Sample records for space mapping techniques

  1. A Method of Surrogate Model Construction which Leverages Lower-Fidelity Information using Space Mapping Techniques

    DTIC Science & Technology

    2014-03-27

    fidelity. This pairing is accomplished through the use of a space mapping technique, which is a process where the design space of a lower fidelity model...is aligned a higher fidelity model. The intent of applying space mapping techniques to the field of surrogate construction is to leverage the

  2. A methodology for the generation of the 2-D map from unknown navigation environment by traveling a short distance

    NASA Technical Reports Server (NTRS)

    Bourbakis, N.; Sarkar, D.

    1994-01-01

    A technique for generation of a 2-D space map by traveling a short distance is described. The space to be mapped can be classified as: (1) space without obstacles, (2) space with stationary obstacles, and (3) space with moving obstacles. This paper presents the methodology used to generate a 2-D map of an unknown navigation space. The ability to minimize the redundancy during traveling and maximize the confidence function for generation of the map are advantages of this technique.

  3. Using Neural Networks in the Mapping of Mixed Discrete/Continuous Design Spaces With Application to Structural Design

    DTIC Science & Technology

    1994-02-01

    desired that the problem to which the design space mapping techniques were applied be easily analyzed, yet provide a design space with realistic complexity...consistent fully stressed solution. 3 DESIGN SPACE MAPPING In order to reduce the computational expense required to optimize design spaces, neural networks...employed in this study. Some of the issues involved in using neural networks to do design space mapping are how to configure the neural network, how much

  4. Multidimensional scaling for evolutionary algorithms--visualization of the path through search space and solution space using Sammon mapping.

    PubMed

    Pohlheim, Hartmut

    2006-01-01

    Multidimensional scaling as a technique for the presentation of high-dimensional data with standard visualization techniques is presented. The technique used is often known as Sammon mapping. We explain the mathematical foundations of multidimensional scaling and its robust calculation. We also demonstrate the use of this technique in the area of evolutionary algorithms. First, we present the visualization of the path through the search space of the best individuals during an optimization run. We then apply multidimensional scaling to the comparison of multiple runs regarding the variables of individuals and multi-criteria objective values (path through the solution space).

  5. Mapping Inner Space: Learning and Teaching Visual Mapping. Second Edition.

    ERIC Educational Resources Information Center

    Margulies, Nancy

    More than 10 years ago, when "Mapping Inner Space" was first published, a few teachers were using this creative technique and teaching it to their students. Today mapping is widely used in schools, universities, and the corporate world, as well. This second edition of the book explores a variety of mapping styles and also takes a fresh look at the…

  6. STS-99 Kregel & Thiele show mapping SRTM techniques on OV-105's flight deck

    NASA Image and Video Library

    2000-02-13

    S99-E-5258 (13 February 2000) --- Astronauts Kevin R. Kregel (left), mission commander, and Gerhard P.J. Thiele demonstrate mapping techniques for the Space Radar Topography Mission (SRTM) using a payload-equipped Shuttle and a globe on Endeavour's flight deck. The two are joined by astronaut Janet L. Kavandi, mission specialist, on the SRTM's Red Team. Thiele is a mission specialist representing the European Space Agency (ESA).

  7. Automated mapping of the ocean floor using the theory of intrinsic random functions of order k

    USGS Publications Warehouse

    David, M.; Crozel, D.; Robb, James M.

    1986-01-01

    High-quality contour maps can be computer drawn from single track echo-sounding data by combining Universal Kriging and the theory of intrinsic random function of order K (IRFK). These methods interpolate values among the closely spaced points that lie along relatively widely spaced lines. The technique provides a variance which can be contoured as a quantitative measure of map precision. The technique can be used to evaluate alternative survey trackline configurations and data collection intervals, and can be applied to other types of oceanographic data. ?? 1986 D. Reidel Publishing Company.

  8. A comparison of two conformal mapping techniques applied to an aerobrake body

    NASA Technical Reports Server (NTRS)

    Hommel, Mark J.

    1987-01-01

    Conformal mapping is a classical technique which has been utilized for solving problems in aerodynamics and hydrodynamics. Conformal mapping has been successfully applied in the construction of grids around airfoils, engine inlets and other aircraft configurations. Conformal mapping techniques were applied to an aerobrake body having an axis of symmetry. Two different approaches were utilized: (1) Karman-Trefftz transformation; and (2) Point Wise Schwarz Christoffel transformation. In both cases, the aerobrake body was mapped onto a near circle, and a grid was generated in the mapped plane. The mapped body and grid were then mapped back into physical space and the properties of the associated grids were examined. Advantages and disadvantages of both approaches are discussed.

  9. Fundamental Studies on Crashworthiness Design with Uncertainties in the System

    DTIC Science & Technology

    2005-01-01

    studied; examples include using the Response Surface Methods (RSM) and Design of Experiment (DOE) [2-4]. Space Mapping (SM) is another practical...Exposed to Impact Load Using a Space Mapping Technique,” Struct. Multidisc. Optim., Vol. 27, pp. 411-420 (2004). 6. Mayer, R. R., Kikuchi, N. and Scott

  10. Fundamental Studies on Crashworthiness Design with Uncertainties in the System

    DTIC Science & Technology

    2005-01-01

    studied; examples include using the Response Surface Methods (RSM) and Design of Experiment (DOE) [2-4]. Space Mapping (SM) is another practical...to Impact Load Using a Space Mapping Technique," Struct. Multidisc. Optim., Vol. 27, pp. 411-420 (2004). 6. Mayer, R. R., Kikuchi, N. and Scott, R

  11. Synchrotron X-ray reciprocal-space mapping, topography and diffraction resolution studies of macromolecular crystal quality.

    PubMed

    Boggon, T J; Helliwell, J R; Judge, R A; Olczak, A; Siddons, D P; Snell, E H; Stojanoff, V

    2000-07-01

    A comprehensive study of microgravity and ground-grown chicken egg-white lysozyme crystals is presented using synchrotron X-ray reciprocal-space mapping, topography techniques and diffraction resolution. Microgravity crystals displayed reduced intrinsic mosaicities on average, but no differences in terms of strain over their ground-grown counterparts. Topographic analysis revealed that in the microgravity case the majority of the crystal was contributing to the peak of the reflection at the appropriate Bragg angle. In the ground-control case only a small volume of the crystal contributed to the intensity at the diffraction peak. The techniques prove to be highly complementary, with the reciprocal-space mapping providing a quantitative measure of the crystal mosaicity and strain (or variation in lattice spacing) and the topography providing a qualitative overall assessment of the crystal in terms of its X-ray diffraction properties. Structural data collection was also carried out at the synchrotron.

  12. Synchrotron X-Ray Reciprocal Space Mapping, Topography and Diffraction Resolution Studies of Macromolecular Crystal Quality

    NASA Technical Reports Server (NTRS)

    Boggon, T. J.; Helliwell, J. R.; Judge, Russell A.; Siddons, D. P.; Snell, Edward H.; Stojanoff, V.

    2000-01-01

    A comprehensive study of microgravity and ground grown chicken egg white lysozyme crystals is presented using synchrotron X-ray reciprocal space mapping, topography techniques and diffraction resolution. Microgravity crystals displayed, on average, reduced intrinsic mosaicities but no differences in terms of stress over their earth grown counterparts. Topographic analysis revealed that in the microgravity case the majority of the crystal was contributing to the peak of the reflection at the appropriate Bragg angle. In the earth case at the diffraction peak only a small volume of the crystal contributed to the intensity. The techniques prove to be highly complementary with the reciprocal space mapping providing a quantitative measure of the crystal mosaicity and stress (or variation in lattice spacing) and topography providing a qualitative overall assessment of the crystal in terms of its X-ray diffraction properties. Structural data collection was also carried out both at the synchrotron and in the laboratory.

  13. Transverse Phase Space Reconstruction and Emittance Measurement of Intense Electron Beams using a Tomography Technique

    NASA Astrophysics Data System (ADS)

    Stratakis, D.; Kishek, R. A.; Li, H.; Bernal, S.; Walter, M.; Tobin, J.; Quinn, B.; Reiser, M.; O'Shea, P. G.

    2006-11-01

    Tomography is the technique of reconstructing an image from its projections. It is widely used in the medical community to observe the interior of the human body by processing multiple x-ray images taken at different angles, A few pioneering researchers have adapted tomography to reconstruct detailed phase space maps of charged particle beams. Some questions arise regarding the limitations of tomography technique for space charge dominated beams. For instance is the linear space charge force a valid approximation? Does tomography equally reproduce phase space for complex, experimentally observed, initial particle distributions? Does tomography make any assumptions about the initial distribution? This study explores the use of accurate modeling with the particle-in-cell code WARP to address these questions, using a wide range of different initial distributions in the code. The study also includes a number of experimental results on tomographic phase space mapping performed on the University of Maryland Electron Ring (UMER).

  14. Time-space and cognition-space transformations for transportation network analysis based on multidimensional scaling and self-organizing map

    NASA Astrophysics Data System (ADS)

    Hong, Zixuan; Bian, Fuling

    2008-10-01

    Geographic space, time space and cognition space are three fundamental and interrelated spaces in geographic information systems for transportation. However, the cognition space and its relationships to the time space and geographic space are often neglected. This paper studies the relationships of these three spaces in urban transportation system from a new perspective and proposes a novel MDS-SOM transformation method which takes the advantages of the techniques of multidimensional scaling (MDS) and self-organizing map (SOM). The MDS-SOM transformation framework includes three kinds of mapping: the geographic-time transformation, the cognition-time transformation and the time-cognition transformation. The transformations in our research provide a better understanding of the interactions of these three spaces and beneficial knowledge is discovered to help the transportation analysis and decision supports.

  15. Aperture synthesis for microwave radiometers in space

    NASA Technical Reports Server (NTRS)

    Levine, D. M.; Good, J. C.

    1983-01-01

    A technique is described for obtaining passive microwave measurements from space with high spatial resolution for remote sensing applications. The technique involves measuring the product of the signal from pairs of antennas at many different antenna spacings, thereby mapping the correlation function of antenna voltage. The intensity of radiation at the source can be obtained from the Fourier transform of this correlation function. Theory is presented to show how the technique can be applied to large extended sources such as the Earth when observed from space. Details are presented for a system with uniformly spaced measurements.

  16. A technique for determining the deuterium/hydrogen contrast map in neutron macromolecular crystallography.

    PubMed

    Chatake, Toshiyuki; Fujiwara, Satoru

    2016-01-01

    A difference in the neutron scattering length between hydrogen and deuterium leads to a high density contrast in neutron Fourier maps. In this study, a technique for determining the deuterium/hydrogen (D/H) contrast map in neutron macromolecular crystallography is developed and evaluated using ribonuclease A. The contrast map between the D2O-solvent and H2O-solvent crystals is calculated in real space, rather than in reciprocal space as performed in previous neutron D/H contrast crystallography. The present technique can thus utilize all of the amplitudes of the neutron structure factors for both D2O-solvent and H2O-solvent crystals. The neutron D/H contrast maps clearly demonstrate the powerful detectability of H/D exchange in proteins. In fact, alternative protonation states and alternative conformations of hydroxyl groups are observed at medium resolution (1.8 Å). Moreover, water molecules can be categorized into three types according to their tendency towards rotational disorder. These results directly indicate improvement in the neutron crystal structure analysis. This technique is suitable for incorporation into the standard structure-determination process used in neutron protein crystallography; consequently, more precise and efficient determination of the D-atom positions is possible using a combination of this D/H contrast technique and standard neutron structure-determination protocols.

  17. Exploration of a Capability-Focused Aerospace System of Systems Architecture Alternative with Bilayer Design Space, Based on RST-SOM Algorithmic Methods

    PubMed Central

    Li, Zhifei; Qin, Dongliang

    2014-01-01

    In defense related programs, the use of capability-based analysis, design, and acquisition has been significant. In order to confront one of the most challenging features of a huge design space in capability based analysis (CBA), a literature review of design space exploration was first examined. Then, in the process of an aerospace system of systems design space exploration, a bilayer mapping method was put forward, based on the existing experimental and operating data. Finally, the feasibility of the foregoing approach was demonstrated with an illustrative example. With the data mining RST (rough sets theory) and SOM (self-organized mapping) techniques, the alternative to the aerospace system of systems architecture was mapping from P-space (performance space) to C-space (configuration space), and then from C-space to D-space (design space), respectively. Ultimately, the performance space was mapped to the design space, which completed the exploration and preliminary reduction of the entire design space. This method provides a computational analysis and implementation scheme for large-scale simulation. PMID:24790572

  18. Exploration of a capability-focused aerospace system of systems architecture alternative with bilayer design space, based on RST-SOM algorithmic methods.

    PubMed

    Li, Zhifei; Qin, Dongliang; Yang, Feng

    2014-01-01

    In defense related programs, the use of capability-based analysis, design, and acquisition has been significant. In order to confront one of the most challenging features of a huge design space in capability based analysis (CBA), a literature review of design space exploration was first examined. Then, in the process of an aerospace system of systems design space exploration, a bilayer mapping method was put forward, based on the existing experimental and operating data. Finally, the feasibility of the foregoing approach was demonstrated with an illustrative example. With the data mining RST (rough sets theory) and SOM (self-organized mapping) techniques, the alternative to the aerospace system of systems architecture was mapping from P-space (performance space) to C-space (configuration space), and then from C-space to D-space (design space), respectively. Ultimately, the performance space was mapped to the design space, which completed the exploration and preliminary reduction of the entire design space. This method provides a computational analysis and implementation scheme for large-scale simulation.

  19. A novel multi-detection technique for three-dimensional reciprocal-space mapping in grazing-incidence X-ray diffraction.

    PubMed

    Schmidbauer, M; Schäfer, P; Besedin, S; Grigoriev, D; Köhler, R; Hanke, M

    2008-11-01

    A new scattering technique in grazing-incidence X-ray diffraction geometry is described which enables three-dimensional mapping of reciprocal space by a single rocking scan of the sample. This is achieved by using a two-dimensional detector. The new set-up is discussed in terms of angular resolution and dynamic range of scattered intensity. As an example the diffuse scattering from a strained multilayer of self-assembled (In,Ga)As quantum dots grown on GaAs substrate is presented.

  20. Mapping experiment with space station

    NASA Technical Reports Server (NTRS)

    Wu, Sherman S. C.

    1987-01-01

    Mapping the earth from space stations can be approached in two areas. One is to collect gravity data for defining a new topographic datum using the earth's gravitational field in terms of spherical harmonics. The other, which should be considered as a very significant contribution of the Space Station, is to search and explore techniques of mapping the earth's topography using either optical or radar images with or without references to ground control points. Geodetic position of ground control points can be predetermined by the Global Positioning System (GPS) for the mapping experiment with the Space Station. It is proposed to establish four ground control points in North America or Africa (including the Sahara Desert). If this experiment should be successfully accomplished, it may also be applied to the defense charting service.

  1. Techniques for Down-Sampling a Measured Surface Height Map for Model Validation

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin

    2012-01-01

    This software allows one to down-sample a measured surface map for model validation, not only without introducing any re-sampling errors, but also eliminating the existing measurement noise and measurement errors. The software tool of the current two new techniques can be used in all optical model validation processes involving large space optical surfaces

  2. Comparison of Spatiotemporal Mapping Techniques for Enormous Etl and Exploitation Patterns

    NASA Astrophysics Data System (ADS)

    Deiotte, R.; La Valley, R.

    2017-10-01

    The need to extract, transform, and exploit enormous volumes of spatiotemporal data has exploded with the rise of social media, advanced military sensors, wearables, automotive tracking, etc. However, current methods of spatiotemporal encoding and exploitation simultaneously limit the use of that information and increase computing complexity. Current spatiotemporal encoding methods from Niemeyer and Usher rely on a Z-order space filling curve, a relative of Peano's 1890 space filling curve, for spatial hashing and interleaving temporal hashes to generate a spatiotemporal encoding. However, there exist other space-filling curves, and that provide different manifold coverings that could promote better hashing techniques for spatial data and have the potential to map spatiotemporal data without interleaving. The concatenation of Niemeyer's and Usher's techniques provide a highly efficient space-time index. However, other methods have advantages and disadvantages regarding computational cost, efficiency, and utility. This paper explores the several methods using a range of sizes of data sets from 1K to 10M observations and provides a comparison of the methods.

  3. Solar thematic maps for space weather operations

    USGS Publications Warehouse

    Rigler, E. Joshua; Hill, Steven M.; Reinard, Alysha A.; Steenburgh, Robert A.

    2012-01-01

    Thematic maps are arrays of labels, or "themes", associated with discrete locations in space and time. Borrowing heavily from the terrestrial remote sensing discipline, a numerical technique based on Bayes' theorem captures operational expertise in the form of trained theme statistics, then uses this to automatically assign labels to solar image pixels. Ultimately, regular thematic maps of the solar corona will be generated from high-cadence, high-resolution SUVI images, the solar ultraviolet imager slated to fly on NOAA's next-generation GOES-R series of satellites starting ~2016. These thematic maps will not only provide quicker, more consistent synoptic views of the sun for space weather forecasters, but digital thematic pixel masks (e.g., coronal hole, active region, flare, etc.), necessary for a new generation of operational solar data products, will be generated. This paper presents the mathematical underpinnings of our thematic mapper, as well as some practical algorithmic considerations. Then, using images from the Solar Dynamics Observatory (SDO) Advanced Imaging Array (AIA) as test data, it presents results from validation experiments designed to ascertain the robustness of the technique with respect to differing expert opinions and changing solar conditions.

  4. Time-to-space mapping of femtosecond pulses.

    PubMed

    Nuss, M C; Li, M; Chiu, T H; Weiner, A M; Partovi, A

    1994-05-01

    We report time-to-space mapping of femtosecond light pulses in a temporal holography setup. By reading out a temporal hologram of a short optical pulse with a continuous-wave diode laser, we accurately convert temporal pulse-shape information into a spatial pattern that can be viewed with a camera. We demonstrate real-time acquisition of electric-field autocorrelation and cross correlation of femtosecond pulses with this technique.

  5. Evaluation of color mapping algorithms in different color spaces

    NASA Astrophysics Data System (ADS)

    Bronner, Timothée.-Florian; Boitard, Ronan; Pourazad, Mahsa T.; Nasiopoulos, Panos; Ebrahimi, Touradj

    2016-09-01

    The color gamut supported by current commercial displays is only a subset of the full spectrum of colors visible by the human eye. In High-Definition (HD) television technology, the scope of the supported colors covers 35.9% of the full visible gamut. For comparison, Ultra High-Definition (UHD) television, which is currently being deployed on the market, extends this range to 75.8%. However, when reproducing content with a wider color gamut than that of a television, typically UHD content on HD television, some original color information may lie outside the reproduction capabilities of the television. Efficient gamut mapping techniques are required in order to fit the colors of any source content into the gamut of a given display. The goal of gamut mapping is to minimize the distortion, in terms of perceptual quality, when converting video from one color gamut to another. It is assumed that the efficiency of gamut mapping depends on the color space in which it is computed. In this article, we evaluate 14 gamut mapping techniques, 12 combinations of two projection methods across six color spaces as well as R'G'B' Clipping and wrong gamut interpretation. Objective results, using the CIEDE2000 metric, show that the R'G'B' Clipping is slightly outperformed by only one combination of color space and projection method. However, analysis of images shows that R'G'B' Clipping can result in loss of contrast in highly saturated images, greatly impairing the quality of the mapped image.

  6. Mapping experiment with space station

    NASA Technical Reports Server (NTRS)

    Wu, S. S. C.

    1986-01-01

    Mapping of the Earth from space stations can be approached in two areas. One is to collect gravity data for defining topographic datum using Earth's gravity field in terms of spherical harmonics. The other is to search and explore techniques of mapping topography using either optical or radar images with or without reference to ground central points. Without ground control points, an integrated camera system can be designed. With ground control points, the position of the space station (camera station) can be precisely determined at any instant. Therefore, terrestrial topography can be precisely mapped either by conventional photogrammetric methods or by current digital technology of image correlation. For the mapping experiment, it is proposed to establish four ground points either in North America or Africa (including the Sahara desert). If this experiment should be successfully accomplished, it may also be applied to the defense charting systems.

  7. State Space Modeling of Time-Varying Contemporaneous and Lagged Relations in Connectivity Maps

    PubMed Central

    Molenaar, Peter C. M.; Beltz, Adriene M.; Gates, Kathleen M.; Wilson, Stephen J.

    2017-01-01

    Most connectivity mapping techniques for neuroimaging data assume stationarity (i.e., network parameters are constant across time), but this assumption does not always hold true. The authors provide a description of a new approach for simultaneously detecting time-varying (or dynamic) contemporaneous and lagged relations in brain connectivity maps. Specifically, they use a novel raw data likelihood estimation technique (involving a second-order extended Kalman filter/smoother embedded in a nonlinear optimizer) to determine the variances of the random walks associated with state space model parameters and their autoregressive components. The authors illustrate their approach with simulated and blood oxygen level-dependent functional magnetic resonance imaging data from 30 daily cigarette smokers performing a verbal working memory task, focusing on seven regions of interest (ROIs). Twelve participants had dynamic directed functional connectivity maps: Eleven had one or more time-varying contemporaneous ROI state loadings, and one had a time-varying autoregressive parameter. Compared to smokers without dynamic maps, smokers with dynamic maps performed the task with greater accuracy. Thus, accurate detection of dynamic brain processes is meaningfully related to behavior in a clinical sample. PMID:26546863

  8. Reciprocal Space Mapping of Macromolecular Crystals in the Laboratory

    NASA Technical Reports Server (NTRS)

    Snell, Edward H.; Boggon, T. J.; Fewster, P. F.; Siddons, D. P.; Stojanof, V.; Pusey, M. L.

    1998-01-01

    The technique of reciprocal space mapping applied to the physical measurement of macromolecular crystals will be described. This technique uses a triple axis diffractometer setup whereby the monochromator is the first crystal, the sample is the second and the third crystal (of the same material as the monochromator) analyzes the diffracted beam. The geometry is such that it is possible to separate mosaic volume effects from lattice strain effects. The deconvolution of the instrument parameters will also be addressed. Results from measurements at Brookhaven National Synchrotron Radiation Source carried out on microgravity and ground-grown crystals will be presented. The required beam characteristics for reciprocal space mapping are also ideal for topographic studies and the first topographs ever recorded from microgravity protein crystal samples will be shown. We are now working on a system which will enable reciprocal space mapping, mosaicity and topography studies to be carried out in the home laboratory. This system uses a rotating anode X-ray source to provide an intense beam then a Bartels double crystal, four reflection monochromator to provide the spectral and geometric beam conditioning necessary such that the instrument characteristics do not mask the measurement. This is coupled to a high precision diffractometer and sensitive detector. Commissioning data and first results from the system will be presented.

  9. Toward standardized mapping for left atrial analysis and cardiac ablation guidance

    NASA Astrophysics Data System (ADS)

    Rettmann, M. E.; Holmes, D. R.; Linte, C. A.; Packer, D. L.; Robb, R. A.

    2014-03-01

    In catheter-based cardiac ablation, the pulmonary vein ostia are important landmarks for guiding the ablation procedure, and for this reason, have been the focus of many studies quantifying their size, structure, and variability. Analysis of pulmonary vein structure, however, has been limited by the lack of a standardized reference space for population based studies. Standardized maps are important tools for characterizing anatomic variability across subjects with the goal of separating normal inter-subject variability from abnormal variability associated with disease. In this work, we describe a novel technique for computing flat maps of left atrial anatomy in a standardized space. A flat map of left atrial anatomy is created by casting a single ray through the volume and systematically rotating the camera viewpoint to obtain the entire field of view. The technique is validated by assessing preservation of relative surface areas and distances between the original 3D geometry and the flat map geometry. The proposed methodology is demonstrated on 10 subjects which are subsequently combined to form a probabilistic map of anatomic location for each of the pulmonary vein ostia and the boundary of the left atrial appendage. The probabilistic map demonstrates that the location of the inferior ostia have higher variability than the superior ostia and the variability of the left atrial appendage is similar to the superior pulmonary veins. This technique could also have potential application in mapping electrophysiology data, radio-frequency ablation burns, or treatment planning in cardiac ablation therapy.

  10. Evaluation of Techniques Used to Estimate Cortical Feature Maps

    PubMed Central

    Katta, Nalin; Chen, Thomas L.; Watkins, Paul V.; Barbour, Dennis L.

    2011-01-01

    Functional properties of neurons are often distributed nonrandomly within a cortical area and form topographic maps that reveal insights into neuronal organization and interconnection. Some functional maps, such as in visual cortex, are fairly straightforward to discern with a variety of techniques, while other maps, such as in auditory cortex, have resisted easy characterization. In order to determine appropriate protocols for establishing accurate functional maps in auditory cortex, artificial topographic maps were probed under various conditions, and the accuracy of estimates formed from the actual maps was quantified. Under these conditions, low-complexity maps such as sound frequency can be estimated accurately with as few as 25 total samples (e.g., electrode penetrations or imaging pixels) if neural responses are averaged together. More samples are required to achieve the highest estimation accuracy for higher complexity maps, and averaging improves map estimate accuracy even more than increasing sampling density. Undersampling without averaging can result in misleading map estimates, while undersampling with averaging can lead to the false conclusion of no map when one actually exists. Uniform sample spacing only slightly improves map estimation over nonuniform sample spacing typical of serial electrode penetrations. Tessellation plots commonly used to visualize maps estimated using nonuniform sampling are always inferior to linearly interpolated estimates, although differences are slight at higher sampling densities. Within primary auditory cortex, then, multiunit sampling with at least 100 samples would likely result in reasonable feature map estimates for all but the highest complexity maps and the highest variability that might be expected. PMID:21889537

  11. Mapping urban land cover from space: Some observations for future progress

    NASA Technical Reports Server (NTRS)

    Gaydos, L.

    1982-01-01

    The multilevel classification system adopted by the USGS for operational mapping of land use and land cover at levels 1 and 2 is discussed and the successes and failures of mapping land cover from LANDSAT digital data are reviewed. Techniques used for image interpretation and their relationships to sensor parameters are examined. The requirements for mapping levels 2 and 3 classes are considered.

  12. Direct access inter-process shared memory

    DOEpatents

    Brightwell, Ronald B; Pedretti, Kevin; Hudson, Trammell B

    2013-10-22

    A technique for directly sharing physical memory between processes executing on processor cores is described. The technique includes loading a plurality of processes into the physical memory for execution on a corresponding plurality of processor cores sharing the physical memory. An address space is mapped to each of the processes by populating a first entry in a top level virtual address table for each of the processes. The address space of each of the processes is cross-mapped into each of the processes by populating one or more subsequent entries of the top level virtual address table with the first entry in the top level virtual address table from other processes.

  13. State space modeling of time-varying contemporaneous and lagged relations in connectivity maps.

    PubMed

    Molenaar, Peter C M; Beltz, Adriene M; Gates, Kathleen M; Wilson, Stephen J

    2016-01-15

    Most connectivity mapping techniques for neuroimaging data assume stationarity (i.e., network parameters are constant across time), but this assumption does not always hold true. The authors provide a description of a new approach for simultaneously detecting time-varying (or dynamic) contemporaneous and lagged relations in brain connectivity maps. Specifically, they use a novel raw data likelihood estimation technique (involving a second-order extended Kalman filter/smoother embedded in a nonlinear optimizer) to determine the variances of the random walks associated with state space model parameters and their autoregressive components. The authors illustrate their approach with simulated and blood oxygen level-dependent functional magnetic resonance imaging data from 30 daily cigarette smokers performing a verbal working memory task, focusing on seven regions of interest (ROIs). Twelve participants had dynamic directed functional connectivity maps: Eleven had one or more time-varying contemporaneous ROI state loadings, and one had a time-varying autoregressive parameter. Compared to smokers without dynamic maps, smokers with dynamic maps performed the task with greater accuracy. Thus, accurate detection of dynamic brain processes is meaningfully related to behavior in a clinical sample. Published by Elsevier Inc.

  14. Computerized data reduction techniques for nadir viewing remote sensors

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Gormsen, Barbara B.

    1985-01-01

    Computer resources have been developed for the analysis and reduction of MAPS experimental data from the OSTA-1 payload. The MAPS Research Project is concerned with the measurement of the global distribution of mid-tropospheric carbon monoxide. The measurement technique for the MAPS instrument is based on non-dispersive gas filter radiometer operating in the nadir viewing mode. The MAPS experiment has two passive remote sensing instruments, the prototype instrument which is used to measure tropospheric air pollution from aircraft platforms and the third generation (OSTA) instrument which is used to measure carbon monoxide in the mid and upper troposphere from space platforms. Extensive effort was also expended in support of the MAPS/OSTA-3 shuttle flight. Specific capabilities and resources developed are discussed.

  15. Space mapping method for the design of passive shields

    NASA Astrophysics Data System (ADS)

    Sergeant, Peter; Dupré, Luc; Melkebeek, Jan

    2006-04-01

    The aim of the paper is to find the optimal geometry of a passive shield for the reduction of the magnetic stray field of an axisymmetric induction heater. For the optimization, a space mapping algorithm is used that requires two models. The first is an accurate model with a high computational effort as it contains finite element models. The second is less accurate, but it has a low computational effort as it uses an analytical model: the shield is replaced by a number of mutually coupled coils. The currents in the shield are found by solving an electrical circuit. Space mapping combines both models to obtain the optimal passive shield fast and accurately. The presented optimization technique is compared with gradient, simplex, and genetic algorithms.

  16. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions

    NASA Astrophysics Data System (ADS)

    Nedialkova, Lilia V.; Amat, Miguel A.; Kevrekidis, Ioannis G.; Hummer, Gerhard

    2014-09-01

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlap with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space.

  17. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nedialkova, Lilia V.; Amat, Miguel A.; Kevrekidis, Ioannis G., E-mail: yannis@princeton.edu, E-mail: gerhard.hummer@biophys.mpg.de

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlapmore » with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space.« less

  18. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions

    PubMed Central

    Nedialkova, Lilia V.; Amat, Miguel A.; Kevrekidis, Ioannis G.; Hummer, Gerhard

    2014-01-01

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlap with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space. PMID:25240340

  19. Reciprocal Space Mapping of Macromolecular Crystals in the Home Laboratory

    NASA Technical Reports Server (NTRS)

    Snell, Edward H.; Fewster, P. F.; Andrew, Norman; Boggon, T. J.; Judge, Russell A.; Pusey, Marc A.

    1999-01-01

    Reciprocal space mapping techniques are used widely by the materials science community to provide physical information about their crystal samples. We have used similar methods at synchrotron sources to look at the quality of macromolecular crystals produced both on the ground and under microgravity conditions. The limited nature of synchrotron time has led us to explore the use of a high resolution materials research diffractometer to perform similar measurements in the home laboratory. Although the available intensity is much reduced due to the beam conditioning necessary for high reciprocal space resolution, lower resolution data can be collected in the same detail as the synchrotron source. Experiments can be optimized at home to make most benefit from the synchrotron time available. Preliminary results including information on the mosaicity and the internal strains from reciprocal space maps will be presented.

  20. Progress in diode-pumped alexandrite lasers as a new resource for future space lidar missions

    NASA Astrophysics Data System (ADS)

    Damzen, M. J.; Thomas, G. M.; Teppitaksak, A.; Minassian, A.

    2017-11-01

    Satellite-based remote sensing using laser-based lidar techniques provides a powerful tool for global 3-D mapping of atmospheric species (e.g. CO2, ozone, clouds, aerosols), physical attributes of the atmosphere (e.g. temperature, wind speed), and spectral indicators of Earth features (e.g. vegetation, water). Such information provides a valuable source for weather prediction, understanding of climate change, atmospheric science and health of the Earth eco-system. Similarly, laser-based altimetry can provide high precision ground topography mapping and more complex 3-D mapping (e.g. canopy height profiling). The lidar technique requires use of cutting-edge laser technologies and engineered designs that are capable of enduring the space environment over the mission lifetime. The laser must operate with suitably high electrical-to-optical efficiency and risk reduction strategy adopted to mitigate against laser failure or excessive operational degradation of laser performance.

  1. Studies of the Cognitive Representation of Spatial Relations: I. Overview.

    ERIC Educational Resources Information Center

    Baird, John C.

    1979-01-01

    This article reviews two experiments on the mapping and planning of actual (campus buildings) and hypothetical (ideal town facilities) items in a two-dimensional space. Direct mapping (planning) techniques are preferred over the method of pair comparisons, especially for the actual environment. (See TM 504 879-880) (Author/CTM)

  2. Far-UV Spectral Mapping of Lunar Composition, Porosity, and Space Weathering: LRO Lyman Alpha Mapping Project (LAMP)

    NASA Astrophysics Data System (ADS)

    Retherford, K. D.; Greathouse, T. K.; Mandt, K.; Gladstone, R.; Liu, Y.; Hendrix, A. R.; Hurley, D.; Cahill, J. T.; Stickle, A. M.; Egan, A.; Kaufmann, D. E.; Grava, C.; Pryor, W. R.

    2016-12-01

    Far ultraviolet reflectance measurements of the Moon, icy satellites, comets, and asteroids obtained within the last decade have ushered in a new era of scientific advancement for UV surface investigations. The Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP) has demonstrated an innovative nightside observing technique, putting a new light on permanently shadowed regions (PSRs) and other features on the Moon. Dayside far-UV albedo maps complement the nightside data, and LRO's polar orbit and high data downlink capabilities enable searches for diurnal variations in spectral signals. We'll discuss the strengths of the far-UV reflectance imaging spectroscopy technique with respect to several new LAMP results. Detections of water frost and hydration signatures near 165 nm, for example, provide constraints on composition that complement infrared spectroscopy, visible imaging, neutron spectroscopy, radar, and other techniques. At far-UV wavelengths a relatively blue spectral slope is diagnostic of space weathering, which is opposite of the spectral reddening indicator of maturity at wavelengths longward of 180 nm. By utilizing natural diffuse illumination sources on the nightside the far-UV technique is able to identify relative increases in porosity within the PSRs, and provides an additional tool for determining relative surface ages. Prospects for future studies are further enabled by a new, more sensitive dayside operating mode enacted during the present LRO mission extension.

  3. The reduced space Sequential Quadratic Programming (SQP) method for calculating the worst resonance response of nonlinear systems

    NASA Astrophysics Data System (ADS)

    Liao, Haitao; Wu, Wenwang; Fang, Daining

    2018-07-01

    A coupled approach combining the reduced space Sequential Quadratic Programming (SQP) method with the harmonic balance condensation technique for finding the worst resonance response is developed. The nonlinear equality constraints of the optimization problem are imposed on the condensed harmonic balance equations. Making use of the null space decomposition technique, the original optimization formulation in the full space is mathematically simplified, and solved in the reduced space by means of the reduced SQP method. The transformation matrix that maps the full space to the null space of the constrained optimization problem is constructed via the coordinate basis scheme. The removal of the nonlinear equality constraints is accomplished, resulting in a simple optimization problem subject to bound constraints. Moreover, second order correction technique is introduced to overcome Maratos effect. The combination application of the reduced SQP method and condensation technique permits a large reduction of the computational cost. Finally, the effectiveness and applicability of the proposed methodology is demonstrated by two numerical examples.

  4. Northern Everglades, Florida, satellite image map

    USGS Publications Warehouse

    Thomas, Jean-Claude; Jones, John W.

    2002-01-01

    These satellite image maps are one product of the USGS Land Characteristics from Remote Sensing project, funded through the USGS Place-Based Studies Program with support from the Everglades National Park. The objective of this project is to develop and apply innovative remote sensing and geographic information system techniques to map the distribution of vegetation, vegetation characteristics, and related hydrologic variables through space and over time. The mapping and description of vegetation characteristics and their variations are necessary to accurately simulate surface hydrology and other surface processes in South Florida and to monitor land surface changes. As part of this research, data from many airborne and satellite imaging systems have been georeferenced and processed to facilitate data fusion and analysis. These image maps were created using image fusion techniques developed as part of this project.

  5. Adaptive space warping to enhance passive haptics in an arthroscopy surgical simulator.

    PubMed

    Spillmann, Jonas; Tuchschmid, Stefan; Harders, Matthias

    2013-04-01

    Passive haptics, also known as tactile augmentation, denotes the use of a physical counterpart to a virtual environment to provide tactile feedback. Employing passive haptics can result in more realistic touch sensations than those from active force feedback, especially for rigid contacts. However, changes in the virtual environment would necessitate modifications of the physical counterparts. In recent work space warping has been proposed as one solution to overcome this limitation. In this technique virtual space is distorted such that a variety of virtual models can be mapped onto one single physical object. In this paper, we propose as an extension adaptive space warping; we show how this technique can be employed in a mixed-reality surgical training simulator in order to map different virtual patients onto one physical anatomical model. We developed methods to warp different organ geometries onto one physical mock-up, to handle different mechanical behaviors of the virtual patients, and to allow interactive modifications of the virtual structures, while the physical counterparts remain unchanged. Various practical examples underline the wide applicability of our approach. To the best of our knowledge this is the first practical usage of such a technique in the specific context of interactive medical training.

  6. Space-time PM2.5 mapping in the severe haze region of Jing-Jin-Ji (China) using a synthetic approach.

    PubMed

    He, Junyu; Christakos, George

    2018-05-07

    Long- and short-term exposure to PM 2.5 is of great concern in China due to its adverse population health effects. Characteristic of the severity of the situation in China is that in the Jing-Jin-Ji region considered in this work a total of 2725 excess deaths have been attributed to short-term PM 2.5 exposure during the period January 10-31, 2013. Technically, the processing of large space-time PM 2.5 datasets and the mapping of the space-time distribution of PM 2.5 concentrations often constitute high-cost projects. To address this situation, we propose a synthetic modeling framework based on the integration of (a) the Bayesian maximum entropy method that assimilates auxiliary information from land-use regression and artificial neural network (ANN) model outputs based on PM 2.5 monitoring, satellite remote sensing data, land use and geographical records, with (b) a space-time projection technique that transforms the PM 2.5 concentration values from the original spatiotemporal domain onto a spatial domain that moves along the direction of the PM 2.5 velocity spread. An interesting methodological feature of the synthetic approach is that its components (methods or models) are complementary, i.e., one component can compensate for the occasional limitations of another component. Insight is gained in terms of a PM 2.5 case study covering the severe haze Jing-Jin-Ji region during October 1-31, 2015. The proposed synthetic approach explicitly accounted for physical space-time dependencies of the PM 2.5 distribution. Moreover, the assimilation of auxiliary information and the dimensionality reduction achieved by the synthetic approach produced rather impressive results: It generated PM 2.5 concentration maps with low estimation uncertainty (even at counties and villages far away from the monitoring stations, whereas during the haze periods the uncertainty reduction was over 50% compared to standard PM 2.5 mapping techniques); and it also proved to be computationally very efficient (the reduction in computational time was over 20% compared to standard mapping techniques). Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. A grid spacing control technique for algebraic grid generation methods

    NASA Technical Reports Server (NTRS)

    Smith, R. E.; Kudlinski, R. A.; Everton, E. L.

    1982-01-01

    A technique which controls the spacing of grid points in algebraically defined coordinate transformations is described. The technique is based on the generation of control functions which map a uniformly distributed computational grid onto parametric variables defining the physical grid. The control functions are smoothed cubic splines. Sets of control points are input for each coordinate directions to outline the control functions. Smoothed cubic spline functions are then generated to approximate the input data. The technique works best in an interactive graphics environment where control inputs and grid displays are nearly instantaneous. The technique is illustrated with the two-boundary grid generation algorithm.

  8. Mapping urban green open space in Bontang city using QGIS and cloud computing

    NASA Astrophysics Data System (ADS)

    Agus, F.; Ramadiani; Silalahi, W.; Armanda, A.; Kusnandar

    2018-04-01

    Digital mapping techniques are available freely and openly so that map-based application development is easier, faster and cheaper. A rapid development of Cloud Computing Geographic Information System makes this system can help the needs of the community for the provision of geospatial information online. The presence of urban Green Open Space (GOS) provide great benefits as an oxygen supplier, carbon-binding agent and can contribute to providing comfort and beauty of city life. This study aims to propose a platform application of GIS Cloud Computing (CC) of Bontang City GOS mapping. The GIS-CC platform uses the basic map available that’s free and open source. The research used survey method to collect GOS data obtained from Bontang City Government, while application developing works Quantum GIS-CC. The result section describes the existence of GOS Bontang City and the design of GOS mapping application.

  9. Development of data processing interpretation and analysis system for the remote sensing of trace atmospheric gas species

    NASA Technical Reports Server (NTRS)

    Casas, J. C.; Koziana, J. V.; Saylor, M. S.; Kindle, E. C.

    1982-01-01

    Problems associated with the development of the measurement of air pollution from satellites (MAPS) experiment program are addressed. The primary thrust of this research was the utilization of the MAPS experiment data in three application areas: low altitude aircraft flights (one to six km); mid altitude aircraft flights (eight to 12 km); and orbiting space platforms. Extensive research work in four major areas of data management was the framework for implementation of the MAPS experiment technique. These areas are: (1) data acquisition; (2) data processing, analysis and interpretation algorithms; (3) data display techniques; and (4) information production.

  10. Computer power fathoms the depths: billion-bit data processors illuminate the subsurface. [3-D Seismic techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, J.J.

    Some of the same space-age signal technology being used to track events 200 miles above the earth is helping petroleum explorationists track down oil and natural gas two miles and more down into the earth. The breakthroughs, which have come in a technique called three-dimensional seismic work, could change the complexion of exploration for oil and natural gas. Thanks to this 3-D seismic approach, explorationists can make dynamic maps of sites miles beneath the surface. Then explorationists can throw these maps on space-age computer systems and manipulate them every which way - homing in sharply on salt domes, faults, sandsmore » and traps associated with oil and natural gas. ''The 3-D seismic scene has exploded within the last two years,'' says, Peiter Tackenberg, Marathon technical consultant who deals with both domestic and international exploration. The 3-D technique has been around for more than a decade, he notes, but recent achievements in space-age computer hardware and software have unlocked its full potential.« less

  11. Polynomial approximation of Poincare maps for Hamiltonian system

    NASA Technical Reports Server (NTRS)

    Froeschle, Claude; Petit, Jean-Marc

    1992-01-01

    Different methods are proposed and tested for transforming a non-linear differential system, and more particularly a Hamiltonian one, into a map without integrating the whole orbit as in the well-known Poincare return map technique. We construct piecewise polynomial maps by coarse-graining the phase-space surface of section into parallelograms and using either only values of the Poincare maps at the vertices or also the gradient information at the nearest neighbors to define a polynomial approximation within each cell. The numerical experiments are in good agreement with both the real symplectic and Poincare maps.

  12. Cardiac-driven Pulsatile Motion of Intracranial Cerebrospinal Fluid Visualized Based on a Correlation Mapping Technique.

    PubMed

    Yatsushiro, Satoshi; Sunohara, Saeko; Hayashi, Naokazu; Hirayama, Akihiro; Matsumae, Mitsunori; Atsumi, Hideki; Kuroda, Kagayaki

    2018-04-10

    A correlation mapping technique delineating delay time and maximum correlation for characterizing pulsatile cerebrospinal fluid (CSF) propagation was proposed. After proofing its technical concept, this technique was applied to healthy volunteers and idiopathic normal pressure hydrocephalus (iNPH) patients. A time-resolved three dimensional-phase contrast (3D-PC) sampled the cardiac-driven CSF velocity at 32 temporal points per cardiac period at each spatial location using retrospective cardiac gating. The proposed technique visualized distributions of propagation delay and correlation coefficient of the PC-based CSF velocity waveform with reference to a waveform at a particular point in the CSF space. The delay time was obtained as the amount of time-shift, giving the maximum correlation for the velocity waveform at an arbitrary location with that at the reference location. The validity and accuracy of the technique were confirmed in a flow phantom equipped with a cardiovascular pump. The technique was then applied to evaluate the intracranial CSF motions in young, healthy (N = 13), and elderly, healthy (N = 13) volunteers and iNPH patients (N = 13). The phantom study demonstrated that root mean square error of the delay time was 2.27%, which was less than the temporal resolution of PC measurement used in this study (3.13% of a cardiac cycle). The human studies showed a significant difference (P < 0.01) in the mean correlation coefficient between the young, healthy group and the other two groups. A significant difference (P < 0.05) was also recognized in standard deviation of the correlation coefficients in intracranial CSF space among all groups. The result suggests that the CSF space compliance of iNPH patients was lower than that of healthy volunteers. The correlation mapping technique allowed us to visualize pulsatile CSF velocity wave propagations as still images. The technique may help to classify diseases related to CSF dynamics, such as iNPH.

  13. MultiLaue: A Technique to Extract d-spacings from Laue XRD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gainsforth, Zack; Marcus, Matthew A.; Tamura, Nobumichi

    We present that broad spectrum X-ray Diffraction (XRD) is named Laue after Max von Laue, and is the original XRD technique. Today, monochromatic XRD is more common because Bragg's equation allows determination of d-spacings where Laue does not. Laue still remains in use for single crystal systems because it can be used to make very accurate unit cell determinations as well as for strain and orientation mapping. Lastly, a Laue technique which could provide unambiguous determination of lattice spacings, a la Bragg's equation would be a huge leap forward, especially for multiphase samples such as meteorites, interplanetary dust particles andmore » some geological specimens.« less

  14. MultiLaue: A Technique to Extract d-spacings from Laue XRD

    DOE PAGES

    Gainsforth, Zack; Marcus, Matthew A.; Tamura, Nobumichi; ...

    2016-07-25

    We present that broad spectrum X-ray Diffraction (XRD) is named Laue after Max von Laue, and is the original XRD technique. Today, monochromatic XRD is more common because Bragg's equation allows determination of d-spacings where Laue does not. Laue still remains in use for single crystal systems because it can be used to make very accurate unit cell determinations as well as for strain and orientation mapping. Lastly, a Laue technique which could provide unambiguous determination of lattice spacings, a la Bragg's equation would be a huge leap forward, especially for multiphase samples such as meteorites, interplanetary dust particles andmore » some geological specimens.« less

  15. South Florida Everglades: satellite image map

    USGS Publications Warehouse

    Jones, John W.; Thomas, Jean-Claude; Desmond, G.B.

    2001-01-01

    These satellite image maps are one product of the USGS Land Characteristics from Remote Sensing project, funded through the USGS Place-Based Studies Program (http://access.usgs.gov/) with support from the Everglades National Park (http://www.nps.gov/ever/). The objective of this project is to develop and apply innovative remote sensing and geographic information system techniques to map the distribution of vegetation, vegetation characteristics, and related hydrologic variables through space and over time. The mapping and description of vegetation characteristics and their variations are necessary to accurately simulate surface hydrology and other surface processes in South Florida and to monitor land surface changes. As part of this research, data from many airborne and satellite imaging systems have been georeferenced and processed to facilitate data fusion and analysis. These image maps were created using image fusion techniques developed as part of this project.

  16. Parametric techniques for characterizing myocardial tissue by magnetic resonance imaging (part 1): T1 mapping.

    PubMed

    Perea Palazón, R J; Ortiz Pérez, J T; Prat González, S; de Caralt Robira, T M; Cibeira López, M T; Solé Arqués, M

    2016-01-01

    The development of myocardial fibrosis is a common process in the appearance of ventricular dysfunction in many heart diseases. Magnetic resonance imaging makes it possible to accurately evaluate the structure and function of the heart, and its role in the macroscopic characterization of myocardial fibrosis by late enhancement techniques has been widely validated clinically. Recent studies have demonstrated that T1-mapping techniques can quantify diffuse myocardial fibrosis and the expansion of the myocardial extracellular space in absolute terms. However, further studies are necessary to validate the usefulness of this technique in the early detection of tissue remodeling at a time when implementing early treatment would improve a patient's prognosis. This article reviews the state of the art for T1 mapping of the myocardium, its clinical applications, and its limitations. Copyright © 2016 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  17. Strategy for reliable strain measurement in InAs/GaAs materials from high-resolution Z-contrast STEM images

    NASA Astrophysics Data System (ADS)

    Vatanparast, Maryam; Vullum, Per Erik; Nord, Magnus; Zuo, Jian-Min; Reenaas, Turid W.; Holmestad, Randi

    2017-09-01

    Geometric phase analysis (GPA), a fast and simple Fourier space method for strain analysis, can give useful information on accumulated strain and defect propagation in multiple layers of semiconductors, including quantum dot materials. In this work, GPA has been applied to high resolution Z-contrast scanning transmission electron microscopy (STEM) images. Strain maps determined from different g vectors of these images are compared to each other, in order to analyze and assess the GPA technique in terms of accuracy. The SmartAlign tool has been used to improve the STEM image quality getting more reliable results. Strain maps from template matching as a real space approach are compared with strain maps from GPA, and it is discussed that a real space analysis is a better approach than GPA for aberration corrected STEM images.

  18. Space based topographic mapping experiment using Seasat synthetic aperture radar and LANDSAT 3 return beam vidicon imagery

    NASA Technical Reports Server (NTRS)

    Mader, G. L.

    1981-01-01

    A technique for producing topographic information is described which is based on same side/same time viewing using a dissimilar combination of radar imagery and photographic images. Common geographic areas viewed from similar space reference locations produce scene elevation displacements in opposite direction and proper use of this characteristic can yield the perspective information necessary for determination of base to height ratios. These base to height ratios can in turn be used to produce a topographic map. A test area covering the Harrisburg, Pennsylvania region was observed by synthetic aperture radar on the Seasat satellite and by return beam vidicon on by the LANDSAT - 3 satellite. The techniques developed for the scaling re-orientation and common registration of the two images are presented along with the topographic determination data. Topographic determination based exclusively on the images content is compared to the map information which is used as a performance calibration base.

  19. Estimating Solar PV Output Using Modern Space/Time Geostatistics (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S. J.; George, R.; Bush, B.

    2009-04-29

    This presentation describes a project that uses mapping techniques to predict solar output at subhourly resolution at any spatial point, develop a methodology that is applicable to natural resources in general, and demonstrate capability of geostatistical techniques to predict the output of a potential solar plant.

  20. Correlation mapping for visualizing propagation of pulsatile CSF motion in intracranial space based on magnetic resonance phase contrast velocity images: preliminary results.

    PubMed

    Yatsushiro, Satoshi; Hirayama, Akihiro; Matsumae, Mitsunori; Kajiwara, Nao; Abdullah, Afnizanfaizal; Kuroda, Kagayaki

    2014-01-01

    Correlation time mapping based on magnetic resonance (MR) velocimetry has been applied to pulsatile cerebrospinal fluid (CSF) motion to visualize the pressure transmission between CSF at different locations and/or between CSF and arterial blood flow. Healthy volunteer experiments demonstrated that the technique exhibited transmitting pulsatile CSF motion from CSF space in the vicinity of blood vessels with short delay and relatively high correlation coefficients. Patient and healthy volunteer experiments indicated that the properties of CSF motion were different from the healthy volunteers. Resultant images in healthy volunteers implied that there were slight individual difference in the CSF driving source locations. Clinical interpretation for these preliminary results is required to apply the present technique for classifying status of hydrocephalus.

  1. Reduced multiple empirical kernel learning machine.

    PubMed

    Wang, Zhe; Lu, MingZhe; Gao, Daqi

    2015-02-01

    Multiple kernel learning (MKL) is demonstrated to be flexible and effective in depicting heterogeneous data sources since MKL can introduce multiple kernels rather than a single fixed kernel into applications. However, MKL would get a high time and space complexity in contrast to single kernel learning, which is not expected in real-world applications. Meanwhile, it is known that the kernel mapping ways of MKL generally have two forms including implicit kernel mapping and empirical kernel mapping (EKM), where the latter is less attracted. In this paper, we focus on the MKL with the EKM, and propose a reduced multiple empirical kernel learning machine named RMEKLM for short. To the best of our knowledge, it is the first to reduce both time and space complexity of the MKL with EKM. Different from the existing MKL, the proposed RMEKLM adopts the Gauss Elimination technique to extract a set of feature vectors, which is validated that doing so does not lose much information of the original feature space. Then RMEKLM adopts the extracted feature vectors to span a reduced orthonormal subspace of the feature space, which is visualized in terms of the geometry structure. It can be demonstrated that the spanned subspace is isomorphic to the original feature space, which means that the dot product of two vectors in the original feature space is equal to that of the two corresponding vectors in the generated orthonormal subspace. More importantly, the proposed RMEKLM brings a simpler computation and meanwhile needs a less storage space, especially in the processing of testing. Finally, the experimental results show that RMEKLM owns a much efficient and effective performance in terms of both complexity and classification. The contributions of this paper can be given as follows: (1) by mapping the input space into an orthonormal subspace, the geometry of the generated subspace is visualized; (2) this paper first reduces both the time and space complexity of the EKM-based MKL; (3) this paper adopts the Gauss Elimination, one of the on-the-shelf techniques, to generate a basis of the original feature space, which is stable and efficient.

  2. Severity mapping of the proximal femur: a new method for assessing hip osteoarthritis with computed tomography.

    PubMed

    Turmezei, T D; Lomas, D J; Hopper, M A; Poole, K E S

    2014-10-01

    Plain radiography has been the mainstay of imaging assessment in osteoarthritis for over 50 years, but it does have limitations. Here we present the methodology and results of a new technique for identifying, grading, and mapping the severity and spatial distribution of osteoarthritic disease features at the hip in 3D with clinical computed tomography (CT). CT imaging of 456 hips from 230 adult female volunteers (mean age 66 ± 17 years) was reviewed using 3D multiplanar reformatting to identify bone-related radiological features of osteoarthritis, namely osteophytes, subchondral cysts and joint space narrowing. Scoresheets dividing up the femoral head, head-neck region and the joint space were used to register the location and severity of each feature (scored from 0 to 3). Novel 3D cumulative feature severity maps were then created to display where the most severe disease features from each individual were anatomically located across the cohort. Feature severity maps showed a propensity for osteophytes at the inferoposterior and superolateral femoral head-neck junction. Subchondral cysts were a less common and less localised phenomenon. Joint space narrowing <1.5 mm was recorded in at least one sector of 83% of hips, but most frequently in the posterolateral joint space. This is the first description of hip osteoarthritis using unenhanced clinical CT in which we describe the co-localisation of posterior osteophytes and joint space narrowing for the first time. We believe this technique can perform several important roles in future osteoarthritis research, including phenotyping and sensitive disease assessment in 3D. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  3. Polarization-color mapping strategies: catching up with color theory

    NASA Astrophysics Data System (ADS)

    Kruse, Andrew W.; Alenin, Andrey S.; Vaughn, Israel J.; Tyo, J. Scott

    2017-09-01

    Current visualization techniques for mapping polarization data to a color coordinates defined by the Hue, Saturation, Value (HSV) color representation are analyzed in the context of perceptual uniformity. Since HSV is not designed to be perceptually uniform, the extent of non-uniformity should be evaluated by using robust color difference formulae and by comparison to the state-of-the-art uniform color space CAM02-UCS. For mapping just angle of polarization with HSV hue, the results show clear non-uniformity and implications for how this can misrepresent the data. UCS can be used to create alternative mapping techniques that are perceptually uniform. Implementing variation in lightness may increase shape discrimination within the scene. Future work will be dedicated to measuring performance of both current and proposed methods using psychophysical analysis.

  4. Mapping of terrain by computer clustering techniques using multispectral scanner data and using color aerial film

    NASA Technical Reports Server (NTRS)

    Smedes, H. W.; Linnerud, H. J.; Woolaver, L. B.; Su, M. Y.; Jayroe, R. R.

    1972-01-01

    Two clustering techniques were used for terrain mapping by computer of test sites in Yellowstone National Park. One test was made with multispectral scanner data using a composite technique which consists of (1) a strictly sequential statistical clustering which is a sequential variance analysis, and (2) a generalized K-means clustering. In this composite technique, the output of (1) is a first approximation of the cluster centers. This is the input to (2) which consists of steps to improve the determination of cluster centers by iterative procedures. Another test was made using the three emulsion layers of color-infrared aerial film as a three-band spectrometer. Relative film densities were analyzed using a simple clustering technique in three-color space. Important advantages of the clustering technique over conventional supervised computer programs are (1) human intervention, preparation time, and manipulation of data are reduced, (2) the computer map, gives unbiased indication of where best to select the reference ground control data, (3) use of easy to obtain inexpensive film, and (4) the geometric distortions can be easily rectified by simple standard photogrammetric techniques.

  5. Correlative light-electron fractography for fatigue striations characterization in metallic alloys.

    PubMed

    Hein, Luis Rogerio de Oliveira; de Oliveira, José Alberto; de Campos, Kamila Amato

    2013-09-01

    The correlative light-electron fractography technique combines correlative microscopy concepts to the extended depth-from-focus reconstruction method, associating the reliable topographic information of 3-D maps from light microscopy ordered Z-stacks to the finest lateral resolution and large focus depth from scanning electron microscopy. Fatigue striations spacing analysis can be precisely measured, by correcting the mean surface tilting with the knowledge of local elevation data from elevation maps. This new technique aims to improve the accuracy of quantitative fractography in fatigue fracture investigations. Copyright © 2013 Wiley Periodicals, Inc.

  6. Combined interpretation of multiple geophysical techniques: an archaeological case study

    NASA Astrophysics Data System (ADS)

    Riedl, S.; Reichmann, S.; Tronicke, J.; Lück, E.

    2009-04-01

    In order to locate and ascertain the dimensions of an ancient orangery, we explored an area of about 70 m x 60 m in the Rheinsberg Palace Garden (Germany) with multiple geophysical techniques. The Rheinsberg Park, situated about 100 km northwest of Berlin, Germany, was established by the Prussian emperors in the 18th century. Due to redesign of the architecture and the landscaping during the past 300 years, buildings were dismantled and detailed knowledge about some original buildings got lost. We surveyed an area close to a gazebo where, after historical sources, an orangery was planned around the year 1740. However, today it is not clear to what extent this plan has been realized and if remains of this building are still buried in the subsurface. Applied geophysical techniques include magnetic gradiometry, frequency domain electromagnetic (FDEM) and direct current (DC) resistivity mapping as well as ground penetrating radar (GPR). To get an overview of the site, we performed FDEM electrical conductivity mapping using an EM38 instrument and magnetic gradiometry with caesium magnetometers. Both data sets were collected with an in- and crossline data point spacing of ca. 10 cm and 50 cm, respectively. DC resistivity surveying was performed using a pole-pole electrode configuration with an electrode spacing of 1.5 m and a spacing of 1.0 m between individual readings. A 3-D GPR survey was conducted using 200 MHz antennae and in- and crossline spacing of ca. 10 cm and 40 cm, respectively. A standard processing sequence including 3-D migration was applied. A combined interpretation of all collected data sets illustrates that the magnetic gradient and the EM38 conductivity maps is are dominated by anomalies from metallic water pipes from belonging to the irrigation system of the park. The DC resistivity map outlines a rectangular area which might indicate the extension of a former building south of the gazebo. The 3-D GPR data set provides further insights about subsurface structures and relevant geometries. From this data set, we interpret the depth and the extent of foundation and wall remains in the southern and central part of the site indicating the extent of the old orangery. This case study clearly illustrates the benefit of using multiple geophysical methods in archaeological studies. It further illustrates the advantage of 3-D GPR surveying at sites where anthropogenic disturbances (such as metallic pipes and other utilities) might limit the applicability of commonly applied mapping techniques such as magnetic gradiometry or EM38 conductivity mapping.

  7. On equivalent parameter learning in simplified feature space based on Bayesian asymptotic analysis.

    PubMed

    Yamazaki, Keisuke

    2012-07-01

    Parametric models for sequential data, such as hidden Markov models, stochastic context-free grammars, and linear dynamical systems, are widely used in time-series analysis and structural data analysis. Computation of the likelihood function is one of primary considerations in many learning methods. Iterative calculation of the likelihood such as the model selection is still time-consuming though there are effective algorithms based on dynamic programming. The present paper studies parameter learning in a simplified feature space to reduce the computational cost. Simplifying data is a common technique seen in feature selection and dimension reduction though an oversimplified space causes adverse learning results. Therefore, we mathematically investigate a condition of the feature map to have an asymptotically equivalent convergence point of estimated parameters, referred to as the vicarious map. As a demonstration to find vicarious maps, we consider the feature space, which limits the length of data, and derive a necessary length for parameter learning in hidden Markov models. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Demonstration of decomposition and optimization in the design of experimental space systems

    NASA Technical Reports Server (NTRS)

    Padula, Sharon; Sandridge, Chris A.; Haftka, Raphael T.; Walsh, Joanne L.

    1989-01-01

    Effective design strategies for a class of systems which may be termed Experimental Space Systems (ESS) are needed. These systems, which include large space antenna and observatories, space platforms, earth satellites and deep space explorers, have special characteristics which make them particularly difficult to design. It is argued here that these same characteristics encourage the use of advanced computer-aided optimization and planning techniques. The broad goal of this research is to develop optimization strategies for the design of ESS. These strategics would account for the possibly conflicting requirements of mission life, safety, scientific payoffs, initial system cost, launch limitations and maintenance costs. The strategies must also preserve the coupling between disciplines or between subsystems. Here, the specific purpose is to describe a computer-aided planning and scheduling technique. This technique provides the designer with a way to map the flow of data between multidisciplinary analyses. The technique is important because it enables the designer to decompose the system design problem into a number of smaller subproblems. The planning and scheduling technique is demonstrated by its application to a specific preliminary design problem.

  9. Space-resolved diffusing wave spectroscopy measurements of the macroscopic deformation and the microscopic dynamics in tensile strain tests

    NASA Astrophysics Data System (ADS)

    Nagazi, Med-Yassine; Brambilla, Giovanni; Meunier, Gérard; Marguerès, Philippe; Périé, Jean-Noël; Cipelletti, Luca

    2017-01-01

    We couple a laser-based, space-resolved dynamic light scattering apparatus to a universal traction machine for mechanical extensional tests. We perform simultaneous optical and mechanical measurements on polyether ether ketone, a semi-crystalline polymer widely used in the industry. Due to the high turbidity of the sample, light is multiply scattered by the sample and the diffusing wave spectroscopy (DWS) formalism is used to interpret the data. Space-resolved DWS yields spatial maps of the sample strain and of the microscopic dynamics. An excellent agreement is found between the strain maps thus obtained and those measured by a conventional stereo-digital image correlation technique. The microscopic dynamics reveals both affine motion and plastic rearrangements. Thanks to the extreme sensitivity of DWS to displacements as small as 1 nm, plastic activity and its spatial localization can be detected at an early stage of the sample strain, making the technique presented here a valuable complement to existing material characterization methods.

  10. Results and applications of a space suit range-of-motion study

    NASA Technical Reports Server (NTRS)

    Reinhardt, AL

    1989-01-01

    The range of motion of space suits has traditionally been described using limited 2-D mapping of limb, torso, or arm movements performed in front of an orthogonal grid. A new technique for recovering extra-vehicular (EVA) space suit range-of-motion data during underwater testing was described in a paper presented by the author at the 1988 conference. The new technique uses digitized data which is automatically acquired from video images of the subject. Three-dimensional trajectories are recovered from these data, and can be displayed using 2-D computer graphics. Results of using this technique for the current shuttle EVA suit during underwater simulated weightlessness testing are discussed. Application of the data for use in animating anthropometric computer models is highlighted.

  11. Motion planning with complete knowledge using a colored SOM.

    PubMed

    Vleugels, J; Kok, J N; Overmars, M

    1997-01-01

    The motion planning problem requires that a collision-free path be determined for a robot moving amidst a fixed set of obstacles. Most neural network approaches to this problem are for the situation in which only local knowledge about the configuration space is available. The main goal of the paper is to show that neural networks are also suitable tools in situations with complete knowledge of the configuration space. In this paper we present an approach that combines a neural network and deterministic techniques. We define a colored version of Kohonen's self-organizing map that consists of two different classes of nodes. The network is presented with random configurations of the robot and, from this information, it constructs a road map of possible motions in the work space. The map is a growing network, and different nodes are used to approximate boundaries of obstacles and the Voronoi diagram of the obstacles, respectively. In a second phase, the positions of the two kinds of nodes are combined to obtain the road map. In this way a number of typical problems with small obstacles and passages are avoided, and the required number of nodes for a given accuracy is within reasonable limits. This road map is searched to find a motion connecting the given source and goal configurations of the robot. The algorithm is simple and general; the only specific computation that is required is a check for intersection of two polygons. We implemented the algorithm for planar robots allowing both translation and rotation and experiments show that compared to conventional techniques it performs well, even for difficult motion planning scenes.

  12. Lumped Model Generation and Evaluation: Sensitivity and Lie Algebraic Techniques with Applications to Combustion

    DTIC Science & Technology

    1989-03-03

    address global parameter space mapping issues for first order differential equations. The rigorous criteria for the existence of exact lumping by linear projective transformations was also established.

  13. Tracking Resilience to Infections by Mapping Disease Space

    PubMed Central

    Thomas Tate, Ann; Rath, Poonam; Cumnock, Katherine; Schneider, David S.

    2016-01-01

    Infected hosts differ in their responses to pathogens; some hosts are resilient and recover their original health, whereas others follow a divergent path and die. To quantitate these differences, we propose mapping the routes infected individuals take through “disease space.” We find that when plotting physiological parameters against each other, many pairs have hysteretic relationships that identify the current location of the host and predict the future route of the infection. These maps can readily be constructed from experimental longitudinal data, and we provide two methods to generate the maps from the cross-sectional data that is commonly gathered in field trials. We hypothesize that resilient hosts tend to take small loops through disease space, whereas nonresilient individuals take large loops. We support this hypothesis with experimental data in mice infected with Plasmodium chabaudi, finding that dying mice trace a large arc in red blood cells (RBCs) by reticulocyte space as compared to surviving mice. We find that human malaria patients who are heterozygous for sickle cell hemoglobin occupy a small area of RBCs by reticulocyte space, suggesting this approach can be used to distinguish resilience in human populations. This technique should be broadly useful in describing the in-host dynamics of infections in both model hosts and patients at both population and individual levels. PMID:27088359

  14. Exploring nonlinear feature space dimension reduction and data representation in breast Cadx with Laplacian eigenmaps and t-SNE.

    PubMed

    Jamieson, Andrew R; Giger, Maryellen L; Drukker, Karen; Li, Hui; Yuan, Yading; Bhooshan, Neha

    2010-01-01

    In this preliminary study, recently developed unsupervised nonlinear dimension reduction (DR) and data representation techniques were applied to computer-extracted breast lesion feature spaces across three separate imaging modalities: Ultrasound (U.S.) with 1126 cases, dynamic contrast enhanced magnetic resonance imaging with 356 cases, and full-field digital mammography with 245 cases. Two methods for nonlinear DR were explored: Laplacian eigenmaps [M. Belkin and P. Niyogi, "Laplacian eigenmaps for dimensionality reduction and data representation," Neural Comput. 15, 1373-1396 (2003)] and t-distributed stochastic neighbor embedding (t-SNE) [L. van der Maaten and G. Hinton, "Visualizing data using t-SNE," J. Mach. Learn. Res. 9, 2579-2605 (2008)]. These methods attempt to map originally high dimensional feature spaces to more human interpretable lower dimensional spaces while preserving both local and global information. The properties of these methods as applied to breast computer-aided diagnosis (CADx) were evaluated in the context of malignancy classification performance as well as in the visual inspection of the sparseness within the two-dimensional and three-dimensional mappings. Classification performance was estimated by using the reduced dimension mapped feature output as input into both linear and nonlinear classifiers: Markov chain Monte Carlo based Bayesian artificial neural network (MCMC-BANN) and linear discriminant analysis. The new techniques were compared to previously developed breast CADx methodologies, including automatic relevance determination and linear stepwise (LSW) feature selection, as well as a linear DR method based on principal component analysis. Using ROC analysis and 0.632+bootstrap validation, 95% empirical confidence intervals were computed for the each classifier's AUC performance. In the large U.S. data set, sample high performance results include, AUC0.632+ = 0.88 with 95% empirical bootstrap interval [0.787;0.895] for 13 ARD selected features and AUC0.632+ = 0.87 with interval [0.817;0.906] for four LSW selected features compared to 4D t-SNE mapping (from the original 81D feature space) giving AUC0.632+ = 0.90 with interval [0.847;0.919], all using the MCMC-BANN. Preliminary results appear to indicate capability for the new methods to match or exceed classification performance of current advanced breast lesion CADx algorithms. While not appropriate as a complete replacement of feature selection in CADx problems, DR techniques offer a complementary approach, which can aid elucidation of additional properties associated with the data. Specifically, the new techniques were shown to possess the added benefit of delivering sparse lower dimensional representations for visual interpretation, revealing intricate data structure of the feature space.

  15. Managing the space-time-load continuum in TMDL planning: A case study for understanding groundwater loads through advanced mapping techniques

    EPA Science Inventory

    The lag time between groundwater recharge and discharge in a watershed and the potential groundwater load to streams is an important factor in forecasting responses to future land use practices. We call this concept managing the “space-time-load continuum”. It’s understood that i...

  16. Techniques, problems and uses of mega-geomorphological mapping

    NASA Technical Reports Server (NTRS)

    Embleton, C.

    1985-01-01

    A plea for a program of global geomorphological mapping based on remote sensing data is presented. It is argued that the program is a necessary step in bringing together the rapidly evolving concepts of plate tectonics with the science of geomorphology. Geomorphologists are urged to bring temporal scales into their subject and to abandon their recent isolation from tectonics and geological history. It is suggested that a start be made with a new geomorphological map of Europe, utilizing the latest space technology.

  17. Segmentation of radiologic images with self-organizing maps: the segmentation problem transformed into a classification task

    NASA Astrophysics Data System (ADS)

    Pelikan, Erich; Vogelsang, Frank; Tolxdorff, Thomas

    1996-04-01

    The texture-based segmentation of x-ray images of focal bone lesions using topological maps is introduced. Texture characteristics are described by image-point correlation of feature images to feature vectors. For the segmentation, the topological map is labeled using an improved labeling strategy. Results of the technique are demonstrated on original and synthetic x-ray images and quantified with the aid of quality measures. In addition, a classifier-specific contribution analysis is applied for assessing the feature space.

