne Hale, Space Shuttle Program is shown in this post landing press conference. Steve Stitch begins with discussing the following topics: 1) Weather at Kennedy Space Center; 2) Gap filler protrusion; 3) De-orbit burn; 4) Space Shuttle Landing; 5) Global Position Satellite System (GPSS) performance; and 6) Post-landing rain showers. Wayne Hale discusses external tank observations at launch and the goals that were obtained by this flight, which are to deliver 4000 pounds of scientific equipment, increase the crew members to three on the International Space Station (ISS), and repair the ISS. Questions from the press on lessons learned from the Auxiliary Power Unit (APU) leak, and flight readiness reviews are addressed.

  19. Compact Deep-Space Optical Communications Transceiver

    NASA Technical Reports Server (NTRS)

    Roberts, W. Thomas; Charles, Jeffrey R.

    2009-01-01

    Deep space optical communication transceivers must be very efficient receivers and transmitters of optical communication signals. For deep space missions, communication systems require high performance well beyond the scope of mere power efficiency, demanding maximum performance in relation to the precious and limited mass, volume, and power allocated. This paper describes the opto-mechanical design of a compact, efficient, functional brassboard deep space transceiver that is capable of achieving megabyte-per-second rates at Mars ranges. The special features embodied to enhance the system operability and functionality, and to reduce the mass and volume of the system are detailed. System tests and performance characteristics are described in detail. Finally, lessons learned in the implementation of the brassboard design and suggestions for improvements appropriate for a flight prototype are covered.

  20. [STEM on Station Education

    NASA Technical Reports Server (NTRS)

    Lundebjerg, Kristen

    2016-01-01

    The STEM on Station team is part of Education which is part of the External Relations organization (ERO). ERO has traditional goals based around BHAG (Big Hairy Audacious Goal). The BHAG model is simplified to a saying: Everything we do stimulates actions by others to advance human space exploration. The STEM on Station education initiate is a project focused on bringing off the earth research and learning into classrooms. Educational resources such as lesson plans, activities to connect with the space station and STEM related contests are available and hosted by the STEM on Station team along with their partners such as Texas Instruments. These educational activities engage teachers and students in the current happenings aboard the international space station, inspiring the next generation of space explorers.

  1. Spacecraft Design Considerations for Piloted Reentry and Landing

    NASA Technical Reports Server (NTRS)

    Stroud, Kenneth J.; Klaus, David M.

    2006-01-01

    With the end of the Space Shuttle era anticipated in this decade and the requirements for the Crew Exploration Vehicle (CEV) now being defined, an opportune window exists for incorporating 'lessons learned' from relevant aircraft and space flight experience into the early stages of designing the next generation of human spacecraft. This includes addressing not only the technological and overall mission challenges, but also taking into account the comprehensive effects that space flight has on the pilot, all of which must be balanced to ensure the safety of the crew. This manuscript presents a unique and timely overview of a multitude of competing, often unrelated, requirements and constraints governing spacecraft design that must be collectively considered in order to ensure the success of future space exploration missions.

  2. Experimenters' reference based upon Skylab experiment management

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The methods and techniques for experiment development and integration that evolved during the Skylab Program are described to facilitate transferring this experience to experimenters in future manned space programs. Management responsibilities and the sequential process of experiment evolution from initial concept through definition, development, integration, operation and postflight analysis are outlined and amplified, as appropriate. Emphasis is placed on specific lessons learned on Skylab that are worthy of consideration by future programs.

  3. Advanced software development workstation: Effectiveness of constraint-checking. [spaceflight simulation and planning

    NASA Technical Reports Server (NTRS)

    Izygon, Michel

    1992-01-01

    This report summarizes the findings and lessons learned from the development of an intelligent user interface for a space flight planning simulation program, in the specific area related to constraint-checking. The different functionalities of the Graphical User Interface part and of the rule-based part of the system have been identified. Their respective domain of applicability for error prevention and error checking have been specified.

  4. Aeromedical Lessons Learned from the Space Shuttle Columbia Accident Investigation

    NASA Technical Reports Server (NTRS)

    Chandler, Mike

    2011-01-01

    This slide presentation provides an update on the Columbia accident response presented in 2005 with additional information that was not available at that time. It will provide information on the following topics: (1) medical response and Search and Rescue, (2) medico-legal issues associated with the accident, (3) the Spacecraft Crew Survival Integrated Investigation Team Report published in 2008, and (4) future NASA flight surgeon spacecraft accident response training.

