Sample records for space mapping topography

  1. Laboratory multiple-crystal X-ray topography and reciprocal-space mapping of protein crystals: influence of impurities on crystal perfection

    NASA Technical Reports Server (NTRS)

    Hu, Z. W.; Thomas, B. R.; Chernov, A. A.

    2001-01-01

    Double-axis multiple-crystal X-ray topography, rocking-curve measurements and triple-axis reciprocal-space mapping have been combined to characterize protein crystals using a laboratory source. Crystals of lysozyme and lysozyme crystals doped with acetylated lysozyme impurities were examined. It was shown that the incorporation of acetylated lysozyme into crystals of lysozyme induces mosaic domains that are responsible for the broadening and/or splitting of rocking curves and diffraction-space maps along the direction normal to the reciprocal-lattice vector, while the overall elastic lattice strain of the impurity-doped crystals does not appear to be appreciable in high angular resolution reciprocal-space maps. Multiple-crystal monochromatic X-ray topography, which is highly sensitive to lattice distortions, was used to reveal the spatial distribution of mosaic domains in crystals which correlates with the diffraction features in reciprocal space. Discussions of the influence of acetylated lysozyme on crystal perfection are given in terms of our observations.

  2. Laboratory multiple-crystal X-ray topography and reciprocal-space mapping of protein crystals: influence of impurities on crystal perfection.

    PubMed

    Hu, Z W; Thomas, B R; Chernov, A A

    2001-06-01

    Double-axis multiple-crystal X-ray topography, rocking-curve measurements and triple-axis reciprocal-space mapping have been combined to characterize protein crystals using a laboratory source. Crystals of lysozyme and lysozyme crystals doped with acetylated lysozyme impurities were examined. It was shown that the incorporation of acetylated lysozyme into crystals of lysozyme induces mosaic domains that are responsible for the broadening and/or splitting of rocking curves and diffraction-space maps along the direction normal to the reciprocal-lattice vector, while the overall elastic lattice strain of the impurity-doped crystals does not appear to be appreciable in high angular resolution reciprocal-space maps. Multiple-crystal monochromatic X-ray topography, which is highly sensitive to lattice distortions, was used to reveal the spatial distribution of mosaic domains in crystals which correlates with the diffraction features in reciprocal space. Discussions of the influence of acetylated lysozyme on crystal perfection are given in terms of our observations.

  3. Synchrotron X-ray reciprocal-space mapping, topography and diffraction resolution studies of macromolecular crystal quality.

    PubMed

    Boggon, T J; Helliwell, J R; Judge, R A; Olczak, A; Siddons, D P; Snell, E H; Stojanoff, V

    2000-07-01

    A comprehensive study of microgravity and ground-grown chicken egg-white lysozyme crystals is presented using synchrotron X-ray reciprocal-space mapping, topography techniques and diffraction resolution. Microgravity crystals displayed reduced intrinsic mosaicities on average, but no differences in terms of strain over their ground-grown counterparts. Topographic analysis revealed that in the microgravity case the majority of the crystal was contributing to the peak of the reflection at the appropriate Bragg angle. In the ground-control case only a small volume of the crystal contributed to the intensity at the diffraction peak. The techniques prove to be highly complementary, with the reciprocal-space mapping providing a quantitative measure of the crystal mosaicity and strain (or variation in lattice spacing) and the topography providing a qualitative overall assessment of the crystal in terms of its X-ray diffraction properties. Structural data collection was also carried out at the synchrotron.

  4. Synchrotron X-Ray Reciprocal Space Mapping, Topography and Diffraction Resolution Studies of Macromolecular Crystal Quality

    NASA Technical Reports Server (NTRS)

    Boggon, T. J.; Helliwell, J. R.; Judge, Russell A.; Siddons, D. P.; Snell, Edward H.; Stojanoff, V.

    2000-01-01

    A comprehensive study of microgravity and ground grown chicken egg white lysozyme crystals is presented using synchrotron X-ray reciprocal space mapping, topography techniques and diffraction resolution. Microgravity crystals displayed, on average, reduced intrinsic mosaicities but no differences in terms of stress over their earth grown counterparts. Topographic analysis revealed that in the microgravity case the majority of the crystal was contributing to the peak of the reflection at the appropriate Bragg angle. In the earth case at the diffraction peak only a small volume of the crystal contributed to the intensity. The techniques prove to be highly complementary with the reciprocal space mapping providing a quantitative measure of the crystal mosaicity and stress (or variation in lattice spacing) and topography providing a qualitative overall assessment of the crystal in terms of its X-ray diffraction properties. Structural data collection was also carried out both at the synchrotron and in the laboratory.

  5. The Space-Time Topography of English Speakers

    ERIC Educational Resources Information Center

    Duman, Steve

    2016-01-01

    English speakers talk and think about Time in terms of physical space. The past is behind us, and the future is in front of us. In this way, we "map" space onto Time. This dissertation addresses the specificity of this physical space, or its topography. Inspired by languages like Yupno (Nunez, et al., 2012) and Bamileke-Dschang (Hyman,…

  6. Mapping experiment with space station

    NASA Technical Reports Server (NTRS)

    Wu, S. S. C.

    1986-01-01

    Mapping of the Earth from space stations can be approached in two areas. One is to collect gravity data for defining topographic datum using Earth's gravity field in terms of spherical harmonics. The other is to search and explore techniques of mapping topography using either optical or radar images with or without reference to ground central points. Without ground control points, an integrated camera system can be designed. With ground control points, the position of the space station (camera station) can be precisely determined at any instant. Therefore, terrestrial topography can be precisely mapped either by conventional photogrammetric methods or by current digital technology of image correlation. For the mapping experiment, it is proposed to establish four ground points either in North America or Africa (including the Sahara desert). If this experiment should be successfully accomplished, it may also be applied to the defense charting systems.

  7. KSC-99pp1417

    NASA Image and Video Library

    1999-12-13

    KENNEDY SPACE CENTER, Fla. -- Space Shuttle Endeavour is viewed atop the mobile launcher platform on its way to Launch Pad 39A for launch of mission STS-99. Named the Shuttle Radar Topography Mission (SRTM), STS-99 involves an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. SRTM will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from its payload bay, to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. STS-99 is scheduled for launch in January 2000

  8. KSC-99pp1418

    NASA Image and Video Library

    1999-12-13

    KENNEDY SPACE CENTER, Fla. -- Under breaking clouds, Space Shuttle Endeavour, atop the mobile launcher platform and crawler-transporter, crawls its way to Launch Pad 39A for mission STS-99. Named the Shuttle Radar Topography Mission (SRTM), STS-99 involves an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. SRTM will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from its payload bay, to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. STS-99 is scheduled for launch in January 2000

  9. Distinct cortical circuit mechanisms for complex forelimb movement and motor map topography.

    PubMed

    Harrison, Thomas C; Ayling, Oliver G S; Murphy, Timothy H

    2012-04-26

    Cortical motor maps are the basis of voluntary movement, but they have proven difficult to understand in the context of their underlying neuronal circuits. We applied light-based motor mapping of Channelrhodopsin-2 mice to reveal a functional subdivision of the forelimb motor cortex based on the direction of movement evoked by brief (10 ms) pulses. Prolonged trains of electrical or optogenetic stimulation (100-500 ms) targeted to anterior or posterior subregions of motor cortex evoked reproducible complex movements of the forelimb to distinct positions in space. Blocking excitatory cortical synaptic transmission did not abolish basic motor map topography, but the site-specific expression of complex movements was lost. Our data suggest that the topography of movement maps arises from their segregated output projections, whereas complex movements evoked by prolonged stimulation require intracortical synaptic transmission. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. EAARL Topography-Padre Island National Seashore

    USGS Publications Warehouse

    Brock, John C.; Wright, C. Wayne; Nayegandhi, Amar; Patterson, Matt; Wilson, Iris; Travers, Laurinda J.

    2007-01-01

    This Web site contains 116 Lidar-derived bare earth topography maps and GIS files for Padre Island National Seashore-Texas. These Lidar-derived topography maps were produced as a collaborative effort between the U.S. Geological Survey (USGS) Florida Integrated Science Center (FISC) St. Petersburg, Florida, the National Park Service (NPS) Gulf Coast Network, Inventory and Monitoring Program, and the National Aeronautics and Space Administration (NASA) Wallops Flight Facility. One objective of this research is to create techniques to survey coral reefs and barrier islands for the purposes of geomorphic change studies, habitat mapping, ecological monitoring, change detection, and event assessment. As part of this project, data from an innovative instrument under development at the NASA Wallops Flight Facility, the NASA Experimental Airborne Advanced Research Lidar (EAARL) are being used. This sensor has the potential to make significant contributions in this realm for measuring subaerial and submarine topography wthin cross-environment surveys. High spectral resolution, water-column correction, and low costs were found to be key factors in providing accurate and affordable imagery to costal resource managers.

  11. KSC-99pp1419

    NASA Image and Video Library

    1999-12-13

    KENNEDY SPACE CENTER, Fla. -- Under partly cloudy skies and the Atlantic Ocean as a backdrop, Space Shuttle Endeavour, atop the mobile launcher platform, arrives at Launch Pad 39A for mission STS-99. The white cubicle at left is the environmental chamber, the White Room, that provides entry into the orbiter for the astronauts. It is at the outer end of the Orbiter Access Arm on the Fixed Service Structure. STS-99, named the Shuttle Radar Topography Mission (SRTM), involves an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. SRTM will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from its payload bay, to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. STS-99 is scheduled for launch in January 2000

  12. NASA's Space Lidar Measurements of Earth and Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Abshire, James B.

    2010-01-01

    A lidar instrument on a spacecraft was first used to measure planetary surface height and topography on the Apollo 15 mission to the Moon in 1971, The lidar was based around a flashlamp-pumped ruby laser, and the Apollo 15-17 missions used them to make a few thousand measurements of lunar surface height from orbit. With the advent of diode pumped lasers in the late 1980s, the lifetime, efficiency, resolution and mass of lasers and space lidar all improved dramatically. These advances were utilized in NASA space missions to map the shape and surface topography of Mars with > 600 million measurements, demonstrate initial space measurements of the Earth's topography, and measured the detailed shape of asteroid. NASA's ICESat mission in Earth orbit just completed its polar ice measurement mission with almost 2 billion measurements of the Earth's surface and atmosphere, and demonstrated measurements to Antarctica and Greenland with a height resolution of a few em. Space missions presently in cruise phase and in operation include those to Mercury and a topographic mapping mission of the Moon. Orbital lidar also have been used in experiments to demonstrate laser ranging over planetary distances, including laser pulse transmission from Earth to Mars orbit. Based on the demonstrated value of the measurements, lidar is now the preferred measurement approach for many new scientific space missions. Some missions planned by NASA include a planetary mission to measure the shape and dynamics of Europa, and several Earth orbiting missions to continue monitoring ice sheet heights, measure vegetation heights, assess atmospheric CO2 concentrations, and to map the Earth surface topographic heights with 5 m spatial resolution. This presentation will give an overview of history, ongoing work, and plans for using space lidar for measurements of the surfaces of the Earth and planets.

  13. New Mars free-air and Bouguer gravity: Correlation with topography, geology and large impact basins

    NASA Technical Reports Server (NTRS)

    Frey, Herbert; Bills, Bruce G.; Kiefer, Walter S.; Nerem, R. Steven; Roark, James H.; Zuber, Maria T.

    1993-01-01

    Free-air and Bouguer gravity anomalies from a 50x50 field (MGM635), derived at the Goddard Space Flight Center, with global topography, geology, and the distribution of large impact basins was compared. The free-air gravity anomalies were derived from re-analysis of Viking Orbiter and Mariner 9 tracking data and have a spatial resolution of 250-300 km. Bouguer anomalies were calculated using a 50x50 expansion of the current Mars topography and the GSFC degree 50 geoid as the equipotential reference surface. Rotational flattening was removed using a moment of inertia of 0.365 and the corrections from Table B2 of Sleep and Phillips. Crustal density and mean density were assumed to be 2.9 and 3.93 gm/cm(sup 3). The spherical harmonic topography used has zero mean elevation, and differs from the USGS maps by about 2 km. Comparisons with global geology use a simplified map with about 1/3 the number of units on the current maps. For correlation with impact basins, the recent compilation by Schultz and Frey was used.

  14. EAARL Topography-Sagamore Hill National Historic Site

    USGS Publications Warehouse

    Brock, John C.; Wright, C. Wayne; Nayegandhi, Amar; Patterson, Matt; Travers, Laurinda J.

    2007-01-01

    This Web site contains lidar-derived bare earth (BE) and first return (FR) topography maps and GIS files for the Sagamore Hill National Historic Site. These lidar-derived topography maps were produced as a collaborative effort between the U.S. Geological Survey (USGS) Coastal and Marine Geology Program, FISC St. Petersburg, Florida, the National Park Service (NPS), Northeast Coastal and Barrier Network, Inventory and Monitoring Program, and the National Aeronautics and Space Administration (NASA) Wallops Flight Facility. One objective of this research is to create techniques to survey coral reefs and barrier islands for the purposes of geomorphic change studies, habitat mapping, ecological monitoring, change detection, and event assessment. As part of this project, data from an innovative instrument under development at the NASA Wallops Flight Facility, the NASA Experimental Airborne Advanced Research Lidar (EAARL) are being used. This sensor has the potential to make significant contributions in this realm for measuring subaerial and submarine topography wthin cross-environment surveys. High spectral resolution, water-column correction, and low costs were found to be key factors in providing accurate and affordable imagery to costal resource managers.

  15. EAARL topography: Cape Cod National Seashore

    USGS Publications Warehouse

    Brock, John C.; Wright, C. Wayne; Patterson, Matt; Nayegandhi, Amar; Travers, Laurinda J.

    2007-01-01

    This Web site contains 90 Lidar-derived bare earth topography maps and GIS files for the Cape Cod National Seashore. These Lidar-derived topography maps were produced as a collaborative effort between the U.S. Geological Survey (USGS) Florida Integrated Science Center (FISC) St. Petersburg, Florida, the National Park Service (NPS), Northeast Coastal and Barrier Network, Inventory and Monitoring Program, and the National Aeronautics and Space Administration (NASA) Wallops Flight Facility. One objective of this research is to create techniques to survey coral reefs and barrier islands for the purposes of geomorphic change studies, habitat mapping, ecological monitoring, change detection, and event assessment. As part of this project, data from an innovative instrument under development at the NASA Wallops Flight Facility, the NASA Experimental Airborne Advanced Research Lidar (EAARL) are being used. This sensor has the potential to make significant contributions in this realm for measuring subaerial and submarine topography wthin cross-environment surveys. High spectral resolution, water-column correction, and low costs were found to be key factors in providing accurate and affordable imagery to coastal resource managers.

  16. EAARL topography: Thomas Stone National Historic Site

    USGS Publications Warehouse

    Brock, John C.; Wright, C. Wayne; Patterson, Matt; Nayegandhi, Amar; Patterson, Judd

    2007-01-01

    This Web site contains Lidar-derived topography (first return and bare earth) maps and GIS files for Thomas Stone National Historic Site in Maryland. These Lidar-derived topography maps were produced as a collaborative effort between the U.S. Geological Survey (USGS) Coastal and Marine Geology Program, FISC St. Petersburg, the National Park Service (NPS) South Florida/Caribbean Network Inventory and Monitoring Program, and the National Aeronautics and Space Administration (NASA) Wallops Flight Facility. One objective of this research is to create techniques to survey coral reefs and barrier islands for the purposes of geomorphic change studies, habitat mapping, ecological monitoring, change detection, and event assessment. As part of this project, data from an innovative instrument under development at the NASA Wallops Flight Facility, the NASA Experimental Airborne Advanced Research Lidar (EAARL) are being used. This sensor has the potential to make significant contributions in this realm for measuring subaerial and submarine topography wthin cross-environment surveys. High spectral resolution, water-column correction, and low costs were found to be key factors in providing accurate and affordable imagery to costal resource managers.

  17. EAARL topography: Gulf Islands National Seashore: Florida

    USGS Publications Warehouse

    Brock, John C.; Wright, C. Wayne; Nayegandhi, Amar; Patterson, Matt; Wilson, Iris; Travers, Laurinda J.

    2007-01-01

    This Web site contains 33 lidar-derived bare earth topography maps and GIS files for the Gulf Islands National Seashore-Florida. These lidar-derived topography maps were produced as a collaborative effort between the U.S. Geological Survey (USGS) Coastal and Marine Geology Program, FISC St. Petersburg, Florida, the National Park Service (NPS), Gulf Coast Network, Network Inventory and Monitoring Program, and the National Aeronautics and Space Administration (NASA) Wallops Flight Facility. One objective of this research is to create techniques to survey coral reefs and barrier islands for the purposes of geomorphic change studies, habitat mapping, ecological monitoring, change detection, and event assessment. As part of this project, data from an innovative instrument under development at the NASA Wallops Flight Facility, the NASA Experimental Airborne Advanced Research Lidar (EAARL) are being used. This sensor has the potential to make significant contributions in this realm for measuring subaerial and submarine topography wthin cross-environment surveys. High spectral resolution, water-column correction, and low costs were found to be key factors in providing accurate and affordable imagery to costal resource managers.

  18. EAARL topography: Gulf Islands National Seashore: Mississippi

    USGS Publications Warehouse

    Brock, John C.; Wright, C. Wayne; Nayegandhi, Amar; Patterson, Matt; Wilson, Iris; Travers, Laurinda J.

    2007-01-01

    This Web site contains 30 lidar-derived bare earth topography maps and GIS files for the Gulf Islands National Seashore-Mississippi. These lidar-derived topography maps were produced as a collaborative effort between the U.S. Geological Survey (USGS) Coastal and Marine Geology Program, FISC St. Petersburg, Florida, the National Park Service (NPS) Gulf Coast Network, Inventory and Monitoring Program, and the National Aeronautics and Space Administration (NASA) Wallops Flight Facility. One objective of this research is to create techniques to survey coral reefs and barrier islands for the purposes of geomorphic change studies, habitat mapping, ecological monitoring, change detection, and event assessment. As part of this project, data from an innovative instrument under development at the NASA Wallops Flight Facility, the NASA Experimental Airborne Advanced Research Lidar (EAARL) are being used. This sensor has the potential to make significant contributions in this realm for measuring subaerial and submarine topography wthin cross-environment surveys. High spectral resolution, water-column correction, and low costs were found to be key factors in providing accurate and affordable imagery to costal resource managers.

  19. EAARL topography: Gateway National Recreation Area

    USGS Publications Warehouse

    Brock, John C.; Wright, C. Wayne; Patterson, Matt; Nayegandhi, Amar; Patterson, Judd

    2007-01-01

    This Web site contains Lidar-derived topography (bare earth) maps and GIS files for the Sandy Hook Unit within Gateway National Recreation Area in New Jersey. These Lidar-derived topography maps were produced as a collaborative effort between the U.S. Geological Survey (USGS) Coastal and Marine Geology Program, FISC St. Petersburg, the National Park Service (NPS) South Florida/Caribbean Network Inventory and Monitoring Program, and the National Aeronautics and Space Administration (NASA) Wallops Flight Facility. One objective of this research is to create techniques to survey coral reefs and barrier islands for the purposes of geomorphic change studies, habitat mapping, ecological monitoring, change detection, and event assessment. As part of this project, data from an innovative instrument under development at the NASA Wallops Flight Facility, the NASA Experimental Airborne Advanced Research Lidar (EAARL) are being used. This sensor has the potential to make significant contributions in this realm for measuring subaerial and submarine topography wthin cross-environment surveys. High spectral resolution, water-column correction, and low costs were found to be key factors in providing accurate and affordable imagery to costal resource managers.

  20. EAARL topography: Assateague Island National Seashore

    USGS Publications Warehouse

    Brock, John C.; Wright, C. Wayne; Patterson, Matt; Nayegandhi, Amar; Travers, Laurinda J.

    2007-01-01

    This Web site contains 58 lidar-derived bare earth topography maps and GIS files for the Assateague Island National Seashore. These lidar-derived topography maps were produced as a collaborative effort between the U.S. Geological Survey (USGS) Coastal and Marine Geology Program, FISC St. Petersburg, Florida, the National Park Service (NPS) South Florida/Caribbean Network Inventory and Monitoring Program, and the National Aeronautics and Space Administration (NASA) Wallops Flight Facility. One objective of this research is to create techniques to survey coral reefs and barrier islands for the purposes of geomorphic change studies, habitat mapping, ecological monitoring, change detection, and event assessment. As part of this project, data from an innovative instrument under development at the NASA Wallops Flight Facility, the NASA Experimental Airborne Advanced Research Lidar (EAARL) are being used. This sensor has the potential to make significant contributions in this realm for measuring subaerial and submarine topography wthin cross-environment surveys. High spectral resolution, water-column correction, and low costs were found to be key factors in providing accurate and affordable imagery to costal resource managers.

  1. EAARL topography: George Washington Birthplace National Monument

    USGS Publications Warehouse

    Brock, John C.; Wright, C. Wayne; Patterson, Matt; Nayegandhi, Amar; Patterson, Judd

    2007-01-01

    This Web site contains Lidar-derived topography (first return and bare earth) maps and GIS files for George Washington Birthplace National Monument in Virginia. These lidar-derived topography maps were produced as a collaborative effort between the U.S. Geological Survey (USGS) Coastal and Marine Geology Program, FISC St. Petersburg, the National Park Service (NPS), Northeast Coastal and Barrier Network, Inventory and Monitoring Program, and the National Aeronautics and Space Administration (NASA) Wallops Flight Facility. One objective of this research is to create techniques to survey coral reefs and barrier islands for the purposes of geomorphic change studies, habitat mapping, ecological monitoring, change detection, and event assessment. As part of this project, data from an innovative instrument under development at the NASA Wallops Flight Facility, the NASA Experimental Airborne Advanced Research Lidar (EAARL) are being used. This sensor has the potential to make significant contributions in this realm for measuring subaerial and submarine topography wthin cross-environment surveys. High spectral resolution, water-column correction, and low costs were found to be key factors in providing accurate and affordable imagery to coastal resource managers.

  2. STS-99 Kregel & Thiele show mapping SRTM techniques on OV-105's flight deck

    NASA Image and Video Library

    2000-02-13

    S99-E-5258 (13 February 2000) --- Astronauts Kevin R. Kregel (left), mission commander, and Gerhard P.J. Thiele demonstrate mapping techniques for the Space Radar Topography Mission (SRTM) using a payload-equipped Shuttle and a globe on Endeavour's flight deck. The two are joined by astronaut Janet L. Kavandi, mission specialist, on the SRTM's Red Team. Thiele is a mission specialist representing the European Space Agency (ESA).

  3. Mapping experiment with space station

    NASA Technical Reports Server (NTRS)

    Wu, Sherman S. C.

    1987-01-01

    Mapping the earth from space stations can be approached in two areas. One is to collect gravity data for defining a new topographic datum using the earth's gravitational field in terms of spherical harmonics. The other, which should be considered as a very significant contribution of the Space Station, is to search and explore techniques of mapping the earth's topography using either optical or radar images with or without references to ground control points. Geodetic position of ground control points can be predetermined by the Global Positioning System (GPS) for the mapping experiment with the Space Station. It is proposed to establish four ground control points in North America or Africa (including the Sahara Desert). If this experiment should be successfully accomplished, it may also be applied to the defense charting service.