  18. Use of Mapping and Spatial and Space-Time Modeling Approaches in Operational Control of Aedes aegypti and Dengue

    PubMed Central

    Eisen, Lars; Lozano-Fuentes, Saul

    2009-01-01

    The aims of this review paper are to 1) provide an overview of how mapping and spatial and space-time modeling approaches have been used to date to visualize and analyze mosquito vector and epidemiologic data for dengue; and 2) discuss the potential for these approaches to be included as routine activities in operational vector and dengue control programs. Geographical information system (GIS) software are becoming more user-friendly and now are complemented by free mapping software that provide access to satellite imagery and basic feature-making tools and have the capacity to generate static maps as well as dynamic time-series maps. Our challenge is now to move beyond the research arena by transferring mapping and GIS technologies and spatial statistical analysis techniques in user-friendly packages to operational vector and dengue control programs. This will enable control programs to, for example, generate risk maps for exposure to dengue virus, develop Priority Area Classifications for vector control, and explore socioeconomic associations with dengue risk. PMID:19399163

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sang Beom; Dsilva, Carmeline J.; Debenedetti, Pablo G., E-mail: pdebene@princeton.edu

    Understanding the mechanisms by which proteins fold from disordered amino-acid chains to spatially ordered structures remains an area of active inquiry. Molecular simulations can provide atomistic details of the folding dynamics which complement experimental findings. Conventional order parameters, such as root-mean-square deviation and radius of gyration, provide structural information but fail to capture the underlying dynamics of the protein folding process. It is therefore advantageous to adopt a method that can systematically analyze simulation data to extract relevant structural as well as dynamical information. The nonlinear dimensionality reduction technique known as diffusion maps automatically embeds the high-dimensional folding trajectories inmore » a lower-dimensional space from which one can more easily visualize folding pathways, assuming the data lie approximately on a lower-dimensional manifold. The eigenvectors that parametrize the low-dimensional space, furthermore, are determined systematically, rather than chosen heuristically, as is done with phenomenological order parameters. We demonstrate that diffusion maps can effectively characterize the folding process of a Trp-cage miniprotein. By embedding molecular dynamics simulation trajectories of Trp-cage folding in diffusion maps space, we identify two folding pathways and intermediate structures that are consistent with the previous studies, demonstrating that this technique can be employed as an effective way of analyzing and constructing protein folding pathways from molecular simulations.« less

  20. Snow mapping from space platforms

    NASA Technical Reports Server (NTRS)

    Itten, K. I.

    1980-01-01

    The paper considers problems of optimum resolution, periodicity, and wavelength bands used for snow mapping. Analog and digital methods were used for application of satellite data; techniques were developed for producing steamflow forecasts, hydroelectric power generation regulation data, irrigation potentials, and information on the availability of drinking water supplies. Future systems will utilize improved spectral band selection, new spectral regions, higher repetition rates, and more rapid access to satellite data.

  1. A quantitative analysis of IRAS maps of molecular clouds

    NASA Technical Reports Server (NTRS)

    Wiseman, Jennifer J.; Adams, Fred C.

    1994-01-01

    We present an analysis of IRAS maps of five molecular clouds: Orion, Ophiuchus, Perseus, Taurus, and Lupus. For the classification and description of these astrophysical maps, we use a newly developed technique which considers all maps of a given type to be elements of a pseudometric space. For each physical characteristic of interest, this formal system assigns a distance function (a pseudometric) to the space of all maps: this procedure allows us to measure quantitatively the difference between any two maps and to order the space of all maps. We thus obtain a quantitative classification scheme for molecular clouds. In this present study we use the IRAS continuum maps at 100 and 60 micrometer(s) to produce column density (or optical depth) maps for the five molecular cloud regions given above. For this sample of clouds, we compute the 'output' functions which measure the distribution of density, the distribution of topological components, the self-gravity, and the filamentary nature of the clouds. The results of this work provide a quantitative description of the structure in these molecular cloud regions. We then order the clouds according to the overall environmental 'complexity' of these star-forming regions. Finally, we compare our results with the observed populations of young stellar objects in these clouds and discuss the possible environmental effects on the star-formation process. Our results are consistent with the recently stated conjecture that more massive stars tend to form in more 'complex' environments.

  2. Integrating diffusion maps with umbrella sampling: Application to alanine dipeptide

    NASA Astrophysics Data System (ADS)

    Ferguson, Andrew L.; Panagiotopoulos, Athanassios Z.; Debenedetti, Pablo G.; Kevrekidis, Ioannis G.

    2011-04-01

    Nonlinear dimensionality reduction techniques can be applied to molecular simulation trajectories to systematically extract a small number of variables with which to parametrize the important dynamical motions of the system. For molecular systems exhibiting free energy barriers exceeding a few kBT, inadequate sampling of the barrier regions between stable or metastable basins can lead to a poor global characterization of the free energy landscape. We present an adaptation of a nonlinear dimensionality reduction technique known as the diffusion map that extends its applicability to biased umbrella sampling simulation trajectories in which restraining potentials are employed to drive the system into high free energy regions and improve sampling of phase space. We then propose a bootstrapped approach to iteratively discover good low-dimensional parametrizations by interleaving successive rounds of umbrella sampling and diffusion mapping, and we illustrate the technique through a study of alanine dipeptide in explicit solvent.

  3. Persistence Mapping Using EUV Solar Imager Data

    NASA Technical Reports Server (NTRS)

    Thompson, B. J.; Young, C. A.

    2016-01-01

    We describe a simple image processing technique that is useful for the visualization and depiction of gradually evolving or intermittent structures in solar physics extreme-ultraviolet imagery. The technique is an application of image segmentation, which we call "Persistence Mapping," to isolate extreme values in a data set, and is particularly useful for the problem of capturing phenomena that are evolving in both space and time. While integration or "time-lapse" imaging uses the full sample (of size N ), Persistence Mapping rejects (N - 1)/N of the data set and identifies the most relevant 1/N values using the following rule: if a pixel reaches an extreme value, it retains that value until that value is exceeded. The simplest examples isolate minima and maxima, but any quantile or statistic can be used. This paper demonstrates how the technique has been used to extract the dynamics in long-term evolution of comet tails, erupting material, and EUV dimming regions.

  4. Techniques for grid manipulation and adaptation. [computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Choo, Yung K.; Eisemann, Peter R.; Lee, Ki D.

    1992-01-01

    Two approaches have been taken to provide systematic grid manipulation for improved grid quality. One is the control point form (CPF) of algebraic grid generation. It provides explicit control of the physical grid shape and grid spacing through the movement of the control points. It works well in the interactive computer graphics environment and hence can be a good candidate for integration with other emerging technologies. The other approach is grid adaptation using a numerical mapping between the physical space and a parametric space. Grid adaptation is achieved by modifying the mapping functions through the effects of grid control sources. The adaptation process can be repeated in a cyclic manner if satisfactory results are not achieved after a single application.

  5. Developing Visualization Techniques for Semantics-based Information Networks

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.; Hall, David R.

    2003-01-01

    Information systems incorporating complex network structured information spaces with a semantic underpinning - such as hypermedia networks, semantic networks, topic maps, and concept maps - are being deployed to solve some of NASA s critical information management problems. This paper describes some of the human interaction and navigation problems associated with complex semantic information spaces and describes a set of new visual interface approaches to address these problems. A key strategy is to leverage semantic knowledge represented within these information spaces to construct abstractions and views that will be meaningful to the human user. Human-computer interaction methodologies will guide the development and evaluation of these approaches, which will benefit deployed NASA systems and also apply to information systems based on the emerging Semantic Web.

  6. Depth image super-resolution via semi self-taught learning framework

    NASA Astrophysics Data System (ADS)

    Zhao, Furong; Cao, Zhiguo; Xiao, Yang; Zhang, Xiaodi; Xian, Ke; Li, Ruibo

    2017-06-01

    Depth images have recently attracted much attention in computer vision and high-quality 3D content for 3DTV and 3D movies. In this paper, we present a new semi self-taught learning application framework for enhancing resolution of depth maps without making use of ancillary color images data at the target resolution, or multiple aligned depth maps. Our framework consists of cascade random forests reaching from coarse to fine results. We learn the surface information and structure transformations both from a small high-quality depth exemplars and the input depth map itself across different scales. Considering that edge plays an important role in depth map quality, we optimize an effective regularized objective that calculates on output image space and input edge space in random forests. Experiments show the effectiveness and superiority of our method against other techniques with or without applying aligned RGB information

  7. Inverse Problems and Imaging (Pitman Research Notes in Mathematics Series Number 245)

    DTIC Science & Technology

    1991-01-01

    Multiparamcter spectral theory in Hilbert space functional differential cquations B D Sleeman F Kappel and W Schappacher 24 Mathematical modelling...techniques 49 Sequence spaces R Aris W 11 Ruckle 25 Singular points of smooth mappings 50 Recent contributions to nonlinear C G Gibson partial...of convergence in the central limit T Husain theorem 86 Hamilton-Jacobi equations in Hilbert spaces Peter Hall V Barbu and G Da Prato 63 Solution of

  8. Multistage, multiseasonal and multiband imagery to identify and qualify non-forest vegetation resources

    NASA Technical Reports Server (NTRS)

    Driscoll, R. S.; Francis, R. E.

    1970-01-01

    A description of space and supporting aircraft photography for the interpretation and analyses of non-forest (shrubby and herbaceous) native vegetation is presented. The research includes the development of a multiple sampling technique to assign quantitative area values of specific plant community types included within an assigned space photograph map unit. Also, investigations of aerial film type, scale, and season of photography for identification and quantity measures of shrubby and herbaceous vegetation were conducted. Some work was done to develop automated interpretation techniques with film image density measurement devices.

  9. Mapping Urban Tree Canopy Cover Using Fused Airborne LIDAR and Satellite Imagery Data

    NASA Astrophysics Data System (ADS)

    Parmehr, Ebadat G.; Amati, Marco; Fraser, Clive S.

    2016-06-01

    Urban green spaces, particularly urban trees, play a key role in enhancing the liveability of cities. The availability of accurate and up-to-date maps of tree canopy cover is important for sustainable development of urban green spaces. LiDAR point clouds are widely used for the mapping of buildings and trees, and several LiDAR point cloud classification techniques have been proposed for automatic mapping. However, the effectiveness of point cloud classification techniques for automated tree extraction from LiDAR data can be impacted to the point of failure by the complexity of tree canopy shapes in urban areas. Multispectral imagery, which provides complementary information to LiDAR data, can improve point cloud classification quality. This paper proposes a reliable method for the extraction of tree canopy cover from fused LiDAR point cloud and multispectral satellite imagery data. The proposed method initially associates each LiDAR point with spectral information from the co-registered satellite imagery data. It calculates the normalised difference vegetation index (NDVI) value for each LiDAR point and corrects tree points which have been misclassified as buildings. Then, region growing of tree points, taking the NDVI value into account, is applied. Finally, the LiDAR points classified as tree points are utilised to generate a canopy cover map. The performance of the proposed tree canopy cover mapping method is experimentally evaluated on a data set of airborne LiDAR and WorldView 2 imagery covering a suburb in Melbourne, Australia.

  10. Dynamic edge warping - An experimental system for recovering disparity maps in weakly constrained systems

    NASA Technical Reports Server (NTRS)

    Boyer, K. L.; Wuescher, D. M.; Sarkar, S.

    1991-01-01

    Dynamic edge warping (DEW), a technique for recovering reasonably accurate disparity maps from uncalibrated stereo image pairs, is presented. No precise knowledge of the epipolar camera geometry is assumed. The technique is embedded in a system including structural stereopsis on the front end and robust estimation in digital photogrammetry on the other for the purpose of self-calibrating stereo image pairs. Once the relative camera orientation is known, the epipolar geometry is computed and the system can use this information to refine its representation of the object space. Such a system will find application in the autonomous extraction of terrain maps from stereo aerial photographs, for which camera position and orientation are unknown a priori, and for online autonomous calibration maintenance for robotic vision applications, in which the cameras are subject to vibration and other physical disturbances after calibration. This work thus forms a component of an intelligent system that begins with a pair of images and, having only vague knowledge of the conditions under which they were acquired, produces an accurate, dense, relative depth map. The resulting disparity map can also be used directly in some high-level applications involving qualitative scene analysis, spatial reasoning, and perceptual organization of the object space. The system as a whole substitutes high-level information and constraints for precise geometric knowledge in driving and constraining the early correspondence process.

  11. Superconducting micro-resonator arrays with ideal frequency spacing

    NASA Astrophysics Data System (ADS)

    Liu, X.; Guo, W.; Wang, Y.; Dai, M.; Wei, L. F.; Dober, B.; McKenney, C. M.; Hilton, G. C.; Hubmayr, J.; Austermann, J. E.; Ullom, J. N.; Gao, J.; Vissers, M. R.

    2017-12-01

    We present a wafer trimming technique for producing superconducting micro-resonator arrays with highly uniform frequency spacing. With the light-emitting diode mapper technique demonstrated previously, we first map the measured resonance frequencies to the physical resonators. Then, we fine-tune each resonator's frequency by lithographically trimming a small length, calculated from the deviation of the measured frequency from its design value, from the interdigitated capacitor. We demonstrate this technique on a 127-resonator array made from titanium-nitride and show that the uniformity of frequency spacing is greatly improved. The array yield in terms of frequency collisions improves from 84% to 97%, while the quality factors and noise properties are unaffected. The wafer trimming technique provides an easy-to-implement tool to improve the yield and multiplexing density of large resonator arrays, which is important for various applications in photon detection and quantum computing.

  12. A vector scanning processing technique for pulsed laser velocimetry

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Edwards, Robert V.

    1989-01-01

    Pulsed laser sheet velocimetry yields nonintrusive measurements of two-dimensional velocity vectors across an extended planar region of a flow. Current processing techniques offer high precision (1 pct) velocity estimates, but can require several hours of processing time on specialized array processors. Under some circumstances, a simple, fast, less accurate (approx. 5 pct), data reduction technique which also gives unambiguous velocity vector information is acceptable. A direct space domain processing technique was examined. The direct space domain processing technique was found to be far superior to any other techniques known, in achieving the objectives listed above. It employs a new data coding and reduction technique, where the particle time history information is used directly. Further, it has no 180 deg directional ambiguity. A complex convection vortex flow was recorded and completely processed in under 2 minutes on an 80386 based PC, producing a 2-D velocity vector map of the flow field. Hence, using this new space domain vector scanning (VS) technique, pulsed laser velocimetry data can be reduced quickly and reasonably accurately, without specialized array processing hardware.

  13. Stabilizing embedology: Geometry-preserving delay-coordinate maps

    NASA Astrophysics Data System (ADS)

    Eftekhari, Armin; Yap, Han Lun; Wakin, Michael B.; Rozell, Christopher J.

    2018-02-01

    Delay-coordinate mapping is an effective and widely used technique for reconstructing and analyzing the dynamics of a nonlinear system based on time-series outputs. The efficacy of delay-coordinate mapping has long been supported by Takens' embedding theorem, which guarantees that delay-coordinate maps use the time-series output to provide a reconstruction of the hidden state space that is a one-to-one embedding of the system's attractor. While this topological guarantee ensures that distinct points in the reconstruction correspond to distinct points in the original state space, it does not characterize the quality of this embedding or illuminate how the specific parameters affect the reconstruction. In this paper, we extend Takens' result by establishing conditions under which delay-coordinate mapping is guaranteed to provide a stable embedding of a system's attractor. Beyond only preserving the attractor topology, a stable embedding preserves the attractor geometry by ensuring that distances between points in the state space are approximately preserved. In particular, we find that delay-coordinate mapping stably embeds an attractor of a dynamical system if the stable rank of the system is large enough to be proportional to the dimension of the attractor. The stable rank reflects the relation between the sampling interval and the number of delays in delay-coordinate mapping. Our theoretical findings give guidance to choosing system parameters, echoing the tradeoff between irrelevancy and redundancy that has been heuristically investigated in the literature. Our initial result is stated for attractors that are smooth submanifolds of Euclidean space, with extensions provided for the case of strange attractors.

  14. Stabilizing embedology: Geometry-preserving delay-coordinate maps.

    PubMed

    Eftekhari, Armin; Yap, Han Lun; Wakin, Michael B; Rozell, Christopher J

    2018-02-01

    Delay-coordinate mapping is an effective and widely used technique for reconstructing and analyzing the dynamics of a nonlinear system based on time-series outputs. The efficacy of delay-coordinate mapping has long been supported by Takens' embedding theorem, which guarantees that delay-coordinate maps use the time-series output to provide a reconstruction of the hidden state space that is a one-to-one embedding of the system's attractor. While this topological guarantee ensures that distinct points in the reconstruction correspond to distinct points in the original state space, it does not characterize the quality of this embedding or illuminate how the specific parameters affect the reconstruction. In this paper, we extend Takens' result by establishing conditions under which delay-coordinate mapping is guaranteed to provide a stable embedding of a system's attractor. Beyond only preserving the attractor topology, a stable embedding preserves the attractor geometry by ensuring that distances between points in the state space are approximately preserved. In particular, we find that delay-coordinate mapping stably embeds an attractor of a dynamical system if the stable rank of the system is large enough to be proportional to the dimension of the attractor. The stable rank reflects the relation between the sampling interval and the number of delays in delay-coordinate mapping. Our theoretical findings give guidance to choosing system parameters, echoing the tradeoff between irrelevancy and redundancy that has been heuristically investigated in the literature. Our initial result is stated for attractors that are smooth submanifolds of Euclidean space, with extensions provided for the case of strange attractors.

  15. High-resolution spatiotemporal mapping of PM2.5 concentrations at Mainland China using a combined BME-GWR technique

    NASA Astrophysics Data System (ADS)

    Xiao, Lu; Lang, Yichao; Christakos, George

    2018-01-01

    With rapid economic development, industrialization and urbanization, the ambient air PM2.5 has become a major pollutant linked to respiratory, heart and lung diseases. In China, PM2.5 pollution constitutes an extreme environmental and social problem of widespread public concern. In this work we estimate ground-level PM2.5 from satellite-derived aerosol optical depth (AOD), topography data, meteorological data, and pollutant emission using an integrative technique. In particular, Geographically Weighted Regression (GWR) analysis was combined with Bayesian Maximum Entropy (BME) theory to assess the spatiotemporal characteristics of PM2.5 exposure in a large region of China and generate informative PM2.5 space-time predictions (estimates). It was found that, due to its integrative character, the combined BME-GWR method offers certain improvements in the space-time prediction of PM2.5 concentrations over China compared to previous techniques. The combined BME-GWR technique generated realistic maps of space-time PM2.5 distribution, and its performance was superior to that of seven previous studies of satellite-derived PM2.5 concentrations in China in terms of prediction accuracy. The purely spatial GWR model can only be used at a fixed time, whereas the integrative BME-GWR approach accounts for cross space-time dependencies and can predict PM2.5 concentrations in the composite space-time domain. The 10-fold results of BME-GWR modeling (R2 = 0.883, RMSE = 11.39 μg /m3) demonstrated a high level of space-time PM2.5 prediction (estimation) accuracy over China, revealing a definite trend of severe PM2.5 levels from the northern coast toward inland China (Nov 2015-Feb 2016). Future work should focus on the addition of higher resolution AOD data, developing better satellite-based prediction models, and related air pollutants for space-time PM2.5 prediction purposes.

  16. AGN STORM: A Leap Forward In Reverberation Mapping

    NASA Astrophysics Data System (ADS)

    Dalla Bontà, Elena; AGN STORM Team

    2016-10-01

    Reverberation mapping is a tomographic technique that can be used to determine the structure and kinematics of the broad- line emitting region at the center of active galactic nuclei. By-products of these investigations are the masses of the central black holes and information about the structure of the accretion disk. I will show some of the most recent results from the AGN Space Telescope and Optical Reverberation Mapping (AGN STORM) project, which was built around 180 daily observations of the bright Seyfert 1 galaxy NGC 5548 with the Cosmic Origins Spectrograph on Hubble Space Telescope. AGN STORM included observations made with Swift, XMM, and several ground-based telescopes, including the 1.22-m telescope at Asiago Observatory. Elena Dalla Bonta` on behalf of the AGN STORM Team.

  17. Phase retrieval in digital speckle pattern interferometry by use of a smoothed space-frequency distribution.

    PubMed

    Federico, Alejandro; Kaufmann, Guillermo H

    2003-12-10

    We evaluate the use of a smoothed space-frequency distribution (SSFD) to retrieve optical phase maps in digital speckle pattern interferometry (DSPI). The performance of this method is tested by use of computer-simulated DSPI fringes. Phase gradients are found along a pixel path from a single DSPI image, and the phase map is finally determined by integration. This technique does not need the application of a phase unwrapping algorithm or the introduction of carrier fringes in the interferometer. It is shown that a Wigner-Ville distribution with a smoothing Gaussian kernel gives more-accurate results than methods based on the continuous wavelet transform. We also discuss the influence of filtering on smoothing of the DSPI fringes and some additional limitations that emerge when this technique is applied. The performance of the SSFD method for processing experimental data is then illustrated.

  18. Geomorphology applied to landscape analysis for planning and management of natural spaces. Case study: Las Batuecas-S. de Francia and Quilamas natural parks, (Salamanca, Spain).

    PubMed

    Martínez-Graña, A M; Silva, P G; Goy, J L; Elez, J; Valdés, V; Zazo, C

    2017-04-15

    Geomorphology is fundamental to landscape analysis, as it represents the main parameter that determines the land spatial configuration and facilitates reliefs classification. The goal of this article is the elaboration of thematic maps that enable the determination of different landscape units and elaboration of quality and vulnerability synthetic maps for landscape fragility assessment prior to planning human activities. For two natural spaces, the final synthetic maps were created with direct (visual-perceptual features) and indirect (cartographic models and 3D simulations) methods from thematic maps with GIS technique. This enabled the creation of intrinsic and extrinsic landscape quality maps showing sectors needing most preservation, as well as intrinsic and extrinsic landscape fragility maps (environment response capacity or vulnerability towards human actions). The resulting map shows absorption capacity for areas of maximum and/or minimum human intervention. Sectors of high absorption capacity (minimum need for preservation) are found where the incidence of human intervention is minimum: escarpment bottoms, fitted rivers, sinuous high lands with thick vegetation coverage and valley interiors, or those areas with high landscape quality, low fragility and high absorption capacity, whose average values are found across lower hillsides of some valleys, and sectors with low absorption capacity (areas needing most preservation) found mainly in the inner parts of natural spaces: peaks and upper hillsides, synclines flanks and scattered areas. For the integral analysis of landscape, a mapping methodology has been set. It comprises a valid criterion for rational and sustainable planning, management and protection of natural spaces. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Reservoir Modeling by Data Integration via Intermediate Spaces and Artificial Intelligence Tools in MPS Simulation Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmadi, Rouhollah, E-mail: rouhollahahmadi@yahoo.com; Khamehchi, Ehsan

    Conditioning stochastic simulations are very important in many geostatistical applications that call for the introduction of nonlinear and multiple-point data in reservoir modeling. Here, a new methodology is proposed for the incorporation of different data types into multiple-point statistics (MPS) simulation frameworks. Unlike the previous techniques that call for an approximate forward model (filter) for integration of secondary data into geologically constructed models, the proposed approach develops an intermediate space where all the primary and secondary data are easily mapped onto. Definition of the intermediate space, as may be achieved via application of artificial intelligence tools like neural networks andmore » fuzzy inference systems, eliminates the need for using filters as in previous techniques. The applicability of the proposed approach in conditioning MPS simulations to static and geologic data is verified by modeling a real example of discrete fracture networks using conventional well-log data. The training patterns are well reproduced in the realizations, while the model is also consistent with the map of secondary data.« less

  20. Techniques to Collect and Analyze the Cognitive Map Knowledge of Persons with Visual Impairment or Blindness: Issues of Validity.

    ERIC Educational Resources Information Center

    Kitchin, R. M.; Jacobson, R. D.

    1997-01-01

    Assesses techniques used by researchers to collect and analyze data on how people with visual impairments or blindness learn, understand, and think about geographic space. Recommendations are made for increasing the validity of studies, including the use of multiple, mutually supportive tests; larger samples; and real-world environments.…

  1. Four-Dimensional Ultrafast Electron Microscopy: Insights into an Emerging Technique.

    PubMed

    Adhikari, Aniruddha; Eliason, Jeffrey K; Sun, Jingya; Bose, Riya; Flannigan, David J; Mohammed, Omar F

    2017-01-11

    Four-dimensional ultrafast electron microscopy (4D-UEM) is a novel analytical technique that aims to fulfill the long-held dream of researchers to investigate materials at extremely short spatial and temporal resolutions by integrating the excellent spatial resolution of electron microscopes with the temporal resolution of ultrafast femtosecond laser-based spectroscopy. The ingenious use of pulsed photoelectrons to probe surfaces and volumes of materials enables time-resolved snapshots of the dynamics to be captured in a way hitherto impossible by other conventional techniques. The flexibility of 4D-UEM lies in the fact that it can be used in both the scanning (S-UEM) and transmission (UEM) modes depending upon the type of electron microscope involved. While UEM can be employed to monitor elementary structural changes and phase transitions in samples using real-space mapping, diffraction, electron energy-loss spectroscopy, and tomography, S-UEM is well suited to map ultrafast dynamical events on materials surfaces in space and time. This review provides an overview of the unique features that distinguish these techniques and also illustrates the applications of both S-UEM and UEM to a multitude of problems relevant to materials science and chemistry.

  2. Database of extended radiation maps and its access system

    NASA Astrophysics Data System (ADS)

    Verkhodanov, O. V.; Naiden, Ya. V.; Chernenkov, V. N.; Verkhodanova, N. V.

    2014-01-01

    We describe the architecture of the developed computing web server http://cmb.sao.ru allowing to synthesize the maps of extended radiation on the full sphere from the spherical harmonics in the GLESP pixelization grid, smooth them with the power beam pattern with various angular resolutions in the multipole space, and identify regions of the sky with given coordinates. We describe the server access and administration systems as well as the technique constructing the sky region maps, organized in Python in the Django web-application development framework.

  3. Classification of fMRI resting-state maps using machine learning techniques: A comparative study

    NASA Astrophysics Data System (ADS)

    Gallos, Ioannis; Siettos, Constantinos

    2017-11-01

    We compare the efficiency of Principal Component Analysis (PCA) and nonlinear learning manifold algorithms (ISOMAP and Diffusion maps) for classifying brain maps between groups of schizophrenia patients and healthy from fMRI scans during a resting-state experiment. After a standard pre-processing pipeline, we applied spatial Independent component analysis (ICA) to reduce (a) noise and (b) spatial-temporal dimensionality of fMRI maps. On the cross-correlation matrix of the ICA components, we applied PCA, ISOMAP and Diffusion Maps to find an embedded low-dimensional space. Finally, support-vector-machines (SVM) and k-NN algorithms were used to evaluate the performance of the algorithms in classifying between the two groups.

  4. Spatiotemporal modelling and mapping of the bubonic plague epidemic in India.

    PubMed

    Yu, Hwa-Lung; Christakos, George

    2006-03-17

    This work studies the spatiotemporal evolution of bubonic plague in India during 1896-1906 using stochastic concepts and geographical information science techniques. In the past, most investigations focused on selected cities to conduct different kinds of studies, such as the ecology of rats. No detailed maps existed incorporating the space-time dependence structure and uncertainty sources of the epidemic system and providing a composite space-time picture of the disease propagation characteristics. Informative spatiotemporal maps were generated that represented mortality rates and geographical spread of the disease, and epidemic indicator plots were derived that offered meaningful characterizations of the spatiotemporal disease distribution. The bubonic plague in India exhibited strong seasonal and geographical features. During its entire duration, the plague continued to invade new geographical areas, while it followed a re-emergence pattern at many localities; its rate changed significantly during each year and the mortality distribution exhibited space-time heterogeneous patterns; prevalence usually occurred in the autumn and spring, whereas the plague stopped moving towards new locations during the summers. Modern stochastic modelling and geographical information science provide powerful means to study the spatiotemporal distribution of the bubonic plague epidemic under conditions of uncertainty and multi-sourced databases; to account for various forms of interdisciplinary knowledge; and to generate informative space-time maps of mortality rates and propagation patterns. To the best of our knowledge, this kind of plague maps and plots become available for the first time, thus providing novel perspectives concerning the distribution and space-time propagation of the deadly epidemic. Furthermore, systematic maps and indicator plots make possible the comparison of the spatial-temporal propagation patterns of different diseases.

  5. Spatiotemporal modelling and mapping of the bubonic plague epidemic in India

    PubMed Central

    Yu, Hwa-Lung; Christakos, George

    2006-01-01

    Background This work studies the spatiotemporal evolution of bubonic plague in India during 1896–1906 using stochastic concepts and geographical information science techniques. In the past, most investigations focused on selected cities to conduct different kinds of studies, such as the ecology of rats. No detailed maps existed incorporating the space-time dependence structure and uncertainty sources of the epidemic system and providing a composite space-time picture of the disease propagation characteristics. Results Informative spatiotemporal maps were generated that represented mortality rates and geographical spread of the disease, and epidemic indicator plots were derived that offered meaningful characterizations of the spatiotemporal disease distribution. The bubonic plague in India exhibited strong seasonal and geographical features. During its entire duration, the plague continued to invade new geographical areas, while it followed a re-emergence pattern at many localities; its rate changed significantly during each year and the mortality distribution exhibited space-time heterogeneous patterns; prevalence usually occurred in the autumn and spring, whereas the plague stopped moving towards new locations during the summers. Conclusion Modern stochastic modelling and geographical information science provide powerful means to study the spatiotemporal distribution of the bubonic plague epidemic under conditions of uncertainty and multi-sourced databases; to account for various forms of interdisciplinary knowledge; and to generate informative space-time maps of mortality rates and propagation patterns. To the best of our knowledge, this kind of plague maps and plots become available for the first time, thus providing novel perspectives concerning the distribution and space-time propagation of the deadly epidemic. Furthermore, systematic maps and indicator plots make possible the comparison of the spatial-temporal propagation patterns of different diseases. PMID:16545128

  6. Human Orbitofrontal Cortex Represents a Cognitive Map of State Space.

    PubMed

    Schuck, Nicolas W; Cai, Ming Bo; Wilson, Robert C; Niv, Yael

    2016-09-21

    Although the orbitofrontal cortex (OFC) has been studied intensely for decades, its precise functions have remained elusive. We recently hypothesized that the OFC contains a "cognitive map" of task space in which the current state of the task is represented, and this representation is especially critical for behavior when states are unobservable from sensory input. To test this idea, we apply pattern-classification techniques to neuroimaging data from humans performing a decision-making task with 16 states. We show that unobservable task states can be decoded from activity in OFC, and decoding accuracy is related to task performance and the occurrence of individual behavioral errors. Moreover, similarity between the neural representations of consecutive states correlates with behavioral accuracy in corresponding state transitions. These results support the idea that OFC represents a cognitive map of task space and establish the feasibility of decoding state representations in humans using non-invasive neuroimaging. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Backwards compatible high dynamic range video compression

    NASA Astrophysics Data System (ADS)

    Dolzhenko, Vladimir; Chesnokov, Vyacheslav; Edirisinghe, Eran A.

    2014-02-01

    This paper presents a two layer CODEC architecture for high dynamic range video compression. The base layer contains the tone mapped video stream encoded with 8 bits per component which can be decoded using conventional equipment. The base layer content is optimized for rendering on low dynamic range displays. The enhancement layer contains the image difference, in perceptually uniform color space, between the result of inverse tone mapped base layer content and the original video stream. Prediction of the high dynamic range content reduces the redundancy in the transmitted data while still preserves highlights and out-of-gamut colors. Perceptually uniform colorspace enables using standard ratedistortion optimization algorithms. We present techniques for efficient implementation and encoding of non-uniform tone mapping operators with low overhead in terms of bitstream size and number of operations. The transform representation is based on human vision system model and suitable for global and local tone mapping operators. The compression techniques include predicting the transform parameters from previously decoded frames and from already decoded data for current frame. Different video compression techniques are compared: backwards compatible and non-backwards compatible using AVC and HEVC codecs.

  8. Data Flow Analysis and Visualization for Spatiotemporal Statistical Data without Trajectory Information.

    PubMed

    Kim, Seokyeon; Jeong, Seongmin; Woo, Insoo; Jang, Yun; Maciejewski, Ross; Ebert, David S

    2018-03-01

    Geographic visualization research has focused on a variety of techniques to represent and explore spatiotemporal data. The goal of those techniques is to enable users to explore events and interactions over space and time in order to facilitate the discovery of patterns, anomalies and relationships within the data. However, it is difficult to extract and visualize data flow patterns over time for non-directional statistical data without trajectory information. In this work, we develop a novel flow analysis technique to extract, represent, and analyze flow maps of non-directional spatiotemporal data unaccompanied by trajectory information. We estimate a continuous distribution of these events over space and time, and extract flow fields for spatial and temporal changes utilizing a gravity model. Then, we visualize the spatiotemporal patterns in the data by employing flow visualization techniques. The user is presented with temporal trends of geo-referenced discrete events on a map. As such, overall spatiotemporal data flow patterns help users analyze geo-referenced temporal events, such as disease outbreaks, crime patterns, etc. To validate our model, we discard the trajectory information in an origin-destination dataset and apply our technique to the data and compare the derived trajectories and the original. Finally, we present spatiotemporal trend analysis for statistical datasets including twitter data, maritime search and rescue events, and syndromic surveillance.

  9. Exploring nonlinear feature space dimension reduction and data representation in breast CADx with Laplacian eigenmaps and t-SNE

    PubMed Central

    Jamieson, Andrew R.; Giger, Maryellen L.; Drukker, Karen; Li, Hui; Yuan, Yading; Bhooshan, Neha

    2010-01-01

    Purpose: In this preliminary study, recently developed unsupervised nonlinear dimension reduction (DR) and data representation techniques were applied to computer-extracted breast lesion feature spaces across three separate imaging modalities: Ultrasound (U.S.) with 1126 cases, dynamic contrast enhanced magnetic resonance imaging with 356 cases, and full-field digital mammography with 245 cases. Two methods for nonlinear DR were explored: Laplacian eigenmaps [M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality reduction and data representation,” Neural Comput. 15, 1373–1396 (2003)] and t-distributed stochastic neighbor embedding (t-SNE) [L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” J. Mach. Learn. Res. 9, 2579–2605 (2008)]. Methods: These methods attempt to map originally high dimensional feature spaces to more human interpretable lower dimensional spaces while preserving both local and global information. The properties of these methods as applied to breast computer-aided diagnosis (CADx) were evaluated in the context of malignancy classification performance as well as in the visual inspection of the sparseness within the two-dimensional and three-dimensional mappings. Classification performance was estimated by using the reduced dimension mapped feature output as input into both linear and nonlinear classifiers: Markov chain Monte Carlo based Bayesian artificial neural network (MCMC-BANN) and linear discriminant analysis. The new techniques were compared to previously developed breast CADx methodologies, including automatic relevance determination and linear stepwise (LSW) feature selection, as well as a linear DR method based on principal component analysis. Using ROC analysis and 0.632+bootstrap validation, 95% empirical confidence intervals were computed for the each classifier’s AUC performance. Results: In the large U.S. data set, sample high performance results include, AUC0.632+=0.88 with 95% empirical bootstrap interval [0.787;0.895] for 13 ARD selected features and AUC0.632+=0.87 with interval [0.817;0.906] for four LSW selected features compared to 4D t-SNE mapping (from the original 81D feature space) giving AUC0.632+=0.90 with interval [0.847;0.919], all using the MCMC-BANN. Conclusions: Preliminary results appear to indicate capability for the new methods to match or exceed classification performance of current advanced breast lesion CADx algorithms. While not appropriate as a complete replacement of feature selection in CADx problems, DR techniques offer a complementary approach, which can aid elucidation of additional properties associated with the data. Specifically, the new techniques were shown to possess the added benefit of delivering sparse lower dimensional representations for visual interpretation, revealing intricate data structure of the feature space. PMID:20175497

  10. Design of Digital Phase-Locked Loops For Advanced Digital Transponders

    NASA Technical Reports Server (NTRS)

    Nguyen, Tien M.

    1994-01-01

    For advanced digital space transponders, the Digital Phased-Locked Loops (DPLLs) can be designed using the available analog loops. DPLLs considered in this paper are derived from the Analog Phase-Locked Loop (APLL) using S-domain mapping techniques.

  11. SL(2,C) gravity on noncommutative space with Poisson structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao Yangang; Zhang Shaojun

    2010-10-15

    The Einstein's gravity theory can be formulated as an SL(2,C) gauge theory in terms of spinor notations. In this paper, we consider a noncommutative space with the Poisson structure and construct an SL(2,C) formulation of gravity on such a space. Using the covariant coordinate technique, we build a gauge invariant action in which, according to the Seiberg-Witten map, the physical degrees of freedom are expressed in terms of their commutative counterparts up to the first order in noncommutative parameters.

  12. A bibliography of planetary geology principal investigators and their associates, 1976-1978

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This bibliography cites publications submitted by 484 principal investigators and their associates who were supported through NASA's Office of Space Sciences Planetary Geology Program. Subject classifications include: solar system formation, comets, and asteroids; planetary satellites, planetary interiors, geological and geochemical constraints on planetary evolution; impact crater studies, volcanism, eolian studies, fluvian studies, Mars geological mapping; Mercury geological mapping; planetary cartography; and instrument development and techniques. An author/editor index is provided.

  13. MAPPING THE GALAXY COLOR–REDSHIFT RELATION: OPTIMAL PHOTOMETRIC REDSHIFT CALIBRATION STRATEGIES FOR COSMOLOGY SURVEYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masters, Daniel; Steinhardt, Charles; Faisst, Andreas

    2015-11-01

    Calibrating the photometric redshifts of ≳10{sup 9} galaxies for upcoming weak lensing cosmology experiments is a major challenge for the astrophysics community. The path to obtaining the required spectroscopic redshifts for training and calibration is daunting, given the anticipated depths of the surveys and the difficulty in obtaining secure redshifts for some faint galaxy populations. Here we present an analysis of the problem based on the self-organizing map, a method of mapping the distribution of data in a high-dimensional space and projecting it onto a lower-dimensional representation. We apply this method to existing photometric data from the COSMOS survey selectedmore » to approximate the anticipated Euclid weak lensing sample, enabling us to robustly map the empirical distribution of galaxies in the multidimensional color space defined by the expected Euclid filters. Mapping this multicolor distribution lets us determine where—in galaxy color space—redshifts from current spectroscopic surveys exist and where they are systematically missing. Crucially, the method lets us determine whether a spectroscopic training sample is representative of the full photometric space occupied by the galaxies in a survey. We explore optimal sampling techniques and estimate the additional spectroscopy needed to map out the color–redshift relation, finding that sampling the galaxy distribution in color space in a systematic way can efficiently meet the calibration requirements. While the analysis presented here focuses on the Euclid survey, similar analysis can be applied to other surveys facing the same calibration challenge, such as DES, LSST, and WFIRST.« less

  14. Weighted image de-fogging using luminance dark prior

    NASA Astrophysics Data System (ADS)

    Kansal, Isha; Kasana, Singara Singh

    2017-10-01

    In this work, the weighted image de-fogging process based upon dark channel prior is modified by using luminance dark prior. Dark channel prior estimates the transmission by using three colour channels whereas luminance dark prior does the same by making use of only Y component of YUV colour space. For each pixel in a patch of ? size, the luminance dark prior uses ? pixels, rather than ? pixels used in DCP technique, which speeds up the de-fogging process. To estimate the transmission map, weighted approach based upon difference prior is used which mitigates halo artefacts at the time of transmission estimation. The major drawback of weighted technique is that it does not maintain the constancy of the transmission in a local patch even if there are no significant depth disruptions, due to which the de-fogged image looks over smooth and has low contrast. Apart from this, in some images, weighted transmission still carries less visible halo artefacts. Therefore, Gaussian filter is used to blur the estimated weighted transmission map which enhances the contrast of de-fogged images. In addition to this, a novel approach is proposed to remove the pixels belonging to bright light source(s) during the atmospheric light estimation process based upon histogram of YUV colour space. To show the effectiveness, the proposed technique is compared with existing techniques. This comparison shows that the proposed technique performs better than the existing techniques.

  15. UltraColor: a new gamut-mapping strategy

    NASA Astrophysics Data System (ADS)

    Spaulding, Kevin E.; Ellson, Richard N.; Sullivan, James R.

    1995-04-01

    Many color calibration and enhancement strategies exist for digital systems. Typically, these approaches are optimized to work well with one class of images, but may produce unsatisfactory results for other types of images. For example, a colorimetric strategy may work well when printing photographic scenes, but may give inferior results for business graphic images because of device color gamut limitations. On the other hand, a color enhancement strategy that works well for business graphics images may distort the color reproduction of skintones and other important photographic colors. This paper describes a method for specifying different color mapping strategies in various regions of color space, while providing a mechanism for smooth transitions between the different regions. The method involves a two step process: (1) constraints are applied so some subset of the points in the input color space explicitly specifying the color mapping function; (2) the color mapping for the remainder of the color values is then determined using an interpolation algorithm that preserves continuity and smoothness. The interpolation algorithm that was developed is based on a computer graphics morphing technique. This method was used to develop the UltraColor gamut mapping strategy, which combines a colorimetric mapping for colors with low saturation levels, with a color enhancement technique for colors with high saturation levels. The result is a single color transformation that produces superior quality for all classes of imagery. UltraColor has been incorporated in several models of Kodak printers including the Kodak ColorEase PS and the Kodak XLS 8600 PS thermal dye sublimation printers.

  16. Separate visual representations for perception and for visually guided behavior

    NASA Technical Reports Server (NTRS)

    Bridgeman, Bruce

    1989-01-01

    Converging evidence from several sources indicates that two distinct representations of visual space mediate perception and visually guided behavior, respectively. The two maps of visual space follow different rules; spatial values in either one can be biased without affecting the other. Ordinarily the two maps give equivalent responses because both are veridically in register with the world; special techniques are required to pull them apart. One such technique is saccadic suppression: small target displacements during saccadic eye movements are not preceived, though the displacements can change eye movements or pointing to the target. A second way to separate cognitive and motor-oriented maps is with induced motion: a slowly moving frame will make a fixed target appear to drift in the opposite direction, while motor behavior toward the target is unchanged. The same result occurs with stroboscopic induced motion, where the frame jump abruptly and the target seems to jump in the opposite direction. A third method of separating cognitive and motor maps, requiring no motion of target, background or eye, is the Roelofs effect: a target surrounded by an off-center rectangular frame will appear to be off-center in the direction opposite the frame. Again the effect influences perception, but in half of the subjects it does not influence pointing to the target. This experience also reveals more characteristics of the maps and their interactions with one another, the motor map apparently has little or no memory, and must be fed from the biased cognitive map if an enforced delay occurs between stimulus presentation and motor response. In designing spatial displays, the results mean that what you see isn't necessarily what you get. Displays must be designed with either perception or visually guided behavior in mind.

  17. Middle Atmosphere Program. Handbook for MAP. Volume 14: URSI/SCOSTEP Workshop on Technical Aspects of MST Radar

    NASA Technical Reports Server (NTRS)

    Bowhill, S. A. (Editor); Edwards, B. (Editor)

    1984-01-01

    Various topics relative to middle atmosphere research were discussed. meteorological and aeronomical requirements for mesosphere-stratosphere-troposphere (MST) radar networks, general circulation of the middle atmosphere, the interpretation of radar returns from clear air, spaced antenna and Doppler techniques for velocity measurement, and techniques for the study of gravity waves and turbulence are among the topics discussed.

  18. Source-space ICA for MEG source imaging.

    PubMed

    Jonmohamadi, Yaqub; Jones, Richard D

    2016-02-01

    One of the most widely used approaches in electroencephalography/magnetoencephalography (MEG) source imaging is application of an inverse technique (such as dipole modelling or sLORETA) on the component extracted by independent component analysis (ICA) (sensor-space ICA + inverse technique). The advantage of this approach over an inverse technique alone is that it can identify and localize multiple concurrent sources. Among inverse techniques, the minimum-variance beamformers offer a high spatial resolution. However, in order to have both high spatial resolution of beamformer and be able to take on multiple concurrent sources, sensor-space ICA + beamformer is not an ideal combination. We propose source-space ICA for MEG as a powerful alternative approach which can provide the high spatial resolution of the beamformer and handle multiple concurrent sources. The concept of source-space ICA for MEG is to apply the beamformer first and then singular value decomposition + ICA. In this paper we have compared source-space ICA with sensor-space ICA both in simulation and real MEG. The simulations included two challenging scenarios of correlated/concurrent cluster sources. Source-space ICA provided superior performance in spatial reconstruction of source maps, even though both techniques performed equally from a temporal perspective. Real MEG from two healthy subjects with visual stimuli were also used to compare performance of sensor-space ICA and source-space ICA. We have also proposed a new variant of minimum-variance beamformer called weight-normalized linearly-constrained minimum-variance with orthonormal lead-field. As sensor-space ICA-based source reconstruction is popular in EEG and MEG imaging, and given that source-space ICA has superior spatial performance, it is expected that source-space ICA will supersede its predecessor in many applications.

  19. NeuroPhysics: Studying how neurons create the perception of space-time using Physics' tools and techniques

    NASA Astrophysics Data System (ADS)

    Dhingra, Shonali; Sandler, Roman; Rios, Rodrigo; Vuong, Cliff; Mehta, Mayank

    All animals naturally perceive the abstract concept of space-time. A brain region called the Hippocampus is known to be important in creating these perceptions, but the underlying mechanisms are unknown. In our lab we employ several experimental and computational techniques from Physics to tackle this fundamental puzzle. Experimentally, we use ideas from Nanoscience and Materials Science to develop techniques to measure the activity of hippocampal neurons, in freely-behaving animals. Computationally, we develop models to study neuronal activity patterns, which are point processes that are highly stochastic and multidimensional. We then apply these techniques to collect and analyze neuronal signals from rodents while they're exploring space in Real World or Virtual Reality with various stimuli. Our findings show that under these conditions neuronal activity depends on various parameters, such as sensory cues including visual and auditory, and behavioral cues including, linear and angular, position and velocity. Further, neuronal networks create internally-generated rhythms, which influence perception of space and time. In totality, these results further our understanding of how the brain develops a cognitive map of our surrounding space, and keep track of time.

  20. PERSISTENCE MAPPING USING EUV SOLAR IMAGER DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, B. J.; Young, C. A., E-mail: barbara.j.thompson@nasa.gov

    We describe a simple image processing technique that is useful for the visualization and depiction of gradually evolving or intermittent structures in solar physics extreme-ultraviolet imagery. The technique is an application of image segmentation, which we call “Persistence Mapping,” to isolate extreme values in a data set, and is particularly useful for the problem of capturing phenomena that are evolving in both space and time. While integration or “time-lapse” imaging uses the full sample (of size N ), Persistence Mapping rejects ( N − 1)/ N of the data set and identifies the most relevant 1/ N values using themore » following rule: if a pixel reaches an extreme value, it retains that value until that value is exceeded. The simplest examples isolate minima and maxima, but any quantile or statistic can be used. This paper demonstrates how the technique has been used to extract the dynamics in long-term evolution of comet tails, erupting material, and EUV dimming regions.« less

  1. Cross-entropy embedding of high-dimensional data using the neural gas model.

    PubMed

    Estévez, Pablo A; Figueroa, Cristián J; Saito, Kazumi

    2005-01-01

    A cross-entropy approach to mapping high-dimensional data into a low-dimensional space embedding is presented. The method allows to project simultaneously the input data and the codebook vectors, obtained with the Neural Gas (NG) quantizer algorithm, into a low-dimensional output space. The aim of this approach is to preserve the relationship defined by the NG neighborhood function for each pair of input and codebook vectors. A cost function based on the cross-entropy between input and output probabilities is minimized by using a Newton-Raphson method. The new approach is compared with Sammon's non-linear mapping (NLM) and the hierarchical approach of combining a vector quantizer such as the self-organizing feature map (SOM) or NG with the NLM recall algorithm. In comparison with these techniques, our method delivers a clear visualization of both data points and codebooks, and it achieves a better mapping quality in terms of the topology preservation measure q(m).

  2. Mapping wide row crops with video sequences acquired from a tractor moving at treatment speed.

    PubMed

    Sainz-Costa, Nadir; Ribeiro, Angela; Burgos-Artizzu, Xavier P; Guijarro, María; Pajares, Gonzalo

    2011-01-01

    This paper presents a mapping method for wide row crop fields. The resulting map shows the crop rows and weeds present in the inter-row spacing. Because field videos are acquired with a camera mounted on top of an agricultural vehicle, a method for image sequence stabilization was needed and consequently designed and developed. The proposed stabilization method uses the centers of some crop rows in the image sequence as features to be tracked, which compensates for the lateral movement (sway) of the camera and leaves the pitch unchanged. A region of interest is selected using the tracked features, and an inverse perspective technique transforms the selected region into a bird's-eye view that is centered on the image and that enables map generation. The algorithm developed has been tested on several video sequences of different fields recorded at different times and under different lighting conditions, with good initial results. Indeed, lateral displacements of up to 66% of the inter-row spacing were suppressed through the stabilization process, and crop rows in the resulting maps appear straight.

  3. Space charge inhibition effect of nano-Fe{sub 3}O{sub 4} on improvement of impulse breakdown voltage of transformer oil based on improved Kerr optic measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Qing, E-mail: yangqing@cqu.edu.cn; Yu, Fei; Sima, Wenxia

    Transformer oil-based nanofluids (NFs) with 0.03 g/L Fe{sub 3}O{sub 4} nanoparticle content exhibit 11.2% higher positive impulse breakdown voltage levels than pure transformer oils. To study the effects of the Fe{sub 3}O{sub 4} nanoparticles on the space charge in transformer oil and to explain why the nano-modified transformer oil exhibits improved impulse breakdown voltage characteristics, the traditional Kerr electro-optic field mapping technique is improved by increasing the length of the parallel-plate electrodes and by using a photodetector array as a high light sensitivity device. The space charge distributions of pure transformer oil and of NFs containing Fe{sub 3}O{sub 4} nanoparticlesmore » can be measured using the improved Kerr electro-optic field mapping technique. Test results indicate a significant reduction in space charge density in the transformer oil-based NFs with the Fe{sub 3}O{sub 4} nanoparticles. The fast electrons are captured by the nanoparticles and are converted into slow-charged particles in the NFs, which then reduce the space charge density and result in a more uniform electric field distribution. Streamer propagation in the NFs is also obstructed, and the breakdown strengths of the NFs under impulse voltage conditions are also improved.« less

  4. On three-dimensional misorientation spaces.

    PubMed

    Krakow, Robert; Bennett, Robbie J; Johnstone, Duncan N; Vukmanovic, Zoja; Solano-Alvarez, Wilberth; Lainé, Steven J; Einsle, Joshua F; Midgley, Paul A; Rae, Catherine M F; Hielscher, Ralf

    2017-10-01

    Determining the local orientation of crystals in engineering and geological materials has become routine with the advent of modern crystallographic mapping techniques. These techniques enable many thousands of orientation measurements to be made, directing attention towards how such orientation data are best studied. Here, we provide a guide to the visualization of misorientation data in three-dimensional vector spaces, reduced by crystal symmetry, to reveal crystallographic orientation relationships. Domains for all point group symmetries are presented and an analysis methodology is developed and applied to identify crystallographic relationships, indicated by clusters in the misorientation space, in examples from materials science and geology. This analysis aids the determination of active deformation mechanisms and evaluation of cluster centres and spread enables more accurate description of transformation processes supporting arguments regarding provenance.

  5. On three-dimensional misorientation spaces

    NASA Astrophysics Data System (ADS)

    Krakow, Robert; Bennett, Robbie J.; Johnstone, Duncan N.; Vukmanovic, Zoja; Solano-Alvarez, Wilberth; Lainé, Steven J.; Einsle, Joshua F.; Midgley, Paul A.; Rae, Catherine M. F.; Hielscher, Ralf

    2017-10-01

    Determining the local orientation of crystals in engineering and geological materials has become routine with the advent of modern crystallographic mapping techniques. These techniques enable many thousands of orientation measurements to be made, directing attention towards how such orientation data are best studied. Here, we provide a guide to the visualization of misorientation data in three-dimensional vector spaces, reduced by crystal symmetry, to reveal crystallographic orientation relationships. Domains for all point group symmetries are presented and an analysis methodology is developed and applied to identify crystallographic relationships, indicated by clusters in the misorientation space, in examples from materials science and geology. This analysis aids the determination of active deformation mechanisms and evaluation of cluster centres and spread enables more accurate description of transformation processes supporting arguments regarding provenance.

  6. Performance evaluation of digital phase-locked loops for advanced deep space transponders

    NASA Technical Reports Server (NTRS)

    Nguyen, T. M.; Hinedi, S. M.; Yeh, H.-G.; Kyriacou, C.

    1994-01-01

    The performances of the digital phase-locked loops (DPLL's) for the advanced deep-space transponders (ADT's) are investigated. DPLL's considered in this article are derived from the analog phase-locked loop, which is currently employed by the NASA standard deep space transponder, using S-domain to Z-domain mapping techniques. Three mappings are used to develop digital approximations of the standard deep space analog phase-locked loop, namely the bilinear transformation (BT), impulse invariant transformation (IIT), and step invariant transformation (SIT) techniques. The performance in terms of the closed loop phase and magnitude responses, carrier tracking jitter, and response of the loop to the phase offset (the difference between in incoming phase and reference phase) is evaluated for each digital approximation. Theoretical results of the carrier tracking jitter for command-on and command-off cases are then validated by computer simulation. Both theoretical and computer simulation results show that at high sampling frequency, the DPLL's approximated by all three transformations have the same tracking jitter. However, at low sampling frequency, the digital approximation using BT outperforms the others. The minimum sampling frequency for adequate tracking performance is determined for each digital approximation of the analog loop. In addition, computer simulation shows that the DPLL developed by BT provides faster response to the phase offset than IIT and SIT.

  7. Breast-Lesion Characterization using Textural Features of Quantitative Ultrasound Parametric Maps.

    PubMed

    Sadeghi-Naini, Ali; Suraweera, Harini; Tran, William Tyler; Hadizad, Farnoosh; Bruni, Giancarlo; Rastegar, Rashin Fallah; Curpen, Belinda; Czarnota, Gregory J

    2017-10-20

    This study evaluated, for the first time, the efficacy of quantitative ultrasound (QUS) spectral parametric maps in conjunction with texture-analysis techniques to differentiate non-invasively benign versus malignant breast lesions. Ultrasound B-mode images and radiofrequency data were acquired from 78 patients with suspicious breast lesions. QUS spectral-analysis techniques were performed on radiofrequency data to generate parametric maps of mid-band fit, spectral slope, spectral intercept, spacing among scatterers, average scatterer diameter, and average acoustic concentration. Texture-analysis techniques were applied to determine imaging biomarkers consisting of mean, contrast, correlation, energy and homogeneity features of parametric maps. These biomarkers were utilized to classify benign versus malignant lesions with leave-one-patient-out cross-validation. Results were compared to histopathology findings from biopsy specimens and radiology reports on MR images to evaluate the accuracy of technique. Among the biomarkers investigated, one mean-value parameter and 14 textural features demonstrated statistically significant differences (p < 0.05) between the two lesion types. A hybrid biomarker developed using a stepwise feature selection method could classify the legions with a sensitivity of 96%, a specificity of 84%, and an AUC of 0.97. Findings from this study pave the way towards adapting novel QUS-based frameworks for breast cancer screening and rapid diagnosis in clinic.

  8. Full complex spatial filtering with a phase mostly DMD. [Deformable Mirror Device

    NASA Technical Reports Server (NTRS)

    Florence, James M.; Juday, Richard D.

    1991-01-01

    A new technique for implementing fully complex spatial filters with a phase mostly deformable mirror device (DMD) light modulator is described. The technique combines two or more phase-modulating flexure-beam mirror elements into a single macro-pixel. By manipulating the relative phases of the individual sub-pixels within the macro-pixel, the amplitude and the phase can be independently set for this filtering element. The combination of DMD sub-pixels into a macro-pixel is accomplished by adjusting the optical system resolution, thereby trading off system space bandwidth product for increased filtering flexibility. Volume in the larger dimensioned space, space bandwidth-complex axes count, is conserved. Experimental results are presented mapping out the coupled amplitude and phase characteristics of the individual flexure-beam DMD elements and demonstrating the independent control of amplitude and phase in a combined macro-pixel. This technique is generally applicable for implementation with any type of phase modulating light modulator.

  9. TripAdvisor^{N-D}: A Tourism-Inspired High-Dimensional Space Exploration Framework with Overview and Detail.

    PubMed

    Nam, Julia EunJu; Mueller, Klaus

    2013-02-01

    Gaining a true appreciation of high-dimensional space remains difficult since all of the existing high-dimensional space exploration techniques serialize the space travel in some way. This is not so foreign to us since we, when traveling, also experience the world in a serial fashion. But we typically have access to a map to help with positioning, orientation, navigation, and trip planning. Here, we propose a multivariate data exploration tool that compares high-dimensional space navigation with a sightseeing trip. It decomposes this activity into five major tasks: 1) Identify the sights: use a map to identify the sights of interest and their location; 2) Plan the trip: connect the sights of interest along a specifyable path; 3) Go on the trip: travel along the route; 4) Hop off the bus: experience the location, look around, zoom into detail; and 5) Orient and localize: regain bearings in the map. We describe intuitive and interactive tools for all of these tasks, both global navigation within the map and local exploration of the data distributions. For the latter, we describe a polygonal touchpad interface which enables users to smoothly tilt the projection plane in high-dimensional space to produce multivariate scatterplots that best convey the data relationships under investigation. Motion parallax and illustrative motion trails aid in the perception of these transient patterns. We describe the use of our system within two applications: 1) the exploratory discovery of data configurations that best fit a personal preference in the presence of tradeoffs and 2) interactive cluster analysis via cluster sculpting in N-D.

  10. Denonvilliers' space expansion by transperineal injection of hydrogel: implications for focal therapy of prostate cancer.

    PubMed

    de Castro Abreu, Andre Luis; Ma, Yanling; Shoji, Sunao; Marien, Arnaud; Leslie, Scott; Gill, Inderbir; Ukimura, Osamu

    2014-04-01

    We developed and assessed a technique of: (i) expanding Denonvilliers' space by hydrogel (polyethylene glycol) during focal cryoabation; and (ii) temperature mapping to ensure protection of the rectal wall. In a fresh cadaver, 20 cc of hydrogel was injected transperineally into Denonvilliers' space under transrectal ultrasound guidance. Successful expansion of Denonvilliers' space was achieved with a range of 9-11 mm thickness covering the entire posterior prostate surface. Two freeze-thaw cycles were used to expand the iceball reaching the rectal wall as an end-point. Intraoperative transrectal ultrasound monitoring and temperature mapping in Denonvilliers' space by multiple thermocouples documented real-time iceball expansion up to 10 mm beyond the prostate, and safety in protecting the rectal wall from thermal injury. The lowest temperatures of the thermocouples with a distance of 0 mm, 5 mm and 10 mm from the prostate were: -35°C, -18°C and 0°C (P < 0.001), respectively. In gross and microscopic examination, the hydrogel mass measured 11 × 40 × 34 mm, which was identical to the intraoperative transrectal ultrasound measurements, there was no infiltration of the hydrogel into the rectal wall or prostate and no injury to the pelvic organs. In conclusion, the expansion of Denonvilliers' space by transperineal injection of hydrogel is feasible and a promising technique to facilitate energy-based focal therapy of prostate cancer. © 2013 The Japanese Urological Association.

  11. Constructing Synoptic Maps of Stratospheric Column Ozone from HALOE, SAGE and Balloonsonde Data Using Potential Vorticity Isentropic Coordinate Transformations

    NASA Technical Reports Server (NTRS)

    Hollandsworth, Stacey M.; Schoeberl, Mark R.; Morris, Gary A.; Long, Craig; Zhou, Shuntai; Miller, Alvin J.

    1999-01-01

    In this study we utilize potential vorticity - isentropic (PVI) coordinate transformations as a means of combining ozone data from different sources to construct daily, synthetic three-dimensional ozone fields. This methodology has been used successfully to reconstruct ozone maps in particular regions from aircraft data over the period of the aircraft campaign. We expand this method to create high-resolution daily global maps of profile ozone data, particularly in the lower stratosphere, where high-resolution ozone data are sparse. Ozone climatologies in PVI-space are constructed from satellite-based SAGE II and UARS/HALOE data, both of which-use solar occultation techniques to make high vertical resolution ozone profile measurements, but with low spatial resolution. A climatology from ground-based balloonsonde data is also created. The climatologies are used to establish the relationship between ozone and dynamical variability, which is defined by the potential vorticity (in the form of equivalent latitude) and potential temperature fields. Once a PVI climatology has been created from data taken by one or more instruments, high-resolution daily profile ozone field estimates are constructed based solely on the PVI fields, which are available on a daily basis from NCEP analysis. These profile ozone maps could be used for a variety of applications, including use in conjunction with total ozone maps to create a daily tropospheric ozone product, as input to forecast models, or as a tool for validating independent ozone measurements when correlative data are not available. This technique is limited to regions where the ozone is a long-term tracer and the flow is adiabatic. We evaluate the internal consistency of the technique by transforming the ozone back to physical space and comparing to the original profiles. Biases in the long-term average of the differences are used to identify regions where the technique is consistently introducing errors. Initial results show the technique is useful in the lower stratosphere at most latitudes throughout the year,and in the winter hemisphere in the middle stratosphere. The results are problematic in the summer hemisphere middle stratosphere due to increased ozone photochemistry and weak PV gradients. Alternate techniques in these regions will be discussed. An additional limitation is the quality and resolution of the meteorological data.

  12. A continuous scale-space method for the automated placement of spot heights on maps

    NASA Astrophysics Data System (ADS)

    Rocca, Luigi; Jenny, Bernhard; Puppo, Enrico

    2017-12-01

    Spot heights and soundings explicitly indicate terrain elevation on cartographic maps. Cartographers have developed design principles for the manual selection, placement, labeling, and generalization of spot height locations, but these processes are work-intensive and expensive. Finding an algorithmic criterion that matches the cartographers' judgment in ranking the significance of features on a terrain is a difficult endeavor. This article proposes a method for the automated selection of spot heights locations representing natural features such as peaks, saddles and depressions. A lifespan of critical points in a continuous scale-space model is employed as the main measure of the importance of features, and an algorithm and a data structure for its computation are described. We also introduce a method for the comparison of algorithmically computed spot height locations with manually produced reference compilations. The new method is compared with two known techniques from the literature. Results show spot height locations that are closer to reference spot heights produced manually by swisstopo cartographers, compared to previous techniques. The introduced method can be applied to elevation models for the creation of topographic and bathymetric maps. It also ranks the importance of extracted spot height locations, which allows for a variation in the size of symbols and labels according to the significance of represented features. The importance ranking could also be useful for adjusting spot height density of zoomable maps in real time.

  13. LRO Lyman Alpha Mapping Project (LAMP) Far-UV Investigations of Lunar Composition, Porosity, and Space Weathering

    NASA Astrophysics Data System (ADS)

    Retherford, K. D.; Greathouse, T. K.; Mandt, K. E.; Gladstone, R.; Hendrix, A.; Cahill, J. T.; Liu, Y.; Grava, C.; Hurley, D.; Egan, A.; Kaufmann, D. E.; Raut, U.; Byron, B. D.; Magana, L. O.; Stickle, A. M.; Wyrick, D. Y.; Pryor, W. R.

    2017-12-01

    Far ultraviolet reflectance measurements of the Moon, icy satellites, comets, and asteroids have proven surprisingly useful for advancing our understanding of planetary surfaces. This new appreciation for planetary far-UV imaging spectroscopy is provided in large part thanks to nearly a decade of investigations with the Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP). LAMP has demonstrated an innovative nightside observing technique, putting a new light on permanently shadowed regions (PSRs) and other features on the Moon. Dayside far-UV albedo maps complement the nightside data, enabling comparisons of direct and hemispheric (diffuse) illumination derived albedos. We'll discuss the strengths of the far-UV reflectance imaging spectroscopy technique with respect to several new LAMP results. Detections of water frost and hydration signatures near 165 nm, for example, provide constraints on composition that complement infrared spectroscopy, visible imaging, neutron spectroscopy, radar, and other techniques. LRO's polar orbit and high data downlink capabilities enable searches for diurnal variations in spectral signals. At far-UV wavelengths a relatively blue spectral slope is diagnostic of space weathering, which is opposite of the spectral reddening indicator of maturity at wavelengths longward of 180 nm. By utilizing natural diffuse illumination sources on the nightside the far-UV technique is able to identify relative increases in porosity within the PSRs, and provides an additional tool for determining relative surface ages. On October 6, 2016 LAMP enacted a new, more sensitive dayside operating mode that expands its ability to search for diurnally varying hydration signals associated with different regions and features.

  14. Using image mapping towards biomedical and biological data sharing

    PubMed Central

    2013-01-01

    Image-based data integration in eHealth and life sciences is typically concerned with the method used for anatomical space mapping, needed to retrieve, compare and analyse large volumes of biomedical data. In mapping one image onto another image, a mechanism is used to match and find the corresponding spatial regions which have the same meaning between the source and the matching image. Image-based data integration is useful for integrating data of various information structures. Here we discuss a broad range of issues related to data integration of various information structures, review exemplary work on image representation and mapping, and discuss the challenges that these techniques may bring. PMID:24059352

  15. Investigation of methods to search for the boundaries on the image and their use on lung hardware of methods finding saliency map

    NASA Astrophysics Data System (ADS)

    Semenishchev, E. A.; Marchuk, V. I.; Fedosov, V. P.; Stradanchenko, S. G.; Ruslyakov, D. V.

    2015-05-01

    This work aimed to study computationally simple method of saliency map calculation. Research in this field received increasing interest for the use of complex techniques in portable devices. A saliency map allows increasing the speed of many subsequent algorithms and reducing the computational complexity. The proposed method of saliency map detection based on both image and frequency space analysis. Several examples of test image from the Kodak dataset with different detalisation considered in this paper demonstrate the effectiveness of the proposed approach. We present experiments which show that the proposed method providing better results than the framework Salience Toolbox in terms of accuracy and speed.

  16. Mapping historical landscape changes with the use of a space-time cube

    NASA Astrophysics Data System (ADS)

    Bogucka, Edyta P.; Jahnke, Mathias

    2018-05-01

    In this contribution, we introduce geographic concepts in the humanities and present the results of a spacetime visualization of ancient buildings over the last centuries. The techniques and approaches used were based on cartographic research to visualize spatio-temporal information. As a case study, we applied cartographic styling techniques to a model of the Royal Castle in Warsaw and its different spatial elements, which were constructed and destroyed during their eventful history. In our case, the space-time cube approach seems to be the most suitable representation of this spatio-temporal information. Therefore, we digitized the different footprints of the castle during the ancient centuries as well as the landscape structure around, and annotated them with monarchies, epochs and time. During the digitization process, we had to cope with difficulties like sources in various scales and map projections, which resulted in varying accuracies. The results were stored in KML to support a wide variety of visualization platforms.

  17. A Web-GIS Procedure Based on Satellite Multi-Spectral and Airborne LIDAR Data to Map the Road blockage Due to seismic Damages of Built-Up Urban Areas

    NASA Astrophysics Data System (ADS)

    Costanzo, Antonio; Montuori, Antonio; Silva, Juan Pablo; Silvestri, Malvina; Musacchio, Massimo; Buongiorno, Maria Fabrizia; Stramondo, Salvatore

    2016-08-01

    In this work, a web-GIS procedure to map the risk of road blockage in urban environments through the combined use of space-borne and airborne remote sensing sensors is presented. The methodology concerns (1) the provision of a geo-database through the integration of space-borne multispectral images and airborne LiDAR data products; (2) the modeling of building vulnerability, based on the corresponding 3D geometry and construction time information; (3) the GIS-based mapping of road closure due to seismic- related building collapses based on the building characteristic height and the width of the road. Experimental results, gathered for the Cosenza urban area, allow demonstrating the benefits of both the proposed approach and the GIS-based integration of multi-platforms remote sensing sensors and techniques for seismic road assessment purposes.

  18. Systematic exploration of unsupervised methods for mapping behavior

    NASA Astrophysics Data System (ADS)

    Todd, Jeremy G.; Kain, Jamey S.; de Bivort, Benjamin L.

    2017-02-01

    To fully understand the mechanisms giving rise to behavior, we need to be able to precisely measure it. When coupled with large behavioral data sets, unsupervised clustering methods offer the potential of unbiased mapping of behavioral spaces. However, unsupervised techniques to map behavioral spaces are in their infancy, and there have been few systematic considerations of all the methodological options. We compared the performance of seven distinct mapping methods in clustering a wavelet-transformed data set consisting of the x- and y-positions of the six legs of individual flies. Legs were automatically tracked by small pieces of fluorescent dye, while the fly was tethered and walking on an air-suspended ball. We find that there is considerable variation in the performance of these mapping methods, and that better performance is attained when clustering is done in higher dimensional spaces (which are otherwise less preferable because they are hard to visualize). High dimensionality means that some algorithms, including the non-parametric watershed cluster assignment algorithm, cannot be used. We developed an alternative watershed algorithm which can be used in high-dimensional spaces when a probability density estimate can be computed directly. With these tools in hand, we examined the behavioral space of fly leg postural dynamics and locomotion. We find a striking division of behavior into modes involving the fore legs and modes involving the hind legs, with few direct transitions between them. By computing behavioral clusters using the data from all flies simultaneously, we show that this division appears to be common to all flies. We also identify individual-to-individual differences in behavior and behavioral transitions. Lastly, we suggest a computational pipeline that can achieve satisfactory levels of performance without the taxing computational demands of a systematic combinatorial approach.

  19. Techniques and Tools of NASA's Space Shuttle Columbia Accident Investigation

    NASA Technical Reports Server (NTRS)

    McDanels, Steve J.