  5. Flight Test Approach to Adaptive Control Research

    NASA Technical Reports Server (NTRS)

    Pavlock, Kate Maureen; Less, James L.; Larson, David Nils

    2011-01-01

    The National Aeronautics and Space Administration s Dryden Flight Research Center completed flight testing of adaptive controls research on a full-scale F-18 testbed. The validation of adaptive controls has the potential to enhance safety in the presence of adverse conditions such as structural damage or control surface failures. This paper describes the research interface architecture, risk mitigations, flight test approach and lessons learned of adaptive controls research.

  6. Resurrected DSCOVR Propulsion System - Challenges and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Varia, Apurva P.; Scroggins, Ashley R.

    2015-01-01

    The Deep Space Climate Observatory (DSCOVR), formerly known as Triana, is a unique mission, not because of its objectives but because of how long it was in storage before launch. The Triana spacecraft was built in the late 90s and later renamed as DSCOVR, but the project was canceled before the spacecraft was launched. The nearly-complete spacecraft was put in controlled storage for 10 years, until the National Oceanic and Atmospheric Administration (NOAA) provided funding for the National Aeronautics and Space Administration (NASA) to refurbish the spacecraft. On February 11, 2015, DSCOVR was launched on a Falcon 9 v1.1 from launch complex 40 at Cape Canaveral Air Force Station. This paper describes the DSCOVR propulsion system, which utilizes ten 4.5 N thrusters in blowdown mode to perform Midcourse Correction (MCC) maneuvers, Lissajous Orbit Insertion (LOI) at Lagrangian point L1, momentum unloading maneuvers, and station keeping delta-v maneuvers at L1. This paper also describes the testing that was performed, including susbsystem-level and spacecraft-level tests, to verify the propulsion system's integrity for flight. Finally, this paper concludes with a discussion of the challenges and lessons learned during this unique mission, including replacement of a bent thruster and installation of an auxiliary heater over existing propellant line heaters.

  7. Launch Vehicle Design Process: Characterization, Technical Integration, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Blair, J. C.; Ryan, R. S.; Schutzenhofer, L. A.; Humphries, W. R.

    2001-01-01

    Engineering design is a challenging activity for any product. Since launch vehicles are highly complex and interconnected and have extreme energy densities, their design represents a challenge of the highest order. The purpose of this document is to delineate and clarify the design process associated with the launch vehicle for space flight transportation. The goal is to define and characterize a baseline for the space transportation design process. This baseline can be used as a basis for improving effectiveness and efficiency of the design process. The baseline characterization is achieved via compartmentalization and technical integration of subsystems, design functions, and discipline functions. First, a global design process overview is provided in order to show responsibility, interactions, and connectivity of overall aspects of the design process. Then design essentials are delineated in order to emphasize necessary features of the design process that are sometimes overlooked. Finally the design process characterization is presented. This is accomplished by considering project technical framework, technical integration, process description (technical integration model, subsystem tree, design/discipline planes, decision gates, and tasks), and the design sequence. Also included in the document are a snapshot relating to process improvements, illustrations of the process, a survey of recommendations from experienced practitioners in aerospace, lessons learned, references, and a bibliography.

  8. The Evolution of Exercise Hardware on ISS: Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Buxton, R. E.; Kalogera, K. L.; Hanson, A. M.

    2017-01-01

    During 16 years in low-Earth orbit, the suite of exercise hardware aboard the International Space Station (ISS) has matured significantly. Today, the countermeasure system supports an array of physical-training protocols and serves as an extensive research platform. Future hardware designs are required to have smaller operational envelopes and must also mitigate known physiologic issues observed in long-duration spaceflight. Taking lessons learned from the long history of space exercise will be important to successful development and implementation of future, compact exercise hardware. The evolution of exercise hardware as deployed on the ISS has implications for future exercise hardware and operations. Key lessons learned from the early days of ISS have helped to: 1. Enhance hardware performance (increased speed and loads). 2. Mature software interfaces. 3. Compare inflight exercise workloads to pre-, in-, and post-flight musculoskeletal and aerobic conditions. 4. Improve exercise comfort. 5. Develop complimentary hardware for research and operations. Current ISS exercise hardware includes both custom and commercial-off-the-shelf (COTS) hardware. Benefits and challenges to this approach have prepared engineering teams to take a hybrid approach when designing and implementing future exercise hardware. Significant effort has gone into consideration of hardware instrumentation and wearable devices that provide important data to monitor crew health and performance.