  4. KSC-00pp0076

    NASA Image and Video Library

    2000-01-14

    STS-99 Mission Specialist Mamoru Mohri (Ph.D.) takes his seat inside Space Shuttle Endeavour for a practice launch countdown during Terminal Countdown Demonstration Test (TCDT) activities for the mission. Mohri is with the National Space Development Agency (NASDA) of Japan. The TCDT includes a simulation of the final launch countdown. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST

  5. KSC-00pp0079

    NASA Image and Video Library

    2000-01-14

    STS-99 Mission Specialist Gerhard Thiele, who is with the European Space Agency, goes through countdown procedures aboard the Space Shuttle Endeavour during Terminal Countdown Demonstration Test (TCDT) activities for the mission. The TCDT includes a simulation of the final launch countdown. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST

  6. Radar image of Rio Sao Francisco, Brazil

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This radar image acquired by SRTM shows an area south of the Sao Francisco River in Brazil. The area is predominantly scrub forest. Areas such as these are difficult to map by traditional methods because of frequent cloud cover and local inaccessibility. Image brightness differences in this image are caused by differences in vegetation type and density. Tributaries of the Sao Francisco are visible in the upper right. The Sao Francisco River is a major source of water for irrigation and hydroelectric power. Mapping such regions will allow scientists to better understand the relationships between flooding cycles, forestation and human influences on ecosystems.

    This radar image was obtained by the Shuttle Radar Topography Mission as part of its mission to map the Earth's topography. The image was acquired by just one of SRTM's two antennas, and consequently does not show topographic data but only the strength of the radar signal reflected from the ground. This signal, known as radar backscatter, provides insight into the nature of the surface, including its roughness, vegetation cover, and urbanization.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

  7. Shuttle Radar Topography Mission (SRTM)

    USGS Publications Warehouse

    ,

    2003-01-01

    Under an agreement with the National Aeronautics and Space Administration (NASA) and the Department of Defense's National Imagery and Mapping Agency (NIMA), the U.S. Geological Survey (USGS) is now distributing elevation data from the Shuttle Radar Topography Mission (SRTM). The SRTM is a joint project between NASA and NIMA to map the Earth's land surface in three dimensions at a level of detail unprecedented for such a large area. Flown aboard the NASA Space Shuttle Endeavour February 11-22, 2000, the SRTM successfully collected data over 80 percent of the Earth's land surface, for most of the area between 60? N. and 56? S. latitude. The SRTM hardware included the Spaceborne Imaging Radar-C (SIR-C) and X-band Synthetic Aperture Radar (X-SAR) systems that had flown twice previously on other space shuttle missions. The SRTM data were collected specifically with a technique known as interferometry that allows image data from dual radar antennas to be processed for the extraction of ground heights.

  8. EAARL topography: Fire Island National Seashore

    USGS Publications Warehouse

    Brock, John C.; Wright, C. Wayne; Patterson, Matt; Nayagandhi, Amar; Patterson, Judd

    2007-01-01

    This Web site contains 31 LIDAR-derived first return topography maps and GIS files for Fire Island National Seashore. These lidar-derived topographic maps were produced as a collaborative effort between the U.S. Geological Survey (USGS) Coastal and Marine Geology Program, the National Park Service (NPS), Northeast Coastal and Barrier Network, Inventory and Monitoring Program, and the National Aeronautics and Space Administration (NASA) Wallops Flight Facility. The aims of the partnership that created this product are to develop advanced survey techniques for mapping barrier island geomorphology and habitats, and to enable the monitoring of ecological and geological change within National Seashores. This product is based on data from an innovative airborne lidar instrument under development at the NASA Wallops Flight Facility, the NASA Experimental Advanced Airborne Research Lidar (EAARL).

  9. Comparing Vesta Topography

    NASA Image and Video Library

    2013-09-27

    These two images compare topographic maps of the giant asteroid Vesta as discerned by NASA Hubble Space Telescope top and as seen by NASA Dawn spacecraft bottom. Hubble has been in an orbit around Earth, while Dawn orbited Vesta from 2011 to 2012.

  10. STS-99 RSS rollback from Space Shuttle Endeavour on Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Just after sundown, the Rotating Service Structure is rolled back to reveal Space Shuttle Endeavour, mated with its solid rocket boosters (left and right) and external tank (center), poised for launch on mission STS-99. Known as the Shuttle Radar Topography Mission (SRTM), STS-99 is scheduled to lift off 12:47 p.m. EST from Launch Pad 39A. The SRTM will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. The mission is expected to last about 11days, with Endeavour landing at KSC Friday, Feb. 11, at 4:55 p.m. EST.

  11. KSC-00pp0125

    NASA Image and Video Library

    2000-01-30

    KENNEDY SPACE CENTER, Fla. -- Just after sundown, the Rotating Service Structure is rolled back to reveal Space Shuttle Endeavour, mated with its solid rocket boosters (left and right) and external tank (center), poised for launch on mission STS-99. Known as the Shuttle Radar Topography Mission (SRTM), STS-99 is scheduled to lift off 12:47 p.m. EST from Launch Pad 39A. The SRTM will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. The mission is expected to last about 11days, with Endeavour landing at KSC Friday, Feb. 11, at 4:55 p.m. EST

  12. KSC00pp0125

    NASA Image and Video Library

    2000-01-30

    KENNEDY SPACE CENTER, Fla. -- Just after sundown, the Rotating Service Structure is rolled back to reveal Space Shuttle Endeavour, mated with its solid rocket boosters (left and right) and external tank (center), poised for launch on mission STS-99. Known as the Shuttle Radar Topography Mission (SRTM), STS-99 is scheduled to lift off 12:47 p.m. EST from Launch Pad 39A. The SRTM will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. The mission is expected to last about 11days, with Endeavour landing at KSC Friday, Feb. 11, at 4:55 p.m. EST

  13. EAARL submarine topography: Florida Keys National Marine Sanctuary

    USGS Publications Warehouse

    Brock, John C.; Wright, C. Wayne; Nayegandhi, Amar; Woolard, Jason; Patterson, Matt; Wilson, Iris; Travers, Laurinda J.

    2007-01-01

    This Web site contains 46 Lidar-derived submarine topography maps and GIS files for the Florida Keys National Marine Sanctuary. These Lidar-derived submarine topographic maps were produced as a collaborative effort between the U.S. Geological Survey (USGS) Coastal and Marine Geology Program, FISC St. Petersburg, Florida, the National Oceanic and Atmospheric Administration (NOAA), Remote Sensing Division, the National Park Service (NPS) South Florida/Caribbean Network Inventory and Monitoring Program, and the National Aeronautics and Space Administration (NASA) Wallops Flight Facility. One objective of this research is to create techniques to survey coral reefs and barrier islands for the purposes of geomorphic change studies, habitat mapping, ecological monitoring, change detection, and event assessment. As part of this project, data from an innovative instrument under development at the NASA Wallops Flight Facility, the NASA Experimental Airborne Advanced Research Lidar (EAARL) are being used. This sensor has the potential to make significant contributions in this realm for measuring subaerial and submarine topography within cross-environment surveys. High spectral resolution, water-column correction, and low costs were found to be key factors in providing accurate and affordable imagery to coastal resource managers.

  14. EAARL Submarine Topography - Northern Florida Keys Reef Tract

    USGS Publications Warehouse

    Brock, John C.; Wright, C. Wayne; Nayegandhi, Amar; Patterson, Matt; Travers, Laurinda J.; Wilson, Iris

    2007-01-01

    This Web site contains 32 Lidar-derived bare earth topography maps and GIS files for the Northern Florida Keys Reef Tract. These lidar-derived submarine topographic maps were produced as a collaborative effort between the U.S. Geological Survey (USGS) Coastal and Marine Geology Program, FISC St. Petersburg, Florida, the National Park Service (NPS) South Florida/Caribbean Network Inventory and Monitoring Program, and the National Aeronautics and Space Administration (NASA) Wallops Flight Facility. One objective of this research is to create techniques to survey coral reefs and barrier islands for the purposes of geomorphic change studies, habitat mapping, ecological monitoring, change detection, and event assessment. As part of this project, data from an innovative instrument under development at the NASA Wallops Flight Facility, the NASA Experimental Airborne Advanced Research Lidar (EAARL) are being used. This sensor has the potential to make significant contributions in this realm for measuring subaerial and submarine topography wthin cross-environment surveys. High spectral resolution, water-column correction, and low costs were found to be key factors in providing accurate and affordable imagery to costal resource managers.

  15. KSC-99pp1405

    NASA Image and Video Library

    1999-12-13

    KENNEDY SPACE CENTER, Fla. -- The doors of the Vehicle Assembly Building (VAB) are open for the transfer of Space Shuttle Endeavour, on its mobile launcher platform, to Launch Pad 39A for mission STS-99. Named the Shuttle Radar Topography Mission (SRTM), it involves an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled

  16. STS-99 Mission Specialist Thiele arrives for launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-99 Mission Specialist Gerhard P.J. Thiele (Ph.D.), with the European Space Agency, arrives at KSC aboard a T-38 jet aircraft to prepare for launch of Endeavour Jan. 31 at 12:47 p.m. EST. Over the next few days, the crew will review mission procedures, conduct test flights in the Shuttle Training Aircraft and undergo routine preflight medical exams. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety.

  17. KSC-00pp0078

    NASA Image and Video Library

    2000-01-14

    STS-99 Pilot Dominic Gorie goes through countdown procedures on the flight deck aboard the Space Shuttle Endeavour as part of Terminal Countdown Demonstration Test (TCDT) activities for the mission. The TCDT includes a simulation of the final launch countdown. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST

  18. KSC-00pp0127

    NASA Image and Video Library

    2000-01-30

    KENNEDY SPACE CENTER, Fla. -- The day before the expected launch of STS-99, Mission Specialist Mamoru Mohri (right) enjoys a reunion with his wife, Akiko, near Launch Pad 39A. STS-99, known as the Shuttle Radar Topography Mission (SRTM), is scheduled to lift off 12:47 p.m. EST from Launch Pad 39A. The SRTM will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. The mission is expected to last about 11days, with Endeavour landing at KSC Friday, Feb. 11, at 4:55 p.m

  19. KSC-00pp0081

    NASA Image and Video Library

    2000-01-14

    STS-99 Mission Specialist Janet Lynn Kavandi (Ph.D.) settles into her seat inside Space Shuttle Endeavour during Terminal Countdown Demonstration Test (TCDT) activities for the mission. The TCDT includes a simulation of the final launch countdown. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST

  20. KSC00pp0108

    NASA Image and Video Library

    2000-01-27

    STS-99 Mission Specialist Mamoru Mohri (Ph.D.), who is with the National Space Development Agency (NASDA) of Japan, waves on his arrival at KSC aboard a T-38 jet aircraft to prepare for launch of Endeavour Jan. 31 at 12:47 p.m. EST. Over the next few days, the crew will review mission procedures, conduct test flights in the Shuttle Training Aircraft and undergo routine preflight medical exams. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety

  1. KSC-00pp0080

    NASA Image and Video Library

    2000-01-14

    STS-99 Commander Kevin Kregel goes through countdown procedures on the flight deck aboard the Space Shuttle Endeavour during Terminal Countdown Demonstration Test (TCDT) activities for the mission. The TCDT includes a simulation of the final launch countdown. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST

  2. KSC-00pp0108

    NASA Image and Video Library

    2000-01-27

    STS-99 Mission Specialist Mamoru Mohri (Ph.D.), who is with the National Space Development Agency (NASDA) of Japan, waves on his arrival at KSC aboard a T-38 jet aircraft to prepare for launch of Endeavour Jan. 31 at 12:47 p.m. EST. Over the next few days, the crew will review mission procedures, conduct test flights in the Shuttle Training Aircraft and undergo routine preflight medical exams. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety

  3. KSC-00pp0105

    NASA Image and Video Library

    2000-01-27

    STS-99 Mission Specialist Gerhard P.J. Thiele (Ph.D.), with the European Space Agency, arrives at KSC aboard a T-38 jet aircraft to prepare for launch of Endeavour Jan. 31 at 12:47 p.m. EST. Over the next few days, the crew will review mission procedures, conduct test flights in the Shuttle Training Aircraft and undergo routine preflight medical exams. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety

  4. Phase-space topography characterization of nonlinear ultrasound waveforms.

    PubMed

    Dehghan-Niri, Ehsan; Al-Beer, Helem

    2018-03-01

    Fundamental understanding of ultrasound interaction with material discontinuities having closed interfaces has many engineering applications such as nondestructive evaluation of defects like kissing bonds and cracks in critical structural and mechanical components. In this paper, to analyze the acoustic field nonlinearities due to defects with closed interfaces, the use of a common technique in nonlinear physics, based on a phase-space topography construction of ultrasound waveform, is proposed. The central idea is to complement the "time" and "frequency" domain analyses with the "phase-space" domain analysis of nonlinear ultrasound waveforms. A nonlinear time series method known as pseudo phase-space topography construction is used to construct equivalent phase-space portrait of measured ultrasound waveforms. Several nonlinear models are considered to numerically simulate nonlinear ultrasound waveforms. The phase-space response of the simulated waveforms is shown to provide different topographic information, while the frequency domain shows similar spectral behavior. Thus, model classification can be substantially enhanced in the phase-space domain. Experimental results on high strength aluminum samples show that the phase-space transformation provides a unique detection and classification capabilities. The Poincaré map of the phase-space domain is also used to better understand the nonlinear behavior of ultrasound waveforms. It is shown that the analysis of ultrasound nonlinearities is more convenient and informative in the phase-space domain than in the frequency domain. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Terrain Classification on Venus from Maximum-Likelihood Inversion of Parameterized Models of Topography, Gravity, and their Relation

    NASA Astrophysics Data System (ADS)

    Eggers, G. L.; Lewis, K. W.; Simons, F. J.; Olhede, S.

    2013-12-01

    Venus does not possess a plate-tectonic system like that observed on Earth, and many surface features--such as tesserae and coronae--lack terrestrial equivalents. To understand Venus' tectonics is to understand its lithosphere, requiring a study of topography and gravity, and how they relate. Past studies of topography dealt with mapping and classification of visually observed features, and studies of gravity dealt with inverting the relation between topography and gravity anomalies to recover surface density and elastic thickness in either the space (correlation) or the spectral (admittance, coherence) domain. In the former case, geological features could be delineated but not classified quantitatively. In the latter case, rectangular or circular data windows were used, lacking geological definition. While the estimates of lithospheric strength on this basis were quantitative, they lacked robust error estimates. Here, we remapped the surface into 77 regions visually and qualitatively defined from a combination of Magellan topography, gravity, and radar images. We parameterize the spectral covariance of the observed topography, treating it as a Gaussian process assumed to be stationary over the mapped regions, using a three-parameter isotropic Matern model, and perform maximum-likelihood based inversions for the parameters. We discuss the parameter distribution across the Venusian surface and across terrain types such as coronoae, dorsae, tesserae, and their relation with mean elevation and latitudinal position. We find that the three-parameter model, while mathematically established and applicable to Venus topography, is overparameterized, and thus reduce the results to a two-parameter description of the peak spectral variance and the range-to-half-peak variance (in function of the wavenumber). With the reduction the clustering of geological region types in two-parameter space becomes promising. Finally, we perform inversions for the JOINT spectral variance of topography and gravity, in which the INITIAL loading by topography retains the Matern form but the FINAL topography and gravity are the result of flexural compensation. In our modeling, we pay explicit attention to finite-field spectral estimation effects (and their remedy via tapering), and to the implementation of statistical tests (for anisotropy, for initial-loading process correlation, to ascertain the proper density contrasts and interface depth in a two-layer model), robustness assessment and uncertainty quantification, as well as to algorithmic intricacies related to low-dimensional but poorly scaled maximum-likelihood inversions. We conclude that Venusian geomorphic terrains are well described by their 2-D topographic and gravity (cross-)power spectra, and the spectral properties of distinct geologic provinces on Venus are worth quantifying via maximum-likelihood-based methods under idealized three-parameter Matern distributions. Analysis of fitted parameters and the fitted-data residuals reveals natural variability in the (sub)surface properties on Venus, as well as some directional anisotropy. Geologic regions tend to cluster according to terrain type in our parameter space, which we analyze to confirm their shared geologic histories and utilize for guidance in ongoing mapping efforts of Venus and other terrestrial bodies.

  6. The Shuttle Radar Topography Mission: A Global DEM

    NASA Technical Reports Server (NTRS)

    Farr, Tom G.; Kobrick, Mike

    2000-01-01

    Digital topographic data are critical for a variety of civilian, commercial, and military applications. Scientists use Digital Elevation Models (DEM) to map drainage patterns and ecosystems, and to monitor land surface changes over time. The mountain-building effects of tectonics and the climatic effects of erosion can also be modeled with DEW The data's military applications include mission planning and rehearsal, modeling and simulation. Commercial applications include determining locations for cellular phone towers, enhanced ground proximity warning systems for aircraft, and improved maps for backpackers. The Shuttle Radar Topography Mission (SRTM) (Fig. 1), is a cooperative project between NASA and the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense. The mission is designed to use a single-pass radar interferometer to produce a digital elevation model of the Earth's land surface between about 60 degrees north and south latitude. The DEM will have 30 m pixel spacing and about 15 m vertical errors.

  7. STS-99 Shuttle Radar Topography Mission Stability and Control

    NASA Technical Reports Server (NTRS)

    Hamelin, Jennifer L.; Jackson, Mark C.; Kirchwey, Christopher B.; Pileggi, Roberto A.

    2001-01-01

    The Shuttle Radar Topography Mission (SRTM) flew aboard Space Shuttle Endeavor February 2000 and used interferometry to map 80% of the Earth's landmass. SRTM employed a 200-foot deployable mast structure to extend a second antenna away from the main antenna located in the Shuttle payload bay. Mapping requirements demanded precision pointing and orbital trajectories from the Shuttle on-orbit Flight Control System (PCS). Mast structural dynamics interaction with the FCS impacted stability and performance of the autopilot for attitude maneuvers and pointing during mapping operations. A damper system added to ensure that mast tip motion remained with in the limits of the outboard antenna tracking system while mapping also helped to mitigate structural dynamic interaction with the FCS autopilot. Late changes made to the payload damper system, which actually failed on-orbit, required a redesign and verification of the FCS autopilot filtering schemes necessary to ensure rotational control stability. In-flight measurements using three sensors were used to validate models and gauge the accuracy and robustness of the pre-mission notch filter design.

  8. EAARL Topography-Colonial National Historical Park

    USGS Publications Warehouse

    Brock, John C.; Wright, C. Wayne; Nayegandhi, Amar; Stevens, Sara; Travers, Laurinda J.

    2008-01-01

    These Lidar-derived topography maps were produced as a collaborative effort between the U.S. Geological Survey (USGS) Coastal and Marine Geology Program, Florida Integrated Science Center (FISC) St. Petersburg, the National Park Service (NPS) Inventory and Monitoring Program, Northeast Coastal and Barrier Network, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility. One objective of this research is to create techniques to survey coral reefs, barrier islands, and various nearshore coastal environments for the purposes of geomorphic change studies, habitat mapping, ecological monitoring, change detection, and event assessment. As part of this project, data from an innovative instrument under development at the NASA Wallops Flight Facility, the NASA Experimental Airborne Advanced Research Lidar (EAARL) are being used. This sensor has the potential to make significant contributions in this realm for measuring subaerial and submarine topography wthin cross-environment surveys. High spectral resolution, water-column correction, and low costs were found to be key factors in providing accurate and affordable imagery to coastal resource managers.

  9. The Laser Vegetation Imaging Sensor: a medium-altitude, digitisation-only, airborne laser altimeter for mapping vegetation and topography

    NASA Astrophysics Data System (ADS)

    Blair, J. Bryan; Rabine, David L.; Hofton, Michelle A.

    The Laser Vegetation Imaging Sensor (LVIS) is an airborne, scanning laser altimeter, designed and developed at NASA's Goddard Space Flight Center (GSFC). LVIS operates at altitudes up to 10 km above ground, and is capable of producing a data swath up to 1000 m wide nominally with 25-m wide footprints. The entire time history of the outgoing and return pulses is digitised, allowing unambiguous determination of range and return pulse structure. Combined with aircraft position and attitude knowledge, this instrument produces topographic maps with dm accuracy and vertical height and structure measurements of vegetation. The laser transmitter is a diode-pumped Nd:YAG oscillator producing 1064 nm, 10 ns, 5 mJ pulses at repetition rates up to 500 Hz. LVIS has recently demonstrated its ability to determine topography (including sub-canopy) and vegetation height and structure on flight missions to various forested regions in the US and Central America. The LVIS system is the airborne simulator for the Vegetation Canopy Lidar (VCL) mission (a NASA Earth remote sensing satellite due for launch in year 2000), providing simulated data sets and a platform for instrument proof-of-concept studies. The topography maps and return waveforms produced by LVIS provide Earth scientists with a unique data set allowing studies of topography, hydrology, and vegetation with unmatched accuracy and coverage.

  10. Mapping Arid Vegetation Species Distributions in the White Mountains, Eastern California, Using AVIRIS, Topography, and Geology

    NASA Technical Reports Server (NTRS)

    VandeVen, C.; Weiss, S. B.

    2001-01-01

    Our challenge is to model plant species distributions in complex montane environments using disparate sources of data, including topography, geology, and hyperspectral data. From an ecologist's point of view, species distributions are determined by local environment and disturbance history, while spectral data are 'ancillary.' However, a remote sensor's perspective says that spectral data provide picture of what vegetation is there, topographic and geologic data are ancillary. In order to bridge the gap, all available data should be used to get the best possible prediction of species distributions using complex multivariate techniques implemented on a GIS. Vegetation reflects local climatic and nutrient conditions, both of which can be modeled, allowing predictive mapping of vegetation distributions. Geologic substrate strongly affects chemical, thermal, and physical properties of soils, while climatic conditions are determined by local topography. As elevation increases, precipitation increases and temperature decreases. Aspect, slope, and surrounding topography determine potential insolation, so that south-facing slopes are warmer and north-facing slopes cooler at a given elevation. Topographic position (ridge, slope, canyon, or meadow) and slope angle affect sediment accumulation and soil depth. These factors combine as complex environmental gradients, and underlie many features of plant distributions. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data, digital elevation models, digitized geologic maps, and 378 ground control points were used to predictively map species distributions in the central and southern White Mountains, along the western boundary of the Basin and Range province. Minimum Noise Fraction (MNF) bands were calculated from the visible and near-infrared AVIRIS bands, and combined with digitized geologic maps and topographic variables using Canonical Correspondence Analysis (CCA). CCA allows for modeling species 'envelopes' in multidimensional environmental space, which can then be projected across entire landscapes.