    2005-01-01

    The Space Shuttle Columbia accident investigation was a fusion of many disciplines into a single effort. From the recovery and reconstruction of the debris, Figure 1, to the analysis, both destructive and nondestructive, of chemical and metallurgical samples, Figure 2, a multitude of analytical techniques and tools were employed. Destructive and non-destructive testing were utilized in tandem to determine if a breach in the left wing of the Orbiter had occurred, and if so, the path of the resultant high temperature plasma flow. Nondestructive analysis included topometric scanning, laser mapping, and real-time radiography. These techniques were useful in constructing a three dimensional virtual representation of the reconstruction project, specifically the left wing leading edge reinforced carbon/carbon heat protectant panels. Similarly, they were beneficial in determining where sampling should be performed on the debris. Analytic testing included such techniques as Energy Dispersive Electron Microprobe Analysis (EMPA), Electron Spectroscopy Chemical Analysis (ESCA), and X-Ray dot mapping; these techniques related the characteristics of intermetallics deposited on the leading edge of the left wing adjacent to the location of a suspected plasma breach during reentry. The methods and results of the various analyses, along with their implications into the accident, are discussed, along with the findings and recommendations of the Columbia Accident Investigation Board. Likewise, NASA's Return To Flight efforts are highlighted.

  20. Assessment of myocardial fibrosis with T1 mapping MRI.

    PubMed

    Everett, R J; Stirrat, C G; Semple, S I R; Newby, D E; Dweck, M R; Mirsadraee, S

    2016-08-01

    Myocardial fibrosis can arise from a range of pathological processes and its presence correlates with adverse clinical outcomes. Cardiac magnetic resonance (CMR) can provide a non-invasive assessment of cardiac structure, function, and tissue characteristics, which includes late gadolinium enhancement (LGE) techniques to identify focal irreversible replacement fibrosis with a high degree of accuracy and reproducibility. Importantly the presence of LGE is consistently associated with adverse outcomes in a range of common cardiac conditions; however, LGE techniques are qualitative and unable to detect diffuse myocardial fibrosis, which is an earlier form of fibrosis preceding replacement fibrosis that may be reversible. Novel T1 mapping techniques allow quantitative CMR assessment of diffuse myocardial fibrosis with the two most common measures being native T1 and extracellular volume (ECV) fraction. Native T1 differentiates normal from infarcted myocardium, is abnormal in hypertrophic cardiomyopathy, and may be particularly useful in the diagnosis of Anderson-Fabry disease and amyloidosis. ECV is a surrogate measure of the extracellular space and is equivalent to the myocardial volume of distribution of the gadolinium-based contrast medium. It is reproducible and correlates well with fibrosis on histology. ECV is abnormal in patients with cardiac failure and aortic stenosis, and is associated with functional impairment in these groups. T1 mapping techniques promise to allow earlier detection of disease, monitor disease progression, and inform prognosis; however, limitations remain. In particular, reference ranges are lacking for T1 mapping values as these are influenced by specific CMR techniques and magnetic field strength. In addition, there is significant overlap between T1 mapping values in healthy controls and most disease states, particularly using native T1, limiting the clinical application of these techniques at present. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  1. Flood mapping from Sentinel-1 and Landsat-8 data: a case study from river Evros, Greece

    NASA Astrophysics Data System (ADS)

    Kyriou, Aggeliki; Nikolakopoulos, Konstantinos

    2015-10-01

    Floods are suddenly and temporary natural events, affecting areas which are not normally covered by water. The influence of floods plays a significant role both in society and the natural environment, therefore flood mapping is crucial. Remote sensing data can be used to develop flood map in an efficient and effective way. This work is focused on expansion of water bodies overtopping natural levees of the river Evros, invading the surroundings areas and converting them in flooded. Different techniques of flood mapping were used using data from active and passive remote sensing sensors like Sentinlel-1 and Landsat-8 respectively. Space borne pairs obtained from Sentinel-1 were processed in this study. Each pair included an image during the flood, which is called "crisis image" and another one before the event, which is called "archived image". Both images covering the same area were processed producing a map, which shows the spread of the flood. Multispectral data From Landsat-8 were also processed in order to detect and map the flooded areas. Different image processing techniques were applied and the results were compared to the respective results of the radar data processing.

  2. Space Weather Activities of IONOLAB Group: TEC Mapping

    NASA Astrophysics Data System (ADS)

    Arikan, F.; Yilmaz, A.; Arikan, O.; Sayin, I.; Gurun, M.; Akdogan, K. E.; Yildirim, S. A.

    2009-04-01

    Being a key player in Space Weather, ionospheric variability affects the performance of both communication and navigation systems. To improve the performance of these systems, ionosphere has to be monitored. Total Electron Content (TEC), line integral of the electron density along a ray path, is an important parameter to investigate the ionospheric variability. A cost-effective way of obtaining TEC is by using dual-frequency GPS receivers. Since these measurements are sparse in space, accurate and robust interpolation techniques are needed to interpolate (or map) the TEC distribution for a given region in space. However, the TEC data derived from GPS measurements contain measurement noise, model and computational errors. Thus, it is necessary to analyze the interpolation performance of the techniques on synthetic data sets that can represent various ionospheric states. By this way, interpolation performance of the techniques can be compared over many parameters that can be controlled to represent the desired ionospheric states. In this study, Multiquadrics, Inverse Distance Weighting (IDW), Cubic Splines, Ordinary and Universal Kriging, Random Field Priors (RFP), Multi-Layer Perceptron Neural Network (MLP-NN), and Radial Basis Function Neural Network (RBF-NN) are employed as the spatial interpolation algorithms. These mapping techniques are initially tried on synthetic TEC surfaces for parameter and coefficient optimization and determination of error bounds. Interpolation performance of these methods are compared on synthetic TEC surfaces over the parameters of sampling pattern, number of samples, the variability of the surface and the trend type in the TEC surfaces. By examining the performance of the interpolation methods, it is observed that both Kriging, RFP and NN have important advantages and possible disadvantages depending on the given constraints. It is also observed that the determining parameter in the error performance is the trend in the Ionosphere. Optimization of the algorithms in terms of their performance parameters (like the choice of the semivariogram function for Kriging algorithms and the hidden layer and neuron numbers for MLP-NN) mostly depend on the behavior of the ionosphere at that given time instant for the desired region. The sampling pattern and number of samples are the other important parameters that may contribute to the higher errors in reconstruction. For example, for all of the above listed algorithms, hexagonal regular sampling of the ionosphere provides the lowest reconstruction error and the performance significantly degrades as the samples in the region become sparse and clustered. The optimized models and coefficients are applied to regional GPS-TEC mapping using the IONOLAB-TEC data (www.ionolab.org). Both Kriging combined with Kalman Filter and dynamic modeling of NN are also implemented as first trials of TEC and space weather predictions.

  3. Understanding neurodynamical systems via Fuzzy Symbolic Dynamics.

    PubMed

    Dobosz, Krzysztof; Duch, Włodzisław

    2010-05-01

    Neurodynamical systems are characterized by a large number of signal streams, measuring activity of individual neurons, local field potentials, aggregated electrical (EEG) or magnetic potentials (MEG), oxygen use (fMRI) or activity of simulated neurons. Various basis set decomposition techniques are used to analyze such signals, trying to discover components that carry meaningful information, but these techniques tell us little about the global activity of the whole system. A novel technique called Fuzzy Symbolic Dynamics (FSD) is introduced to help in understanding of the multidimensional dynamical system's behavior. It is based on a fuzzy partitioning of the signal space that defines a non-linear mapping of the system's trajectory to the low-dimensional space of membership function activations. This allows for visualization of the trajectory showing various aspects of observed signals that may be difficult to discover looking at individual components, or to notice otherwise. FSD mapping can be applied to raw signals, transformed signals (for example, ICA components), or to signals defined in the time-frequency domain. To illustrate the method two FSD visualizations are presented: a model system with artificial radial oscillatory sources, and the output layer (50 neurons) of Respiratory Rhythm Generator (RRG) composed of 300 spiking neurons. 2009 Elsevier Ltd. All rights reserved.

  4. Forest and Range Inventory and Mapping

    NASA Technical Reports Server (NTRS)

    Aldrich, R. C.

    1971-01-01

    The state of the art in remote sensing for forest and range inventories and mapping has been discussed. There remains a long way to go before some of these techniques can be used on an operational basis. By the time that the Earth Resources Technology Satellite and Skylab space missions are flown, it should be possible to tell what kind and what quality of information can be extracted from remote sensors and how it can be used for surveys of forest and range resources.

  5. Image enhancement by non-linear extrapolation in frequency space

    NASA Technical Reports Server (NTRS)

    Anderson, Charles H. (Inventor); Greenspan, Hayit K. (Inventor)

    1998-01-01

    An input image is enhanced to include spatial frequency components having frequencies higher than those in an input image. To this end, an edge map is generated from the input image using a high band pass filtering technique. An enhancing map is subsequently generated from the edge map, with the enhanced map having spatial frequencies exceeding an initial maximum spatial frequency of the input image. The enhanced map is generated by applying a non-linear operator to the edge map in a manner which preserves the phase transitions of the edges of the input image. The enhanced map is added to the input image to achieve a resulting image having spatial frequencies greater than those in the input image. Simplicity of computations and ease of implementation allow for image sharpening after enlargement and for real-time applications such as videophones, advanced definition television, zooming, and restoration of old motion pictures.

  6. Recognition of a porphyry system using ASTER data in Bideghan - Qom province (central of Iran)

    NASA Astrophysics Data System (ADS)

    Feizi, F.; Mansouri, E.

    2014-07-01

    The Bideghan area is located south of the Qom province (central of Iran). The most impressive geological features in the studied area are the Eocene sequences which are intruded by volcanic rocks with basic compositions. Advanced Space borne Thermal Emission and Reflection Radiometer (ASTER) image processing have been used for hydrothermal alteration mapping and lineaments identification in the investigated area. In this research false color composite, band ratio, Principal Component Analysis (PCA), Least Square Fit (LS-Fit) and Spectral Angel Mapping (SAM) techniques were applied on ASTER data and argillic, phyllic, Iron oxide and propylitic alteration zones were separated. Lineaments were identified by aid of false color composite, high pass filters and hill-shade DEM techniques. The results of this study demonstrate the usefulness of remote sensing method and ASTER multi-spectral data for alteration and lineament mapping. Finally, the results were confirmed by field investigation.

  7. Non-coincident Inter-instrument Comparisons of Ozone Measurements Using Quasi-conservative Coordinates

    NASA Technical Reports Server (NTRS)

    Lait, L. R.; Newman, P. A.; Schoeberl, M. R.; McGee, T.; Twigg, T.; Browell, E.; Bevilacqua, R.; Andersen, S. B.; DeBacker, H.; Benesova, A.

    2004-01-01

    Ozone measurements from ozonesondes, AROTAL, DIAL, and POAM III instruments during the SOLVE-2/VINTERSOL period are composited in a time-varying, flow-following quasi-conservative (PV-6) coordinate space; the resulting composites from each instrument are mapped onto the other instruments locations and times. The mapped data are then used to intercompare data from the different instruments. Overall, the four data sets are found to be in good agreement. AROTAL shows somewhat lower values below 16 km, and DIAL has a positive bias at the upper limits of its altitude range. These intercomparisons are consistent with those obtained from more conventional near-coincident profiles, where available. Although the PV-theta mapping technique entails larger uncertainties of individual profile differences compared to direct near-coincident comparisons, the ability to include much larger numbers of comparisons can make this technique advantageous.

  8. Analysis of seasonal characteristics of Sambhar Salt Lake, India, from digitized Space Shuttle photography

    NASA Technical Reports Server (NTRS)

    Lulla, Kamlesh P.; Helfert, Michael R.

    1989-01-01

    Sambhar Salt Lake is the largest salt lake (230 sq km) in India, situated in the northwest near Jaipur. Analysis of Space Shuttle photographs of this ephemeral lake reveals that water levels and lake basin land-use information can be extracted by both the digital and manual analysis techniques. Seasonal characteristics captured by the two Shuttle photos used in this study show that additional land use/cover categories can be mapped from the dry season photos. This additional information is essential for precise cartographic updates, and provides seasonal hydrologic profiles and inputs for potential mesoscale climate modeling. This paper extends the digitization and mensuration techniques originally developed for space photography and applied to other regions (e.g., Lake Chad, Africa, and Great Salt Lake, USA).

  9. On three-dimensional misorientation spaces

    PubMed Central

    Bennett, Robbie J.; Vukmanovic, Zoja; Solano-Alvarez, Wilberth; Lainé, Steven J.; Einsle, Joshua F.; Midgley, Paul A.; Rae, Catherine M. F.; Hielscher, Ralf

    2017-01-01

    Determining the local orientation of crystals in engineering and geological materials has become routine with the advent of modern crystallographic mapping techniques. These techniques enable many thousands of orientation measurements to be made, directing attention towards how such orientation data are best studied. Here, we provide a guide to the visualization of misorientation data in three-dimensional vector spaces, reduced by crystal symmetry, to reveal crystallographic orientation relationships. Domains for all point group symmetries are presented and an analysis methodology is developed and applied to identify crystallographic relationships, indicated by clusters in the misorientation space, in examples from materials science and geology. This analysis aids the determination of active deformation mechanisms and evaluation of cluster centres and spread enables more accurate description of transformation processes supporting arguments regarding provenance. PMID:29118660

  10. Building the 3D Geological Model of Wall Rock of Salt Caverns Based on Integration Method of Multi-source data

    NASA Astrophysics Data System (ADS)

    Yongzhi, WANG; hui, WANG; Lixia, LIAO; Dongsen, LI

    2017-02-01

    In order to analyse the geological characteristics of salt rock and stability of salt caverns, rough three-dimensional (3D) models of salt rock stratum and the 3D models of salt caverns on study areas are built by 3D GIS spatial modeling technique. During implementing, multi-source data, such as basic geographic data, DEM, geological plane map, geological section map, engineering geological data, and sonar data are used. In this study, the 3D spatial analyzing and calculation methods, such as 3D GIS intersection detection method in three-dimensional space, Boolean operations between three-dimensional space entities, three-dimensional space grid discretization, are used to build 3D models on wall rock of salt caverns. Our methods can provide effective calculation models for numerical simulation and analysis of the creep characteristics of wall rock in salt caverns.

  11. Spatial Field Variability Mapping of Rice Crop using Clustering Technique from Space Borne Hyperspectral Data

    NASA Astrophysics Data System (ADS)

    Moharana, S.; Dutta, S.

    2015-12-01

    Precision farming refers to field-specific management of an agricultural crop at a spatial scale with an aim to get the highest achievable yield and to achieve this spatial information on field variability is essential. The difficulty in mapping of spatial variability occurring within an agriculture field can be revealed by employing spectral techniques in hyperspectral imagery rather than multispectral imagery. However an advanced algorithm needs to be developed to fully make use of the rich information content in hyperspectral data. In the present study, potential of hyperspectral data acquired from space platform was examined to map the field variation of paddy crop and its species discrimination. This high dimensional data comprising 242 spectral narrow bands with 30m ground resolution Hyperion L1R product acquired for Assam, India (30th Sept and 3rd Oct, 2014) were allowed for necessary pre-processing steps followed by geometric correction using Hyperion L1GST product. Finally an atmospherically corrected and spatially deduced image consisting of 112 band was obtained. By employing an advanced clustering algorithm, 12 different clusters of spectral waveforms of the crop were generated from six paddy fields for each images. The findings showed that, some clusters were well discriminated representing specific rice genotypes and some clusters were mixed treating as a single rice genotype. As vegetation index (VI) is the best indicator of vegetation mapping, three ratio based VI maps were also generated and unsupervised classification was performed for it. The so obtained 12 clusters of paddy crop were mapped spatially to the derived VI maps. From these findings, the existence of heterogeneity was clearly captured in one of the 6 rice plots (rice plot no. 1) while heterogeneity was observed in rest of the 5 rice plots. The degree of heterogeneous was found more in rice plot no.6 as compared to other plots. Subsequently, spatial variability of paddy field was observed in different plot levels in the paddy fields from the two images. However, no such significant variation in rice genotypes at growth level was observed. Hence, the spectral information acquired from space platform can be linearly scaled to map the variation in field levels of rice crop which will be act as an informative system for rice agriculture practice.

  12. a Study on Mental Representations for Realistic Visualization the Particular Case of Ski Trail Mapping

    NASA Astrophysics Data System (ADS)

    Balzarini, R.; Dalmasso, A.; Murat, M.

    2015-08-01

    This article presents preliminary results from a research project in progress that brings together geographers, cognitive scientists, historians and computer scientists. The project investigates the evolution of a particular territorial model: ski trails maps. Ski resorts, tourist and sporting innovations for mountain economies since the 1930s, have needed cartographic representations corresponding to new practices of the space.Painter artists have been involved in producing ski maps with painting techniques and panoramic views, which are by far the most common type of map, because they allow the resorts to look impressive to potential visitors. These techniques have evolved throughout the mutations of the ski resorts. Paper ski maps no longer meet the needs of a large part of the customers; the question now arises of their adaptation to digital media. In a computerized process perspective, the early stage of the project aims to identify the artist-representations, based on conceptual and technical rules, which are handled by users-skiers to perform a task (location, wayfinding, decision-making) and can be transferred to a computer system. This article presents the experimental phase that analyzes artist and user mental representations that are at stake during the making and the reading of a paper ski map. It particularly focuses on how the invention of the artist influences map reading.

  13. Self-Organizing Hidden Markov Model Map (SOHMMM): Biological Sequence Clustering and Cluster Visualization.

    PubMed

    Ferles, Christos; Beaufort, William-Scott; Ferle, Vanessa

    2017-01-01

    The present study devises mapping methodologies and projection techniques that visualize and demonstrate biological sequence data clustering results. The Sequence Data Density Display (SDDD) and Sequence Likelihood Projection (SLP) visualizations represent the input symbolical sequences in a lower-dimensional space in such a way that the clusters and relations of data elements are depicted graphically. Both operate in combination/synergy with the Self-Organizing Hidden Markov Model Map (SOHMMM). The resulting unified framework is in position to analyze automatically and directly raw sequence data. This analysis is carried out with little, or even complete absence of, prior information/domain knowledge.

  14. Space Utilization Management within William Beaumont Army Medical Center

    DTIC Science & Technology

    2007-04-01

    coupons, drives a Toyota, and stays in low-priced motels when he travels on business. Keirlin does not, however, pinch pennies. The market value of...care can be provided today and tomorrow. (Nevidjon, 2006) One technique used to improve office space is photo mapping. This term was coined by marketing ...scholar Phillip Kotler who suggests that walking through the facility and photographing the key areas of the patient’s areas can produce clues to

  15. Rapid Landslide Mapping by Means of Post-Event Polarimetric SAR Imagery

    NASA Astrophysics Data System (ADS)

    Plank, Simon; Martinis, Sandro; Twele, Andre

    2016-08-01

    Rapid mapping of landslides, quickly providing information about the extent of the affected area and type and grade of damage, is crucial to enable fast crisis response. Reviewing the literature shows that most synthetic aperture radar (SAR) data-based landslide mapping procedures use change detection techniques. However, the required very high resolution (VHR) pre-event SAR imagery, acquired shortly before the landslide event, is commonly not available. Due to limitations in onboard disk space and downlink transmission rates modern VHR SAR missions do not systematically cover the entire world. We present a fast and robust procedure for mapping of landslides, based on change detection between freely available and systematically acquired pre-event optical and post-event polarimetric SAR data.

  16. Robust reconstruction of B1 (+) maps by projection into a spherical functions space.

    PubMed

    Sbrizzi, Alessandro; Hoogduin, Hans; Lagendijk, Jan J; Luijten, Peter; van den Berg, Cornelis A T

    2014-01-01

    Several parallel transmit MRI techniques require knowledge of the transmit radiofrequency field profiles (B1 (+) ). During the past years, various methods have been developed to acquire this information. Often, these methods suffer from long measurement times and produce maps exhibiting regions with poor signal-to-noise ratio and artifacts. In this article, a model-based reconstruction procedure is introduced that improves the robustness of B1 (+) mapping. The missing information from undersampled B1 (+) maps and the regions of poor signal to noise ratio are reconstructed through projection into the space of spherical functions that arise naturally from the solution of the Helmholtz equations in the spherical coordinate system. As a result, B1 (+) data over a limited range of the field of view/volume is sufficient to reconstruct the B1 (+) over the full spatial domain in a fast and robust way. The same model is exploited to filter the noise of the measured maps. Results from simulations and in vivo measurements confirm the validity of the proposed method. A spherical functions model can well approximate the magnetic fields inside the body with few basis terms. Exploiting this compression capability, B1 (+) maps are reconstructed in regions of unknown or corrupted values. Copyright © 2013 Wiley Periodicals, Inc.

  17. Assessing Hurricane Katrina Vegetation Damage at Stennis Space Center using IKONOS Image Classification Techniques

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Ross, Kenton W.; Graham, William D.

    2006-01-01

    Hurricane Katrina inflicted widespread damage to vegetation in southwestern coastal Mississippi upon landfall on August 29, 2005. Storm damage to surface vegetation types at the NASA John C. Stennis Space Center (SSC) was mapped and quantified using IKONOS data originally acquired on September 2, 2005, and later obtained via a Department of Defense ClearView contract. NASA SSC management required an assessment of the hurricane s impact to the 125,000-acre buffer zone used to mitigate rocket engine testing noise and vibration impacts and to manage forestry and fire risk. This study employed ERDAS IMAGINE software to apply traditional classification techniques to the IKONOS data. Spectral signatures were collected from multiple ISODATA classifications of subset areas across the entire region and then appended to a master file representative of major targeted cover type conditions. The master file was subsequently used with the IKONOS data and with a maximum likelihood algorithm to produce a supervised classification later refined using GIS-based editing. The final results enabled mapped, quantitative areal estimates of hurricane-induced damage according to general surface cover type. The IKONOS classification accuracy was assessed using higher resolution aerial imagery and field survey data. In-situ data and GIS analysis indicate that the results compare well to FEMA maps of flooding extent. The IKONOS classification also mapped open areas with woody storm debris. The detection of such storm damage categories is potentially useful for government officials responsible for hurricane disaster mitigation.

  18. Mathematical Inversion of Lightning Data: Techniques and Applications

    NASA Technical Reports Server (NTRS)

    Koshak, William

    2003-01-01

    A survey of some interesting mathematical inversion studies dealing with radio, optical, and electrostatic measurements of lightning are presented. A discussion of why NASA is interested in lightning, what specific physical properties of lightning are retrieved, and what mathematical techniques are used to perform the retrievals are discussed. In particular, a relatively new multi-station VHF time-of-arrival (TOA) antenna network is now on-line in Northern Alabama and will be discussed. The network, called the Lightning Mapping Array (LMA), employs GPS timing and detects VHF radiation from discrete segments (effectively point emitters) that comprise the channel of lightning strokes within cloud and ground flashes. The LMA supports on-going ground-validation activities of the low Earth orbiting Lightning Imaging Sensor (LIS) satellite developed at NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama. The LMA also provides detailed studies of the distribution and evolution of thunderstorms and lightning in the Tennessee Valley, and offers interesting comparisons with other meteorological/geophysical datasets. In order to take full advantage of these benefits, it is essential that the LMA channel mapping accuracy (in both space and time) be fully characterized and optimized. A new channel mapping retrieval algorithm is introduced for this purpose. To characterize the spatial distribution of retrieval errors, the algorithm has been applied to analyze literally tens of millions of computer-simulated lightning VHF point sources that have been placed at various ranges, azimuths, and altitudes relative to the LMA network. Statistical results are conveniently summarized in high-resolution, color-coded, error maps.

  19. Development of data processing, interpretation and analysis system for the remote sensing of trace atmospheric gas species

    NASA Technical Reports Server (NTRS)

    Casas, Joseph C.; Saylor, Mary S.; Kindle, Earl C.

    1987-01-01

    The major emphasis is on the advancement of remote sensing technology. In particular, the gas filter correlation radiometer (GFCR) technique was applied to the measurement of trace gas species, such as carbon monoxide (CO), from airborne and Earth orbiting platforms. Through a series of low altitude aircraft flights, high altitude aircraft flights, and orbiting space platform flights, data were collected and analyzed, culminating in the first global map of carbon monoxide concentration in the middle troposphere and stratosphere. The four major areas of this remote sensing program, known as the Measurement of Air Pollution from Satellites (MAPS) experiment, are: (1) data acquisition, (2) data processing, analysis, and interpretation algorithms, (3) data display techniques, and (4) information processing.

  20. Multiband tangent space mapping and feature selection for classification of EEG during motor imagery.

    PubMed

    Islam, Md Rabiul; Tanaka, Toshihisa; Molla, Md Khademul Islam

    2018-05-08

    When designing multiclass motor imagery-based brain-computer interface (MI-BCI), a so-called tangent space mapping (TSM) method utilizing the geometric structure of covariance matrices is an effective technique. This paper aims to introduce a method using TSM for finding accurate operational frequency bands related brain activities associated with MI tasks. A multichannel electroencephalogram (EEG) signal is decomposed into multiple subbands, and tangent features are then estimated on each subband. A mutual information analysis-based effective algorithm is implemented to select subbands containing features capable of improving motor imagery classification accuracy. Thus obtained features of selected subbands are combined to get feature space. A principal component analysis-based approach is employed to reduce the features dimension and then the classification is accomplished by a support vector machine (SVM). Offline analysis demonstrates the proposed multiband tangent space mapping with subband selection (MTSMS) approach outperforms state-of-the-art methods. It acheives the highest average classification accuracy for all datasets (BCI competition dataset 2a, IIIa, IIIb, and dataset JK-HH1). The increased classification accuracy of MI tasks with the proposed MTSMS approach can yield effective implementation of BCI. The mutual information-based subband selection method is implemented to tune operation frequency bands to represent actual motor imagery tasks.

  1. Intensity-corrected Herschel Observations of Nearby Isolated Low-mass Clouds

    NASA Astrophysics Data System (ADS)

    Sadavoy, Sarah I.; Keto, Eric; Bourke, Tyler L.; Dunham, Michael M.; Myers, Philip C.; Stephens, Ian W.; Di Francesco, James; Webb, Kristi; Stutz, Amelia M.; Launhardt, Ralf; Tobin, John J.

    2018-01-01

    We present intensity-corrected Herschel maps at 100, 160, 250, 350, and 500 μm for 56 isolated low-mass clouds. We determine the zero-point corrections for Herschel Photodetector Array Camera and Spectrometer (PACS) and Spectral Photometric Imaging Receiver (SPIRE) maps from the Herschel Science Archive (HSA) using Planck data. Since these HSA maps are small, we cannot correct them using typical methods. Here we introduce a technique to measure the zero-point corrections for small Herschel maps. We use radial profiles to identify offsets between the observed HSA intensities and the expected intensities from Planck. Most clouds have reliable offset measurements with this technique. In addition, we find that roughly half of the clouds have underestimated HSA-SPIRE intensities in their outer envelopes relative to Planck, even though the HSA-SPIRE maps were previously zero-point corrected. Using our technique, we produce corrected Herschel intensity maps for all 56 clouds and determine their line-of-sight average dust temperatures and optical depths from modified blackbody fits. The clouds have typical temperatures of ∼14–20 K and optical depths of ∼10‑5–10‑3. Across the whole sample, we find an anticorrelation between temperature and optical depth. We also find lower temperatures than what was measured in previous Herschel studies, which subtracted out a background level from their intensity maps to circumvent the zero-point correction. Accurate Herschel observations of clouds are key to obtaining accurate density and temperature profiles. To make such future analyses possible, intensity-corrected maps for all 56 clouds are publicly available in the electronic version. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  2. STS-59 MAPS experiment view

    NASA Image and Video Library

    1994-04-12

    STS059-S-040 (12 April 1994) --- STS-59's MAPS (Measurement of Air Pollution from Satellites) experiment is sending real-time data that provides the most comprehensive view of carbon monoxide concentrations on Earth ever recorded. This computer image shows a summary of "quick look" data obtained by the MAPS instrument during its first days of operations as part of the Space Shuttle Endeavour's SRL-1 payload. This data will be processed using more sophisticated techniques following the flight. The color red indicates areas with the highest levels of carbon monoxide. These Northern Hemisphere springtime carbon monoxide values are generally significantly higher than the values found in the Southern Hemisphere. This is in direct contrast to the data obtained by the MAPS experiment during November 1981 and October 1984, i.e. during Northern Hemisphere fall. The astronauts aboard Endeavour have seen fires in most of the areas showing higher carbon monoxide values (China, Eastern Australia, and equatorial Africa). The relationship between the observed fires and the higher carbon monoxide values will be investigated following SRL-1 by combining the MAPS data with meteorological data, surface imagery, and Space Shuttle hand-held photographs. By the end of SRL-1, MAPS will have acquired data over most of the globe between 57 degrees north and 57 degrees south latitudes. The entire data set will be carefully analyzed using sophisticated post-flight data processing techniques. The data will then be applied in a variety of scientific studies concerning chemistry and transport processes in the atmosphere. The MAPS experiment measures the carbon monoxide in the lower atmosphere. This gas is produced both as a result of natural processes and as a result of human activities. The primary human resources of carbon monoxide are automobiles and industry and the burning of plant materials. The primary natural source is the interaction of sunlight with naturally occurring ozone and water vapor. The strength of all of these sources changes seasonally.

  3. Investigation on iterative multiuser detection physical layer network coding in two-way relay free-space optical links with turbulences and pointing errors.

    PubMed

    Abu-Almaalie, Zina; Ghassemlooy, Zabih; Bhatnagar, Manav R; Le-Minh, Hoa; Aslam, Nauman; Liaw, Shien-Kuei; Lee, It Ee

    2016-11-20

    Physical layer network coding (PNC) improves the throughput in wireless networks by enabling two nodes to exchange information using a minimum number of time slots. The PNC technique is proposed for two-way relay channel free space optical (TWR-FSO) communications with the aim of maximizing the utilization of network resources. The multipair TWR-FSO is considered in this paper, where a single antenna on each pair seeks to communicate via a common receiver aperture at the relay. Therefore, chip interleaving is adopted as a technique to separate the different transmitted signals at the relay node to perform PNC mapping. Accordingly, this scheme relies on the iterative multiuser technique for detection of users at the receiver. The bit error rate (BER) performance of the proposed system is examined under the combined influences of atmospheric loss, turbulence-induced channel fading, and pointing errors (PEs). By adopting the joint PNC mapping with interleaving and multiuser detection techniques, the BER results show that the proposed scheme can achieve a significant performance improvement against the degrading effects of turbulences and PEs. It is also demonstrated that a larger number of simultaneous users can be supported with this new scheme in establishing a communication link between multiple pairs of nodes in two time slots, thereby improving the channel capacity.

  4. Three main paradigms of simultaneous localization and mapping (SLAM) problem

    NASA Astrophysics Data System (ADS)

    Imani, Vandad; Haataja, Keijo; Toivanen, Pekka

    2018-04-01

    Simultaneous Localization and Mapping (SLAM) is one of the most challenging research areas within computer and machine vision for automated scene commentary and explanation. The SLAM technique has been a developing research area in the robotics context during recent years. By utilizing the SLAM method robot can estimate the different positions of the robot at the distinct points of time which can indicate the trajectory of robot as well as generate a map of the environment. SLAM has unique traits which are estimating the location of robot and building a map in the various types of environment. SLAM is effective in different types of environment such as indoor, outdoor district, Air, Underwater, Underground and Space. Several approaches have been investigated to use SLAM technique in distinct environments. The purpose of this paper is to provide an accurate perceptive review of case history of SLAM relied on laser/ultrasonic sensors and camera as perception input data. In addition, we mainly focus on three paradigms of SLAM problem with all its pros and cons. In the future, use intelligent methods and some new idea will be used on visual SLAM to estimate the motion intelligent underwater robot and building a feature map of marine environment.

  5. Managing the space-time-load continuum in TMDL planning: a case study for understanding groundwaer loads through advanced mapping techniques

    Treesearch

    Phillip Harte; Marcel Belaval; Andrea Traviglia

    2016-01-01

    The lag time between groundwater recharge and discharge in a watershed and the potential groundwater load to streams is an important factor in forecasting responses to future land use practices. We call this concept managing the “space-time-load continuum.” It’s understood that in any given watershed, the response function (the load at any given time) will differ for...

  6. A constant altitude flight survey method for mapping atmospheric ambient pressures and systematic radar errors

    NASA Technical Reports Server (NTRS)

    Larson, T. J.; Ehernberger, L. J.

    1985-01-01

    The flight test technique described uses controlled survey runs to determine horizontal atmospheric pressure variations and systematic altitude errors that result from space positioning measurements. The survey data can be used not only for improved air data calibrations, but also for studies of atmospheric structure and space positioning accuracy performance. The examples presented cover a wide range of radar tracking conditions for both subsonic and supersonic flight to an altitude of 42,000 ft.

  7. Point pattern analysis of FIA data

    Treesearch

    Chris Woodall

    2002-01-01

    Point pattern analysis is a branch of spatial statistics that quantifies the spatial distribution of points in two-dimensional space. Point pattern analysis was conducted on stand stem-maps from FIA fixed-radius plots to explore point pattern analysis techniques and to determine the ability of pattern descriptions to describe stand attributes. Results indicate that the...

  8. Future of Space Astronomy: A Global Road Map for the Next Decades

    NASA Technical Reports Server (NTRS)

    Ubertini, Pietro; Gehrels, Neil; Corbett, Ian; DeBernardis, Paolo; Machado, Marcos; Griffin, Matt; Hauser, Michael; Manchanda, Ravinder K.; Kawai, Nobuyuki; Zhang, Shuang-Nan; hide

    2012-01-01

    The use of space techniques continues to play a key role in the advance of astrophysics by providing access to the entire electromagnetic spectrum from the radio observations to the high energy gamma rays. The increasing size, complexity and cost of large space observatories places a growing emphasis on international collaboration. Furthermore, combining existing and future datasets from space and ground based observatories is an emerging mode of powerful and relatively inexpensive research to address problems that can only be tackled by the application of large multi-wavelength observations. If the present set of space and ground-based astronomy facilities today is impressive and complete, with space and ground based astronomy telescopes nicely complementing each other, the situation becomes concerning and critical in the next 10-20 years. In fact, only a few main space missions are planned, possibly restricted to JWST and, perhaps, WFIRST and SPICA, since no other main facilities are already recommended. A "Working Group on the Future of Space Astronomy" was established at the 38th COSPAR Assembly held in Bremen, Germany in July 2010. The purpose of this Working Group was to establish a roadmap for future major space missions to complement future large ground-based telescopes. This paper presents the results of this study including a number of recommendations and a road map for the next decades of Space Astronomy research.

  9. Can single molecule localization microscopy be used to map closely spaced RGD nanodomains?

    PubMed Central

    Nicovich, Philip R.; Soeriyadi, Alexander; Nieves, Daniel J.; Gooding, J. Justin; Gaus, Katharina

    2017-01-01

    Cells sense and respond to nanoscale variations in the distribution of ligands to adhesion receptors. This makes single molecule localization microscopy (SMLM) an attractive tool to map the distribution of ligands on nanopatterned surfaces. We explore the use of SMLM spatial cluster analysis to detect nanodomains of the cell adhesion-stimulating tripeptide arginine-glycine-aspartic acid (RGD). These domains were formed by the phase separation of block copolymers with controllable spacing on the scale of tens of nanometers. We first determined the topology of the block copolymer with atomic force microscopy (AFM) and then imaged the localization of individual RGD peptides with direct stochastic optical reconstruction microscopy (dSTORM). To compare the data, we analyzed the dSTORM data with DBSCAN (density-based spatial clustering application with noise). The ligand distribution and polymer topology are not necessary identical since peptides may attach to the polymer outside the nanodomains and/or coupling and detection of peptides within the nanodomains is incomplete. We therefore performed simulations to explore the extent to which nanodomains could be mapped with dSTORM. We found that successful detection of nanodomains by dSTORM was influenced by the inter-domain spacing and the localization precision of individual fluorophores, and less by non-specific absorption of ligands to the substratum. For example, under our imaging conditions, DBSCAN identification of nanodomains spaced further than 50 nm apart was largely independent of background localisations, while nanodomains spaced closer than 50 nm required a localization precision of ~11 nm to correctly estimate the modal nearest neighbor distance (NDD) between nanodomains. We therefore conclude that SMLM is a promising technique to directly map the distribution and nanoscale organization of ligands and would benefit from an improved localization precision. PMID:28723958

  10. Structured codebook design in CELP

    NASA Technical Reports Server (NTRS)

    Leblanc, W. P.; Mahmoud, S. A.

    1990-01-01

    Codebook Excited Linear Protection (CELP) is a popular analysis by synthesis technique for quantizing speech at bit rates from 4 to 6 kbps. Codebook design techniques to date have been largely based on either random (often Gaussian) codebooks, or on known binary or ternary codes which efficiently map the space of (assumed white) excitation codevectors. It has been shown that by introducing symmetries into the codebook, good complexity reduction can be realized with only marginal decrease in performance. Codebook design algorithms are considered for a wide range of structured codebooks.

  11. Social space, social class and Bourdieu: health inequalities in British Columbia, Canada.

    PubMed

    Veenstra, Gerry

    2007-03-01

    This article adopts Pierre Bourdieu's cultural-structuralist approach to conceptualizing and identifying social classes in social space and seeks to identify health effects of class in one Canadian province. Utilizing data from an original questionnaire survey of randomly selected adults from 25 communities in British Columbia, social (class) groupings defined by cultural tastes and dispositions, lifestyle practices, social background, educational capital, economic capital, social capital and occupational categories are presented in visual mappings of social space constructed by use of exploratory multiple correspondence analysis techniques. Indicators of physical and mental health are then situated within this social space, enabling speculations pertaining to health effects of social class in British Columbia.

  12. Ionospheric research for space weather service support

    NASA Astrophysics Data System (ADS)

    Stanislawska, Iwona; Gulyaeva, Tamara; Dziak-Jankowska, Beata

    2016-07-01

    Knowledge of the behavior of the ionosphere is very important for space weather services. A wide variety of ground based and satellite existing and future systems (communications, radar, surveillance, intelligence gathering, satellite operation, etc) is affected by the ionosphere. There are the needs for reliable and efficient support for such systems against natural hazard and minimalization of the risk failure. The joint research Project on the 'Ionospheric Weather' of IZMIRAN and SRC PAS is aimed to provide on-line the ionospheric parameters characterizing the space weather in the ionosphere. It is devoted to science, techniques and to more application oriented areas of ionospheric investigation in order to support space weather services. The studies based on data mining philosophy increasing the knowledge of ionospheric physical properties, modelling capabilities and gain applications of various procedures in ionospheric monitoring and forecasting were concerned. In the framework of the joint Project the novel techniques for data analysis, the original system of the ionospheric disturbance indices and their implementation for the ionosphere and the ionospheric radio wave propagation are developed since 1997. Data of ionosonde measurements and results of their forecasting for the ionospheric observatories network, the regional maps and global ionospheric maps of total electron content from the navigational satellite system (GNSS) observations, the global maps of the F2 layer peak parameters (foF2, hmF2) and W-index of the ionospheric variability are provided at the web pages of SRC PAS and IZMIRAN. The data processing systems include analysis and forecast of geomagnetic indices ap and kp and new eta index applied for the ionosphere forecasting. For the first time in the world the new products of the W-index maps analysis are provided in Catalogues of the ionospheric storms and sub-storms and their association with the global geomagnetic Dst storms is investigated. The products of the Project web sites at http://www.cbk.waw.pl/rwc and http://www.izmiran.ru/services/iweather are widely used in scientific investigations and numerous applications by the telecommunication and navigation operators and users whose number at the web sites is growing substantially from month to month.

  13. On the derivation of coseismic displacement fields using differential radar interferometry: The Landers earthquake

    NASA Technical Reports Server (NTRS)

    Zebker, Howard A.; Rosen, Paul A.; Goldstein, Richard M.; Gabriel, Andrew; Werner, Charles L.

    1994-01-01

    We present a map of the coseimic displacement field resulting from the Landers, California, June 28, 1992, earthquake derived using data acquired from an orbiting high-resolution radar system. We achieve results more accurate than previous space studies and similar in accuracy to those obtained by conventional field survey techniques. Data from the ERS 1 synthetic aperture radar instrument acquired in April, July, and August 1992 are used to generate a high-resolution, wide area map of the displacements. The data represent the motion in the direction of the radar line of sight to centimeter level precision of each 30-m resolution element in a 113 km by 90 km image. Our coseismic displacement contour map gives a lobed pattern consistent with theoretical models of the displacement field from the earthquake. Fine structure observed as displacement tiling in regions several kilometers from the fault appears to be the result of local surface fracturing. Comparison of these data with Global Positioning System and electronic distance measurement survey data yield a correlation of 0.96; thus the radar measurements are a means to extend the point measurements acquired by traditional techniques to an area map format. The technique we use is (1) more automatic, (2) more precise, and (3) better validated than previous similar applications of differential radar interferometry. Since we require only remotely sensed satellite data with no additioanl requirements for ancillary information. the technique is well suited for global seismic monitoring and analysis.

  14. Spatial analysis of plutonium-239 + 240 and Americium-241 in soils around Rocky Flats, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litaor, M.I.

    1995-05-01

    Plutonium and american contamination of soils around Rocky Flats, Colorado resulted from past outdoor storage practices. Four previous studies produce four different Pu isopleth maps. Spatial estimation techniques were not used in the construction of these maps and were also based on an extremely small number of soil samples. The purpose of this study was to elucidate the magnitude of Pu-239 + 240 and Am-241 dispersion in the soil environment east of Rocky Flats using robust spatial estimation techniques. Soils were sampled from 118 plots of 1.01 and 4.05 ha by compositing 25 evenly spaced samples in each plot frommore » the top 0.64 cm. Plutonium-239 + 240 activity ranged from 1.85 to 53 560 Bq/kg with a mean of 1924 Bq/kg and a standard deviation of 6327 Bq/kg. Americium-241 activity ranged from 0.18 to 9990 Bq/kg with a mean of 321 Bq/kg and a standard deviation of 1143 Bq/kg. Geostatistical techniques were used to model the spatial dependency and construct isopleth maps showing Pu-239 + 240 and Am-241 distribution. The isopleth configuration was consistent with the hypothesis that the dominant dispersal mechanism of Pu-239 + 240 was wind dispersion from west to east. The Pu-239 + 240 isopleth map proposed to this study differed significantly in the direction and distance of dispersal from the previously published maps. This ispleth map as well as the Am-241 map should be used as the primary data for future risk assessment associated with public exposure to Pu-239 + 240 and Am-241. 37 refs., 7 figs., 2 tabs.« less

  15. Optical smart packaging to reduce transmitted information.

    PubMed

    Cabezas, Luisa; Tebaldi, Myrian; Barrera, John Fredy; Bolognini, Néstor; Torroba, Roberto

    2012-01-02

    We demonstrate a smart image-packaging optical technique that uses what we believe is a new concept to save byte space when transmitting data. The technique supports a large set of images mapped into modulated speckle patterns. Then, they are multiplexed into a single package. This operation results in a substantial decreasing of the final amount of bytes of the package with respect to the amount resulting from the addition of the images without using the method. Besides, there are no requirements on the type of images to be processed. We present results that proof the potentiality of the technique.

  16. High-dynamic range imaging techniques based on both color-separation algorithms used in conventional graphic arts and the human visual perception modeling

    NASA Astrophysics Data System (ADS)

    Lo, Mei-Chun; Hsieh, Tsung-Hsien; Perng, Ruey-Kuen; Chen, Jiong-Qiao

    2010-01-01

    The aim of this research is to derive illuminant-independent type of HDR imaging modules which can optimally multispectrally reconstruct of every color concerned in high-dynamic-range of original images for preferable cross-media color reproduction applications. Each module, based on either of broadband and multispectral approach, would be incorporated models of perceptual HDR tone-mapping, device characterization. In this study, an xvYCC format of HDR digital camera was used to capture HDR scene images for test. A tone-mapping module was derived based on a multiscale representation of the human visual system and used equations similar to a photoreceptor adaptation equation, proposed by Michaelis-Menten. Additionally, an adaptive bilateral type of gamut mapping algorithm, using approach of a multiple conversing-points (previously derived), was incorporated with or without adaptive Un-sharp Masking (USM) to carry out the optimization of HDR image rendering. An LCD with standard color space of Adobe RGB (D65) was used as a soft-proofing platform to display/represent HDR original RGB images, and also evaluate both renditionquality and prediction-performance of modules derived. Also, another LCD with standard color space of sRGB was used to test gamut-mapping algorithms, used to be integrated with tone-mapping module derived.

  17. Off-resonance artifacts correction with convolution in k-space (ORACLE).

    PubMed

    Lin, Wei; Huang, Feng; Simonotto, Enrico; Duensing, George R; Reykowski, Arne

    2012-06-01

    Off-resonance artifacts hinder the wider applicability of echo-planar imaging and non-Cartesian MRI methods such as radial and spiral. In this work, a general and rapid method is proposed for off-resonance artifacts correction based on data convolution in k-space. The acquired k-space is divided into multiple segments based on their acquisition times. Off-resonance-induced artifact within each segment is removed by applying a convolution kernel, which is the Fourier transform of an off-resonance correcting spatial phase modulation term. The field map is determined from the inverse Fourier transform of a basis kernel, which is calibrated from data fitting in k-space. The technique was demonstrated in phantom and in vivo studies for radial, spiral and echo-planar imaging datasets. For radial acquisitions, the proposed method allows the self-calibration of the field map from the imaging data, when an alternating view-angle ordering scheme is used. An additional advantage for off-resonance artifacts correction based on data convolution in k-space is the reusability of convolution kernels to images acquired with the same sequence but different contrasts. Copyright © 2011 Wiley-Liss, Inc.

  18. Interactomes to Biological Phase Space: a call to begin thinking at a new level in computational biology.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, George S.; Brown, William Michael

    2007-09-01

    Techniques for high throughput determinations of interactomes, together with high resolution protein collocalizations maps within organelles and through membranes will soon create a vast resource. With these data, biological descriptions, akin to the high dimensional phase spaces familiar to physicists, will become possible. These descriptions will capture sufficient information to make possible realistic, system-level models of cells. The descriptions and the computational models they enable will require powerful computing techniques. This report is offered as a call to the computational biology community to begin thinking at this scale and as a challenge to develop the required algorithms and codes tomore » make use of the new data.3« less

  19. Shuttle Radar Topography Mission (SRTM)

    USGS Publications Warehouse

    ,

    2003-01-01

    Under an agreement with the National Aeronautics and Space Administration (NASA) and the Department of Defense's National Imagery and Mapping Agency (NIMA), the U.S. Geological Survey (USGS) is now distributing elevation data from the Shuttle Radar Topography Mission (SRTM). The SRTM is a joint project between NASA and NIMA to map the Earth's land surface in three dimensions at a level of detail unprecedented for such a large area. Flown aboard the NASA Space Shuttle Endeavour February 11-22, 2000, the SRTM successfully collected data over 80 percent of the Earth's land surface, for most of the area between 60? N. and 56? S. latitude. The SRTM hardware included the Spaceborne Imaging Radar-C (SIR-C) and X-band Synthetic Aperture Radar (X-SAR) systems that had flown twice previously on other space shuttle missions. The SRTM data were collected specifically with a technique known as interferometry that allows image data from dual radar antennas to be processed for the extraction of ground heights.

  20. Evaluating methods for controlling depth perception in stereoscopic cinematography

    NASA Astrophysics Data System (ADS)

    Sun, Geng; Holliman, Nick

    2009-02-01

    Existing stereoscopic imaging algorithms can create static stereoscopic images with perceived depth control function to ensure a compelling 3D viewing experience without visual discomfort. However, current algorithms do not normally support standard Cinematic Storytelling techniques. These techniques, such as object movement, camera motion, and zooming, can result in dynamic scene depth change within and between a series of frames (shots) in stereoscopic cinematography. In this study, we empirically evaluate the following three types of stereoscopic imaging approaches that aim to address this problem. (1) Real-Eye Configuration: set camera separation equal to the nominal human eye interpupillary distance. The perceived depth on the display is identical to the scene depth without any distortion. (2) Mapping Algorithm: map the scene depth to a predefined range on the display to avoid excessive perceived depth. A new method that dynamically adjusts the depth mapping from scene space to display space is presented in addition to an existing fixed depth mapping method. (3) Depth of Field Simulation: apply Depth of Field (DOF) blur effect to stereoscopic images. Only objects that are inside the DOF are viewed in full sharpness. Objects that are far away from the focus plane are blurred. We performed a human-based trial using the ITU-R BT.500-11 Recommendation to compare the depth quality of stereoscopic video sequences generated by the above-mentioned imaging methods. Our results indicate that viewers' practical 3D viewing volumes are different for individual stereoscopic displays and viewers can cope with much larger perceived depth range in viewing stereoscopic cinematography in comparison to static stereoscopic images. Our new dynamic depth mapping method does have an advantage over the fixed depth mapping method in controlling stereo depth perception. The DOF blur effect does not provide the expected improvement for perceived depth quality control in 3D cinematography. We anticipate the results will be of particular interest to 3D filmmaking and real time computer games.

  1. Remote sensing techniques to assess active fire characteristics and post-fire effects

    Treesearch

    Leigh B. Lentile; Zachary A. Holden; Alistair M. S. Smith; Michael J. Falkowski; Andrew T. Hudak; Penelope Morgan; Sarah A. Lewis; Paul E. Gessler; Nate C. Benson

    2006-01-01

    Space and airborne sensors have been used to map area burned, assess characteristics of active fires, and characterize post-fire ecological effects. Confusion about fire intensity, fire severity, burn severity, and related terms can result in the potential misuse of the inferred information by land managers and remote sensing practitioners who require unambiguous...

  2. Microscale and nanoscale strain mapping techniques applied to creep of rocks

    NASA Astrophysics Data System (ADS)

    Quintanilla-Terminel, Alejandra; Zimmerman, Mark E.; Evans, Brian; Kohlstedt, David L.

    2017-07-01

    Usually several deformation mechanisms interact to accommodate plastic deformation. Quantifying the contribution of each to the total strain is necessary to bridge the gaps from observations of microstructures, to geomechanical descriptions, to extrapolating from laboratory data to field observations. Here, we describe the experimental and computational techniques involved in microscale strain mapping (MSSM), which allows strain produced during high-pressure, high-temperature deformation experiments to be tracked with high resolution. MSSM relies on the analysis of the relative displacement of initially regularly spaced markers after deformation. We present two lithography techniques used to pattern rock substrates at different scales: photolithography and electron-beam lithography. Further, we discuss the challenges of applying the MSSM technique to samples used in high-temperature and high-pressure experiments. We applied the MSSM technique to a study of strain partitioning during creep of Carrara marble and grain boundary sliding in San Carlos olivine, synthetic forsterite, and Solnhofen limestone at a confining pressure, Pc, of 300 MPa and homologous temperatures, T/Tm, of 0.3 to 0.6. The MSSM technique works very well up to temperatures of 700 °C. The experimental developments described here show promising results for higher-temperature applications.

  3. Integrating spatially explicit representations of landscape perceptions into land change research

    USGS Publications Warehouse

    Dorning, Monica; Van Berkel, Derek B.; Semmens, Darius J.

    2017-01-01

    Purpose of ReviewHuman perceptions of the landscape can influence land-use and land-management decisions. Recognizing the diversity of landscape perceptions across space and time is essential to understanding land change processes and emergent landscape patterns. We summarize the role of landscape perceptions in the land change process, demonstrate advances in quantifying and mapping landscape perceptions, and describe how these spatially explicit techniques have and may benefit land change research.Recent FindingsMapping landscape perceptions is becoming increasingly common, particularly in research focused on quantifying ecosystem services provision. Spatial representations of landscape perceptions, often measured in terms of landscape values and functions, provide an avenue for matching social and environmental data in land change studies. Integrating these data can provide new insights into land change processes, contribute to landscape planning strategies, and guide the design and implementation of land change models.SummaryChallenges remain in creating spatial representations of human perceptions. Maps must be accompanied by descriptions of whose perceptions are being represented and the validity and uncertainty of those representations across space. With these considerations, rapid advancements in mapping landscape perceptions hold great promise for improving representation of human dimensions in landscape ecology and land change research.

  4. Characterization of SiGe thin films using a laboratory X-ray instrument

    PubMed Central

    Ulyanenkova, Tatjana; Myronov, Maksym; Benediktovitch, Andrei; Mikhalychev, Alexander; Halpin, John; Ulyanenkov, Alex

    2013-01-01

    The technique of reciprocal space mapping using X-rays is a recognized tool for the nondestructive characterization of epitaxial films. X-ray scattering from epitaxial Si0.4Ge0.6 films on Si(100) substrates using a laboratory X-ray source was investigated. It is shown that a laboratory source with a rotating anode makes it possible to investigate the material parameters of the super-thin 2–6 nm layers. For another set of partially relaxed layers, 50–200 nm thick, it is shown that from a high-resolution reciprocal space map, conditioned from diffuse scattering on dislocations, it is possible to determine quantitatively from the shape of a diffraction peak (possessing no thickness fringes) additional parameters such as misfit dislocation density and layer thickness as well as concentration and relaxation. PMID:24046495

  5. Characterization of SiGe thin films using a laboratory X-ray instrument.

    PubMed

    Ulyanenkova, Tatjana; Myronov, Maksym; Benediktovitch, Andrei; Mikhalychev, Alexander; Halpin, John; Ulyanenkov, Alex

    2013-08-01

    The technique of reciprocal space mapping using X-rays is a recognized tool for the nondestructive characterization of epitaxial films. X-ray scattering from epitaxial Si 0.4 Ge 0.6 films on Si(100) substrates using a laboratory X-ray source was investigated. It is shown that a laboratory source with a rotating anode makes it possible to investigate the material parameters of the super-thin 2-6 nm layers. For another set of partially relaxed layers, 50-200 nm thick, it is shown that from a high-resolution reciprocal space map, conditioned from diffuse scattering on dislocations, it is possible to determine quantitatively from the shape of a diffraction peak (possessing no thickness fringes) additional parameters such as misfit dislocation density and layer thickness as well as concentration and relaxation.

  6. Measuring human-induced land subsidence from space

    USGS Publications Warehouse

    Bawden, Gerald W.; Sneed, M.; Stork, S.V.; Galloway, D.L.

    2003-01-01

    Satellite Interferometric Synthetic Aperture Radar (InSAR) is a revolutionary technique that allows scientists to measure and map changes on the Earth's surface as small as a few millimeters. By bouncing radar signals off the ground surface from the same point in space but at different times, the radar satellite can measure the change in distance between the satellite and ground (range change) as the land surface uplifts or subsides. Maps of relative ground-surface change (interferograms) are constructed from the InSAR data to help scientists understand how ground-water pumping, hydrocarbon production, or other human activities cause the land surface to uplift or subside. Interferograms developed by the USGS for study areas in California, Nevada, and Texas are used in this fact sheet to demonstrate some of the applications of InSAR to assess human-induced land deformation

  7. Fixed point theorems for generalized α -β-weakly contraction mappings in metric spaces and applications.

    PubMed

    Latif, Abdul; Mongkolkeha, Chirasak; Sintunavarat, Wutiphol

    2014-01-01

    We extend the notion of generalized weakly contraction mappings due to Choudhury et al. (2011) to generalized α-β-weakly contraction mappings. We show with examples that our new class of mappings is a real generalization of several known classes of mappings. We also establish fixed point results for such mappings in metric spaces. Applying our new results, we obtain fixed point results on ordinary metric spaces, metric spaces endowed with an arbitrary binary relation, and metric spaces endowed with graph.

  8. Analysis of building deformation in landslide area using multisensor PSInSAR™ technique.

    PubMed

    Ciampalini, Andrea; Bardi, Federica; Bianchini, Silvia; Frodella, William; Del Ventisette, Chiara; Moretti, Sandro; Casagli, Nicola

    2014-12-01

    Buildings are sensitive to movements caused by ground deformation. The mapping both of spatial and temporal distribution, and of the degree of building damages represents a useful tool in order to understand the landslide evolution, magnitude and stress distribution. The high spatial resolution of space-borne SAR interferometry can be used to monitor displacements related to building deformations. In particular, PSInSAR technique is used to map and monitor ground deformation with millimeter accuracy. The usefulness of the above mentioned methods was evaluated in San Fratello municipality (Sicily, Italy), which was historically affected by landslides: the most recent one occurred on 14th February 2010. PSInSAR data collected by ERS 1/2, ENVISAT, RADARSAT-1 were used to study the building deformation velocities before the 2010 landslide. The X-band sensors COSMO-SkyMed and TerraSAR-X were used in order to monitor the building deformation after this event. During 2013, after accurate field inspection on buildings and structures, damage assessment map of San Fratello were created and then compared to the building deformation velocity maps. The most interesting results were obtained by the comparison between the building deformation velocity map obtained through COSMO-SkyMed and the damage assessment map. This approach can be profitably used by local and Civil Protection Authorities to manage the post-event phase and evaluate the residual risks.

  9. Improving 3d Spatial Queries Search: Newfangled Technique of Space Filling Curves in 3d City Modeling

    NASA Astrophysics Data System (ADS)

    Uznir, U.; Anton, F.; Suhaibah, A.; Rahman, A. A.; Mioc, D.

    2013-09-01

    The advantages of three dimensional (3D) city models can be seen in various applications including photogrammetry, urban and regional planning, computer games, etc.. They expand the visualization and analysis capabilities of Geographic Information Systems on cities, and they can be developed using web standards. However, these 3D city models consume much more storage compared to two dimensional (2D) spatial data. They involve extra geometrical and topological information together with semantic data. Without a proper spatial data clustering method and its corresponding spatial data access method, retrieving portions of and especially searching these 3D city models, will not be done optimally. Even though current developments are based on an open data model allotted by the Open Geospatial Consortium (OGC) called CityGML, its XML-based structure makes it challenging to cluster the 3D urban objects. In this research, we propose an opponent data constellation technique of space-filling curves (3D Hilbert curves) for 3D city model data representation. Unlike previous methods, that try to project 3D or n-dimensional data down to 2D or 3D using Principal Component Analysis (PCA) or Hilbert mappings, in this research, we extend the Hilbert space-filling curve to one higher dimension for 3D city model data implementations. The query performance was tested using a CityGML dataset of 1,000 building blocks and the results are presented in this paper. The advantages of implementing space-filling curves in 3D city modeling will improve data retrieval time by means of optimized 3D adjacency, nearest neighbor information and 3D indexing. The Hilbert mapping, which maps a subinterval of the [0, 1] interval to the corresponding portion of the d-dimensional Hilbert's curve, preserves the Lebesgue measure and is Lipschitz continuous. Depending on the applications, several alternatives are possible in order to cluster spatial data together in the third dimension compared to its clustering in 2D.

  10. Quantum-field-theoretical approach to phase–space techniques: Symmetric Wick theorem and multitime Wigner representation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plimak, L.I., E-mail: Lev.Plimak@mbi-berlin.de; Olsen, M.K.

    2014-12-15

    In this work we present the formal background used to develop the methods used in earlier works to extend the truncated Wigner representation of quantum and atom optics in order to address multi-time problems. Analogs of Wick’s theorem for the Weyl ordering are verified. Using the Bose–Hubbard chain as an example, we show how these may be applied to constructing a mapping of the system in question to phase space. Regularisation issues and the reordering problem for the Heisenberg operators are addressed.

  11. The data array, a tool to interface the user to a large data base

    NASA Technical Reports Server (NTRS)

    Foster, G. H.

    1974-01-01

    Aspects of the processing of spacecraft data is considered. Use of the data array in a large address space as an intermediate form in data processing for a large scientific data base is advocated. Techniques for efficient indexing in data arrays are reviewed and the data array method for mapping an arbitrary structure onto linear address space is shown. A compromise between the two forms is given. The impact of the data array on the user interface are considered along with implementation.

  12. Interior point techniques for LP and NLP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evtushenko, Y.

    By using surjective mapping the initial constrained optimization problem is transformed to a problem in a new space with only equality constraints. For the numerical solution of the latter problem we use the generalized gradient-projection method and Newton`s method. After inverse transformation to the initial space we obtain the family of numerical methods for solving optimization problems with equality and inequality constraints. In the linear programming case after some simplification we obtain Dikin`s algorithm, affine scaling algorithm and generalized primal dual interior point linear programming algorithm.

  13. Use of digital Munsell color space to assist interretation of imaging spectrometer data: Geologic examples from the northern Grapevine Mountains, California and Nevada

    NASA Technical Reports Server (NTRS)

    Kruse, F. A.; Knepper, D. H., Jr.; Clark, R. N.

    1986-01-01

    Techniques using Munsell color transformations were developed for reducing 128 channels (or less) of Airborne Imaging Spectrometer (AIS) data to a single color-composite-image suitable for both visual interpretation and digital analysis. Using AIS data acquired in 1984 and 1985, limestone and dolomite roof pendants and sericite-illite and other clay minerals related to alteration were mapped in a quartz monzonite stock in the northern Grapevine Mountains of California and Nevada. Field studies and laboratory spectral measurements verify the mineralogical distributions mapped from the AIS data.

  14. Characterizing Non-Uniformity of Performance of Thin-Film Solar Cells

    NASA Technical Reports Server (NTRS)

    Clark, Eric B. (Technical Monitor); Lush, Gregory B.

    2003-01-01

    Thin-film Solar Cells are being actively studied for terrestrial and space applications because of their potential to provide low-cost, lightweight, and flexible electric power system. Currently, thin-film solar cell performance is limited partially by the nonuniformity of performance that they typically exhibit. This nonuniformity of performance necessitates more detailed characterization techniques than the well-known macroscopic measurements such as current-voltage and efficiency. This project seeks to explore methods of characterization that take into account the spatial nonuniformity of thin-film solar cells. In this presentation we show results of electroluminescence images, short-circuit maps, and Kelvin Probe maps. All these mapping characterization and analysis tools show that the non-uniformities can correlated with device performance and efficiency.

  15. Finding Out Critical Points For Real-Time Path Planning

    NASA Astrophysics Data System (ADS)

    Chen, Wei

    1989-03-01

    Path planning for a mobile robot is a classic topic, but the path planning under real-time environment is a different issue. The system sources including sampling time, processing time, processes communicating time, and memory space are very limited for this type of application. This paper presents a method which abstracts the world representation from the sensory data and makes the decision as to which point will be a potentially critical point to span the world map by using incomplete knowledge about physical world and heuristic rule. Without any previous knowledge or map of the workspace, the robot will determine the world map by roving through the workspace. The computational complexity for building and searching such a map is not more than O( n2 ) The find-path problem is well-known in robotics. Given an object with an initial location and orientation, a goal location and orientation, and a set of obstacles located in space, the problem is to find a continuous path for the object from the initial position to the goal position which avoids collisions with obstacles along the way. There are a lot of methods to find a collision-free path in given environment. Techniques for solving this problem can be classified into three approaches: 1) the configuration space approach [1],[2],[3] which represents the polygonal obstacles by vertices in a graph. The idea is to determine those parts of the free space which a reference point of the moving object can occupy without colliding with any obstacles. A path is then found for the reference point through this truly free space. Dealing with rotations turns out to be a major difficulty with the approach, requiring complex geometric algorithms which are computationally expensive. 2) the direct representation of the free space using basic shape primitives such as convex polygons [4] and overlapping generalized cones [5]. 3) the combination of technique 1 and 2 [6] by which the space is divided into the primary convex region, overlap region and obstacle region, then obstacle boundaries with attribute values are represented by the vertices of the hypergraph. The primary convex region and overlap region are represented by hyperedges, the centroids of overlap form the critical points. The difficulty is generating segment graph and estimating of minimum path width. The all techniques mentioned above need previous knowledge about the world to make path planning and the computational cost is not low. They are not available in an unknow and uncertain environment. Due to limited system resources such as CPU time, memory size and knowledge about the special application in an intelligent system (such as mobile robot), it is necessary to use algorithms that provide the good decision which is feasible with the available resources in real time rather than the best answer that could be achieved in unlimited time with unlimited resources. A real-time path planner should meet following requirements: - Quickly abstract the representation of the world from the sensory data without any previous knowledge about the robot environment. - Easily update the world model to spell out the global-path map and to reflect changes in the robot environment. - Must make a decision of where the robot must go and which direction the range sensor should point to in real time with limited resources. The method presented here assumes that the data from range sensors has been processed by signal process unite. The path planner will guide the scan of range sensor, find critical points, make decision where the robot should go and which point is poten- tial critical point, generate the path map and monitor the robot moves to the given point. The program runs recursively until the goal is reached or the whole workspace is roved through.

  16. Efficient implementation of real-time programs under the VAX/VMS operating system

    NASA Technical Reports Server (NTRS)

    Johnson, S. C.

    1985-01-01

    Techniques for writing efficient real-time programs under the VAX/VMS oprating system are presented. Basic operations are presented for executing at real-time priority and for avoiding needlless processing delays. A highly efficient technique for accessing physical devices by mapping to the input/output space and accessing the device registrs directly is described. To illustrate the application of the technique, examples are included of different uses of the technique on three devices in the Langley Avionics Integration Research Lab (AIRLAB): the KW11-K dual programmable real-time clock, the Parallel Communications Link (PCL11-B) communication system, and the Datacom Synchronization Network. Timing data are included to demonstrate the performance improvements realized with these applications of the technique.

  17. Exploiting Synthetic Aperture Radar data to map and observe landslides

    NASA Astrophysics Data System (ADS)

    Bekaert, D. P.; Agram, P. S.; Fattahi, H.; Kirschbaum, D.; Amatya, P. M.; Stanley, T.

    2017-12-01

    Synthetic Aperture Radar instruments onboard satellites or airborne platforms are a powerful means to study landslides. How to best exploit the data and which techniques to apply strongly depend on the region of study and the landslide type which occurs. The amount of vegetation, snowfall, and steepness of the terrain, as well the shadowing effects of the mountain will determine if SAR is suitable to map a given landslide. Fast moving landslides occurring over a large area (e.g. >100 m) could benefit from pixel or feature tracking, while for slower moving landslides Interferometric SAR could be a more favorable approach. However, neither of those methods would work for critical landslide failures which do not preserve surface features. This type of slides would benefit from a change detection approach. Here we look at these three different cases and utilize Sentinel-1 space-borne SAR data and state-of-the-art processing techniques to map multiple landslides along the California State Route 1 and the Trishuli highway in the Langtang valley of Nepal. Our findings correlate with existing landslide catalogues and also identify landslides in regions earlier mapped to be dormant.

  18. Comparison of spectral radiance responsivity calibration techniques used for backscatter ultraviolet satellite instruments

    NASA Astrophysics Data System (ADS)

    Kowalewski, M. G.; Janz, S. J.

    2015-02-01

    Methods of absolute radiometric calibration of backscatter ultraviolet (BUV) satellite instruments are compared as part of an effort to minimize pre-launch calibration uncertainties. An internally illuminated integrating sphere source has been used for the Shuttle Solar BUV, Total Ozone Mapping Spectrometer, Ozone Mapping Instrument, and Global Ozone Monitoring Experiment 2 using standardized procedures traceable to national standards. These sphere-based spectral responsivities agree to within the derived combined standard uncertainty of 1.87% relative to calibrations performed using an external diffuser illuminated by standard irradiance sources, the customary spectral radiance responsivity calibration method for BUV instruments. The combined standard uncertainty for these calibration techniques as implemented at the NASA Goddard Space Flight Center’s Radiometric Calibration and Development Laboratory is shown to less than 2% at 250 nm when using a single traceable calibration standard.

  19. Task planning and control synthesis for robotic manipulation in space applications

    NASA Technical Reports Server (NTRS)

    Sanderson, A. C.; Peshkin, M. A.; Homem-De-mello, L. S.

    1987-01-01

    Space-based robotic systems for diagnosis, repair and assembly of systems will require new techniques of planning and manipulation to accomplish these complex tasks. Results of work in assembly task representation, discrete task planning, and control synthesis which provide a design environment for flexible assembly systems in manufacturing applications, and which extend to planning of manipulatiuon operations in unstructured environments are summarized. Assembly planning is carried out using the AND/OR graph representation which encompasses all possible partial orders of operations and may be used to plan assembly sequences. Discrete task planning uses the configuration map which facilitates search over a space of discrete operations parameters in sequential operations in order to achieve required goals in the space of bounded configuration sets.

  20. Response Surface Methods for Spatially-Resolved Optical Measurement Techniques

    NASA Technical Reports Server (NTRS)

    Danehy, P. M.; Dorrington, A. A.; Cutler, A. D.; DeLoach, R.

    2003-01-01

    Response surface methods (or methodology), RSM, have been applied to improve data quality for two vastly different spatial ly-re solved optical measurement techniques. In the first application, modern design of experiments (MDOE) methods, including RSM, are employed to map the temperature field in a direct-connect supersonic combustion test facility at NASA Langley Research Center. The laser-based measurement technique known as coherent anti-Stokes Raman spectroscopy (CARS) is used to measure temperature at various locations in the combustor. RSM is then used to develop temperature maps of the flow. Even though the temperature fluctuations at a single point in the flowfield have a standard deviation on the order of 300 K, RSM provides analytic fits to the data having 95% confidence interval half width uncertainties in the fit as low as +/-30 K. Methods of optimizing future CARS experiments are explored. The second application of RSM is to quantify the shape of a 5-meter diameter, ultra-light, inflatable space antenna at NASA Langley Research Center.

  1. Growing a hypercubical output space in a self-organizing feature map.

    PubMed

    Bauer, H U; Villmann, T

    1997-01-01

    Neural maps project data from an input space onto a neuron position in a (often lower dimensional) output space grid in a neighborhood preserving way, with neighboring neurons in the output space responding to neighboring data points in the input space. A map-learning algorithm can achieve an optimal neighborhood preservation only, if the output space topology roughly matches the effective structure of the data in the input space. We here present a growth algorithm, called the GSOM or growing self-organizing map, which enhances a widespread map self-organization process, Kohonen's self-organizing feature map (SOFM), by an adaptation of the output space grid during learning. The GSOM restricts the output space structure to the shape of a general hypercubical shape, with the overall dimensionality of the grid and its extensions along the different directions being subject of the adaptation. This constraint meets the demands of many larger information processing systems, of which the neural map can be a part. We apply our GSOM-algorithm to three examples, two of which involve real world data. Using recently developed methods for measuring the degree of neighborhood preservation in neural maps, we find the GSOM-algorithm to produce maps which preserve neighborhoods in a nearly optimal fashion.