  9. The International Space Station (ISS) Solar Alpha Rotary Joint (SARJ): Materials & Processes (M&P) Lessons Learned for a Large, Rotating Spacecraft Mechanism

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.

    2016-01-01

    The International Space Station (ISS) utilizes two large rotating mechanisms, the solar alpha rotary joints (SARJs), as part of the solar arrays' alignment system for more efficient power generation. Each SARJ is a 10.3m circumference, nitrided 15-5PH steel race ring of triangular cross-section, with 12 sets of trundle bearing assemblies transferring load across the rolling joint. The SARJ mechanism rotates continuously and slowly - once every orbit, or every 90 minutes. In 2007, the starboard SARJ suffered a lubrication failure, resulting in severe damage (spalling) to one of the race ring surfaces. Extensive effort was conducted to prevent the port SARJ from suffering the same failure, and fortunately that effort was ultimately successful in also recovering the functionality of the starboard SARJ. The M&P engineering function was key in determining the cause of failure and the means for mechanism recovery. From a M&P lessons-learned perspective, observations are made concerning the original SARJ design parameters (boundary conditions), the perceived need for nitriding the race ring, the test conditions employed during qualification, the environmental controls used for the hardware preflight, and the lubrication robustness necessary for complex kinematic mechanisms expecting high-reliability and long-life.

  10. Study and Demonstration of Planning and Scheduling Concepts for the Earth Observing System Data and Information System

    NASA Technical Reports Server (NTRS)

    Davis, Randal; Thalman, Nancy

    1993-01-01

    The University of Colorado's Laboratory for Atmospheric and Space Physics (CU/LASP) along with the Goddard Space Flight Center (GSFC) and the Jet Propulsion Laboratory (JPL) designed, implemented, tested, and demonstrated a prototype of the distributed, hierarchical planning and scheduling system comtemplated for the Earth Observing System (EOS) project. The planning and scheduling prototype made use of existing systems: CU/LASP's Operations and Science Instrument Support Planning and Scheduling (OASIS-PS) software package; GSFC's Request Oriented Scheduling Engine (ROSE); and JPL's Plan Integrated Timeliner 2 (Plan-It-2). Using these tools, four scheduling nodes were implemented and tied together using a new communications protocol for scheduling applications called the Scheduling Applications Interface Language (SAIL). An extensive and realistic scenario of EOS satellite operations was then developed and the prototype scheduling system was tested and demonstrated using the scenario. Two demonstrations of the system were given to NASA personnel and EOS core system (ECS) contractor personnel. A comprehensive volume of lessons learned was generated and a meeting was held with NASA and ECS representatives to review these lessons learned. A paper and presentation on the project's final results was given at the American Institute of Aeronautics and Astronautics Computing in Aerospace 9 conference.

  11. A Ground Systems Architecture Transition for a Distributed Operations System

    NASA Technical Reports Server (NTRS)

    Sellers, Donna; Pitts, Lee; Bryant, Barry

    2003-01-01

    The Marshall Space Flight Center (MSFC) Ground Systems Department (GSD) recently undertook an architecture change in the product line that serves the ISS program. As a result, the architecture tradeoffs between data system product lines that serve remote users versus those that serve control center flight control teams were explored extensively. This paper describes the resulting architecture that will be used in the International Space Station (ISS) payloads program, and the resulting functional breakdown of the products that support this architecture. It also describes the lessons learned from the path that was followed, as a migration of products cause the need to reevaluate the allocation of functions across the architecture. The result is a set of innovative ground system solutions that is scalable so it can support facilities of wide-ranging sizes, from a small site up to large control centers. Effective use of system automation, custom components, design optimization for data management, data storage, data transmissions, and advanced local and wide area networking architectures, plus the effective use of Commercial-Off-The-Shelf (COTS) products, provides flexible Remote Ground System options that can be tailored to the needs of each user. This paper offers a description of the efficiency and effectiveness of the Ground Systems architectural options that have been implemented, and includes successful implementation examples and lessons learned.