  11. KSC00pp0042

    NASA Image and Video Library

    2000-01-13

    KENNEDY SPACE CENTER, Fla. -- The STS-99 crew take time out during Terminal Countdown Demonstration Test (TCDT) activities to talk to the media. From left to right are Commander Kevin Kregel, Mission Specialists Janet Lynn Kavandi (Ph.D.), Janice Voss (Ph.D.), Gerhard Thiele and Mamoru Mohri, and Pilot Dominic Gorie. Thiele is with the European Space Agency and Mohri is with the National Space Development Agency (NASDA) of Japan. The TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. ES

  12. KSC-00pp0042

    NASA Image and Video Library

    2000-01-13

    KENNEDY SPACE CENTER, Fla. -- The STS-99 crew take time out during Terminal Countdown Demonstration Test (TCDT) activities to talk to the media. From left to right are Commander Kevin Kregel, Mission Specialists Janet Lynn Kavandi (Ph.D.), Janice Voss (Ph.D.), Gerhard Thiele and Mamoru Mohri, and Pilot Dominic Gorie. Thiele is with the European Space Agency and Mohri is with the National Space Development Agency (NASDA) of Japan. The TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. ES

  13. KSC00pp0048

    NASA Image and Video Library

    2000-01-13

    KENNEDY SPACE CENTER, Fla. -- Near the bunker at Launch Pad 39A, STS-99 Mission Specialists Janice Voss (Ph.D.), Gerhard Thiele and Mamoru Mohri check out the slidewire basket used for emergency egress. The crew are taking part in Terminal Countdown Demonstration Test activities, which provide them with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. Thiele is with the European Space Agency and Mohri is with the National Space Development Agency (NASDA) of Japan. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST

  14. STS-99 Mission Specialists Thiele and Mohri greet the media at SLF

    NASA Technical Reports Server (NTRS)

    2000-01-01

    After the crew arrival at KSC's Shuttle Landing Facility, STS-99 Mission Specialist Mamoru Mohri (Ph.D.), at right, talks to the media. At left is Mission Specialist Gerhard Thiele (Ph.D.). Thiele is with the European Space Agency and Mohri is with the National Space Development Agency (NASDA) of Japan. Over the next few days, the crew will review mission procedures, conduct test flights in the Shuttle Training Aircraft and undergo routine preflight medical exams. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour is scheduled for Jan. 31 at 12:47 p.m. EST.

  15. KSC-00pp0113

    NASA Image and Video Library

    2000-01-27

    After the crew arrival at KSC's Shuttle Landing Facility, STS-99 Mission Specialist Mamoru Mohri (Ph.D.), at right, talks to the media. At left is Mission Specialist Gerhard Thiele (Ph.D.). Thiele is with the European Space Agency and Mohri is with the National Space Development Agency (NASDA) of Japan. Over the next few days, the crew will review mission procedures, conduct test flights in the Shuttle Training Aircraft and undergo routine preflight medical exams. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour is scheduled for Jan. 31 at 12:47 p.m. EST

  16. KSC-00pp0049

    NASA Image and Video Library

    2000-01-13

    KENNEDY SPACE CENTER, Fla. -- On the Fixed Service Structure at Launch Pad 39A, STS-99 Mission Specialists Janet Lynn Kavandi (Ph.D.) and Gerhard Thiele, who is with the European Space Agency, look over the emergency egress equipment. The crew are taking part in Terminal Countdown Demonstration Test activities, which provide them with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST

  17. Spectral Topography Generation for Arbitrary Grids

    NASA Astrophysics Data System (ADS)

    Oh, T. J.

    2015-12-01

    A new topography generation tool utilizing spectral transformation technique for both structured and unstructured grids is presented. For the source global digital elevation data, the NASA Shuttle Radar Topography Mission (SRTM) 15 arc-second dataset (gap-filling by Jonathan de Ferranti) is used and for land/water mask source, the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) 30 arc-second land water mask dataset v5 is used. The original source data is coarsened to a intermediate global 2 minute lat-lon mesh. Then, spectral transformation to the wave space and inverse transformation with wavenumber truncation is performed for isotropic topography smoothness control. Target grid topography mapping is done by bivariate cubic spline interpolation from the truncated 2 minute lat-lon topography. Gibbs phenomenon in the water region can be removed by overwriting ocean masked target coordinate grids with interpolated values from the intermediate 2 minute grid. Finally, a weak smoothing operator is applied on the target grid to minimize the land/water surface height discontinuity that might have been introduced by the Gibbs oscillation removal procedure. Overall, the new topography generation approach provides spectrally-derived, smooth topography with isotropic resolution and minimum damping, enabling realistic topography forcing in the numerical model. Topography is generated for the cubed-sphere grid and tested on the KIAPS Integrated Model (KIM).

  18. KSC-00pp0089

    NASA Image and Video Library

    2000-01-17

    At Launch Pad 39A, orbiter Endeavour's open payload bay doors, reflecting the surrounding light, reveal the payload on the Shuttle Radar Topography Mission, STS-99. The mission will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST

  19. KSC-00pp0088

    NASA Image and Video Library

    2000-01-17

    At Launch Pad 39A, orbiter Endeavour's open payload bay doors reveal the payload on the Shuttle Radar Topography Mission, STS-99. The mission will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST

  20. KSC-00pp0090

    NASA Image and Video Library

    2000-01-17

    At Launch Pad 39A, orbiter Endeavour's open payload bay doors, reflecting the surrounding lights, reveal the payload on the Shuttle Radar Topography Mission, STS-99. The mission will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST

  1. KSC-00pp0087

    NASA Image and Video Library

    2000-01-17

    At Launch Pad 39A, orbiter Endeavour's open payload bay doors reveal the payload on the Shuttle Radar Topography Mission, STS-99. The mission will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST

  2. STS-99 Mission Specialist Thiele suits up before launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Operations and Checkout Building, STS-99 Mission Specialist Gerhard Thiele, who is with the European Space Agency, smiles as he dons his launch and entry suit during final launch preparations. Known as the Shuttle Radar Topography Mission, liftoff is scheduled for 12:47 p.m. EST from Launch Pad 39A. The SRTM will chart a new course, using two antennae and a 200-foot- long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. The mission is expected to last about 11days. Endeavour is expected to land at KSC Friday, Feb. 11, at 4:55 p.m. EST.

  3. STS-99 Mission Specialist Mohri suits up before launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Operations and Checkout Building, STS-99 Mission Specialist Mamoru Mohri (Ph.D.), who is with the National Space Development Agency (NASDA) of Japan, waves as he waits for final suitup preparations before launch. Liftoff of STS-99, known as the Shuttle Radar Topography Mission, is scheduled for 12:47 p.m. EST from Launch Pad 39A. The SRTM will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. The mission is expected to last about 11days, with Endeavour landing at KSC Friday, Feb. 11, at 4:55 p.m. EST.

  4. KSC-00pp0126

    NASA Image and Video Library

    2000-01-30

    KENNEDY SPACE CENTER, Fla. -- Near Launch Pad 39A, STS-99 Mission Specialist Janice Voss enjoys a reunion with friend and fellow astronaut Andrew Thomas the day before the expected launch of her mission. STS-99, known as the Shuttle Radar Topography Mission (SRTM), is scheduled to lift off 12:47 p.m. EST from Launch Pad 39A. The SRTM will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. The mission is expected to last about 11days, with Endeavour landing at KSC Friday, Feb. 11, at 4:55 p.m

  5. KSC-00pp0129

    NASA Image and Video Library

    2000-01-30

    KENNEDY SPACE CENTER, Fla. -- The day before the expected launch of STS-99, Mission Specialist Gerhard Thiele enjoys a reunion with his wife near Launch Pad 39A where family and friends have gathered to greet the crew. STS-99, known as the Shuttle Radar Topography Mission (SRTM), is scheduled to lift off 12:47 p.m. EST from Launch Pad 39A. The SRTM will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. The mission is expected to last about 11days, with Endeavour landing at KSC Friday, Feb. 11, at 4:55 p.m

  6. KSC-00pp0119

    NASA Image and Video Library

    2000-01-31

    In the Operations and Checkout Building, STS-99 Mission Specialist Gerhard Thiele, who is with the European Space Agency, smiles as he dons his launch and entry suit during final launch preparations. Liftoff of STS-99, known as the Shuttle Radar Topography Mission (SRTM), is scheduled for 12:47 p.m. EST from Launch Pad 39A. The SRTM will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. The mission is expected to last about 11days. Endeavour is expected to land at KSC Friday, Feb. 11, at 4:55 p.m. EST

  7. KSC-00pp0130

    NASA Image and Video Library

    2000-01-30

    KENNEDY SPACE CENTER, Fla. -- The day before the expected launch of STS-99, Pilot Dominic Gorie enjoys a reunion with his wife, Wendy, near Launch Pad 39A where family and friends have gathered to greet the crew. STS-99, known as the Shuttle Radar Topography Mission (SRTM), is scheduled to lift off 12:47 p.m. EST from Launch Pad 39A. The SRTM will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. The mission is expected to last about 11days, with Endeavour landing at KSC Friday, Feb. 11, at 4:55 p.m

  8. KSC-00pp0131

    NASA Image and Video Library

    2000-01-30

    KENNEDY SPACE CENTER, Fla. -- The day before the expected launch of STS-99, Commander Kevin Kregel enjoys a reunion with his wife, Jeanne, near Launch Pad 39A where family and friends have gathered to greet the crew. STS-99, known as the Shuttle Radar Topography Mission (SRTM), is scheduled to lift off 12:47 p.m. EST from Launch Pad 39A. The SRTM will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. The mission is expected to last about 11days, with Endeavour landing at KSC Friday, Feb. 11, at 4:55 p.m

  9. KSC00pp0128

    NASA Image and Video Library

    2000-01-30

    KENNEDY SPACE CENTER, Fla. -- The day before the expected launch of STS-99, Mission Specialist Janet Lynn Kavandi poses for photographers near Launch Pad 39A where family and friends have gathered to greet the crew. STS-99, known as the Shuttle Radar Topography Mission (SRTM), is scheduled to lift off 12:47 p.m. EST from Launch Pad 39A. The SRTM will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. The mission is expected to last about 11days, with Endeavour landing at KSC Friday, Feb. 11, at 4:55 p.m

  10. KSC-00pp0122

    NASA Image and Video Library

    2000-01-31

    In the Operations and Checkout Building, STS-99 Mission Specialist Mamoru Mohri (Ph.D.), who is with the National Space Development Agency (NASDA) of Japan, waves as he waits for final suitup preparations before launch. Liftoff of STS-99, known as the Shuttle Radar Topography Mission, is scheduled for 12:47 p.m. EST from Launch Pad 39A. The SRTM will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. The mission is expected to last about 11days, with Endeavour landing at KSC Friday, Feb. 11, at 4:55 p.m. EST

  11. KSC00pp0129

    NASA Image and Video Library

    2000-01-30

    KENNEDY SPACE CENTER, Fla. -- The day before the expected launch of STS-99, Mission Specialist Gerhard Thiele enjoys a reunion with his wife near Launch Pad 39A where family and friends have gathered to greet the crew. STS-99, known as the Shuttle Radar Topography Mission (SRTM), is scheduled to lift off 12:47 p.m. EST from Launch Pad 39A. The SRTM will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. The mission is expected to last about 11days, with Endeavour landing at KSC Friday, Feb. 11, at 4:55 p.m

  12. Shuttle Radar Topography Mission (SRTM)

    USGS Publications Warehouse

    ,

    2009-01-01

    Under an agreement with the National Aeronautics and Space Administration (NASA) and the Department of Defense's National Geospatial-Intelligence Agency (NGA), the U.S. Geological Survey (USGS) is distributing elevation data from the Shuttle Radar Topography Mission (SRTM). The SRTM is a joint project of NASA and NGA to map the Earth's land surface in three dimensions at an unprecedented level of detail. As part of space shuttle Endeavour's flight during February 11-22, 2000, the SRTM successfully collected data over 80 percent of the Earth's land surface for most of the area between latitudes 60 degrees north and 56 degrees south. The SRTM hardware included the Spaceborne Imaging Radar-C (SIR-C) and X-band Synthetic Aperture Radar (X-SAR) systems that had flown twice previously on other space shuttle missions. The SRTM data were collected with a technique known as interferometry that allows image data from dual radar antennas to be processed for the extraction of ground heights.

  13. space Radar Image of Long Valley, California

    NASA Image and Video Library

    1999-05-01

    An area near Long Valley, California, was mapped by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar aboard the space shuttle Endeavor on April 13, 1994, during the first flight of the radar instrument, and on October 4, 1994, during the second flight of the radar instrument. The orbital configurations of the two data sets were ideal for interferometric combination -- that is overlaying the data from one image onto a second image of the same area to create an elevation map and obtain estimates of topography. Once the topography is known, any radar-induced distortions can be removed and the radar data can be geometrically projected directly onto a standard map grid for use in a geographical information system. The 50 kilometer by 50 kilometer (31 miles by 31 miles) map shown here is entirely derived from SIR-C L-band radar (horizontally transmitted and received) results. The color shown in this image is produced from the interferometrically determined elevations, while the brightness is determined by the radar backscatter. The map is in Universal Transverse Mercator (UTM) coordinates. Elevation contour lines are shown every 50 meters (164 feet). Crowley Lake is the dark feature near the south edge of the map. The Adobe Valley in the north and the Long Valley in the south are separated by the Glass Mountain Ridge, which runs through the center of the image. The height accuracy of the interferometrically derived digital elevation model is estimated to be 20 meters (66 feet) in this image. http://photojournal.jpl.nasa.gov/catalog/PIA01749

  14. An Overview of the Topography of Mars from the Mars Orbiter Laser Altimeter (MOLA)

    NASA Technical Reports Server (NTRS)

    Smith, David E.; Zuber, Maria T.

    2000-01-01

    The Mars Global Surveyor (MGS) spacecraft has now completed more than half of its one-Mars-year mission to globally map Mars. During the MGS elliptical and circular orbit mapping phases, the Mars Orbiter Laser Altimeter (MOLA), an instrument on the MGS payload, has collected over 300 million precise elevation measurements. MOLA measures the range from the MGS spacecraft to the Martian surface and to atmospheric reflections. Range is converted to topography through knowledge of the MGS spacecraft orbit. Ranges from MOLA have resulted in a precise global topographic map of Mars. The instrument has also provided measurements of the width of the backscattered optical pulse and of the 1064 nm reflectivity of the Martian surface and atmosphere. The range resolution of the MOLA instrument is 37.5 cm and the along-track resolution of MOLA ground shots is approx. 300 m; the across-track spacing depends on latitude and time in the mapping orbit. The best current topographic grid has a spatial resolution of approx. 1/16 deg and vertical accuracy of approx. one meter. Additional information is contained in the original extended abstract.

  15. High Resolution Global Topography of Eros from NEAR Imaging and LIDAR Data

    NASA Technical Reports Server (NTRS)

    Gaskell, Robert W.; Konopliv, A.; Barnouin-Jha, O.; Scheeres, D.

    2006-01-01

    Principal Data Products: Ensemble of L-maps from SPC, Spacecraft state, Asteroid pole and rotation. Secondary Products: Global topography model, inertia tensor, gravity. Composite high resolution topography. Three dimensional image maps.

  16. KSC00pp0075

    NASA Image and Video Library

    2000-01-14

    KENNEDY SPACE CENTER, Fla. -- At the 195-foot level of the Fixed Service Structure on Launch Pad 39A, the STS-99 crew pose for a photograph during Terminal Countdown Demonstration Test (TCDT) activities. Standing left to right are Pilot Dominic Gorie, Mission Specialist Mamoru Mohri (Ph.D.), Mission Specialist Janice Voss (Ph.D.), Commander Kevin Kregel, Mission Specialist Janet Lynn Kavandi (Ph.D.), and Mission Specialist Gerhard Thiele (Ph.D.). Thiele is with the European Space Agency and Mohri is with the National Space Development Agency (NASDA) of Japan. The TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST

  17. KSC-00pp0051

    NASA Image and Video Library

    2000-01-13

    KENNEDY SPACE CENTER, Fla. -- In the bunker at Launch Pad 39A, the STS-99 crew try on oxygen masks. From left are Pilot Dominic Gorie, Mission Specialist Janice Voss (Ph.D.), Commander Kevin Kregel, and Mission Specialists Mamoru Mohri, Janet Lynn Kavandi (Ph.D.) and Gerhard Thiele. Mohri is with the National Space Development Agency (NASDA) of Japan and Thiele is with the European Space Agency. The crew are taking part in Terminal Countdown Demonstration Test activities, which provide them with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST

  18. KSC-00pp0075

    NASA Image and Video Library

    2000-01-14

    KENNEDY SPACE CENTER, Fla. -- At the 195-foot level of the Fixed Service Structure on Launch Pad 39A, the STS-99 crew pose for a photograph during Terminal Countdown Demonstration Test (TCDT) activities. Standing left to right are Pilot Dominic Gorie, Mission Specialist Mamoru Mohri (Ph.D.), Mission Specialist Janice Voss (Ph.D.), Commander Kevin Kregel, Mission Specialist Janet Lynn Kavandi (Ph.D.), and Mission Specialist Gerhard Thiele (Ph.D.). Thiele is with the European Space Agency and Mohri is with the National Space Development Agency (NASDA) of Japan. The TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST

  19. Discussion on the 3D visualizing of 1:200 000 geological map

    NASA Astrophysics Data System (ADS)

    Wang, Xiaopeng

    2018-01-01

    Using United States National Aeronautics and Space Administration Shuttle Radar Topography Mission (SRTM) terrain data as digital elevation model (DEM), overlap scanned 1:200 000 scale geological map, program using Direct 3D of Microsoft with C# computer language, the author realized the three-dimensional visualization of the standard division geological map. User can inspect the regional geology content with arbitrary angle, rotating, roaming, and can examining the strata synthetical histogram, map section and legend at any moment. This will provide an intuitionistic analyzing tool for the geological practitioner to do structural analysis with the assistant of landform, dispose field exploration route etc.

  20. STS-99 crew talk to media near launch pad

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The STS-99 crew take time out during Terminal Countdown Demonstration Test (TCDT) activities to talk to the media. From left to right are Commander Kevin Kregel, Mission Specialists Janet Lynn Kavandi (Ph.D.), Janice Voss (Ph.D.), Gerhard Thiele and Mamoru Mohri, and Pilot Dominic Gorie. Thiele is with the European Space Agency and Mohri is with the National Space Development Agency (NASDA) of Japan. The TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST.

  1. STS-99 crew at their pre-launch breakfast

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Operations and Checkout Building, the STS-99 crew gathers for breakfast before suiting up for launch. From left are Mission Specialists Mamoru Mohri (Ph.D.) and Janice Voss (Ph.D.); Pilot Dominic Gorie; Commander Kevin Kregel; and Mission Specialists Janet Lynn Kavandi (Ph.D.) and Gerhard Thiele. Mohri is with the National Space Development Agency (NASDA) of Japan, and Thiele is with the European Space Agency. Known as the Shuttle Radar Topography Mission, liftoff is scheduled for 12:47 p.m. EST from Launch Pad 39A. The SRTM will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. The mission is expected to last about 11days, with Endeavour landing at KSC Friday, Feb. 11, at 4:55 p.m. EST.

  2. KSC-00pp0009

    NASA Image and Video Library

    2000-01-11

    The STS-99 crew pose for a photo after their arrival at KSC's Shuttle Landing Facility. From left are Mission Specialists Gerhard Thiele, and Janice Voss (Ph.D.), Commander Kevin Kregel, Mission Specialists Janet Lynn Kavandi (Ph.D.) and Mamoru Mohri, and Pilot Dominic Gorie. Thiele is with the European Space Agency and Mohri is with the National Space Development Agency (NASDA) of Japan. The crew are here to take part in a Terminal Countdown Demonstration Test (TCDT), which provides simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST

  3. KSC-00pp0003

    NASA Image and Video Library

    2000-01-11

    STS-99 Mission Specialist Gerhard Thiele, with the European Space Agency, arrives at KSC aboard a T-38 training jet aircraft to take part in a Terminal Countdown Demonstration Test (TCDT). The TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. Other crew members taking part are Commander Kevin Kregel, Pilot Dominic Gorie, and Mission Specialists Janet Lynn Kavandi (Ph.D.), Janice Voss (Ph.D.), and Mamoru Mohri, who is with the National Space Development Agency (NASDA) of Japan. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST

  4. KSC-00pp0005

    NASA Image and Video Library

    2000-01-11

    STS-99 Mission Specialist Janet Lynn Kavandi (Ph.D.) smiles on her arrival at KSC aboard a T-38 training jet aircraft to take part in a Terminal Countdown Demonstration Test (TCDT). The TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. Other crew members taking part are Commander Kevin Kregel, Pilot Dominic Gorie, and Mission Specialists Janice Voss (Ph.D.), Mamoru Mohri, who is with the National Space Development Agency (NASDA) of Japan, and Gerhard Thiele, with the European Space Agency. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST

  5. KSC-00pp0116

    NASA Image and Video Library

    2000-01-31

    In the Operations and Checkout Building, the STS-99 crew gathers for breakfast before suiting up for launch. From left are Mission Specialists Mamoru Mohri (Ph.D.) and Janice Voss (Ph.D.); Pilot Dominic Gorie; Commander Kevin Kregel; and Mission Specialists Janet Lynn Kavandi (Ph.D.) and Gerhard Thiele. Mohri is with the National Space Development Agency (NASDA) of Japan, and Thiele is with the European Space Agency. Known as the Shuttle Radar Topography Mission, liftoff is scheduled for 12:47 p.m. EST from Launch Pad 39A. The SRTM will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. The mission is expected to last about 11days, with Endeavour landing at KSC Friday, Feb. 11, at 4:55 p.m. EST

  6. KSC-00pp0112

    NASA Image and Video Library

    2000-01-27

    After arriving at KSC's Shuttle Landing Facility, the STS-99 crew pause to greet the media and Commander Kevin Kregel (right) introduces his crew: (from left) Mission Specialists Gerhard Thiele (Ph.D.) and Mamoru Mohri (Ph.D.); Pilot Dominic Gorie; and Mission Specialists Janet Lynn Kavandi (Ph.D.) and Janice Voss (Ph.D.). Thiele is with the European Space Agency and Mohri is with the National Space Development Agency (NASDA) of Japan. Over the next few days, the crew will review mission procedures, conduct test flights in the Shuttle Training Aircraft and undergo routine preflight medical exams. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour is scheduled for Jan. 31 at 12:47 p.m. EST

  7. KSC00pp0005

    NASA Image and Video Library

    2000-01-11

    STS-99 Mission Specialist Janet Lynn Kavandi (Ph.D.) smiles on her arrival at KSC aboard a T-38 training jet aircraft to take part in a Terminal Countdown Demonstration Test (TCDT). The TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. Other crew members taking part are Commander Kevin Kregel, Pilot Dominic Gorie, and Mission Specialists Janice Voss (Ph.D.), Mamoru Mohri, who is with the National Space Development Agency (NASDA) of Japan, and Gerhard Thiele, with the European Space Agency. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST

  8. KSC00pp0003

    NASA Image and Video Library

    2000-01-11

    STS-99 Mission Specialist Gerhard Thiele, with the European Space Agency, arrives at KSC aboard a T-38 training jet aircraft to take part in a Terminal Countdown Demonstration Test (TCDT). The TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. Other crew members taking part are Commander Kevin Kregel, Pilot Dominic Gorie, and Mission Specialists Janet Lynn Kavandi (Ph.D.), Janice Voss (Ph.D.), and Mamoru Mohri, who is with the National Space Development Agency (NASDA) of Japan. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST

  9. KSC00pp0112

    NASA Image and Video Library

    2000-01-27

    After arriving at KSC's Shuttle Landing Facility, the STS-99 crew pause to greet the media and Commander Kevin Kregel (right) introduces his crew: (from left) Mission Specialists Gerhard Thiele (Ph.D.) and Mamoru Mohri (Ph.D.); Pilot Dominic Gorie; and Mission Specialists Janet Lynn Kavandi (Ph.D.) and Janice Voss (Ph.D.). Thiele is with the European Space Agency and Mohri is with the National Space Development Agency (NASDA) of Japan. Over the next few days, the crew will review mission procedures, conduct test flights in the Shuttle Training Aircraft and undergo routine preflight medical exams. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour is scheduled for Jan. 31 at 12:47 p.m. EST

  10. Evaluation of SIR-A space radar for geologic interpretation: United States, Panama, Colombia, and New Guinea

    NASA Technical Reports Server (NTRS)

    Macdonald, H.; Waite, W. P.; Kaupp, V. H.; Bridges, L. C.; Storm, M.