  2. Universal sequence map (USM) of arbitrary discrete sequences

    PubMed Central

    2002-01-01

    Background For over a decade the idea of representing biological sequences in a continuous coordinate space has maintained its appeal but not been fully realized. The basic idea is that any sequence of symbols may define trajectories in the continuous space conserving all its statistical properties. Ideally, such a representation would allow scale independent sequence analysis – without the context of fixed memory length. A simple example would consist on being able to infer the homology between two sequences solely by comparing the coordinates of any two homologous units. Results We have successfully identified such an iterative function for bijective mappingψ of discrete sequences into objects of continuous state space that enable scale-independent sequence analysis. The technique, named Universal Sequence Mapping (USM), is applicable to sequences with an arbitrary length and arbitrary number of unique units and generates a representation where map distance estimates sequence similarity. The novel USM procedure is based on earlier work by these and other authors on the properties of Chaos Game Representation (CGR). The latter enables the representation of 4 unit type sequences (like DNA) as an order free Markov Chain transition table. The properties of USM are illustrated with test data and can be verified for other data by using the accompanying web-based tool:http://bioinformatics.musc.edu/~jonas/usm/. Conclusions USM is shown to enable a statistical mechanics approach to sequence analysis. The scale independent representation frees sequence analysis from the need to assume a memory length in the investigation of syntactic rules. PMID:11895567

  3. Planning a Master's Level Curriculum According to Career Space Recommendations Using Concept Mapping Techniques

    ERIC Educational Resources Information Center

    Toral Marin, Sergio L.; Martineztorres, Rocio; Barrero Garcia, Federico J.; Vazquez, Sergio Gallardo; Vargas, Enrique; Ayala, Vicente Gonzalez

    2006-01-01

    Nowadays the European Universities are worried about how to adapt higher education to the new European Higher Education Area, as proposed in the Bologna Magna Charta Universitatum of 1998, and signed by 32 European Education Ministers. One of the key points in this higher education reform was the introduction of new Master's level curricula. These…

  4. Resource analysis and land use planning with space and high altitude photography

    NASA Technical Reports Server (NTRS)

    Schrumpf, B. J.

    1972-01-01

    Photographic scales providing resource data for decision making processes of land use and a legend system for barren lands, water resources, natural vegetation, agricultural, urban, and industrial lands in hierarchical framework are applied to various remote sensing techniques. Two natural vegetation resource and land use maps for a major portion of Maricopa County, Arizona are also produced.

  5. Improving Mixed Variable Optimization of Computational and Model Parameters Using Multiple Surrogate Functions

    DTIC Science & Technology

    2008-03-01

    multiplicative corrections as well as space mapping transformations for models defined over a lower dimensional space. A corrected surrogate model for the...correction functions used in [72]. If the low fidelity model g(x̃) is defined over a lower dimensional space then a space mapping transformation is...required. As defined in [21, 72], space mapping is a method of mapping between models of different dimensionality or fidelity. Let P denote the space

  6. Large-Scale CTRW Analysis of Push-Pull Tracer Tests and Other Transport in Heterogeneous Porous Media

    NASA Astrophysics Data System (ADS)

    Hansen, S. K.; Berkowitz, B.

    2014-12-01

    Recently, we developed an alternative CTRW formulation which uses a "latching" upscaling scheme to rigorously map continuous or fine-scale stochastic solute motion onto discrete transitions on an arbitrarily coarse lattice (with spacing potentially on the meter scale or more). This approach enables model simplification, among many other things. Under advection, for example, we see that many relevant anomalous transport problems may be mapped into 1D, with latching to a sequence of successive, uniformly spaced planes. On this formulation (which we term RP-CTRW), the spatial transition vector may generally be made deterministic, with CTRW waiting time distributions encapsulating all the stochastic behavior. We demonstrate the excellent performance of this technique alongside Pareto-distributed waiting times in explaining experiments across a variety of scales using only two degrees of freedom. An interesting new application of the RP-CTRW technique is the analysis of radial (push-pull) tracer tests. Given modern computational power, random walk simulations are a natural fit for the inverse problem of inferring subsurface parameters from push-pull test data, and we propose them as an alternative to the classical type curve approach. In particular, we explore the visibility of heterogeneity through non-Fickian behavior in push-pull tests, and illustrate the ability of a radial RP-CTRW technique to encapsulate this behavior using a sparse parameterization which has predictive value.

  7. A study of mapping exogenous knowledge representations into CONFIG

    NASA Technical Reports Server (NTRS)

    Mayfield, Blayne E.

    1992-01-01

    Qualitative reasoning is reasoning with a small set of qualitative values that is an abstraction of a larger and perhaps infinite set of quantitative values. The use of qualitative and quantitative reasoning together holds great promise for performance improvement in applications that suffer from large and/or imprecise knowledge domains. Included among these applications are the modeling, simulation, analysis, and fault diagnosis of physical systems. Several research groups continue to discover and experiment with new qualitative representations and reasoning techniques. However, due to the diversity of these techniques, it is difficult for the programs produced to exchange system models easily. The availability of mappings to transform knowledge from the form used by one of these programs to that used by another would open the doors for comparative analysis of these programs in areas such as completeness, correctness, and performance. A group at the Johnson Space Center (JSC) is working to develop CONFIG, a prototype qualitative modeling, simulation, and analysis tool for fault diagnosis applications in the U.S. space program. The availability of knowledge mappings from the programs produced by other research groups to CONFIG may provide savings in CONFIG's development costs and time, and may improve CONFIG's performance. The study of such mappings is the purpose of the research described in this paper. Two other research groups that have worked with the JSC group in the past are the Northwest University Group and the University of Texas at Austin Group. The former has produced a qualitative reasoning tool named SIMGEN, and the latter has produced one named QSIM. Another program produced by the Austin group is CC, a preprocessor that permits users to develop input for eventual use by QSIM, but in a more natural format. CONFIG and CC are both based on a component-connection ontology, so a mapping from CC's knowledge representation to CONFIG's knowledge representation was chosen as the focus of this study. A mapping from CC to CONFIG was developed. Due to differences between the two programs, however, the mapping transforms some of the CC knowledge to CONFIG as documentation rather than as knowledge in a form useful to computation. The study suggests that it may be worthwhile to pursue the mappings further. By implementing the mapping as a program, actual comparisons of computational efficiency and quality of results can be made between the QSIM and CONFIG programs. A secondary study may reveal that the results of the two programs augment one another, contradict one another, or differ only slightly. If the latter, the qualitative reasoning techniques may be compared in other areas, such as computational efficiency.

  8. Protostellar Outflows Mapped with ALMA and Techniques to Include Short Spacings

    NASA Astrophysics Data System (ADS)

    Plunkett, Adele

    2018-01-01

    Protostellar outflows are early signs of star formation, yet in cluster environments - common sites of star formation - their role and interaction with surrounding gas are complicated. Protostellar outflows are interesting and complex because they connect protostars (scales 10s au) to the surrounding gas environment (few pc), and their morphology constrains launching and/or accretion modes. A complete outflow study must use observing methods that recover several orders of magnitude of spatial scales, ideally with sub-arcsecond resolution and mapping over a few parsecs. ALMA provides high-resolution observations of outflows, and in some cases outflows have been mapped in clusters. Combining with observations using the Total Power array is possible, but challenging, and a large single dish telescope providing more overlap in uv space is advantageous. In this presentation I show protostellar outflows observed with ALMA using 12m, 7m, and To tal Power arrays. With a new CASA tool TP2VIS we create total power ``visibility'' data and perform joint imaging and deconvolution of interferometry and single dish data. TP2VIS will ultimately provide synergy between ALMA and AtLAST data.

  9. A Comparison of Techniques for Determining Mass Outflow Rates in the Type 2 Quasar Markarian 34

    NASA Astrophysics Data System (ADS)

    Revalski, Mitchell; Crenshaw, D. Michael; Fischer, Travis C.; Kraemer, Steven B.; Schmitt, Henrique R.; Dashtamirova, Dzhuliya; Pope, Crystal L.

    2018-06-01

    We present spatially resolved measurements of the mass outflow rates and energetics for the Narrow Line Region (NLR) outflows in the type 2 quasar Markarian 34. Using data from the Hubble Space Telescope and Apache point observatory, together with Cloudy photoionization models, we calculate the radial mass distribution of ionized gas and map its kinematics. We compare the results of this technique to global outflow rates that characterize NLR outflows with a single outflow rate and energetic measurement. We find that NLR mass estimates based on emission line luminosities produce more consistent results than techniques employing filling factors.

  10. A system of nonlinear set valued variational inclusions.

    PubMed

    Tang, Yong-Kun; Chang, Shih-Sen; Salahuddin, Salahuddin

    2014-01-01

    In this paper, we studied the existence theorems and techniques for finding the solutions of a system of nonlinear set valued variational inclusions in Hilbert spaces. To overcome the difficulties, due to the presence of a proper convex lower semicontinuous function ϕ and a mapping g which appeared in the considered problems, we have used the resolvent operator technique to suggest an iterative algorithm to compute approximate solutions of the system of nonlinear set valued variational inclusions. The convergence of the iterative sequences generated by algorithm is also proved. 49J40; 47H06.

  11. Learning Inverse Rig Mappings by Nonlinear Regression.

    PubMed

    Holden, Daniel; Saito, Jun; Komura, Taku

    2017-03-01

    We present a framework to design inverse rig-functions-functions that map low level representations of a character's pose such as joint positions or surface geometry to the representation used by animators called the animation rig. Animators design scenes using an animation rig, a framework widely adopted in animation production which allows animators to design character poses and geometry via intuitive parameters and interfaces. Yet most state-of-the-art computer animation techniques control characters through raw, low level representations such as joint angles, joint positions, or vertex coordinates. This difference often stops the adoption of state-of-the-art techniques in animation production. Our framework solves this issue by learning a mapping between the low level representations of the pose and the animation rig. We use nonlinear regression techniques, learning from example animation sequences designed by the animators. When new motions are provided in the skeleton space, the learned mapping is used to estimate the rig controls that reproduce such a motion. We introduce two nonlinear functions for producing such a mapping: Gaussian process regression and feedforward neural networks. The appropriate solution depends on the nature of the rig and the amount of data available for training. We show our framework applied to various examples including articulated biped characters, quadruped characters, facial animation rigs, and deformable characters. With our system, animators have the freedom to apply any motion synthesis algorithm to arbitrary rigging and animation pipelines for immediate editing. This greatly improves the productivity of 3D animation, while retaining the flexibility and creativity of artistic input.

  12. Mammographic images segmentation based on chaotic map clustering algorithm

    PubMed Central

    2014-01-01

    Background This work investigates the applicability of a novel clustering approach to the segmentation of mammographic digital images. The chaotic map clustering algorithm is used to group together similar subsets of image pixels resulting in a medically meaningful partition of the mammography. Methods The image is divided into pixels subsets characterized by a set of conveniently chosen features and each of the corresponding points in the feature space is associated to a map. A mutual coupling strength between the maps depending on the associated distance between feature space points is subsequently introduced. On the system of maps, the simulated evolution through chaotic dynamics leads to its natural partitioning, which corresponds to a particular segmentation scheme of the initial mammographic image. Results The system provides a high recognition rate for small mass lesions (about 94% correctly segmented inside the breast) and the reproduction of the shape of regions with denser micro-calcifications in about 2/3 of the cases, while being less effective on identification of larger mass lesions. Conclusions We can summarize our analysis by asserting that due to the particularities of the mammographic images, the chaotic map clustering algorithm should not be used as the sole method of segmentation. It is rather the joint use of this method along with other segmentation techniques that could be successfully used for increasing the segmentation performance and for providing extra information for the subsequent analysis stages such as the classification of the segmented ROI. PMID:24666766

  13. View generation for 3D-TV using image reconstruction from irregularly spaced samples

    NASA Astrophysics Data System (ADS)

    Vázquez, Carlos

    2007-02-01

    Three-dimensional television (3D-TV) will become the next big step in the development of advanced TV systems. One of the major challenges for the deployment of 3D-TV systems is the diversity of display technologies and the high cost of capturing multi-view content. Depth image-based rendering (DIBR) has been identified as a key technology for the generation of new views for stereoscopic and multi-view displays from a small number of views captured and transmitted. We propose a disparity compensation method for DIBR that does not require spatial interpolation of the disparity map. We use a forward-mapping disparity compensation with real precision. The proposed method deals with the irregularly sampled image resulting from this disparity compensation process by applying a re-sampling algorithm based on a bi-cubic spline function space that produces smooth images. The fact that no approximation is made on the position of the samples implies that geometrical distortions in the final images due to approximations in sample positions are minimized. We also paid attention to the occlusion problem. Our algorithm detects the occluded regions in the newly generated images and uses simple depth-aware inpainting techniques to fill the gaps created by newly exposed areas. We tested the proposed method in the context of generation of views needed for viewing on SynthaGram TM auto-stereoscopic displays. We used as input either a 2D image plus a depth map or a stereoscopic pair with the associated disparity map. Our results show that this technique provides high quality images to be viewed on different display technologies such as stereoscopic viewing with shutter glasses (two views) and lenticular auto-stereoscopic displays (nine views).

  14. Gamut mapping in a high-dynamic-range color space

    NASA Astrophysics Data System (ADS)

    Preiss, Jens; Fairchild, Mark D.; Ferwerda, James A.; Urban, Philipp

    2014-01-01

    In this paper, we present a novel approach of tone mapping as gamut mapping in a high-dynamic-range (HDR) color space. High- and low-dynamic-range (LDR) images as well as device gamut boundaries can simultaneously be represented within such a color space. This enables a unified transformation of the HDR image into the gamut of an output device (in this paper called HDR gamut mapping). An additional aim of this paper is to investigate the suitability of a specific HDR color space to serve as a working color space for the proposed HDR gamut mapping. For the HDR gamut mapping, we use a recent approach that iteratively minimizes an image-difference metric subject to in-gamut images. A psychophysical experiment on an HDR display shows that the standard reproduction workflow of two subsequent transformations - tone mapping and then gamut mapping - may be improved by HDR gamut mapping.

  15. Smart watch RSSI localization and refinement for behavioral classification using laser-SLAM for mapping and fingerprinting.

    PubMed

    Carlson, Jay D; Mittek, Mateusz; Parkison, Steven A; Sathler, Pedro; Bayne, David; Psota, Eric T; Perez, Lance C; Bonasera, Stephen J

    2014-01-01

    As a first step toward building a smart home behavioral monitoring system capable of classifying a wide variety of human behavior, a wireless sensor network (WSN) system is presented for RSSI localization. The low-cost, non-intrusive system uses a smart watch worn by the user to broadcast data to the WSN, where the strength of the radio signal is evaluated at each WSN node to localize the user. A method is presented that uses simultaneous localization and mapping (SLAM) for system calibration, providing automated fingerprinting associating the radio signal strength patterns to the user's location within the living space. To improve the accuracy of localization, a novel refinement technique is introduced that takes into account typical movement patterns of people within their homes. Experimental results demonstrate that the system is capable of providing accurate localization results in a typical living space.

  16. Functional feature embedded space mapping of fMRI data.

    PubMed

    Hu, Jin; Tian, Jie; Yang, Lei

    2006-01-01

    We have proposed a new method for fMRI data analysis which is called Functional Feature Embedded Space Mapping (FFESM). Our work mainly focuses on the experimental design with periodic stimuli which can be described by a number of Fourier coefficients in the frequency domain. A nonlinear dimension reduction technique Isomap is applied to the high dimensional features obtained from frequency domain of the fMRI data for the first time. Finally, the presence of activated time series is identified by the clustering method in which the information theoretic criterion of minimum description length (MDL) is used to estimate the number of clusters. The feasibility of our algorithm is demonstrated by real human experiments. Although we focus on analyzing periodic fMRI data, the approach can be extended to analyze non-periodic fMRI data (event-related fMRI) by replacing the Fourier analysis with a wavelet analysis.

  17. Autonomous Data Collection Using a Self-Organizing Map.

    PubMed

    Faigl, Jan; Hollinger, Geoffrey A

    2018-05-01

    The self-organizing map (SOM) is an unsupervised learning technique providing a transformation of a high-dimensional input space into a lower dimensional output space. In this paper, we utilize the SOM for the traveling salesman problem (TSP) to develop a solution to autonomous data collection. Autonomous data collection requires gathering data from predeployed sensors by moving within a limited communication radius. We propose a new growing SOM that adapts the number of neurons during learning, which also allows our approach to apply in cases where some sensors can be ignored due to a lower priority. Based on a comparison with available combinatorial heuristic algorithms for relevant variants of the TSP, the proposed approach demonstrates improved results, while also being less computationally demanding. Moreover, the proposed learning procedure can be extended to cases where particular sensors have varying communication radii, and it can also be extended to multivehicle planning.

  18. Interpretation of 2D Resistivity with Engineering Characterisation of Subsurface Exploration in Nusajaya Johor, Malaysia

    NASA Astrophysics Data System (ADS)

    Akip Tan, S. N. Mohd; Dan, M. F. Md; Edy Tonnizam, M.; Saad, R.; Madun, A.; Hazreek, Z. A. M.

    2018-04-01

    2-D resistivity technique and pole-dipole array with spacing of 2 m electrode and total spacing of 80 m were adopted to map and characterize the shallow subsurface in a sedimentary area at Nusajaya, Johor. Geological field mapping and laboratory testing were conducted to determine weathering grades. Res2Dinv software was used to generate the inversion model resistivity. The result shows sandstone contains iron mineral (30-1000ohm-m) and weathered sandstone (500-1000 ohm-m). The lowest layer represents sandstone and siltstone with the highest range from 1500 through 5000 ohm-m. The weathering grade IV and V of sandstone in the actual profile indicates the range from 30 to 1000 ohm-m, whereas grade II and III in ground mass matched the higest range. Overall, the increase of weathering grade influenced both the physical properties and strength of rocks.

  19. Advances in Predicting Magnetic Fields on the Far Side of the Sun

    NASA Astrophysics Data System (ADS)

    Lindsey, C. A.

    2016-12-01

    Techniques in local solar seismology applied to observations of seismic oscillations in the Sun's near hemisphere allow us to map large magnetic regions in the Sun's far hemisphere. Seismic signatures are not nearly as sensitive to magnetic flux as observations in electromagnetic radiation. However, they clearly identify and locate the 400 or so largest active regions in a typical solar cycle, i.e., those of most concern for space-weather forecasting. By themselves, seismic observations are insensitive to magnetic polarity. However, the Hale polarity law offers tantalizing avenues for guessing polarity distributions from seismic signatures as they evolve. I will review what we presently know about the relationship between seismic signatures of active regions and their magnetic and radiative properties, and offer a preliminary assessment of the potential of far-side seismic maps for space-weather forecasting in the coming decade.

  20. Symbolic, Nonsymbolic and Conceptual: An Across-Notation Study on the Space Mapping of Numerals.

    PubMed

    Zhang, Yu; You, Xuqun; Zhu, Rongjuan

    2016-07-01

    Previous studies suggested that there are interconnections between two numeral modalities of symbolic notation and nonsymbolic notation (array of dots), differences and similarities of the processing, and representation of the two modalities have both been found in previous research. However, whether there are differences between the spatial representation and numeral-space mapping of the two numeral modalities of symbolic notation and nonsymbolic notation is still uninvestigated. The present study aims to examine whether there are differences between the spatial representation and numeral-space mapping of the two numeral modalities of symbolic notation and nonsymbolic notation; especially how zero, as both a symbolic magnitude numeral and a nonsymbolic conceptual numeral, mapping onto space; and if the mapping happens automatically at an early stage of the numeral information processing. Results of the two experiments demonstrate that the low-level processing of symbolic numerals including zero and nonsymbolic numerals except zero can mapping onto space, whereas the low-level processing of nonsymbolic zero as a semantic conceptual numeral cannot mapping onto space, which indicating the specialty of zero in the numeral domain. The present study indicates that the processing of non-semantic numerals can mapping onto space, whereas semantic conceptual numerals cannot mapping onto space. © The Author(s) 2016.

  1. Improved Diffuse Foreground Subtraction with the ILC Method: CMB Map and Angular Power Spectrum Using Planck and WMAP Observations

    NASA Astrophysics Data System (ADS)

    Sudevan, Vipin; Aluri, Pavan K.; Yadav, Sarvesh Kumar; Saha, Rajib; Souradeep, Tarun

    2017-06-01

    We report an improved technique for diffuse foreground minimization from Cosmic Microwave Background (CMB) maps using a new multiphase iterative harmonic space internal-linear-combination (HILC) approach. Our method nullifies a foreground leakage that was present in the old and usual iterative HILC method. In phase 1 of the multiphase technique, we obtain an initial cleaned map using the single iteration HILC approach over the desired portion of the sky. In phase 2, we obtain a final CMB map using the iterative HILC approach; however, now, to nullify the leakage, during each iteration, some of the regions of the sky that are not being cleaned in the current iteration are replaced by the corresponding cleaned portions of the phase 1 map. We bring all input frequency maps to a common and maximum possible beam and pixel resolution at the beginning of the analysis, which significantly reduces data redundancy, memory usage, and computational cost, and avoids, during the HILC weight calculation, the deconvolution of partial sky harmonic coefficients by the azimuthally symmetric beam and pixel window functions, which in a strict mathematical sense, are not well defined. Using WMAP 9 year and Planck 2015 frequency maps, we obtain foreground-cleaned CMB maps and a CMB angular power spectrum for the multipole range 2≤slant {\\ell }≤slant 2500. Our power spectrum matches the published Planck results with some differences at different multipole ranges. We validate our method by performing Monte Carlo simulations. Finally, we show that the weights for HILC foreground minimization have the intrinsic characteristic that they also tend to produce a statistically isotropic CMB map.

  2. Using Space Syntax to Assess Safety in Public Areas - Case Study of Tarbiat Pedestrian Area, Tabriz-Iran

    NASA Astrophysics Data System (ADS)

    Cihangir Çamur, Kübra; Roshani, Mehdi; Pirouzi, Sania

    2017-10-01

    In studying the urban complex issues, simulation and modelling of public space use considerably helps in determining and measuring factors such as urban safety. Depth map software for determining parameters of the spatial layout techniques; and Statistical Package for Social Sciences (SPSS) software for analysing and evaluating the views of the pedestrians on public safety were used in this study. Connectivity, integration, and depth of the area in the Tarbiat city blocks were measured using the Space Syntax Method, and these parameters are presented as graphical and mathematical data. The combination of the results obtained from the questionnaire and statistical analysis with the results of spatial arrangement technique represents the appropriate and inappropriate spaces for pedestrians. This method provides a useful and effective instrument for decision makers, planners, urban designers and programmers in order to evaluate public spaces in the city. Prior to physical modification of urban public spaces, space syntax simulates the pedestrian safety to be used as an analytical tool by the city management. Finally, regarding the modelled parameters and identification of different characteristics of the case, this study represents the strategies and policies in order to increase the safety of the pedestrians of Tarbiat in Tabriz.

  3. Mapping Children--Mapping Space.

    ERIC Educational Resources Information Center

    Pick, Herbert L., Jr.

    Research is underway concerning the way the perception, conception, and representation of spatial layout develops. Three concepts are important here--space itself, frame of reference, and cognitive map. Cognitive map refers to a form of representation of the behavioral space, not paired associate or serial response learning. Other criteria…

  4. Baryon Acoustic Oscillations reconstruction with pixels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obuljen, Andrej; Villaescusa-Navarro, Francisco; Castorina, Emanuele

    2017-09-01

    Gravitational non-linear evolution induces a shift in the position of the baryon acoustic oscillations (BAO) peak together with a damping and broadening of its shape that bias and degrades the accuracy with which the position of the peak can be determined. BAO reconstruction is a technique developed to undo part of the effect of non-linearities. We present and analyse a reconstruction method that consists of displacing pixels instead of galaxies and whose implementation is easier than the standard reconstruction method. We show that this method is equivalent to the standard reconstruction technique in the limit where the number of pixelsmore » becomes very large. This method is particularly useful in surveys where individual galaxies are not resolved, as in 21cm intensity mapping observations. We validate this method by reconstructing mock pixelated maps, that we build from the distribution of matter and halos in real- and redshift-space, from a large set of numerical simulations. We find that this method is able to decrease the uncertainty in the BAO peak position by 30-50% over the typical angular resolution scales of 21 cm intensity mapping experiments.« less

  5. Shapes on a plane: Evaluating the impact of projection distortion on spatial binning

    USGS Publications Warehouse

    Battersby, Sarah E.; Strebe, Daniel “daan”; Finn, Michael P.

    2017-01-01

    One method for working with large, dense sets of spatial point data is to aggregate the measure of the data into polygonal containers, such as political boundaries, or into regular spatial bins such as triangles, squares, or hexagons. When mapping these aggregations, the map projection must inevitably distort relationships. This distortion can impact the reader’s ability to compare count and density measures across the map. Spatial binning, particularly via hexagons, is becoming a popular technique for displaying aggregate measures of point data sets. Increasingly, we see questionable use of the technique without attendant discussion of its hazards. In this work, we discuss when and why spatial binning works and how mapmakers can better understand the limitations caused by distortion from projecting to the plane. We introduce equations for evaluating distortion’s impact on one common projection (Web Mercator) and discuss how the methods used generalize to other projections. While we focus on hexagonal binning, these same considerations affect spatial bins of any shape, and more generally, any analysis of geographic data performed in planar space.

  6. Joint explorative analysis of neuroreceptor subsystems in the human brain: application to receptor-transporter correlation using PET data.

    PubMed

    Cselényi, Zsolt; Lundberg, Johan; Halldin, Christer; Farde, Lars; Gulyás, Balázs

    2004-10-01

    Positron emission tomography (PET) has proved to be a highly successful technique in the qualitative and quantitative exploration of the human brain's neurotransmitter-receptor systems. In recent years, the number of PET radioligands, targeted to different neuroreceptor systems of the human brain, has increased considerably. This development paves the way for a simultaneous analysis of different receptor systems and subsystems in the same individual. The detailed exploration of the versatility of neuroreceptor systems requires novel technical approaches, capable of operating on huge parametric image datasets. An initial step of such explorative data processing and analysis should be the development of novel exploratory data-mining tools to gain insight into the "structure" of complex multi-individual, multi-receptor data sets. For practical reasons, a possible and feasible starting point of multi-receptor research can be the analysis of the pre- and post-synaptic binding sites of the same neurotransmitter. In the present study, we propose an unsupervised, unbiased data-mining tool for this task and demonstrate its usefulness by using quantitative receptor maps, obtained with positron emission tomography, from five healthy subjects on (pre-synaptic) serotonin transporters (5-HTT or SERT) and (post-synaptic) 5-HT(1A) receptors. Major components of the proposed technique include the projection of the input receptor maps to a feature space, the quasi-clustering and classification of projected data (neighbourhood formation), trans-individual analysis of neighbourhood properties (trajectory analysis), and the back-projection of the results of trajectory analysis to normal space (creation of multi-receptor maps). The resulting multi-receptor maps suggest that complex relationships and tendencies in the relationship between pre- and post-synaptic transporter-receptor systems can be revealed and classified by using this method. As an example, we demonstrate the regional correlation of the serotonin transporter-receptor systems. These parameter-specific multi-receptor maps can usefully guide the researchers in their endeavour to formulate models of multi-receptor interactions and changes in the human brain.

  7. Multilayer apparent magnetization mapping approach and its application in mineral exploration

    NASA Astrophysics Data System (ADS)

    Guo, L.; Meng, X.; Chen, Z.

    2016-12-01

    Apparent magnetization mapping is a technique to estimate magnetization distribution in the subsurface from the observed magnetic data. It has been applied for geologic mapping and mineral exploration for decades. Apparent magnetization mapping usually models the magnetic layer as a collection of vertical, juxtaposed prisms in both horizontal directions, whose top and bottom surfaces are assumed to be horizontal or variable-depth, and then inverts or deconvolves the magnetic anomalies in the space or frequency domain to determine the magnetization of each prism. The conventional mapping approaches usually assume that magnetic sources contain no remanent magnetization. However, such assumptions are not always valid in mineral exploration of metallic ores. In this case, the negligence of the remanence will result in large geologic deviation or the occurrence of negative magnetization. One alternate strategy is to transform the observed magnetic anomalies into some quantities that are insensitive or weakly sensitive to the remanence and then subsequently to perform inversion on these quantities, without needing any a priori information about remanent magnetization. Such kinds of quantities include the amplitude of the magnetic total field anomaly (AMA), and the normalized magnetic source strength (NSS). Here, we present a space-domain inversion approach for multilayer magnetization mapping based on the AMA for reducing effects of remanence. In the real world, magnetization usually varies vertically in the subsurface. If we use only one-layer model for mapping, the result is simply vertical superposition of different magnetization distributions. Hence, a multi-layer model for mapping would be a more realistic approach. We test the approach on the real data from a metallic deposit area in North China. The results demonstrated that our approach is feasible and produces considerable magnetization distribution from top layer to bottom layer in the subsurface.

  8. The k-space origins of scattering in Bi2Sr2CaCu2O8+x

    NASA Astrophysics Data System (ADS)

    Alldredge, Jacob W.; Calleja, Eduardo M.; Dai, Jixia; Eisaki, H.; Uchida, S.; McElroy, Kyle

    2013-08-01

    We demonstrate a general, computer automated procedure that inverts the reciprocal space scattering data (q-space) that are measured by spectroscopic imaging scanning tunnelling microscopy (SI-STM) in order to determine the momentum space (k-space) scattering structure. This allows a detailed examination of the k-space origins of the quasiparticle interference (QPI) pattern in Bi2Sr2CaCu2O8+x within the theoretical constraints of the joint density of states (JDOS). Our new method allows measurement of the differences between the positive and negative energy dispersions, the gap structure and an energy dependent scattering length scale. Furthermore, it resolves the transition between the dispersive QPI and the checkerboard ({q}_{1}^{\\ast } excitation). We have measured the k-space scattering structure over a wide range of doping (p ˜ 0.22-0.08), including regions where the octet model is not applicable. Our technique allows the complete mapping of the k-space scattering origins of the spatial excitations in Bi2Sr2CaCu2O8+x, which allows for better comparisons between SI-STM and other experimental probes of the band structure. By applying our new technique to such a heavily studied compound, we can validate our new general approach for determining the k-space scattering origins from SI-STM data.

  9. The k-space origins of scattering in Bi2Sr2CaCu2O8+x.

    PubMed

    Alldredge, Jacob W; Calleja, Eduardo M; Dai, Jixia; Eisaki, H; Uchida, S; McElroy, Kyle

    2013-08-21

    We demonstrate a general, computer automated procedure that inverts the reciprocal space scattering data (q-space) that are measured by spectroscopic imaging scanning tunnelling microscopy (SI-STM) in order to determine the momentum space (k-space) scattering structure. This allows a detailed examination of the k-space origins of the quasiparticle interference (QPI) pattern in Bi2Sr2CaCu2O8+x within the theoretical constraints of the joint density of states (JDOS). Our new method allows measurement of the differences between the positive and negative energy dispersions, the gap structure and an energy dependent scattering length scale. Furthermore, it resolves the transition between the dispersive QPI and the checkerboard ([Formula: see text] excitation). We have measured the k-space scattering structure over a wide range of doping (p ∼ 0.22-0.08), including regions where the octet model is not applicable. Our technique allows the complete mapping of the k-space scattering origins of the spatial excitations in Bi2Sr2CaCu2O8+x, which allows for better comparisons between SI-STM and other experimental probes of the band structure. By applying our new technique to such a heavily studied compound, we can validate our new general approach for determining the k-space scattering origins from SI-STM data.

  10. Constrained H1-regularization schemes for diffeomorphic image registration

    PubMed Central

    Mang, Andreas; Biros, George

    2017-01-01

    We propose regularization schemes for deformable registration and efficient algorithms for their numerical approximation. We treat image registration as a variational optimal control problem. The deformation map is parametrized by its velocity. Tikhonov regularization ensures well-posedness. Our scheme augments standard smoothness regularization operators based on H1- and H2-seminorms with a constraint on the divergence of the velocity field, which resembles variational formulations for Stokes incompressible flows. In our formulation, we invert for a stationary velocity field and a mass source map. This allows us to explicitly control the compressibility of the deformation map and by that the determinant of the deformation gradient. We also introduce a new regularization scheme that allows us to control shear. We use a globalized, preconditioned, matrix-free, reduced space (Gauss–)Newton–Krylov scheme for numerical optimization. We exploit variable elimination techniques to reduce the number of unknowns of our system; we only iterate on the reduced space of the velocity field. Our current implementation is limited to the two-dimensional case. The numerical experiments demonstrate that we can control the determinant of the deformation gradient without compromising registration quality. This additional control allows us to avoid oversmoothing of the deformation map. We also demonstrate that we can promote or penalize shear whilst controlling the determinant of the deformation gradient. PMID:29075361

  11. Design and implementation of a PC-based image-guided surgical system.

    PubMed

    Stefansic, James D; Bass, W Andrew; Hartmann, Steven L; Beasley, Ryan A; Sinha, Tuhin K; Cash, David M; Herline, Alan J; Galloway, Robert L

    2002-11-01

    In interactive, image-guided surgery, current physical space position in the operating room is displayed on various sets of medical images used for surgical navigation. We have developed a PC-based surgical guidance system (ORION) which synchronously displays surgical position on up to four image sets and updates them in real time. There are three essential components which must be developed for this system: (1) accurately tracked instruments; (2) accurate registration techniques to map physical space to image space; and (3) methods to display and update the image sets on a computer monitor. For each of these components, we have developed a set of dynamic link libraries in MS Visual C++ 6.0 supporting various hardware tools and software techniques. Surgical instruments are tracked in physical space using an active optical tracking system. Several of the different registration algorithms were developed with a library of robust math kernel functions, and the accuracy of all registration techniques was thoroughly investigated. Our display was developed using the Win32 API for windows management and tomographic visualization, a frame grabber for live video capture, and OpenGL for visualization of surface renderings. We have begun to use this current implementation of our system for several surgical procedures, including open and minimally invasive liver surgery.

  12. EAARL topography: Fire Island National Seashore

    USGS Publications Warehouse

    Brock, John C.; Wright, C. Wayne; Patterson, Matt; Nayagandhi, Amar; Patterson, Judd

    2007-01-01

    This Web site contains 31 LIDAR-derived first return topography maps and GIS files for Fire Island National Seashore. These lidar-derived topographic maps were produced as a collaborative effort between the U.S. Geological Survey (USGS) Coastal and Marine Geology Program, the National Park Service (NPS), Northeast Coastal and Barrier Network, Inventory and Monitoring Program, and the National Aeronautics and Space Administration (NASA) Wallops Flight Facility. The aims of the partnership that created this product are to develop advanced survey techniques for mapping barrier island geomorphology and habitats, and to enable the monitoring of ecological and geological change within National Seashores. This product is based on data from an innovative airborne lidar instrument under development at the NASA Wallops Flight Facility, the NASA Experimental Advanced Airborne Research Lidar (EAARL).

  13. Local Free-Space Mapping and Path Guidance for Mobile Robots.

    DTIC Science & Technology

    1988-03-01

    CM a CD U 00 Technical Document 1227 March 1988 Local Free- Space Mapping o and Path Guidance for Mobile Robots o William T. Gex N’% Nancy L. Campbell...TITLE (inludvSeocutCl&sas~o*) Local Free- Space Mapping and Path Guidance for Mobile Robots 12. PERSONAL AUTHOR(S) William T. Gex and Nancy L...Description of Robot System... 2 Free- Space Mapping ... 4 Map Construction ... 4 . ,12pping Examplk... 5 ’ft Sensor Unreliability... 8 % Path Guidance

  14. Seamless Warping of Diffusion Tensor Fields

    PubMed Central

    Hao, Xuejun; Bansal, Ravi; Plessen, Kerstin J.; Peterson, Bradley S.

    2008-01-01

    To warp diffusion tensor fields accurately, tensors must be reoriented in the space to which the tensors are warped based on both the local deformation field and the orientation of the underlying fibers in the original image. Existing algorithms for warping tensors typically use forward mapping deformations in an attempt to ensure that the local deformations in the warped image remains true to the orientation of the underlying fibers; forward mapping, however, can also create “seams” or gaps and consequently artifacts in the warped image by failing to define accurately the voxels in the template space where the magnitude of the deformation is large (e.g., |Jacobian| > 1). Backward mapping, in contrast, defines voxels in the template space by mapping them back to locations in the original imaging space. Backward mapping allows every voxel in the template space to be defined without the creation of seams, including voxels in which the deformation is extensive. Backward mapping, however, cannot reorient tensors in the template space because information about the directional orientation of fiber tracts is contained in the original, unwarped imaging space only, and backward mapping alone cannot transfer that information to the template space. To combine the advantages of forward and backward mapping, we propose a novel method for the spatial normalization of diffusion tensor (DT) fields that uses a bijection (a bidirectional mapping with one-to-one correspondences between image spaces) to warp DT datasets seamlessly from one imaging space to another. Once the bijection has been achieved and tensors have been correctly relocated to the template space, we can appropriately reorient tensors in the template space using a warping method based on Procrustean estimation. PMID:18334425

  15. Assessing Diffusion in the Extra-Cellular Space of Brain Tissue by Dynamic MRI Mapping of Contrast Agent Concentrations

    NASA Astrophysics Data System (ADS)

    Mériaux, Sébastien; Conti, Allegra; Larrat, Benoît

    2018-05-01

    The characterization of extracellular space (ECS) architecture represents valuable information for the understanding of transport mechanisms occurring in brain parenchyma. ECS tortuosity reflects the hindrance imposed by cell membranes to molecular diffusion. Numerous strategies have been proposed to measure the diffusion through ECS and to estimate its tortuosity. The first method implies the perfusion for several hours of a radiotracer which effective diffusion coefficient D* is determined after post mortem processing. The most well-established techniques are real-time iontophoresis that measures the concentration of a specific ion at known distance from its release point, and integrative optical imaging that relies on acquiring microscopy images of macromolecules labelled with fluorophore. After presenting these methods, we focus on a recent Magnetic Resonance Imaging (MRI)-based technique that consists in acquiring concentration maps of a contrast agent diffusing within ECS. Thanks to MRI properties, molecular diffusion and tortuosity can be estimated in 3D for deep brain regions. To further discuss the reliability of this technique, we point out the influence of the delivery method on the estimation of D*. We compare the value of D* for a contrast agent intracerebrally injected, with its value when the agent is delivered to the brain after an ultrasound-induced blood-brain barrier (BBB) permeabilization. Several studies have already shown that tortuosity may be modified in pathological conditions. Therefore, we believe that MRI-based techniques could be useful in a clinical context for characterizing the diffusion properties of pathological ECS and thus predicting the drug biodistribution into the targeted area.

  16. Self-organizing neural networks--an alternative way of cluster analysis in clinical chemistry.

    PubMed

    Reibnegger, G; Wachter, H

    1996-04-15

    Supervised learning schemes have been employed by several workers for training neural networks designed to solve clinical problems. We demonstrate that unsupervised techniques can also produce interesting and meaningful results. Using a data set on the chemical composition of milk from 22 different mammals, we demonstrate that self-organizing feature maps (Kohonen networks) as well as a modified version of error backpropagation technique yield results mimicking conventional cluster analysis. Both techniques are able to project a potentially multi-dimensional input vector onto a two-dimensional space whereby neighborhood relationships remain conserved. Thus, these techniques can be used for reducing dimensionality of complicated data sets and for enhancing comprehensibility of features hidden in the data matrix.

  17. Optimal stimulus scheduling for active estimation of evoked brain networks.

    PubMed

    Kafashan, MohammadMehdi; Ching, ShiNung

    2015-12-01

    We consider the problem of optimal probing to learn connections in an evoked dynamic network. Such a network, in which each edge measures an input-output relationship between sites in sensor/actuator-space, is relevant to emerging applications in neural mapping and neural connectivity estimation. We show that the problem of scheduling nodes to a probe (i.e., stimulate) amounts to a problem of optimal sensor scheduling. By formulating the evoked network in state-space, we show that the solution to the greedy probing strategy has a convenient form and, under certain conditions, is optimal over a finite horizon. We adopt an expectation maximization technique to update the state-space parameters in an online fashion and demonstrate the efficacy of the overall approach in a series of detailed numerical examples. The proposed method provides a principled means to actively probe time-varying connections in neuronal networks. The overall method can be implemented in real time and is particularly well-suited to applications in stimulation-based cortical mapping in which the underlying network dynamics are changing over time.

  18. Robust Kalman filtering cooperated Elman neural network learning for vision-sensing-based robotic manipulation with global stability.

    PubMed

    Zhong, Xungao; Zhong, Xunyu; Peng, Xiafu

    2013-10-08

    In this paper, a global-state-space visual servoing scheme is proposed for uncalibrated model-independent robotic manipulation. The scheme is based on robust Kalman filtering (KF), in conjunction with Elman neural network (ENN) learning techniques. The global map relationship between the vision space and the robotic workspace is learned using an ENN. This learned mapping is shown to be an approximate estimate of the Jacobian in global space. In the testing phase, the desired Jacobian is arrived at using a robust KF to improve the ENN learning result so as to achieve robotic precise convergence of the desired pose. Meanwhile, the ENN weights are updated (re-trained) using a new input-output data pair vector (obtained from the KF cycle) to ensure robot global stability manipulation. Thus, our method, without requiring either camera or model parameters, avoids the corrupted performances caused by camera calibration and modeling errors. To demonstrate the proposed scheme's performance, various simulation and experimental results have been presented using a six-degree-of-freedom robotic manipulator with eye-in-hand configurations.

  19. Optimal stimulus scheduling for active estimation of evoked brain networks

    NASA Astrophysics Data System (ADS)

    Kafashan, MohammadMehdi; Ching, ShiNung

    2015-12-01

    Objective. We consider the problem of optimal probing to learn connections in an evoked dynamic network. Such a network, in which each edge measures an input-output relationship between sites in sensor/actuator-space, is relevant to emerging applications in neural mapping and neural connectivity estimation. Approach. We show that the problem of scheduling nodes to a probe (i.e., stimulate) amounts to a problem of optimal sensor scheduling. Main results. By formulating the evoked network in state-space, we show that the solution to the greedy probing strategy has a convenient form and, under certain conditions, is optimal over a finite horizon. We adopt an expectation maximization technique to update the state-space parameters in an online fashion and demonstrate the efficacy of the overall approach in a series of detailed numerical examples. Significance. The proposed method provides a principled means to actively probe time-varying connections in neuronal networks. The overall method can be implemented in real time and is particularly well-suited to applications in stimulation-based cortical mapping in which the underlying network dynamics are changing over time.

  20. Real-Space Mapping of the Chiral Near-Field Distributions in Spiral Antennas and Planar Metasurfaces.

    PubMed

    Schnell, M; Sarriugarte, P; Neuman, T; Khanikaev, A B; Shvets, G; Aizpurua, J; Hillenbrand, R

    2016-01-13

    Chiral antennas and metasurfaces can be designed to react differently to left- and right-handed circularly polarized light, which enables novel optical properties such as giant optical activity and negative refraction. Here, we demonstrate that the underlying chiral near-field distributions can be directly mapped with scattering-type scanning near-field optical microscopy employing circularly polarized illumination. We apply our technique to visualize, for the first time, the circular-polarization selective nanofocusing of infrared light in Archimedean spiral antennas, and explain this chiral optical effect by directional launching of traveling waves in analogy to antenna theory. Moreover, we near-field image single-layer rosette and asymmetric dipole-monopole metasurfaces and find negligible and strong chiral optical near-field contrast, respectively. Our technique paves the way for near-field characterization of optical chirality in metal nanostructures, which will be essential for the future development of chiral antennas and metasurfaces and their applications.

  1. Correlation between aircraft MSS and LIDAR remotely sensed data on a forested wetland in South Carolina

    NASA Technical Reports Server (NTRS)

    Jensen, John R.; Hodgson, Michael E.; Mackey, Halkard E., Jr.; Krabill, William

    1987-01-01

    Wetlands in a portion of the Savannah River swamp forest, the Steel Creek Delta, were mapped using April 26, 1985 high-resolution aircraft multispectral scanner (MSS) data. Due to the complex spectral characteristics of the wetland vegetation, it was necessary to implement several techniques in the classification of the MSS imagery of the Steel Creek Delta. In particular, when performing unsupervised classification, an iterative cluster busting technique was used which simplified the cluster labeling process. In addition to the MSS data, light detecting and ranging (LIDAR) data were acquired by National Aeronautics and Space Administration (NASA) personnel along two flightlines over the Steel Creek Delta. These data were registered with the wetland classification map and correlated. Statistical analyses demonstrated that the laser derived canopy height information was significantly correlated with the Steel Creek Delta wetland classes encountered along the profiling transect of the LIDAR data.

  2. Detecting reactive islands using Lagrangian descriptors and the relevance to transition path sampling.

    PubMed

    Patra, Sarbani; Keshavamurthy, Srihari

    2018-02-14

    It has been known for sometime now that isomerization reactions, classically, are mediated by phase space structures called reactive islands (RI). RIs provide one possible route to correct for the nonstatistical effects in the reaction dynamics. In this work, we map out the reactive islands for the two dimensional Müller-Brown model potential and show that the reactive islands are intimately linked to the issue of rare event sampling. In particular, we establish the sensitivity of the so called committor probabilities, useful quantities in the transition path sampling technique, to the hierarchical RI structures. Mapping out the RI structure for high dimensional systems, however, is a challenging task. Here, we show that the technique of Lagrangian descriptors is able to effectively identify the RI hierarchy in the model system. Based on our results, we suggest that the Lagrangian descriptors can be useful for detecting RIs in high dimensional systems.

  3. Current trends in satellite based emergency mapping - the need for harmonisation

    NASA Astrophysics Data System (ADS)

    Voigt, Stefan

    2013-04-01

    During the past years, the availability and use of satellite image data to support disaster management and humanitarian relief organisations has largely increased. The automation and data processing techniques are greatly improving as well as the capacity in accessing and processing satellite imagery in getting better globally. More and more global activities via the internet and through global organisations like the United Nations or the International Charter Space and Major Disaster engage in the topic, while at the same time, more and more national or local centres engage rapid mapping operations and activities. In order to make even more effective use of this very positive increase of capacity, for the sake of operational provision of analysis results, for fast validation of satellite derived damage assessments, for better cooperation in the joint inter agency generation of rapid mapping products and for general scientific use, rapid mapping results in general need to be better harmonized, if not even standardized. In this presentation, experiences from various years of rapid mapping gained by the DLR Center for satellite based Crisis Information (ZKI) within the context of the national activities, the International Charter Space and Major Disasters, GMES/Copernicus etc. are reported. Furthermore, an overview on how automation, quality assurance and optimization can be achieved through standard operation procedures within a rapid mapping workflow is given. Building on this long term rapid mapping experience, and building on the DLR initiative to set in pace an "International Working Group on Satellite Based Emergency Mapping" current trends in rapid mapping are discussed and thoughts on how the sharing of rapid mapping information can be optimized by harmonizing analysis results and data structures are presented. Such an harmonization of analysis procedures, nomenclatures and representations of data as well as meta data are the basis to better cooperate within the global rapid mapping community throughout local/national, regional/supranational and global scales

  4. Rapid performance modeling and parameter regression of geodynamic models

    NASA Astrophysics Data System (ADS)

    Brown, J.; Duplyakin, D.

    2016-12-01

    Geodynamic models run in a parallel environment have many parameters with complicated effects on performance and scientifically-relevant functionals. Manually choosing an efficient machine configuration and mapping out the parameter space requires a great deal of expert knowledge and time-consuming experiments. We propose an active learning technique based on Gaussion Process Regression to automatically select experiments to map out the performance landscape with respect to scientific and machine parameters. The resulting performance model is then used to select optimal experiments for improving the accuracy of a reduced order model per unit of computational cost. We present the framework and evaluate its quality and capability using popular lithospheric dynamics models.

  5. Fire Island National Seashore

    USGS Publications Warehouse

    Brock, John C.; Wright, C. Wayne; Patterson, Matt; Nayagandhi, Amar; Patterson, Judd

    2007-01-01

    These lidar-derived topographic maps were produced as a collaborative effort between the U.S. Geological Survey (USGS) Coastal and Marine Geology Program, the National Park Service (NPS), Northeast Coastal and Barrier Network, Inventory and Monitoring Program, and the National Aeronautics and Space Administration (NASA) Wallops Flight Facility. The aims of the partnership that created this product are to develop advanced survey techniques for mapping barrier island geomorphology and habitats, and to enable the monitoring of ecological and geological change within National Seashores. This product is based on data from an innovative airborne lidar instrument under development at the NASA Wallops Flight Facility, the NASA Experimental Advanced Airborne Research Lidar (EAARL).

  6. A Bayesian-Based Novel Methodology to Generate Reliable Site Response Mapping Sensitive to Data Uncertainties

    NASA Astrophysics Data System (ADS)

    Chakraborty, A.; Goto, H.

    2017-12-01

    The 2011 off the Pacific coast of Tohoku earthquake caused severe damage in many areas further inside the mainland because of site-amplification. Furukawa district in Miyagi Prefecture, Japan recorded significant spatial differences in ground motion even at sub-kilometer scales. The site responses in the damage zone far exceeded the levels in the hazard maps. A reason why the mismatch occurred is that mapping follow only the mean value at the measurement locations with no regard to the data uncertainties and thus are not always reliable. Our research objective is to develop a methodology to incorporate data uncertainties in mapping and propose a reliable map. The methodology is based on a hierarchical Bayesian modeling of normally-distributed site responses in space where the mean (μ), site-specific variance (σ2) and between-sites variance(s2) parameters are treated as unknowns with a prior distribution. The observation data is artificially created site responses with varying means and variances for 150 seismic events across 50 locations in one-dimensional space. Spatially auto-correlated random effects were added to the mean (μ) using a conditionally autoregressive (CAR) prior. The inferences on the unknown parameters are done using Markov Chain Monte Carlo methods from the posterior distribution. The goal is to find reliable estimates of μ sensitive to uncertainties. During initial trials, we observed that the tau (=1/s2) parameter of CAR prior controls the μ estimation. Using a constraint, s = 1/(k×σ), five spatial models with varying k-values were created. We define reliability to be measured by the model likelihood and propose the maximum likelihood model to be highly reliable. The model with maximum likelihood was selected using a 5-fold cross-validation technique. The results show that the maximum likelihood model (μ*) follows the site-specific mean at low uncertainties and converges to the model-mean at higher uncertainties (Fig.1). This result is highly significant as it successfully incorporates the effect of data uncertainties in mapping. This novel approach can be applied to any research field using mapping techniques. The methodology is now being applied to real records from a very dense seismic network in Furukawa district, Miyagi Prefecture, Japan to generate a reliable map of the site responses.

  7. Automatic Assembly of Combined Checkingfixture for Auto-Body Components Based Onfixture Elements Libraries

    NASA Astrophysics Data System (ADS)

    Jiang, Jingtao; Sui, Rendong; Shi, Yan; Li, Furong; Hu, Caiqi

    In this paper 3-D models of combined fixture elements are designed, classified by their functions, and saved in computer as supporting elements library, jointing elements library, basic elements library, localization elements library, clamping elements library, and adjusting elements library etc. Then automatic assembly of 3-D combined checking fixture for auto-body part is presented based on modularization theory. And in virtual auto-body assembly space, Locating constraint mapping technique and assembly rule-based reasoning technique are used to calculate the position of modular elements according to localization points and clamp points of auto-body part. Auto-body part model is transformed from itself coordinate system space to virtual assembly space by homogeneous transformation matrix. Automatic assembly of different functional fixture elements and auto-body part is implemented with API function based on the second development of UG. It is proven in practice that the method in this paper is feasible and high efficiency.

  8. Spatially Regularized Machine Learning for Task and Resting-state fMRI

    PubMed Central

    Song, Xiaomu; Panych, Lawrence P.; Chen, Nan-kuei

    2015-01-01

    Background Reliable mapping of brain function across sessions and/or subjects in task- and resting-state has been a critical challenge for quantitative fMRI studies although it has been intensively addressed in the past decades. New Method A spatially regularized support vector machine (SVM) technique was developed for the reliable brain mapping in task- and resting-state. Unlike most existing SVM-based brain mapping techniques, which implement supervised classifications of specific brain functional states or disorders, the proposed method performs a semi-supervised classification for the general brain function mapping where spatial correlation of fMRI is integrated into the SVM learning. The method can adapt to intra- and inter-subject variations induced by fMRI nonstationarity, and identify a true boundary between active and inactive voxels, or between functionally connected and unconnected voxels in a feature space. Results The method was evaluated using synthetic and experimental data at the individual and group level. Multiple features were evaluated in terms of their contributions to the spatially regularized SVM learning. Reliable mapping results in both task- and resting-state were obtained from individual subjects and at the group level. Comparison with Existing Methods A comparison study was performed with independent component analysis, general linear model, and correlation analysis methods. Experimental results indicate that the proposed method can provide a better or comparable mapping performance at the individual and group level. Conclusions The proposed method can provide accurate and reliable mapping of brain function in task- and resting-state, and is applicable to a variety of quantitative fMRI studies. PMID:26470627

  9. Autonomous Deep-Space Optical Navigation Project

    NASA Technical Reports Server (NTRS)

    D'Souza, Christopher

    2014-01-01

    This project will advance the Autonomous Deep-space navigation capability applied to Autonomous Rendezvous and Docking (AR&D) Guidance, Navigation and Control (GNC) system by testing it on hardware, particularly in a flight processor, with a goal of limited testing in the Integrated Power, Avionics and Software (IPAS) with the ARCM (Asteroid Retrieval Crewed Mission) DRO (Distant Retrograde Orbit) Autonomous Rendezvous and Docking (AR&D) scenario. The technology, which will be harnessed, is called 'optical flow', also known as 'visual odometry'. It is being matured in the automotive and SLAM (Simultaneous Localization and Mapping) applications but has yet to be applied to spacecraft navigation. In light of the tremendous potential of this technique, we believe that NASA needs to design a optical navigation architecture that will use this technique. It is flexible enough to be applicable to navigating around planetary bodies, such as asteroids.

  10. Behavior Knowledge Space-Based Fusion for Copy-Move Forgery Detection.

    PubMed

    Ferreira, Anselmo; Felipussi, Siovani C; Alfaro, Carlos; Fonseca, Pablo; Vargas-Munoz, John E; Dos Santos, Jefersson A; Rocha, Anderson

    2016-07-20

    The detection of copy-move image tampering is of paramount importance nowadays, mainly due to its potential use for misleading the opinion forming process of the general public. In this paper, we go beyond traditional forgery detectors and aim at combining different properties of copy-move detection approaches by modeling the problem on a multiscale behavior knowledge space, which encodes the output combinations of different techniques as a priori probabilities considering multiple scales of the training data. Afterwards, the conditional probabilities missing entries are properly estimated through generative models applied on the existing training data. Finally, we propose different techniques that exploit the multi-directionality of the data to generate the final outcome detection map in a machine learning decision-making fashion. Experimental results on complex datasets, comparing the proposed techniques with a gamut of copy-move detection approaches and other fusion methodologies in the literature show the effectiveness of the proposed method and its suitability for real-world applications.

  11. Computing Diffeomorphic Paths for Large Motion Interpolation.

    PubMed

    Seo, Dohyung; Jeffrey, Ho; Vemuri, Baba C

    2013-06-01

    In this paper, we introduce a novel framework for computing a path of diffeomorphisms between a pair of input diffeomorphisms. Direct computation of a geodesic path on the space of diffeomorphisms Diff (Ω) is difficult, and it can be attributed mainly to the infinite dimensionality of Diff (Ω). Our proposed framework, to some degree, bypasses this difficulty using the quotient map of Diff (Ω) to the quotient space Diff ( M )/ Diff ( M ) μ obtained by quotienting out the subgroup of volume-preserving diffeomorphisms Diff ( M ) μ . This quotient space was recently identified as the unit sphere in a Hilbert space in mathematics literature, a space with well-known geometric properties. Our framework leverages this recent result by computing the diffeomorphic path in two stages. First, we project the given diffeomorphism pair onto this sphere and then compute the geodesic path between these projected points. Second, we lift the geodesic on the sphere back to the space of diffeomerphisms, by solving a quadratic programming problem with bilinear constraints using the augmented Lagrangian technique with penalty terms. In this way, we can estimate the path of diffeomorphisms, first, staying in the space of diffeomorphisms, and second, preserving shapes/volumes in the deformed images along the path as much as possible. We have applied our framework to interpolate intermediate frames of frame-sub-sampled video sequences. In the reported experiments, our approach compares favorably with the popular Large Deformation Diffeomorphic Metric Mapping framework (LDDMM).

  12. GPU-BSM: A GPU-Based Tool to Map Bisulfite-Treated Reads

    PubMed Central

    Manconi, Andrea; Orro, Alessandro; Manca, Emanuele; Armano, Giuliano; Milanesi, Luciano

    2014-01-01

    Cytosine DNA methylation is an epigenetic mark implicated in several biological processes. Bisulfite treatment of DNA is acknowledged as the gold standard technique to study methylation. This technique introduces changes in the genomic DNA by converting cytosines to uracils while 5-methylcytosines remain nonreactive. During PCR amplification 5-methylcytosines are amplified as cytosine, whereas uracils and thymines as thymine. To detect the methylation levels, reads treated with the bisulfite must be aligned against a reference genome. Mapping these reads to a reference genome represents a significant computational challenge mainly due to the increased search space and the loss of information introduced by the treatment. To deal with this computational challenge we devised GPU-BSM, a tool based on modern Graphics Processing Units. Graphics Processing Units are hardware accelerators that are increasingly being used successfully to accelerate general-purpose scientific applications. GPU-BSM is a tool able to map bisulfite-treated reads from whole genome bisulfite sequencing and reduced representation bisulfite sequencing, and to estimate methylation levels, with the goal of detecting methylation. Due to the massive parallelization obtained by exploiting graphics cards, GPU-BSM aligns bisulfite-treated reads faster than other cutting-edge solutions, while outperforming most of them in terms of unique mapped reads. PMID:24842718

  13. Building perceptual color maps for visualizing interval data

    NASA Astrophysics Data System (ADS)

    Kalvin, Alan D.; Rogowitz, Bernice E.; Pelah, Adar; Cohen, Aron

    2000-06-01

    In visualization, a 'color map' maps a range of data values onto a scale of colors. However, unless a color map is e carefully constructed, visual artifacts can be produced. This problem has stimulated considerable interest in creating perceptually based color maps, that is, color maps where equal steps in data value are perceived as equal steps in the color map [Robertson (1988); Pizer (1981); Green (1992); Lefkowitz and Herman, 1992)]. In Rogowitz and Treinish, (1996, 1998) and in Bergman, Treinish and Rogowitz, (1995), we demonstrated that color maps based on luminance or saturation could be good candidates for satisfying this requirement. This work is based on the seminal work of S.S. Stevens (1966), who measured the perceived magnitude of different magnitudes of physical stimuli. He found that for many physical scales, including luminance (cd/m2) and saturation (the 'redness' of a long-wavelength light source), equal ratios in stimulus value produced equal ratios in perceptual magnitude. He interpreted this as indicating that there exists in human cognition a common scale for representing magnitude, and we scale the effects of different physical stimuli to this internal scale. In Rogowitz, Kalvin, Pelahb and Cohen (1999), we used a psychophysical technique to test this hypothesis as it applies to the creation of perceptually uniform color maps. We constructed color maps as trajectories through three-color spaces, a common computer graphics standard (uncalibrated HSV), a common perceptually-based engineering standard for creating visual stimuli (L*a*b*), and a space commonly used in the graphic arts (Munsell). For each space, we created color scales that varied linearly in hue, saturation, or luminance and measured the detectability of increments in hue, saturation or luminance for each of these color scales. We measured the amplitude of the just-detectable Gaussian increments at 20 different values along the range of each color map. For all three color spaces, we found that luminance-based color maps provided the most perceptually- uniform representations of the data. The just-detectable increment was constant at all points in the color map, with the exception of the lowest-luminance values, where a larger increment was required. The saturation-based color maps provided less sensitivity than the luminance-based color maps, requiring much larger increments for detection. For the hue- based color maps, the size of the increment required for detection varied across the range. For example, for the standard 'rainbow' color map (uncalibrated HSV, hue-varying map), a step in the 'green' region required an increment 16 times the size of the increment required in the 'cyan' part of the range. That is, the rainbow color map would not successfully represent changes in the data in the 'green' region of this color map. In this paper, we extend this research by studying the detectability of spatially-modulated Gabor targets based on these hue, saturation and luminance scales. Since, in visualization, the user is called upon to detect and identify patterns that vary in their spatial characteristics, it is important to study how different types of color maps represent data with varying spatial properties. To do so, we measured modulation thresholds for low-(0.2 c/deg) and high-spatial frequency (4.0 c/deg) Gabor patches and compared them with the Gaussian results. As before, we measured increment thresholds for hue, saturation, and luminance modulations. These color scales were constructed as trajectories along the three perceptual dimensions of color (hue, saturation, and luminance) in two color spaces, uncalibrated HSV and calibrated L*a*b. This allowed us to study how the three perceptual dimensions represent magnitude information for test patterns varying in spatial frequency. This design also allowed us to test the hypothesis that the luminance channel best carries high-spatial frequency information while the saturation channel best represents low spatial-frequency information (Mullen 1985; DeValois and DeValois 1988).

  14. Facial recognition using multisensor images based on localized kernel eigen spaces.

    PubMed

    Gundimada, Satyanadh; Asari, Vijayan K

    2009-06-01

    A feature selection technique along with an information fusion procedure for improving the recognition accuracy of a visual and thermal image-based facial recognition system is presented in this paper. A novel modular kernel eigenspaces approach is developed and implemented on the phase congruency feature maps extracted from the visual and thermal images individually. Smaller sub-regions from a predefined neighborhood within the phase congruency images of the training samples are merged to obtain a large set of features. These features are then projected into higher dimensional spaces using kernel methods. The proposed localized nonlinear feature selection procedure helps to overcome the bottlenecks of illumination variations, partial occlusions, expression variations and variations due to temperature changes that affect the visual and thermal face recognition techniques. AR and Equinox databases are used for experimentation and evaluation of the proposed technique. The proposed feature selection procedure has greatly improved the recognition accuracy for both the visual and thermal images when compared to conventional techniques. Also, a decision level fusion methodology is presented which along with the feature selection procedure has outperformed various other face recognition techniques in terms of recognition accuracy.

  15. A Transformation Approach to Optimal Control Problems with Bounded State Variables

    NASA Technical Reports Server (NTRS)

    Hanafy, Lawrence Hanafy

    1971-01-01

    A technique is described and utilized in the study of the solutions to various general problems in optimal control theory, which are converted in to Lagrange problems in the calculus of variations. This is accomplished by mapping certain properties in Euclidean space onto closed control and state regions. Nonlinear control problems with a unit m cube as control region and unit n cube as state region are considered.

  16. Development of Improved Modeling and Analysis Techniques for Dynamics of Shell Structures

    DTIC Science & Technology

    1991-07-24

    Engineering Sciences and Center for Space Structures and Control University of Colorado,Campus Box 429 Boulder, Colorado 80309 Accesion :or -.... ... i...system architecture ; third, to implement a decomposi- tion/mapping procedure that matches as far as possible the layout of the processors to the...element computations. In particular. we address issues that are related to the processor memory size. to the SIMD architecture and to the fast

  17. An interdisciplinary analysis of multispectral satellite data for selected cover types in the Colorado Mountains, using automatic data processing techniques. [geological lineaments and mineral exploration

    NASA Technical Reports Server (NTRS)

    Hoffer, R. M. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. One capability which has been recognized by many geologists working with space photography is the ability to see linear features and alinements which were previously not apparent. To the exploration geologist, major lineaments seen on satellite images are of particular interest. A portion of ERTS-1 frame 1407-17193 (3 Sept. 1973) was used for mapping lineaments and producing an iso-lineament intersection map. Skylab photography over the area of prime area was not useable due to snow cover. Once the lineaments were mapped, a grid with 2.5 km spacing was overlayed on the map and the lineament intersections occurring within each grid square were counted and the number plotted in the center of the grid square. These numbers were then contoured producing a contour map of equal lineament intersection. It is believed that the areas of high intersection concentration would be the most favorable area for ore mineralization if favorable host rocks are also present. These highly fractured areas would act as conduits for carrying the ore forming solutions to the site of deposition in a favorable host rock. Two of the six areas of high intersection concentration are over areas of present or past mining camps and small claims are known to exist near the others. These would be prime target areas for future mineral exploration.

  18. Real-Space Mapping of Surface Trap States in CIGSe Nanocrystals Using 4D Electron Microscopy.

    PubMed

    Bose, Riya; Bera, Ashok; Parida, Manas R; Adhikari, Aniruddha; Shaheen, Basamat S; Alarousu, Erkki; Sun, Jingya; Wu, Tom; Bakr, Osman M; Mohammed, Omar F

    2016-07-13

    Surface trap states in copper indium gallium selenide semiconductor nanocrystals (NCs), which serve as undesirable channels for nonradiative carrier recombination, remain a great challenge impeding the development of solar and optoelectronics devices based on these NCs. In order to design efficient passivation techniques to minimize these trap states, a precise knowledge about the charge carrier dynamics on the NCs surface is essential. However, selective mapping of surface traps requires capabilities beyond the reach of conventional laser spectroscopy and static electron microscopy; it can only be accessed by using a one-of-a-kind, second-generation four-dimensional scanning ultrafast electron microscope (4D S-UEM) with subpicosecond temporal and nanometer spatial resolutions. Here, we precisely map the collective surface charge carrier dynamics of copper indium gallium selenide NCs as a function of the surface trap states before and after surface passivation in real space and time using S-UEM. The time-resolved snapshots clearly demonstrate that the density of the trap states is significantly reduced after zinc sulfide (ZnS) shelling. Furthermore, the removal of trap states and elongation of carrier lifetime are confirmed by the increased photocurrent of the self-biased photodetector fabricated using the shelled NCs.

  19. Metadynamics in the conformational space nonlinearly dimensionally reduced by Isomap

    NASA Astrophysics Data System (ADS)

    Spiwok, Vojtěch; Králová, Blanka

    2011-12-01

    Atomic motions in molecules are not linear. This infers that nonlinear dimensionality reduction methods can outperform linear ones in analysis of collective atomic motions. In addition, nonlinear collective motions can be used as potentially efficient guides for biased simulation techniques. Here we present a simulation with a bias potential acting in the directions of collective motions determined by a nonlinear dimensionality reduction method. Ad hoc generated conformations of trans,trans-1,2,4-trifluorocyclooctane were analyzed by Isomap method to map these 72-dimensional coordinates to three dimensions, as described by Brown and co-workers [J. Chem. Phys. 129, 064118 (2008)]. Metadynamics employing the three-dimensional embeddings as collective variables was applied to explore all relevant conformations of the studied system and to calculate its conformational free energy surface. The method sampled all relevant conformations (boat, boat-chair, and crown) and corresponding transition structures inaccessible by an unbiased simulation. This scheme allows to use essentially any parameter of the system as a collective variable in biased simulations. Moreover, the scheme we used for mapping out-of-sample conformations from the 72D to 3D space can be used as a general purpose mapping for dimensionality reduction, beyond the context of molecular modeling.

  20. Linear time relational prototype based learning.

    PubMed

    Gisbrecht, Andrej; Mokbel, Bassam; Schleif, Frank-Michael; Zhu, Xibin; Hammer, Barbara

    2012-10-01

    Prototype based learning offers an intuitive interface to inspect large quantities of electronic data in supervised or unsupervised settings. Recently, many techniques have been extended to data described by general dissimilarities rather than Euclidean vectors, so-called relational data settings. Unlike the Euclidean counterparts, the techniques have quadratic time complexity due to the underlying quadratic dissimilarity matrix. Thus, they are infeasible already for medium sized data sets. The contribution of this article is twofold: On the one hand we propose a novel supervised prototype based classification technique for dissimilarity data based on popular learning vector quantization (LVQ), on the other hand we transfer a linear time approximation technique, the Nyström approximation, to this algorithm and an unsupervised counterpart, the relational generative topographic mapping (GTM). This way, linear time and space methods result. We evaluate the techniques on three examples from the biomedical domain.

  1. A vector scanning processing technique for pulsed laser velocimetry

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Edwards, Robert V.

    1989-01-01

    Pulsed-laser-sheet velocimetry yields two-dimensional velocity vectors across an extended planar region of a flow. Current processing techniques offer high-precision (1-percent) velocity estimates, but can require hours of processing time on specialized array processors. Sometimes, however, a less accurate (about 5 percent) data-reduction technique which also gives unambiguous velocity vector information is acceptable. Here, a direct space-domain processing technique is described and shown to be far superior to previous methods in achieving these objectives. It uses a novel data coding and reduction technique and has no 180-deg directional ambiguity. A complex convection vortex flow was recorded and completely processed in under 2 min on an 80386-based PC, producing a two-dimensional velocity-vector map of the flowfield. Pulsed-laser velocimetry data can thus be reduced quickly and reasonably accurately, without specialized array processing hardware.

  2. Strain map of the tongue in normal and ALS speech patterns from tagged and diffusion MRI

    NASA Astrophysics Data System (ADS)

    Xing, Fangxu; Prince, Jerry L.; Stone, Maureen; Reese, Timothy G.; Atassi, Nazem; Wedeen, Van J.; El Fakhri, Georges; Woo, Jonghye

    2018-03-01

    Amyotrophic Lateral Sclerosis (ALS) is a neurological disease that causes death of neurons controlling muscle movements. Loss of speech and swallowing functions is a major impact due to degeneration of the tongue muscles. In speech studies using magnetic resonance (MR) techniques, diffusion tensor imaging (DTI) is used to capture internal tongue muscle fiber structures in three-dimensions (3D) in a non-invasive manner. Tagged magnetic resonance images (tMRI) are used to record tongue motion during speech. In this work, we aim to combine information obtained with both MR imaging techniques to compare the functionality characteristics of the tongue between normal and ALS subjects. We first extracted 3D motion of the tongue using tMRI from fourteen normal subjects in speech. The estimated motion sequences were then warped using diffeomorphic registration into the b0 spaces of the DTI data of two normal subjects and an ALS patient. We then constructed motion atlases by averaging all warped motion fields in each b0 space, and computed strain in the line of action along the muscle fiber directions provided by tractography. Strain in line with the fiber directions provides a quantitative map of the potential active region of the tongue during speech. Comparison between normal and ALS subjects explores the changing volume of compressing tongue tissues in speech facing the situation of muscle degradation. The proposed framework provides for the first time a dynamic map of contracting fibers in ALS speech patterns, and has the potential to provide more insight into the detrimental effects of ALS on speech.