  12. The OSIRIS-Rex Asteroid Sample Return: Mission Operations Design

    NASA Technical Reports Server (NTRS)

    Gal-Edd, Jonathan; Cheuvront, Allan

    2014-01-01

    The OSIRIS-REx mission employs a methodical, phased approach to ensure success in meeting the missions science requirements. OSIRIS-REx launches in September 2016, with a backup launch period occurring one year later. Sampling occurs in 2019. The departure burn from Bennu occurs in March 2021. On September 24, 2023, the SRC lands at the Utah Test and Training Range (UTTR). Stardust heritage procedures are followed to transport the SRC to Johnson Space Center, where the samples are removed and delivered to the OSIRIS-REx curation facility. After a six-month preliminary examination period the mission will produce a catalog of the returned sample, allowing the worldwide community to request samples for detailed analysis.Traveling and returning a sample from an Asteroid that has not been explored before requires unique operations consideration. The Design Reference Mission (DRM) ties together space craft, instrument and operations scenarios. The project implemented lessons learned from other small body missions: APLNEAR, JPLDAWN and ESARosetta. The key lesson learned was expected the unexpected and implement planning tools early in the lifecycle. In preparation to PDR, the project changed the asteroid arrival date, to arrive one year earlier and provided additional time margin. STK is used for Mission Design and STKScheduler for instrument coverage analysis.

  13. Best Practices for Reliable and Robust Spacecraft Structures

    NASA Technical Reports Server (NTRS)

    Raju, Ivatury S.; Murthy, P. L. N.; Patel, Naresh R.; Bonacuse, Peter J.; Elliott, Kenny B.; Gordon, S. A.; Gyekenyesi, J. P.; Daso, E. O.; Aggarwal, P.; Tillman, R. F.

    2007-01-01

    A study was undertaken to capture the best practices for the development of reliable and robust spacecraft structures for NASA s next generation cargo and crewed launch vehicles. In this study, the NASA heritage programs such as Mercury, Gemini, Apollo, and the Space Shuttle program were examined. A series of lessons learned during the NASA and DoD heritage programs are captured. The processes that "make the right structural system" are examined along with the processes to "make the structural system right". The impact of technology advancements in materials and analysis and testing methods on reliability and robustness of spacecraft structures is studied. The best practices and lessons learned are extracted from these studies. Since the first human space flight, the best practices for reliable and robust spacecraft structures appear to be well established, understood, and articulated by each generation of designers and engineers. However, these best practices apparently have not always been followed. When the best practices are ignored or short cuts are taken, risks accumulate, and reliability suffers. Thus program managers need to be vigilant of circumstances and situations that tend to violate best practices. Adherence to the best practices may help develop spacecraft systems with high reliability and robustness against certain anomalies and unforeseen events.

  14. Effects of Providing a Rationale for Learning a Lesson on Students' Motivation and Learning in Online Learning Environments

    ERIC Educational Resources Information Center

    Shin, Tae Seob

    2010-01-01

    This study examined whether providing a rationale for learning a particular lesson influences students' motivation and learning in online learning environments. A mixed-method design was used to investigate the effects of two types of rationales (former student vs. instructor rationales) presented in an online introductory educational psychology…

  15. University Educators' Instructional Choices and Their Learning Styles within a Lesson Framework

    ERIC Educational Resources Information Center

    Mazo, Lucille B.

    2017-01-01

    Research on learning styles often focuses on the learning style of the student; however, the learning style of the educator may affect instructional choices and student learning. Few studies have addressed the lack of knowledge that exists in universities with respect to educators' learning styles and a lesson framework (development, delivery, and…

  16. Use of after action reports (AARs) to promote organizational and systems learning in emergency preparedness.

    PubMed

    Savoia, Elena; Agboola, Foluso; Biddinger, Paul D

    2012-08-01

    Many public health and healthcare organizations use formal knowledge management practices to identify and disseminate the experiences gained over time. The "lessons-learned" approach is one such example of knowledge management practice applied to the wider concept of organizational learning. In the field of emergency preparedness, the lessons-learned approach stands on the assumption that learning from experience improves practice and minimizes avoidable deaths and negative economic and social consequences of disasters. In this project, we performed a structured review of AARs to analyze how lessons learned from the response to real-incidents may be used to maximize knowledge management and quality improvement practices such as the design of public health emergency preparedness (PHEP) exercises. We chose as a source of data the "Lessons Learned Information Sharing (LLIS.gov)" system, a joined program of the U.S. Department of Homeland Security DHS and FEMA that serves as the national, online repository of lessons learned, best practices, and innovative ideas. We identified recurring challenges reported by various states and local public health agencies in the response to different types of incidents. We also strove to identify the limitations of systematic learning that can be achieved due to existing weaknesses in the way AARs are developed.