    1983-01-01

    Comparisons between LANDSAT MSS imagery, and aircraft and space radar imagery from different geologic environments in the United States, Panama, Colombia, and New Guinea demonstrate the interdependence of radar system geometry and terrain configuration for optimum retrieval of geologic information. Illustrations suggest that in the case of space radars (SIR-A in particular), the ability to acquire multiple look-angle/look-direction radar images of a given area is more valuable for landform mapping than further improvements in spatial resolution. Radar look-angle is concluded to be one of the most important system parameters of a space radar designed to be used for geologic reconnaissance mapping. The optimum set of system parameters must be determined for imaging different classes of landform features and tailoring the look-angle to local topography.

  11. Shaded Relief of Rio Sao Francisco, Brazil

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This topographic image acquired by SRTM shows an area south of the Sao Francisco River in Brazil. The scrub forest terrain shows relief of about 400 meters (1300 feet). Areas such as these are difficult to map by traditional methods because of frequent cloud cover and local inaccessibility. This region has little topographic relief, but even subtle changes in topography have far-reaching effects on regional ecosystems. The image covers an area of 57 km x 79 km and represents one quarter of the 225 km SRTM swath. Colors range from dark blue at water level to white and brown at hill tops. The terrain features that are clearly visible in this image include tributaries of the Sao Francisco, the dark-blue branch-like features visible from top right to bottom left, and on the left edge of the image, and hills rising up from the valley floor. The San Francisco River is a major source of water for irrigation and hydroelectric power. Mapping such regions will allow scientists to better understand the relationships between flooding cycles, forestation and human influences on ecosystems.

    This shaded relief image was generated using topographic data from the Shuttle Radar Topography Mission. A computer-generated artificial light source illuminates the elevation data to produce a pattern of light and shadows. Slopes facing the light appear bright, while those facing away are shaded. On flatter surfaces, the pattern of light and shadows can reveal subtle features in the terrain. Shaded relief maps are commonly used in applications such as geologic mapping and land use planning.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

  12. Detecting and Quantifying Topography in Neural Maps

    PubMed Central

    Yarrow, Stuart; Razak, Khaleel A.; Seitz, Aaron R.; Seriès, Peggy

    2014-01-01

    Topographic maps are an often-encountered feature in the brains of many species, yet there are no standard, objective procedures for quantifying topography. Topographic maps are typically identified and described subjectively, but in cases where the scale of the map is close to the resolution limit of the measurement technique, identifying the presence of a topographic map can be a challenging subjective task. In such cases, an objective topography detection test would be advantageous. To address these issues, we assessed seven measures (Pearson distance correlation, Spearman distance correlation, Zrehen's measure, topographic product, topological correlation, path length and wiring length) by quantifying topography in three classes of cortical map model: linear, orientation-like, and clusters. We found that all but one of these measures were effective at detecting statistically significant topography even in weakly-ordered maps, based on simulated noisy measurements of neuronal selectivity and sparse sampling of the maps. We demonstrate the practical applicability of these measures by using them to examine the arrangement of spatial cue selectivity in pallid bat A1. This analysis shows that significantly topographic arrangements of interaural intensity difference and azimuth selectivity exist at the scale of individual binaural clusters. PMID:24505279

  13. KSC-99pp0503

    NASA Image and Video Library

    1999-05-07

    Inside the Space Station Processing Facility, the Shuttle Radar Topography Mission (SRTM) is maneuvered into place to prepare it for launch targeted for September 1999. The primary payload on mission STS-99, the SRTM consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission. This radar system will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. Its objective is to obtain the most complete high-resolution digital topographic database of the Earth

  14. KSC-99pp0502

    NASA Image and Video Library

    1999-05-07

    The Shuttle Radar Topography Mission (SRTM) is moved into the Space Station Processing Facility to prepare it for launch targeted for September 1999. The primary payload on mission STS-99, the SRTM consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission. This radar system will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. Its objective is to obtain the most complete high-resolution digital topographic database of the Earth

  15. EAARL topography: Dry Tortugas National Park

    USGS Publications Warehouse

    Brock, John C.; Wright, C. Wayne; Patterson, Matt; Nayegandhi, Amar; Patterson, Judd

    2008-01-01

    This lidar-derived submarine topography map was produced as a collaborative effort between the U.S. Geological Survey (USGS) Coastal and Marine Geology Program, National Park Service (NPS) South Florida/Caribbean Network Inventory and Monitoring Program, and the National Aeronautics and Space Administration (NASA) Wallops Flight Facility. One objective of this research is to create techniques to survey coral reefs for the purposes of habitat mapping, ecological monitoring, change detection, ad event assessment (for example: bleaching, hurricanes, disease outbreaks). As part of this project, data from an innovative instrument under development at the NASA Wallops Flight Facility, the NASA Experimental Airborne Advanced Research Lidar (EAARL) are being used. This sensor has the potential to make significant contributions in this realm for measuring water depth and conducting cross-environment surveys. High spectral resolution, water-column correction, and low costs were found to be key factors in providing accurate and affordable imagery to managers of coastal tropical habitats.

  16. EAARL submarine topography: Biscayne National Park

    USGS Publications Warehouse

    Brock, John C.; Wright, C. Wayne; Patterson, Matt; Nayegandhi, Amar; Patterson, Judd; Harris, Melanie S.; Mosher, Lance

    2006-01-01

    This lidar-derived submarine topography map was produced as a collaborative effort between the U.S. Geological Survey (USGS) Coastal and Marine Geology Program, National Park Service (NPS) South Florida/Caribbean Network Inventory and Monitoring Program, and the National Aeronautics and Space Administration (NASA) Wallops Flight Facility. One objective of this research is to create techniques to survey coral reefs for the purposes of habitat mapping, ecological monitoring, change detection, and event assessment (for example: bleaching, hurricanes, disease outbreaks). As part of this project, data from an innovative instrument under development at the NASA Wallops Flight Facility, the NASA Experimental Airborne Advanced Research Lidar (EAARL) are being used. This sensor has the potential to make significant contributions in this realm for measuring water depth and conducting cross-environment surveys. High spectral resolution, water-column correction, and low costs were found to be key factors in providing accurate and affordable imagery to managers of coastal tropical habitats.

  17. KSC-00pp0040

    NASA Image and Video Library

    2000-01-13

    In the Operations and Checkout Building, STS-99 Mission Specialist Mamoru Mohri, who is with the National Space Development Agency (NASDA) of Japan, gets help from suit technicians during flight crew equipment fit check prior to his trip to Launch Pad 39A. The crew is taking part in Terminal Countdown Demonstration Test (TCDT) activities that provide the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST

  18. KSC-00pp0070

    NASA Image and Video Library

    2000-01-14

    STS-99 Mission Specialist Gerhard Thiele, with the European Space Agency, suits up in the Operations and Checkout Building, as part of a flight crew equipment fit check, prior to his trip to Launch Pad 39A. The crew is taking part in Terminal Countdown Demonstration Test (TCDT) activities that provide the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST

  19. KSC-00pp0038

    NASA Image and Video Library

    2000-01-13

    STS-99 Mission Specialist Gerhard Thiele, with the European Space Agency, gets help from a suit technician in the Operations and Checkout Building, as part of flight crew equipment fit check, prior to his trip to Launch Pad 39A. The crew is taking part in Terminal Countdown Demonstration Test (TCDT) activities that provide the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST

  20. KSC-00pp0107

    NASA Image and Video Library

    2000-01-27

    STS-99 Pilot Dominic Gorie arrives at KSC aboard a T-38 jet aircraft to prepare for launch of Endeavour Jan. 31 at 12:47 p.m. EST. Over the next few days, the crew will review mission procedures, conduct test flights in the Shuttle Training Aircraft and undergo routine preflight medical exams. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety

  1. KSC-00pp0106

    NASA Image and Video Library

    2000-01-27

    STS-99 Commander Kevin Kregel arrives at KSC aboard a T-38 jet aircraft to prepare for launch of Endeavour Jan. 31 at 12:47 p.m. EST. Over the next few days, the crew will review mission procedures, conduct test flights in the Shuttle Training Aircraft and undergo routine preflight medical exams. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety

  2. KSC00pp0106

    NASA Image and Video Library

    2000-01-27

    STS-99 Commander Kevin Kregel arrives at KSC aboard a T-38 jet aircraft to prepare for launch of Endeavour Jan. 31 at 12:47 p.m. EST. Over the next few days, the crew will review mission procedures, conduct test flights in the Shuttle Training Aircraft and undergo routine preflight medical exams. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety

  3. KSC00pp0107

    NASA Image and Video Library

    2000-01-27

    STS-99 Pilot Dominic Gorie arrives at KSC aboard a T-38 jet aircraft to prepare for launch of Endeavour Jan. 31 at 12:47 p.m. EST. Over the next few days, the crew will review mission procedures, conduct test flights in the Shuttle Training Aircraft and undergo routine preflight medical exams. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety

  4. KSC00pp0044

    NASA Image and Video Library

    2000-01-13

    KENNEDY SPACE CENTER, Fla. -- At the 167-foot level of the Fixed Service Structure on Launch Pad 39A, the STS-99 crew pose for a photograph during Terminal Countdown Demonstration Test (TCDT) activities. Standing left to right are Mission Specialist Janet Lynn Kavandi (Ph.D.), Commander Kevin Kregel, Mission Specialists Janice Voss (Ph.D.), Gerhard Thiele and Mamoru Mohri, and Pilot Dominic Gorie. Thiele is with the European Space Agency and Mohri is with the National Space Development Agency (NASDA) of Japan. Behind them (left) are visible the top of a solid rocket booster (white) and external tank (orange). The TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST

  5. KSC-00pp0044

    NASA Image and Video Library

    2000-01-13

    KENNEDY SPACE CENTER, Fla. -- At the 167-foot level of the Fixed Service Structure on Launch Pad 39A, the STS-99 crew pose for a photograph during Terminal Countdown Demonstration Test (TCDT) activities. Standing left to right are Mission Specialist Janet Lynn Kavandi (Ph.D.), Commander Kevin Kregel, Mission Specialists Janice Voss (Ph.D.), Gerhard Thiele and Mamoru Mohri, and Pilot Dominic Gorie. Thiele is with the European Space Agency and Mohri is with the National Space Development Agency (NASDA) of Japan. Behind them (left) are visible the top of a solid rocket booster (white) and external tank (orange). The TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST

  6. KSC-00pp0043

    NASA Image and Video Library

    2000-01-13

    KENNEDY SPACE CENTER, Fla. -- At the 167-foot level of the Fixed Service Structure on Launch Pad 39A, the STS-99 crew pose for a photograph during Terminal Countdown Demonstration Test (TCDT) activities. Standing left to right are Mission Specialist Janet Lynn Kavandi (Ph.D.), Commander Kevin Kregel, Mission Specialists Janice Voss (Ph.D.), Gerhard Thiele and Mamoru Mohri, and Pilot Dominic Gorie. Thiele is with the European Space Agency and Mohri is with the National Space Development Agency (NASDA) of Japan. Behind them are visible the top of a solid rocket booster (white) and external tank (orange). The TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST

  7. KSC00pp0043

    NASA Image and Video Library

    2000-01-13

    KENNEDY SPACE CENTER, Fla. -- At the 167-foot level of the Fixed Service Structure on Launch Pad 39A, the STS-99 crew pose for a photograph during Terminal Countdown Demonstration Test (TCDT) activities. Standing left to right are Mission Specialist Janet Lynn Kavandi (Ph.D.), Commander Kevin Kregel, Mission Specialists Janice Voss (Ph.D.), Gerhard Thiele and Mamoru Mohri, and Pilot Dominic Gorie. Thiele is with the European Space Agency and Mohri is with the National Space Development Agency (NASDA) of Japan. Behind them are visible the top of a solid rocket booster (white) and external tank (orange). The TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST

  8. Radar Images of the Earth and the World Wide Web

    NASA Technical Reports Server (NTRS)

    Chapman, B.; Freeman, A.

    1995-01-01

    A perspective of NASA's Jet Propulsion Laboratory as a center of planetary exploration, and its involvement in studying the earth from space is given. Remote sensing, radar maps, land topography, snow cover properties, vegetation type, biomass content, moisture levels, and ocean data are items discussed related to earth orbiting satellite imaging radar. World Wide Web viewing of this content is discussed.

  9. 1,000 Wells for Darfur

    NASA Astrophysics Data System (ADS)

    Virji, Hassan

    2007-08-01

    A new humanitarian mission called ``1,000 Wells for Darfur'' grew out of the discovery from recent space data of an ancient megalake in a large basin in that region. Eman Ghoneim, a research professor at Boston University's Center for Remote Sensing, and Center director Farouk El-Baz mapped the ancient lake's boundary using Landsat, RADARSAT, and Shuttle Radar Topography Mission (SRTM) data.

  10. STS-99 MS Kavandi poses for a photo on OV-105's middeck

    NASA Image and Video Library

    2000-02-18

    S99-E-5716 (18 February 2000) --- Astronaut Janet L. Kavandi on the mid deck of the Space Shuttle Endeavour. A series of electronic stills was taken of the STS-99 individual crew members on the day they got the good news from flight controllers in Houston that Shuttle Radar Topography Mission (SRTM) mapping time had been extended.

  11. STS-99 crew greets the media at SLF after their arrival for launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    After arriving at KSC's Shuttle Landing Facility, the STS-99 crew pause to greet the media and Commander Kevin Kregel (right) introduces his crew: (from left) Mission Specialists Gerhard Thiele (Ph.D.) and Mamoru Mohri (Ph.D.); Pilot Dominic Gorie; and Mission Specialists Janet Lynn Kavandi (Ph.D.) and Janice Voss (Ph.D.). Thiele is with the European Space Agency and Mohri is with the National Space Development Agency (NASDA) of Japan. Over the next few days, the crew will review mission procedures, conduct test flights in the Shuttle Training Aircraft and undergo routine preflight medical exams. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour is scheduled for Jan. 31 at 12:47 p.m. EST.

  12. STS-99 crew talk to media after arrival at KSC for TCDT activities

    NASA Technical Reports Server (NTRS)

    2000-01-01

    After their arrival at the Shuttle Landing Facility aboard T-38 training jet aircraft (background), the STS-99 crew talk to the media. From left are Mission Specialists Janice Voss (Ph.D.), Janet Lynn Kavandi (Ph.D.), Mamoru Mohri, who is with the National Space Development Agency (NASDA) of Japan, and Gerhard Thiele, with the European Space Agency, Commander Kevin Kregel (at microphone) and Pilot Dominic Gorie. The crew are here to take part in a Terminal Countdown Demonstration Test (TCDT), which provides simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST.

  13. STS-99 crew talk to media after arrival at KSC for TCDT activities

    NASA Technical Reports Server (NTRS)

    2000-01-01

    After their arrival at the Shuttle Landing Facility, the STS-99 crew talk to the media. At the microphone is Mission Specialist Gerhard Thiele, with the European Space Agency. At left is Commander Kevin Kregel. . The crew are here to take part in a Terminal Countdown Demonstration Test (TCDT), which provides simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. Others taking part in the TCDT are Pilot Dominic Gorie and Mission Specialists Janice Voss (Ph.D.), Janet Lynn Kavandi (Ph.D.), Mamoru Mohri, who is with the National Space Development Agency (NASDA) of Japan. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST.

  14. STS-99 crew look over safety equipment during TCDT

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At Launch Pad 39A, members of the STS-99 crew and others look over part of the safety equipment. Standing left to right (in uniform) are Commander Kevin Kregel, Pilot Dominic Gorie, and Mission Specialists Janice Voss (Ph.D.), Janet Lynn Kavandi (Ph.D.), Gerhard Thiele and Mamoru Mohri. Thiele is with the European Space Agency and Mohri is with the National Space Development Agency (NASDA) of Japan. The crew are taking part in Terminal Countdown Demonstration Test activities, which provide them with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST.

  15. KSC-00pp0007

    NASA Image and Video Library

    2000-01-11

    After their arrival at the Shuttle Landing Facility, the STS-99 crew talk to the media. At the microphone is Mission Specialist Gerhard Thiele, with the European Space Agency. At left is Commander Kevin Kregel. . The crew are here to take part in a Terminal Countdown Demonstration Test (TCDT), which provides simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. Others taking part in the TCDT are Pilot Dominic Gorie and Mission Specialists Janice Voss (Ph.D.), Janet Lynn Kavandi (Ph.D.), Mamoru Mohri, who is with the National Space Development Agency (NASDA) of Japan. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST

  16. KSC-00pp0114

    NASA Image and Video Library

    2000-01-27

    The STS-99 crew pose for a photograph after their arrival at the Shuttle Landing Facility to prepare for launch. From left are Pilot Dominic Gorie, Mission Specialist Janice Voss (Ph.D.), Commander Kevin Kregel, and Mission Specialists Janet Lynn Kavandi (Ph.D.), Gerhard Thiele (Ph.D.) and Mamoru Mohri (Ph.D.). Thiele is with the European Space Agency and Mohri is with the National Space Development Agency (NASDA) of Japan. Behind them are the T-38 jets in which they arrived, and the mate/demate device. Over the next few days, the crew will review mission procedures, conduct test flights in the Shuttle Training Aircraft and undergo routine preflight medical exams. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour is scheduled for Jan. 31 at 12:47 p.m. EST

  17. KSC-00pp0052

    NASA Image and Video Library

    2000-01-14

    The STS-99 crew leave the Operations and Checkout Building on their way to Launch Pad 39A and a simulated countdown exercise. In the front row are Pilot Dominic Gorie and Commander Kevin Kregel; in the middle row are mission Specialists Janice Voss (Ph.D.) and Janet Lynn Kavandi (Ph.D.); in the back row are Mission Specialists Mamoru Mohri, who is with the National Space Development Agency (NASDA) of Japan, and Gerhard Thiele, who is with the European Space Agency. The crew are taking part in Terminal Countdown Demonstration Test activities, which provide them with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST

  18. KSC00pp0004

    NASA Image and Video Library

    2000-01-11

    STS-99 Mission Specialist Mamoru Mohri, who is with the National Space Development Agency (NASDA) of Japan, waves after his arrival at KSC aboard a T-38 training jet aircraft to take part in a Terminal Countdown Demonstration Test (TCDT). The TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. Other crew members taking part are Commander Kevin Kregel, Pilot Dominic L. Pudwill Gorie, and Mission Specialists Janet Lynn Kavandi (Ph.D.), Janice Voss (Ph.D.), and Gerhard P.J. Thiele, with the European Space Agency. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST

  19. KSC-00pp0006

    NASA Image and Video Library

    2000-01-11

    After their arrival at the Shuttle Landing Facility aboard T-38 training jet aircraft (background), the STS-99 crew talk to the media. From left are Mission Specialists Janice Voss (Ph.D.), Janet Lynn Kavandi (Ph.D.), Mamoru Mohri, who is with the National Space Development Agency (NASDA) of Japan, and Gerhard Thiele, with the European Space Agency, Commander Kevin Kregel (at microphone) and Pilot Dominic Gorie. The crew are here to take part in a Terminal Countdown Demonstration Test (TCDT), which provides simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST

  20. KSC-00pp0004

    NASA Image and Video Library

    2000-01-11

    STS-99 Mission Specialist Mamoru Mohri, who is with the National Space Development Agency (NASDA) of Japan, waves after his arrival at KSC aboard a T-38 training jet aircraft to take part in a Terminal Countdown Demonstration Test (TCDT). The TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. Other crew members taking part are Commander Kevin Kregel, Pilot Dominic L. Pudwill Gorie, and Mission Specialists Janet Lynn Kavandi (Ph.D.), Janice Voss (Ph.D.), and Gerhard P.J. Thiele, with the European Space Agency. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST

  1. KSC-00pp0047

    NASA Image and Video Library

    2000-01-13

    At Launch Pad 39A, members of the STS-99 crew and others look over part of the safety equipment. Standing left to right (in uniform) are Commander Kevin Kregel, Pilot Dominic Gorie, and Mission Specialists Janice Voss (Ph.D.), Janet Lynn Kavandi (Ph.D.), Gerhard Thiele and Mamoru Mohri. Thiele is with the European Space Agency and Mohri is with the National Space Development Agency (NASDA) of Japan. The crew are taking part in Terminal Countdown Demonstration Test activities, which provide them with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST

  2. KSC-00pp0008

    NASA Image and Video Library

    2000-01-11

    After their arrival at the Shuttle Landing Facility, the STS-99 crew talk to the media. At the microphone is Mission Specialist Mamoru Mohri, who is with the National Space Development Agency (NASDA) of Japan. The crew are here to take part in a Terminal Countdown Demonstration Test (TCDT), which provides simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. Others taking part in the TCDT are Commander Kevin Kregel, Pilot Dominic Gorie and Mission Specialists Janice Voss (Ph.D.), Janet Lynn Kavandi (Ph.D.), and Gerhard Thiele, with the European Space Agency. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST

  3. STS-99 crew try on oxygen masks during TCDT

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the bunker at Launch Pad 39A, the STS-99 crew try on oxygen masks. From left are Pilot Dominic Gorie, Mission Specialist Janice Voss (Ph.D.), Commander Kevin Kregel, and Mission Specialists Mamoru Mohri, Janet Lynn Kavandi (Ph.D.) and Gerhard Thiele. Mohri is with the National Space Development Agency (NASDA) of Japan and Thiele is with the European Space Agency. The crew are taking part in Terminal Countdown Demonstration Test activities, which provide them with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST.

  4. KSC-00pp0053

    NASA Image and Video Library

    2000-01-14

    In their orange flight suits, the STS-99 crew head toward the "astrovan" that will take them to Launch Pad 39A for a simulated countdown exercise. From left to right are Mission Specialists Mamoru Mohri (waving), Gerhard Thiele, Janice Voss (Ph.D.) and Janet Lynn Kavandi (Ph.D.), Pilot Dominic Gorie and Commander Kevin Kregel. Mohri is with the National Space Development Agency (NASDA) of Japan and Thiele is with the European Space Agency. The crew are taking part in Terminal Countdown Demonstration Test activities, which provide them with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST

  5. A view of the SRTM's 200 ft. boom deployed from OV-105 during STS-99

    NASA Image and Video Library

    2000-02-12

    S99-E-5033 (12 February 2000) --- The 200 ft.-long mast supporting the Shuttle Radar Topography Mission juts into space from the Space Shuttle Endeavour (out of frame at left). The giant structure was deployed earlier today and the antennae on it quickly went to work mapping parts of Earth. By the time members of Endeavour's Red Team had reached lunchtime on this first full day in space for the SRTM, the radar antennae in the payload bay and at the end of long mast had mapped about 1.7 million square miles (4.5 million square kilometers) of the Earth's surface, or the equivalent of about half the area of the United States. This photograph was taken with an electronic still camera (ESC) by a crew member inside Endeavour's cabin.