  3. Strain Map of the Tongue in Normal and ALS Speech Patterns from Tagged and Diffusion MRI.

    PubMed

    Xing, Fangxu; Prince, Jerry L; Stone, Maureen; Reese, Timothy G; Atassi, Nazem; Wedeen, Van J; El Fakhri, Georges; Woo, Jonghye

    2018-02-01

    Amyotrophic Lateral Sclerosis (ALS) is a neurological disease that causes death of neurons controlling muscle movements. Loss of speech and swallowing functions is a major impact due to degeneration of the tongue muscles. In speech studies using magnetic resonance (MR) techniques, diffusion tensor imaging (DTI) is used to capture internal tongue muscle fiber structures in three-dimensions (3D) in a non-invasive manner. Tagged magnetic resonance images (tMRI) are used to record tongue motion during speech. In this work, we aim to combine information obtained with both MR imaging techniques to compare the functionality characteristics of the tongue between normal and ALS subjects. We first extracted 3D motion of the tongue using tMRI from fourteen normal subjects in speech. The estimated motion sequences were then warped using diffeomorphic registration into the b0 spaces of the DTI data of two normal subjects and an ALS patient. We then constructed motion atlases by averaging all warped motion fields in each b0 space, and computed strain in the line of action along the muscle fiber directions provided by tractography. Strain in line with the fiber directions provides a quantitative map of the potential active region of the tongue during speech. Comparison between normal and ALS subjects explores the changing volume of compressing tongue tissues in speech facing the situation of muscle degradation. The proposed framework provides for the first time a dynamic map of contracting fibers in ALS speech patterns, and has the potential to provide more insight into the detrimental effects of ALS on speech.

  4. Integrating remote sensing and terrain data in forest fire modeling

    NASA Astrophysics Data System (ADS)

    Medler, Michael Johns

    Forest fire policies are changing. Managers now face conflicting imperatives to re-establish pre-suppression fire regimes, while simultaneously preventing resource destruction. They must, therefore, understand the spatial patterns of fires. Geographers can facilitate this understanding by developing new techniques for mapping fire behavior. This dissertation develops such techniques for mapping recent fires and using these maps to calibrate models of potential fire hazards. In so doing, it features techniques that strive to address the inherent complexity of modeling the combinations of variables found in most ecological systems. Image processing techniques were used to stratify the elements of terrain, slope, elevation, and aspect. These stratification images were used to assure sample placement considered the role of terrain in fire behavior. Examination of multiple stratification images indicated samples were placed representatively across a controlled range of scales. The incorporation of terrain data also improved preliminary fire hazard classification accuracy by 40%, compared with remotely sensed data alone. A Kauth-Thomas transformation (KT) of pre-fire and post-fire Thematic Mapper (TM) remotely sensed data produced brightness, greenness, and wetness images. Image subtraction indicated fire induced change in brightness, greenness, and wetness. Field data guided a fuzzy classification of these change images. Because fuzzy classification can characterize a continuum of a phenomena where discrete classification may produce artificial borders, fuzzy classification was found to offer a range of fire severity information unavailable with discrete classification. These mapped fire patterns were used to calibrate a model of fire hazards for the entire mountain range. Pre-fire TM, and a digital elevation model produced a set of co-registered images. Training statistics were developed from 30 polygons associated with the previously mapped fire severity. Fuzzy classifications of potential burn patterns were produced from these images. Observed field data values were displayed over the hazard imagery to indicate the effectiveness of the model. Areas that burned without suppression during maximum fire severity are predicted best. Areas with widely spaced trees and grassy understory appear to be misrepresented, perhaps as a consequence of inaccuracies in the initial fire mapping.

  5. Geometric Representations of Condition Queries on Three-Dimensional Vector Fields

    NASA Technical Reports Server (NTRS)

    Henze, Chris

    1999-01-01

    Condition queries on distributed data ask where particular conditions are satisfied. It is possible to represent condition queries as geometric objects by plotting field data in various spaces derived from the data, and by selecting loci within these derived spaces which signify the desired conditions. Rather simple geometric partitions of derived spaces can represent complex condition queries because much complexity can be encapsulated in the derived space mapping itself A geometric view of condition queries provides a useful conceptual unification, allowing one to intuitively understand many existing vector field feature detection algorithms -- and to design new ones -- as variations on a common theme. A geometric representation of condition queries also provides a simple and coherent basis for computer implementation, reducing a wide variety of existing and potential vector field feature detection techniques to a few simple geometric operations.

  6. Mapping number to space in the two hemispheres of the avian brain.

    PubMed

    Rugani, Rosa; Vallortigara, Giorgio; Regolin, Lucia

    2016-09-01

    Pre-verbal infants and non-human animals associate small numbers with the left space and large numbers with the right space. Birds and primates, trained to identify a given position in a sagittal series of identical positions, whenever required to respond on a left/right oriented series, referred the given position starting from the left end. Here, we extended this evidence by selectively investigating the role of either cerebral hemisphere, using the temporary monocular occlusion technique. In birds, lacking the corpus callosum, visual input is fed mainly to the contralateral hemisphere. We trained 4-day-old chicks to identify the 4th element in a sagittal series of 10 identical elements. At test, the series was identical but left/right oriented. Test was conducted in right monocular, left monocular or binocular condition of vision. Right monocular chicks pecked at the 4th right element; left monocular and binocular chicks pecked at the 4th left element. Data on monocular chicks demonstrate that both hemispheres deal with an ordinal (sequential) task. Data on binocular chicks indicate that the left bias is linked to a right hemisphere dominance, that allocates the attention toward the left hemispace. This constitutes a first step towards understanding the neural basis of number space mapping. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Machine Learning Based Dimensionality Reduction Facilitates Ligand Diffusion Paths Assessment: A Case of Cytochrome P450cam.

    PubMed

    Rydzewski, J; Nowak, W

    2016-04-12

    In this work we propose an application of a nonlinear dimensionality reduction method to represent the high-dimensional configuration space of the ligand-protein dissociation process in a manner facilitating interpretation. Rugged ligand expulsion paths are mapped into 2-dimensional space. The mapping retains the main structural changes occurring during the dissociation. The topological similarity of the reduced paths may be easily studied using the Fréchet distances, and we show that this measure facilitates machine learning classification of the diffusion pathways. Further, low-dimensional configuration space allows for identification of residues active in transport during the ligand diffusion from a protein. The utility of this approach is illustrated by examination of the configuration space of cytochrome P450cam involved in expulsing camphor by means of enhanced all-atom molecular dynamics simulations. The expulsion trajectories are sampled and constructed on-the-fly during molecular dynamics simulations using the recently developed memetic algorithms [ Rydzewski, J.; Nowak, W. J. Chem. Phys. 2015 , 143 ( 12 ), 124101 ]. We show that the memetic algorithms are effective for enforcing the ligand diffusion and cavity exploration in the P450cam-camphor complex. Furthermore, we demonstrate that machine learning techniques are helpful in inspecting ligand diffusion landscapes and provide useful tools to examine structural changes accompanying rare events.

  8. Monitoring land cover changes by remote sensing in north west Egypt

    NASA Astrophysics Data System (ADS)

    Richards, Timothy Steven

    The Mediterratiean coastal strip of Egypt is a semi-arid environment which supports a variety of agricultural practices ranging from irrigated sedentary agriculture to semi-nomadic pastoralism. The sedentarisation of the nomadic Bedouin coupled with an increase in population of both people and livestock and a decrease in the extent of the rangelands, has resulted in severe pressure being exerted upon the environment. Satellite remote sensing of vegetation offers the potential to aid regional management by complementing conventional techniques of vegetation mapping and monitoring. This thesis examines the different techniques available for vegetation mapping using visible and near infrared spectral wave bands. The different techniques available for vegetation mapping using remotely sensed data are reviewed and discussed with reference to semi-arid environments. The underlying similarity of many of the techniques is emphasised and their individual merits discussed. The spectral feature-space of Landsat data of two representative study areas in northern Egypt is explored and examined using graphical techniques and principal components analysis. Hand held radiometric field data are also presented for individual soil types within the region. It is proposed that by using reference data for individual soil types, improved estimates of vegetation cover can be ascertained. A number of radiometric corrections are applied to the digital Landsat data in order to convert the arbitrary digital values of the different spectral bands into physical values of reflectance. The effect of this standardization on the principal components is examined. The stratified approach to vegetation mapping which was explored using the field data is applied in turn to the digital Landsat images. Whilst the stratified approach was not found to offer significant advantages over the non-stratified approach in this case, the analysis does serve to provide an accurate datum against which to measure vegetation. In conclusion a satellite based system for operational vegetation monitoring is proposed.

  9. Spatial Analysis in Determining Physical Factors of Pedestrian Space Livability, Case Study: Pedestrian Space on Jalan Kemasan, Yogyakarta

    NASA Astrophysics Data System (ADS)

    Fauzi, A. F.; Aditianata, A.

    2018-02-01

    The existence of street as a place to perform various human activities becomes an important issue nowadays. In the last few decades, cars and motorcycles dominate streets in various cities in the world. On the other hand, human activity on the street is the determinant of the city livability. Previous research has pointed out that if there is lots of human activity in the street, then the city will be interesting. Otherwise, if the street has no activity, then the city will be boring. Learning from that statement, now various cities in the world are developing the concept of livable streets. Livable streets shown by diversity of human activities conducted in the streets’ pedestrian space. In Yogyakarta, one of the streets shown diversity of human activities is Jalan Kemasan. This study attempts to determine the physical factors of pedestrian space affecting the livability in Jalan Kemasan Yogyakarta through spatial analysis. Spatial analysis was performed by overlay technique between liveable point (activity diversity) distribution map and variable distribution map. Those physical pedestrian space research variable included element of shading, street vendors, building setback, seat location, divider between street and pedestrian way, and mixed use building function. More diverse the activity of one variable, then those variable are more affected then others. Overlay result then strengthened by field observation to qualitatively ensure the deduction. In the end, this research will provide valuable input for street and pedestrian space planning that is comfortable for human activities.

  10. Sensitivity analysis for parametric generalized implicit quasi-variational-like inclusions involving P-[eta]-accretive mappings

    NASA Astrophysics Data System (ADS)

    Kazmi, K. R.; Khan, F. A.

    2008-01-01

    In this paper, using proximal-point mapping technique of P-[eta]-accretive mapping and the property of the fixed-point set of set-valued contractive mappings, we study the behavior and sensitivity analysis of the solution set of a parametric generalized implicit quasi-variational-like inclusion involving P-[eta]-accretive mapping in real uniformly smooth Banach space. Further, under suitable conditions, we discuss the Lipschitz continuity of the solution set with respect to the parameter. The technique and results presented in this paper can be viewed as extension of the techniques and corresponding results given in [R.P. Agarwal, Y.-J. Cho, N.-J. Huang, Sensitivity analysis for strongly nonlinear quasi-variational inclusions, Appl. MathE Lett. 13 (2002) 19-24; S. Dafermos, Sensitivity analysis in variational inequalities, Math. Oper. Res. 13 (1988) 421-434; X.-P. Ding, Sensitivity analysis for generalized nonlinear implicit quasi-variational inclusions, Appl. Math. Lett. 17 (2) (2004) 225-235; X.-P. Ding, Parametric completely generalized mixed implicit quasi-variational inclusions involving h-maximal monotone mappings, J. Comput. Appl. Math. 182 (2) (2005) 252-269; X.-P. Ding, C.L. Luo, On parametric generalized quasi-variational inequalities, J. Optim. Theory Appl. 100 (1999) 195-205; Z. Liu, L. Debnath, S.M. Kang, J.S. Ume, Sensitivity analysis for parametric completely generalized nonlinear implicit quasi-variational inclusions, J. Math. Anal. Appl. 277 (1) (2003) 142-154; R.N. Mukherjee, H.L. Verma, Sensitivity analysis of generalized variational inequalities, J. Math. Anal. Appl. 167 (1992) 299-304; M.A. Noor, Sensitivity analysis framework for general quasi-variational inclusions, Comput. Math. Appl. 44 (2002) 1175-1181; M.A. Noor, Sensitivity analysis for quasivariational inclusions, J. Math. Anal. Appl. 236 (1999) 290-299; J.Y. Park, J.U. Jeong, Parametric generalized mixed variational inequalities, Appl. Math. Lett. 17 (2004) 43-48].

  11. A predictive penetrative fracture mapping method from regional potential field and geologic datasets, southwest Colorado Plateau, U.S.A

    USGS Publications Warehouse

    Gettings, M.E.; Bultman, M.W.

    2005-01-01

    Some aquifers of the southwest Colorado Plateau, U.S.A., are deeply buried and overlain by several impermeable units, and thus recharge to the aquifer is probably mainly by seepage down penetrative fracture systems. This purpose of this study was to develop a method to map the location of candidate deep penetrative fractures over a 120,000 km2 area using gravity and aeromagnetic anomaly data together with surficial fracture data. The resulting database constitutes a spatially registered estimate of recharge location. Candidate deep fractures were obtained by spatial correlation of horizontal gradient and analytic signal maxima of gravity and magnetic anomalies vertically with major surficial lineaments obtained from geologic, topographic, side-looking airborne radar, and satellite imagery. The maps define a sub-set of possible penetrative fractures because of limitations of data coverage and the analysis technique. The data and techniques employed do not yield any indication as to whether fractures are open or closed. Correlations were carried out using image processing software in such a way that every pixel on the resulting grids was coded to uniquely identify which datasets correlated. The technique correctly identified known deep fracture systems and many new ones. Maps of the correlations also define in detail the tectonic fabrics of the Southwestern Colorado Plateau. Copyright ?? The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences; TERRAPUB.

  12. Lithologic, age group, magnetopolarity, and geochemical maps of the Springerville Volcanic Field, east-central Arizona

    USGS Publications Warehouse

    Condit, Christopher D.; Crumpler, Larry S.; Aubele, Jayne C.

    1999-01-01

    The Springerville volcanic field is one of the many late Pliocene to Holocene, mostly basaltic, volcanic fields present near the Colorado Plateau margin (fig. 1, in pamphlet). The field overlies the lithospheric transition zone between the Colorado Plateau and the Basin and Range Province (Condit and others, 1989b). Establishing relations in time, space, and composition of the rocks of these plateau-margin fields offers the possibility to integrate more fully into a regional synthesis the detailed geochemistry of these fields now being examined (for example, Perry and others, 1987; Fitton and others, 1988; Menzies and others, 1991). The work also provides baseline information for understanding mantle properties and processes at different depths and locations. Because the Springerville field is the southernmost of the plateau-margin fields, and because it contains both tholeiitic and alkalic rocks (tables 1 and 2, in pamphlet), it is a particularly important location for establishing these patterns in time, space, and composition. Our four thematic maps of the Springerville field were compiled by using digital mapping techniques so that associated petrologic and chemical data could be conveniently included in a geographic information system for one of the plateau-margin fields. Parts of these maps have been included in Condit (1995), a stand-alone Macintosh2 computer program that takes advantage of their digital format.

  13. Automating Range Surveillance Through Radio Interferometry and Field Strength Mapping Techniques

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Space vehicle launches are often delayed because of the challenge of verifying that the range is clear, and such delays are likely to become more prevalent as more and more new spaceports are built. Range surveillance is one of the primary focuses of Range Safety for launches and often drives costs and schedules. As NASA's primary launch operation center, Kennedy Space Center is very interested in new technologies that increase the responsiveness of radio frequency (RF) surveillance systems. These systems help Range Safety personnel clear the range by identifying, pinpointing, and resolving any unknown sources of RF emissions prior to each launch.

  14. Imprint of non-linear effects on HI intensity mapping on large scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umeh, Obinna, E-mail: umeobinna@gmail.com

    Intensity mapping of the HI brightness temperature provides a unique way of tracing large-scale structures of the Universe up to the largest possible scales. This is achieved by using a low angular resolution radio telescopes to detect emission line from cosmic neutral Hydrogen in the post-reionization Universe. We use general relativistic perturbation theory techniques to derive for the first time the full expression for the HI brightness temperature up to third order in perturbation theory without making any plane-parallel approximation. We use this result and the renormalization prescription for biased tracers to study the impact of nonlinear effects on themore » power spectrum of HI brightness temperature both in real and redshift space. We show how mode coupling at nonlinear order due to nonlinear bias parameters and redshift space distortion terms modulate the power spectrum on large scales. The large scale modulation may be understood to be due to the effective bias parameter and effective shot noise.« less

  15. Analysis of advanced optical glass and systems

    NASA Technical Reports Server (NTRS)

    Johnson, R. Barry; Feng, Chen

    1991-01-01

    Optical lens systems performance utilizing optical materials comprising reluctant glass forming compositions was studied. Such special glasses are being explored by NASA/Marshall Space Flight Center (MSFC) researchers utilizing techniques such as containerless processing in space on the MSFC Acoustic Levitation Furnace and on the High Temperature Acoustic Levitation Furnace in the conceptual design phase for the United States Microgravity Laboratory (USML) series of shuttle flights. The application of high refractive index and low dispersive power glasses in optical lens design was investigated. The potential benefits and the impacts to the optical lens design performance were evaluated. The results of the studies revealed that the use of these extraordinary glasses can result in significant optical performance improvements. Recommendations of proposed optical properties for potential new glasses were also made. Applications of these new glasses are discussed, including the impact of high refractive index and low dispersive power, improvements of the system performance by using glasses which are located outside of traditional glass map, and considerations in establishing glass properties beyond conventional glass map limits.

  16. Imprint of non-linear effects on HI intensity mapping on large scales

    NASA Astrophysics Data System (ADS)

    Umeh, Obinna

    2017-06-01

    Intensity mapping of the HI brightness temperature provides a unique way of tracing large-scale structures of the Universe up to the largest possible scales. This is achieved by using a low angular resolution radio telescopes to detect emission line from cosmic neutral Hydrogen in the post-reionization Universe. We use general relativistic perturbation theory techniques to derive for the first time the full expression for the HI brightness temperature up to third order in perturbation theory without making any plane-parallel approximation. We use this result and the renormalization prescription for biased tracers to study the impact of nonlinear effects on the power spectrum of HI brightness temperature both in real and redshift space. We show how mode coupling at nonlinear order due to nonlinear bias parameters and redshift space distortion terms modulate the power spectrum on large scales. The large scale modulation may be understood to be due to the effective bias parameter and effective shot noise.

  17. Energy-efficient constellations design and fast decoding for space-collaborative MIMO visible light communications

    NASA Astrophysics Data System (ADS)

    Zhu, Yi-Jun; Liang, Wang-Feng; Wang, Chao; Wang, Wen-Ya

    2017-01-01

    In this paper, space-collaborative constellations (SCCs) for indoor multiple-input multiple-output (MIMO) visible light communication (VLC) systems are considered. Compared with traditional VLC MIMO techniques, such as repetition coding (RC), spatial modulation (SM) and spatial multiplexing (SMP), SCC achieves the minimum average optical power for a fixed minimum Euclidean distance. We have presented a unified SCC structure for 2×2 MIMO VLC systems and extended it to larger MIMO VLC systems with more transceivers. Specifically for 2×2 MIMO VLC, a fast decoding algorithm is developed with decoding complexity almost linear in terms of the square root of the cardinality of SCC, and the expressions of symbol error rate of SCC are presented. In addition, bit mappings similar to Gray mapping are proposed for SCC. Computer simulations are performed to verify the fast decoding algorithm and the performance of SCC, and the results demonstrate that the performance of SCC is better than those of RC, SM and SMP for indoor channels in general.

  18. Segmentation by fusion of histogram-based k-means clusters in different color spaces.

    PubMed

    Mignotte, Max

    2008-05-01

    This paper presents a new, simple, and efficient segmentation approach, based on a fusion procedure which aims at combining several segmentation maps associated to simpler partition models in order to finally get a more reliable and accurate segmentation result. The different label fields to be fused in our application are given by the same and simple (K-means based) clustering technique on an input image expressed in different color spaces. Our fusion strategy aims at combining these segmentation maps with a final clustering procedure using as input features, the local histogram of the class labels, previously estimated and associated to each site and for all these initial partitions. This fusion framework remains simple to implement, fast, general enough to be applied to various computer vision applications (e.g., motion detection and segmentation), and has been successfully applied on the Berkeley image database. The experiments herein reported in this paper illustrate the potential of this approach compared to the state-of-the-art segmentation methods recently proposed in the literature.

  19. DeepSurveyCam--A Deep Ocean Optical Mapping System.

    PubMed

    Kwasnitschka, Tom; Köser, Kevin; Sticklus, Jan; Rothenbeck, Marcel; Weiß, Tim; Wenzlaff, Emanuel; Schoening, Timm; Triebe, Lars; Steinführer, Anja; Devey, Colin; Greinert, Jens

    2016-01-28

    Underwater photogrammetry and in particular systematic visual surveys of the deep sea are by far less developed than similar techniques on land or in space. The main challenges are the rough conditions with extremely high pressure, the accessibility of target areas (container and ship deployment of robust sensors, then diving for hours to the ocean floor), and the limitations of localization technologies (no GPS). The absence of natural light complicates energy budget considerations for deep diving flash-equipped drones. Refraction effects influence geometric image formation considerations with respect to field of view and focus, while attenuation and scattering degrade the radiometric image quality and limit the effective visibility. As an improvement on the stated issues, we present an AUV-based optical system intended for autonomous visual mapping of large areas of the seafloor (square kilometers) in up to 6000 m water depth. We compare it to existing systems and discuss tradeoffs such as resolution vs. mapped area and show results from a recent deployment with 90,000 mapped square meters of deep ocean floor.

  20. Mapping a battlefield simulation onto message-passing parallel architectures

    NASA Technical Reports Server (NTRS)

    Nicol, David M.

    1987-01-01

    Perhaps the most critical problem in distributed simulation is that of mapping: without an effective mapping of workload to processors the speedup potential of parallel processing cannot be realized. Mapping a simulation onto a message-passing architecture is especially difficult when the computational workload dynamically changes as a function of time and space; this is exactly the situation faced by battlefield simulations. This paper studies an approach where the simulated battlefield domain is first partitioned into many regions of equal size; typically there are more regions than processors. The regions are then assigned to processors; a processor is responsible for performing all simulation activity associated with the regions. The assignment algorithm is quite simple and attempts to balance load by exploiting locality of workload intensity. The performance of this technique is studied on a simple battlefield simulation implemented on the Flex/32 multiprocessor. Measurements show that the proposed method achieves reasonable processor efficiencies. Furthermore, the method shows promise for use in dynamic remapping of the simulation.

  1. Digitizing zone maps, using modified LARSYS program. [computer graphics and computer techniques for mapping

    NASA Technical Reports Server (NTRS)

    Giddings, L.; Boston, S.

    1976-01-01

    A method for digitizing zone maps is presented, starting with colored images and producing a final one-channel digitized tape. This method automates the work previously done interactively on the Image-100 and Data Analysis System computers of the Johnson Space Center (JSC) Earth Observations Division (EOD). A color-coded map was digitized through color filters on a scanner to form a digital tape in LARSYS-2 or JSC Universal format. The taped image was classified by the EOD LARSYS program on the basis of training fields included in the image. Numerical values were assigned to all pixels in a given class, and the resulting coded zone map was written on a LARSYS or Universal tape. A unique spatial filter option permitted zones to be made homogeneous and edges of zones to be abrupt transitions from one zone to the next. A zoom option allowed the output image to have arbitrary dimensions in terms of number of lines and number of samples on a line. Printouts of the computer program are given and the images that were digitized are shown.

  2. Mineral Potential in India Using Airborne Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) Data

    NASA Astrophysics Data System (ADS)

    Oommen, T.; Chatterjee, S.

    2017-12-01

    NASA and the Indian Space Research Organization (ISRO) are generating Earth surface features data using Airborne Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) within 380 to 2500 nm spectral range. This research focuses on the utilization of such data to better understand the mineral potential in India and to demonstrate the application of spectral data in rock type discrimination and mapping for mineral exploration by using automated mapping techniques. The primary focus area of this research is the Hutti-Maski greenstone belt, located in Karnataka, India. The AVIRIS-NG data was integrated with field analyzed data (laboratory scaled compositional analysis, mineralogy, and spectral library) to characterize minerals and rock types. An expert system was developed to produce mineral maps from AVIRIS-NG data automatically. The ground truth data from the study areas was obtained from the existing literature and collaborators from India. The Bayesian spectral unmixing algorithm was used in AVIRIS-NG data for endmember selection. The classification maps of the minerals and rock types were developed using support vector machine algorithm. The ground truth data was used to verify the mineral maps.

  3. US-TEC: A new data assimilation product from the Space Environment Center characterizing the ionospheric total electron content using real-time GPS data

    NASA Astrophysics Data System (ADS)

    Fuller-Rowell, Tim; Araujo-Pradere, Eduardo; Minter, Cliff; Codrescu, Mihail; Spencer, Paul; Robertson, Doug; Jacobson, Abram R.

    2006-12-01

    The potential of data assimilation for operational numerical weather forecasting has been appreciated for many years. For space weather it is a new path that we are just beginning to explore. With the emergence of satellite constellations and the networks of ground-based observations, sufficient data sources are now available to make the application of data assimilation techniques a viable option. The first space weather product at Space Environment Center (SEC) utilizing data assimilation techniques, US-TEC, was launched as a test operational product in November 2004. US-TEC characterizes the ionospheric total electron content (TEC) over the continental United States (CONUS) every 15 min with about a 15-min latency. US-TEC is based on a Kalman filter data assimilation scheme driven by a ground-based network of real-time GPS stations. The product includes a map of the vertical TEC, an estimate of the uncertainty in the map, and the departure of the TEC from a 10-day average at that particular universal time. In addition, data files are provided for vertical TEC and the line-of-sight electron content to all GPS satellites in view over the CONUS at that time. The information can be used to improve single-frequency GPS positioning by providing more accurate corrections for the ionospheric signal delay, or it can be used to initialize rapid integer ambiguity resolution schemes for dual-frequency GPS systems. Validation of US-TEC indicates an accuracy of the line-of-sight electron content of between 2 and 3 TEC units (1 TECU = 1016 el m-2), equivalent to less than 50 cm signal delay at L1 frequencies, which promises value for GPS users. This is the first step along a path that will likely lead to major improvement in space weather forecasting, paralleling the advances achieved in meteorological weather forecasting.

  4. Virtual environment navigation with look-around mode to explore new real spaces by people who are blind.

    PubMed

    Lahav, Orly; Gedalevitz, Hadas; Battersby, Steven; Brown, David; Evett, Lindsay; Merritt, Patrick

    2018-05-01

    This paper examines the ability of people who are blind to construct a mental map and perform orientation tasks in real space by using Nintendo Wii technologies to explore virtual environments. The participant explores new spaces through haptic and auditory feedback triggered by pointing or walking in the virtual environments and later constructs a mental map, which can be used to navigate in real space. The study included 10 participants who were congenitally or adventitiously blind, divided into experimental and control groups. The research was implemented by using virtual environments exploration and orientation tasks in real spaces, using both qualitative and quantitative methods in its methodology. The results show that the mode of exploration afforded to the experimental group is radically new in orientation and mobility training; as a result 60% of the experimental participants constructed mental maps that were based on map model, compared with only 30% of the control group participants. Using technology that enabled them to explore and to collect spatial information in a way that does not exist in real space influenced the ability of the experimental group to construct a mental map based on the map model. Implications for rehabilitation The virtual cane system for the first time enables people who are blind to explore and collect spatial information via the look-around mode in addition to the walk-around mode. People who are blind prefer to use look-around mode to explore new spaces, as opposed to the walking mode. Although the look-around mode requires users to establish a complex collecting and processing procedure for the spatial data, people who are blind using this mode are able to construct a mental map as a map model. For people who are blind (as for the sighted) construction of a mental map based on map model offers more flexibility in choosing a walking path in a real space, accounting for changes that occur in the space.

  5. The efficacy of the 'mind map' study technique.

    PubMed

    Farrand, Paul; Hussain, Fearzana; Hennessy, Enid

    2002-05-01

    To examine the effectiveness of using the 'mind map' study technique to improve factual recall from written information. To obtain baseline data, subjects completed a short test based on a 600-word passage of text prior to being randomly allocated to form two groups: 'self-selected study technique' and 'mind map'. After a 30-minute interval the self-selected study technique group were exposed to the same passage of text previously seen and told to apply existing study techniques. Subjects in the mind map group were trained in the mind map technique and told to apply it to the passage of text. Recall was measured after an interfering task and a week later. Measures of motivation were taken. Barts and the London School of Medicine and Dentistry, University of London. 50 second- and third-year medical students. Recall of factual material improved for both the mind map and self-selected study technique groups at immediate test compared with baseline. However this improvement was only robust after a week for those in the mind map group. At 1 week, the factual knowledge in the mind map group was greater by 10% (adjusting for baseline) (95% CI -1% to 22%). However motivation for the technique used was lower in the mind map group; if motivation could have been made equal in the groups, the improvement with mind mapping would have been 15% (95% CI 3% to 27%). Mind maps provide an effective study technique when applied to written material. However before mind maps are generally adopted as a study technique, consideration has to be given towards ways of improving motivation amongst users.

  6. Exploring representations of protein structure for automated remote homology detection and mapping of protein structure space

    PubMed Central

    2014-01-01

    Background Due to rapid sequencing of genomes, there are now millions of deposited protein sequences with no known function. Fast sequence-based comparisons allow detecting close homologs for a protein of interest to transfer functional information from the homologs to the given protein. Sequence-based comparison cannot detect remote homologs, in which evolution has adjusted the sequence while largely preserving structure. Structure-based comparisons can detect remote homologs but most methods for doing so are too expensive to apply at a large scale over structural databases of proteins. Recently, fragment-based structural representations have been proposed that allow fast detection of remote homologs with reasonable accuracy. These representations have also been used to obtain linearly-reducible maps of protein structure space. It has been shown, as additionally supported from analysis in this paper that such maps preserve functional co-localization of the protein structure space. Methods Inspired by a recent application of the Latent Dirichlet Allocation (LDA) model for conducting structural comparisons of proteins, we propose higher-order LDA-obtained topic-based representations of protein structures to provide an alternative route for remote homology detection and organization of the protein structure space in few dimensions. Various techniques based on natural language processing are proposed and employed to aid the analysis of topics in the protein structure domain. Results We show that a topic-based representation is just as effective as a fragment-based one at automated detection of remote homologs and organization of protein structure space. We conduct a detailed analysis of the information content in the topic-based representation, showing that topics have semantic meaning. The fragment-based and topic-based representations are also shown to allow prediction of superfamily membership. Conclusions This work opens exciting venues in designing novel representations to extract information about protein structures, as well as organizing and mining protein structure space with mature text mining tools. PMID:25080993

  7. On the retrieval of crystallographic information from atom probe microscopy data via signal mapping from the detector coordinate space.

    PubMed

    Wallace, Nathan D; Ceguerra, Anna V; Breen, Andrew J; Ringer, Simon P

    2018-06-01

    Atom probe tomography is a powerful microscopy technique capable of reconstructing the 3D position and chemical identity of millions of atoms within engineering materials, at the atomic level. Crystallographic information contained within the data is particularly valuable for the purposes of reconstruction calibration and grain boundary analysis. Typically, analysing this data is a manual, time-consuming and error prone process. In many cases, the crystallographic signal is so weak that it is difficult to detect at all. In this study, a new automated signal processing methodology is demonstrated. We use the affine properties of the detector coordinate space, or the 'detector stack', as the basis for our calculations. The methodological framework and the visualisation tools are shown to be superior to the standard method of crystallographic pole visualisation directly from field evaporation images and there is no requirement for iterations between a full real-space initial tomographic reconstruction and the detector stack. The mapping approaches are demonstrated for aluminium, tungsten, magnesium and molybdenum. Implications for reconstruction calibration, accuracy of crystallographic measurements, reliability and repeatability are discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Curvilinear component analysis: a self-organizing neural network for nonlinear mapping of data sets.

    PubMed

    Demartines, P; Herault, J

    1997-01-01

    We present a new strategy called "curvilinear component analysis" (CCA) for dimensionality reduction and representation of multidimensional data sets. The principle of CCA is a self-organized neural network performing two tasks: vector quantization (VQ) of the submanifold in the data set (input space); and nonlinear projection (P) of these quantizing vectors toward an output space, providing a revealing unfolding of the submanifold. After learning, the network has the ability to continuously map any new point from one space into another: forward mapping of new points in the input space, or backward mapping of an arbitrary position in the output space.

  9. Meeting NASA's Mission Through Commercial Partnerships

    NASA Technical Reports Server (NTRS)

    Nall, Mark

    2003-01-01

    This paper examines novel approaches to furthering NASA's missions through the use of commercial partnerships. The exploration of space ha proven to be a costly endeavor requiring the development of new technologies at significant expense. One of the prime factors holding bac the robust development of space is insufficient investment in the technologies necessary to make it a reality. The key to success in bringin needed space development technologies to maturation lies in bringing technology investors together from government, industry and academia. aggressive road map for developing space will require a diverse set of interest to industry or other government agencies. By having each invest( contributing to the part of the technology development of interest to them development of space systems can be put together at a cost far below wl would be required to develop for a stand-alone effort. The NASA Space Partnership Division has been employing this technique to leverage a 30 million dollar NASA investment into at 100 million dollar advanced technology development effort focused on meeting NASA's mission needs.

  10. VMF3/GPT3: refined discrete and empirical troposphere mapping functions

    NASA Astrophysics Data System (ADS)

    Landskron, Daniel; Böhm, Johannes

    2018-04-01

    Incorrect modeling of troposphere delays is one of the major error sources for space geodetic techniques such as Global Navigation Satellite Systems (GNSS) or Very Long Baseline Interferometry (VLBI). Over the years, many approaches have been devised which aim at mapping the delay of radio waves from zenith direction down to the observed elevation angle, so-called mapping functions. This paper contains a new approach intended to refine the currently most important discrete mapping function, the Vienna Mapping Functions 1 (VMF1), which is successively referred to as Vienna Mapping Functions 3 (VMF3). It is designed in such a way as to eliminate shortcomings in the empirical coefficients b and c and in the tuning for the specific elevation angle of 3°. Ray-traced delays of the ray-tracer RADIATE serve as the basis for the calculation of new mapping function coefficients. Comparisons of modeled slant delays demonstrate the ability of VMF3 to approximate the underlying ray-traced delays more accurately than VMF1 does, in particular at low elevation angles. In other words, when requiring highest precision, VMF3 is to be preferable to VMF1. Aside from revising the discrete form of mapping functions, we also present a new empirical model named Global Pressure and Temperature 3 (GPT3) on a 5°× 5° as well as a 1°× 1° global grid, which is generally based on the same data. Its main components are hydrostatic and wet empirical mapping function coefficients derived from special averaging techniques of the respective (discrete) VMF3 data. In addition, GPT3 also contains a set of meteorological quantities which are adopted as they stand from their predecessor, Global Pressure and Temperature 2 wet. Thus, GPT3 represents a very comprehensive troposphere model which can be used for a series of geodetic as well as meteorological and climatological purposes and is fully consistent with VMF3.

  11. Doping profile measurements in silicon using terahertz time domain spectroscopy (THz-TDS) via electrochemical anodic oxidation

    NASA Astrophysics Data System (ADS)

    Tulsyan, Gaurav

    Doping profiles are engineered to manipulate device properties and to determine electrical performances of microelectronic devices frequently. To support engineering studies afterward, essential information is usually required from physically characterized doping profiles. Secondary Ion Mass Spectrometry (SIMS), Spreading Resistance Profiling (SRP) and Electrochemical Capacitance Voltage (ECV) profiling are standard techniques for now to map profile. SIMS yields a chemical doping profile via ion sputtering process and owns a better resolution, whereas ECV and SRP produce an electrical doping profile detecting free carriers in microelectronic devices. The major difference between electrical and chemical doping profiles is at heavily doped regions greater than 1020 atoms/cm3. At the profile region over the solubility limit, inactive dopants induce a flat plateau and detected by electrical measurements only. Destructive techniques are usually designed as stand-alone systems to study impurities. For an in-situ process control purpose, non-contact methods, such as ellipsometry and non-contact capacitance voltage (CV) techniques are current under development. In this theses work, terahertz time domain spectroscopy (THz-TDS) is utilized to achieve electrical doping profile in both destructive and non-contact manners. In recent years the Terahertz group at Rochester Institute Technology developed several techniques that use terahertz pulses to non-destructively map doping profiles. In this thesis, we study a destructive but potentially higher resolution version of the terahertz based approach to map the profile of activated dopants and augment the non-destructive approaches already developed. The basic idea of the profile mapping approach developed in this MS thesis is to anodize, and thus oxidize to silicon dioxide, thin layers (down to below 10 nm) of the wafer with the doping profile to be mapped. Since the dopants atoms and any free carriers in the silicon oxide thin film are invisible to the terahertz probe this anodization step very effectively removes a 'thin slice' from the doping profile to be mapped. By iterating between anodization and terahertz measurements that detect only the 'remaining' non-oxidized portion of the doping profile one can re-construct the doping profile with significantly higher precision compared to what is possible by only a single non-destructive measurement of the un-anodized profile as used in the non-destructive version of our technique. In this MS thesis we explore all aspects of this anodization based variation of doping profile mapping using free space terahertz pulses. This includes a study of silicon dioxide thin film growth using a room temperature electrochemical oxidation process. Etching procedures providing the option to remove between successive anodization and terahertz measurement steps. THz-TDS measurements of successively anodized profiles will be compared with sheet resistance and SIMS measurements to benchmark and improve the new technique.

  12. Using semantic data modeling techniques to organize an object-oriented database for extending the mass storage model

    NASA Technical Reports Server (NTRS)

    Campbell, William J.; Short, Nicholas M., Jr.; Roelofs, Larry H.; Dorfman, Erik

    1991-01-01

    A methodology for optimizing organization of data obtained by NASA earth and space missions is discussed. The methodology uses a concept based on semantic data modeling techniques implemented in a hierarchical storage model. The modeling is used to organize objects in mass storage devices, relational database systems, and object-oriented databases. The semantic data modeling at the metadata record level is examined, including the simulation of a knowledge base and semantic metadata storage issues. The semantic data model hierarchy and its application for efficient data storage is addressed, as is the mapping of the application structure to the mass storage.

  13. Fast Atomic-Scale Elemental Mapping of Crystalline Materials by STEM Energy-Dispersive X-Ray Spectroscopy Achieved with Thin Specimens.

    PubMed

    Lu, Ping; Yuan, Renliang; Zuo, Jian Min

    2017-02-01

    Elemental mapping at the atomic-scale by scanning transmission electron microscopy (STEM) using energy-dispersive X-ray spectroscopy (EDS) provides a powerful real-space approach to chemical characterization of crystal structures. However, applications of this powerful technique have been limited by inefficient X-ray emission and collection, which require long acquisition times. Recently, using a lattice-vector translation method, we have shown that rapid atomic-scale elemental mapping using STEM-EDS can be achieved. This method provides atomic-scale elemental maps averaged over crystal areas of ~few 10 nm2 with the acquisition time of ~2 s or less. Here we report the details of this method, and, in particular, investigate the experimental conditions necessary for achieving it. It shows, that in addition to usual conditions required for atomic-scale imaging, a thin specimen is essential for the technique to be successful. Phenomenological modeling shows that the localization of X-ray signals to atomic columns is a key reason. The effect of specimen thickness on the signal delocalization is studied by multislice image simulations. The results show that the X-ray localization can be achieved by choosing a thin specimen, and the thickness of less than about 22 nm is preferred for SrTiO3 in [001] projection for 200 keV electrons.

  14. Visualizing Mobility of Public Transportation System.

    PubMed

    Zeng, Wei; Fu, Chi-Wing; Arisona, Stefan Müller; Erath, Alexander; Qu, Huamin

    2014-12-01

    Public transportation systems (PTSs) play an important role in modern cities, providing shared/massive transportation services that are essential for the general public. However, due to their increasing complexity, designing effective methods to visualize and explore PTS is highly challenging. Most existing techniques employ network visualization methods and focus on showing the network topology across stops while ignoring various mobility-related factors such as riding time, transfer time, waiting time, and round-the-clock patterns. This work aims to visualize and explore passenger mobility in a PTS with a family of analytical tasks based on inputs from transportation researchers. After exploring different design alternatives, we come up with an integrated solution with three visualization modules: isochrone map view for geographical information, isotime flow map view for effective temporal information comparison and manipulation, and OD-pair journey view for detailed visual analysis of mobility factors along routes between specific origin-destination pairs. The isotime flow map linearizes a flow map into a parallel isoline representation, maximizing the visualization of mobility information along the horizontal time axis while presenting clear and smooth pathways from origin to destinations. Moreover, we devise several interactive visual query methods for users to easily explore the dynamics of PTS mobility over space and time. Lastly, we also construct a PTS mobility model from millions of real passenger trajectories, and evaluate our visualization techniques with assorted case studies with the transportation researchers.

  15. On safe ground? Analysis of European urban geohazards using satellite radar interferometry

    NASA Astrophysics Data System (ADS)

    Capes, Renalt; Teeuw, Richard

    2017-06-01

    Urban geological hazards involving ground instability can be costly, dangerous, and affect many people, yet there is little information about the extent or distribution of geohazards within Europe's urban areas. A reason for this is the impracticality of measuring ground instability associated with the many geohazard processes that are often hidden beneath buildings and are imperceptible to conventional geological survey detection techniques. Satellite radar interferometry, or InSAR, offers a remote sensing technique to map mm-scale ground deformation over wide areas given an archive of suitable multi-temporal data. The EC FP7 Space project named PanGeo (2011-2014), used InSAR to map areas of unstable ground in 52 of Europe's cities, representing ∼15% of the EU population. In partnership with Europe's national geological surveys, the PanGeo project developed a standardised geohazard-mapping methodology and recorded 1286 instances of 19 types of geohazard covering 18,000 km2. Presented here is an analysis of the results of the PanGeo-project output data, which provides insights into the distribution of European urban geohazards, their frequency and probability of occurrence. Merging PanGeo data with Eurostat's GeoStat data provides a systematic estimate of population exposures. Satellite radar interferometry is shown to be as a valuable tool for the systematic detection and mapping of urban geohazard phenomena.

  16. Multi-perspective analysis and spatiotemporal mapping of air pollution monitoring data.

    PubMed

    Kolovos, Alexander; Skupin, André; Jerrett, Michael; Christakos, George

    2010-09-01

    Space-time data analysis and assimilation techniques in atmospheric sciences typically consider input from monitoring measurements. The input is often processed in a manner that acknowledges characteristics of the measurements (e.g., underlying patterns, fluctuation features) under conditions of uncertainty; it also leads to the derivation of secondary information that serves study-oriented goals, and provides input to space-time prediction techniques. We present a novel approach that blends a rigorous space-time prediction model (Bayesian maximum entropy, BME) with a cognitively informed visualization of high-dimensional data (spatialization). The combined BME and spatialization approach (BME-S) is used to study monthly averaged NO2 and mean annual SO4 measurements in California over the 15-year period 1988-2002. Using the original scattered measurements of these two pollutants BME generates spatiotemporal predictions on a regular grid across the state. Subsequently, the prediction network undergoes the spatialization transformation into a lower-dimensional geometric representation, aimed at revealing patterns and relationships that exist within the input data. The proposed BME-S provides a powerful spatiotemporal framework to study a variety of air pollution data sources.

  17. Human motion tracking by temporal-spatial local gaussian process experts.

    PubMed

    Zhao, Xu; Fu, Yun; Liu, Yuncai

    2011-04-01

    Human pose estimation via motion tracking systems can be considered as a regression problem within a discriminative framework. It is always a challenging task to model the mapping from observation space to state space because of the high-dimensional characteristic in the multimodal conditional distribution. In order to build the mapping, existing techniques usually involve a large set of training samples in the learning process which are limited in their capability to deal with multimodality. We propose, in this work, a novel online sparse Gaussian Process (GP) regression model to recover 3-D human motion in monocular videos. Particularly, we investigate the fact that for a given test input, its output is mainly determined by the training samples potentially residing in its local neighborhood and defined in the unified input-output space. This leads to a local mixture GP experts system composed of different local GP experts, each of which dominates a mapping behavior with the specific covariance function adapting to a local region. To handle the multimodality, we combine both temporal and spatial information therefore to obtain two categories of local experts. The temporal and spatial experts are integrated into a seamless hybrid system, which is automatically self-initialized and robust for visual tracking of nonlinear human motion. Learning and inference are extremely efficient as all the local experts are defined online within very small neighborhoods. Extensive experiments on two real-world databases, HumanEva and PEAR, demonstrate the effectiveness of our proposed model, which significantly improve the performance of existing models.

  18. Optimal Mass Transport for Shape Matching and Comparison

    PubMed Central

    Su, Zhengyu; Wang, Yalin; Shi, Rui; Zeng, Wei; Sun, Jian; Luo, Feng; Gu, Xianfeng

    2015-01-01

    Surface based 3D shape analysis plays a fundamental role in computer vision and medical imaging. This work proposes to use optimal mass transport map for shape matching and comparison, focusing on two important applications including surface registration and shape space. The computation of the optimal mass transport map is based on Monge-Brenier theory, in comparison to the conventional method based on Monge-Kantorovich theory, this method significantly improves the efficiency by reducing computational complexity from O(n2) to O(n). For surface registration problem, one commonly used approach is to use conformal map to convert the shapes into some canonical space. Although conformal mappings have small angle distortions, they may introduce large area distortions which are likely to cause numerical instability thus resulting failures of shape analysis. This work proposes to compose the conformal map with the optimal mass transport map to get the unique area-preserving map, which is intrinsic to the Riemannian metric, unique, and diffeomorphic. For shape space study, this work introduces a novel Riemannian framework, Conformal Wasserstein Shape Space, by combing conformal geometry and optimal mass transport theory. In our work, all metric surfaces with the disk topology are mapped to the unit planar disk by a conformal mapping, which pushes the area element on the surface to a probability measure on the disk. The optimal mass transport provides a map from the shape space of all topological disks with metrics to the Wasserstein space of the disk and the pullback Wasserstein metric equips the shape space with a Riemannian metric. We validate our work by numerous experiments and comparisons with prior approaches and the experimental results demonstrate the efficiency and efficacy of our proposed approach. PMID:26440265

  19. Development of a Silicon Drift Detector Array: An X-Ray Fluorescence Spectrometer for Remote Surface Mapping

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica A.; Carini, Gabriella A.; Wei, Chen; Elsner, Ronald F.; Kramer, Georgiana; De Geronimo, Gianluigi; Keister, Jeffrey W.; Zheng, Li; Ramsey, Brian D.; Rehak, Pavel; hide

    2009-01-01

    Over the past three years NASA Marshall Space Flight Center has been collaborating with Brookhaven National Laboratory to develop a modular Silicon Drift Detector (SDD) X-Ray Spectrometer (XRS) intended for fine surface mapping of the light elements of the moon. The value of fluorescence spectrometry for surface element mapping is underlined by the fact that the technique has recently been employed by three lunar orbiter missions; Kaguya, Chandrayaan-1, and Chang e. The SDD-XRS instrument we have been developing can operate at a low energy threshold (i.e. is capable of detecting Carbon), comparable energy resolution to Kaguya (<150 eV at 5.9 keV) and an order of magnitude lower power requirement, making much higher sensitivities possible. Furthermore, the intrinsic radiation resistance of the SDD makes it useful even in radiation-harsh environments such as that of Jupiter and its surrounding moons.

  20. A CLEAN-based method for mosaic deconvolution

    NASA Astrophysics Data System (ADS)

    Gueth, F.; Guilloteau, S.; Viallefond, F.

    1995-03-01

    Mosaicing may be used in aperture synthesis to map large fields of view. So far, only MEM techniques have been used to deconvolve mosaic images (Cornwell (1988)). A CLEAN-based method has been developed, in which the components are located in a modified expression. This allows a better utilization of the information and consequent noise reduction in the overlapping regions. Simulations show that this method gives correct clean maps and recovers most of the flux of the sources. The introduction of the short-spacing visibilities in the data set is strongly required. Their absence actually introduces artificial lack of structures on the corresponding scale in the mosaic images. The formation of ``stripes'' in clean maps may also occur, but this phenomenon can be significantly reduced by using the Steer-Dewdney-Ito algorithm (Steer, Dewdney & Ito (1984)) to identify the CLEAN components. Typical IRAM interferometer pointing errors do not have a significant effect on the reconstructed images.

  1. Gender and social geography: impact on Lady Health Workers mobility in Pakistan.

    PubMed

    Mumtaz, Zubia

    2012-10-16

    In Pakistan, where gendered norms restrict women's mobility, female community health workers (CHWs) provide doorstep primary health services to home-bound women. The program has not achieved optimal functioning. One reason, I argue, may be that the CHWs are unable to make home visits because they have to operate within the same gender system that necessitated their appointment in the first place. Ethnographic research shows that women's mobility in Pakistan is determined not so much by physical geography as by social geography (the analysis of social phenomena in space). Irrespective of physical location, the presence of biradaria members (extended family) creates a socially acceptable 'inside space' to which women are limited. The presence of a non-biradari person, especially a man, transforms any space into an 'outside space', forbidden space. This study aims to understand how these cultural norms affect CHWs' home-visit rates and the quality of services delivered. Data will be collected in district Attock, Punjab. Twenty randomly selected CHWs will first be interviewed to explore their experiences of delivering doorstep services in the context of gendered norms that promote women's seclusion. Each CHW will be requested to draw a map of her catchment area using social mapping techniques. These maps will be used to survey women of reproductive age to assess variations in the CHW's home visitation rates and quality of family planning services provided. A sample size of 760 households (38 per CHW) is estimated to have the power to detect, with 95% confidence, households the CHWs do not visit. To explore the role of the larger community in shaping the CHWs mobility experiences, 25 community members will be interviewed and five CHWs observed as they conduct their home visits. The survey data will be merged with the maps to demonstrate if any disjunctures exist between CHWs' social geography and physical geography. Furthermore, the impacts these geographies have on home visitation rates and quality of services delivered will be explored. The study will provide generic and theoretical insights into how the CHW program policies and operations can improve working conditions to facilitate the work of female staff in order to ultimately provide high-quality services.

  2. Complex adaptation-based LDR image rendering for 3D image reconstruction

    NASA Astrophysics Data System (ADS)

    Lee, Sung-Hak; Kwon, Hyuk-Ju; Sohng, Kyu-Ik

    2014-07-01

    A low-dynamic tone-compression technique is developed for realistic image rendering that can make three-dimensional (3D) images similar to realistic scenes by overcoming brightness dimming in the 3D display mode. The 3D surround provides varying conditions for image quality, illuminant adaptation, contrast, gamma, color, sharpness, and so on. In general, gain/offset adjustment, gamma compensation, and histogram equalization have performed well in contrast compression; however, as a result of signal saturation and clipping effects, image details are removed and information is lost on bright and dark areas. Thus, an enhanced image mapping technique is proposed based on space-varying image compression. The performance of contrast compression is enhanced with complex adaptation in a 3D viewing surround combining global and local adaptation. Evaluating local image rendering in view of tone and color expression, noise reduction, and edge compensation confirms that the proposed 3D image-mapping model can compensate for the loss of image quality in the 3D mode.

  3. Interactive Mapping on Virtual Terrain Models Using RIMS (Real-time, Interactive Mapping System)

    NASA Astrophysics Data System (ADS)

    Bernardin, T.; Cowgill, E.; Gold, R. D.; Hamann, B.; Kreylos, O.; Schmitt, A.

    2006-12-01

    Recent and ongoing space missions are yielding new multispectral data for the surfaces of Earth and other planets at unprecedented rates and spatial resolution. With their high spatial resolution and widespread coverage, these data have opened new frontiers in observational Earth and planetary science. But they have also precipitated an acute need for new analytical techniques. To address this problem, we have developed RIMS, a Real-time, Interactive Mapping System that allows scientists to visualize, interact with, and map directly on, three-dimensional (3D) displays of georeferenced texture data, such as multispectral satellite imagery, that is draped over a surface representation derived from digital elevation data. The system uses a quadtree-based multiresolution method to render in real time high-resolution (3 to 10 m/pixel) data over large (800 km by 800 km) spatial areas. It allows users to map inside this interactive environment by generating georeferenced and attributed vector-based elements that are draped over the topography. We explain the technique using 15 m ASTER stereo-data from Iraq, P.R. China, and other remote locations because our particular motivation is to develop a technique that permits the detailed (10 m to 1000 m) neotectonic mapping over large (100 km to 1000 km long) active fault systems that is needed to better understand active continental deformation on Earth. RIMS also includes a virtual geologic compass that allows users to fit a plane to geologic surfaces and thereby measure their orientations. It also includes tools that allow 3D surface reconstruction of deformed and partially eroded surfaces such as folded bedding planes. These georeferenced map and measurement data can be exported to, or imported from, a standard GIS (geographic information systems) file format. Our interactive, 3D visualization and analysis system is designed for those who study planetary surfaces, including neotectonic geologists, geomorphologists, marine geophysicists, and planetary scientists. The strength of our system is that it combines interactive rendering with interactive mapping and measurement of features observed in topographic and texture data. Comparison with commercially available software indicates that our system improves mapping accuracy and efficiency. More importantly, it enables Earth scientists to rapidly achieve a deeper level of understanding of remotely sensed data, as observations can be made that are not possible with existing systems.

  4. Simultenious binary hash and features learning for image retrieval

    NASA Astrophysics Data System (ADS)

    Frantc, V. A.; Makov, S. V.; Voronin, V. V.; Marchuk, V. I.; Semenishchev, E. A.; Egiazarian, K. O.; Agaian, S.

    2016-05-01

    Content-based image retrieval systems have plenty of applications in modern world. The most important one is the image search by query image or by semantic description. Approaches to this problem are employed in personal photo-collection management systems, web-scale image search engines, medical systems, etc. Automatic analysis of large unlabeled image datasets is virtually impossible without satisfactory image-retrieval technique. It's the main reason why this kind of automatic image processing has attracted so much attention during recent years. Despite rather huge progress in the field, semantically meaningful image retrieval still remains a challenging task. The main issue here is the demand to provide reliable results in short amount of time. This paper addresses the problem by novel technique for simultaneous learning of global image features and binary hash codes. Our approach provide mapping of pixel-based image representation to hash-value space simultaneously trying to save as much of semantic image content as possible. We use deep learning methodology to generate image description with properties of similarity preservation and statistical independence. The main advantage of our approach in contrast to existing is ability to fine-tune retrieval procedure for very specific application which allow us to provide better results in comparison to general techniques. Presented in the paper framework for data- dependent image hashing is based on use two different kinds of neural networks: convolutional neural networks for image description and autoencoder for feature to hash space mapping. Experimental results confirmed that our approach has shown promising results in compare to other state-of-the-art methods.

  5. Optical resonance imaging: An optical analog to MRI with sub-diffraction-limited capabilities.

    PubMed

    Allodi, Marco A; Dahlberg, Peter D; Mazuski, Richard J; Davis, Hunter C; Otto, John P; Engel, Gregory S

    2016-12-21

    We propose here optical resonance imaging (ORI), a direct optical analog to magnetic resonance imaging (MRI). The proposed pulse sequence for ORI maps space to time and recovers an image from a heterodyne-detected third-order nonlinear photon echo measurement. As opposed to traditional photon echo measurements, the third pulse in the ORI pulse sequence has significant pulse-front tilt that acts as a temporal gradient. This gradient couples space to time by stimulating the emission of a photon echo signal from different lateral spatial locations of a sample at different times, providing a widefield ultrafast microscopy. We circumvent the diffraction limit of the optics by mapping the lateral spatial coordinate of the sample with the emission time of the signal, which can be measured to high precision using interferometric heterodyne detection. This technique is thus an optical analog of MRI, where magnetic-field gradients are used to localize the spin-echo emission to a point below the diffraction limit of the radio-frequency wave used. We calculate the expected ORI signal using 15 fs pulses and 87° of pulse-front tilt, collected using f /2 optics and find a two-point resolution 275 nm using 800 nm light that satisfies the Rayleigh criterion. We also derive a general equation for resolution in optical resonance imaging that indicates that there is a possibility of superresolution imaging using this technique. The photon echo sequence also enables spectroscopic determination of the input and output energy. The technique thus correlates the input energy with the final position and energy of the exciton.

  6. A combined microphone and camera calibration technique with application to acoustic imaging.

    PubMed

    Legg, Mathew; Bradley, Stuart

    2013-10-01

    We present a calibration technique for an acoustic imaging microphone array, combined with a digital camera. Computer vision and acoustic time of arrival data are used to obtain microphone coordinates in the camera reference frame. Our new method allows acoustic maps to be plotted onto the camera images without the need for additional camera alignment or calibration. Microphones and cameras may be placed in an ad-hoc arrangement and, after calibration, the coordinates of the microphones are known in the reference frame of a camera in the array. No prior knowledge of microphone positions, inter-microphone spacings, or air temperature is required. This technique is applied to a spherical microphone array and a mean difference of 3 mm was obtained between the coordinates obtained with this calibration technique and those measured using a precision mechanical method.

  7. Application of computer image enhancement techniques to shuttle hand-held photography

    NASA Technical Reports Server (NTRS)

    David, B. E.

    1986-01-01

    With the advent of frequent Space Transportation System Shuttle missions, photography from hyperaltitudes stands to become an accessible and convenient resource for scientists and environmental managers. As satellite products (such as LANDSAT) continue to spiral in costs, all but the most affluent consumer is finding Earth imagery from space to be more and more unavailable. Therefore, the potential for Shuttle photography to serve a wide variety of users is increasing. However, despite the popularity of photos from space as public relations tools and report illustrations, little work has been performed to prove their scientific worth beyond that as basic mapping bases. It is the hypothesis of this project that hand-held Earth photography from the Space Shuttle has potentially high scientific merit and that primary data can be extracted. In effect, Shuttle photography should be considered a major remote sensing information resource.

  8. Reduction of multi-dimensional laboratory data to a two-dimensional plot: a novel technique for the identification of laboratory error.

    PubMed

    Kazmierczak, Steven C; Leen, Todd K; Erdogmus, Deniz; Carreira-Perpinan, Miguel A

    2007-01-01

    The clinical laboratory generates large amounts of patient-specific data. Detection of errors that arise during pre-analytical, analytical, and post-analytical processes is difficult. We performed a pilot study, utilizing a multidimensional data reduction technique, to assess the utility of this method for identifying errors in laboratory data. We evaluated 13,670 individual patient records collected over a 2-month period from hospital inpatients and outpatients. We utilized those patient records that contained a complete set of 14 different biochemical analytes. We used two-dimensional generative topographic mapping to project the 14-dimensional record to a two-dimensional space. The use of a two-dimensional generative topographic mapping technique to plot multi-analyte patient data as a two-dimensional graph allows for the rapid identification of potentially anomalous data. Although we performed a retrospective analysis, this technique has the benefit of being able to assess laboratory-generated data in real time, allowing for the rapid identification and correction of anomalous data before they are released to the physician. In addition, serial laboratory multi-analyte data for an individual patient can also be plotted as a two-dimensional plot. This tool might also be useful for assessing patient wellbeing and prognosis.

  9. Analysis of magnetic field levels at KSC

    NASA Technical Reports Server (NTRS)

    Christodoulou, Christos G.

    1994-01-01

    The scope of this work is to evaluate the magnetic field levels of distribution systems and other equipment at Kennedy Space Center (KSC). Magnetic fields levels in several operational areas and various facilities are investigated. Three dimensional mappings and contour are provided along with the measured data. Furthermore, the portion of magnetic fields generated by the 60 Hz fundamental frequency and the portion generated by harmonics are examined. Finally, possible mitigation techniques for attenuating fields from electric panels are discussed.

  10. Metabolite-cycled density-weighted concentric rings k-space trajectory (DW-CRT) enables high-resolution 1 H magnetic resonance spectroscopic imaging at 3-Tesla.

    PubMed

    Steel, Adam; Chiew, Mark; Jezzard, Peter; Voets, Natalie L; Plaha, Puneet; Thomas, Michael Albert; Stagg, Charlotte J; Emir, Uzay E

    2018-05-17

    Magnetic resonance spectroscopic imaging (MRSI) is a promising technique in both experimental and clinical settings. However, to date, MRSI has been hampered by prohibitively long acquisition times and artifacts caused by subject motion and hardware-related frequency drift. In the present study, we demonstrate that density weighted concentric ring trajectory (DW-CRT) k-space sampling in combination with semi-LASER excitation and metabolite-cycling enables high-resolution MRSI data to be rapidly acquired at 3 Tesla. Single-slice full-intensity MRSI data (short echo time (TE) semi-LASER TE = 32 ms) were acquired from 6 healthy volunteers with an in-plane resolution of 5 × 5 mm in 13 min 30 sec using this approach. Using LCModel analysis, we found that the acquired spectra allowed for the mapping of total N-acetylaspartate (median Cramer-Rao Lower Bound [CRLB] = 3%), glutamate+glutamine (8%), and glutathione (13%). In addition, we demonstrate potential clinical utility of this technique by optimizing the TE to detect 2-hydroxyglutarate (long TE semi-LASER, TE = 110 ms), to produce relevant high-resolution metabolite maps of grade III IDH-mutant oligodendroglioma in a single patient. This study demonstrates the potential utility of MRSI in the clinical setting at 3 Tesla.

  11. Identification of active fault using analysis of derivatives with vertical second based on gravity anomaly data (Case study: Seulimeum fault in Sumatera fault system)

    NASA Astrophysics Data System (ADS)

    Hududillah, Teuku Hafid; Simanjuntak, Andrean V. H.; Husni, Muhammad

    2017-07-01

    Gravity is a non-destructive geophysical technique that has numerous application in engineering and environmental field like locating a fault zone. The purpose of this study is to spot the Seulimeum fault system in Iejue, Aceh Besar (Indonesia) by using a gravity technique and correlate the result with geologic map and conjointly to grasp a trend pattern of fault system. An estimation of subsurface geological structure of Seulimeum fault has been done by using gravity field anomaly data. Gravity anomaly data which used in this study is from Topex that is processed up to Free Air Correction. The step in the Next data processing is applying Bouger correction and Terrin Correction to obtain complete Bouger anomaly that is topographically dependent. Subsurface modeling is done using the Gav2DC for windows software. The result showed a low residual gravity value at a north half compared to south a part of study space that indicated a pattern of fault zone. Gravity residual was successfully correlate with the geologic map that show the existence of the Seulimeum fault in this study space. The study of earthquake records can be used for differentiating the active and non active fault elements, this gives an indication that the delineated fault elements are active.

  12. The Impact of Sources of Variability on Parametric Response Mapping of Lung CT Scans

    PubMed Central

    Boes, Jennifer L.; Bule, Maria; Hoff, Benjamin A.; Chamberlain, Ryan; Lynch, David A.; Stojanovska, Jadranka; Martinez, Fernando J.; Han, Meilan K.; Kazerooni, Ella A.; Ross, Brian D.; Galbán, Craig J.

    2015-01-01

    Parametric response mapping (PRM) of inspiration and expiration computed tomography (CT) images improves the radiological phenotyping of chronic obstructive pulmonary disease (COPD). PRM classifies individual voxels of lung parenchyma as normal, emphysematous, or nonemphysematous air trapping. In this study, bias and noise characteristics of the PRM methodology to CT and clinical procedures were evaluated to determine best practices for this quantitative technique. Twenty patients of varying COPD status with paired volumetric inspiration and expiration CT scans of the lungs were identified from the baseline COPD-Gene cohort. The impact of CT scanner manufacturer and reconstruction kernels were evaluated as potential sources of variability in PRM measurements along with simulations to quantify the impact of inspiration/expiration lung volume levels, misregistration, and image spacing on PRM measurements. Negligible variation in PRM metrics was observed when CT scanner type and reconstruction were consistent and inspiration/expiration lung volume levels were near target volumes. CT scanner Hounsfield unit drift occurred but remained difficult to ameliorate. Increasing levels of image misregistration and CT slice spacing were found to have a minor effect on PRM measurements. PRM-derived values were found to be most sensitive to lung volume levels and mismatched reconstruction kernels. As with other quantitative imaging techniques, reliable PRM measurements are attainable when consistent clinical and CT protocols are implemented. PMID:26568983

  13. Reciprocal space mapping and single-crystal scattering rods.

    PubMed

    Smilgies, Detlef M; Blasini, Daniel R; Hotta, Shu; Yanagi, Hisao

    2005-11-01

    Reciprocal space mapping using a linear gas detector in combination with a matching Soller collimator has been applied to map scattering rods of well oriented organic microcrystals grown on a solid surface. Formulae are provided to correct image distortions in angular space and to determine the required oscillation range, in order to measure properly integrated scattering intensities.

  14. Search space mapping: getting a picture of coherent laser control.

    PubMed

    Shane, Janelle C; Lozovoy, Vadim V; Dantus, Marcos

    2006-10-12

    Search space mapping is a method for quickly visualizing the experimental parameters that can affect the outcome of a coherent control experiment. We demonstrate experimental search space mapping for the selective fragmentation and ionization of para-nitrotoluene and show how this method allows us to gather information about the dominant trends behind our achieved control.

  15. Mapping Cultural Boundaries in Schools and Communities: Redefining Spaces through Organizing

    ERIC Educational Resources Information Center

    Wood, Gerald K.; Lemley, Christine K.

    2015-01-01

    For this study, the authors look specifically at cultural maps that the youth created in Student Involvement Day (SID), a program committed to youth empowerment. In these maps, youth identified spaces in their schools and communities that are open and inclusive of their cultures or spaces where their cultures are excluded. Drawing on critical…

  16. A new planetary mapping for future space missions

    NASA Astrophysics Data System (ADS)

    Karachevtseva, Irina; Kokhanov, Alexander; Rodionova, Janna; Zubarev, Anatoliy; Nadezhdina, Irina; Kreslavsky, Mikhail; Oberst, Jürgen

    2015-04-01

    The wide studies of Solar system, including different planetary bodies, were announced by new Russian space program. Their geodesy and cartography support provides by MIIGAiK Extraterrestrial Laboratory (http://mexlab.miigaik.ru/eng) in frames of the new project "Studies of Fundamental Geodetic Parameters and Topography of Planets and Satellites". The objects of study are satellites of the outer planets (satellites of Jupiter - Europa, Calisto and Ganymede; Saturnine satellite Enceladus), some planets (Mercury and Mars) and the satellites of the terrestrial planets - Phobos (Mars) and the Moon (Earth). The new research project, which started in 2014, will address the following important scientific and practical tasks: - Creating new three-dimensional geodetic control point networks of satellites of the outer planets using innovative photogrammetry techniques; - Determination of fundamental geodetic parameters and study size, shape, and spin parameters and to create the basic framework for research of their surfaces; - Studies of relief of planetary bodies and comparative analysis of general surface characteristics of the Moon, Mars, and Mercury, as well as studies of morphometric parameters of volcanic formations on the Moon and Mars; - Modeling of meteoritic bombardment of celestial bodies and the study of the dynamics of particle emissions caused by a meteorite impacts; - Development of geodatabase for studies of planetary bodies, including creation of object catalogues, (craters and volcanic forms, etc.), and thematic mapping using GIS technology. The significance of the project is defined both by necessity of obtaining fundamental characteristics of the Solar System bodies, and practical tasks in preparation for future Russian and international space missions to the Jupiter system (Laplace-P and JUICE), the Moon (Luna-Glob and Luna-Resource), Mars (Exo-Mars), Mercury (Bepi-Colombo), and possible mission to Phobos (project Boomerang). For cartographic support of future missions, we have created various maps as results of first year research: new base maps of Ganymede, including a hypsometric map and a global surface map; the base and thematic maps of Phobos which were updated using new image data sets from Mars Express; a newest map of topographic roughness of Mercury (for north polar area) [2] and a map of topographic roughness of the Moon using laser altimeter data processing obtained by MESSENGER (MLA) and LRO (LOLA) for their comparative analyses; a new global hypsometric map of the Moon. Published version of the maps will be presented at the conference, and all data products using for mapping will be available via MExLab Geoportal (http://cartsrv.mexlab.ru/geoportal/#body/). Acknowledgments. This work was carried out in MIIGAiK and supported by Russian Science Foundation, project #14-22-00197. References: [1] http://mexlab.miigaik.ru/eng/ [2] Kreslavsky et al., Geophys. Res.Lett., 41, doi:10.1002/2014GL062162 [3] http://cartsrv.mexlab.ru/geoportal/#body/

  17. Differences in Spatial Knowledge of Individuals with Blindness When Using Audiotactile Maps, Using Tactile Maps, and Walking

    ERIC Educational Resources Information Center

    Papadopoulos, Konstantinos; Barouti, Marialena; Koustriava, Eleni

    2018-01-01

    To examine how individuals with visual impairments understand space and the way they develop cognitive maps, we studied the differences in cognitive maps resulting from different methods and tools for spatial coding in large geographical spaces. We examined the ability of 21 blind individuals to create cognitive maps of routes in unfamiliar areas…

  18. Cultural Mapping as a Social Practice: A Response to "Mapping the Cultural Boundaries in Schools and Communities: Redefining Spaces Through Organizing"

    ERIC Educational Resources Information Center

    Vadeboncoeur, Jennifer A.; Hanif-Shahban, Shenaz A.

    2015-01-01

    Inspired by Gerald Wood and Elizabeth Lemley's (2015) article entitled "Mapping the Cultural Boundaries in Schools and Communities: Redefining Spaces Through Organizing," this response inquires further into cultural mapping as a social practice. From our perspective, cultural mapping has potential to contribute to place making, as well…

  19. Rhesus monkeys (Macaca mulatta) map number onto space

    PubMed Central

    Drucker, Caroline B.; Brannon, Elizabeth M.

    2014-01-01

    Humans map number onto space. However, the origins of this association, and particularly the degree to which it depends upon cultural experience, are not fully understood. Here we provide the first demonstration of a number-space mapping in a non-human primate. We trained four adult male rhesus macaques (Macaca mulatta) to select the fourth position from the bottom of a five-element vertical array. Monkeys maintained a preference to choose the fourth position through changes in the appearance, location, and spacing of the vertical array. We next asked whether monkeys show a spatially-oriented number mapping by testing their responses to the same five-element stimulus array rotated ninety degrees into a horizontal line. In these horizontal probe trials, monkeys preferentially selected the fourth position from the left, but not the fourth position from the right. Our results indicate that rhesus macaques map number onto space, suggesting that the association between number and space in human cognition is not purely a result of cultural experience and instead has deep evolutionary roots. PMID:24762923

  20. Classification and assessment of retrieved electron density maps in coherent X-ray diffraction imaging using multivariate analysis.