  17. Food systems for space travel.

    PubMed

    Bourland, C T

    1999-01-01

    Space food systems have evolved from tubes and cubes to Earth-like food being planned for the International Space Station. The weight, volume, and oxygen-enriched atmosphere constraints of earlier spacecraft severely limited the type of food that could be used. Food systems improved as spacecraft conditions became more habitable. Space food systems have traditionally been based upon the water supply. This presentation summarizes the food development activities from Mercury through Shuttle, Shuttle/Mir, and plans for the International Space Station. Food development lessons learned from the long-duration missions with astronauts on the Mir station are also discussed. Nutritional requirements for long-duration missions in microgravity and problems associated with meeting these requirements for Mir will be elucidated. The psychological importance of food and the implications for food development activities are summarized.

  18. Multimedia Principle in Teaching Lessons

    ERIC Educational Resources Information Center

    Kari Jabbour, Khayrazad

    2012-01-01

    Multimedia learning principle occurs when we create mental representations from combining text and relevant graphics into lessons. This article discusses the learning advantages that result from adding multimedia learning principle into instructions; and how to select graphics that support learning. There is a balance that instructional designers…

  19. Lessons Learned from a Student-Led Breastfeeding Support Initiative at a US Urban Public University.

    PubMed

    Dinour, Lauren M; Beharie, Nisha

    2015-08-01

    Despite US laws requiring most workplaces to provide "reasonable" unpaid break time and a private space for female employees to express breast milk, much of the statutory language is vague and open to interpretation, potentially leading to suboptimal implementation. College and university campuses in the US represent a particular concern, as students are typically not employed by their school and thus not protected by state and federal labor laws. This article describes the work of 2 graduate students to successfully establish a dedicated space at their US urban public university for the purpose of expressing breast milk. A 3-pronged strategy was implemented to create a dedicated lactation space: (1) collecting data to support the establishment of the room, (2) raising awareness of legislation related to protection of breastfeeding, and (3) community organizing and advocacy. After nearly 18 months of advocacy and planning, the campus' dedicated lactation room was opened for use in March 2012. Two years later, the room remains a valuable resource and is used, on average, 8.4 times per weekday during a typical school week. Several lessons learned are described, and the strategies employed can be tested and applied in other US academic settings to assist in advocating for more supports for breastfeeding mothers. However, it is also imperative that US legislation be amended to include language that explicitly protects students so that women do not need to make the choice between continuing their education and continuing to breastfeed. © The Author(s) 2015.

  20. Lesson Plan Prototype for International Space Station's Interactive Video Education Events

    NASA Technical Reports Server (NTRS)

    Zigon, Thomas

    1999-01-01

    The outreach and education components of the International Space Station Program are creating a number of materials, programs, and activities that educate and inform various groups as to the implementation and purposes of the International Space Station. One of the strategies for disseminating this information to K-12 students involves an electronic class room using state of the art video conferencing technology. K-12 classrooms are able to visit the JSC, via an electronic field trip. Students interact with outreach personnel as they are taken on a tour of ISS mockups. Currently these events can be generally characterized as: Being limited to a one shot events, providing only one opportunity for students to view the ISS mockups; Using a "one to many" mode of communications; Using a transmissive, lecture based method of presenting information; Having student interactions limited to Q&A during the live event; Making limited use of media; and Lacking any formal, performance based, demonstration of learning on the part of students. My project involved developing interactive lessons for K-12 students (specifically 7th grade) that will reflect a 2nd generation design for electronic field trips. The goal of this design will be to create electronic field trips that will: Conform to national education standards; More fully utilize existing information resources; Integrate media into field trip presentations; Make support media accessible to both presenters and students; Challenge students to actively participate in field trip related activities; and Provide students with opportunities to demonstrate learning

Top