  6. KSC-99pp0505

    NASA Image and Video Library

    1999-05-07

    In the Space Station Processing Facility (SSPF), workers (lower right) disconnect the transport vehicle from the Shuttle Radar Topography Mission (SRTM) after moving it into the building for pre-launch preparations. The primary payload on mission STS-99, the SRTM consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission targeted for launch in September 1999. This radar system will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. Its objective is to obtain the most complete high-resolution digital topographic database of the Earth

  7. The geometric signature: Quantifying landslide-terrain types from digital elevation models

    USGS Publications Warehouse

    Pike, R.J.

    1988-01-01

    Topography of various types and scales can be fingerprinted by computer analysis of altitude matrices (digital elevation models, or DEMs). The critical analytic tool is the geometric signature, a set of measures that describes topographic form well enough to distinguish among geomorphically disparate landscapes. Different surficial processes create topography with diagnostic forms that are recognizable in the field. The geometric signature abstracts those forms from contour maps or their DEMs and expresses them numerically. This multivariate characterization enables once-in-tractable problems to be addressed. The measures that constitute a geometric signature express different but complementary attributes of topographic form. Most parameters used here are statistical estimates of central tendency and dispersion for five major categories of terrain geometry; altitude, altitude variance spectrum, slope between slope reversals, and slope and its curvature at fixed slope lengths. As an experimental application of geometric signatures, two mapped terrain types associated with different processes of shallow landsliding in Marin County, California, were distinguished consistently by a 17-variable description of topography from 21??21 DEMs (30-m grid spacing). The small matrix is a statistical window that can be used to scan large DEMs by computer, thus potentially automating the mapping of contrasting terrain types. The two types in Marin County host either (1) slow slides: earth flows and slump-earth flows, or (2) rapid flows: debris avalanches and debris flows. The signature approach should adapt to terrain taxonomy and mapping in other areas, where conditions differ from those in Central California. ?? 1988 International Association for Mathematical Geology.

  8. Simultaneous topography imaging and broadband nanomechanical mapping on atomic force microscope

    NASA Astrophysics Data System (ADS)

    Li, Tianwei; Zou, Qingze

    2017-12-01

    In this paper, an approach is proposed to achieve simultaneous imaging and broadband nanomechanical mapping of soft materials in air by using an atomic force microscope. Simultaneous imaging and nanomechanical mapping are needed, for example, to correlate the morphological and mechanical evolutions of the sample during dynamic phenomena such as the cell endocytosis process. Current techniques for nanomechanical mapping, however, are only capable of capturing static elasticity of the material, or the material viscoelasticity in a narrow frequency band around the resonant frequency(ies) of the cantilever used, not competent for broadband nanomechanical mapping, nor acquiring topography image of the sample simultaneously. These limitations are addressed in this work by enabling the augmentation of an excitation force stimuli of rich frequency spectrum for nanomechanical mapping in the imaging process. Kalman-filtering technique is exploited to decouple and split the mixed signals for imaging and mapping, respectively. Then the sample indentation generated is quantified online via a system-inversion method, and the effects of the indentation generated and the topography tracking error on the topography quantification are taken into account. Moreover, a data-driven feedforward-feedback control is utilized to track the sample topography. The proposed approach is illustrated through experimental implementation on a polydimethylsiloxane sample with a pre-fabricated pattern.

  9. Shaded relief of Bahia State, Brazil

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This topographic image is the first to show the full 240-kilometer-wide (150 mile)swath collected by the Shuttle Radar Topography Mission (SRTM). The area shown is in the state of Bahia in Brazil. The semi-circular mountains along the left side of the image are the Serra Da Jacobin, which rise to 1100 meters (3600 feet) above sea level. The total relief shown is approximately 800 meters (2600 feet). The top part of the image is the Sertao, a semi-arid region, that is subject to severe droughts during El Nino events. A small portion of the San Francisco River, the longest river (1609 kilometers or 1000 miles) entirely within Brazil, cuts across the upper right corner of the image. This river is a major source of water for irrigation and hydroelectric power. Mapping such regions will allow scientists to better understand the relationships between flooding cycles, drought and human influences on ecosystems.

    This shaded relief image was generated using topographic data from the Shuttle Radar Topography Mission. A computer-generated artificial light source illuminates the elevation data to produce a pattern of light and shadows. Slopes facing the light appear bright, while those facing away are shaded. On flatter surfaces, the pattern of light and shadows can reveal subtle features in the terrain. Colors show the elevation as measured by SRTM. Colors range from green at the lowest elevations to reddish at the highest elevations. Shaded relief maps are commonly used in applications such as geologic mapping and land use planning.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the German (DLR) and Italian (ASI) space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

  10. Progress in diode-pumped alexandrite lasers as a new resource for future space lidar missions

    NASA Astrophysics Data System (ADS)

    Damzen, M. J.; Thomas, G. M.; Teppitaksak, A.; Minassian, A.

    2017-11-01

    Satellite-based remote sensing using laser-based lidar techniques provides a powerful tool for global 3-D mapping of atmospheric species (e.g. CO2, ozone, clouds, aerosols), physical attributes of the atmosphere (e.g. temperature, wind speed), and spectral indicators of Earth features (e.g. vegetation, water). Such information provides a valuable source for weather prediction, understanding of climate change, atmospheric science and health of the Earth eco-system. Similarly, laser-based altimetry can provide high precision ground topography mapping and more complex 3-D mapping (e.g. canopy height profiling). The lidar technique requires use of cutting-edge laser technologies and engineered designs that are capable of enduring the space environment over the mission lifetime. The laser must operate with suitably high electrical-to-optical efficiency and risk reduction strategy adopted to mitigate against laser failure or excessive operational degradation of laser performance.

  11. KSC-00pp0110

    NASA Image and Video Library

    2000-01-27

    STS-99 Mission Specialist Janice Voss (Ph.D.) looks happy after landing at KSC aboard a T-38 jet aircraft to prepare for launch of Endeavour Jan. 31 at 12:47 p.m. EST. Over the next few days, the crew will review mission procedures, conduct test flights in the Shuttle Training Aircraft and undergo routine preflight medical exams. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety

  12. STS-99 Mission Specialist Kavandi arrives for launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-99 Mission Specialist Janet Lynn Kavandi (Ph.D.) looks surprised and happy after landing at KSC aboard a T-38 jet aircraft to prepare for launch of Endeavour Jan. 31 at 12:47 p.m. EST. Over the next few days, the crew will review mission procedures, conduct test flights in the Shuttle Training Aircraft and undergo routine preflight medical exams. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station- derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety.

  13. STS-99 Pilot Gorie suits up before launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Operations and Checkout Building, STS-99 Pilot Dominic Gorie smiles during suitup in final launch preparations. Liftoff of STS-99, known as the Shuttle Radar Topography Mission, is scheduled for 12:47 p.m. EST from Launch Pad 39A. The SRTM will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. The mission is expected to last about 11days, with Endeavour landing at KSC Friday, Feb. 11, at 4:55 p.m. EST.

  14. STS-99 Commander Kregel arrives for launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-99 Commander Kevin Kregel arrives at KSC aboard a T-38 jet aircraft to prepare for launch of Endeavour Jan. 31 at 12:47 p.m. EST. Over the next few days, the crew will review mission procedures, conduct test flights in the Shuttle Training Aircraft and undergo routine preflight medical exams. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station- derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety.

  15. STS-99 Commander Kregel suits up before launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Operations and Checkout Building, STS-99 Commander Kevin Kregel waves as he suits up during final launch preparations. Known as the Shuttle Radar Topography Mission, liftoff is scheduled for 12:47 p.m. EST from Launch Pad 39A. The SRTM will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. The mission is expected to last about 11days. Endeavour is expected to land at KSC Friday, Feb. 11, at 4:55 p.m. EST.

  16. STS-99 Pilot Gorie arrives for launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-99 Pilot Dominic Gorie arrives at KSC aboard a T-38 jet aircraft to prepare for launch of Endeavour Jan. 31 at 12:47 p.m. EST. Over the next few days, the crew will review mission procedures, conduct test flights in the Shuttle Training Aircraft and undergo routine preflight medical exams. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station- derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety.

  17. KSC-00pp0121

    NASA Image and Video Library

    2000-01-31

    In the Operations and Checkout Building, STS-99 Pilot Dominic Gorie smiles during suitup in final launch preparations. Liftoff of STS-99, known as the Shuttle Radar Topography Mission, is scheduled for 12:47 p.m. EST from Launch Pad 39A. The SRTM will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. The mission is expected to last about 11days, with Endeavour landing at KSC Friday, Feb. 11, at 4:55 p.m. EST

  18. KSC-00pp0118

    NASA Image and Video Library

    2000-01-31

    In the Operations and Checkout Building, STS-99 Commander Kevin Kregel waves as he suits up during final launch preparations. Liftoff of STS-99, known as the Shuttle Radar Topography Mission (SRTM), is scheduled for 12:47 p.m. EST from Launch Pad 39A. The SRTM will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. The mission is expected to last about 11days. Endeavour is expected to land at KSC Friday, Feb. 11, at 4:55 p.m. EST

  19. KSC-00pp0120

    NASA Image and Video Library

    2000-01-31

    In the Operations and Checkout Building, STS-99 Mission Specialist Janet Lynn Kavandi (Ph.D.) adjusts her helmet during suitup in final launch preparations. Liftoff of STS-99, known as the Shuttle Radar Topography Mission (SRTM), is scheduled for 12:47 p.m. EST from Launch Pad 39A. The SRTM will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. The mission is expected to last about 11days. Endeavour is expected to land at KSC Friday, Feb. 11, at 4:55 p.m. EST

  20. KSC00pp0118

    NASA Image and Video Library

    2000-01-31

    In the Operations and Checkout Building, STS-99 Commander Kevin Kregel waves as he suits up during final launch preparations. Liftoff of STS-99, known as the Shuttle Radar Topography Mission (SRTM), is scheduled for 12:47 p.m. EST from Launch Pad 39A. The SRTM will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. The mission is expected to last about 11days. Endeavour is expected to land at KSC Friday, Feb. 11, at 4:55 p.m. EST

  1. KSC00pp0121

    NASA Image and Video Library

    2000-01-31

    In the Operations and Checkout Building, STS-99 Pilot Dominic Gorie smiles during suitup in final launch preparations. Liftoff of STS-99, known as the Shuttle Radar Topography Mission, is scheduled for 12:47 p.m. EST from Launch Pad 39A. The SRTM will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. The mission is expected to last about 11days, with Endeavour landing at KSC Friday, Feb. 11, at 4:55 p.m. EST

  2. KSC-00pp0117

    NASA Image and Video Library

    2000-01-31

    In the Operations and Checkout Building, STS-99 Mission Specialist Janice Voss (Ph.D.) smiles as she dons her launch and entry suit during final launch preparations. Liftoff of STS-99, known as the Shuttle Radar Topography Mission (SRTM), is scheduled for 12:47 p.m. EST from Launch Pad 39A. The SRTM will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. The mission is expected to last about 11days. Endeavour is expected to land at KSC Friday, Feb. 11, at 4:55 p.m. EST

  3. KSC00pp0110

    NASA Image and Video Library

    2000-01-27

    STS-99 Mission Specialist Janice Voss (Ph.D.) looks happy after landing at KSC aboard a T-38 jet aircraft to prepare for launch of Endeavour Jan. 31 at 12:47 p.m. EST. Over the next few days, the crew will review mission procedures, conduct test flights in the Shuttle Training Aircraft and undergo routine preflight medical exams. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety

  4. Geophysical Interpretation of Venus Gravity Data

    NASA Technical Reports Server (NTRS)

    Reasenberg, R. D.

    1985-01-01

    The subsurface distribution of Venus was investigated through the analysis of the data from Pioneer Venus Orbiter (PVO). In particular, the Doppler tracking data were used to map the gravitational potential. These were compared to the topographic data from the PVO radar (ORAD). In order to obtain an unbiased comparison, the topography data obtained from the PVO-ORAD were filtered to introduce distortions which are the same as those of the gravity models. Both the gravity and filtered topography maps are derived by two stage processes with a common second stage. In the first stage, the topography was used to calculate a corresponding spacecraft acceleration under the assumptions that the topography has a uniform given density and no compensation. In the second stage, the acceleration measures found in the first stage were passed through a linear inverter to yield maps of gravity and topography. Because these maps are the result of the same inversion process, they contain the same distortion; a comparison between them is unbiased to first order.

  5. Shaded Relief Color Wrapped, Kamchatka Peninsula, Russia

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This shaded relief topographic image shows the western side of the volcanically active Kamchatka Peninsula, Russia. The data are from the first C-band mapping swath of the Shuttle Radar Topography Mission (SRTM). On the left side are five rivers, which flow northwest to the Sea of Okhotsk. These rivers are, from the south to north, Tigil, Amanina, Voyampolka, Zhilovaya, and Kakhtana. The broad, flat floodplains of the rivers are shown in yellow. These rivers are important spawning grounds for salmon. In the right side of the image is the Sredinnyy Khrebet, the volcanic mountain range that makes up the 3spine2 of the peninsula. The cluster of hills to the lower right is a field of small dormant volcanoes. High resolution SRTM topographic data will be used by geologists to study how volcanoes form and understand the hazards posed by future eruptions.

    This image was generated using topographic data from the Shuttle Radar Topography Mission. Colors show the elevation as measured by SRTM. Each cycle of colors (from red through green back to red) represents an equal amount of elevation difference (400 meters, or 1300 feet)similar to contour lines on a standard topographic map. This image contains about 2300 meters (7500 feet) of total relief. For the shading, a computer-generated artificial light source illuminates the elevation data to produce a pattern of light and shadows. Slopes facing the light appear bright, while those facing away are shaded. Shaded relief maps are commonly used in applications such as geologic mapping and land use planning.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the German (DLR) and Italian (ASI) space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Size: 240 km (150 miles) x 122 km (77 miles) Location: 57.5 deg. North lat., 158.8 deg. East lon. Orientation: North at top Original Data Resolution: 30 meters (99 feet) Date Acquired: February 12, 2000

  6. Organization of the Macaque Extrastriate Visual Cortex Re-Examined Using the Principle of Spatial Continuity of Function

    PubMed Central

    Aflalo, T. N.

    2011-01-01

    How is the macaque monkey extrastriate cortex organized? Is vision divisible into separate tasks, such as object recognition and spatial processing, each emphasized in a different anatomical stream? If so, how many streams exist? What are the hierarchical relationships among areas? The present study approached the organization of the extrastriate cortex in a novel manner. A principled relationship exists between cortical function and cortical topography. Similar functions tend to be located near each other, within the constraints of mapping a highly dimensional space of functions onto the two-dimensional space of the cortex. We used this principle to re-examine the functional organization of the extrastriate cortex given current knowledge about its topographic organization. The goal of the study was to obtain a model of the functional relationships among the visual areas, including the number of functional streams into which they are grouped, the pattern of informational overlap among the streams, and the hierarchical relationships among areas. To test each functional description, we mapped it to a model cortex according to the principle of optimal continuity and assessed whether it accurately reconstructed a version of the extrastriate topography. Of the models tested, the one that best reconstructed the topography included four functional streams rather than two, six levels of hierarchy per stream, and a specific pattern of informational overlap among streams and areas. A specific mixture of functions was predicted for each visual area. This description matched findings in the physiological literature, and provided predictions of functional relationships that have yet to be tested physiologically. PMID:21068269

  7. Vesta Topography Map

    NASA Image and Video Library

    2013-07-08

    This color-coded topography map from NASA Dawn mission shows the giant asteroid Vesta in an equirectangular projection at 32 pixels per degree, relative to an ellipsoid of 177 miles by 177 miles by 142 miles.

  8. KSC-00pp0014

    NASA Image and Video Library

    2000-01-12

    During Terminal Countdown Demonstration Test (TCDT) activities, STS-99 Mission Specialist Gerhard Thiele, who is with the European Space Agency, is ready to practice driving an armored personnel carrier that is part of emergency egress training and could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST

  9. KSC-00pp0012

    NASA Image and Video Library

    2000-01-12

    STS-99 Mission Specialist Mamoru Mohri, who is with the National Space Development Agency (NASDA) of Japan, smiles during training on the M-113, an armored personnel carrier that is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST

  10. KSC-00pp0015

    NASA Image and Video Library

    2000-01-12

    During Terminal Countdown Demonstration Test (TCDT) activities, STS-99 Pilot Dominic Gorie , is ready to practice driving an armored personnel carrier that is part of emergency egress training and could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. Behind him (left) is Mission Specialist Gerhard Thiele, who is with the European Space Agency. TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST

  11. STS-99 crew practice driving an M-113 during TCDT

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During Terminal Countdown Demonstration Test (TCDT) activities, STS-99 Mission Specialist Gerhard Thiele, who is with the European Space Agency, is ready to practice driving an armored personnel carrier that is part of emergency egress training and could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST.

  12. Shaded Relief of South Africa, Northern Cape Province

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Located north of the Swartberg Mountains in South Africa's Northern Cape Province, this topographic image shows a portion of the Great Karoo region. Karoo is an indigenous word for 'dry thirst land.' The semi-arid area is known for its unique variety of flora and fauna. The topography of the area, with a total relief of 200 meters (650 feet), reveals much about the geologic history of the area. The linear features seen in the image are near-vertical walls of once-molten rock, or dikes, that have intruded the bedrock. The dikes are more resistant to weathering and, therefore, form the linear wall-like features seen in the image. In relatively flat arid areas such as this, small changes in the topography can have large impacts on the water resources and the local ecosystem. These data can be used by biologists to study the distribution and range of the different plants and animals. Geologists can also use the data to study the geologic history of this area in more detail.

    This shaded relief image was generated using topographic data from the Shuttle Radar Topography Mission. A computer-generated artificial light source illuminates the elevation data to produce a pattern of light and shadows. Slopes facing the light appear bright, while those facing away are shaded. On flatter surfaces, the pattern of light and shadows can reveal subtle features in the terrain. Colors show the elevation as measured by SRTM. Colors range from green at the lowest elevations to reddish at the highest elevations. Shaded relief maps are commonly used in applications such as geologic mapping and land use planning.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the German (DLR) and Italian (ASI) space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

  13. Geologic Map of the Diana Chasma Quadrangle (V-37), Venus

    USGS Publications Warehouse

    Hansen, V.L.; DeShon, H.R.

    2002-01-01

    Diana Chasma quadrangle hosts some of the steepest topography on Venus. Altimetry measurements range from -2.5 to 4.7 km (0.0 = mean planetary radius), with a surface mean of 0.6 km. Fractures and faults within the central fracture/rift zone create large blocks of down-dropped material, especially along the east-central edge of the map area. The Dali and Diana chasmata display slopes of >30°, the steepest and deepest trenches on Venus. Both chasmata host landslide deposits presumably sourced from the steep chasmata walls. The tessera inlier, coronae, and ridge belts sit topographically above Rusalka and Zhibek planitiae. Rusalka Planitia topography describes broad undulations having northwest-trending ridges spaced ~200 km apart. The most distinctive ridge, Vetsorgo Dorsum, centered at 6.5° S., 163° E., is a Class I ridge belt owing to its simple arch morphology. The central interior of Markham crater sits topographically lower than the surrounding region, which slopes downward to the east.

  14. Deciphering fine molecular details of proteins' structure and function with a Protein Surface Topography (PST) method.

    PubMed

    Koromyslova, Anna D; Chugunov, Anton O; Efremov, Roman G

    2014-04-28

    Molecular surfaces are the key players in biomolecular recognition and interactions. Nowadays, it is trivial to visualize a molecular surface and surface-distributed properties in three-dimensional space. However, such a representation trends to be biased and ambiguous in case of thorough analysis. We present a new method to create 2D spherical projection maps of entire protein surfaces and manipulate with them--protein surface topography (PST). It permits visualization and thoughtful analysis of surface properties. PST helps to easily portray conformational transitions, analyze proteins' properties and their dynamic behavior, improve docking performance, and reveal common patterns and dissimilarities in molecular surfaces of related bioactive peptides. This paper describes basic usage of PST with an example of small G-proteins conformational transitions, mapping of caspase-1 intersubunit interface, and intrinsic "complementarity" in the conotoxin-acetylcholine binding protein complex. We suggest that PST is a beneficial approach for structure-function studies of bioactive peptides and small proteins.

  15. Reciprocal Space Mapping of Macromolecular Crystals in the Laboratory

    NASA Technical Reports Server (NTRS)

    Snell, Edward H.; Boggon, T. J.; Fewster, P. F.; Siddons, D. P.; Stojanof, V.; Pusey, M. L.

    1998-01-01

    The technique of reciprocal space mapping applied to the physical measurement of macromolecular crystals will be described. This technique uses a triple axis diffractometer setup whereby the monochromator is the first crystal, the sample is the second and the third crystal (of the same material as the monochromator) analyzes the diffracted beam. The geometry is such that it is possible to separate mosaic volume effects from lattice strain effects. The deconvolution of the instrument parameters will also be addressed. Results from measurements at Brookhaven National Synchrotron Radiation Source carried out on microgravity and ground-grown crystals will be presented. The required beam characteristics for reciprocal space mapping are also ideal for topographic studies and the first topographs ever recorded from microgravity protein crystal samples will be shown. We are now working on a system which will enable reciprocal space mapping, mosaicity and topography studies to be carried out in the home laboratory. This system uses a rotating anode X-ray source to provide an intense beam then a Bartels double crystal, four reflection monochromator to provide the spectral and geometric beam conditioning necessary such that the instrument characteristics do not mask the measurement. This is coupled to a high precision diffractometer and sensitive detector. Commissioning data and first results from the system will be presented.

  16. KSC00pp0074

    NASA Image and Video Library

    2000-01-14

    KENNEDY SPACE CENTER, Fla. -- At Launch Pad 39A, STS-99 Mission Specialists Gerhard Thiele (Ph.D.), of the European Space Agency (in front), and Janet Kavandi (Ph.D.) prepare to practice emergency egress procedures with a slidewire basket. Seven slidewires, with flatbottom baskets suspended from each wire, extend from the Fixed Service Structure at the orbiter access arm level. These baskets could provide an escape route for the astronauts until the final 30 seconds of the countdown in case of an emergency. The crew is taking part in Terminal Countdown Demonstration Test (TCDT) activities that provide the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST.

  17. KSC-00pp0074

    NASA Image and Video Library

    2000-01-14

    KENNEDY SPACE CENTER, Fla. -- At Launch Pad 39A, STS-99 Mission Specialists Gerhard Thiele (Ph.D.), of the European Space Agency (in front), and Janet Kavandi (Ph.D.) prepare to practice emergency egress procedures with a slidewire basket. Seven slidewires, with flatbottom baskets suspended from each wire, extend from the Fixed Service Structure at the orbiter access arm level. These baskets could provide an escape route for the astronauts until the final 30 seconds of the countdown in case of an emergency. The crew is taking part in Terminal Countdown Demonstration Test (TCDT) activities that provide the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST.