    PubMed

    Sekiguchi, Yuki; Oroguchi, Tomotaka; Nakasako, Masayoshi

    2016-01-01

    Coherent X-ray diffraction imaging (CXDI) is one of the techniques used to visualize structures of non-crystalline particles of micrometer to submicrometer size from materials and biological science. In the structural analysis of CXDI, the electron density map of a sample particle can theoretically be reconstructed from a diffraction pattern by using phase-retrieval (PR) algorithms. However, in practice, the reconstruction is difficult because diffraction patterns are affected by Poisson noise and miss data in small-angle regions due to the beam stop and the saturation of detector pixels. In contrast to X-ray protein crystallography, in which the phases of diffracted waves are experimentally estimated, phase retrieval in CXDI relies entirely on the computational procedure driven by the PR algorithms. Thus, objective criteria and methods to assess the accuracy of retrieved electron density maps are necessary in addition to conventional parameters monitoring the convergence of PR calculations. Here, a data analysis scheme, named ASURA, is proposed which selects the most probable electron density maps from a set of maps retrieved from 1000 different random seeds for a diffraction pattern. Each electron density map composed of J pixels is expressed as a point in a J-dimensional space. Principal component analysis is applied to describe characteristics in the distribution of the maps in the J-dimensional space. When the distribution is characterized by a small number of principal components, the distribution is classified using the k-means clustering method. The classified maps are evaluated by several parameters to assess the quality of the maps. Using the proposed scheme, structure analysis of a diffraction pattern from a non-crystalline particle is conducted in two stages: estimation of the overall shape and determination of the fine structure inside the support shape. In each stage, the most accurate and probable density maps are objectively selected. The validity of the proposed scheme is examined by application to diffraction data that were obtained from an aggregate of metal particles and a biological specimen at the XFEL facility SACLA using custom-made diffraction apparatus.

  1. Layout-aware simulation of soft errors in sub-100 nm integrated circuits

    NASA Astrophysics Data System (ADS)

    Balbekov, A.; Gorbunov, M.; Bobkov, S.

    2016-12-01

    Single Event Transient (SET) caused by charged particle traveling through the sensitive volume of integral circuit (IC) may lead to different errors in digital circuits in some cases. In technologies below 180 nm, a single particle can affect multiple devices causing multiple SET. This fact adds the complexity to fault tolerant devices design, because the schematic design techniques become useless without their layout consideration. The most common layout mitigation technique is a spatial separation of sensitive nodes of hardened circuits. Spatial separation decreases the circuit performance and increases power consumption. Spacing should thus be reasonable and its scaling follows the device dimensions' scaling trend. This paper presents the development of the SET simulation approach comprised of SPICE simulation with "double exponent" current source as SET model. The technique uses layout in GDSII format to locate nearby devices that can be affected by a single particle and that can share the generated charge. The developed software tool automatizes multiple simulations and gathers the produced data to present it as the sensitivity map. The examples of conducted simulations of fault tolerant cells and their sensitivity maps are presented in this paper.

  2. Mapping the ecological dimensions and potential distributions of endangered relic shrubs in western Ordos biodiversity center

    PubMed Central

    Zhu, Geng-Ping; Li, Hui-Qi; Zhao, Li; Man, Liang; Liu, Qiang

    2016-01-01

    Potential distributions of endemic relic shrubs in western Ordos were poorly mapped, which hindered our implementation of proper conservation. Here we investigated the applicability of ecological niche modeling for endangered relic shrubs to detect areas of priority for biodiversity conservation and analyze differences in ecological niche spaces used by relic shrubs. We applied ordination and niche modeling techniques to assess main environmental drivers of five endemic relic shrubs in western Ordos, namely, Ammopiptanthus mongolicus, Amygdalus mongolica, Helianthemum songaricum, Potaninia mongolica, and Tetraena mongolica. We calculated niche overlap metrics in gridded environmental spaces and compared geographical projections of ecological niches to determine similarities and differences of niches occupied by relic shrubs. All studied taxa presented different responses to environmental factors, which resulted in a unique combination of niche conditions. Precipitation availability and soil quality characteristics play important roles in the distributions of most shrubs. Each relic shrub is constrained by a unique set of environmental conditions, the distribution of one species cannot be implied by the distribution of another, highlighting the inadequacy of one-fits-all type of conservation measure. Our stacked habitat suitability maps revealed regions around Yellow River, which are highly suitable for most species, thereby providing high conservation value. PMID:27199260

  3. Mapping the ecological dimensions and potential distributions of endangered relic shrubs in western Ordos biodiversity center.

    PubMed

    Zhu, Geng-Ping; Li, Hui-Qi; Zhao, Li; Man, Liang; Liu, Qiang

    2016-05-20

    Potential distributions of endemic relic shrubs in western Ordos were poorly mapped, which hindered our implementation of proper conservation. Here we investigated the applicability of ecological niche modeling for endangered relic shrubs to detect areas of priority for biodiversity conservation and analyze differences in ecological niche spaces used by relic shrubs. We applied ordination and niche modeling techniques to assess main environmental drivers of five endemic relic shrubs in western Ordos, namely, Ammopiptanthus mongolicus, Amygdalus mongolica, Helianthemum songaricum, Potaninia mongolica, and Tetraena mongolica. We calculated niche overlap metrics in gridded environmental spaces and compared geographical projections of ecological niches to determine similarities and differences of niches occupied by relic shrubs. All studied taxa presented different responses to environmental factors, which resulted in a unique combination of niche conditions. Precipitation availability and soil quality characteristics play important roles in the distributions of most shrubs. Each relic shrub is constrained by a unique set of environmental conditions, the distribution of one species cannot be implied by the distribution of another, highlighting the inadequacy of one-fits-all type of conservation measure. Our stacked habitat suitability maps revealed regions around Yellow River, which are highly suitable for most species, thereby providing high conservation value.

  4. Navigation based on a sensorimotor representation: a virtual reality study

    NASA Astrophysics Data System (ADS)

    Zetzsche, Christoph; Galbraith, Christopher; Wolter, Johannes; Schill, Kerstin

    2007-02-01

    We investigate the hypothesis that the basic representation of space which underlies human navigation does not resemble an image-like map and is not restricted by the laws of Euclidean geometry. For this we developed a new experimental technique in which we use the properties of a virtual environment (VE) to directly influence the development of the representation. We compared the navigation performance of human observers under two conditions. Either the VE is consistent with the geometrical properties of physical space and could hence be represented in a map-like fashion, or it contains severe violations of Euclidean metric and planar topology, and would thus pose difficulties for the correct development of such a representation. Performance is not influenced by this difference, suggesting that a map-like representation is not the major basis of human navigation. Rather, the results are consistent with a representation which is similar to a non-planar graph augmented with path length information, or with a sensorimotor representation which combines sensory properties and motor actions. The latter may be seen as part of a revised view of perceptual processes due to recent results in psychology and neurobiology, which indicate that the traditional strict separation of sensory and motor systems is no longer tenable.

  5. Estimated post-flood effects through Sentinel and Landsat data to support civil protection

    NASA Astrophysics Data System (ADS)

    Cicala, Luca; Angelino, Cesario Vincenzo; Fiscante, Nicomino; Focareta, Mariano

    2016-10-01

    On October 15, 2015, a severe and devastating flood hit the region of Sannio, Southern Italy, and the city of Benevento. Benevento and the hilly area of Sannio, have already experienced similar disasters, but the natural disasters occurred in the past did not help to better cope with current ones. The flood in this almost unknown area of Campania reached its climax with the flooding of the Tammaro and Calore rivers. The extent of the damage to the region, businesses and people was very heavy. Benevento is the most affected area. Utilizing a combination of remote-sensing techniques, Geographic Information System (GIS) data, this project employed Sentinel-1/2 and Landsat 8 imagery taken before and during the floods to calculate total inundated area and delineate flood extent. This data was then used to assess pre-existing flood hazard maps of the area. The resulting maps and methodologies from this project were delivered to the local governments and organizations as they work to better understand this historic event and plan for recovery throughout the region. The main goal of this study is to map flood inundation using principally open, free and full data acquired by Sentinel and Landsat satellite platforms operated by European Space Agency (ESA) and the National Aeronautics and Space Administration (NASA) respectively.

  6. Metadynamics in the conformational space nonlinearly dimensionally reduced by Isomap.

    PubMed

    Spiwok, Vojtěch; Králová, Blanka

    2011-12-14

    Atomic motions in molecules are not linear. This infers that nonlinear dimensionality reduction methods can outperform linear ones in analysis of collective atomic motions. In addition, nonlinear collective motions can be used as potentially efficient guides for biased simulation techniques. Here we present a simulation with a bias potential acting in the directions of collective motions determined by a nonlinear dimensionality reduction method. Ad hoc generated conformations of trans,trans-1,2,4-trifluorocyclooctane were analyzed by Isomap method to map these 72-dimensional coordinates to three dimensions, as described by Brown and co-workers [J. Chem. Phys. 129, 064118 (2008)]. Metadynamics employing the three-dimensional embeddings as collective variables was applied to explore all relevant conformations of the studied system and to calculate its conformational free energy surface. The method sampled all relevant conformations (boat, boat-chair, and crown) and corresponding transition structures inaccessible by an unbiased simulation. This scheme allows to use essentially any parameter of the system as a collective variable in biased simulations. Moreover, the scheme we used for mapping out-of-sample conformations from the 72D to 3D space can be used as a general purpose mapping for dimensionality reduction, beyond the context of molecular modeling. © 2011 American Institute of Physics

  7. Retrieving Precise Three-Dimensional Deformation on the 2014 M6.0 South Napa Earthquake by Joint Inversion of Multi-Sensor SAR.

    PubMed

    Jo, Min-Jeong; Jung, Hyung-Sup; Yun, Sang-Ho

    2017-07-14

    We reconstructed the three-dimensional (3D) surface displacement field of the 24 August 2014 M6.0 South Napa earthquake using SAR data from the Italian Space Agency's COSMO-SkyMed and the European Space Agency's Sentinel-1A satellites. Along-track and cross-track displacements produced with conventional SAR interferometry (InSAR) and multiple-aperture SAR interferometry (MAI) techniques were integrated to retrieve the east, north, and up components of surface deformation. The resulting 3D displacement maps clearly delineated the right-lateral shear motion of the fault rupture with a maximum surface displacement of approximately 45 cm along the fault's strike, showing the east and north components of the trace particularly clearly. These maps also suggested a better-constrained model for the South Napa earthquake. We determined a strike of approximately 338° and dip of 85° by applying the Okada dislocation model considering a single patch with a homogeneous slip motion. Using the distributed slip model obtained by a linear solution, we estimated that a peak slip of approximately 1.7 m occurred around 4 km depth from the surface. 3D modelling using the retrieved 3D maps helps clarify the fault's nature and thus characterize its behaviour.

  8. Standardized unfold mapping: a technique to permit left atrial regional data display and analysis.

    PubMed

    Williams, Steven E; Tobon-Gomez, Catalina; Zuluaga, Maria A; Chubb, Henry; Butakoff, Constantine; Karim, Rashed; Ahmed, Elena; Camara, Oscar; Rhode, Kawal S

    2017-10-01

    Left atrial arrhythmia substrate assessment can involve multiple imaging and electrical modalities, but visual analysis of data on 3D surfaces is time-consuming and suffers from limited reproducibility. Unfold maps (e.g., the left ventricular bull's eye plot) allow 2D visualization, facilitate multimodal data representation, and provide a common reference space for inter-subject comparison. The aim of this work is to develop a method for automatic representation of multimodal information on a left atrial standardized unfold map (LA-SUM). The LA-SUM technique was developed and validated using 18 electroanatomic mapping (EAM) LA geometries before being applied to ten cardiac magnetic resonance/EAM paired geometries. The LA-SUM was defined as an unfold template of an average LA mesh, and registration of clinical data to this mesh facilitated creation of new LA-SUMs by surface parameterization. The LA-SUM represents 24 LA regions on a flattened surface. Intra-observer variability of LA-SUMs for both EAM and CMR datasets was minimal; root-mean square difference of 0.008 ± 0.010 and 0.007 ± 0.005 ms (local activation time maps), 0.068 ± 0.063 gs (force-time integral maps), and 0.031 ± 0.026 (CMR LGE signal intensity maps). Following validation, LA-SUMs were used for automatic quantification of post-ablation scar formation using CMR imaging, demonstrating a weak but significant relationship between ablation force-time integral and scar coverage (R 2  = 0.18, P < 0.0001). The proposed LA-SUM displays an integrated unfold map for multimodal information. The method is applicable to any LA surface, including those derived from imaging and EAM systems. The LA-SUM would facilitate standardization of future research studies involving segmental analysis of the LA.

  9. Planning collision free paths for two cooperating robots using a divide-and-conquer C-space traversal heuristic

    NASA Technical Reports Server (NTRS)

    Weaver, Johnathan M.

    1993-01-01

    A method was developed to plan feasible and obstacle-avoiding paths for two spatial robots working cooperatively in a known static environment. Cooperating spatial robots as referred to herein are robots which work in 6D task space while simultaneously grasping and manipulating a common, rigid payload. The approach is configuration space (c-space) based and performs selective rather than exhaustive c-space mapping. No expensive precomputations are required. A novel, divide-and-conquer type of heuristic is used to guide the selective mapping process. The heuristic does not involve any robot, environment, or task specific assumptions. A technique was also developed which enables solution of the cooperating redundant robot path planning problem without requiring the use of inverse kinematics for a redundant robot. The path planning strategy involves first attempting to traverse along the configuration space vector from the start point towards the goal point. If an unsafe region is encountered, an intermediate via point is identified by conducting a systematic search in the hyperplane orthogonal to and bisecting the unsafe region of the vector. This process is repeatedly applied until a solution to the global path planning problem is obtained. The basic concept behind this strategy is that better local decisions at the beginning of the trouble region may be made if a possible way around the 'center' of the trouble region is known. Thus, rather than attempting paths which look promising locally (at the beginning of a trouble region) but which may not yield overall results, the heuristic attempts local strategies that appear promising for circumventing the unsafe region.

  10. Imaging the Surfaces of Stars from Space

    NASA Astrophysics Data System (ADS)

    Carpenter, Kenneth; Rau, Gioia

    2018-04-01

    Imaging of Stellar Surfacess has been dominated to-date by ground-based observations, but space-based facilities offer tremendous potential for extending the wavelength coverage and ultimately the resolution of such efforts. We review the imaging accomplished so far from space and then talk about exciting future prospects. The earliest attempts from space indirectly produced surface maps via the Doppler Imaging Technique, using UV spectra obtained with the International Ultraviolet Explorer (IUE). Later, the first direct UV images were obtained with the Hubble Space Telescope (HST), of Mira and Betelgeuse, using the Faint Object Camera (FOC). We will show this work and then investigate prospects for IR imaging with the James Webb Space Telescope (JWST). The real potential of space-based Imaging of Stellar Surfacess, however, lies in the future, when large-baseline Fizeau interferometers, such as the UV-optical Stellar Imager (SI) Vision Mission, with a 30-element array and 500m max baseline, are flown. We describe SI and its science goals, which include 0.1 milli-arcsec spectral Imaging of Stellar Surfacess and the probing of internal structure and flows via asteroseismology.

  11. 20-Gbps optical LiFi transport system.

    PubMed

    Ying, Cheng-Ling; Lu, Hai-Han; Li, Chung-Yi; Cheng, Chun-Jen; Peng, Peng-Chun; Ho, Wen-Jeng

    2015-07-15

    A 20-Gbps optical light-based WiFi (LiFi) transport system employing vertical-cavity surface-emitting laser (VCSEL) and external light injection technique with 16-quadrature amplitude modulation (QAM)-orthogonal frequency-division multiplexing (OFDM) modulating signal is proposed. Good bit error rate (BER) performance and clear constellation map are achieved in our proposed optical LiFi transport systems. An optical LiFi transport system, delivering 16-QAM-OFDM signal over a 6-m free-space link, with a data rate of 20 Gbps, is successfully demonstrated. Such a 20-Gbps optical LiFi transport system provides the advantage of a free-space communication link for high data rates, which can accelerate the visible laser light communication (VLLC) deployment.

  12. The Information Is In the Maps: Representations & Algorithms for Mapping among Geometric Data

    DTIC Science & Technology

    2015-09-30

    space of all maps is a huge space and an important part of the project has addressed the problem of finding compact representations and encodings...understanding the relationships among its parts, or its connections to other data sets that may share the same or similar structure. Towards this end, we have...for the much smaller spaces of interesting maps within a specific application. The machinery developed here has proven of use across a broad spectrum

  13. Using patient data similarities to predict radiation pneumonitis via a self-organizing map

    NASA Astrophysics Data System (ADS)

    Chen, Shifeng; Zhou, Sumin; Yin, Fang-Fang; Marks, Lawrence B.; Das, Shiva K.

    2008-01-01

    This work investigates the use of the self-organizing map (SOM) technique for predicting lung radiation pneumonitis (RP) risk. SOM is an effective method for projecting and visualizing high-dimensional data in a low-dimensional space (map). By projecting patients with similar data (dose and non-dose factors) onto the same region of the map, commonalities in their outcomes can be visualized and categorized. Once built, the SOM may be used to predict pneumonitis risk by identifying the region of the map that is most similar to a patient's characteristics. Two SOM models were developed from a database of 219 lung cancer patients treated with radiation therapy (34 clinically diagnosed with Grade 2+ pneumonitis). The models were: SOMall built from all dose and non-dose factors and, for comparison, SOMdose built from dose factors alone. Both models were tested using ten-fold cross validation and Receiver Operating Characteristics (ROC) analysis. Models SOMall and SOMdose yielded ten-fold cross-validated ROC areas of 0.73 (sensitivity/specificity = 71%/68%) and 0.67 (sensitivity/specificity = 63%/66%), respectively. The significant difference between the cross-validated ROC areas of these two models (p < 0.05) implies that non-dose features add important information toward predicting RP risk. Among the input features selected by model SOMall, the two with highest impact for increasing RP risk were: (a) higher mean lung dose and (b) chemotherapy prior to radiation therapy. The SOM model developed here may not be extrapolated to treatment techniques outside that used in our database, such as several-field lung intensity modulated radiation therapy or gated radiation therapy.

  14. Segmental allotetraploidy and allelic interactions in buffelgrass (Pennisetum ciliare (L.) Link syn. Cenchrus ciliaris L.) as revealed by genome mapping.

    PubMed

    Jessup, R W; Burson, B L; Burow, O; Wang, Y W; Chang, C; Li, Z; Paterson, A H; Hussey, M A

    2003-04-01

    Linkage analyses increasingly complement cytological and traditional plant breeding techniques by providing valuable information regarding genome organization and transmission genetics of complex polyploid species. This study reports a genome map of buffelgrass (Pennisetum ciliare (L.) Link syn. Cenchrus ciliaris L.). Maternal and paternal maps were constructed with restriction fragment length polymorphisms (RFLPs) segregating in 87 F1 progeny from an intraspecific cross between two heterozygous genotypes. A survey of 862 heterologous cDNAs and gDNAs from across the Poaceae, as well as 443 buffelgrass cDNAs, yielded 100 and 360 polymorphic probes, respectively. The maternal map included 322 RFLPs, 47 linkage groups, and 3464 cM, whereas the paternal map contained 245 RFLPs, 42 linkage groups, and 2757 cM. Approximately 70 to 80% of the buffelgrass genome was covered, and the average marker spacing was 10.8 and 11.3 cM on the respective maps. Preferential pairing was indicated between many linkage groups, which supports cytological reports that buffelgrass is a segmental allotetraploid. More preferential pairing (disomy) was found in the maternal than paternal parent across linkage groups (55 vs. 38%) and loci (48 vs. 15%). Comparison of interval lengths in 15 allelic bridges indicated significantly less meiotic recombination in paternal gametes. Allelic interactions were detected in four regions of the maternal map and were absent in the paternal map.

  15. Digital Mapping Techniques '11–12 workshop proceedings

    USGS Publications Warehouse

    Soller, David R.

    2014-01-01

    At these meetings, oral and poster presentations and special discussion sessions emphasized: (1) methods for creating and publishing map products (here, "publishing" includes Web-based release); (2) field data capture software and techniques, including the use of LiDAR; (3) digital cartographic techniques; (4) migration of digital maps into ArcGIS Geodatabase formats; (5) analytical GIS techniques; and (6) continued development of the National Geologic Map Database.

  16. Predict subcellular locations of singleplex and multiplex proteins by semi-supervised learning and dimension-reducing general mode of Chou's PseAAC.

    PubMed

    Pacharawongsakda, Eakasit; Theeramunkong, Thanaruk

    2013-12-01

    Predicting protein subcellular location is one of major challenges in Bioinformatics area since such knowledge helps us understand protein functions and enables us to select the targeted proteins during drug discovery process. While many computational techniques have been proposed to improve predictive performance for protein subcellular location, they have several shortcomings. In this work, we propose a method to solve three main issues in such techniques; i) manipulation of multiplex proteins which may exist or move between multiple cellular compartments, ii) handling of high dimensionality in input and output spaces and iii) requirement of sufficient labeled data for model training. Towards these issues, this work presents a new computational method for predicting proteins which have either single or multiple locations. The proposed technique, namely iFLAST-CORE, incorporates the dimensionality reduction in the feature and label spaces with co-training paradigm for semi-supervised multi-label classification. For this purpose, the Singular Value Decomposition (SVD) is applied to transform the high-dimensional feature space and label space into the lower-dimensional spaces. After that, due to limitation of labeled data, the co-training regression makes use of unlabeled data by predicting the target values in the lower-dimensional spaces of unlabeled data. In the last step, the component of SVD is used to project labels in the lower-dimensional space back to those in the original space and an adaptive threshold is used to map a numeric value to a binary value for label determination. A set of experiments on viral proteins and gram-negative bacterial proteins evidence that our proposed method improve the classification performance in terms of various evaluation metrics such as Aiming (or Precision), Coverage (or Recall) and macro F-measure, compared to the traditional method that uses only labeled data.

  17. Topographic Independent Component Analysis reveals random scrambling of orientation in visual space

    PubMed Central

    Martinez-Garcia, Marina; Martinez, Luis M.

    2017-01-01

    Neurons at primary visual cortex (V1) in humans and other species are edge filters organized in orientation maps. In these maps, neurons with similar orientation preference are clustered together in iso-orientation domains. These maps have two fundamental properties: (1) retinotopy, i.e. correspondence between displacements at the image space and displacements at the cortical surface, and (2) a trade-off between good coverage of the visual field with all orientations and continuity of iso-orientation domains in the cortical space. There is an active debate on the origin of these locally continuous maps. While most of the existing descriptions take purely geometric/mechanistic approaches which disregard the network function, a clear exception to this trend in the literature is the original approach of Hyvärinen and Hoyer based on infomax and Topographic Independent Component Analysis (TICA). Although TICA successfully addresses a number of other properties of V1 simple and complex cells, in this work we question the validity of the orientation maps obtained from TICA. We argue that the maps predicted by TICA can be analyzed in the retinal space, and when doing so, it is apparent that they lack the required continuity and retinotopy. Here we show that in the orientation maps reported in the TICA literature it is easy to find examples of violation of the continuity between similarly tuned mechanisms in the retinal space, which suggest a random scrambling incompatible with the maps in primates. The new experiments in the retinal space presented here confirm this guess: TICA basis vectors actually follow a random salt-and-pepper organization back in the image space. Therefore, the interesting clusters found in the TICA topology cannot be interpreted as the actual cortical orientation maps found in cats, primates or humans. In conclusion, Topographic ICA does not reproduce cortical orientation maps. PMID:28640816

  18. Topographic Independent Component Analysis reveals random scrambling of orientation in visual space.

    PubMed

    Martinez-Garcia, Marina; Martinez, Luis M; Malo, Jesús

    2017-01-01

    Neurons at primary visual cortex (V1) in humans and other species are edge filters organized in orientation maps. In these maps, neurons with similar orientation preference are clustered together in iso-orientation domains. These maps have two fundamental properties: (1) retinotopy, i.e. correspondence between displacements at the image space and displacements at the cortical surface, and (2) a trade-off between good coverage of the visual field with all orientations and continuity of iso-orientation domains in the cortical space. There is an active debate on the origin of these locally continuous maps. While most of the existing descriptions take purely geometric/mechanistic approaches which disregard the network function, a clear exception to this trend in the literature is the original approach of Hyvärinen and Hoyer based on infomax and Topographic Independent Component Analysis (TICA). Although TICA successfully addresses a number of other properties of V1 simple and complex cells, in this work we question the validity of the orientation maps obtained from TICA. We argue that the maps predicted by TICA can be analyzed in the retinal space, and when doing so, it is apparent that they lack the required continuity and retinotopy. Here we show that in the orientation maps reported in the TICA literature it is easy to find examples of violation of the continuity between similarly tuned mechanisms in the retinal space, which suggest a random scrambling incompatible with the maps in primates. The new experiments in the retinal space presented here confirm this guess: TICA basis vectors actually follow a random salt-and-pepper organization back in the image space. Therefore, the interesting clusters found in the TICA topology cannot be interpreted as the actual cortical orientation maps found in cats, primates or humans. In conclusion, Topographic ICA does not reproduce cortical orientation maps.

  19. Single-molecule study of the DNA denaturation phase transition in the force-torsion space.

    PubMed

    Salerno, D; Tempestini, A; Mai, I; Brogioli, D; Ziano, R; Cassina, V; Mantegazza, F

    2012-09-14

    We use the "magnetic tweezers" technique to show the structural transitions that the DNA undergoes in the force-torsion space. In particular, we focus on the regions corresponding to negative supercoiling. These regions are characterized by the formation of the so-called denaturation bubbles, which play an essential role in the replication and transcription of DNA. We experimentally map the region of the force-torsion space where the denaturation takes place. We observe that large fluctuations in DNA extension occur at one of the boundaries of this region, i.e., when the formation of denaturation bubbles and of plectonemes compete. To describe the experiments, we introduce a suitable extension of the classical model. The model correctly describes the position of the denaturation regions, the transition boundaries, and the measured values of the DNA extension fluctuations.

  20. Single-Molecule Study of the DNA Denaturation Phase Transition in the Force-Torsion Space

    NASA Astrophysics Data System (ADS)

    Salerno, D.; Tempestini, A.; Mai, I.; Brogioli, D.; Ziano, R.; Cassina, V.; Mantegazza, F.

    2012-09-01

    We use the “magnetic tweezers” technique to show the structural transitions that the DNA undergoes in the force-torsion space. In particular, we focus on the regions corresponding to negative supercoiling. These regions are characterized by the formation of the so-called denaturation bubbles, which play an essential role in the replication and transcription of DNA. We experimentally map the region of the force-torsion space where the denaturation takes place. We observe that large fluctuations in DNA extension occur at one of the boundaries of this region, i.e., when the formation of denaturation bubbles and of plectonemes compete. To describe the experiments, we introduce a suitable extension of the classical model. The model correctly describes the position of the denaturation regions, the transition boundaries, and the measured values of the DNA extension fluctuations.

  1. Report of the panel on plate motion and deformation, section 2

    NASA Technical Reports Server (NTRS)

    Bock, Yehuda; Kastens, Kim A.; Mcnutt, Marcia K.; Minster, J. Bernard; Peltzer, Gilles; Prescott, William H.; Reilinger, Robert E.; Royden, Leigh; Rundle, John B.; Sauber, Jeanne M.

    1991-01-01

    Given here is a panel report on the goals and objectives, requirements and recommendations for the investigation of plate motion and deformation. The goals are to refine our knowledge of plate motions, study regional and local deformation, and contribute to the solution of important societal problems. The requirements include basic space-positioning measurements, the use of global and regional data sets obtained with space-based techniques, topographic and geoid data to help characterize the internal processes that shape the planet, gravity data to study the density structure at depth and help determine the driving mechanisms for plate tectonics, and satellite images to map lithology, structure and morphology. The most important recommendation of the panel is for the implementation of a world-wide space-geodetic fiducial network to provide a systematic and uniform measure of global strain.

  2. ACCELERATING MR PARAMETER MAPPING USING SPARSITY-PROMOTING REGULARIZATION IN PARAMETRIC DIMENSION

    PubMed Central

    Velikina, Julia V.; Alexander, Andrew L.; Samsonov, Alexey

    2013-01-01

    MR parameter mapping requires sampling along additional (parametric) dimension, which often limits its clinical appeal due to a several-fold increase in scan times compared to conventional anatomic imaging. Data undersampling combined with parallel imaging is an attractive way to reduce scan time in such applications. However, inherent SNR penalties of parallel MRI due to noise amplification often limit its utility even at moderate acceleration factors, requiring regularization by prior knowledge. In this work, we propose a novel regularization strategy, which utilizes smoothness of signal evolution in the parametric dimension within compressed sensing framework (p-CS) to provide accurate and precise estimation of parametric maps from undersampled data. The performance of the method was demonstrated with variable flip angle T1 mapping and compared favorably to two representative reconstruction approaches, image space-based total variation regularization and an analytical model-based reconstruction. The proposed p-CS regularization was found to provide efficient suppression of noise amplification and preservation of parameter mapping accuracy without explicit utilization of analytical signal models. The developed method may facilitate acceleration of quantitative MRI techniques that are not suitable to model-based reconstruction because of complex signal models or when signal deviations from the expected analytical model exist. PMID:23213053

  3. XRF map identification problems based on a PDE electrodeposition model

    NASA Astrophysics Data System (ADS)

    Sgura, Ivonne; Bozzini, Benedetto

    2017-04-01

    In this paper we focus on the following map identification problem (MIP): given a morphochemical reaction-diffusion (RD) PDE system modeling an electrodepostion process, we look for a time t *, belonging to the transient dynamics and a set of parameters \\mathbf{p} , such that the PDE solution, for the morphology h≤ft(x,y,{{t}\\ast};\\mathbf{p}\\right) and for the chemistry θ ≤ft(x,y,{{t}\\ast};\\mathbf{p}\\right) approximates a given experimental map M *. Towards this aim, we introduce a numerical algorithm using singular value decomposition (SVD) and Frobenius norm to give a measure of error distance between experimental maps for h and θ and simulated solutions of the RD-PDE system on a fixed time integration interval. The technique proposed allows quantitative use of microspectroscopy images, such as XRF maps. Specifically, in this work we have modelled the morphology and manganese distributions of nanostructured components of innovative batteries and we have followed their changes resulting from ageing under operating conditions. The availability of quantitative information on space-time evolution of active materials in terms of model parameters will allow dramatic improvements in knowledge-based optimization of battery fabrication and operation.

  4. Image processing for IMRT QA dosimetry.

    PubMed

    Zaini, Mehran R; Forest, Gary J; Loshek, David D

    2005-01-01

    We have automated the determination of the placement location of the dosimetry ion chamber within intensity-modulated radiotherapy (IMRT) fields, as part of streamlining the entire IMRT quality assurance process. This paper describes the mathematical image-processing techniques to arrive at the appropriate measurement locations within the planar dose maps of the IMRT fields. A specific spot within the found region is identified based on its flatness, radiation magnitude, location, area, and the avoidance of the interleaf spaces. The techniques used include applying a Laplacian, dilation, erosion, region identification, and measurement point selection based on three parameters: the size of the erosion operator, the gradient, and the importance of the area of a region versus its magnitude. These three parameters are adjustable by the user. However, the first one requires tweaking in extremely rare occasions, the gradient requires rare adjustments, and the last parameter needs occasional fine-tuning. This algorithm has been tested in over 50 cases. In about 5% of cases, the algorithm does not find a measurement point due to the extremely steep and narrow regions within the fluence maps. In such cases, manual selection of a point is allowed by our code, which is also difficult to ascertain, since the fluence map does not yield itself to an appropriate measurement point selection.

  5. 3D single point imaging with compressed sensing provides high temporal resolution R 2* mapping for in vivo preclinical applications.

    PubMed

    Rioux, James A; Beyea, Steven D; Bowen, Chris V

    2017-02-01

    Purely phase-encoded techniques such as single point imaging (SPI) are generally unsuitable for in vivo imaging due to lengthy acquisition times. Reconstruction of highly undersampled data using compressed sensing allows SPI data to be quickly obtained from animal models, enabling applications in preclinical cellular and molecular imaging. TurboSPI is a multi-echo single point technique that acquires hundreds of images with microsecond spacing, enabling high temporal resolution relaxometry of large-R 2 * systems such as iron-loaded cells. TurboSPI acquisitions can be pseudo-randomly undersampled in all three dimensions to increase artifact incoherence, and can provide prior information to improve reconstruction. We evaluated the performance of CS-TurboSPI in phantoms, a rat ex vivo, and a mouse in vivo. An algorithm for iterative reconstruction of TurboSPI relaxometry time courses does not affect image quality or R 2 * mapping in vitro at acceleration factors up to 10. Imaging ex vivo is possible at similar acceleration factors, and in vivo imaging is demonstrated at an acceleration factor of 8, such that acquisition time is under 1 h. Accelerated TurboSPI enables preclinical R 2 * mapping without loss of data quality, and may show increased specificity to iron oxide compared to other sequences.

  6. Use of electromagnetic-terrain conductivity and DC-resistivity profiling techniques for bedrock characterization at the 15th-of-May City extension, Cairo, Egypt

    NASA Astrophysics Data System (ADS)

    Aly, Said A.; Farag, Karam S. I.; Atya, Magdy A.; Badr, Mohamed A. M.

    2018-06-01

    A joint multi-spacing electromagnetic-terrain conductivity meter and DC-resistivity horizontal profiling survey was conducted at the anticipated eastern extensional area of the 15th-of-May City, southeastern Cairo, Egypt. The main objective of the survey was to highlight the applicability, efficiency, and reliability of utilizing such non-invasive surface techniques in a field like geologic mapping, and hence to image both the vertical and lateral electrical resistivity structures of the subsurface bedrock. Consequently, a total of reliable 6 multi-spacing electromagnetic-terrain conductivity meter and 7 DC-resistivity horizontal profiles were carried out between August 2016 and February 2017. All data sets were transformed-inverted extensively and consistently in terms of two-dimensional (2D) electrical resistivity smoothed-earth models. They could be used effectively and inexpensively to interpret the area's bedrock geologic sequence using the encountered consecutive electrically resistive and conductive anomalies. Notably, the encountered subsurface electrical resistivity structures, below all surveying profiles, are correlated well with the mapped geological faults in the field. They even could provide a useful understanding of their faulting fashion. Absolute resistivity values were not necessarily diagnostic, but their vertical and lateral variations could provide more diagnostic information about the layer lateral extensions and thicknesses, and hence suggested reliable geo-electric earth models. The study demonstrated that a detailed multi-spacing electromagnetic-terrain conductivity meter and DC-resistivity horizontal profiling survey can help design an optimal geotechnical investigative program, not only for the whole eastern extensional area of the 15th-of-May City, but also for the other new urban communities within the Egyptian desert.

  7. Using periodic orbits to compute chaotic transport rates between resonance zones.

    PubMed

    Sattari, Sulimon; Mitchell, Kevin A

    2017-11-01

    Transport properties of chaotic systems are computable from data extracted from periodic orbits. Given a sufficient number of periodic orbits, the escape rate can be computed using the spectral determinant, a function that incorporates the eigenvalues and periods of periodic orbits. The escape rate computed from periodic orbits converges to the true value as more and more periodic orbits are included. Escape from a given region of phase space can be computed by considering only periodic orbits that lie within the region. An accurate symbolic dynamics along with a corresponding partitioning of phase space is useful for systematically obtaining all periodic orbits up to a given period, to ensure that no important periodic orbits are missing in the computation. Homotopic lobe dynamics (HLD) is an automated technique for computing accurate partitions and symbolic dynamics for maps using the topological forcing of intersections of stable and unstable manifolds of a few periodic anchor orbits. In this study, we apply the HLD technique to compute symbolic dynamics and periodic orbits, which are then used to find escape rates from different regions of phase space for the Hénon map. We focus on computing escape rates in parameter ranges spanning hyperbolic plateaus, which are parameter intervals where the dynamics is hyperbolic and the symbolic dynamics does not change. After the periodic orbits are computed for a single parameter value within a hyperbolic plateau, periodic orbit continuation is used to compute periodic orbits over an interval that spans the hyperbolic plateau. The escape rates computed from a few thousand periodic orbits agree with escape rates computed from Monte Carlo simulations requiring hundreds of billions of orbits.

  8. Algebra and topology for applications to physics

    NASA Technical Reports Server (NTRS)

    Rozhkov, S. S.

    1987-01-01

    The principal concepts of algebra and topology are examined with emphasis on applications to physics. In particular, attention is given to sets and mapping; topological spaces and continuous mapping; manifolds; and topological groups and Lie groups. The discussion also covers the tangential spaces of the differential manifolds, including Lie algebras, vector fields, and differential forms, properties of differential forms, mapping of tangential spaces, and integration of differential forms.

  9. The role of global cloud climatologies in validating numerical models

    NASA Technical Reports Server (NTRS)

    HARSHVARDHAN

    1991-01-01

    The net upward longwave surface radiation is exceedingly difficult to measure from space. A hybrid method using General Circulation Model (GCM) simulations and satellite data from the Earth Radiation Budget Experiment (ERBE) and the International Satellite Cloud Climatology Project (ISCCP) was used to produce global maps of this quantity over oceanic areas. An advantage of this technique is that no independent knowledge or assumptions regarding cloud cover for a particular month are required. The only information required is a relationship between the cloud radiation forcing (CRF) at the top of the atmosphere and that at the surface, which is obtained from the GCM simulation. A flow diagram of the technique and results are given.

  10. Hyers-Ulam stability of a generalized Apollonius type quadratic mapping

    NASA Astrophysics Data System (ADS)

    Park, Chun-Gil; Rassias, Themistocles M.

    2006-10-01

    Let X,Y be linear spaces. It is shown that if a mapping satisfies the following functional equation: then the mapping is quadratic. We moreover prove the Hyers-Ulam stability of the functional equation (0.1) in Banach spaces.

  11. Control of magnetic anisotropy in (Ga,Mn)as by lithography-induced strain relaxation.

    PubMed

    Wenisch, J; Gould, C; Ebel, L; Storz, J; Pappert, K; Schmidt, M J; Kumpf, C; Schmidt, G; Brunner, K; Molenkamp, L W

    2007-08-17

    We report control of magnetic anisotropy in epitaxial (Ga,Mn)As by anisotropic strain relaxation in patterned structures. The strain in the structures is characterized using reciprocal space mapping by x-ray techniques. The magnetic anisotropy before patterning of the layer, which shows biaxial easy axes along [100] and [010], is replaced by a hard axis in the direction of large elastic strain relaxation and a uniaxial easy axis in the direction where pseudomorphic conditions are retained.

  12. Precise GPS orbits for geodesy

    NASA Technical Reports Server (NTRS)

    Colombo, Oscar L.

    1994-01-01

    The Global Positioning System (GPS) has become, in recent years, the main space-based system for surveying and navigation in many military, commercial, cadastral, mapping, and scientific applications. Better receivers, interferometric techniques (DGPS), and advances in post-processing methods have made possible to position fixed or moving receivers with sub-decimeter accuracies in a global reference frame. Improved methods for obtaining the orbits of the GPS satellites have played a major role in these achievements; this paper gives a personal view of the main developments in GPS orbit determination.

  13. Lidar vegetation mapping in national parks: Gulf Coast Network

    USGS Publications Warehouse

    Brock, John C.; Palaseanu-Lovejoy, Monica; Segura, Martha

    2011-01-01

    Airborne lidar (Light Detection and Ranging) is an active remote sensing technique used to collect accurate elevation data over large areas. Lidar provides an extremely high level of regional topographic detail, which makes this technology an essential component of U.S. Geological Survey (USGS) science strategy. The USGS Coastal and Marine Geology Program (CMGP) has collaborated with the National Aeronautics and Space Administration (NASA) and the National Park Service (NPS) to acquire dense topographic lidar data in a variety of coastal environments.

  14. Intrinsic map dynamics exploration for uncharted effective free-energy landscapes

    PubMed Central

    Covino, Roberto; Coifman, Ronald R.; Gear, C. William; Georgiou, Anastasia S.; Kevrekidis, Ioannis G.

    2017-01-01

    We describe and implement a computer-assisted approach for accelerating the exploration of uncharted effective free-energy surfaces (FESs). More generally, the aim is the extraction of coarse-grained, macroscopic information from stochastic or atomistic simulations, such as molecular dynamics (MD). The approach functionally links the MD simulator with nonlinear manifold learning techniques. The added value comes from biasing the simulator toward unexplored phase-space regions by exploiting the smoothness of the gradually revealed intrinsic low-dimensional geometry of the FES. PMID:28634293

  15. Classifying forest and nonforest land on space photographs

    NASA Technical Reports Server (NTRS)

    Aldrich, R. C.

    1970-01-01

    Although the research reported is in its preliminary stages, results show that: (1) infrared color film is the best single multiband sensor available; (2) there is a good possibility that forest can be separated from all nonforest land uses by microimage evaluation techniques on IR color film coupled with B/W infrared and panchromatic films; and (3) discrimination of forest and nonforest classes is possible by either of two methods: interpreters with appropriate viewing and mapping instruments, or programmable automatic scanning microdensitometers and automatic data processing.

  16. Femtosecond timing measurement and control using ultrafast organic thin films

    NASA Astrophysics Data System (ADS)

    Naruse, Makoto; Mitsu, Hiroyuki; Furuki, Makoto; Iwasa, Izumi; Sato, Yasuhiro; Tatsuura, Satoshi; Tian, Minquan

    2003-12-01

    We show a femtosecond timing measurement and control technique using a squarylium dye J-aggregate film, which is an organic thin film that acts as an ultrafast two-dimensional optical switch. Optical pulse timing is directly mapped to space-domain position on the film, and the large area and ultrafast response offer a femtosecond-resolved, large dynamic range, real-time, multichannel timing measurement capability. A timing fluctuation (jitter, wander, and skew) reduction architecture is presented and experimentally demonstrated.

  17. Efficient computer algorithms for infrared astronomy data processing

    NASA Technical Reports Server (NTRS)

    Pelzmann, R. F., Jr.

    1976-01-01

    Data processing techniques to be studied for use in infrared astronomy data analysis systems are outlined. Only data from space based telescope systems operating as survey instruments are considered. Resulting algorithms, and in some cases specific software, will be applicable for use with the infrared astronomy satellite (IRAS) and the shuttle infrared telescope facility (SIRTF). Operational tests made during the investigation use data from the celestial mapping program (CMP). The overall task differs from that involved in ground-based infrared telescope data reduction.

  18. DeepSurveyCam—A Deep Ocean Optical Mapping System

    PubMed Central

    Kwasnitschka, Tom; Köser, Kevin; Sticklus, Jan; Rothenbeck, Marcel; Weiß, Tim; Wenzlaff, Emanuel; Schoening, Timm; Triebe, Lars; Steinführer, Anja; Devey, Colin; Greinert, Jens

    2016-01-01

    Underwater photogrammetry and in particular systematic visual surveys of the deep sea are by far less developed than similar techniques on land or in space. The main challenges are the rough conditions with extremely high pressure, the accessibility of target areas (container and ship deployment of robust sensors, then diving for hours to the ocean floor), and the limitations of localization technologies (no GPS). The absence of natural light complicates energy budget considerations for deep diving flash-equipped drones. Refraction effects influence geometric image formation considerations with respect to field of view and focus, while attenuation and scattering degrade the radiometric image quality and limit the effective visibility. As an improvement on the stated issues, we present an AUV-based optical system intended for autonomous visual mapping of large areas of the seafloor (square kilometers) in up to 6000 m water depth. We compare it to existing systems and discuss tradeoffs such as resolution vs. mapped area and show results from a recent deployment with 90,000 mapped square meters of deep ocean floor. PMID:26828495

  19. Route visualization using detail lenses.

    PubMed

    Karnick, Pushpak; Cline, David; Jeschke, Stefan; Razdan, Anshuman; Wonka, Peter

    2010-01-01

    We present a method designed to address some limitations of typical route map displays of driving directions. The main goal of our system is to generate a printable version of a route map that shows the overview and detail views of the route within a single, consistent visual frame. Our proposed visualization provides a more intuitive spatial context than a simple list of turns. We present a novel multifocus technique to achieve this goal, where the foci are defined by points of interest (POI) along the route. A detail lens that encapsulates the POI at a finer geospatial scale is created for each focus. The lenses are laid out on the map to avoid occlusion with the route and each other, and to optimally utilize the free space around the route. We define a set of layout metrics to evaluate the quality of a lens layout for a given route map visualization. We compare standard lens layout methods to our proposed method and demonstrate the effectiveness of our method in generating aesthetically pleasing layouts. Finally, we perform a user study to evaluate the effectiveness of our layout choices.

  20. Analyzing the Effects of Various Concept Mapping Techniques on Learning Achievement under Different Learning Styles

    ERIC Educational Resources Information Center

    Chiou, Chei-Chang; Lee, Li-Tze; Tien, Li-Chu; Wang, Yu-Min

    2017-01-01

    This study explored the effectiveness of different concept mapping techniques on the learning achievement of senior accounting students and whether achievements attained using various techniques are affected by different learning styles. The techniques are computer-assisted construct-by-self-concept mapping (CACSB), computer-assisted…

  1. Non-water-suppressed short-echo-time magnetic resonance spectroscopic imaging using a concentric ring k-space trajectory.

    PubMed

    Emir, Uzay E; Burns, Brian; Chiew, Mark; Jezzard, Peter; Thomas, M Albert

    2017-07-01

    Water-suppressed MRS acquisition techniques have been the standard MRS approach used in research and for clinical scanning to date. The acquisition of a non-water-suppressed MRS spectrum is used for artefact correction, reconstruction of phased-array coil data and metabolite quantification. Here, a two-scan metabolite-cycling magnetic resonance spectroscopic imaging (MRSI) scheme that does not use water suppression is demonstrated and evaluated. Specifically, the feasibility of acquiring and quantifying short-echo (T E  = 14 ms), two-dimensional stimulated echo acquisition mode (STEAM) MRSI spectra in the motor cortex is demonstrated on a 3 T MRI system. The increase in measurement time from the metabolite-cycling is counterbalanced by a time-efficient concentric ring k-space trajectory. To validate the technique, water-suppressed MRSI acquisitions were also performed for comparison. The proposed non-water-suppressed metabolite-cycling MRSI technique was tested for detection and correction of resonance frequency drifts due to subject motion and/or hardware instability, and the feasibility of high-resolution metabolic mapping over a whole brain slice was assessed. Our results show that the metabolite spectra and estimated concentrations are in agreement between non-water-suppressed and water-suppressed techniques. The achieved spectral quality, signal-to-noise ratio (SNR) > 20 and linewidth <7 Hz allowed reliable metabolic mapping of five major brain metabolites in the motor cortex with an in-plane resolution of 10 × 10 mm 2 in 8 min and with a Cramér-Rao lower bound of less than 20% using LCModel analysis. In addition, the high SNR of the water peak of the non-water-suppressed technique enabled voxel-wise single-scan frequency, phase and eddy current correction. These findings demonstrate that our non-water-suppressed metabolite-cycling MRSI technique can perform robustly on 3 T MRI systems and within a clinically feasible acquisition time. © 2017 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.

  2. Peripersonal space representation develops independently from visual experience.

    PubMed

    Ricciardi, Emiliano; Menicagli, Dario; Leo, Andrea; Costantini, Marcello; Pietrini, Pietro; Sinigaglia, Corrado

    2017-12-15

    Our daily-life actions are typically driven by vision. When acting upon an object, we need to represent its visual features (e.g. shape, orientation, etc.) and to map them into our own peripersonal space. But what happens with people who have never had any visual experience? How can they map object features into their own peripersonal space? Do they do it differently from sighted agents? To tackle these questions, we carried out a series of behavioral experiments in sighted and congenitally blind subjects. We took advantage of a spatial alignment effect paradigm, which typically refers to a decrease of reaction times when subjects perform an action (e.g., a reach-to-grasp pantomime) congruent with that afforded by a presented object. To systematically examine peripersonal space mapping, we presented visual or auditory affording objects both within and outside subjects' reach. The results showed that sighted and congenitally blind subjects did not differ in mapping objects into their own peripersonal space. Strikingly, this mapping occurred also when objects were presented outside subjects' reach, but within the peripersonal space of another agent. This suggests that (the lack of) visual experience does not significantly affect the development of both one's own and others' peripersonal space representation.

  3. Rhesus monkeys (Macaca mulatta) map number onto space.

    PubMed

    Drucker, Caroline B; Brannon, Elizabeth M

    2014-07-01

    Humans map number onto space. However, the origins of this association, and particularly the degree to which it depends upon cultural experience, are not fully understood. Here we provide the first demonstration of a number-space mapping in a non-human primate. We trained four adult male rhesus macaques (Macaca mulatta) to select the fourth position from the bottom of a five-element vertical array. Monkeys maintained a preference to choose the fourth position through changes in the appearance, location, and spacing of the vertical array. We next asked whether monkeys show a spatially-oriented number mapping by testing their responses to the same five-element stimulus array rotated ninety degrees into a horizontal line. In these horizontal probe trials, monkeys preferentially selected the fourth position from the left, but not the fourth position from the right. Our results indicate that rhesus macaques map number onto space, suggesting that the association between number and space in human cognition is not purely a result of cultural experience and instead has deep evolutionary roots. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Fast Atomic-Scale Elemental Mapping of Crystalline Materials by STEM Energy-Dispersive X-Ray Spectroscopy Achieved with Thin Specimens [Fast Atomic-Scale Chemical Imaging of Crystalline Materials by STEM Energy-Dispersive X-ray Spectroscopy Achieved with Thin Specimens].

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Ping; Yuan, Renliang; Zuo, Jian Min

    Abstract Elemental mapping at the atomic-scale by scanning transmission electron microscopy (STEM) using energy-dispersive X-ray spectroscopy (EDS) provides a powerful real-space approach to chemical characterization of crystal structures. However, applications of this powerful technique have been limited by inefficient X-ray emission and collection, which require long acquisition times. Recently, using a lattice-vector translation method, we have shown that rapid atomic-scale elemental mapping using STEM-EDS can be achieved. This method provides atomic-scale elemental maps averaged over crystal areas of ~few 10 nm 2with the acquisition time of ~2 s or less. Here we report the details of this method, and, inmore » particular, investigate the experimental conditions necessary for achieving it. It shows, that in addition to usual conditions required for atomic-scale imaging, a thin specimen is essential for the technique to be successful. Phenomenological modeling shows that the localization of X-ray signals to atomic columns is a key reason. The effect of specimen thickness on the signal delocalization is studied by multislice image simulations. The results show that the X-ray localization can be achieved by choosing a thin specimen, and the thickness of less than about 22 nm is preferred for SrTiO 3in [001] projection for 200 keV electrons.« less

  5. Experimental and Automated Analysis Techniques for High-resolution Electrical Mapping of Small Intestine Slow Wave Activity

    PubMed Central

    Angeli, Timothy R; O'Grady, Gregory; Paskaranandavadivel, Niranchan; Erickson, Jonathan C; Du, Peng; Pullan, Andrew J; Bissett, Ian P

    2013-01-01

    Background/Aims Small intestine motility is governed by an electrical slow wave activity, and abnormal slow wave events have been associated with intestinal dysmotility. High-resolution (HR) techniques are necessary to analyze slow wave propagation, but progress has been limited by few available electrode options and laborious manual analysis. This study presents novel methods for in vivo HR mapping of small intestine slow wave activity. Methods Recordings were obtained from along the porcine small intestine using flexible printed circuit board arrays (256 electrodes; 4 mm spacing). Filtering options were compared, and analysis was automated through adaptations of the falling-edge variable-threshold (FEVT) algorithm and graphical visualization tools. Results A Savitzky-Golay filter was chosen with polynomial-order 9 and window size 1.7 seconds, which maintained 94% of slow wave amplitude, 57% of gradient and achieved a noise correction ratio of 0.083. Optimized FEVT parameters achieved 87% sensitivity and 90% positive-predictive value. Automated activation mapping and animation successfully revealed slow wave propagation patterns, and frequency, velocity, and amplitude were calculated and compared at 5 locations along the intestine (16.4 ± 0.3 cpm, 13.4 ± 1.7 mm/sec, and 43 ± 6 µV, respectively, in the proximal jejunum). Conclusions The methods developed and validated here will greatly assist small intestine HR mapping, and will enable experimental and translational work to evaluate small intestine motility in health and disease. PMID:23667749

  6. Fast Atomic-Scale Elemental Mapping of Crystalline Materials by STEM Energy-Dispersive X-Ray Spectroscopy Achieved with Thin Specimens [Fast Atomic-Scale Chemical Imaging of Crystalline Materials by STEM Energy-Dispersive X-ray Spectroscopy Achieved with Thin Specimens].

    DOE PAGES

    Lu, Ping; Yuan, Renliang; Zuo, Jian Min

    2017-02-23

    Abstract Elemental mapping at the atomic-scale by scanning transmission electron microscopy (STEM) using energy-dispersive X-ray spectroscopy (EDS) provides a powerful real-space approach to chemical characterization of crystal structures. However, applications of this powerful technique have been limited by inefficient X-ray emission and collection, which require long acquisition times. Recently, using a lattice-vector translation method, we have shown that rapid atomic-scale elemental mapping using STEM-EDS can be achieved. This method provides atomic-scale elemental maps averaged over crystal areas of ~few 10 nm 2with the acquisition time of ~2 s or less. Here we report the details of this method, and, inmore » particular, investigate the experimental conditions necessary for achieving it. It shows, that in addition to usual conditions required for atomic-scale imaging, a thin specimen is essential for the technique to be successful. Phenomenological modeling shows that the localization of X-ray signals to atomic columns is a key reason. The effect of specimen thickness on the signal delocalization is studied by multislice image simulations. The results show that the X-ray localization can be achieved by choosing a thin specimen, and the thickness of less than about 22 nm is preferred for SrTiO 3in [001] projection for 200 keV electrons.« less

  7. North Alabama Lightning Mapping Array (LMA): VHF Source Retrieval Algorithm and Error Analyses

    NASA Technical Reports Server (NTRS)

    Koshak, W. J.; Solakiewicz, R. J.; Blakeslee, R. J.; Goodman, S. J.; Christian, H. J.; Hall, J.; Bailey, J.; Krider, E. P.; Bateman, M. G.; Boccippio, D.

    2003-01-01

    Two approaches are used to characterize how accurately the North Alabama Lightning Mapping Array (LMA) is able to locate lightning VHF sources in space and in time. The first method uses a Monte Carlo computer simulation to estimate source retrieval errors. The simulation applies a VHF source retrieval algorithm that was recently developed at the NASA Marshall Space Flight Center (MSFC) and that is similar, but not identical to, the standard New Mexico Tech retrieval algorithm. The second method uses a purely theoretical technique (i.e., chi-squared Curvature Matrix Theory) to estimate retrieval errors. Both methods assume that the LMA system has an overall rms timing error of 50 ns, but all other possible errors (e.g., multiple sources per retrieval attempt) are neglected. The detailed spatial distributions of retrieval errors are provided. Given that the two methods are completely independent of one another, it is shown that they provide remarkably similar results. However, for many source locations, the Curvature Matrix Theory produces larger altitude error estimates than the (more realistic) Monte Carlo simulation.

  8. The Complete Calibration of the Color-Redshift Relation (C3R2) survey for Euclid

    NASA Astrophysics Data System (ADS)

    Cohen, Judith; Masters, Daniel; C3R2 Team

    2018-06-01

    The complete calibration of the color-redshift relation (C3R2) survey is a multi-institution, mutli-instrument survey with the Keck telescopes that aims to map out the empirical galaxy color-redshift relation in preparation for the Stage IV dark energy missions Euclid and WFIRST. A key challenge for weak lensing cosmology with these missions will be measuring highly accurate redshift distributions for billions of faint galaxies using only broad-band photometric observations. Well-calibrated photometric redshifts will thus be critical to their success. C3R2 uses an innovative technique that maps the color distribution of galaxies in the high-dimensional color space (u-g, ..., J-H) expected for Euclid and WFIRST, allowng us to focus spectroscopic effort on those regions of galaxy color space which are currently unexplored. C3R2 is a joint effort involving all of the Keck partners, with 44.5 nights allocated thus far. DR1 is published (Masters, Stern, Cohen et al, ApJ, 841, 111), and DR2, with > 3000 new redshifts, will be submitted in mid 2018.

  9. A regularized approach for geodesic-based semisupervised multimanifold learning.

    PubMed

    Fan, Mingyu; Zhang, Xiaoqin; Lin, Zhouchen; Zhang, Zhongfei; Bao, Hujun

    2014-05-01

    Geodesic distance, as an essential measurement for data dissimilarity, has been successfully used in manifold learning. However, most geodesic distance-based manifold learning algorithms have two limitations when applied to classification: 1) class information is rarely used in computing the geodesic distances between data points on manifolds and 2) little attention has been paid to building an explicit dimension reduction mapping for extracting the discriminative information hidden in the geodesic distances. In this paper, we regard geodesic distance as a kind of kernel, which maps data from linearly inseparable space to linear separable distance space. In doing this, a new semisupervised manifold learning algorithm, namely regularized geodesic feature learning algorithm, is proposed. The method consists of three techniques: a semisupervised graph construction method, replacement of original data points with feature vectors which are built by geodesic distances, and a new semisupervised dimension reduction method for feature vectors. Experiments on the MNIST, USPS handwritten digit data sets, MIT CBCL face versus nonface data set, and an intelligent traffic data set show the effectiveness of the proposed algorithm.

  10. PLUTO AND CHARON WITH THE HUBBLE SPACE TELESCOPE. II. RESOLVING CHANGES ON PLUTO'S SURFACE AND A MAP FOR CHARON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buie, Marc W.; Young, Eliot F.; Young, Leslie A.

    We present new imaging of the surface of Pluto and Charon obtained during 2002-2003 with the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) instrument. Using these data, we construct two-color albedo maps for the surfaces of both Pluto and Charon. Similar mapping techniques are used to re-process HST/Faint Object Camera (FOC) images taken in 1994. The FOC data provide information in the ultraviolet and blue wavelengths that show a marked trend of UV-bright material toward the sunlit pole. The ACS data are taken at two optical wavelengths and show widespread albedo and color variegation on the surface ofmore » Pluto and hint at a latitudinal albedo trend on Charon. The ACS data also provide evidence for a decreasing albedo for Pluto at blue (435 nm) wavelengths, while the green (555 nm) data are consistent with a static surface over the one-year period of data collection. We use the two maps to synthesize a true visual color map of Pluto's surface and investigate trends in color. The mid- to high-latitude region on the sunlit pole is, on average, more neutral in color and generally higher albedo than the rest of the surface. Brighter surfaces also tend to be more neutral in color and show minimal color variations. The darker regions show considerable color diversity arguing that there must be a range of compositional units in the dark regions. Color variations are weak when sorted by longitude. These data are also used to constrain astrometric corrections that enable more accurate orbit fitting, both for the heliocentric orbit of the barycenter and the orbit of Pluto and Charon about their barycenter.« less

  11. Spectral Radiance of a Large-Area Integrating Sphere Source

    PubMed Central

    Walker, James H.; Thompson, Ambler

    1995-01-01

    The radiance and irradiance calibration of large field-of-view scanning and imaging radiometers for remote sensing and surveillance applications has resulted in the development of novel calibration techniques. One of these techniques is the employment of large-area integrating sphere sources as radiance or irradiance secondary standards. To assist the National Aeronautical and Space Administration’s space based ozone measurement program, a commercially available large-area internally illuminated integrating sphere source’s spectral radiance was characterized in the wavelength region from 230 nm to 400 nm at the National Institute of Standards and Technology. Spectral radiance determinations and spatial mappings of the source indicate that carefully designed large-area integrating sphere sources can be measured with a 1 % to 2 % expanded uncertainty (two standard deviation estimate) in the near ultraviolet with spatial nonuniformities of 0.6 % or smaller across a 20 cm diameter exit aperture. A method is proposed for the calculation of the final radiance uncertainties of the source which includes the field of view of the instrument being calibrated. PMID:29151725

  12. Performance Measures for Adaptive Decisioning Systems

    DTIC Science & Technology

    1991-09-11

    set to hypothesis space mapping best approximates the known map. Two assumptions, a sufficiently representative training set and the ability of the...successful prediction of LINEXT performance. The LINEXT algorithm above performs the decision space mapping on the training-set ele- ments exactly. For a

  13. Stability of iterative procedures with errors for approximating common fixed points of a couple of q-contractive-like mappings in Banach spaces

    NASA Astrophysics Data System (ADS)

    Zeng, Lu-Chuan; Yao, Jen-Chih

    2006-09-01

    Recently, Agarwal, Cho, Li and Huang [R.P. Agarwal, Y.J. Cho, J. Li, N.J. Huang, Stability of iterative procedures with errors approximating common fixed points for a couple of quasi-contractive mappings in q-uniformly smooth Banach spaces, J. Math. Anal. Appl. 272 (2002) 435-447] introduced the new iterative procedures with errors for approximating the common fixed point of a couple of quasi-contractive mappings and showed the stability of these iterative procedures with errors in Banach spaces. In this paper, we introduce a new concept of a couple of q-contractive-like mappings (q>1) in a Banach space and apply these iterative procedures with errors for approximating the common fixed point of the couple of q-contractive-like mappings. The results established in this paper improve, extend and unify the corresponding ones of Agarwal, Cho, Li and Huang [R.P. Agarwal, Y.J. Cho, J. Li, N.J. Huang, Stability of iterative procedures with errors approximating common fixed points for a couple of quasi-contractive mappings in q-uniformly smooth Banach spaces, J. Math. Anal. Appl. 272 (2002) 435-447], Chidume [C.E. Chidume, Approximation of fixed points of quasi-contractive mappings in Lp spaces, Indian J. Pure Appl. Math. 22 (1991) 273-386], Chidume and Osilike [C.E. Chidume, M.O. Osilike, Fixed points iterations for quasi-contractive maps in uniformly smooth Banach spaces, Bull. Korean Math. Soc. 30 (1993) 201-212], Liu [Q.H. Liu, On Naimpally and Singh's open questions, J. Math. Anal. Appl. 124 (1987) 157-164; Q.H. Liu, A convergence theorem of the sequence of Ishikawa iterates for quasi-contractive mappings, J. Math. Anal. Appl. 146 (1990) 301-305], Osilike [M.O. Osilike, A stable iteration procedure for quasi-contractive maps, Indian J. Pure Appl. Math. 27 (1996) 25-34; M.O. Osilike, Stability of the Ishikawa iteration method for quasi-contractive maps, Indian J. Pure Appl. Math. 28 (1997) 1251-1265] and many others in the literature.

  14. Efficient design of nanoplasmonic waveguide devices using the space mapping algorithm.

    PubMed

    Dastmalchi, Pouya; Veronis, Georgios

    2013-12-30

    We show that the space mapping algorithm, originally developed for microwave circuit optimization, can enable the efficient design of nanoplasmonic waveguide devices which satisfy a set of desired specifications. Space mapping utilizes a physics-based coarse model to approximate a fine model accurately describing a device. Here the fine model is a full-wave finite-difference frequency-domain (FDFD) simulation of the device, while the coarse model is based on transmission line theory. We demonstrate that simply optimizing the transmission line model of the device is not enough to obtain a device which satisfies all the required design specifications. On the other hand, when the iterative space mapping algorithm is used, it converges fast to a design which meets all the specifications. In addition, full-wave FDFD simulations of only a few candidate structures are required before the iterative process is terminated. Use of the space mapping algorithm therefore results in large reductions in the required computation time when compared to any direct optimization method of the fine FDFD model.

  15. Efficient characterization of phase space mapping in axially symmetric optical systems

    NASA Astrophysics Data System (ADS)

    Barbero, Sergio; Portilla, Javier

    2018-01-01

    Phase space mapping, typically between an object and image plane, characterizes an optical system within a geometrical optics framework. We propose a novel conceptual frame to characterize the phase mapping in axially symmetric optical systems for arbitrary object locations, not restricted to a specific object plane. The idea is based on decomposing the phase mapping into a set of bivariate equations corresponding to different values of the radial coordinate on a specific object surface (most likely the entrance pupil). These equations are then approximated through bivariate Chebyshev interpolation at Chebyshev nodes, which guarantees uniform convergence. Additionally, we propose the use of a new concept (effective object phase space), defined as the set of points of the phase space at the first optical element (typically the entrance pupil) that are effectively mapped onto the image surface. The effective object phase space provides, by means of an inclusion test, a way to avoid tracing rays that do not reach the image surface.

  16. Summary of space imagery studies in Utah and Nevada. [using LANDSAT 1, EREP, and Skylab imagery

    NASA Technical Reports Server (NTRS)

    Jensen, M. L.; Laylander, P.

    1975-01-01

    LANDSAT-1, Skylab, and RB-57 imagery acquired within days of each other of the San Rafael swell enabled geological mapping of individual formations of the southern portion of this broad anticlinal feature in eastern Utah. Mapping at a scale of 1/250,000 on an enhanced and enlarged S-190B image resulted in a geological map showing correlative mappable features that are indicated on the geological map of Utah at the same scale. An enhanced enlargement of an S-190B color image at a scale of 1/19,200 of the Bingham Porphyry Copper deposit allowed comparison of a geological map of the area with the space imagery map as fair for the intrusion boundaries and total lack of quality for mapping the sediments. Hydrothermal alteration is only slightly evident on space imagery at Bingham but in the Tintic mining district and the volcanic piles of the Keg and Thomas ranges, Utah, hydrothermal alteration is readily mapped on color enlargements of S-190B (SL-3, T3-3N Tr-2). A mercury soil-gas analyzer was developed for locating hidden mineralized zones which were suggested from space imagery.

  17. Distinguishability notion based on Wootters statistical distance: Application to discrete maps

    NASA Astrophysics Data System (ADS)

    Gomez, Ignacio S.; Portesi, M.; Lamberti, P. W.

    2017-08-01

    We study the distinguishability notion given by Wootters for states represented by probability density functions. This presents the particularity that it can also be used for defining a statistical distance in chaotic unidimensional maps. Based on that definition, we provide a metric d ¯ for an arbitrary discrete map. Moreover, from d ¯ , we associate a metric space with each invariant density of a given map, which results to be the set of all distinguished points when the number of iterations of the map tends to infinity. Also, we give a characterization of the wandering set of a map in terms of the metric d ¯ , which allows us to identify the dissipative regions in the phase space. We illustrate the results in the case of the logistic and the circle maps numerically and analytically, and we obtain d ¯ and the wandering set for some characteristic values of their parameters. Finally, an extension of the metric space associated for arbitrary probability distributions (not necessarily invariant densities) is given along with some consequences. The statistical properties of distributions given by histograms are characterized in terms of the cardinal of the associated metric space. For two conjugate variables, the uncertainty principle is expressed in terms of the diameters of the associated metric space with those variables.

  18. Phonon Mapping in Flowing Equilibrium

    NASA Astrophysics Data System (ADS)

    Ruff, J. P. C.

    2015-03-01

    When a material conducts heat, a modification of the phonon population occurs. The equilibrium Bose-Einstein distribution is perturbed towards flowing-equilibrium, for which the distribution function is not analytically known. Here I argue that the altered phonon population can be efficiently mapped over broad regions of reciprocal space, via diffuse x-ray scattering or time-of-flight neutron scattering, while a thermal gradient is applied across a single crystal sample. When compared to traditional transport measurements, this technique offers a superior, information-rich new perspective on lattice thermal conductivity, wherein the band and momentum dependences of the phonon thermal current are directly resolved. The proposed method is benchmarked using x-ray thermal diffuse scattering measurements of single crystal diamond under transport conditions. CHESS is supported by the NSF & NIH/NIGMS via NSF Award DMR-1332208.

  19. The 4DILAN Project (4TH Dimension in Landscape and Artifacts Analyses)

    NASA Astrophysics Data System (ADS)

    Chiabrando, F.; Naretto, M.; Sammartano, G.; Sambuelli, L.; Spanò, A.; Teppati Losè, L.

    2017-05-01

    The project is part of the wider application and subsequent spread of innovative digital technologies involving robotic systems. Modern society needs knowledge and investigation of the environment and of the related built landscape; therefore it increasingly requires new types of information. The goal can be achieved through the innovative integration of methods to set new analysis strategies for the knowledge of the built heritage and cultural landscape. The experimental cooperation between different disciplines and the related tools and techniques, which this work suggests for the analysis of the architectural heritage and the historical territory, are the following: - 3D metric survey techniques with active and passive sensors - the latter operating in both terrestrial mode and by aerial pointof view. In some circumstances, beyond the use of terrestrial LiDAR, even the newest mobile mapping system using SLAMtechnology (simultaneous localization and mapping) has been tested. - Techniques of non-destructive investigation, such as geophysical analysis of the subsoil and built structures, in particularGPR (Ground Penetrating Radar) techniques. - Historic and stratigraphic surveys carried out primarily through the study and interpretation of documentary sources,cartography and historical iconography, closely related to the existing data or latent material. The experience through the application of these techniques of investigation connected to the built spaces and to the manmade environments has been achieved with the aim of improving the ability to analyse the occurred transformations/layers over time and no longer directly readable or interpretable on manufactured evidence.

  20. Mapping continental-scale biomass burning and smoke palls over the Amazon basin as observed from the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Helfert, Michael R.; Lulla, Kamlesh P.

    1990-01-01

    Space Shuttle and Skylab-3 photography has been used to map the areal extent of Amazonian smoke palls associated with biomass burning (1973-1988). Areas covered with smoke have increased from approximately 300,000 sq km in 1973 to continental-size smoke palls measuring approximately 3,000,000 sq km in 1985 and 1988. Mapping of these smoke palls has been accomplished using space photography mainly acquired during Space Shuttle missions. Astronaut observations of such dynamic and vital environmental phenomena indicate the possibility of integrating the earth observation capabilities of all space platforms in future Global Change research.