  18. The Shuttle Radar Topography Mission is moved to a workstand

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Workers inside the Space Station Processing Facility keep watch as an overhead crane begins lifting the Shuttle Radar Topography Mission (SRTM) from the transporter below. The SRTM is being moved to a workstand. The primary payload on mission STS-99, the SRTM consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission scheduled for launch in September 1999. The objective of this radar system is to obtain the most complete high-resolution digital topographic database of the Earth. It will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. SRTM will be making use of a technique called radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. To get two radar images taken from different locations, the SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle.

  19. The Shuttle Radar Topography Mission is moved to a workstand

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Inside the Space Station Processing Facility, workers watch as an overhead crane is lowered for lifting the Shuttle Radar Topography Mission (SRTM) from the transporter it is resting on. The SRTM is being moved to a workstand. The primary payload on mission STS-99, the SRTM consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission scheduled for launch in September 1999. The objective of this radar system is to obtain the most complete high-resolution digital topographic database of the Earth. It will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. SRTM will be making use of a technique called radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. To get two radar images taken from different locations, the SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle.

  20. Tactile mapping system: a novel imaging technology for surface topography and elasticity of tissues or organs.

    PubMed

    Oie, Tomonori; Suzuki, Hisato; Fukuda, Toru; Murayama, Yoshinobu; Omata, Sadao; Kanda, Keiichi; Nakayama, Yasuhide

    2009-11-01

    : We demonstrated that the tactile mapping system (TMS) has a high degree of spatial precision in the distribution mapping of surface elasticity of tissues or organs. : Samples used were a circumferential section of a small-caliber porcine artery (diameter: ∼3 mm) and an elasticity test pattern with a line and space configuration for the distribution mapping of elasticity, prepared by regional micropatterning of a 14-μm thick gelatin hydrogel coating on a polyurethane sheet. Surface topography and elasticity in normal saline were simultaneously investigated by TMS using a probe with a diameter of 5 or 12 μm, a spatial interval of 1 to 5 μm, and an indentation depth of 4 μm. : In the test pattern, a spatial resolution in TMS of <5 μm was acquired under water with a minimal probe diameter and spatial interval of the probe movement. TMS was used for the distribution mapping of surface elasticity in a flat, circumferential section (thickness: ∼0.5 mm) of a porcine artery, and the concentric layers of the vascular wall, including the collagen-rich and elastin-rich layers, could be clearly differentiated in terms of surface elasticity at the spatial resolution of <2 μm. : TMS is a simple and inexpensive technique for the distribution mapping of the surface elasticity in vascular tissues at the spatial resolution <2 μm. TMS has the ability to analyze a complex structure of the tissue samples under normal saline.

  1. KSC00pp0124

    NASA Image and Video Library

    2000-01-31

    The STS-99 crew wave to onlookers as they walk to the astrovan which will take them to Launch Pad 39A and liftoff of Space Shuttle Endeavour, targeted for 12:47 p.m. EST. In their orange launch and entry suits, they are (foreground) Pilot Dominic Gorie and Commander Kevin Kregel. Behind them (left to right) are Mission Specialists Janice Voss (Ph.D.), Mamoru Mohri (Ph.D.), Gerhard Thiele and Janet Lynn Kavandi (Ph.D.). Mohri is with the National Space Development Agency (NASDA) of Japan, and Thiele is with the European Space Agency. The SRTM will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. The mission is expected to last about 11days, with Endeavour landing at KSC Friday, Feb. 11, at 4:55 p.m. EST

  2. KSC00pp0123

    NASA Image and Video Library

    2000-01-31

    The STS-99 crew wave to onlookers as they leave the Operations and Checkout Building enroute to Launch Pad 39A and liftoff of Space Shuttle Endeavour, targeted for 12:47 p.m. EST. In their orange launch and entry suits, they are (foreground) Pilot Dominic Gorie and Commander Kevin Kregel. Behind them (left to right) are Mission Specialists Janice Voss (Ph.D.), Mamoru Mohri (Ph.D.), Gerhard Thiele and Janet Lynn Kavandi (Ph.D.). Mohri is with the National Space Development Agency (NASDA) of Japan, and Thiele is with the European Space Agency. The SRTM will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. The mission is expected to last about 11days, with Endeavour landing at KSC Friday, Feb. 11, at 4:55 p.m. EST

  3. Fine-scale topography in sensory systems: insights from Drosophila and vertebrates

    PubMed Central

    Kaneko, Takuya; Ye, Bing

    2015-01-01

    To encode the positions of sensory stimuli, sensory circuits form topographic maps in the central nervous system through specific point-to-point connections between pre- and post-synaptic neurons. In vertebrate visual systems, the establishment of topographic maps involves the formation of a coarse topography followed by that of fine-scale topography that distinguishes the axon terminals of neighboring neurons. It is known that intrinsic differences in the form of broad gradients of guidance molecules instruct coarse topography while neuronal activity is required for fine-scale topography. On the other hand, studies in the Drosophila visual system have shown that intrinsic differences in cell adhesion among the axon terminals of neighboring neurons instruct the fine-scale topography. Recent studies on activity-dependent topography in the Drosophila somatosensory system have revealed a role of neuronal activity in creating molecular differences among sensory neurons for establishing fine-scale topography, implicating a conserved principle. Here we review the findings in both Drosophila and vertebrates and propose an integrated model for fine-scale topography. PMID:26091779

  4. Fine-scale topography in sensory systems: insights from Drosophila and vertebrates.

    PubMed

    Kaneko, Takuya; Ye, Bing

    2015-09-01

    To encode the positions of sensory stimuli, sensory circuits form topographic maps in the central nervous system through specific point-to-point connections between pre- and postsynaptic neurons. In vertebrate visual systems, the establishment of topographic maps involves the formation of a coarse topography followed by that of fine-scale topography that distinguishes the axon terminals of neighboring neurons. It is known that intrinsic differences in the form of broad gradients of guidance molecules instruct coarse topography while neuronal activity is required for fine-scale topography. On the other hand, studies in the Drosophila visual system have shown that intrinsic differences in cell adhesion among the axon terminals of neighboring neurons instruct the fine-scale topography. Recent studies on activity-dependent topography in the Drosophila somatosensory system have revealed a role of neuronal activity in creating molecular differences among sensory neurons for establishing fine-scale topography, implicating a conserved principle. Here we review the findings in both Drosophila and vertebrates and propose an integrated model for fine-scale topography.

  5. Using Gravity and Topography to Map Mars' Crustal Thickness

    NASA Image and Video Library

    2016-03-21

    Newly detailed mapping of local variations in Mars' gravitational pull on orbiters (center), combined with topographical mapping of the planet's mountains and valleys (left) yields the best-yet mapping of Mars' crustal thickness (right). These three views of global mapping are centered at 90 degrees west longitude, showing portions of the planet that include tall volcanoes on the left and the deep Valles Marineris canyon system just right of center. Additional views of these global maps are available at http://svs.gsfc.nasa.gov/goto?4436. The new map of Mars' gravity (center) results from analysis of the planet's gravitational effects on orbiters passing over each location on the globe. The data come from many years of using NASA's Deep Space Network to track positions and velocities of NASA's Mars Global Surveyor, Mars Odyssey and Mars Reconnaissance Orbiter. If Mars were a perfectly smooth sphere of uniform density, the gravity experienced by the spacecraft would be exactly the same everywhere. But like other rocky bodies in the solar system, including Earth, Mars has both a bumpy surface and a lumpy interior. As the spacecraft fly in their orbits, they experience slight variations in gravity caused by both of these irregularities, variations which show up as small changes in the velocity and altitude of the three spacecraft. The "free-air" gravity map presents the results without any adjustment for the known bumpiness of Mars' surface. Local gravitational variations in acceleration are expressed in units called gals or galileos. The color-coding key beneath the center map indicates how colors on the map correspond to mGal (milligal) values. The map on the left shows the known bumpiness, or topography, of the Martian surface, using data from the Mars Orbiter Laser Altimeter (MOLA) instrument on Mars Global Surveyor. Mars has no actual "sea level," but does have a defined zero elevation level. The color-coding key beneath this map indicates how the colors correspond to elevations above or below zero, in kilometers. Analysis that subtracts effects of the surface topography from the free-air gravity mapping, combined with an assumption that crust material has a uniform density, leads to the derived mapping of crustal thickness -- or subsurface "lumpiness" -- on the right. Highs in gravity indicate places where the denser mantle material beneath the crust is closer to the surface, and hence where the crust is thinner. The color-coding key for this map indicates how the colors on the map correspond to the thickness of the crust, in kilometers. http://photojournal.jpl.nasa.gov/catalog/PIA20277

  6. Shaded relief, color as height, Salalah, Oman

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This elevation map shows a part of the southern coast of the Arabian Peninsula including parts of the countries of Oman and Yemen. The narrow coastal plain on the right side of the image includes the city of Salahlah, the second largest city in Oman. Various crops, including coconuts, papayas and bananas, are grown on this plain. The abrupt topography of the coastal mountains wrings moisture from the monsoon, enabling agriculture in the otherwise dry environment of the Arabian Peninsula. These mountains are historically significant as well: Some scholars believe these mountains are the 'southern mountains' of the book of Genesis.

    This image brightness corresponds to shading illumination from the right, while colors show the elevation as measured by the Shuttle Radar Topography Mission. Colors range from green at the lowest elevations to brown at the highest elevations. This image contains about 1400 meters (4600 feet) of total relief. The Arabian Sea is colored blue.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the German (DLR) and Italian (ASI)space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Size: 149 by 40 kilometers (92 by 25 miles) Location: 16.9 deg. North lat., 53.7 deg. East lon. Orientation: North at top right Date Acquired: February 15, 2000 Image: NASA/JPL/NIMA

  7. Anaglyph with Landsat Overlay, Kamchatka Peninsula, Russia

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This 3-D anaglyph shows an area on the western side of the volcanically active Kamchatka Peninsula, Russia. Red-blue glasses are required to see the 3-D effect. The topographic data are from the first C-band mapping swath of the Shuttle Radar Topography Mission (SRTM). Images from the optical Landsat satellite are overlain on the SRTM topography data. The meandering channel of the Tigil River is seen along the bottom of the image, at the base of steep cliffs. In the middle left of the image, a terrace indicates recent uplift of the terrain and downcutting by the river. High resolution SRTM topographic data will be used by geologists and hydrologists to study the interplay of tectonic uplift and erosion.

    This anaglyph was generated using topographic data from the Shuttle Radar Topography Mission to create two differing perspectives of a single image, one perspective for each eye. Each point in the image is shifted slightly, depending on its elevation. When viewed through special glasses, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter. The United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota, provided the Landsat data, which are overlain on the topography.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the German (DLR) and Italian (ASI) space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Size: 5.3 km (3.3 miles) x 6.0 km (3.7 miles) Location: 57 deg. North lat., 159 deg. East lon. Orientation: North at left Original Data Resolution: SRTM 30 meters (99 feet); Landsat 15 meters (45 feet) Date Acquired: February 12, 2000

  8. Software defined coherent lidar (SD-Cl) architecture

    NASA Astrophysics Data System (ADS)

    Laghezza, F.; Onori, D.; Scotti, F.; Bogoni, A.

    2017-09-01

    In recent years, thanks to the innovation in optical and electro-optical components, space based light detection and ranging (Lidar) systems are having great success, as a considerable alternative to passive radiometers or microwave sensors [1]. One of the most important applications, for space based Lidars, is the measure of target's distance and its relative properties as e.g., topography, surface's roughness and reflectivity, gravity and mass, that provide useful information for surface mapping, as well as semi-autonomous landing functionalities on lowgravity bodies (moons and asteroids). These kind of systems are often called Lidar altimeters or laser rangefinders.

  9. The effects of topography on magma chamber deformation models: Application to Mt. Etna and radar interferometry

    NASA Astrophysics Data System (ADS)

    Williams, Charles A.; Wadge, Geoff

    We have used a three-dimensional elastic finite element model to examine the effects of topography on the surface deformation predicted by models of magma chamber deflation. We used the topography of Mt. Etna to control the geometry of our model, and compared the finite element results to those predicted by an analytical solution for a pressurized sphere in an elastic half-space. Topography has a significant effect on the predicted surface deformation for both displacement profiles and synthetic interferograms. Not only are the predicted displacement magnitudes significantly different, but also the map-view patterns of displacement. It is possible to match the predicted displacement magnitudes fairly well by adjusting the elevation of a reference surface; however, the horizontal pattern of deformation is still significantly different. Thus, inversions based on constant-elevation reference surfaces may not properly estimate the horizontal position of a magma chamber. We have investigated an approach where the elevation of the reference surface varies for each computation point, corresponding to topography. For vertical displacements and tilts this method provides a good fit to the finite element results, and thus may form the basis for an inversion scheme. For radial displacements, a constant reference elevation provides a better fit to the numerical results.

  10. X-ray microbeam three-dimensional topography for dislocation strain-field analysis of 4H-SiC

    NASA Astrophysics Data System (ADS)

    Tanuma, R.; Mori, D.; Kamata, I.; Tsuchida, H.

    2013-07-01

    This paper describes the strain-field analysis of threading edge dislocations (TEDs) and basal-plane dislocations (BPDs) in 4H-SiC using x-ray microbeam three-dimensional (3D) topography. This 3D topography enables quantitative strain-field analysis, which measures images of effective misorientations (Δω maps) around the dislocations. A deformation-matrix-based simulation algorithm is developed to theoretically evaluate the Δω mapping. Systematic linear calculations can provide simulated Δω maps (Δωsim maps) of dislocations with different Burgers vectors, directions, and reflection vectors for the desired cross-sections. For TEDs and BPDs, Δω maps are compared with Δωsim maps, and their excellent correlation is demonstrated. Two types of asymmetric reflections, high- and low-angle incidence types, are compared. Strain analyses are also conducted to investigate BPD-TED conversion near an epilayer/substrate interface in 4H-SiC.

  11. STS-99 Mission Specialist Kavandi suits up before launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Operations and Checkout Building, STS-99 Mission Specialist Janet Lynn Kavandi (Ph.D.) adjusts her helmet during suitup in final launch preparations. Liftoff of STS-99, known as the Shuttle Radar Topography Mission (SRTM), is scheduled for 12:47 p.m. EST from Launch Pad 39A. The SRTM will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station- derived mast protruding from the payload bay. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. The mission is expected to last about 11days. Endeavour is expected to land at KSC Friday, Feb. 11, at 4:55 p.m. EST.

  12. STS-99 Mission Specialist Voss suits up before launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Operations and Checkout Building, STS-99 Mission Specialist Janice Voss (Ph.D.) smiles as she dons her launch and entry suit during final launch preparations. Known as the Shuttle Radar Topography Mission, liftoff is scheduled for 12:47 p.m. EST from Launch Pad 39A. The SRTM will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. The mission is expected to last about 11days. Endeavour is expected to land at KSC Friday, Feb. 11, at 4:55 p.m. EST.

  13. KSC-00pp0111

    NASA Image and Video Library

    2000-01-27

    Center Director Roy Bridges (right) welcomes STS-99 Commander Kevin Kregel (left) and the rest of the crew after their arrival at KSC's Shuttle Landing Facility. Behind them are the T-38 jets that transported the crew, with the mate/demate tower in the background. Over the next few days, the crew will review mission procedures, conduct test flights in the Shuttle Training Aircraft and undergo routine preflight medical exams. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour is scheduled for Jan. 31 at 12:47 p.m. EST

  14. KSC00pp0111

    NASA Image and Video Library

    2000-01-27

    Center Director Roy Bridges (right) welcomes STS-99 Commander Kevin Kregel (left) and the rest of the crew after their arrival at KSC's Shuttle Landing Facility. Behind them are the T-38 jets that transported the crew, with the mate/demate tower in the background. Over the next few days, the crew will review mission procedures, conduct test flights in the Shuttle Training Aircraft and undergo routine preflight medical exams. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour is scheduled for Jan. 31 at 12:47 p.m. EST

  15. KSC-00pp0069

    NASA Image and Video Library

    2000-01-14

    STS-99 Pilot Dominic Gorie suits up in the Operations and Checkout Building, as part of a flight crew equipment fit check, prior to his trip to Launch Pad 39A. The crew is taking part in Terminal Countdown Demonstration Test (TCDT) activities that provide the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST

  16. STS-99 crew members meet with family and friends

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The day before the expected launch of STS-99, Pilot Dominic Gorie enjoys a reunion with his wife, Wendy, near Launch Pad 39A where family and friends have gathered to greet the crew. STS-99, known as the Shuttle Radar Topography Mission (SRTM), is scheduled to lift off 12:47 p.m. EST from Launch Pad 39A. The SRTM will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. The mission is expected to last about 11days, with Endeavour landing at KSC Friday, Feb. 11, at 4:55 p.m.

  17. STS-99 crew members meet with family and friends

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The day before the expected launch of STS-99, Mission Specialist Janet Lynn Kavandi poses for photographers near Launch Pad 39A where family and friends have gathered to greet the crew. STS-99, known as the Shuttle Radar Topography Mission (SRTM), is scheduled to lift off 12:47 p.m. EST from Launch Pad 39A. The SRTM will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. The mission is expected to last about 11days, with Endeavour landing at KSC Friday, Feb. 11, at 4:55 p.m.

  18. STS-99 crew members meet with family and friends

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The day before the expected launch of STS-99, Mission Specialist Mamoru Mohri (right) enjoys a reunion with his wife, Akiko, near Launch Pad 39A. STS-99, known as the Shuttle Radar Topography Mission (SRTM), is scheduled to lift off 12:47 p.m. EST from Launch Pad 39A. The SRTM will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. The mission is expected to last about 11days, with Endeavour landing at KSC Friday, Feb. 11, at 4:55 p.m.

  19. STS-99 crew members meet with family and friends

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The day before the expected launch of STS-99, Commander Kevin Kregel enjoys a reunion with his wife, Jeanne, near Launch Pad 39A where family and friends have gathered to greet the crew. STS-99, known as the Shuttle Radar Topography Mission (SRTM), is scheduled to lift off 12:47 p.m. EST from Launch Pad 39A. The SRTM will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. The mission is expected to last about 11days, with Endeavour landing at KSC Friday, Feb. 11, at 4:55 p.m.

  20. STS-99 crew members meet with family and friends

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Near Launch Pad 39A, STS-99 Mission Specialist Janice Voss enjoys a reunion with friend and fellow astronaut Andrew Thomas the day before the expected launch of her mission. STS-99, known as the Shuttle Radar Topography Mission (SRTM), is scheduled to lift off 12:47 p.m. EST from Launch Pad 39A. The SRTM will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station- derived mast protruding from the payload bay. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. The mission is expected to last about 11days, with Endeavour landing at KSC Friday, Feb. 11, at 4:55 p.m.

  1. STS-99 crew members meet with family and friends

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The day before the expected launch of STS-99, Mission Specialist Gerhard Thiele enjoys a reunion with his wife near Launch Pad 39A where family and friends have gathered to greet the crew. STS-99, known as the Shuttle Radar Topography Mission (SRTM), is scheduled to lift off 12:47 p.m. EST from Launch Pad 39A. The SRTM will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. The mission is expected to last about 11days, with Endeavour landing at KSC Friday, Feb. 11, at 4:55 p.m.

  2. Shaded Relief, Kamchatka Peninsula, Russia

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This topographic image shows the western side of the volcanically active Kamchatka Peninsula, Russia. The data are from the first C-band mapping swath of the Shuttle Radar Topography Mission (SRTM). On the left side are four rivers, which flow northwest to the Sea of Okhotsk. These rivers are, from the south to north, Tigil, Amanina, Voyampolka, and Zhilovaya. The broad, flat floodplains of the rivers are shown in blue. These rivers are important spawning grounds for salmon. In the right side of the image is the Sredinnyy Khrebet, the volcanic mountain range that makes up the 3spine2 of the peninsula. The cluster of hills to the lower right is a field of small dormant volcanoes. High resolution SRTM topographic data will be used by geologists to study how volcanoes form and understand the hazards posed by future eruptions.

    This shaded relief image was generated using topographic data from the Shuttle Radar Topography Mission. A computer-generated artificial light source illuminates the elevation data to produce a pattern of light and shadows. Slopes facing the light appear bright, while those facing away are shaded. On flatter surfaces, the pattern of light and shadows can reveal subtle features in the terrain. Colors show the elevation as measured by SRTM. Colors range from blue at the lowest elevations to white at the highest elevations. This image contains about 2300 meters (7500 feet) of total relief. Shaded relief maps are commonly used in applications such as geologic mapping and land use planning.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the German (DLR) and Italian (ASI) space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Size: 158 km (98 miles) x 122 km (77 miles) Location: 57.5 deg. North lat., 158.8 deg. East lon. Orientation: North approximately at top Original Data Resolution: 30 meters (99 feet) Date Acquired: February 12, 2000

  3. KSC-99pp0331

    NASA Image and Video Library

    1999-03-22

    The Shuttle Radar Topography Mission (SRTM) sits uncovered inside the Multi-Payload Processing Facility. The primary payload on mission STS-99, the SRTM consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission scheduled for September 1999. This radar system will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. Its objective is to obtain the most complete high-resolution digital topographic database of the Earth

  4. KSC-99pp0326

    NASA Image and Video Library

    1999-03-24

    The vehicle carrying the Shuttle Radar Topography Mission (SRTM) arrives at the Multi-Payload Processing Facility. The primary payload on mission STS-99, the SRTM consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission scheduled for September 1999. This radar system will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. Its objective is to obtain the most complete high-resolution digital topographic database of the Earth

  5. KSC-99pp0327

    NASA Image and Video Library

    1999-03-24

    Inside the Multi-Payload Processing Facility, the lid covering the Shuttle Radar Topography Mission (SRTM) is lifted. The primary payload on mission STS-99, the SRTM consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission scheduled for September 1999. This radar system will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. Its objective is to obtain the most complete high-resolution digital topographic database of the Earth

  6. KSC-00pp0050

    NASA Image and Video Library

    2000-01-13

    KENNEDY SPACE CENTER, Fla. -- At the 195-foot level on the Fixed Service Structure, Launch Pad 39A, the STS-99 crew receive instructions about emergency egress. From left (in uniform) are Mission Specialists Janice Voss (Ph.D.), Janet Lynn Kavandi (Ph.D.), Gerhard Thiele and Mamoru Mohri, Pilot Dominic Gorie and Commander Kevin Kregel. In the background can be seen the Vehicle Assembly Building at left and the waters of Banana Creek in between. The crew are taking part in Terminal Countdown Demonstration Test activities, which provide them with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST

  7. Gently dipping normal faults identified with Space Shuttle radar topography data in central Sulawesi, Indonesia, and some implications for fault mechanics

    USGS Publications Warehouse

    Spencer, J.E.

    2011-01-01

    Space-shuttle radar topography data from central Sulawesi, Indonesia, reveal two corrugated, domal landforms, covering hundreds to thousands of square kilometers, that are bounded to the north by an abrupt transition to typical hilly to mountainous topography. These domal landforms are readily interpreted as metamorphic core complexes, an interpretation consistent with a single previous field study, and the abrupt northward transition in topographic style is interpreted as marking the trace of two extensional detachment faults that are active or were recently active. Fault dip, as determined by the slope of exhumed fault footwalls, ranges from 4?? to 18??. Application of critical-taper theory to fault dip and hanging-wall surface slope, and to similar data from several other active or recently active core complexes, suggests a theoretical limit of three degrees for detachment-fault dip. This result appears to conflict with the dearth of seismological evidence for slip on faults dipping less than ~. 30??. The convex-upward form of the gently dipping fault footwalls, however, allows for greater fault dip at depths of earthquake initiation and dominant energy release. Thus, there may be no conflict between seismological and mapping studies for this class of faults. ?? 2011 Elsevier B.V.

  8. KSC00pp0050

    NASA Image and Video Library

    2000-01-13

    KENNEDY SPACE CENTER, Fla. -- At the 195-foot level on the Fixed Service Structure, Launch Pad 39A, the STS-99 crew receive instructions about emergency egress. From left (in uniform) are Mission Specialists Janice Voss (Ph.D.), Janet Lynn Kavandi (Ph.D.), Gerhard Thiele and Mamoru Mohri, Pilot Dominic Gorie and Commander Kevin Kregel. In the background can be seen the Vehicle Assembly Building at left and the waters of Banana Creek in between. The crew are taking part in Terminal Countdown Demonstration Test activities, which provide them with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST

  9. STS-99 crew practice driving an M-113 during TCDT

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-99 Mission Specialist Mamoru Mohri, who is with the National Space Development Agency (NASDA) of Japan, smiles during training on the M-113, an armored personnel carrier that is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST.

  10. STS-99 crew practice driving an M-113 during TCDT

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During Terminal Countdown Demonstration Test (TCDT) activities, STS-99 Pilot Dominic Gorie , is ready to practice driving an armored personnel carrier that is part of emergency egress training and could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. Behind him (left) is Mission Specialist Gerhard Thiele, who is with the European Space Agency. TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST.

  11. Preliminary Geological Map of the Ac-H-8 Nawish Quadrangle of Ceres: An Integrated Mapping Study Using Dawn Spacecraft Data

    NASA Astrophysics Data System (ADS)

    Frigeri, A.; De Sanctis, M. C.; Carrorro, F. G.; Ammannito, E.; Williams, D. A.; Mest, S. C.; Buczkowski, D.; Preusker, F.; Jaumann, R.; Roatsch, T.; Scully, J. E. C.; Raymond, C. A.; Russell, C. T.

    2015-12-01

    Herein we present the geologic mapping of the Ac-H-8 Nawish Quadrangle of dwarf planet Ceres, produced on the basis of the Dawn spacecraft data. The Ac-H-08 Nawish quadrangle is located between -22°S and 22°N and between 144°E and 216°E. At the north-east border, a polygonal, 75km-wide crater named Nawish gives the name to the whole quadrangle. An unamed, partially degraded, 100km-diameter crater is evident in the lower central sector of the quadrangle. Bright materials have been mapped and are associated with craters. For example, bright materials occur in the central peak region of Nawish crater and in the ejecta of an unnamed crater, which is located in the nearby quadrangle Ac-H-09. The topography of the area obtained from stereo-processing of imagery shows an highland in the middle of the quadrangle. Topography is lower in the northern and southern borders, with a altitude span of about 9500 meters. At the time of this writing geologic mapping was performed on Framing Camera (FC) mosaics from the Approach (1.3 km/px) and Survey (415 m/px) orbits, including grayscale and color images and digital terrain models derived from stereo images. In Fall 2015 images from the High Altitude Mapping Orbit (140 m/px) will be used to refine the mapping, followed by Low Altitude Mapping Orbit (35 m/px) images in January 2016. Support of the Dawn Instrument, Operations, and Science Teams is acknowledged. This work is supported by grants from NASA, and from the German and Italian Space Agencies.

  12. The organization of the human cerebellum estimated by intrinsic functional connectivity

    PubMed Central

    Krienen, Fenna M.; Castellanos, Angela; Diaz, Julio C.; Yeo, B. T. Thomas

    2011-01-01

    The cerebral cortex communicates with the cerebellum via polysynaptic circuits. Separate regions of the cerebellum are connected to distinct cerebral areas, forming a complex topography. In this study we explored the organization of cerebrocerebellar circuits in the human using resting-state functional connectivity MRI (fcMRI). Data from 1,000 subjects were registered using nonlinear deformation of the cerebellum in combination with surface-based alignment of the cerebral cortex. The foot, hand, and tongue representations were localized in subjects performing movements. fcMRI maps derived from seed regions placed in different parts of the motor body representation yielded the expected inverted map of somatomotor topography in the anterior lobe and the upright map in the posterior lobe. Next, we mapped the complete topography of the cerebellum by estimating the principal cerebral target for each point in the cerebellum in a discovery sample of 500 subjects and replicated the topography in 500 independent subjects. The majority of the human cerebellum maps to association areas. Quantitative analysis of 17 distinct cerebral networks revealed that the extent of the cerebellum dedicated to each network is proportional to the network's extent in the cerebrum with a few exceptions, including primary visual cortex, which is not represented in the cerebellum. Like somatomotor representations, cerebellar regions linked to association cortex have separate anterior and posterior representations that are oriented as mirror images of one another. The orderly topography of the representations suggests that the cerebellum possesses at least two large, homotopic maps of the full cerebrum and possibly a smaller third map. PMID:21795627

  13. Spatial Visualization in Introductory Geology Courses

    NASA Astrophysics Data System (ADS)

    Reynolds, S. J.

    2004-12-01

    Visualization is critical to solving most geologic problems, which involve events and processes across a broad range of space and time. Accordingly, spatial visualization is an essential part of undergraduate geology courses. In such courses, students learn to visualize three-dimensional topography from two-dimensional contour maps, to observe landscapes and extract clues about how that landscape formed, and to imagine the three-dimensional geometries of geologic structures and how these are expressed on the Earth's surface or on geologic maps. From such data, students reconstruct the geologic history of areas, trying to visualize the sequence of ancient events that formed a landscape. To understand the role of visualization in student learning, we developed numerous interactive QuickTime Virtual Reality animations to teach students the most important visualization skills and approaches. For topography, students can spin and tilt contour-draped, shaded-relief terrains, flood virtual landscapes with water, and slice into terrains to understand profiles. To explore 3D geometries of geologic structures, they interact with virtual blocks that can be spun, sliced into, faulted, and made partially transparent to reveal internal structures. They can tilt planes to see how they interact with topography, and spin and tilt geologic maps draped over digital topography. The GeoWall system allows students to see some of these materials in true stereo. We used various assessments to research the effectiveness of these materials and to document visualization strategies students use. Our research indicates that, compared to control groups, students using such materials improve more in their geologic visualization abilities and in their general visualization abilities as measured by a standard spatial visualization test. Also, females achieve greater gains, improving their general visualization abilities to the same level as males. Misconceptions that students carry obstruct learning, but are largely undocumented. Many students, for example, cannot visualize that the landscape in which rock layers were deposited was different than the landscape in which the rocks are exposed today, even in the Grand Canyon.

  14. Shaded Relief with Height as Color, Kunlun fault, east-central Tibet

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These two images show exactly the same area, part of the Kunlun fault in northern Tibet. The image on the left was created using the best global topographic data set previously available, the U.S. Geological Survey's GTOPO30. In contrast, the much more detailed image on the right was generated with data from the Shuttle Radar Topography Mission, which collected enough measurements to map 80 percent of Earth's landmass at this level of precision.

    The area covered is the western part of the Kunlun fault, at the north edge of east-central Tibet. The sharp line marking the southern edge of the mountains, running left to right across the scene represents s strike-slip fault, much like California's San Andreas Fault, which is more than 1,000 kilometers (621 miles) long. The most recent earthquake on the Kunlun fault occurred on November 14, 2001. At a magnitude of 8.1, it produced a surface break over 350 kilometers (217 miles) long. Preliminary reports indicate a maximum offset of 7 meters (23 feet) in the central section of the break. This five-kilometer (three mile) high area is uninhabited by humans, so there was little damage reported, despite the large magnitude. Shuttle Radar Topography Mission maps of active faults in Tibet and other parts of the world provide geologists with a unique tool for determining how active a fault is and the probability of future large earthquakes on the fault. This is done by both measuring offsets in topographic features and using the SRTM digital map as a baseline for processing data from orbiting satellites using the techniques of radar interferometry. Based on geologic evidence, the Kunlun fault's long-term slip rate is believed to be about 11 millimeters per year (0.4 inches per year). The Kunlun fault and the Altyn Tagh fault, 400 kilometers (249 miles) to the north, are two major faults that help accommodate the ongoing collision between the Indian and Asian tectonic plates.

    In contrast with the wealth of detail visible in the Shuttle Radar Topography Mission topographic map (right), the best data previously available (left) barely discriminate the sharp break caused by the fault. Note also that the upper left quadrant of the GTOPO30 map was created from a lower-resolution source than the rest of the GTOPO30 data. Another major advantage of the shuttle radar mission is its consistent coverage, unlike previous topography data.

    For some parts of the globe, the shuttle radar measurements are 30 times more precise than previously available topographic information, according to NASA scientists. Mission data will be a welcome resource for national and local governments, scientists, commercial enterprises and members of the public alike. The applications are as diverse as earthquake and volcano studies, flood control, transportation, urban and regional planning, aviation, recreation, and communications. The data's military applications include mission planning and rehearsal, modeling, and simulation.

    This image combines three visualizations of data from the Shuttle Radar Topography Mission. The image brightness corresponds to the strength of the radar signal reflected from the ground combined with shaded relief derived from the mission's topography measurements, while colors show the mission's elevation measurements. Colors range from blue at the lowest elevations to brown and white at the highest elevations.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard Space Shuttle Endeavour, launched on Feb. 11,2000. The Shuttle Radar Topography Mission used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on Endeavour in 1994. The Shuttle Radar Topography Mission was designed to collect 3-D measurements of Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.

    Size: 111 by 90 kilometers (69 by 56 miles) Location: 36.0 degrees north latitude, 93.0 degrees east longitude Orientation: North is at the top Date Acquired: February 2000 (SRTM)

  15. Perspective View, Kamchatka Peninsula, Russia

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This perspective view shows the western side of the volcanically active Kamchatka Peninsula, Russia. The data are from the first C-band mapping swath of the Shuttle Radar Topography Mission (SRTM). In the foreground is the broad, flat floodplain of the Amanina River, shown in blue. In background of the image is the Sredinnyy Khrebet, the volcanic mountain range that makes up the 3spine2 of the peninsula. The cluster of hills in the upper right is a field of small dormant volcanoes. High resolution SRTM topographic data will be used by geologists to study how volcanoes form and understand the hazards posed by future eruptions.

    This shaded relief perspective view was generated using topographic data from the Shuttle Radar Topography Mission. A computer-generated artificial light source illuminates the elevation data to produce a pattern of light and shadows. Slopes facing the light appear bright, while those facing away are shaded. On flatter surfaces, the pattern of light and shadows can reveal subtle features in the terrain. Colors show the elevation as measured by SRTM. Colors range from blue at the lowest elevations to white at the highest elevations. This image contains about 2300 meters (7500 feet) of total relief. To emphasize subtle differences in topography, the relief is exaggerated by a factor of 5.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the German (DLR) and Italian (ASI) space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Size: 80 km (50 miles) x 100 km (62 miles) Location: 57.5 deg. North lat., 158.8 deg. East lon. Orientation: View toward the East Original Data Resolution: 30 meters (99 feet) Date Acquired: February 12, 2000

  16. Geologic map of Kundelan ore deposits and prospects, Zabul Province, Afghanistan; modified from the 1971 original map compilations of K.I. Litvinenko and others

    USGS Publications Warehouse

    Tucker, Robert D.; Peters, Stephen G.; Stettner, Will R.; Masonic, Linda M.; Moran, Thomas W.

    2015-10-26

    Elevations on the cross sections are derived from the original Soviet topography and may not match the Global Digital Elevation Model (GDEM) topography used on the redrafted map of this report. Most hydrography derived from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) has not been included on our redrafted version of the map because of a poor fit with alluvial deposits from the unmodified original Soviet map (graphical supplement no. 18; Litvinenko and others, 1971).

  17. EAARL Coastal Topography--Cape Canaveral, Florida, 2009: First Surface

    USGS Publications Warehouse

    Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Plant, Nathaniel; Wright, C.W.; Nagle, D.B.; Serafin, K.S.; Klipp, E.S.

    2011-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography datasets were produced collaboratively by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Kennedy Space Center, FL. This project provides highly detailed and accurate datasets of a portion of the eastern Florida coastline beachface, acquired on May 28, 2009. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color-infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine aircraft, but the instrument was deployed on a Pilatus PC-6. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the "bare earth" under vegetation from a point cloud of last return elevations.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fielding, E.J.; Barazangi, M.; Isacks, B.L.

    Topography and heterogeneous crustal structure have major effects on the propagation of regional seismic phases. We are collecting topographical, geological, and geophysical datasets for Eurasia into an information system that can be accessed via Internet connections. Now available are digital topography, satellite imagery, and data on sedimentary basins and crustal structure thicknesses. New datasets for Eurasia include maps of depth to Moho beneath Europe and Scandinavia. We have created regularly spaced grids of the crustal thickness values from these maps that can be used to create profiles of crustal structure. These profiles can be compared by an analyst or anmore » automatic program with the crustal seismic phases received along the propagation path to better understand and predict the path effects on phase amplitudes, a key to estimating magnitudes and yields, and for understanding variations in travel-time delays for phases such as Pn, important for improving regional event locations. The gridded data could also be used to model propagation of crustal phases in three dimensions. Digital elevation models, Satellite imagery, Geographic information systems, Lg Propagation, Moho, Geology, Crustal structure, Topographic relief.« less

  19. Venus gravity anomalies and their correlations with topography

    NASA Technical Reports Server (NTRS)

    Sjogren, W. L.; Bills, B. G.; Birkeland, P. W.; Esposito, P. B.; Konopliv, A. R.; Mottinger, N. A.; Ritke, S. J.; Phillips, R. J.

    1983-01-01

    This report provides a summary of the high-resolution gravity data obtained from the Pioneer Venus Orbiter radio tracking data. Gravity maps, covering a 70 deg latitude band through 360 deg of longitude, are displayed as line-of-sight and vertical gravity. Topography converted to gravity and Bouguer gravity maps are also shown in both systems. Topography to gravity ratios are made over several regions of the planet. There are markedly different ratios for the Aphrodite area as compared to the Beta and Atla areas.

  20. STS-99 crew exits the O&C enroute to Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The STS-99 crew wave to onlookers as they walk to the astrovan which will take them to Launch Pad 39A and liftoff of Space Shuttle Endeavour, targeted for 12:47 p.m. EST. In their orange launch and entry suits, they are (foreground) Pilot Dominic Gorie and Commander Kevin Kregel. Behind them (left to right) are Mission Specialists Janice Voss (Ph.D.), Mamoru Mohri (Ph.D.), Gerhard Thiele and Janet Lynn Kavandi (Ph.D.). Mohri is with the National Space Development Agency (NASDA) of Japan, and Thiele is with the European Space Agency. The SRTM will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. The mission is expected to last about 11days, with Endeavour landing at KSC Friday, Feb. 11, at 4:55 p.m. EST.

  1. STS-99 crew exits the O&C enroute to Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The STS-99 crew wave to onlookers as they leave the Operations and Checkout Building enroute to Launch Pad 39A and liftoff of Space Shuttle Endeavour, targeted for 12:47 p.m. EST. In their orange launch and entry suits, they are (foreground) Pilot Dominic Gorie and Commander Kevin Kregel. Behind them (left to right) are Mission Specialists Janice Voss (Ph.D.), Mamoru Mohri (Ph.D.), Gerhard Thiele and Janet Lynn Kavandi (Ph.D.). Mohri is with the National Space Development Agency (NASDA) of Japan, and Thiele is with the European Space Agency. The SRTM will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. The mission is expected to last about 11days, with Endeavour landing at KSC Friday, Feb. 11, at 4:55 p.m. EST.

  2. Photogrammetric portrayal of Mars topography.

    USGS Publications Warehouse

    Wu, S.S.C.

    1979-01-01

    Special photogrammetric techniques have been developed to portray Mars topography, using Mariner and Viking imaging and nonimaging topographic information and earth-based radar data. Topography is represented by the compilation of maps at three scales: global, intermediate, and very large scale. The global map is a synthesis of topographic information obtained from Mariner 9 and earth-based radar, compiled at a scale of 1:25,000,000 with a contour interval of 1 km; it gives a broad quantitative view of the planet. At intermediate scales, Viking Orbiter photographs of various resolutions are used to compile detailed contour maps of a broad spectrum of prominent geologic features; a contour interval as small as 20 m has been obtained from very high resolution orbital photography. Imagery from the Viking lander facsimile cameras permits construction of detailed, very large scale (1:10) topographic maps of the terrain surrounding the two landers; these maps have a contour interval of 1 cm. This paper presents several new detailed topographic maps of Mars.-Author

  3. Photogrammetric portrayal of Mars topography

    NASA Technical Reports Server (NTRS)

    Wu, S. S. C.

    1979-01-01

    Special photogrammetric techniques have been developed to portray Mars topography, using Mariner and Viking imaging and nonimaging topographic information and earth-based radar data. Topography is represented by the compilation of maps at three scales: global, intermediate, and very large scale. The global map is a synthesis of topographic information obtained from Mariner 9 and earth-based radar, compiled at a scale of 1:25,000,000 with a contour interval of 1 km; it gives a broad quantitative view of the planet. At intermediate scales, Viking Orbiter photographs of various resolutions are used to compile detailed contour maps of a broad spectrum of prominent geologic features; a contour interval as small as 20 m has been obtained from very high resolution orbital photography. Imagery from the Viking lander facsimile cameras permits construction of detailed, very large scale (1:10) topographic maps of the terrain surrounding the two landers; these maps have a contour interval of 1 cm. This paper presents several new detailed topographic maps of Mars.

  4. STS-99 Commander and Pilot for the SRTM Mission, Practice Flight in the Shuttle Training Aircraft

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The primary objective of the STS-99 mission was to complete high resolution mapping of large sections of the Earth's surface using the Shuttle Radar Topography Mission (SRTM), a specially modified radar system. This radar system produced unrivaled 3-D images of the Earth's Surface. The mission was launched at 12:31 on February 11, 2000 onboard the space shuttle Endeavour, and led by Commander Kevin Kregel. The crew was Pilot Dominic L. Pudwill Gorie and Mission Specialists Janet L. Kavandi, Janice E. Voss, Mamoru Mohri from the National Space Development Agency (Japanese Space Agency), and Gerhard P. J. Thiele from DARA (German Space Agency). This tape shows Commander Kregel and Pilot Gorie getting on board the Shuttle Training Aircraft and practicing approaches for the shuttle landing.

  5. Anaglyph with Landsat Virgin Islands, Caribbean

    NASA Technical Reports Server (NTRS)

    2003-01-01

    St. Thomas, St. John, Tortola, and Virgin Gorda are the four main islands (lower left to upper right) of this map-view anaglyph of the U.S. Virgin Islands and British Virgin Islands, along the northeast perimeter of the Caribbean Sea. For this view, a nearly cloud-free Landsat image was draped over elevation data from the Shuttle Radar Topography Mission (SRTM), and shading derived from the SRTM data was added to enhance the topographic expression. Coral reefs fringe the islands in many locations and appear as bright patterns in near-shore waters. Tropical vegetation appears fairly dark with smooth tones, as compared to the brighter speckled patterns of towns and other developments.

    As in much of the world, topography is the primary factor in the pattern of land use development in the Virgin Islands. Topography across most of the islands is quite rugged, and although the steep slopes create a scenic setting, they crowd most development into the small areas of low relief terrain, generally along the shoreline. The topographic pattern also affects water supply, wastewater disposal, landfill locations, road construction, and most other features of the development infrastructure. Topography also defines the natural drainage pattern, which is the major consideration in anticipating tropical storm water runoff dangers, as well as the dangers of heightened sediment impacts upon the adjacent coral reefs.

    Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and substantially helps in analyzing the large and growing Landsat image archive.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on February 11, 2000. The mission used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar that flew twice on the Space Shuttle Endeavour in 1994. The Shuttle Radar Topography Mission was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.

    Size: 79.9 by 48.6 kilometers (49.9 by 30.1 miles) Location: 18.25 degrees North latitude, 64.75 degrees West longitude Orientation: North-Northeast toward the top Image Data: Landsat Band 1 with SRTM shading Original Data Resolution: SRTM and Landsat 30 meters (99 feet) Date Acquired: February 2000 (SRTM), January 21, 1985 (Landsat)

  6. Urban topography for flood modeling by fusion of OpenStreetMap, SRTM and local knowledge

    NASA Astrophysics Data System (ADS)

    Winsemius, Hessel; Donchyts, Gennadii; Eilander, Dirk; Chen, Jorik; Leskens, Anne; Coughlan, Erin; Mawanda, Shaban; Ward, Philip; Diaz Loaiza, Andres; Luo, Tianyi; Iceland, Charles

    2016-04-01

    Topography data is essential for understanding and modeling of urban flood hazard. Within urban areas, much of the topography is defined by highly localized man-made features such as roads, channels, ditches, culverts and buildings. This results in the requirement that urban flood models require high resolution topography, and water conveying connections within the topography are considered. In recent years, more and more topography information is collected through LIDAR surveys however there are still many cities in the world where high resolution topography data is not available. Furthermore, information on connectivity is required for flood modelling, even when LIDAR data are used. In this contribution, we demonstrate how high resolution terrain data can be synthesized using a fusion between features in OpenStreetMap (OSM) data (including roads, culverts, channels and buildings) and existing low resolution and noisy SRTM elevation data using the Google Earth Engine platform. Our method uses typical existing OSM properties to estimate heights and topology associated with the features, and uses these to correct noise and burn features on top of the existing low resolution SRTM elevation data. The method has been setup in the Google Earth Engine platform so that local stakeholders and mapping teams can on-the-fly propose, include and visualize the effect of additional features and properties of features, which are deemed important for topography and water conveyance. These features can be included in a workshop environment. We pilot our tool over Dar Es Salaam.

  7. Shaded Relief Image of Saint Pierre and Miquelon

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This image shows two islands, Miquelon and Saint Pierre, located south of Newfoundland, Canada. These islands, along with five smaller islands, are a self-governing territory of France. A thin barrier beach divides Miquelon, with Grande Miquelon to the north and Petite Miquelonto the south. Saint Pierre Island is located to the lower right. With the islandsi location in the north Atlantic Ocean and their deep water ports, fishing is the major part of the economy. The maximum elevation of the island is 240 meters (787 feet). The land mass of the islands is about 242 square kilometers, or 1.5 times the size of Washington DC.

    This shaded relief image was generated using topographic data from the Shuttle Radar Topography Mission. A computer-generated artificial light source illuminates the elevation data to produce a pattern of light and shadows. Slopes facing the light appear bright, while those facing away are shaded. On flatter surfaces, the pattern of light and shadows can reveal subtle features in the terrain. Shaded relief maps are commonly used in applications such as geologic mapping and land use planning.