  1. Combining Techniques to Refine Item to Skills Q-Matrices with a Partition Tree

    ERIC Educational Resources Information Center

    Desmarais, Michel C.; Xu, Peng; Beheshti, Behzad

    2015-01-01

    The problem of mapping items to skills is gaining interest with the emergence of recent techniques that can use data for both defining this mapping, and for refining mappings given by experts. We investigate the problem of refining mapping from an expert by combining the output of different techniques. The combination is based on a partition tree…

  2. Linear Mapping of Numbers onto Space Requires Attention

    ERIC Educational Resources Information Center

    Anobile, Giovanni; Cicchini, Guido Marco; Burr, David C.

    2012-01-01

    Mapping of number onto space is fundamental to mathematics and measurement. Previous research suggests that while typical adults with mathematical schooling map numbers veridically onto a linear scale, pre-school children and adults without formal mathematics training, as well as individuals with dyscalculia, show strong compressive,…

  3. Vortex energy landscape from real space imaging analysis of YBa2Cu3O7 with different defect structures

    NASA Astrophysics Data System (ADS)

    Luccas, R. F.; Granados, X.; Obradors, X.; Puig, T.

    2014-10-01

    A methodology based on real space vortex image analysis is presented able to estimate semi-quantitatively the relevant energy densities of an arbitrary array of vortices, map the interaction energy distributions and evaluate the pinning energy associated to particular defects. The combined study using nanostructuration tools, a vortex visualization technique and the energy method is seen as an opportunity to estimate vortex pinning potentials strengths. Particularly, spatial distributions of vortex energy densities induced by surface nanoindented scratches are evaluated and compared to those of twin boundaries. This comparative study underlines the remarkable role of surface nanoscratches in pinning vortices and its potentiality in the design of novel devices for pinning and guiding vortex motion.

  4. The design of free structure granular mappings: the use of the principle of justifiable granularity.

    PubMed

    Pedrycz, Witold; Al-Hmouz, Rami; Morfeq, Ali; Balamash, Abdullah

    2013-12-01

    The study introduces a concept of mappings realized in presence of information granules and offers a design framework supporting the formation of such mappings. Information granules are conceptually meaningful entities formed on a basis of a large number of experimental input–output numeric data available for the construction of the model. We develop a conceptually and algorithmically sound way of forming information granules. Considering the directional nature of the mapping to be formed, this directionality aspect needs to be taken into account when developing information granules. The property of directionality implies that while the information granules in the input space could be constructed with a great deal of flexibility, the information granules formed in the output space have to inherently relate to those built in the input space. The input space is granulated by running a clustering algorithm; for illustrative purposes, the focus here is on fuzzy clustering realized with the aid of the fuzzy C-means algorithm. The information granules in the output space are constructed with the aid of the principle of justifiable granularity (being one of the underlying fundamental conceptual pursuits of Granular Computing). The construct exhibits two important features. First, the constructed information granules are formed in the presence of information granules already constructed in the input space (and this realization is reflective of the direction of the mapping from the input to the output space). Second, the principle of justifiable granularity does not confine the realization of information granules to a single formalism such as fuzzy sets but helps form the granules expressed any required formalism of information granulation. The quality of the granular mapping (viz. the mapping realized for the information granules formed in the input and output spaces) is expressed in terms of the coverage criterion (articulating how well the experimental data are “covered” by information granules produced by the granular mapping for any input experimental data). Some parametric studies are reported by quantifying the performance of the granular mapping (expressed in terms of the coverage and specificity criteria) versus the values of a certain parameters utilized in the construction of output information granules through the principle of justifiable granularity. The plots of coverage–specificity dependency help determine a knee point and reach a sound compromise between these two conflicting requirements imposed on the quality of the granular mapping. Furthermore, quantified is the quality of the mapping with regard to the number of information granules (implying a certain granularity of the mapping). A series of experiments is reported as well.

  5. Engineering Feasibility and Trade Studies for the NASA/VSGC MicroMaps Space Mission

    NASA Technical Reports Server (NTRS)

    Abdelkhalik, Ossama O.; Nairouz, Bassem; Weaver, Timothy; Newman, Brett

    2003-01-01

    Knowledge of airborne CO concentrations is critical for accurate scientific prediction of global scale atmospheric behavior. MicroMaps is an existing NASA owned gas filter radiometer instrument designed for space-based measurement of atmospheric CO vertical profiles. Due to programmatic changes, the instrument does not have access to the space environment and is in storage. MicroMaps hardware has significant potential for filling a critical scientific need, thus motivating concept studies for new and innovative scientific spaceflight missions that would leverage the MicroMaps heritage and investment, and contribute to new CO distribution data. This report describes engineering feasibility and trade studies for the NASA/VSGC MicroMaps Space Mission. Conceptual studies encompass: 1) overall mission analysis and synthesis methodology, 2) major subsystem studies and detailed requirements development for an orbital platform option consisting of a small, single purpose spacecraft, 3) assessment of orbital platform option consisting of the International Space Station, and 4) survey of potential launch opportunities for gaining assess to orbit. Investigations are of a preliminary first-order nature. Results and recommendations from these activities are envisioned to support future MicroMaps Mission design decisions regarding program down select options leading to more advanced and mature phases.

  6. Multiple site receptor modeling with a minimal spanning tree combined with a Kohonen neural network

    NASA Astrophysics Data System (ADS)

    Hopke, Philip K.

    1999-12-01

    A combination of two pattern recognition methods has been developed that allows the generation of geographical emission maps form multivariate environmental data. In such a projection into a visually interpretable subspace by a Kohonen Self-Organizing Feature Map, the topology of the higher dimensional variables space can be preserved, but parts of the information about the correct neighborhood among the sample vectors will be lost. This can partly be compensated for by an additional projection of Prim's Minimal Spanning Tree into the trained neural network. This new environmental receptor modeling technique has been adapted for multiple sampling sites. The behavior of the method has been studied using simulated data. Subsequently, the method has been applied to mapping data sets from the Southern California Air Quality Study. The projection of a 17 chemical variables measured at up to 8 sampling sites provided a 2D, visually interpretable, geometrically reasonable arrangement of air pollution source sin the South Coast Air Basin.

  7. EAARL Topography-Padre Island National Seashore

    USGS Publications Warehouse

    Brock, John C.; Wright, C. Wayne; Nayegandhi, Amar; Patterson, Matt; Wilson, Iris; Travers, Laurinda J.

    2007-01-01

    This Web site contains 116 Lidar-derived bare earth topography maps and GIS files for Padre Island National Seashore-Texas. These Lidar-derived topography maps were produced as a collaborative effort between the U.S. Geological Survey (USGS) Florida Integrated Science Center (FISC) St. Petersburg, Florida, the National Park Service (NPS) Gulf Coast Network, Inventory and Monitoring Program, and the National Aeronautics and Space Administration (NASA) Wallops Flight Facility. One objective of this research is to create techniques to survey coral reefs and barrier islands for the purposes of geomorphic change studies, habitat mapping, ecological monitoring, change detection, and event assessment. As part of this project, data from an innovative instrument under development at the NASA Wallops Flight Facility, the NASA Experimental Airborne Advanced Research Lidar (EAARL) are being used. This sensor has the potential to make significant contributions in this realm for measuring subaerial and submarine topography wthin cross-environment surveys. High spectral resolution, water-column correction, and low costs were found to be key factors in providing accurate and affordable imagery to costal resource managers.

  8. Characterization of Urban Landscape Using Super-Resolution UAS Data, Multiple Textural Scales and Data-Mining Techniques

    NASA Astrophysics Data System (ADS)

    Voss, M.; Blundell, B.

    2015-12-01

    Characterization of urban environments is a high priority for the U.S. Army as battlespaces have transitioned from the predominantly open spaces of the 20th century to urban areas where soldiers have reduced situational awareness due to the diversity and density of their surroundings. Creating high-resolution urban terrain geospatial information will improve mission planning and soldier effectiveness. In this effort, super-resolution true-color imagery was collected with an Altivan NOVA unmanned aerial system over the Muscatatuck Urban Training Center near Butlerville, Indiana on September 16, 2014. Multispectral texture analysis using different algorithms was conducted for urban surface characterization at a variety of scales. Training samples extracted from the true-color and texture images. These data were processed using a variety of meta-algorithms with a decision tree classifier to create a high-resolution urban features map. In addition to improving accuracy over traditional image classification methods, this technique allowed the determination of the most significant textural scales in creating urban terrain maps for tactical exploitation.

  9. The generation and use of numerical shape models for irregular Solar System objects

    NASA Technical Reports Server (NTRS)

    Simonelli, Damon P.; Thomas, Peter C.; Carcich, Brian T.; Veverka, Joseph

    1993-01-01

    We describe a procedure that allows the efficient generation of numerical shape models for irregular Solar System objects, where a numerical model is simply a table of evenly spaced body-centered latitudes and longitudes and their associated radii. This modeling technique uses a combination of data from limbs, terminators, and control points, and produces shape models that have some important advantages over analytical shape models. Accurate numerical shape models make it feasible to study irregular objects with a wide range of standard scientific analysis techniques. These applications include the determination of moments of inertia and surface gravity, the mapping of surface locations and structural orientations, photometric measurement and analysis, the reprojection and mosaicking of digital images, and the generation of albedo maps. The capabilities of our modeling procedure are illustrated through the development of an accurate numerical shape model for Phobos and the production of a global, high-resolution, high-pass-filtered digital image mosaic of this Martian moon. Other irregular objects that have been modeled, or are being modeled, include the asteroid Gaspra and the satellites Deimos, Amalthea, Epimetheus, Janus, Hyperion, and Proteus.

  10. Biotechnology and apple breeding in Japan

    PubMed Central

    Igarashi, Megumi; Hatsuyama, Yoshimichi; Harada, Takeo; Fukasawa-Akada, Tomoko

    2016-01-01

    Apple is a fruit crop of significant economic importance, and breeders world wide continue to develop novel cultivars with improved characteristics. The lengthy juvenile period and the large field space required to grow apple populations have imposed major limitations on breeding. Various molecular biological techniques have been employed to make apple breeding easier. Transgenic technology has facilitated the development of apples with resistance to fungal or bacterial diseases, improved fruit quality, or root stocks with better rooting or dwarfing ability. DNA markers for disease resistance (scab, powdery mildew, fire-blight, Alternaria blotch) and fruit skin color have also been developed, and marker-assisted selection (MAS) has been employed in breeding programs. In the last decade, genomic sequences and chromosome maps of various cultivars have become available, allowing the development of large SNP arrays, enabling efficient QTL mapping and genomic selection (GS). In recent years, new technologies for genetic improvement, such as trans-grafting, virus vectors, and genome-editing, have emerged. Using these techniques, no foreign genes are present in the final product, and some of them show considerable promise for application to apple breeding. PMID:27069388

  11. Biotechnology and apple breeding in Japan.

    PubMed

    Igarashi, Megumi; Hatsuyama, Yoshimichi; Harada, Takeo; Fukasawa-Akada, Tomoko

    2016-01-01

    Apple is a fruit crop of significant economic importance, and breeders world wide continue to develop novel cultivars with improved characteristics. The lengthy juvenile period and the large field space required to grow apple populations have imposed major limitations on breeding. Various molecular biological techniques have been employed to make apple breeding easier. Transgenic technology has facilitated the development of apples with resistance to fungal or bacterial diseases, improved fruit quality, or root stocks with better rooting or dwarfing ability. DNA markers for disease resistance (scab, powdery mildew, fire-blight, Alternaria blotch) and fruit skin color have also been developed, and marker-assisted selection (MAS) has been employed in breeding programs. In the last decade, genomic sequences and chromosome maps of various cultivars have become available, allowing the development of large SNP arrays, enabling efficient QTL mapping and genomic selection (GS). In recent years, new technologies for genetic improvement, such as trans-grafting, virus vectors, and genome-editing, have emerged. Using these techniques, no foreign genes are present in the final product, and some of them show considerable promise for application to apple breeding.

  12. Estimation of 3-D conduction velocity vector fields from cardiac mapping data.

    PubMed

    Barnette, A R; Bayly, P V; Zhang, S; Walcott, G P; Ideker, R E; Smith, W M

    2000-08-01

    A method to estimate three-dimensional (3-D) conduction velocity vector fields in cardiac tissue is presented. The speed and direction of propagation are found from polynomial "surfaces" fitted to space-time (x, y, z, t) coordinates of cardiac activity. The technique is applied to sinus rhythm and paced rhythm mapped with plunge needles at 396-466 sites in the canine myocardium. The method was validated on simulated 3-D plane and spherical waves. For simulated data, conduction velocities were estimated with an accuracy of 1%-2%. In experimental data, estimates of conduction speeds during paced rhythm were slower than those found during normal sinus rhythm. Vector directions were also found to differ between different types of beats. The technique was able to distinguish between premature ventricular contractions and sinus beats and between sinus and paced beats. The proposed approach to computing velocity vector fields provides an automated, physiological, and quantitative description of local electrical activity in 3-D tissue. This method may provide insight into abnormal conduction associated with fatal ventricular arrhythmias.

  13. Method of composing two-dimensional scanned spectra observed by the New Vacuum Solar Telescope

    NASA Astrophysics Data System (ADS)

    Cai, Yun-Fang; Xu, Zhi; Chen, Yu-Chao; Xu, Jun; Li, Zheng-Gang; Fu, Yu; Ji, Kai-Fan

    2018-04-01

    In this paper we illustrate the technique used by the New Vacuum Solar Telescope (NVST) to increase the spatial resolution of two-dimensional (2D) solar spectroscopy observations involving two dimensions of space and one of wavelength. Without an image stabilizer at the NVST, large scale wobble motion is present during the spatial scanning, whose instantaneous amplitude can reach 1.3″ due to the Earth’s atmosphere and the precision of the telescope guiding system, and seriously decreases the spatial resolution of 2D spatial maps composed with scanned spectra. We make the following effort to resolve this problem: the imaging system (e.g., the TiO-band) is used to record and detect the displacement vectors of solar image motion during the raster scan, in both the slit and scanning directions. The spectral data (e.g., the Hα line) which are originally obtained in time sequence are corrected and re-arranged in space according to those displacement vectors. Raster scans are carried out in several active regions with different seeing conditions (two rasters are illustrated in this paper). Given a certain spatial sampling and temporal resolution, the spatial resolution of the composed 2D map could be close to that of the slit-jaw image. The resulting quality after correction is quantitatively evaluated with two methods. A physical quantity, such as the line-of-sight velocities in multiple layers of the solar atmosphere, is also inferred from the re-arranged spectrum, demonstrating the advantage of this technique.

  14. Weak Lensing from Space I: Instrumentation and Survey Strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rhodes, Jason; Refregier, Alexandre; Massey, Richard

    A wide field space-based imaging telescope is necessary to fully exploit the technique of observing dark matter via weak gravitational lensing. This first paper in a three part series outlines the survey strategies and relevant instrumental parameters for such a mission. As a concrete example of hardware design, we consider the proposed Supernova/Acceleration Probe (SNAP). Using SNAP engineering models, we quantify the major contributions to this telescope's Point Spread Function (PSF). These PSF contributions are relevant to any similar wide field space telescope. We further show that the PSF of SNAP or a similar telescope will be smaller than currentmore » ground-based PSFs, and more isotropic and stable over time than the PSF of the Hubble Space Telescope. We outline survey strategies for two different regimes - a ''wide'' 300 square degree survey and a ''deep'' 15 square degree survey that will accomplish various weak lensing goals including statistical studies and dark matter mapping.« less

  15. Very High Spectral Resolution Imaging Spectroscopy: the Fluorescence Explorer (FLEX) Mission

    NASA Technical Reports Server (NTRS)

    Moreno, Jose F.; Goulas, Yves; Huth, Andreas; Middleton, Elizabeth; Miglietta, Franco; Mohammed, Gina; Nedbal, Ladislav; Rascher, Uwe; Verhoef, Wouter; Drusch, Matthias

    2016-01-01

    The Fluorescence Explorer (FLEX) mission has been recently selected as the 8th Earth Explorer by the European Space Agency (ESA). It will be the first mission specifically designed to measure from space vegetation fluorescence emission, by making use of very high spectral resolution imaging spectroscopy techniques. Vegetation fluorescence is the best proxy to actual vegetation photosynthesis which can be measurable from space, allowing an improved quantification of vegetation carbon assimilation and vegetation stress conditions, thus having key relevance for global mapping of ecosystems dynamics and aspects related with agricultural production and food security. The FLEX mission carries the FLORIS spectrometer, with a spectral resolution in the range of 0.3 nm, and is designed to fly in tandem with Copernicus Sentinel-3, in order to provide all the necessary spectral / angular information to disentangle emitted fluorescence from reflected radiance, and to allow proper interpretation of the observed fluorescence spatial and temporal dynamics.

  16. Shuttle Radar Topography Mission (SRTM)

    USGS Publications Warehouse

    ,

    2009-01-01

    Under an agreement with the National Aeronautics and Space Administration (NASA) and the Department of Defense's National Geospatial-Intelligence Agency (NGA), the U.S. Geological Survey (USGS) is distributing elevation data from the Shuttle Radar Topography Mission (SRTM). The SRTM is a joint project of NASA and NGA to map the Earth's land surface in three dimensions at an unprecedented level of detail. As part of space shuttle Endeavour's flight during February 11-22, 2000, the SRTM successfully collected data over 80 percent of the Earth's land surface for most of the area between latitudes 60 degrees north and 56 degrees south. The SRTM hardware included the Spaceborne Imaging Radar-C (SIR-C) and X-band Synthetic Aperture Radar (X-SAR) systems that had flown twice previously on other space shuttle missions. The SRTM data were collected with a technique known as interferometry that allows image data from dual radar antennas to be processed for the extraction of ground heights.

  17. A Bag of Concepts Approach for Biomedical Document Classification Using Wikipedia Knowledge.

    PubMed

    Mouriño-García, Marcos A; Pérez-Rodríguez, Roberto; Anido-Rifón, Luis E

    2017-01-01

    The ability to efficiently review the existing literature is essential for the rapid progress of research. This paper describes a classifier of text documents, represented as vectors in spaces of Wikipedia concepts, and analyses its suitability for classification of Spanish biomedical documents when only English documents are available for training. We propose the cross-language concept matching (CLCM) technique, which relies on Wikipedia interlanguage links to convert concept vectors from the Spanish to the English space. The performance of the classifier is compared to several baselines: a classifier based on machine translation, a classifier that represents documents after performing Explicit Semantic Analysis (ESA), and a classifier that uses a domain-specific semantic an- notator (MetaMap). The corpus used for the experiments (Cross-Language UVigoMED) was purpose-built for this study, and it is composed of 12,832 English and 2,184 Spanish MEDLINE abstracts. The performance of our approach is superior to any other state-of-the art classifier in the benchmark, with performance increases up to: 124% over classical machine translation, 332% over MetaMap, and 60 times over the classifier based on ESA. The results have statistical significance, showing p-values < 0.0001. Using knowledge mined from Wikipedia to represent documents as vectors in a space of Wikipedia concepts and translating vectors between language-specific concept spaces, a cross-language classifier can be built, and it performs better than several state-of-the-art classifiers. Schattauer GmbH.

  18. A Bag of Concepts Approach for Biomedical Document Classification Using Wikipedia Knowledge*. Spanish-English Cross-language Case Study.

    PubMed

    Mouriño-García, Marcos A; Pérez-Rodríguez, Roberto; Anido-Rifón, Luis E

    2017-10-26

    The ability to efficiently review the existing literature is essential for the rapid progress of research. This paper describes a classifier of text documents, represented as vectors in spaces of Wikipedia concepts, and analyses its suitability for classification of Spanish biomedical documents when only English documents are available for training. We propose the cross-language concept matching (CLCM) technique, which relies on Wikipedia interlanguage links to convert concept vectors from the Spanish to the English space. The performance of the classifier is compared to several baselines: a classifier based on machine translation, a classifier that represents documents after performing Explicit Semantic Analysis (ESA), and a classifier that uses a domain-specific semantic annotator (MetaMap). The corpus used for the experiments (Cross-Language UVigoMED) was purpose-built for this study, and it is composed of 12,832 English and 2,184 Spanish MEDLINE abstracts. The performance of our approach is superior to any other state-of-the art classifier in the benchmark, with performance increases up to: 124% over classical machine translation, 332% over MetaMap, and 60 times over the classifier based on ESA. The results have statistical significance, showing p-values < 0.0001. Using knowledge mined from Wikipedia to represent documents as vectors in a space of Wikipedia concepts and translating vectors between language-specific concept spaces, a cross-language classifier can be built, and it performs better than several state-of-the-art classifiers.

  19. Gravitons as Embroidery on the Weave

    NASA Astrophysics Data System (ADS)

    Iwasaki, Junichi; Rovelli, Carlo

    We investigate the physical interpretation of the loop states that appear in the loop representation of quantum gravity. By utilizing the “weave” state, which has been recently introduced as a quantum description of the microstructure of flat space, we analyze the relation between loop states and graviton states. This relation determines a linear map M from the state-space of the nonperturbative theory (loop space) into the state-space of the linearized theory (Fock space). We present an explicit form of this map, and a preliminary investigation of its properties. The existence of such a map indicates that the full nonperturbative quantum theory includes a sector that describes the same physics as (the low energy regimes of) the linearized theory, namely gravitons on flat space.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suchanecki, Z.; Antoniou, I.; Tasaki, S.

    We consider the problem of rigging for the Koopman operators of the Renyi and the baker maps. We show that the rigged Hilbert space for the Renyi maps has some of the properties of a strict inductive limit and give a detailed description of the rigged Hilbert space for the baker maps. {copyright} {ital 1996 American Institute of Physics.}

  1. Ocean Thermal Feature Recognition, Discrimination and Tracking Using Infrared Satellite Imagery

    DTIC Science & Technology

    1991-06-01

    rejected if the temperature in the mapped area exceeds classification criteria ............................... 17 viii 2.6 Ideal feature space mapping from...in seconds, and 1P is the side dimension of the pixel in meters. Figure 2.6: Ideal feature space mapping from pattern tile - search tile comparison. 20

  2. Systematic Calibration for a Backpacked Spherical Photogrammetry Imaging System

    NASA Astrophysics Data System (ADS)

    Rau, J. Y.; Su, B. W.; Hsiao, K. W.; Jhan, J. P.

    2016-06-01

    A spherical camera can observe the environment for almost 720 degrees' field of view in one shoot, which is useful for augmented reality, environment documentation, or mobile mapping applications. This paper aims to develop a spherical photogrammetry imaging system for the purpose of 3D measurement through a backpacked mobile mapping system (MMS). The used equipment contains a Ladybug-5 spherical camera, a tactical grade positioning and orientation system (POS), i.e. SPAN-CPT, and an odometer, etc. This research aims to directly apply photogrammetric space intersection technique for 3D mapping from a spherical image stereo-pair. For this purpose, several systematic calibration procedures are required, including lens distortion calibration, relative orientation calibration, boresight calibration for direct georeferencing, and spherical image calibration. The lens distortion is serious on the ladybug-5 camera's original 6 images. Meanwhile, for spherical image mosaicking from these original 6 images, we propose the use of their relative orientation and correct their lens distortion at the same time. However, the constructed spherical image still contains systematic error, which will reduce the 3D measurement accuracy. Later for direct georeferencing purpose, we need to establish a ground control field for boresight/lever-arm calibration. Then, we can apply the calibrated parameters to obtain the exterior orientation parameters (EOPs) of all spherical images. In the end, the 3D positioning accuracy after space intersection will be evaluated, including EOPs obtained by structure from motion method.

  3. Use of Self-Organizing Maps for Balanced Scorecard analysis to monitor the performance of dialysis clinic chains.

    PubMed

    Cattinelli, Isabella; Bolzoni, Elena; Barbieri, Carlo; Mari, Flavio; Martin-Guerrero, José David; Soria-Olivas, Emilio; Martinez-Martinez, José Maria; Gomez-Sanchis, Juan; Amato, Claudia; Stopper, Andrea; Gatti, Emanuele

    2012-03-01

    The Balanced Scorecard (BSC) is a validated tool to monitor enterprise performances against specific objectives. Through the choice and the evaluation of strategic Key Performance Indicators (KPIs), it provides a measure of the past company's outcome and allows planning future managerial strategies. The Fresenius Medical Care (FME) BSC makes use of 30 KPIs for a continuous quality improvement strategy within its dialysis clinics. Each KPI is monthly associated to a score that summarizes the clinic efficiency for that month. Standard statistical methods are currently used to analyze the BSC data and to give a comprehensive view of the corporate improvements to the top management. We herein propose the Self-Organizing Maps (SOMs) as an innovative approach to extrapolate information from the FME BSC data and to present it in an easy-readable informative form. A SOM is a computational technique that allows projecting high-dimensional datasets to a two-dimensional space (map), thus providing a compressed representation. The SOM unsupervised (self-organizing) training procedure results in a map that preserves similarity relations existing in the original dataset; in this way, the information contained in the high-dimensional space can be more easily visualized and understood. The present work demonstrates the effectiveness of the SOM approach in extracting useful information from the 30-dimensional BSC dataset: indeed, SOMs enabled both to highlight expected relationships between the KPIs and to uncover results not predictable with traditional analyses. Hence we suggest SOMs as a reliable complementary approach to the standard methods for BSC interpretation.

  4. Apriori Versions Based on MapReduce for Mining Frequent Patterns on Big Data.

    PubMed

    Luna, Jose Maria; Padillo, Francisco; Pechenizkiy, Mykola; Ventura, Sebastian

    2017-09-27

    Pattern mining is one of the most important tasks to extract meaningful and useful information from raw data. This task aims to extract item-sets that represent any type of homogeneity and regularity in data. Although many efficient algorithms have been developed in this regard, the growing interest in data has caused the performance of existing pattern mining techniques to be dropped. The goal of this paper is to propose new efficient pattern mining algorithms to work in big data. To this aim, a series of algorithms based on the MapReduce framework and the Hadoop open-source implementation have been proposed. The proposed algorithms can be divided into three main groups. First, two algorithms [Apriori MapReduce (AprioriMR) and iterative AprioriMR] with no pruning strategy are proposed, which extract any existing item-set in data. Second, two algorithms (space pruning AprioriMR and top AprioriMR) that prune the search space by means of the well-known anti-monotone property are proposed. Finally, a last algorithm (maximal AprioriMR) is also proposed for mining condensed representations of frequent patterns. To test the performance of the proposed algorithms, a varied collection of big data datasets have been considered, comprising up to 3 · 10#x00B9;⁸ transactions and more than 5 million of distinct single-items. The experimental stage includes comparisons against highly efficient and well-known pattern mining algorithms. Results reveal the interest of applying MapReduce versions when complex problems are considered, and also the unsuitability of this paradigm when dealing with small data.

  5. Performance evaluation of GNSS-TEC estimation techniques at the grid point in middle and low latitudes during different geomagnetic conditions

    NASA Astrophysics Data System (ADS)

    Abe, O. E.; Otero Villamide, X.; Paparini, C.; Radicella, S. M.; Nava, B.; Rodríguez-Bouza, M.

    2017-04-01

    Global Navigation Satellite Systems (GNSS) have become a powerful tool use in surveying and mapping, air and maritime navigation, ionospheric/space weather research and other applications. However, in some cases, its maximum efficiency could not be attained due to some uncorrelated errors associated with the system measurements, which is caused mainly by the dispersive nature of the ionosphere. Ionosphere has been represented using the total number of electrons along the signal path at a particular height known as Total Electron Content (TEC). However, there are many methods to estimate TEC but the outputs are not uniform, which could be due to the peculiarity in characterizing the biases inside the observables (measurements), and sometimes could be associated to the influence of mapping function. The errors in TEC estimation could lead to wrong conclusion and this could be more critical in case of safety-of-life application. This work investigated the performance of Ciraolo's and Gopi's GNSS-TEC calibration techniques, during 5 geomagnetic quiet and disturbed conditions in the month of October 2013, at the grid points located in low and middle latitudes. The data used are obtained from the GNSS ground-based receivers located at Borriana in Spain (40°N, 0°E; mid latitude) and Accra in Ghana (5.50°N, -0.20°E; low latitude). The results of the calibrated TEC are compared with the TEC obtained from European Geostationary Navigation Overlay System Processing Set (EGNOS PS) TEC algorithm, which is considered as a reference data. The TEC derived from Global Ionospheric Maps (GIM) through International GNSS service (IGS) was also examined at the same grid points. The results obtained in this work showed that Ciraolo's calibration technique (a calibration technique based on carrier-phase measurements only) estimates TEC better at middle latitude in comparison to Gopi's technique (a calibration technique based on code and carrier-phase measurements). At the same time, Gopi's calibration was also found more reliable in low latitude than Ciraolo's technique. In addition, the TEC derived from IGS GIM seems to be much reliable in middle-latitude than in low-latitude region.

  6. In vivo correlation mapping microscopy

    NASA Astrophysics Data System (ADS)

    McGrath, James; Alexandrov, Sergey; Owens, Peter; Subhash, Hrebesh; Leahy, Martin

    2016-04-01

    To facilitate regular assessment of the microcirculation in vivo, noninvasive imaging techniques such as nailfold capillaroscopy are required in clinics. Recently, a correlation mapping technique has been applied to optical coherence tomography (OCT), which extends the capabilities of OCT to microcirculation morphology imaging. This technique, known as correlation mapping optical coherence tomography, has been shown to extract parameters, such as capillary density and vessel diameter, and key clinical markers associated with early changes in microvascular diseases. However, OCT has limited spatial resolution in both the transverse and depth directions. Here, we extend this correlation mapping technique to other microscopy modalities, including confocal microscopy, and take advantage of the higher spatial resolution offered by these modalities. The technique is achieved as a processing step on microscopy images and does not require any modification to the microscope hardware. Results are presented which show that this correlation mapping microscopy technique can extend the capabilities of conventional microscopy to enable mapping of vascular networks in vivo with high spatial resolution in both the transverse and depth directions.

  7. Summary of space imagery studies in Utah and Nevada

    NASA Technical Reports Server (NTRS)

    Jensen, M. L. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. An enhanced enlargement of a S190B color image at a scale of 1/19,200 of the Bingham porphyry copper deposit has compared a geological map of the area with the space imagery map as fair for the intrusion boundaries and total lack of quality for mapping the sediments. Hydrothermal alteration is only slightly evident on space imagery at Bingham, but in the Tintic mining district and the volcanic piles of the Keg and Thomas ranges, Utah, hydrothermal alteration is readily mapped on color enlargements of S190B. Several sites of calderas were recognized and new ones located on space imagery. One of the tools developed is a mercury soil-gas analyzer that is becoming significant as an aid in locating hidden mineralized zones which were suggested from space imagery. In addition, this tool is a prime aid in locating and better delineating geothermal sites.

  8. Mobile robot motion estimation using Hough transform

    NASA Astrophysics Data System (ADS)

    Aldoshkin, D. N.; Yamskikh, T. N.; Tsarev, R. Yu

    2018-05-01

    This paper proposes an algorithm for estimation of mobile robot motion. The geometry of surrounding space is described with range scans (samples of distance measurements) taken by the mobile robot’s range sensors. A similar sample of space geometry in any arbitrary preceding moment of time or the environment map can be used as a reference. The suggested algorithm is invariant to isotropic scaling of samples or map that allows using samples measured in different units and maps made at different scales. The algorithm is based on Hough transform: it maps from measurement space to a straight-line parameters space. In the straight-line parameters, space the problems of estimating rotation, scaling and translation are solved separately breaking down a problem of estimating mobile robot localization into three smaller independent problems. The specific feature of the algorithm presented is its robustness to noise and outliers inherited from Hough transform. The prototype of the system of mobile robot orientation is described.

  9. Digital Mapping Techniques '09-Workshop Proceedings, Morgantown, West Virginia, May 10-13, 2009

    USGS Publications Warehouse

    Soller, David R.

    2011-01-01

    As in the previous years' meetings, the objective was to foster informal discussion and exchange of technical information, principally in order to develop more efficient methods for digital mapping, cartography, GIS analysis, and information management. At this meeting, oral and poster presentations and special discussion sessions emphasized (1) methods for creating and publishing map products (here, "publishing" includes Web-based release); (2) field data capture software and techniques, including the use of LiDAR; (3) digital cartographic techniques; (4) migration of digital maps into ArcGIS Geodatabase format; (5) analytical GIS techniques; and (6) continued development of the National Geologic Map Database.

  10. An evaluation of space time cube representation of spatiotemporal patterns.

    PubMed

    Kristensson, Per Ola; Dahlbäck, Nils; Anundi, Daniel; Björnstad, Marius; Gillberg, Hanna; Haraldsson, Jonas; Mårtensson, Ingrid; Nordvall, Mathias; Ståhl, Josefine

    2009-01-01

    Space time cube representation is an information visualization technique where spatiotemporal data points are mapped into a cube. Information visualization researchers have previously argued that space time cube representation is beneficial in revealing complex spatiotemporal patterns in a data set to users. The argument is based on the fact that both time and spatial information are displayed simultaneously to users, an effect difficult to achieve in other representations. However, to our knowledge the actual usefulness of space time cube representation in conveying complex spatiotemporal patterns to users has not been empirically validated. To fill this gap, we report on a between-subjects experiment comparing novice users' error rates and response times when answering a set of questions using either space time cube or a baseline 2D representation. For some simple questions, the error rates were lower when using the baseline representation. For complex questions where the participants needed an overall understanding of the spatiotemporal structure of the data set, the space time cube representation resulted in on average twice as fast response times with no difference in error rates compared to the baseline. These results provide an empirical foundation for the hypothesis that space time cube representation benefits users analyzing complex spatiotemporal patterns.

  11. InAs1-xSbx Alloys with Native Llattice Parameters Grown on Compositionally Graded Buffers: Structural and Optical Properties

    DTIC Science & Technology

    2013-08-15

    InAsSb, compositionally graded buffer, MBE, infrared, minority carrier lifetime, reciprocal space mapping Ding Wang, Dmitry Donetsky, Youxi Lin, Gela...infrared, minority carrier lifetime; reciprocal space mapping . Introduction GaSb based Ill-Y materials are widely used in the development of mid... space mapping (RSM) at the symmetric (004) and asymmetric (335) Bragg reflections. Figure 3 presents a set of RSM measurements for a structure

  12. Astronaut Kevin Chilton displays map of Scandinavia on flight deck

    NASA Image and Video Library

    1994-04-14

    STS059-16-032 (9-20 April 1994) --- Astronaut Kevin P. Chilton, pilot, displays a map of Scandinavia on the Space Shuttle Endeavour's flight deck. Large scale maps such as this were used by the crew to locate specific sites of interest to the Space Radar Laboratory scientists. The crew then photographed the sites at the same time as the radar in the payload bay imaged them. Chilton was joined in space by five other NASA astronauts for a week and a half of support to the Space Radar Laboratory (SRL-1) mission and other tasks.

  13. Quantitative in vivo HR-pQCT imaging of 3D wrist and metacarpophalangeal joint space width in rheumatoid arthritis.

    PubMed

    Burghardt, Andrew J; Lee, Chan Hee; Kuo, Daniel; Majumdar, Sharmila; Imboden, John B; Link, Thomas M; Li, Xiaojuan

    2013-12-01

    In this technique development study, high-resolution peripheral quantitative computed tomography (HR-pQCT) was applied to non-invasively image and quantify 3D joint space morphology of the wrist and metacarpophalangeal (MCP) joints of patients with rheumatoid arthritis (RA). HR-pQCT imaging (82 μm voxel-size) of the dominant hand was performed in patients with diagnosed rheumatoid arthritis (RA, N = 16, age: 52.6 ± 12.8) and healthy controls (CTRL, N = 7, age: 50.1 ± 15.0). An automated computer algorithm was developed to segment wrist and MCP joint spaces. The 3D distance transformation method was applied to spatially map joint space width, and summarized by the mean joint space width (JSW), minimal and maximal JSW (JSW.MIN, JSW.MAX), asymmetry (JSW.AS), and distribution (JSW.SD)-a measure of joint space heterogeneity. In vivo precision was determined for each measure by calculating the smallest detectable difference (SDD) and root mean square coefficient of variation (RMSCV%) of repeat scans. Qualitatively, HR-pQCT images and pseudo-color JSW maps showed global joint space narrowing, as well as regional and focal abnormalities in RA patients. In patients with radiographic JSN at an MCP, JSW.SD was two-fold greater vs. CTRL (p < 0.01), and JSW.MIN was more than two-fold lower (p < 0.001). Similarly, JSW.SD was significantly greater in the wrist of RA patients vs. CTRL (p < 0.05). In vivo precision was highest for JSW (SDD: 100 μm, RMSCV: 2.1%) while the SDD for JSW.MIN and JSW.SD were 370 and 110 μm, respectively. This study suggests that in vivo quantification of 3D joint space morphology from HR-pQCT, could improve early detection of joint damage in rheumatological diseases.

  14. Quantitative In Vivo HR-pQCT Imaging of 3D Wrist and Metacarpophalangeal Joint Space Width In Rheumatoid Arthritis

    PubMed Central

    Burghardt, Andrew J.; Lee, Chan Hee; Kuo, Daniel; Majumdar, Sharmila; Imboden, John B.; Link, Thomas M.; Li, Xiaojuan

    2013-01-01

    In this technique development study, high-resolution peripheral quantitative computed tomography (HR-pQCT) was applied to non-invasively image and quantify 3D joint space morphology of the wrist and metacarpophalangeal (MCP) joints of patients with rheumatoid arthritis (RA). HR-pQCT imaging (82μm voxel-size) of the dominant hand was performed in patients with diagnosed rheumatoid arthritis (RA, N=16, age:52.6±12.8) and healthy controls (CTRL, N=7, age:50.1±15.0). An automated computer algorithm was developed to segment wrist and MCP joint spaces. The 3D distance transformation method was applied to spatially map joint space width, and summarized by the mean joint space width (JSW), minimal and maximal JSW (JSW.MIN, JSW.MAX), asymmetry (JSW.AS), and distribution (JSW.SD) – a measure of joint space heterogeneity. In vivo precision was determined for each measure by calculating the smallest detectable difference (SDD) and root mean square coefficient of variation (RMSCV%) of repeat scans. Qualitatively, HR-pQCT images and pseudo-color JSW maps showed global joint space narrowing, as well as regional and focal abnormalities in RA patients. In patients with radiographic JSN at an MCP, JSW.SD was two-fold greater versus CTRL (p<0.01), and JSW.MIN was more than two-fold lower (p<0.001). Similarly, JSW.SD was significantly greater in the wrist of RA patients versus CTRL (p<0.05). In vivo precision was highest for JSW (SDD: 100μm, RMSCV: 2.1%) while the SDD for JSW.MIN and JSW.SD were 370 and 110μm, respectively. This study suggests that in vivo quantification of 3D joint space morphology from HR-pQCT, could improve early detection of joint damage in rheumatological diseases. PMID:23887879

  15. Betti numbers of holomorphic symplectic quotients via arithmetic Fourier transform.

    PubMed

    Hausel, Tamás

    2006-04-18

    A Fourier transform technique is introduced for counting the number of solutions of holomorphic moment map equations over a finite field. This technique in turn gives information on Betti numbers of holomorphic symplectic quotients. As a consequence, simple unified proofs are obtained for formulas of Poincaré polynomials of toric hyperkähler varieties (recovering results of Bielawski-Dancer and Hausel-Sturmfels), Poincaré polynomials of Hilbert schemes of points and twisted Atiyah-Drinfeld-Hitchin-Manin (ADHM) spaces of instantons on C2 (recovering results of Nakajima-Yoshioka), and Poincaré polynomials of all Nakajima quiver varieties. As an application, a proof of a conjecture of Kac on the number of absolutely indecomposable representations of a quiver is announced.

  16. Technology Assessment of Laser-Assisted Materials Processing in Space

    NASA Technical Reports Server (NTRS)

    Nagarathnam, Karthik; Taminger, Karen M. B.

    2001-01-01

    Lasers are useful for performing operations such as joining, machining, built-up freeform fabrication, shock processing, and surface treatments. These attributes are attractive for the supportability of longer-term missions in space due to the multi-functionality of a single tool and the variety of materials that can be processed. However, current laser technology also has drawbacks for space-based applications, specifically size, power efficiency, lack of robustness, and problems processing highly reflective materials. A review of recent laser developments will be used to show how these issues may be reduced and indicate where further improvement is necessary to realize a laser-based materials processing capability in space. The broad utility of laser beams in synthesizing various classes of engineering materials will be illustrated using state-of-the art processing maps for select lightweight alloys typically found on spacecraft. With the advent of recent breakthroughs in diode-pumped solid-state lasers and fiber optic technologies, the potential to perform multiple processing techniques is increasing significantly. Lasers with suitable wavelengths and beam properties have tremendous potential for supporting future space missions to the moon, Mars and beyond.

  17. Accuracy of lineaments mapping from space

    NASA Technical Reports Server (NTRS)

    Short, Nicholas M.

    1989-01-01

    The use of Landsat and other space imaging systems for lineaments detection is analyzed in terms of their effectiveness in recognizing and mapping fractures and faults, and the results of several studies providing a quantitative assessment of lineaments mapping accuracies are discussed. The cases under investigation include a Landsat image of the surface overlying a part of the Anadarko Basin of Oklahoma, the Landsat images and selected radar imagery of major lineaments systems distributed over much of Canadian Shield, and space imagery covering a part of the East African Rift in Kenya. It is demonstrated that space imagery can detect a significant portion of a region's fracture pattern, however, significant fractions of faults and fractures recorded on a field-produced geological map are missing from the imagery as it is evident in the Kenya case.

  18. Familiarity expands space and contracts time.

    PubMed

    Jafarpour, Anna; Spiers, Hugo

    2017-01-01

    When humans draw maps, or make judgments about travel-time, their responses are rarely accurate and are often systematically distorted. Distortion effects on estimating time to arrival and the scale of sketch-maps reveal the nature of mental representation of time and space. Inspired by data from rodent entorhinal grid cells, we predicted that familiarity to an environment would distort representations of the space by expanding the size of it. We also hypothesized that travel-time estimation would be distorted in the same direction as space-size, if time and space rely on the same cognitive map. We asked international students, who had lived at a college in London for 9 months, to sketch a south-up map of their college district, estimate travel-time to destinations within the area, and mark their everyday walking routes. We found that while estimates for sketched space were expanded with familiarity, estimates of the time to travel through the space were contracted with familiarity. Thus, we found dissociable responses to familiarity in representations of time and space. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc.

  19. A Control Algorithm for Chaotic Physical Systems

    DTIC Science & Technology

    1991-10-01

    revision expands the grid to cover the entire area of any attractor that is present. 5 Map Selection The final choices of the state- space mapping process...interval h?; overrange R0 ; control parameter interval AkO and range [kbro, khigh]; iteration depth. "* State- space mapping : 1. Set up grid by expanding

  20. Time-to-space mapping of a continuous light wave with picosecond time resolution based on an electrooptic beam deflection.

    PubMed

    Hisatake, S; Kobayashi, T

    2006-12-25

    We demonstrate a time-to-space mapping of an optical signal with a picosecond time resolution based on an electrooptic beam deflection. A time axis of the optical signal is mapped into a spatial replica by the deflection. We theoretically derive a minimum time resolution of the time-to-space mapping and confirm it experimentally on the basis of the pulse width of the optical pulses picked out from the deflected beam through a narrow slit which acts as a temporal window. We have achieved the minimum time resolution of 1.6+/-0.2 ps.

  1. Indications of correlation between gravity measurements and isoseismal maps. A case study of Athens basin (Greece)

    NASA Astrophysics Data System (ADS)

    Dilalos, S.; Alexopoulos, J. D.

    2017-05-01

    In this paper, we discuss the correlation between isoseismal contour maps and gravity residual anomaly maps and how it might contribute to the characterization of vulnerable areas to earthquake damage, especially in urban areas, where the geophysical data collection is difficult. More specifically, we compare a couple of isoseismal maps that have been produced and published after the catastrophic earthquake of 7th September 1999 (5.9R) in Athens, the metropolis of Greece, with the residual map produced from the processing and data reduction of a gravity survey that has been carried out in the Athens basin recently. The geologic and tectonic regime of the Athens basin is quite complicated and it is still being updated with new elements. Basically it is comprised of four different geotectonic units, one of them considered as the autochthon. During the gravity investigation, 807 gravity stations were collected, based on a grid plan with spacing almost 1 km, covering the entire basin and supported by a newly established gravity base network comprised by thirteen bases. Differential DGPS technique was used for the accurate measurement of all the gravity stations and bases coordinates. After the appropriate data reduction and the construction of the Complete Bouguer Anomaly map, we applied FFT filtering in order to remove the regional component and produce the Residual Anomaly Map. The comparison of the Residual Anomaly Map with the isoseismal contours revealed that the areas with the most damage because of the earthquake were located in the areas with the minimum values of the Residual Anomaly Map.

  2. The monophasic action potential upstroke: a means of characterizing local conduction.

    PubMed

    Levine, J H; Moore, E N; Kadish, A H; Guarnieri, T; Spear, J F

    1986-11-01

    The upstrokes of monophasic action potentials (MAPs) recorded with an extracellular pressure electrode were characterized in isolated canine tissue preparations in vitro. The characteristics of the MAP upstroke were compared with those of the local action potential foot as well as with the characteristics of approaching electrical activation during uniform and asynchronous conduction. The upstroke of the MAP was exponential during uniform conduction. The time constant of rise of the MAP upstroke (TMAP) correlated with that of the action potential foot (Tfoot): TMAP + 1.01 Tfoot + 0.50; r2 = .80. Furthermore, changes in Tfoot with alterations in cycle length were associated with similar changes in TMAP: Tfoot = 1.06 TMAP - 0.11; r2 = .78. In addition, TMAP and Tfoot both deviated from exponential during asynchronous activation; the inflections that developed in the MAP upstroke correlated in time with intracellular action potential upstrokes that were asynchronous in onset in these tissues. Finally, the field of view of the MAP was determined and was found to be dependent in part on tissue architecture and the space constant. Specifically, the field of view of the MAP was found to be greater parallel compared with transverse to fiber orientation (6.02 +/- 1.74 vs 3.03 +/- 1.10 mm; p less than .01). These data suggest that the MAP upstroke may be used to define and characterize local electrical activation. The relatively large field of view of the MAP suggests that this technique may be a sensitive means to record focal membrane phenomena in vivo.

  3. Generation of global VTEC maps from low latency GNSS observations based on B-spline modelling and Kalman filtering

    NASA Astrophysics Data System (ADS)

    Erdogan, Eren; Dettmering, Denise; Limberger, Marco; Schmidt, Michael; Seitz, Florian; Börger, Klaus; Brandert, Sylvia; Görres, Barbara; Kersten, Wilhelm F.; Bothmer, Volker; Hinrichs, Johannes; Venzmer, Malte

    2015-04-01

    In May 2014 DGFI-TUM (the former DGFI) and the German Space Situational Awareness Centre (GSSAC) started to develop an OPerational Tool for Ionospheric Mapping And Prediction (OPTIMAP); since November 2014 the Institute of Astrophysics at the University of Göttingen (IAG) joined the group as the third partner. This project aims on the computation and prediction of maps of the vertical total electron content (VTEC) and the electron density distribution of the ionosphere on a global scale from both various space-geodetic observation techniques such as GNSS and satellite altimetry as well as Sun observations. In this contribution we present first results, i.e. a near-real time processing framework for generating VTEC maps by assimilating GNSS (GPS, GLONASS) based ionospheric data into a two-dimensional global B-spline approach. To be more specific, the spatial variations of VTEC are modelled by trigonometric B-spline functions in longitude and by endpoint-interpolating polynomial B-spline functions in latitude, respectively. Since B-spline functions are compactly supported and highly localizing our approach can handle large data gaps appropriately and, thus, provides a better approximation of data with heterogeneous density and quality compared to the commonly used spherical harmonics. The presented method models temporal variations of VTEC inside a Kalman filter. The unknown parameters of the filter state vector are composed of the B-spline coefficients as well as the satellite and receiver DCBs. To approximate the temporal variation of these state vector components as part of the filter the dynamical model has to be set up. The current implementation of the filter allows to select between a random walk process, a Gauss-Markov process and a dynamic process driven by an empirical ionosphere model, e.g. the International Reference Ionosphere (IRI). For running the model ionospheric input data is acquired from terrestrial GNSS networks through online archive systems (such as IGS) with approximately one hour latency. Before feeding the filter with new hourly data, the raw GNSS observations are downloaded and pre-processed via geometry free linear combinations to provide signal delay information including the ionospheric effects and the differential code biases. Next steps will implement further space geodetic techniques and will introduce the Sun observations into the procedure. The final destination is to develop a time dependent model of the electron density based on different geodetic and solar observations.

  4. Generalized contractive mappings and weakly α-admissible pairs in G-metric spaces.

    PubMed

    Hussain, N; Parvaneh, V; Hoseini Ghoncheh, S J

    2014-01-01

    The aim of this paper is to present some coincidence and common fixed point results for generalized (ψ, φ)-contractive mappings using partially weakly G-α-admissibility in the setup of G-metric space. As an application of our results, periodic points of weakly contractive mappings are obtained. We also derive certain new coincidence point and common fixed point theorems in partially ordered G-metric spaces. Moreover, some examples are provided here to illustrate the usability of the obtained results.

  5. Generalized Contractive Mappings and Weakly α-Admissible Pairs in G-Metric Spaces

    PubMed Central

    Hussain, N.; Parvaneh, V.; Hoseini Ghoncheh, S. J.

    2014-01-01

    The aim of this paper is to present some coincidence and common fixed point results for generalized (ψ, φ)-contractive mappings using partially weakly G-α-admissibility in the setup of G-metric space. As an application of our results, periodic points of weakly contractive mappings are obtained. We also derive certain new coincidence point and common fixed point theorems in partially ordered G-metric spaces. Moreover, some examples are provided here to illustrate the usability of the obtained results. PMID:25202742

  6. Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images

    NASA Astrophysics Data System (ADS)

    Hengl, Tomislav; Heuvelink, Gerard B. M.; Perčec Tadić, Melita; Pebesma, Edzer J.

    2012-01-01

    A computational framework to generate daily temperature maps using time-series of publicly available MODIS MOD11A2 product Land Surface Temperature (LST) images (1 km resolution; 8-day composites) is illustrated using temperature measurements from the national network of meteorological stations (159) in Croatia. The input data set contains 57,282 ground measurements of daily temperature for the year 2008. Temperature was modeled as a function of latitude, longitude, distance from the sea, elevation, time, insolation, and the MODIS LST images. The original rasters were first converted to principal components to reduce noise and filter missing pixels in the LST images. The residual were next analyzed for spatio-temporal auto-correlation; sum-metric separable variograms were fitted to account for zonal and geometric space-time anisotropy. The final predictions were generated for time-slices of a 3D space-time cube, constructed in the R environment for statistical computing. The results show that the space-time regression model can explain a significant part of the variation in station-data (84%). MODIS LST 8-day (cloud-free) images are unbiased estimator of the daily temperature, but with relatively low precision (±4.1°C); however their added value is that they systematically improve detection of local changes in land surface temperature due to local meteorological conditions and/or active heat sources (urban areas, land cover classes). The results of 10-fold cross-validation show that use of spatio-temporal regression-kriging and incorporation of time-series of remote sensing images leads to significantly more accurate maps of temperature than if plain spatial techniques were used. The average (global) accuracy of mapping temperature was ±2.4°C. The regression-kriging explained 91% of variability in daily temperatures, compared to 44% for ordinary kriging. Further software advancement—interactive space-time variogram exploration and automated retrieval, resampling and filtering of MODIS images—are anticipated.

  7. Laboratory Instruments Available to Support Space Station Researchers at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Panda, Binayak; Gorti, Sridhar

    2013-01-01

    A number of research instruments are available at NASA's Marshall Space Flight Center (MSFC) to support ISS researchers and their investigations. These modern analytical tools yield valuable and sometimes new informative resulting from sample characterization. Instruments include modern scanning electron microscopes equipped with field emission guns providing analytical capabilities that include angstron-level image resolution of dry, wet and biological samples. These microscopes are also equipped with silicon drift X-ray detectors (SDD) for fast yet precise analytical mapping of phases, as well as electron back-scattered diffraction (EBSD) units to map grain orientations in crystalline alloys. Sample chambers admit large samples, provide variable pressures for wet samples, and quantitative analysis software to determine phase relations. Advances in solid-state electronics have also facilitated improvements for surface chemical analysis that are successfully employed to analyze metallic materials and alloys, ceramics, slags, and organic polymers. Another analytical capability at MSFC is a mganetic sector Secondary Ion Mass Spectroscopy (SIMS) that quantitatively determines and maps light elements such as hydrogen, lithium, and boron along with their isotopes, identifies and quantifies very low level impurities even at parts per billion (ppb) levels. Still other methods available at MSFC include X-ray photo-electron spectroscopy (XPS) that can determine oxidation states of elements as well as identify polymers and measure film thicknesses on coated materials, Scanning Auger electron spectroscopy (SAM) which combines surface sensitivity, spatial lateral resolution (approximately 20 nm), and depth profiling capabilities to describe elemental compositions in near surface regions and even the chemical state of analyzed atoms. Conventional Transmission Electron Microscope (TEM) for observing internal microstructures at very high magnifications and the Electron Probe Micro-analyzer (EPMA) for very precise microanalysis are available as needed by the researcher. Space Station researchers are invited to work with MSFC in analyzing their samples using these techniques.

  8. Comparison of elevation derived from insar data with dem from topography map in Son Dong, Bac Giang, Viet Nam

    NASA Astrophysics Data System (ADS)

    Nguyen, Duy

    2012-07-01

    Digital Elevation Models (DEMs) are used in many applications in the context of earth sciences such as in topographic mapping, environmental modeling, rainfall-runoff studies, landslide hazard zonation, seismic source modeling, etc. During the last years multitude of scientific applications of Synthetic Aperture Radar Interferometry (InSAR) techniques have evolved. It has been shown that InSAR is an established technique of generating high quality DEMs from space borne and airborne data, and that it has advantages over other methods for the generation of large area DEM. However, the processing of InSAR data is still a challenging task. This paper describes InSAR operational steps and processing chain for DEM generation from Single Look Complex (SLC) SAR data and compare a satellite SAR estimate of surface elevation with a digital elevation model (DEM) from Topography map. The operational steps are performed in three major stages: Data Search, Data Processing, and product Validation. The Data processing stage is further divided into five steps of Data Pre-Processing, Co-registration, Interferogram generation, Phase unwrapping, and Geocoding. The Data processing steps have been tested with ERS 1/2 data using Delft Object-oriented Interferometric (DORIS) InSAR processing software. Results of the outcome of the application of the described processing steps to real data set are presented.

  9. Cognitive Mapping Techniques: Implications for Research in Engineering and Technology Education

    ERIC Educational Resources Information Center

    Dixon, Raymond A.; Lammi, Matthew

    2014-01-01

    The primary goal of this paper is to present the theoretical basis and application of two types of cognitive maps, concept map and mind map, and explain how they can be used by educational researchers in engineering design research. Cognitive mapping techniques can be useful to researchers as they study students' problem solving strategies…

  10. A new multicriteria risk mapping approach based on a multiattribute frontier concept.

    PubMed

    Yemshanov, Denys; Koch, Frank H; Ben-Haim, Yakov; Downing, Marla; Sapio, Frank; Siltanen, Marty

    2013-09-01

    Invasive species risk maps provide broad guidance on where to allocate resources for pest monitoring and regulation, but they often present individual risk components (such as climatic suitability, host abundance, or introduction potential) as independent entities. These independent risk components are integrated using various multicriteria analysis techniques that typically require prior knowledge of the risk components' importance. Such information is often nonexistent for many invasive pests. This study proposes a new approach for building integrated risk maps using the principle of a multiattribute efficient frontier and analyzing the partial order of elements of a risk map as distributed in multidimensional criteria space. The integrated risks are estimated as subsequent multiattribute frontiers in dimensions of individual risk criteria. We demonstrate the approach with the example of Agrilus biguttatus Fabricius, a high-risk pest that may threaten North American oak forests in the near future. Drawing on U.S. and Canadian data, we compare the performance of the multiattribute ranking against a multicriteria linear weighted averaging technique in the presence of uncertainties, using the concept of robustness from info-gap decision theory. The results show major geographic hotspots where the consideration of tradeoffs between multiple risk components changes integrated risk rankings. Both methods delineate similar geographical regions of high and low risks. Overall, aggregation based on a delineation of multiattribute efficient frontiers can be a useful tool to prioritize risks for anticipated invasive pests, which usually have an extremely poor prior knowledge base. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  11. The ERTS-1 investigation (ER-600). Volume 3: ERTS-1 forest analysis

    NASA Technical Reports Server (NTRS)

    Erb, R. B.

    1974-01-01

    The Forest Analysis Team of the Lyndon B. Johnson Space Center Earth Observations Division conducted a year's investigation of LANDSAT 1 multispectral data to determine the size of forest features that could be detected and to determine the suitability for making forest classification maps. The Sam Houston National Forest of Texas was used as the test site. Using conventional interpretation and computer aided techniques, the team was able to differentiate up to 14 classes of forest features to an accuracy ranging between 55 and 84 percent.

  12. Building Daily 30-meter Spatial Resolution Maps of Surface Water Bodies from MODIS Data Using a Novel Technique for Transferring Information Across Space and Time

    NASA Astrophysics Data System (ADS)

    Khandelwal, A.; Karpatne, A.; Kumar, V.

    2017-12-01

    In this paper, we present novel methods for producing surface water maps at 30 meter spatial resolution at a daily temporal resolution. These new methods will make use of the MODIS spectral data from Terra (available daily since 2000) to produce daily maps at 250 meter and 500 meter resolution, and then refine them using the relative elevation ordering of pixels at 30 meter resolution. The key component of these methods is the use of elevation structure (relative elevation ordering) of a water body. Elevation structure is not explicitly available at desired resolution for most water bodies in the world and hence it will be estimated using our previous work that uses the history of imperfect labels. In this paper, we will present a new technique that uses elevation structure (unlike existing pixel based methods) to enforce temporal consistency in surface water extents (lake area on nearby dates is likely to be very similar). This will greatly improve the quality of the MODIS scale land/water labels since daily MODIS data can have a large amount of missing (or poor quality) data due to clouds and other factors. The quality of these maps will be further improved using elevation based resolution refinement approach that will make use of elevation structure estimated at Landsat scale. With the assumption that elevation structure does not change over time, it provides a very effective way to transfer information between datasets even when they are not observed concurrently. In this work, we will derive elevation structure at Landsat scale from monthly water extent maps spanning 1984-2015, publicly available through a joint effort of Google Earth Engine and the European Commission's Joint Research Centre (JRC). This elevation structure will then be used to refine spatial resolution of Modis scale maps from 2000 onwards. We will present the analysis of these methods on a large and diverse set of water bodies across the world.

  13. Contractive type non-self mappings on metric spaces of hyperbolic type

    NASA Astrophysics Data System (ADS)

    Ciric, Ljubomir B.

    2006-05-01

    Let (X,d) be a metric space of hyperbolic type and K a nonempty closed subset of X. In this paper we study a class of mappings from K into X (not necessarily self-mappings on K), which are defined by the contractive condition (2.1) below, and a class of pairs of mappings from K into X which satisfy the condition (2.28) below. We present fixed point and common fixed point theorems which are generalizations of the corresponding fixed point theorems of Ciric [L.B. Ciric, Quasi-contraction non-self mappings on Banach spaces, Bull. Acad. Serbe Sci. Arts 23 (1998) 25-31; L.B. Ciric, J.S. Ume, M.S. Khan, H.K.T. Pathak, On some non-self mappings, Math. Nachr. 251 (2003) 28-33], Rhoades [B.E. Rhoades, A fixed point theorem for some non-self mappings, Math. Japon. 23 (1978) 457-459] and many other authors. Some examples are presented to show that our results are genuine generalizations of known results from this area.

  14. Historical shoreline mapping (I): improving techniques and reducing positioning errors

    USGS Publications Warehouse

    Thieler, E. Robert; Danforth, William W.

    1994-01-01

    A critical need exists among coastal researchers and policy-makers for a precise method to obtain shoreline positions from historical maps and aerial photographs. A number of methods that vary widely in approach and accuracy have been developed to meet this need. None of the existing methods, however, address the entire range of cartographic and photogrammetric techniques required for accurate coastal mapping. Thus, their application to many typical shoreline mapping problems is limited. In addition, no shoreline mapping technique provides an adequate basis for quantifying the many errors inherent in shoreline mapping using maps and air photos. As a result, current assessments of errors in air photo mapping techniques generally (and falsely) assume that errors in shoreline positions are represented by the sum of a series of worst-case assumptions about digitizer operator resolution and ground control accuracy. These assessments also ignore altogether other errors that commonly approach ground distances of 10 m. This paper provides a conceptual and analytical framework for improved methods of extracting geographic data from maps and aerial photographs. We also present a new approach to shoreline mapping using air photos that revises and extends a number of photogrammetric techniques. These techniques include (1) developing spatially and temporally overlapping control networks for large groups of photos; (2) digitizing air photos for use in shoreline mapping; (3) preprocessing digitized photos to remove lens distortion and film deformation effects; (4) simultaneous aerotriangulation of large groups of spatially and temporally overlapping photos; and (5) using a single-ray intersection technique to determine geographic shoreline coordinates and express the horizontal and vertical error associated with a given digitized shoreline. As long as historical maps and air photos are used in studies of shoreline change, there will be a considerable amount of error (on the order of several meters) present in shoreline position and rate-of- change calculations. The techniques presented in this paper, however, provide a means to reduce and quantify these errors so that realistic assessments of the technological noise (as opposed to geological noise) in geographic shoreline positions can be made.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sehgal, Ray M.; Maroudas, Dimitrios, E-mail: maroudas@ecs.umass.edu, E-mail: ford@ecs.umass.edu; Ford, David M., E-mail: maroudas@ecs.umass.edu, E-mail: ford@ecs.umass.edu

    We have developed a coarse-grained description of the phase behavior of the isolated 38-atom Lennard-Jones cluster (LJ{sub 38}). The model captures both the solid-solid polymorphic transitions at low temperatures and the complex cluster breakup and melting transitions at higher temperatures. For this coarse model development, we employ the manifold learning technique of diffusion mapping. The outcome of the diffusion mapping analysis over a broad temperature range indicates that two order parameters are sufficient to describe the cluster's phase behavior; we have chosen two such appropriate order parameters that are metrics of condensation and overall crystallinity. In this well-justified coarse-variable space,more » we calculate the cluster's free energy landscape (FEL) as a function of temperature, employing Monte Carlo umbrella sampling. These FELs are used to quantify the phase behavior and onsets of phase transitions of the LJ{sub 38} cluster.« less

  16. HARMONIC SPACE ANALYSIS OF PULSAR TIMING ARRAY REDSHIFT MAPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roebber, Elinore; Holder, Gilbert, E-mail: roebbere@physics.mcgill.ca

    2017-01-20

    In this paper, we propose a new framework for treating the angular information in the pulsar timing array (PTA) response to a gravitational wave (GW) background based on standard cosmic microwave background techniques. We calculate the angular power spectrum of the all-sky gravitational redshift pattern induced at the Earth for both a single bright source of gravitational radiation and a statistically isotropic, unpolarized Gaussian random GW background. The angular power spectrum is the harmonic transform of the Hellings and Downs curve. We use the power spectrum to examine the expected variance in the Hellings and Downs curve in both cases.more » Finally, we discuss the extent to which PTAs are sensitive to the angular power spectrum and find that the power spectrum sensitivity is dominated by the quadrupole anisotropy of the gravitational redshift map.« less

  17. Probing AGN Structure on Microarcsecond Scales: The Space Telescope and Optical Reverberation Mapping Program

    NASA Astrophysics Data System (ADS)

    De Rosa, Gisella

    2015-08-01

    The unknown dynamics of the broad line region (BLR) gas represents a serious gap in our understanding of active galactic nuclei (AGNs) and, consequently, of the black-hole/host-galaxy co-evolution. By using time resolution as a substitute for spatial resolution, reverberation mapping (RM) is the only technique that allows us to infer both the geometry and the kinematics of the BLR gas, shading light on the BLR role on accretion/feedback processes. In 2014, the AGN STORM team used HST/COS for a RM program for which we obtained 170 UV spectra of the Seyfert 1 galaxy NGC 5548 at a near daily cadence. These data and contemporaneous observations with Swift and ground-based telescopes make this the most intensive RM program ever undertaken. I will report first results of this unique RM experiment.

  18. Surface inspection using FTIR spectroscopy

    NASA Technical Reports Server (NTRS)

    Powell, G. L.; Smyrl, N. R.; Williams, D. M.; Meyers, H. M., III; Barber, T. E.; Marrero-Rivera, M.

    1995-01-01

    The use of reflectance Fourier transform infrared (FTIR) spectroscopy as a tool for surface inspection is described. Laboratory instruments and portable instruments can support remote sensing probes that can map chemical contaminants on surfaces with detection limits under the best of conditions in the sub-nanometer range, i.e.. near absolute cleanliness, excellent performance in the sub-micrometer range, and useful performance for films tens of microns thick. Examples of discovering and quantifying contamination such as mineral oils and greases, vegetable oils, and silicone oils on aluminum foil, galvanized sheet steel, smooth aluminum tubing, and sandblasted 7075 aluminum alloy and D6AC steel. The ability to map in time and space the distribution of oil stains on metals is demonstrated. Techniques associated with quantitatively applying oils to metals, subsequently verifying the application, and non-linear relationships between reflectance and the quantity oil are described.

  19. Conditional Random Field-Based Offline Map Matching for Indoor Environments

    PubMed Central

    Bataineh, Safaa; Bahillo, Alfonso; Díez, Luis Enrique; Onieva, Enrique; Bataineh, Ikram

    2016-01-01

    In this paper, we present an offline map matching technique designed for indoor localization systems based on conditional random fields (CRF). The proposed algorithm can refine the results of existing indoor localization systems and match them with the map, using loose coupling between the existing localization system and the proposed map matching technique. The purpose of this research is to investigate the efficiency of using the CRF technique in offline map matching problems for different scenarios and parameters. The algorithm was applied to several real and simulated trajectories of different lengths. The results were then refined and matched with the map using the CRF algorithm. PMID:27537892

  20. Conditional Random Field-Based Offline Map Matching for Indoor Environments.

    PubMed

    Bataineh, Safaa; Bahillo, Alfonso; Díez, Luis Enrique; Onieva, Enrique; Bataineh, Ikram

    2016-08-16

    In this paper, we present an offline map matching technique designed for indoor localization systems based on conditional random fields (CRF). The proposed algorithm can refine the results of existing indoor localization systems and match them with the map, using loose coupling between the existing localization system and the proposed map matching technique. The purpose of this research is to investigate the efficiency of using the CRF technique in offline map matching problems for different scenarios and parameters. The algorithm was applied to several real and simulated trajectories of different lengths. The results were then refined and matched with the map using the CRF algorithm.

  1. Map of Pluto Surface

    NASA Image and Video Library

    1998-03-28

    This image-based surface map of Pluto was assembled by computer image processing software from four separate images of Pluto disk taken with the European Space Agency Faint Object Camera aboard NASA Hubble Space Telescope.

  2. Putting Space Back on the Map: Globalisation, Place and Identity

    ERIC Educational Resources Information Center

    Usher, Robin

    2002-01-01

    In this paper, the author wants to look at notions of "space", in order to examine why "space is in the midst of a renaissance" (Kaplan, 1996, p. 147), why it is, as it were, "back on the map". His intention here is to focus merely on one aspect of current changes in space-time-- the notion and actuality of "cyberspace", the most obvious…

  3. Digital Mapping Techniques '07 - Workshop Proceedings

    USGS Publications Warehouse

    Soller, David R.

    2008-01-01

    The Digital Mapping Techniques '07 (DMT'07) workshop was attended by 85 technical experts from 49 agencies, universities, and private companies, including representatives from 27 state geological surveys. This year's meeting, the tenth in the annual series, was hosted by the South Carolina Geological Survey, from May 20-23, 2007, on the University of South Carolina campus in Columbia, South Carolina. Each DMT workshop has been coordinated by the U.S. Geological Survey's National Geologic Map Database Project and the Association of American State Geologists (AASG). As in previous year's meetings, the objective was to foster informal discussion and exchange of technical information, principally in order to develop more efficient methods for digital mapping, cartography, GIS analysis, and information management. At this meeting, oral and poster presentations and special discussion sessions emphasized: 1) methods for creating and publishing map products (here, 'publishing' includes Web-based release); 2) field data capture software and techniques, including the use of LIDAR; 3) digital cartographic techniques; 4) migration of digital maps into ArcGIS Geodatabase format; 5) analytical GIS techniques; and 6) continued development of the National Geologic Map Database.

  4. Large Area Atomically Flat Surfaces via Exfoliation of Bulk Bi 2Se 3 Single Crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melamed, Celeste L.; Ortiz, Brenden R.; Gorai, Prashun

    In this paper, we present an exfoliation method that produces cm 2-area atomically flat surfaces from bulk layered single crystals, with broad applications such as for the formation of lateral heterostructures and for use as substrates for van der Waals epitaxy. Single crystals of Bi 2Se 3 were grown using the Bridgman method and examined with X-ray reciprocal space maps, Auger spectroscopy, low-energy electron diffraction, and X-ray photoelectron spectroscopy. An indium-bonding exfoliation technique was developed that produces multiple ~100 um thick atomically flat, macroscopic (>1 cm 2) slabs from each Bi 2Se 3 source crystal. Two-dimensional X-ray diffraction and reciprocalmore » space maps confirm the high crystalline quality of the exfoliated surfaces. Atomic force microscopy reveals that the exfoliated surfaces have an average root-mean-square (RMS) roughness of ~0.04 nm across 400 μm 2 scans and an average terrace width of 70 um between step edges. First-principles calculations reveal exfoliation energies of Bi 2Se 3 and a number of other layered compounds, which demonstrate relevance of our method across the field of 2D materials. While many potential applications exist, excellent lattice matching with the III-V alloy space suggests immediate potential for the use of these exfoliated layered materials as epitaxial substrates for photovoltaic development.« less

  5. Large Area Atomically Flat Surfaces via Exfoliation of Bulk Bi 2Se 3 Single Crystals

    DOE PAGES

    Melamed, Celeste L.; Ortiz, Brenden R.; Gorai, Prashun; ...

    2017-09-12

    In this paper, we present an exfoliation method that produces cm 2-area atomically flat surfaces from bulk layered single crystals, with broad applications such as for the formation of lateral heterostructures and for use as substrates for van der Waals epitaxy. Single crystals of Bi 2Se 3 were grown using the Bridgman method and examined with X-ray reciprocal space maps, Auger spectroscopy, low-energy electron diffraction, and X-ray photoelectron spectroscopy. An indium-bonding exfoliation technique was developed that produces multiple ~100 um thick atomically flat, macroscopic (>1 cm 2) slabs from each Bi 2Se 3 source crystal. Two-dimensional X-ray diffraction and reciprocalmore » space maps confirm the high crystalline quality of the exfoliated surfaces. Atomic force microscopy reveals that the exfoliated surfaces have an average root-mean-square (RMS) roughness of ~0.04 nm across 400 μm 2 scans and an average terrace width of 70 um between step edges. First-principles calculations reveal exfoliation energies of Bi 2Se 3 and a number of other layered compounds, which demonstrate relevance of our method across the field of 2D materials. While many potential applications exist, excellent lattice matching with the III-V alloy space suggests immediate potential for the use of these exfoliated layered materials as epitaxial substrates for photovoltaic development.« less

  6. Climate impacts on environmental risks evaluated from space: a conceptual approach to the case of Rift Valley Fever in Senegal.

    PubMed

    Tourre, Yves M; Lacaux, Jean-Pierre; Vignolles, Cécile; Lafaye, Murielle

    2009-11-11

    Climate and environment vary across many spatio-temporal scales, including the concept of climate change, which impact on ecosystems, vector-borne diseases and public health worldwide. To develop a conceptual approach by mapping climatic and environmental conditions from space and studying their linkages with Rift Valley Fever (RVF) epidemics in Senegal. Ponds in which mosquitoes could thrive were identified from remote sensing using high-resolution SPOT-5 satellite images. Additional data on pond dynamics and rainfall events (obtained from the Tropical Rainfall Measuring Mission) were combined with hydrological in-situ data. Localisation of vulnerable hosts such as penned cattle (from QuickBird satellite) were also used. Dynamic spatio-temporal distribution of Aedes vexans density (one of the main RVF vectors) is based on the total rainfall amount and ponds' dynamics. While Zones Potentially Occupied by Mosquitoes are mapped, detailed risk areas, i.e. zones where hazards and vulnerability occur, are expressed in percentages of areas where cattle are potentially exposed to mosquitoes' bites. This new conceptual approach, using precise remote-sensing techniques, simply relies upon rainfall distribution also evaluated from space. It is meant to contribute to the implementation of operational early warning systems for RVF based on both natural and anthropogenic climatic and environmental changes. In a climate change context, this approach could also be applied to other vector-borne diseases and places worldwide.

  7. Auxiliary principle technique and iterative algorithm for a perturbed system of generalized multi-valued mixed quasi-equilibrium-like problems.

    PubMed

    Rahaman, Mijanur; Pang, Chin-Tzong; Ishtyak, Mohd; Ahmad, Rais

    2017-01-01

    In this article, we introduce a perturbed system of generalized mixed quasi-equilibrium-like problems involving multi-valued mappings in Hilbert spaces. To calculate the approximate solutions of the perturbed system of generalized multi-valued mixed quasi-equilibrium-like problems, firstly we develop a perturbed system of auxiliary generalized multi-valued mixed quasi-equilibrium-like problems, and then by using the celebrated Fan-KKM technique, we establish the existence and uniqueness of solutions of the perturbed system of auxiliary generalized multi-valued mixed quasi-equilibrium-like problems. By deploying an auxiliary principle technique and an existence result, we formulate an iterative algorithm for solving the perturbed system of generalized multi-valued mixed quasi-equilibrium-like problems. Lastly, we study the strong convergence analysis of the proposed iterative sequences under monotonicity and some mild conditions. These results are new and generalize some known results in this field.

  8. EISCAT Aperture Synthesis Imaging (EASI _3D) for the EISCAT_3D Project

    NASA Astrophysics Data System (ADS)

    La Hoz, Cesar; Belyey, Vasyl

    2012-07-01

    Aperture Synthesis Imaging Radar (ASIR) is one of the technologies adopted by the EISCAT_3D project to endow it with imaging capabilities in 3-dimensions that includes sub-beam resolution. Complemented by pulse compression, it will provide 3-dimensional images of certain types of incoherent scatter radar targets resolved to about 100 metres at 100 km range, depending on the signal-to-noise ratio. This ability will open new research opportunities to map small structures associated with non-homogeneous, unstable processes such as aurora, summer and winter polar radar echoes (PMSE and PMWE), Natural Enhanced Ion Acoustic Lines (NEIALs), structures excited by HF ionospheric heating, meteors, space debris, and others. The underlying physico-mathematical principles of the technique are the same as the technique employed in radioastronomy to image stellar objects; both require sophisticated inversion techniques to obtain reliable images.

  9. Definition of the metric on the space clos{sub ∅}(X) of closed subsets of a metric space X and properties of mappings with values in clos{sub ∅}(R{sup n})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhukovskii, E S; Panasenko, E A

    2014-09-30

    The paper is concerned with the extension of tests for superpositional measurability, Filippov's implicit function lemma and the Scorza Dragoni property to set-valued (and, as a corollary, to single-valued) mappings that fail to satisfy the Carathéodory conditions (the upper Carathéodory conditions) and are not continuous (upper semicontinuous) in the phase variable. The corresponding results depend on the introduction of the space clos{sub ∅}(X) of all closed subsets (including the empty set) of an arbitrary metric space X; a metric on clos{sub ∅}(X) is proposed; the space clos{sub ∅}(X) is shown to be complete whenever the original space X is; a criterion for convergence of a sequence ismore » put forward; mappings with values in clos{sub ∅}(X) are studied. Some results on set-valued mappings satisfying the Carathéodory conditions and having compact values in R{sup n} are shown to hold for mappings with values in clos{sub ∅}(R{sup n}), measurable in the first argument, and continuous in the proposed metric in the second argument. Bibliography: 22 titles.« less

  10. Remote sensing of evapotranspiration using automated calibration: Development and testing in the state of Florida

    NASA Astrophysics Data System (ADS)

    Evans, Aaron H.

    Thermal remote sensing is a powerful tool for measuring the spatial variability of evapotranspiration due to the cooling effect of vaporization. The residual method is a popular technique which calculates evapotranspiration by subtracting sensible heat from available energy. Estimating sensible heat requires aerodynamic surface temperature which is difficult to retrieve accurately. Methods such as SEBAL/METRIC correct for this problem by calibrating the relationship between sensible heat and retrieved surface temperature. Disadvantage of these calibrations are 1) user must manually identify extremely dry and wet pixels in image 2) each calibration is only applicable over limited spatial extent. Producing larger maps is operationally limited due to time required to manually calibrate multiple spatial extents over multiple days. This dissertation develops techniques which automatically detect dry and wet pixels. LANDSAT imagery is used because it resolves dry pixels. Calibrations using 1) only dry pixels and 2) including wet pixels are developed. Snapshots of retrieved evaporative fraction and actual evapotranspiration are compared to eddy covariance measurements for five study areas in Florida: 1) Big Cypress 2) Disney Wilderness 3) Everglades 4) near Gainesville, FL. 5) Kennedy Space Center. The sensitivity of evaporative fraction to temperature, available energy, roughness length and wind speed is tested. A technique for temporally interpolating evapotranspiration by fusing LANDSAT and MODIS is developed and tested. The automated algorithm is successful at detecting wet and dry pixels (if they exist). Including wet pixels in calibration and assuming constant atmospheric conductance significantly improved results for all but Big Cypress and Gainesville. Evaporative fraction is not very sensitive to instantaneous available energy but it is sensitive to temperature when wet pixels are included because temperature is required for estimating wet pixel evapotranspiration. Data fusion techniques only slightly outperformed linear interpolation. Eddy covariance comparison and temporal interpolation produced acceptable bias error for most cases suggesting automated calibration and interpolation could be used to predict monthly or annual ET. Maps demonstrating spatial patterns of evapotranspiration at field scale were successfully produced, but only for limited spatial extents. A framework has been established for producing larger maps by creating a mosaic of smaller individual maps.

  11. Visualizing protein partnerships in living cells and organisms.

    PubMed

    Lowder, Melissa A; Appelbaum, Jacob S; Hobert, Elissa M; Schepartz, Alanna

    2011-12-01

    In recent years, scientists have expanded their focus from cataloging genes to characterizing the multiple states of their translated products. One anticipated result is a dynamic map of the protein association networks and activities that occur within the cellular environment. While in vitro-derived network maps can illustrate which of a multitude of possible protein-protein associations could exist, they supply a falsely static picture lacking the subtleties of subcellular location (where) or cellular state (when). Generating protein association network maps that are informed by both subcellular location and cell state requires novel approaches that accurately characterize the state of protein associations in living cells and provide precise spatiotemporal resolution. In this review, we highlight recent advances in visualizing protein associations and networks under increasingly native conditions. These advances include second generation protein complementation assays (PCAs), chemical and photo-crosslinking techniques, and proximity-induced ligation approaches. The advances described focus on background reduction, signal optimization, rapid and reversible reporter assembly, decreased cytotoxicity, and minimal functional perturbation. Key breakthroughs have addressed many challenges and should expand the repertoire of tools useful for generating maps of protein interactions resolved in both time and space. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Mapping spatial variation in rock properties in relationship to scale-dependent structure using spectral curvature

    NASA Astrophysics Data System (ADS)

    Stewart, S. A.; Wynn, T. J.

    2000-08-01

    Maps of the three-dimensional geometry of geologic surfaces show that structural curvature commonly varies with scale of observation: This fact can be viewed as superposition of structures at different wavelengths. Rock properties such as fracture density and orientation reflect the contribution of superimposed structures. For this reason, characterization of geologic surfaces is fundamentally different from purely geometrical characterization, for which local description of surface properties is sufficient. We show that measured curvature decays according to a power law with increasing size of measurement window, so short-wavelength curvatures do not obscure long-wavelength curvatures in the same data set. This property can be taken advantage of in a simple technique for automatically mapping multiwavelength curvatures. At each point on a surface, curvature is measured at a range of wavelengths. This curvature spectrum can be analyzed in map view or collapsed into a single value at each point in space. The results indicate that complex geologic surfaces can be characterized without any prior knowledge of structural wavelengths and orientation. The method should prove useful in applications requiring knowledge of spatial variation in rock properties from remotely sensed data, such as exploration for hydrocarbon reservoirs or nuclear waste repositories.

  13. Integration between ground based and satellite SAR data in landslide mapping: The San Fratello case study

    NASA Astrophysics Data System (ADS)

    Bardi, Federica; Frodella, William; Ciampalini, Andrea; Bianchini, Silvia; Del Ventisette, Chiara; Gigli, Giovanni; Fanti, Riccardo; Moretti, Sandro; Basile, Giuseppe; Casagli, Nicola

    2014-10-01

    The potential use of the integration of PSI (Persistent Scatterer Interferometry) and GB-InSAR (Ground-based Synthetic Aperture Radar Interferometry) for landslide hazard mitigation was evaluated for mapping and monitoring activities of the San Fratello landslide (Sicily, Italy). Intense and exceptional rainfall events are the main factors that triggered several slope movements in the study area, which is susceptible to landslides, because of its steep slopes and silty-clayey sedimentary cover. In the last three centuries, the town of San Fratello was affected by three large landslides, developed in different periods: the oldest one occurred in 1754, damaging the northeastern sector of the town; in 1922 a large landslide completely destroyed a wide area in the western hillside of the town. In this paper, the attention is focussed on the most recent landslide that occurred on 14 February 2010: in this case, the phenomenon produced the failure of a large sector of the eastern hillside, causing severe damages to buildings and infrastructures. In particular, several slow-moving rotational and translational slides occurred in the area, making it suitable to monitor ground instability through different InSAR techniques. PS-InSAR™ (permanent scatterers SAR interferometry) techniques, using ERS-1/ERS-2, ENVISAT, RADARSAT-1, and COSMO-SkyMed SAR images, were applied to analyze ground displacements during pre- and post-event phases. Moreover, during the post-event phase in March 2010, a GB-InSAR system, able to acquire data continuously every 14 min, was installed collecting ground displacement maps for a period of about three years, until March 2013. Through the integration of space-borne and ground-based data sets, ground deformation velocity maps were obtained, providing a more accurate delimitation of the February 2010 landslide boundary, with respect to the carried out traditional geomorphological field survey. The integration of GB-InSAR and PSI techniques proved to be very effective in landslide mapping in the San Fratello test site, representing a valid scientific support for local authorities and decision makers during the post-emergency management.

  14. Nomads with Maps: Musical Connections in a Glocalized World

    ERIC Educational Resources Information Center

    Richerme, Lauren Kapalka

    2013-01-01

    This article presents the author's views on the concepts of the philosophers Deleuze and Guattari on striated (sedentary) space and smooth (mobile) space, asserting that "nomads" can move freely about their space. She relates these concepts to music education, incorporating Deleuze and Guattari's concept of mapping as it…

  15. Progress in Laser Risk Reduction for 1 micron lasers at GSFC

    NASA Technical Reports Server (NTRS)

    Heaps, William S.

    2007-01-01

    In recent years, lasers have proven themselves to be invaluable to a variety of remote sensing applications. LIDAR techniques have been used to measure atmospheric aerosols and a variety of trace species, profile winds, and develop high resolution topographical maps. Often it would be of great advantage to make these measurements from an orbiting satellite. Unfortunately, the space environment is a challenging one for the high power lasers that would enable many LIDAR missions. Optical mounts must maintain precision alignment during and after launch. Outgassing materials in the vacuum of space lead to contamination of laser optics. Electronic components and optical materials must survive the space environment, including a vacuum atmosphere, thermal cycling, and radiation exposure. Laser designs must be lightweight, compact, and energy efficient. Many LIDAR applications require frequency conversion systems that have never been designed or tested for use in space. For the last six years the National Aeronautical and Space Administration (NASA) has undertaken a program specifically directed at addressing the durability and long term reliability issues that face space-borne lasers. The effort is shared between NASA Goddard Space Flight Center in Greenbelt, Maryland, and NASA Langley Research Center in Hampton, Virginia. This paper is an overview of the issues facing space-borne lasers and the efforts that Goddard has been pursuing to address them.

  16. Cognitive mapping in mental time travel and mental space navigation.

    PubMed

    Gauthier, Baptiste; van Wassenhove, Virginie

    2016-09-01

    The ability to imagine ourselves in the past, in the future or in different spatial locations suggests that the brain can generate cognitive maps that are independent of the experiential self in the here and now. Using three experiments, we asked to which extent Mental Time Travel (MTT; imagining the self in time) and Mental Space Navigation (MSN; imagining the self in space) shared similar cognitive operations. For this, participants judged the ordinality of real historical events in time and in space with respect to different mental perspectives: for instance, participants mentally projected themselves in Paris in nine years, and judged whether an event occurred before or after, or, east or west, of where they mentally stood. In all three experiments, symbolic distance effects in time and space dimensions were quantified using Reaction Times (RT) and Error Rates (ER). When self-projected, participants were slower and were less accurate (absolute distance effects); participants were also faster and more accurate when the spatial and temporal distances were further away from their mental viewpoint (relative distance effects). These effects show that MTT and MSN require egocentric mapping and that self-projection requires map transformations. Additionally, participants' performance was affected when self-projection was made in one dimension but judgements in another, revealing a competition between temporal and spatial mapping (Experiment 2 & 3). Altogether, our findings suggest that MTT and MSN are separately mapped although they require comparable allo- to ego-centric map conversion. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Laboratory multiple-crystal X-ray topography and reciprocal-space mapping of protein crystals: influence of impurities on crystal perfection

    NASA Technical Reports Server (NTRS)

    Hu, Z. W.; Thomas, B. R.; Chernov, A. A.

    2001-01-01

    Double-axis multiple-crystal X-ray topography, rocking-curve measurements and triple-axis reciprocal-space mapping have been combined to characterize protein crystals using a laboratory source. Crystals of lysozyme and lysozyme crystals doped with acetylated lysozyme impurities were examined. It was shown that the incorporation of acetylated lysozyme into crystals of lysozyme induces mosaic domains that are responsible for the broadening and/or splitting of rocking curves and diffraction-space maps along the direction normal to the reciprocal-lattice vector, while the overall elastic lattice strain of the impurity-doped crystals does not appear to be appreciable in high angular resolution reciprocal-space maps. Multiple-crystal monochromatic X-ray topography, which is highly sensitive to lattice distortions, was used to reveal the spatial distribution of mosaic domains in crystals which correlates with the diffraction features in reciprocal space. Discussions of the influence of acetylated lysozyme on crystal perfection are given in terms of our observations.

  18. Laboratory multiple-crystal X-ray topography and reciprocal-space mapping of protein crystals: influence of impurities on crystal perfection.

    PubMed

    Hu, Z W; Thomas, B R; Chernov, A A

    2001-06-01

    Double-axis multiple-crystal X-ray topography, rocking-curve measurements and triple-axis reciprocal-space mapping have been combined to characterize protein crystals using a laboratory source. Crystals of lysozyme and lysozyme crystals doped with acetylated lysozyme impurities were examined. It was shown that the incorporation of acetylated lysozyme into crystals of lysozyme induces mosaic domains that are responsible for the broadening and/or splitting of rocking curves and diffraction-space maps along the direction normal to the reciprocal-lattice vector, while the overall elastic lattice strain of the impurity-doped crystals does not appear to be appreciable in high angular resolution reciprocal-space maps. Multiple-crystal monochromatic X-ray topography, which is highly sensitive to lattice distortions, was used to reveal the spatial distribution of mosaic domains in crystals which correlates with the diffraction features in reciprocal space. Discussions of the influence of acetylated lysozyme on crystal perfection are given in terms of our observations.

  19. Asymptotically stable phase synchronization revealed by autoregressive circle maps

    NASA Astrophysics Data System (ADS)

    Drepper, F. R.

    2000-11-01

    A specially designed of nonlinear time series analysis is introduced based on phases, which are defined as polar angles in spaces spanned by a finite number of delayed coordinates. A canonical choice of the polar axis and a related implicit estimation scheme for the potentially underlying autoregressive circle map (next phase map) guarantee the invertibility of reconstructed phase space trajectories to the original coordinates. The resulting Fourier approximated, invertibility enforcing phase space map allows us to detect conditional asymptotic stability of coupled phases. This comparatively general synchronization criterion unites two existing generalizations of the old concept and can successfully be applied, e.g., to phases obtained from electrocardiogram and airflow recordings characterizing cardiorespiratory interaction.

  20. Mapping Queer Bioethics: Space, Place, and Locality.

    PubMed

    Wahlert, Lance

    2016-01-01

    This article, which introduces the special issue of the Journal of Homosexuality on "Mapping Queer Bioethics," begins by offering an overview of the analytical scope of the issue. Specifically, the first half of this essay raises critical questions central to the concept of a space-related queer bioethics, such as: How do we appreciate and understand the special needs of queer parties given the constraints of location, space, and geography? The second half of this article describes each feature article in the issue, as well as the subsequent special sections on the ethics of reading literal, health-related maps ("Cartographies") and scrutinizing the history of this journal as concerns LGBT health ("Mapping the Journal of Homosexuality").

  1. Parietal and superior frontal visuospatial maps activated by pointing and saccades

    PubMed Central

    Hagler, D.J.; Riecke, L.; Sereno, M.I.

    2009-01-01

    A recent study from our laboratory demonstrated that parietal cortex contains a map of visual space related to saccades and spatial attention and identified this area as the likely human homologue of the lateral intraparietal (LIP). A human homologue for the parietal reach region (PRR), thought to preferentially encode planned hand movements, has also been recently proposed. Both of these areas, originally identified in the macaque monkey, have been shown to encode space with eye-centered coordinates. Functional magnetic resonance imaging (fMRI) of humans was used to test the hypothesis that the putative human PRR contains a retinotopic map recruited by finger pointing but not saccades and to test more generally for differences in the visuospatial maps recruited by pointing and saccades. We identified multiple maps in both posterior parietal cortex and superior frontal cortex recruited for eye and hand movements, including maps not observed in previous mapping studies. Pointing and saccade maps were generally consistent within single subjects. We have developed new group analysis methods for phase-encoded data, which revealed subtle differences between pointing and saccades, including hemispheric asymmetries, but we did not find evidence of pointing-specific maps of visual space. PMID:17376706

  2. Three dimensional range geometry and texture data compression with space-filling curves.

    PubMed

    Chen, Xia; Zhang, Song

    2017-10-16

    This paper presents a novel method to effectively store three-dimensional (3D) data and 2D texture data into a regular 24-bit image. The proposed method uses the Hilbert space-filling curve to map the normalized unwrapped phase map to two 8-bit color channels, and saves the third color channel for 2D texture storage. By further leveraging existing 2D image and video compression techniques, the proposed method can achieve high compression ratios while effectively preserving data quality. Since the encoding and decoding processes can be applied to most of the current 2D media platforms, this proposed compression method can make 3D data storage and transmission available for many electrical devices without requiring special hardware changes. Experiments demonstrate that if a lossless 2D image/video format is used, both original 3D geometry and 2D color texture can be accurately recovered; if lossy image/video compression is used, only black-and-white or grayscale texture can be properly recovered, but much higher compression ratios (e.g., 1543:1 against the ASCII OBJ format) are achieved with slight loss of 3D geometry quality.

  3. KSC-99pp0522

    NASA Image and Video Library

    1999-05-13

    Inside the Space Station Processing Facility, the Shuttle Radar Topography Mission (SRTM) is maneuvered by an overhead crane toward a workstand below. The SRTM, which is the primary payload on mission STS-99, consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission scheduled for launch in September 1999. The objective of this radar system is to obtain the most complete high-resolution digital topographic database of the Earth. It will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. SRTM will be making use of a technique called radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. To get two radar images taken from different locations, the SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle

  4. KSC-99pp0524

    NASA Image and Video Library

    1999-05-13

    The move of the Shuttle Radar Topography Mission (SRTM) is nearly complete as it is lowered onto the workstand in the Space Station Processing Facility. The SRTM, which is the primary payload on mission STS-99, consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission scheduled for launch in September 1999. The objective of this radar system is to obtain the most complete high-resolution digital topographic database of the Earth. It will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. SRTM will be making use of a technique called radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. To get two radar images taken from different locations, the SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle

  5. KSC-99pp0521

    NASA Image and Video Library

    1999-05-13

    After being lifted off the transporter (lower right) in the Space Station Processing Facility, the Shuttle Radar Topography Mission (SRTM) moves across the floor toward a workstand. The SRTM, which is the primary payload on mission STS-99, consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission scheduled for launch in September 1999. The objective of this radar system is to obtain the most complete high-resolution digital topographic database of the Earth. It will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. SRTM will be making use of a technique called radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. To get two radar images taken from different locations, the SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle

  6. KSC-99pp0523

    NASA Image and Video Library

    1999-05-13

    Inside the Space Station Processing Facility, workers at each end of a workstand watch as the Shuttle Radar Topography Mission (SRTM) begins its descent onto it. The SRTM, which is the primary payload on mission STS-99, consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission scheduled for launch in September 1999. The objective of this radar system is to obtain the most complete high-resolution digital topographic database of the Earth. It will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. SRTM will be making use of a technique called radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. To get two radar images taken from different locations, the SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle

  7. EnGeoMAP - geological applications within the EnMAP hyperspectral satellite science program

    NASA Astrophysics Data System (ADS)

    Boesche, N. K.; Mielke, C.; Rogass, C.; Guanter, L.

    2016-12-01

    Hyperspectral investigations from near field to space substantially contribute to geological exploration and mining monitoring of raw material and mineral deposits. Due to their spectral characteristics, large mineral occurrences and minefields can be identified from space and the spatial distribution of distinct proxy minerals be mapped. In the frame of the EnMAP hyperspectral satellite science program a mineral and elemental mapping tool was developed - the EnGeoMAP. It contains a basic mineral mapping and a rare earth element mapping approach. This study shows the performance of EnGeoMAP based on simulated EnMAP data of the rare earth element bearing Mountain Pass Carbonatite Complex, USA, and the Rodalquilar and Lomilla Calderas, Spain, which host the economically relevant gold-silver, lead-zinc-silver-gold and alunite deposits. The mountain pass image data was simulated on the basis of AVIRIS Next Generation images, while the Rodalquilar data is based on HyMap images. The EnGeoMAP - Base approach was applied to both images, while the mountain pass image data were additionally analysed using the EnGeoMAP - REE software tool. The results are mineral and elemental maps that serve as proxies for the regional lithology and deposit types. The validation of the maps is based on chemical analyses of field samples. Current airborne sensors meet the spatial and spectral requirements for detailed mineral mapping and future hyperspectral space borne missions will additionally provide a large coverage. For those hyperspectral missions, EnGeoMAP is a rapid data analysis tool that is provided to spectral geologists working in mineral exploration.

  8. Radio Astronomers Develop New Technique for Studying Dark Energy

    NASA Astrophysics Data System (ADS)

    2010-07-01

    Pioneering observations with the National Science Foundation's giant Robert C. Byrd Green Bank Telescope (GBT) have given astronomers a new tool for mapping large cosmic structures. The new tool promises to provide valuable clues about the nature of the mysterious "dark energy" believed to constitute nearly three-fourths of the mass and energy of the Universe. Dark energy is the label scientists have given to what is causing the Universe to expand at an accelerating rate. While the acceleration was discovered in 1998, its cause remains unknown. Physicists have advanced competing theories to explain the acceleration, and believe the best way to test those theories is to precisely measure large-scale cosmic structures. Sound waves in the matter-energy soup of the extremely early Universe are thought to have left detectable imprints on the large-scale distribution of galaxies in the Universe. The researchers developed a way to measure such imprints by observing the radio emission of hydrogen gas. Their technique, called intensity mapping, when applied to greater areas of the Universe, could reveal how such large-scale structure has changed over the last few billion years, giving insight into which theory of dark energy is the most accurate. "Our project mapped hydrogen gas to greater cosmic distances than ever before, and shows that the techniques we developed can be used to map huge volumes of the Universe in three dimensions and to test the competing theories of dark energy," said Tzu-Ching Chang, of the Academia Sinica in Taiwan and the University of Toronto. To get their results, the researchers used the GBT to study a region of sky that previously had been surveyed in detail in visible light by the Keck II telescope in Hawaii. This optical survey used spectroscopy to map the locations of thousands of galaxies in three dimensions. With the GBT, instead of looking for hydrogen gas in these individual, distant galaxies -- a daunting challenge beyond the technical capabilities of current instruments -- the team used their intensity-mapping technique to accumulate the radio waves emitted by the hydrogen gas in large volumes of space including many galaxies. "Since the early part of the 20th Century, astronomers have traced the expansion of the Universe by observing galaxies. Our new technique allows us to skip the galaxy-detection step and gather radio emissions from a thousand galaxies at a time, as well as all the dimly-glowing material between them," said Jeffrey Peterson, of Carnegie Mellon University. The astronomers also developed new techniques that removed both man-made radio interference and radio emission caused by more-nearby astronomical sources, leaving only the extremely faint radio waves coming from the very distant hydrogen gas. The result was a map of part of the "cosmic web" that correlated neatly with the structure shown by the earlier optical study. The team first proposed their intensity-mapping technique in 2008, and their GBT observations were the first test of the idea. "These observations detected more hydrogen gas than all the previously-detected hydrogen in the Universe, and at distances ten times farther than any radio wave-emitting hydrogen seen before," said Ue-Li Pen of the University of Toronto. "This is a demonstration of an important technique that has great promise for future studies of the evolution of large-scale structure in the Universe," said National Radio Astronomy Observatory Chief Scientist Chris Carilli, who was not part of the research team. In addition to Chang, Peterson, and Pen, the research team included Kevin Bandura of Carnegie Mellon University. The scientists reported their work in the July 22 issue of the scientific journal Nature.

  9. Environmental monitoring techniques and wave energy potential assessment: an integrated approach for planning marine energy conversion schemes in the northern Tyrrhenian sea, Italy

    NASA Astrophysics Data System (ADS)

    Scanu, Sergio; Peviani, Maximo; Carli, Filippo Maria; Paladini de Mendoza, Francesco; Piermattei, Viviana; Bonamano, Simone; Marcelli, Marco

    2015-04-01

    This work proposes a multidisciplinary approach in which wave power potential maps are used as baseline for the application of environmental monitoring techniques identified through the use of a Database for Environmental Monitoring Techniques and Equipment (DEMTE), derived in the frame of the project "Marine Renewables Infrastructure Network for Emerging Energy Technologies" (Marinet - FP7). This approach aims to standardize the monitoring of the marine environment in the event of installation, operation and decommissioning of Marine Energy Conversion Systems. The database has been obtained through the collection of techniques and instrumentation available among the partners of the consortium, in relation with all environmental marine compounds potentially affected by any impacts. Furthermore in order to plan marine energy conversion schemes, the wave potential was assessed at regional and local scales using the numerical modelling downscaling methodology. The regional scale lead to the elaboration of the Italian Wave Power Atlas, while the local scale lead to the definition of nearshore hot spots useful for the planning of devices installation along the Latium coast. The present work focus in the application of environmental monitoring techniques identified in the DEMTE, in correspondence of the hotspot derived from the wave potential maps with particular reference to the biological interaction of the devices and the management of the marine space. The obtained results are the bases for the development of standardized procedures which aims to an effective application of marine environmental monitoring techniques during the installation, operation and decommissioning of Marine Energy Conversion Systems. The present work gives a consistent contribution to overcome non-technological barriers in the concession procedures, as far as the protection of the marine environment is of concern.

  10. Fixed points of contractive mappings in b-metric-like spaces.

    PubMed

    Hussain, Nawab; Roshan, Jamal Rezaei; Parvaneh, Vahid; Kadelburg, Zoran

    2014-01-01

    We discuss topological structure of b-metric-like spaces and demonstrate a fundamental lemma for the convergence of sequences. As an application we prove certain fixed point results in the setup of such spaces for different types of contractive mappings. Finally, some periodic point results in b-metric-like spaces are obtained. Two examples are presented in order to verify the effectiveness and applicability of our main results.

  11. Mapping 180° polar domains using electron backscatter diffraction and dynamical scattering simulations

    DOE PAGES

    Burch, Matthew J.; Fancher, Chris M.; Patala, Srikanth; ...

    2016-11-18

    A novel technique, which directly and nondestructively maps polar domains using electron backscatter diffraction (EBSD) is described and demonstrated. Through dynamical diffraction simulations and quantitative comparison to experimental EBSD patterns, the absolute orientation of a non-centrosymmetric crystal can be determined. With this information, the polar domains of a material can be mapped. The technique is demonstrated by mapping the non-ferroelastic, or 180°, ferroelectric domains in periodically poled LiNbO 3 single crystals. Furthermore, the authors demonstrate the possibility of mapping polarity using this technique in other polar materials system.

  12. IMAGING AND MEASUREMENT OF THE PRERETINAL SPACE IN VITREOMACULAR ADHESION AND VITREOMACULAR TRACTION BY A NEW SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY ANALYSIS.

    PubMed

    Stopa, Marcin; Marciniak, Elżbieta; Rakowicz, Piotr; Stankiewicz, Agnieszka; Marciniak, Tomasz; Dąbrowski, Adam

    2017-10-01

    To evaluate a new method for volumetric imaging of the preretinal space (also known as the subhyaloid, subcortical, or retrocortical space) and investigate differences in preretinal space volume in vitreomacular adhesion (VMA) and vitreomacular traction (VMT). Nine patients with VMA and 13 with VMT were prospectively evaluated. Automatic inner limiting membrane line segmentation, which exploits graph search theory implementation, and posterior cortical vitreous line segmentation were performed on 141 horizontal spectral domain optical coherence tomography B-scans per patient. Vertical distances (depths) between the posterior cortical vitreous and inner limiting membrane lines were calculated for each optical coherence tomography B-scan acquired. The derived distances were merged and visualized as a color depth map that represented the preretinal space between the posterior surface of the hyaloid and the anterior surface of the retina. The early treatment d retinopathy study macular map was overlaid onto final virtual maps, and preretinal space volumes were calculated for each early treatment diabetic retinopathy study map sector. Volumetric maps representing preretinal space volumes were created for each patient in the VMA and VMT groups. Preretinal space volumes were larger in all early treatment diabetic retinopathy study map macular regions in the VMT group compared with those in the VMA group. The differences reached statistical significance in all early treatment diabetic retinopathy study sectors, except for the superior outer macula and temporal outer macula where significance values were P = 0.05 and P = 0.08, respectively. Overall, the relative differences in preretinal space volumes between the VMT and VMA groups varied from 2.7 to 4.3 in inner regions and 1.8 to 2.9 in outer regions. Our study provides evidence of significant differences in preretinal space volume between eyes with VMA and those with VMT. This may be useful not only in the investigation of preretinal space properties in VMA and VMT, but also in other conditions, such as age-related macular degeneration, diabetic retinopathy, and central retinal vein occlusion.

  13. Mapping the petroleum system - An investigative technique to explore the hydrocarbon fluid system

    USGS Publications Warehouse

    Magoon, L.B.; Dow, W.G.

    2000-01-01

    Creating a petroleum system map includes a series of logical steps that require specific information to explain the origin in time and space of discovered hydrocarbon occurrences. If used creatively, this map provides a basis on which to develop complementary plays and prospects. The logical steps include the characterization of a petroleum system (that is, to identify, map, and name the hydrocarbon fluid system) and the summary of these results on a folio sheet. A petroleum system map is based on the understanding that there are several levels of certainty from "guessing" to "knowing" that specific oil and gas accumulations emanated from a particular pod of active source rock. Levels of certainty start with the close geographic proximity of two or more accumulations, continues with the close stratigraphic proximity, followed by the similarities in bulk properties, and then detailed geochemical properties. The highest level of certainty includes the positive geochemical correlation of the hydrocarbon fluid in the accumulations to the extract of the active source rock. A petroleum system map is created when the following logic is implemented. Implementation starts when the oil and gas accumulations of a petroleum province are grouped stratigraphically and geographically. Bulk and geochemical properties are used to further refine the groups through the determination of genetically related oil and gas types. To this basic map, surface seeps and well shows are added. Similarly, the active source rock responsible for these hydrocarbon occurrences are mapped to further define the extent of the system. A folio sheet constructed for a hypothetical case study of the Deer-Boar(.) petroleum system illustrates this methodology.

  14. The Method of Multiple Spatial Planning Basic Map

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Fang, C.

    2018-04-01

    The "Provincial Space Plan Pilot Program" issued in December 2016 pointed out that the existing space management and control information management platforms of various departments were integrated, and a spatial planning information management platform was established to integrate basic data, target indicators, space coordinates, and technical specifications. The planning and preparation will provide supportive decision support, digital monitoring and evaluation of the implementation of the plan, implementation of various types of investment projects and space management and control departments involved in military construction projects in parallel to approve and approve, and improve the efficiency of administrative approval. The space planning system should be set up to delimit the control limits for the development of production, life and ecological space, and the control of use is implemented. On the one hand, it is necessary to clarify the functional orientation between various kinds of planning space. On the other hand, it is necessary to achieve "multi-compliance" of various space planning. Multiple spatial planning intergration need unified and standard basic map(geographic database and technical specificaton) to division of urban, agricultural, ecological three types of space and provide technical support for the refinement of the space control zoning for the relevant planning. The article analysis the main space datum, the land use classification standards, base map planning, planning basic platform main technical problems. Based on the geographic conditions, the results of the census preparation of spatial planning map, and Heilongjiang, Hainan many rules combined with a pilot application.

  15. Local Free Space Mapping and Path Guidance,

    DTIC Science & Technology

    1987-03-01

    Free Space Mapping and Path Guidance 12. PERSONIAL UTI4OFS) William T. Cex and Nancy L. Campbell 1s. TYPE OF REPORT 13b. iME COVERED 14. DATE OF REPORT...84 JAN 52 A" 1OMON MAYBOfUSED NMlLEMIAUSTEO UNCLASSIFIED ALL OTHE EDTIN A’.SL Y2.7cesson For 7 *5~ IT D, TA ........... iCL ... . LOCAL FREE SPACE ... MAPPING AND PATH GUIDANCE By Distribuition/ Availabiliuy C0e William T. Gex and Nancy L. Campbell I Avail and/or Naval Ocean Systems Center ist speci1 l

  16. Innovative Visualization Techniques applied to a Flood Scenario

    NASA Astrophysics Data System (ADS)

    Falcão, António; Ho, Quan; Lopes, Pedro; Malamud, Bruce D.; Ribeiro, Rita; Jern, Mikael

    2013-04-01

    The large and ever-increasing amounts of multi-dimensional, time-varying and geospatial digital information from multiple sources represent a major challenge for today's analysts. We present a set of visualization techniques that can be used for the interactive analysis of geo-referenced and time sampled data sets, providing an integrated mechanism and that aids the user to collaboratively explore, present and communicate visually complex and dynamic data. Here we present these concepts in the context of a 4 hour flood scenario from Lisbon in 2010, with data that includes measures of water column (flood height) every 10 minutes at a 4.5 m x 4.5 m resolution, topography, building damage, building information, and online base maps. Techniques we use include web-based linked views, multiple charts, map layers and storytelling. We explain two of these in more detail that are not currently in common use for visualization of data: storytelling and web-based linked views. Visual storytelling is a method for providing a guided but interactive process of visualizing data, allowing more engaging data exploration through interactive web-enabled visualizations. Within storytelling, a snapshot mechanism helps the author of a story to highlight data views of particular interest and subsequently share or guide others within the data analysis process. This allows a particular person to select relevant attributes for a snapshot, such as highlighted regions for comparisons, time step, class values for colour legend, etc. and provide a snapshot of the current application state, which can then be provided as a hyperlink and recreated by someone else. Since data can be embedded within this snapshot, it is possible to interactively visualize and manipulate it. The second technique, web-based linked views, includes multiple windows which interactively respond to the user selections, so that when selecting an object and changing it one window, it will automatically update in all the other windows. These concepts can be part of a collaborative platform, where multiple people share and work together on the data, via online access, which also allows its remote usage from a mobile platform. Storytelling augments analysis and decision-making capabilities allowing to assimilate complex situations and reach informed decisions, in addition to helping the public visualize information. In our visualization scenario, developed in the context of the VA-4D project for the European Space Agency (see http://www.ca3-uninova.org/project_va4d), we make use of the GAV (GeoAnalytics Visualization) framework, a web-oriented visual analytics application based on multiple interactive views. The final visualization that we produce includes multiple interactive views, including a dynamic multi-layer map surrounded by other visualizations such as bar charts, time graphs and scatter plots. The map provides flood and building information, on top of a base city map (street maps and/or satellite imagery provided by online map services such as Google Maps, Bing Maps etc.). Damage over time for selected buildings, damage for all buildings at a chosen time period, correlation between damage and water depth can be analysed in the other views. This interactive web-based visualization that incorporates the ideas of storytelling, web-based linked views, and other visualization techniques, for a 4 hour flood event in Lisbon in 2010, can be found online at http://www.ncomva.se/flash/projects/esa/flooding/.

  17. Space moving target detection using time domain feature

    NASA Astrophysics Data System (ADS)

    Wang, Min; Chen, Jin-yong; Gao, Feng; Zhao, Jin-yu

    2018-01-01

    The traditional space target detection methods mainly use the spatial characteristics of the star map to detect the targets, which can not make full use of the time domain information. This paper presents a new space moving target detection method based on time domain features. We firstly construct the time spectral data of star map, then analyze the time domain features of the main objects (target, stars and the background) in star maps, finally detect the moving targets using single pulse feature of the time domain signal. The real star map target detection experimental results show that the proposed method can effectively detect the trajectory of moving targets in the star map sequence, and the detection probability achieves 99% when the false alarm rate is about 8×10-5, which outperforms those of compared algorithms.

  18. Astronaut Kevin Chilton displays map of Scandinavia on flight deck

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Kevin P. Chilton, pilot, displays a map of Scandinavia on the Space Shuttle Endeavour's flight deck. Large scale maps such as this were used by the crew to locate specific sites of interest to the Space Radar Laboratory scientists. The crew then photographed the sites at the same time as the radar in the payload bay imaged them.

  19. A Novel Hybrid Intelligent Indoor Location Method for Mobile Devices by Zones Using Wi-Fi Signals

    PubMed Central

    Castañón–Puga, Manuel; Salazar, Abby Stephanie; Aguilar, Leocundo; Gaxiola-Pacheco, Carelia; Licea, Guillermo

    2015-01-01

    The increasing use of mobile devices in indoor spaces brings challenges to location methods. This work presents a hybrid intelligent method based on data mining and Type-2 fuzzy logic to locate mobile devices in an indoor space by zones using Wi-Fi signals from selected access points (APs). This approach takes advantage of wireless local area networks (WLANs) over other types of architectures and implements the complete method in a mobile application using the developed tools. Besides, the proposed approach is validated by experimental data obtained from case studies and the cross-validation technique. For the purpose of generating the fuzzy rules that conform to the Takagi–Sugeno fuzzy system structure, a semi-supervised data mining technique called subtractive clustering is used. This algorithm finds centers of clusters from the radius map given by the collected signals from APs. Measurements of Wi-Fi signals can be noisy due to several factors mentioned in this work, so this method proposed the use of Type-2 fuzzy logic for modeling and dealing with such uncertain information. PMID:26633417

  20. A Novel Hybrid Intelligent Indoor Location Method for Mobile Devices by Zones Using Wi-Fi Signals.

    PubMed

    Castañón-Puga, Manuel; Salazar, Abby Stephanie; Aguilar, Leocundo; Gaxiola-Pacheco, Carelia; Licea, Guillermo

    2015-12-02

    The increasing use of mobile devices in indoor spaces brings challenges to location methods. This work presents a hybrid intelligent method based on data mining and Type-2 fuzzy logic to locate mobile devices in an indoor space by zones using Wi-Fi signals from selected access points (APs). This approach takes advantage of wireless local area networks (WLANs) over other types of architectures and implements the complete method in a mobile application using the developed tools. Besides, the proposed approach is validated by experimental data obtained from case studies and the cross-validation technique. For the purpose of generating the fuzzy rules that conform to the Takagi-Sugeno fuzzy system structure, a semi-supervised data mining technique called subtractive clustering is used. This algorithm finds centers of clusters from the radius map given by the collected signals from APs. Measurements of Wi-Fi signals can be noisy due to several factors mentioned in this work, so this method proposed the use of Type-2 fuzzy logic for modeling and dealing with such uncertain information.

  1. Quadratic equations in Banach space, perturbation techniques and applications to Chandrasekhar's and related equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Argyros, I.K.

    1984-01-01

    In this dissertation perturbation techniques are developed, based on the contraction mapping principle which can be used to prove existence and uniqueness for the quadratic equation x = y + lambdaB(x,x) (1) in a Banach space X; here B: XxX..-->..X is a bounded, symmetric bilinear operator, lambda is a positive parameter and y as a subset of X is fixed. The following is the main result. Theorem. Suppose F: XxX..-->..X is a bounded, symmetric bilinear operator and that the equation z = y + lambdaF(z,z) has a solution z/sup */ of sufficiently small norm. Then equation (1) has a uniquemore » solution in a certain closed ball centered at z/sup */. Applications. The theorem is applied to the famous Chandrasekhar equation and to the Anselone-Moore system which are of the form (1) above and yields existence and uniqueness for a solution of (1) for larger values of lambda than previously known, as well as more accurate information on the location of solutions.« less

  2. Spent Fuel Test-Climax: core logging for site investigation and instrumentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilder, D.G.; Yow, J.L. Jr.; Thorpe, R.K.

    1982-05-28

    As an integral part of the Spent Fuel Test-Climax 5150 ft (1570 m) of granite core was obtained. This core was diamond drilled in various sizes, mainly 38-mm and 76-mm diameters. The core was teken with single tube core barrels and was unoriented. Techniques used to drill and log this core are discussed, as well as techniques to orient the core. Of the 5150 ft (1570 m) of core more than 3645 ft (1111 m) was retained and logged in some detail. As a result of the core logging, geologic discontinuities were identified, joint frequency and spacing characterized. Discontinuities identifiedmore » included several joint sets, shear zones and faults. Correlations based on coring along were generally found to be impossible, even for the more prominent features. The only feature properly correlated from the exploratory drilling was the fault system at the end of the facility, but it was not identified from the exploratory core as a fault. Identification of discontinuities was later helped by underground mapping that identified several different joint sets with different characteristics. It was found that joint frequency varied from 0.3 to 1.1 joint per foot of core for open fractures and from 0.3 to 3.3/ft for closed or healed fractures. Histograms of fracture spacing indicate that there is likely a random distribution of spacing superimposed upon uniformly spaced fractures. It was found that a low angle joint set had a persistent mean orientation. These joints were healed and had pervasive wall rock alteration which made identification of joints in this set possible. The recognition of a joint set with known attitude allowed orientation of much of the core. This orientation technique was found to be effective. 10 references, 25 figures, 4 tables.« less

  3. Two techniques for mapping and area estimation of small grains in California using Landsat digital data

    NASA Technical Reports Server (NTRS)

    Sheffner, E. J.; Hlavka, C. A.; Bauer, E. M.

    1984-01-01

    Two techniques have been developed for the mapping and area estimation of small grains in California from Landsat digital data. The two techniques are Band Ratio Thresholding, a semi-automated version of a manual procedure, and LCLS, a layered classification technique which can be fully automated and is based on established clustering and classification technology. Preliminary evaluation results indicate that the two techniques have potential for providing map products which can be incorporated into existing inventory procedures and automated alternatives to traditional inventory techniques and those which currently employ Landsat imagery.

  4. Challenges of model transferability to data-scarce regions (Invited)

    NASA Astrophysics Data System (ADS)

    Samaniego, L. E.

    2013-12-01

    Developing the ability to globally predict the movement of water on the land surface at spatial scales from 1 to 5 km constitute one of grand challenges in land surface modelling. Copying with this grand challenge implies that land surface models (LSM) should be able to make reliable predictions across locations and/or scales other than those used for parameter estimation. In addition to that, data scarcity and quality impose further difficulties in attaining reliable predictions of water and energy fluxes at the scales of interest. Current computational limitations impose also seriously limitations to exhaustively investigate the parameter space of LSM over large domains (e.g. greater than half a million square kilometers). Addressing these challenges require holistic approaches that integrate the best techniques available for parameter estimation, field measurements and remotely sensed data at their native resolutions. An attempt to systematically address these issues is the multiscale parameterisation technique (MPR) that links high resolution land surface characteristics with effective model parameters. This technique requires a number of pedo-transfer functions and a much fewer global parameters (i.e. coefficients) to be inferred by calibration in gauged basins. The key advantage of this technique is the quasi-scale independence of the global parameters which enables to estimate global parameters at coarser spatial resolutions and then to transfer them to (ungauged) areas and scales of interest. In this study we show the ability of this technique to reproduce the observed water fluxes and states over a wide range of climate and land surface conditions ranging from humid to semiarid and from sparse to dense forested regions. Results of transferability of global model parameters in space (from humid to semi-arid basins) and across scales (from coarser to finer) clearly indicate the robustness of this technique. Simulations with coarse data sets (e.g. EOBS forcing 25x25 km2, FAO soil map 1:5000000) using parameters obtained with high resolution information (REGNIE forcing 1x1 km2, BUEK soil map 1:1000000) in different climatic regions indicate the potential of MPR for prediction in data-scarce regions. In this presentation, we will also discuss how the transferability of global model parameters across scales and locations helps to identify deficiencies in model structure and regionalization functions.

  5. Phase-space topography characterization of nonlinear ultrasound waveforms.

    PubMed

    Dehghan-Niri, Ehsan; Al-Beer, Helem

    2018-03-01

    Fundamental understanding of ultrasound interaction with material discontinuities having closed interfaces has many engineering applications such as nondestructive evaluation of defects like kissing bonds and cracks in critical structural and mechanical components. In this paper, to analyze the acoustic field nonlinearities due to defects with closed interfaces, the use of a common technique in nonlinear physics, based on a phase-space topography construction of ultrasound waveform, is proposed. The central idea is to complement the "time" and "frequency" domain analyses with the "phase-space" domain analysis of nonlinear ultrasound waveforms. A nonlinear time series method known as pseudo phase-space topography construction is used to construct equivalent phase-space portrait of measured ultrasound waveforms. Several nonlinear models are considered to numerically simulate nonlinear ultrasound waveforms. The phase-space response of the simulated waveforms is shown to provide different topographic information, while the frequency domain shows similar spectral behavior. Thus, model classification can be substantially enhanced in the phase-space domain. Experimental results on high strength aluminum samples show that the phase-space transformation provides a unique detection and classification capabilities. The Poincaré map of the phase-space domain is also used to better understand the nonlinear behavior of ultrasound waveforms. It is shown that the analysis of ultrasound nonlinearities is more convenient and informative in the phase-space domain than in the frequency domain. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Advantage of spatial map ion imaging in the study of large molecule photodissociation

    NASA Astrophysics Data System (ADS)

    Lee, Chin; Lin, Yen-Cheng; Lee, Shih-Huang; Lee, Yin-Yu; Tseng, Chien-Ming; Lee, Yuan-Tseh; Ni, Chi-Kung

    2017-07-01

    The original ion imaging technique has low velocity resolution, and currently, photodissociation is mostly investigated using velocity map ion imaging. However, separating signals from the background (resulting from undissociated excited parent molecules) is difficult when velocity map ion imaging is used for the photodissociation of large molecules (number of atoms ≥ 10). In this study, we used the photodissociation of phenol at the S1 band origin as an example to demonstrate how our multimass ion imaging technique, based on modified spatial map ion imaging, can overcome this difficulty. The photofragment translational energy distribution obtained when multimass ion imaging was used differed considerably from that obtained when velocity map ion imaging and Rydberg atom tagging were used. We used conventional translational spectroscopy as a second method to further confirm the experimental results, and we conclude that data should be interpreted carefully when velocity map ion imaging or Rydberg atom tagging is used in the photodissociation of large molecules. Finally, we propose a modified velocity map ion imaging technique without the disadvantages of the current velocity map ion imaging technique.

  7. User-Driven Workflow for Modeling, Monitoring, Product Development, and Flood Map Delivery Using Satellites for Daily Coverage Over Texas May-June 2015

    NASA Astrophysics Data System (ADS)

    Green, D. S.; Frye, S. W.; Wells, G. L.; Adler, R. F.; Brakenridge, R.; Bolten, J. D.; Murray, J. J.; Slayback, D. A.; Kirschbaum, D.; Wu, H.; Cappelaere, P. G.; Schumann, G.; Howard, T.; Flamig, Z.; Clark, R. A.; Stough, T.; Chini, M.; Matgen, P.

    2015-12-01

    Intense rainfall during late April and early May 2015 in Texas and Oklahoma led to widespread flooding in several river basins in that region. Texas state agencies were activated for the May-June floods and severe weather event that ensued for six weeks from May 8 until June 19 following Tropical Storm Bill. This poster depicts a case study where modeling flood potential informed decision making authorities for user-driven high resolution satellite acquisitions over the most critical areas and how experimental flood mapping techniques provided the capability for daily on-going monitoring of these events through the use of increased automation. Recent improvements in flood models resulting from higher frequency updates, better spatial resolution, and increased accuracy of now cast and forecast precipitation products coupled with advanced technology to improve situational awareness for decision makers. These advances enabled satellites to be tasked, data products to be developed and distributed, and feedback loops between the emergency authorities, satellite operators, and mapping researchers to deliver a daily stream of relevant products that informed deployment of emergency resources and improved management of the large-scale event across the local, state, and national levels. This collaboration was made possible through inter-agency cooperation on an international scale through the Committee on Earth Observation Satellites Flood Pilot activity that is supported in the USA by NASA, NOAA, and USGS and includes numerous civilian space agency assets from the European Space Agency along with national agencies from Italy, France, Germany, Japan, and others. The poster describes the inter-linking technology infrastructure, the development and delivery of mapping products, and the lessons learned for product improvement in the future.

  8. KSC-2013-3238

    NASA Image and Video Library

    2013-08-09

    CAPE CANAVERAL, Fla. – As seen on Google Maps, a Space Shuttle Main Engine, or SSME, stands inside the Engine Shop at Orbiter Processing Facility 3 at NASA's Kennedy Space Center. Each orbiter used three of the engines during launch and ascent into orbit. The engines burn super-cold liquid hydrogen and liquid oxygen and each one produces 155,000 pounds of thrust. The engines, known in the industry as RS-25s, could be reused on multiple shuttle missions. They will be used again later this decade for NASA's Space Launch System rocket. Google precisely mapped the space center and some of its historical facilities for the company's map page. The work allows Internet users to see inside buildings at Kennedy as they were used during the space shuttle era. Photo credit: Google/Wendy Wang

  9. Existence of Lipschitz selections of the Steiner map

    NASA Astrophysics Data System (ADS)

    Bednov, B. B.; Borodin, P. A.; Chesnokova, K. V.

    2018-02-01

    This paper is concerned with the problem of the existence of Lipschitz selections of the Steiner map {St}_n, which associates with n points of a Banach space X the set of their Steiner points. The answer to this problem depends on the geometric properties of the unit sphere S(X) of X, its dimension, and the number n. For n≥slant 4 general conditions are obtained on the space X under which {St}_n admits no Lipschitz selection. When X is finite dimensional it is shown that, if n≥slant 4 is even, the map {St}_n has a Lipschitz selection if and only if S(X) is a finite polytope; this is not true if n≥slant 3 is odd. For n=3 the (single-valued) map {St}_3 is shown to be Lipschitz continuous in any smooth strictly-convex two-dimensional space; this ceases to be true in three-dimensional spaces. Bibliography: 21 titles.

  10. Small-angle X-ray scattering tensor tomography: model of the three-dimensional reciprocal-space map, reconstruction algorithm and angular sampling requirements.

    PubMed

    Liebi, Marianne; Georgiadis, Marios; Kohlbrecher, Joachim; Holler, Mirko; Raabe, Jörg; Usov, Ivan; Menzel, Andreas; Schneider, Philipp; Bunk, Oliver; Guizar-Sicairos, Manuel

    2018-01-01

    Small-angle X-ray scattering tensor tomography, which allows reconstruction of the local three-dimensional reciprocal-space map within a three-dimensional sample as introduced by Liebi et al. [Nature (2015), 527, 349-352], is described in more detail with regard to the mathematical framework and the optimization algorithm. For the case of trabecular bone samples from vertebrae it is shown that the model of the three-dimensional reciprocal-space map using spherical harmonics can adequately describe the measured data. The method enables the determination of nanostructure orientation and degree of orientation as demonstrated previously in a single momentum transfer q range. This article presents a reconstruction of the complete reciprocal-space map for the case of bone over extended ranges of q. In addition, it is shown that uniform angular sampling and advanced regularization strategies help to reduce the amount of data required.

  11. Study on the mapping of dark matter clustering from real space to redshift space

    NASA Astrophysics Data System (ADS)

    Zheng, Yi; Song, Yong-Seon

    2016-08-01

    The mapping of dark matter clustering from real space to redshift space introduces the anisotropic property to the measured density power spectrum in redshift space, known as the redshift space distortion effect. The mapping formula is intrinsically non-linear, which is complicated by the higher order polynomials due to indefinite cross correlations between the density and velocity fields, and the Finger-of-God effect due to the randomness of the peculiar velocity field. Whilst the full higher order polynomials remain unknown, the other systematics can be controlled consistently within the same order truncation in the expansion of the mapping formula, as shown in this paper. The systematic due to the unknown non-linear density and velocity fields is removed by separately measuring all terms in the expansion directly using simulations. The uncertainty caused by the velocity randomness is controlled by splitting the FoG term into two pieces, 1) the ``one-point" FoG term being independent of the separation vector between two different points, and 2) the ``correlated" FoG term appearing as an indefinite polynomials which is expanded in the same order as all other perturbative polynomials. Using 100 realizations of simulations, we find that the Gaussian FoG function with only one scale-independent free parameter works quite well, and that our new mapping formulation accurately reproduces the observed 2-dimensional density power spectrum in redshift space at the smallest scales by far, up to k~ 0.2 Mpc-1, considering the resolution of future experiments.

  12. GPU-Based Interactive Exploration and Online Probability Maps Calculation for Visualizing Assimilated Ocean Ensembles Data

    NASA Astrophysics Data System (ADS)

    Hoteit, I.; Hollt, T.; Hadwiger, M.; Knio, O. M.; Gopalakrishnan, G.; Zhan, P.

    2016-02-01

    Ocean reanalyses and forecasts are nowadays generated by combining ensemble simulations with data assimilation techniques. Most of these techniques resample the ensemble members after each assimilation cycle. Tracking behavior over time, such as all possible paths of a particle in an ensemble vector field, becomes very difficult, as the number of combinations rises exponentially with the number of assimilation cycles. In general a single possible path is not of interest but only the probabilities that any point in space might be reached by a particle at some point in time. We present an approach using probability-weighted piecewise particle trajectories to allow for interactive probability mapping. This is achieved by binning the domain and splitting up the tracing process into the individual assimilation cycles, so that particles that fall into the same bin after a cycle can be treated as a single particle with a larger probability as input for the next cycle. As a result we loose the possibility to track individual particles, but can create probability maps for any desired seed at interactive rates. The technique is integrated in an interactive visualization system that enables the visual analysis of the particle traces side by side with other forecast variables, such as the sea surface height, and their corresponding behavior over time. By harnessing the power of modern graphics processing units (GPUs) for visualization as well as computation, our system allows the user to browse through the simulation ensembles in real-time, view specific parameter settings or simulation models and move between different spatial or temporal regions without delay. In addition our system provides advanced visualizations to highlight the uncertainty, or show the complete distribution of the simulations at user-defined positions over the complete time series of the domain.

  13. Quantifying Patterns of Smooth Muscle Motility in the Gut and Other Organs With New Techniques of Video Spatiotemporal Mapping

    PubMed Central

    Lentle, Roger G.; Hulls, Corrin M.

    2018-01-01

    The uses and limitations of the various techniques of video spatiotemporal mapping based on change in diameter (D-type ST maps), change in longitudinal strain rate (L-type ST maps), change in area strain rate (A-type ST maps), and change in luminous intensity of reflected light (I-maps) are described, along with their use in quantifying motility of the wall of hollow structures of smooth muscle such as the gut. Hence ST-methods for determining the size, speed of propagation and frequency of contraction in the wall of gut compartments of differing geometric configurations are discussed. We also discuss the shortcomings and problems that are inherent in the various methods and the use of techniques to avoid or minimize them. This discussion includes, the inability of D-type ST maps to indicate the site of a contraction that does not reduce the diameter of a gut segment, the manipulation of axis [the line of interest (LOI)] of L-maps to determine the true axis of propagation of a contraction, problems with anterior curvature of gut segments and the use of adjunct image analysis techniques that enhance particular features of the maps. PMID:29686624

  14. New Target for an Old Method: Hubble Measures Globular Cluster Parallax

    NASA Astrophysics Data System (ADS)

    Hensley, Kerry

    2018-05-01

    Measuring precise distances to faraway objects has long been a challenge in astrophysics. Now, one of the earliest techniques used to measure the distance to astrophysical objects has been applied to a metal-poor globular cluster for the first time.A Classic TechniqueAn artists impression of the European Space Agencys Gaia spacecraft. Gaia is on track to map the positions and motions of a billion stars. [ESA]Distances to nearby stars are often measured using the parallax technique tracing the tiny apparent motion of a target star against the background of more distant stars as Earth orbits the Sun. This technique has come a long way since it was first used in the 1800s to measure the distance to stars a few tens of light-years away; with the advent of space observatories like Hipparcos and Gaia, parallax can now be used to map the positions of stars out to thousands of light-years.Precise distance measurements arent only important for setting the scale of the universe, however; they can also help us better understand stellar evolution over the course of cosmic history. Stellar evolution models are often anchored to a reference star cluster, the properties of which must be known precisely. These precise properties can be readily determined for young, nearby open clusters using parallax measurements. But stellar evolution models that anchor on themore-distant, ancient, metal-poor globular clusters have been hampered by theless-precise indirect methods used tomeasure distance to these faraway clusters until now.Top: An image of NGC 6397 overlaid with the area scanned by Hubble (dashed green) and the footprint of the camera (solid green). The blue ellipse represents the parallax motion of a star in the cluster, exaggerated by a factor of ten thousand. Bottom: An example scan from this field. [Adapted from Brown et al. 2018]New Measurement to an Old ClusterThomas Brown (Space Telescope Science Institute) and collaborators used the Hubble Space Telescope todetermine the distance to NGC 6397, one of the nearest metal-poor globular clusters and anchor for one stellar population model. Brown and coauthors used a technique called spatial scanning to greatly broaden the reach of the parallax method.Spatial scanning was initially developed as a way to increase the signal-to-noise of exoplanet transit observations, but it has also greatly improved the prospects of astrometry precisely determining the separations between astronomical objects. In spatial scanning, the telescope moves while the exposure is being taken, spreading the light out across many pixels.Unprecedented PrecisionThis technique allowed the authors to achieve a precision of 20100microarcseconds. From the observed parallax angle of just 0.418 milliarcseconds (for reference, the moons angular size is about 5 million times larger on the sky!), Brown and collaborators refined the distance to NGC 6397 to 7,795 light-years, with a measurement error of only a few percent.Using spatial scanning, Hubble can make parallax measurements of nearby globular clusters, while Gaia has the potential to reach even farther. Looking ahead, the measurement made by Brown and collaborators can be combined with the recently released Gaia data to trim the uncertainty down to just 1%. This highlights the power of space telescopes to make extremely precise measurements of astoundingly large distances informing our models and helping us measure the universe.CitationThomas Brown et al 2018ApJL856 L6. doi:10.3847/2041-8213/aab55a

  15. Combining various space geodetic techniques for regional modeling of ionospheric electron density over Iran

    NASA Astrophysics Data System (ADS)

    Zare, Saeed; Alizadeh, M. Mahdi; Schuh, Harald

    2017-04-01

    Ionosphere is a layer of the upper atmosphere, between the thermosphere and the exosphere, distinguished because it is ionized by solar radiation. As an important part of human living environment, ionosphere affects our modern society in many ways. International broadcasters use this medium to reflect radio signals back toward the Earth. Ionosphere provides long range capabilities for commercial ship-to-shore communications, for trans-oceanic aircraft links, and for military communication and surveillance systems. Space geodetic techniques have turned into a capable tool for studying the ionosphere in the last decades. Up to now, two dimensional (2-D) models of vertical TEC (VTEC) have been widely developed and used by different communities; however, due to the fact that these models provide information about the integral of the whole electron content along the vertical or slant ray path, these maps are not useful when information about the ionosphere at different altitude is required. The aim of this study is to develop three dimensional (3-D) regional model of electron density by using combination of various space geodetic techniques. B-Spline basis functions are used for longitude and latitude variations of the electron density and Chapman profile function for altitude variations. The National Cartographic Center of Iran (NCC) has established a network of one hundred GPS stations: The Iranian Permanent GPS Network for Geodynamics (IPGN). The main task of the GPS stations is to collect and store raw GPS data and send it to Tehran processing center on a daily basis for final processing. The required data for our investigation are ground based measurements of permanent GPS stations over Iran and radio occultation data from Formosat-3/Cosmic for region of interest. We expect to increase accuracy and reliability of final model by integrating different observation techniques.

  16. A Comparison of Risk Sensitive Path Planning Methods for Aircraft Emergency Landing

    NASA Technical Reports Server (NTRS)

    Meuleau, Nicolas; Plaunt, Christian; Smith, David E.; Smith, Tristan

    2009-01-01

    Determining the best site to land a damaged aircraft presents some interesting challenges for standard path planning techniques. There are multiple possible locations to consider, the space is 3-dimensional with dynamics, the criteria for a good path is determined by overall risk rather than distance or time, and optimization really matters, since an improved path corresponds to greater expected survival rate. We have investigated a number of different path planning methods for solving this problem, including cell decomposition, visibility graphs, probabilistic road maps (PRMs), and local search techniques. In their pure form, none of these techniques have proven to be entirely satisfactory - some are too slow or unpredictable, some produce highly non-optimal paths or do not find certain types of paths, and some do not cope well with the dynamic constraints when controllability is limited. In the end, we are converging towards a hybrid technique that involves seeding a roadmap with a layered visibility graph, using PRM to extend that roadmap, and using local search to further optimize the resulting paths. We describe the techniques we have investigated, report on our experiments with these techniques, and discuss when and why various techniques were unsatisfactory.

  17. Digital Mapping Techniques '08—Workshop Proceedings, Moscow, Idaho, May 18–21, 2008

    USGS Publications Warehouse

    Soller, David R.

    2009-01-01

    The Digital Mapping Techniques '08 (DMT'08) workshop was attended by more than 100 technical experts from 40 agencies, universities, and private companies, including representatives from 24 State geological surveys. This year's meeting, the twelfth in the annual series, was hosted by the Idaho Geological Survey, from May 18-21, 2008, on the University of Idaho campus in Moscow, Idaho. Each DMT workshop has been coordinated by the U.S. Geological Survey's National Geologic Map Database Project and the Association of American State Geologists (AASG). As in previous years' meetings, the objective was to foster informal discussion and exchange of technical information, principally in order to develop more efficient methods for digital mapping, cartography, GIS analysis, and information management. At this meeting, oral and poster presentations and special discussion sessions emphasized (1) methods for creating and publishing map products (here, "publishing" includes Web-based release); (2) field data capture software and techniques, including the use of LiDAR; (3) digital cartographic techniques; (4) migration of digital maps into ArcGIS Geodatabase format; (5) analytical GIS techniques; and (6) continued development of the National Geologic Map Database.

  18. A knowledge based system for scientific data visualization

    NASA Technical Reports Server (NTRS)

    Senay, Hikmet; Ignatius, Eve

    1992-01-01

    A knowledge-based system, called visualization tool assistant (VISTA), which was developed to assist scientists in the design of scientific data visualization techniques, is described. The system derives its knowledge from several sources which provide information about data characteristics, visualization primitives, and effective visual perception. The design methodology employed by the system is based on a sequence of transformations which decomposes a data set into a set of data partitions, maps this set of partitions to visualization primitives, and combines these primitives into a composite visualization technique design. Although the primary function of the system is to generate an effective visualization technique design for a given data set by using principles of visual perception the system also allows users to interactively modify the design, and renders the resulting image using a variety of rendering algorithms. The current version of the system primarily supports visualization techniques having applicability in earth and space sciences, although it may easily be extended to include other techniques useful in other disciplines such as computational fluid dynamics, finite-element analysis and medical imaging.

  19. Sensitivity evaluation of dynamic speckle activity measurements using clustering methods.

    PubMed

    Etchepareborda, Pablo; Federico, Alejandro; Kaufmann, Guillermo H

    2010-07-01

    We evaluate and compare the use of competitive neural networks, self-organizing maps, the expectation-maximization algorithm, K-means, and fuzzy C-means techniques as partitional clustering methods, when the sensitivity of the activity measurement of dynamic speckle images needs to be improved. The temporal history of the acquired intensity generated by each pixel is analyzed in a wavelet decomposition framework, and it is shown that the mean energy of its corresponding wavelet coefficients provides a suited feature space for clustering purposes. The sensitivity obtained by using the evaluated clustering techniques is also compared with the well-known methods of Konishi-Fujii, weighted generalized differences, and wavelet entropy. The performance of the partitional clustering approach is evaluated using simulated dynamic speckle patterns and also experimental data.

  20. A Riemannian geometric mapping technique for identifying incompressible equivalents to subsonic potential flows

    NASA Astrophysics Data System (ADS)

    German, Brian Joseph

    This research develops a technique for the solution of incompressible equivalents to planar steady subsonic potential flows. Riemannian geometric formalism is used to develop a gauge transformation of the length measure followed by a curvilinear coordinate transformation to map the given subsonic flow into a canonical Laplacian flow with the same boundary conditions. The effect of the transformation is to distort both the immersed profile shape and the domain interior nonuniformly as a function of local flow properties. The method represents the full nonlinear generalization of the classical methods of Prandtl-Glauert and Karman-Tsien. Unlike the classical methods which are "corrections," this method gives exact results in the sense that the inverse mapping produces the subsonic full potential solution over the original airfoil, up to numerical accuracy. The motivation for this research was provided by an observed analogy between linear potential flow and the special theory of relativity that emerges from the invariance of the d'Alembert wave equation under Lorentz transformations. This analogy is well known in an operational sense, being leveraged widely in linear unsteady aerodynamics and acoustics, stemming largely from the work of Kussner. Whereas elements of the special theory can be invoked for compressibility effects that are linear and global in nature, the question posed in this work was whether other mathematical techniques from the realm of relativity theory could be used to similar advantage for effects that are nonlinear and local. This line of thought led to a transformation leveraging Riemannian geometric methods common to the general theory of relativity. A gauge transformation is used to geometrize compressibility through the metric tensor of the underlying space to produce an equivalent incompressible flow that lives not on a plane but on a curved surface. In this sense, forces owing to compressibility can be ascribed to the geometry of space in much the same way that general relativity ascribes gravitational forces to the curvature of space-time. Although the analogy with general relativity is fruitful, it is important not to overstate the similarities between compressibility and the physics of gravity, as the interest for this thesis is primarily in the mathematical framework and not physical phenomenology or epistemology. The thesis presents the philosophy and theory for the transformation method followed by a numerical method for practical solutions of equivalent incompressible flows over arbitrary closed profiles. The numerical method employs an iterative approach involving the solution of the equivalent incompressible flow with a panel method, the calculation of the metric tensor for the gauge transformation, and the solution of the curvilinear coordinate mapping to the canonical flow with a finite difference approach for the elliptic boundary value problem. This method is demonstrated for non-circulatory flow over a circular cylinder and both symmetric and lifting flows over a NACA 0012 profile. Results are validated with accepted subcritical full potential test cases available in the literature. For chord-preserving mapping boundary conditions, the results indicate that the equivalent incompressible profiles thicken with Mach number and develop a leading edge droop with increased angle of attack. Two promising areas of potential applicability of the method have been identified. The first is in airfoil inverse design methods leveraging incompressible flow knowledge including heuristics and empirical data for the potential field effects on viscous phenomena such as boundary layer transition and separation. The second is in aerodynamic testing using distorted similarity-scaled models.

Top