    This image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASAis Jet Propulsion Laboratory, Pasadena, CA, for NASA1s Earth Science Enterprise, Washington, DC.nal measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

  8. Topographic Map of Chryse Planitia with Location of Possible Buried Basin

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This topographic map, based on data from the Mars Orbiter Laser Altimeter, shows the ground track of the 1,892nd and the 1,903rd orbits of Mars Express and the arc structures detected by that orbiter's Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS). The arc structures are interpreted to be part of a buried impact basin about 250 kilometers (155 miles) in diameter.

    The topographic relief represented in the image is 1 kilometer (0.6 mile), from low (purple) to high (red). The projected arcs are shown in red for orbit 1892 and white for orbit 1903. There is no obvious feature in the surface topography that corresponds to the buried feature identified with MARSIS data.

    NASA and the Italian Space Agency jointly funded the MARSIS instrument on the European Space Agency's Mars Express orbiter. The Mars Orbiter Laser Altimeter is an instrument on NASA's Mars Global Surveyor orbiter.

  9. (abstract) Topographic Signatures in Geology

    NASA Technical Reports Server (NTRS)

    Farr, Tom G.; Evans, Diane L.

    1996-01-01

    Topographic information is required for many Earth Science investigations. For example, topography is an important element in regional and global geomorphic studies because it reflects the interplay between the climate-driven processes of erosion and the tectonic processes of uplift. A number of techniques have been developed to analyze digital topographic data, including Fourier texture analysis. A Fourier transform of the topography of an area allows the spatial frequency content of the topography to be analyzed. Band-pass filtering of the transform produces images representing the amplitude of different spatial wavelengths. These are then used in a multi-band classification to map units based on their spatial frequency content. The results using a radar image instead of digital topography showed good correspondence to a geologic map, however brightness variations in the image unrelated to topography caused errors. An additional benefit to the use of Fourier band-pass images for the classification is that the textural signatures of the units are quantative measures of the spatial characteristics of the units that may be used to map similar units in similar environments.

  10. KSC-99pp0313

    NASA Image and Video Library

    1999-03-23

    In the Multi-Payload Processing Facility, Mary Reaves (left) and Richard Rainen, with the Jet Propulsion Laboratory, check out the carrier and horizontal antenna mast for the STS-99 Shuttle Radar Topography Mission (SRTM). The SRTM consists of a specially modified radar system that will fly onboard the Space Shuttle during an 11-day mission in September 1999. This radar system will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. Its objective is to obtain the most complete high-resolution digital topographic database of the Earth

  11. KSC-99pp0312

    NASA Image and Video Library

    1999-03-23

    In the Multi-Payload Processing Facility, Beverly St. Ange, with the Jet Propulsion Laboratory, wires a biopod, a component of the STS-99 Shuttle Radar Topography Mission (SRTM). The SRTM consists of a specially modified radar system that will fly onboard the Space Shuttle during an 11-day mission in September 1999. This radar system will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. Its objective is to obtain the most complete high-resolution digital topographic database of the Earth

  12. KSC-99pp0330

    NASA Image and Video Library

    1999-03-24

    The Shuttle Radar Topography Mission (SRTM) sits inside the Multi-Payload Processing Facility after the SRTM's cover was removed. The primary payload on mission STS-99, the SRTM consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission scheduled for September 1999. This radar system will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. Its objective is to obtain the most complete high-resolution digital topographic database of the Earth

  13. KSC-99pp0329

    NASA Image and Video Library

    1999-03-24

    Inside the Multi-Payload Processing Facility, the Shuttle Radar Topography Mission (SRTM) is revealed after the lid of its container was removed. The primary payload on mission STS-99, the SRTM consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission scheduled for September 1999. This radar system will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. Its objective is to obtain the most complete high-resolution digital topographic database of the Earth

  14. KSC-99pp0328

    NASA Image and Video Library

    1999-03-24

    Inside the Multi-Payload Processing Facility, the lid covering the Shuttle Radar Topography Mission (SRTM) is lifted from the crate. The primary payload on mission STS-99, the SRTM consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission scheduled for September 1999. This radar system will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. Its objective is to obtain the most complete high-resolution digital topographic database of the Earth

  15. Structure and Dynamics of the Polar Regions of Mars from MGS Topography and Gravity

    NASA Technical Reports Server (NTRS)

    Zuber, Maria T.; Smith, David E.; Neumann, Gregory A.; Lemoine, Frank G.

    2000-01-01

    The Mars Global Surveyor (MGS) spacecraft has been engaged in systematic mapping of Mars since insertion into Mars orbit in September, 1997. The objectives of the MGS mission are to globally map Mars as well as to quantify seasonal changes on the planet. MGS geophysical/geodetic observations of topography from the Mars Orbiter Laser Altimeter (MOLA) and gravity from the Radio Science investigation are providing significant new insights on both static and time-varying aspects of the polar regions of Mars. These observations have implications for polar processes on diurnal seasonal and climatic timescales. Thus far, MOLA has collected over 300 million precise measurements of Martian topography and cloud heights. The instrument has also provided measurements of the width of the backscattered optical pulse and of the 1064 nm reflectivity of the Martian surface and atmosphere. The along-track resolution of MOLA ground shots is approx. 300 m and the across-track spacing in the polar regions is a maximum of about four kilometers. The vertical accuracy of the topography is determined by the precision recovery of spacecraft orbits from the Radio Science investigation, which includes MOLA altimetry in the form of crossovers. This accuracy is currently approx. one meter. The gravity field is derived from X-band Doppler tracking with typical accuracy of 0.03 to 0.05 mm/s averaged over ten seconds. Current Mars gravity fields are to approximately degree and order 80 but are interpretable to the approximate degree and order 60 (spatial resolution < 180 km), which represents an estimate of the approximate coefficient limit of a field that can be produced without a power law constraint on the gravitational field inversion, which is commonly imposed for solution stability. Additional information is contained in the original extended abstract.

  16. Shuttle Topography Data Inform Solar Power Analysis

    NASA Technical Reports Server (NTRS)

    2013-01-01

    The next time you flip on a light switch, there s a chance that you could be benefitting from data originally acquired during the Space Shuttle Program. An effort spearheaded by Jet Propulsion Laboratory (JPL) and the National Geospatial-Intelligence Agency (NGA) in 2000 put together the first near-global elevation map of the Earth ever assembled, which has found use in everything from 3D terrain maps to models that inform solar power production. For the project, called the Shuttle Radar Topography Mission (SRTM), engineers at JPL designed a 60-meter mast that was fitted onto Shuttle Endeavour. Once deployed in space, an antenna attached to the end of the mast worked in combination with another antenna on the shuttle to simultaneously collect data from two perspectives. Just as having two eyes makes depth perception possible, the SRTM data sets could be combined to form an accurate picture of the Earth s surface elevations, the first hight-detail, near-global elevation map ever assembled. What made SRTM unique was not just its surface mapping capabilities but the completeness of the data it acquired. Over the course of 11 days, the shuttle orbited the Earth nearly 180 times, covering everything between the 60deg north and 54deg south latitudes, or roughly 80 percent of the world s total landmass. Of that targeted land area, 95 percent was mapped at least twice, and 24 percent was mapped at least four times. Following several years of processing, NASA released the data to the public in partnership with NGA. Robert Crippen, a member of the SRTM science team, says that the data have proven useful in a variety of fields. "Satellites have produced vast amounts of remote sensing data, which over the years have been mostly two-dimensional. But the Earth s surface is three-dimensional. Detailed topographic data give us the means to visualize and analyze remote sensing data in their natural three-dimensional structure, facilitating a greater understanding of the features and processes taking place on Earth."

  17. Pluto Topography and Composition Map

    NASA Image and Video Library

    2017-09-28

    These maps are from New Horizons' data on the topography (top) and composition (bottom) of Pluto's surface. In the high-resolution topographical map, the highlighted red region is high in elevation. The map below, showing the composition, indicates the same section also contains methane, color-coded in orange. One can see the orange features spread into the fuzzier, lower-resolution data that covers the rest of the globe, meaning those areas, too, are high in methane, and therefore likely to be high in elevation. https://photojournal.jpl.nasa.gov/catalog/PIA22036

  18. Airborne Lidar Simulator for the Lidar Surface Topography (LIST) Mission

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Krainak, Michael A.; Abshire, James B.; Cavanaugh, John; Valett, Susan; Ramos-Izquierdo, Luis

    2010-01-01

    In 2007, the National Research Council (NRC) completed its first decadal survey for Earth science at the request of NASA, NOAA, and USGS. The Lidar Surface Topography (LIST) mission is one of fifteen missions recommended by NRC, whose primary objectives are to map global topography and vegetation structure at 5 m spatial resolution, and to acquire global surface height mapping within a few years. NASA Goddard conducted an initial mission concept study for the LIST mission in 2007, and developed the initial measurement requirements for the mission.

  19. SRTM Anaglyph: Near Zapala, Argentina

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Topographic data provided by the Shuttle Radar Topography Mission can provide many clues to geologic history and processes. This view of an area southwest of Zapala, Argentina, shows a wide diversity of geologic features. The highest peaks (left) appear to be massive (un-layered)crystalline rocks, perhaps granites. To their right (eastward) are tilted and eroded layered rocks, perhaps old lava flows, forming prominent ridges. Farther east and south, more subtle and curvilinear ridges show that the rock layers have not only been tilted but also folded. At the upper right, plateaus that cap the underlying geologic complexities are more recent lava flows -younger than the folding, but older than the current erosional pattern. Landforms in the southeast (lower right) and south-central areas appear partially wind sculpted.

    This anaglyph was produced by first shading a preliminary elevation model from the Shuttle Radar Topography Mission. The stereoscopic effect was then created by generating two differing perspectives, one for each eye. When viewed through special glasses, the result is a vertically exaggerated view of Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard Space Shuttle Endeavour, launched on February 11,2000. The mission used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar that flew twice on Space Shuttle Endeavour in 1994. Shuttle Radar Topography Mission was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration, the National Imagery and Mapping Agency of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Size: 45.9 by 36.0 kilometers ( 28.5 by 22.3 miles) Location: 39.4 deg. South lat., 70.3 deg. West lon. Orientation: North toward the top Image Data: Shaded Shuttle Radar Topography Mission elevation model Date Acquired: February 2000

  20. KSC-00pp0016

    NASA Image and Video Library

    2000-01-12

    STS-99 Pilot Dominic Gorie, under the watchful eye of Capt. George Hoggard, a trainer with the KSC Fire Department, practices driving the M-113, an armored personnel carrier. Part of Terminal Countdown Demonstration Test (TCDT) activities, the M-113 could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. Riding in the rear are Mission Specialists Mamoru Mohri, who is with the National Space Development Agency (NASDA) of Japan, Janet Lynn Kavandi (Ph.D.) and Janice Voss (Ph.D.). TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST

  1. KSC00pp0016

    NASA Image and Video Library

    2000-01-12

    STS-99 Pilot Dominic Gorie, under the watchful eye of Capt. George Hoggard, a trainer with the KSC Fire Department, practices driving the M-113, an armored personnel carrier. Part of Terminal Countdown Demonstration Test (TCDT) activities, the M-113 could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. Riding in the rear are Mission Specialists Mamoru Mohri, who is with the National Space Development Agency (NASDA) of Japan, Janet Lynn Kavandi (Ph.D.) and Janice Voss (Ph.D.). TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST

  2. STS-99 crew check out emergency egress equipment at launch pad during TCDT

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At Launch Pad 39A, STS-99 Mission Specialists Gerhard Thiele (Ph.D.), of the European Space Agency (in front), and Janet Kavandi (Ph.D.) prepare to practice emergency egress procedures with a slidewire basket. Seven slidewires, with flatbottom baskets suspended from each wire, extend from the Fixed Service Structure at the orbiter access arm level. These baskets could provide an escape route for the astronauts until the final 30 seconds of the countdown in case of an emergency. The crew is taking part in Terminal Countdown Demonstration Test (TCDT) activities that provide the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST.

  3. STS-99 crew practice driving an M-113 during TCDT

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-99 Pilot Dominic Gorie, under the watchful eye of Capt. George Hoggard, a trainer with the KSC Fire Department, practices driving the M-113, an armored personnel carrier. Part of Terminal Countdown Demonstration Test (TCDT) activities, the M-113 could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. Riding in the rear are Mission Specialists Mamoru Mohri, who is with the National Space Development Agency (NASDA) of Japan, Janet Lynn Kavandi (Ph.D.) and Janice Voss (Ph.D.). TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST.

  4. Radar image with color as height, Bahia State, Brazil

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This radar image is the first to show the full 240-kilometer-wide (150 mile)swath collected by the Shuttle Radar Topography Mission (SRTM). The area shown is in the state of Bahia in Brazil. The semi-circular mountains along the leftside of the image are the Serra Da Jacobin, which rise to 1100 meters (3600 feet) above sea level. The total relief shown is approximately 800 meters (2600 feet). The top part of the image is the Sertao, a semi-arid region, that is subject to severe droughts during El Nino events. A small portion of the San Francisco River, the longest river (1609 kilometers or 1000 miles) entirely within Brazil, cuts across the upper right corner of the image. This river is a major source of water for irrigation and hydroelectric power. Mapping such regions will allow scientists to better understand the relationships between flooding cycles, drought and human influences on ecosystems.

    This image combines two types of data from the Shuttle Radar Topography Mission. The image brightness corresponds to the strength of the radar signal reflected from the ground, while colors show the elevation as measured by SRTM. The three dark vertical stripes show the boundaries where four segments of the swath are merged to form the full scanned swath. These will be removed in later processing. Colors range from green at the lowest elevations to reddish at the highest elevations.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the German (DLR) and Italian (ASI) space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

  5. KSC-00pp0071

    NASA Image and Video Library

    2000-01-14

    STS-99 Mission Specialist Janice Voss (Ph.D.) suits up in the Operations and Checkout Building, as part of a flight crew equipment fit check, prior to her trip to Launch Pad 39A. The crew is taking part in Terminal Countdown Demonstration Test (TCDT) activities that provide the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST

  6. KSC-00pp0039

    NASA Image and Video Library

    2000-01-13

    In the Operations and Checkout Building, STS-99 Mission Specialist Janet Lynn Kavandi (Ph.D.) is helped by a suit technician during flight crew equipment fit check prior to her trip to Launch Pad 39A. The crew is taking part in Terminal Countdown Demonstration Test (TCDT) activities that provide the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST

  7. Preliminary Correlations of Gravity and Topography from Mars Global Surveyor

    NASA Technical Reports Server (NTRS)

    Zuber, M. T.; Tyler, G. L.; Smith, D. E.; Balmino, G. S.; Johnson, G. L.; Lemoine, F. G.; Neumann, G. A.; Phillips, R. J.; Sjogren, W. L.; Solomon, S. C.

    1999-01-01

    The Mars Global Surveyor (MGS) spacecraft is currently in a 400-km altitude polar mapping orbit and scheduled to begin global mapping of Mars in March of 1999. Doppler tracking data collected in this Gravity Calibration Orbit prior to the nominal mapping mission combined with observations from the MGS Science Phasing Orbit in Spring - Summer 1999 and the Viking and mariner 9 orbiters has led to preliminary high resolution gravity fields. Spherical harmonic expansions have been performed to degree and order 70 and are characterized by the first high spatial resolution coverage of high latitudes. Topographic mapping by the Mars Orbiter Laser Altimeter on MGS is providing measurements of the height of the martian surface with sub-meter vertical resolution and 5-30 m absolute accuracy. Data obtained during the circular mapping phase are expected to provide the first high resolution measurements of surface heights in the southern hemisphere. The combination of gravity and topography measurements provides information on the structure of the planetary interior, i.e. the rigidity and distribution of internal density. The observations can also be used to address the mechanisms of support of surface topography. Preliminary results of correlations of gravity and topography at long planetary wavelengths will be presented and the implications for internal structure will be addressed.

  8. HEND Maps of Epithermal Neutrons

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Observations by NASA's 2001 Mars Odyssey spacecraft show a global view of Mars in intermediate-energy, or epithermal, neutrons. These maps are based on data acquired by the high-energy neutron detector, one of the instruments in the gamma ray spectrometer suite. Soil enriched by hydrogen is indicated by the purple and deep blue colors on the maps, which show a low intensity of epithermal neutrons. Progressively smaller amounts of hydrogen are shown in the colors light blue, green, yellow and red. Hydrogen in the far north is hidden at this time beneath a layer of carbon dioxide frost (dry ice). These observations were acquired during the first two months of mapping operations. Contours of topography are superimposed on these maps for geographic reference.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. Investigators at Arizona State University in Tempe, the University of Arizona in Tucson, and NASA's Johnson Space Center, Houston, operate the science instruments. The gamma-ray spectrometer was provided by the University of Arizona in collaboration with the Russian Aviation and Space Agency, which provided the high-energy neutron detector, and the Los Alamos National Laboratories, New Mexico, which provided the neutron spectrometer. Lockheed Martin Astronautics, Denver, is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  9. Southern Florida, Shaded Relief and Colored Height

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The very low topography of southern Florida is evident in this color-coded shaded relief map generated with data from the Shuttle Radar Topography Mission. The image on the left is a standard view, with the green colors indicating low elevations, rising through yellow and tan, to white at the highest elevations. In this exaggerated view even those highest elevations are only about 60 meters (197 feet) above sea level.

    For the view on the right, elevations below 5 meters (16 feet) above sea level have been colored dark blue, and lighter blue indicates elevations below 10 meters (33 feet). This is a dramatic demonstration of how Florida's low topography, especially along the coastline, make it especially vulnerable to flooding associated with storm surges. Planners can use data like these to predict which areas are in the most danger and help develop mitigation plans in the event of particular flood events.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Science Mission Directorate, Washington, D.C.

    Location: 27 degrees north latitude, 81 degrees west longitude Orientation: North toward the top, Mercator projection Size: 397 by 445 kilometers (246 by 276 miles) Image Data: shaded and colored SRTM elevation model Date Acquired: February 2000

  10. Shaded seafloor relief, backscatter strength, and surficial geology; German Bank, Scotian Shelf, offshore Nova Scotia

    USGS Publications Warehouse

    Todd, B.J.; Valentine, Page C.

    2010-01-01

    This map is part of a three-map series of German Bank, located on the Scotian Shelf off southern Nova Scotia.  This map is the product of a number of surveys (1997-2003) that used a multibeam sonar system to map 5321 km2 of the seafloor.  Other surveys collected geological data for scientific interpretation.  This map sheet shows the seafloor topography of German Bank in shaded-relief view and seafloor depth (coded by colour) at a scale of 1:1000,000.  Topographic contours generated from the multibeam data are shown (in white) on the colour-coded multibeam topography at a depth interval of 20 m.  Bathymetic contours (in blue) outside the multibeam survey area, presented at a depth interval of 10 m, are from the Natural Resource Map series (Canadian Hydrographic Service, 1967, 1971a, 1971b, 1972). Sheet 2 shows coloured backscatter strength in shaded-relief view.  Sheet 3 shows seafloor topography in shaded-relief view with colour-coded surficial geological units.

  11. Mars topography harmonics and geophysical implications

    NASA Technical Reports Server (NTRS)

    Bills, B. G.; Ferrari, A. J.

    1978-01-01

    The paper describes an improved model of Martian global topography which has been obtained by fitting a sixteenth-degree harmonic series to occultation, radar, spectral, and photogrammetric measurements. Empirical elevation data based on photographic data are used to supplement the observations in areas without data. Values for the mean radius, the mean density, and the displacement of the center of the figure from the center of mass are presented. The reported geometric flattening is too great and the reported dynamic flattening is too small for Mars to be homogeneous and hydrostatic. Maps of the data distribution, global topography, and Bouguer gravity anomaly are interpreted in terms of a crustal thickness map which is consistent with gravity, topography, and recent preliminary Viking seismic results.

  12. Venus EPIC Model Spinup Results

    NASA Astrophysics Data System (ADS)

    Dowling, Timothy E.; Herrnstein, A.

    2006-09-01

    We describe the new Venus EPIC model, including its hybrid isentropic/terrain-following vertical coordinate, and explore how topography affects atmospheric spinup from rest. We force the model with the Newtonian cooling used by Lee, Lewis, and Read (2005, Adv. Space Res. 36, 2142-2145) to generate a substantial superrotation in a Venus model without topography, achieving approximately half the desired wind speed. With topography, the Eliassen-Palm flux divergence, a diagnostic tool that maps where eddies have a net effect on the zonal wind, is more steady in time and strongly enhanced at high latitudes in the northern hemisphere by the presence of Ishtar Terra, compared to the case of no topography. In general, the mountains cause the model to achieve a dynamical steady state in a matter of years rather than decades, the northern polar jet to be weaker than its southern counterpart, and the overall magnitude of superrotation to be weaker. Since adding mountains has moved the model superrotation farther below the target, the next step will be to employ more realistic forcing, with attention paid to exactly how the mountains shape the eddy structure, which in turn drives the model's superrotation. This research is funded by the NSF Planetary Astronomy Program and the NASA Planetary Atmospheres Program.

  13. Geophysical models of Western Aphrodite-Niobe region: Venus

    NASA Technical Reports Server (NTRS)

    Marchenkov, K. I.; Saunders, R. S.; Banerdt, W. B.

    1993-01-01

    The new topography and gravitational field data for Venus expressed in spherical harmonics of degree and order up to 50 allow us to analyze the crust-mantle boundary relief and stress state of the Venusian lithosphere. In these models, we consider models in which convection is confined beneath a thick, buoyant lithosphere. We divide the convection regime into an upper mantle and lower mantle component. The lateral scales are smaller than on Earth. In these models, relative to Earth, convection is reflected in higher order terms of the gravitational field. On Venus geoid height and topography are highly correlated, although the topography appears to be largely compensated. We hypothesize that Venus topography for those wavelengths that correlate well with the geoid is partly compensated at the crust-mantle boundary, while for the others compensation may be distributed over the whole mantle. In turn the strong sensitivity of the stresses to parameters of the models of the external layers of Venus together with geological mapping allows us to begin investigations of the tectonics and geodynamics of the planet. For stress calculations we use a new technique of space- and time-dependent Green's response functions using Venus models with rheologically stratified lithosphere and mantle and a ductile lower crust. In the basic model of Venus the mean crust is 50-70 km thick, the density contrast across the crust-mantle boundary is in the range from 0.3 to 0.4 g/cm(exp -3). The thickness of a weak mantle zone may be from 350 to 1000 km. Strong sensitivity of calculated stress to various parameters of the layered model of Venus together with geological mapping and analysis of surface tectonic patterns allow us to investigate the tectonics and geodynamics of the planet. The results are presented in the form of maps of compression-extension and maximum shear stresses in the lithosphere and maps of crust-mantle boundary relief, which can be presented as a function of time. We have modeled the region of Western Aphrodite and the Niobe plains to get reasonable depths of compensation. Crust mantle boundary relief is calculated for Western Aphrodite-Niobe relative to a mean crustal thickness of 50 km. The calculations include the consequences of simple crust models and more complicated models with a weak, ductile lower crust, a strong upper mantle and a weak lower mantle layer.

  14. The Topography Tub Learning Activity

    NASA Astrophysics Data System (ADS)

    Glesener, G. B.

    2014-12-01

    Understanding the basic elements of a topographic map (i.e. contour lines and intervals) is just a small part of learning how to use this abstract representational system as a resource in geologic mapping. Interpretation of a topographic map and matching its features with real-world structures requires that the system is utilized for visualizing the shapes of these structures and their spatial orientation. To enrich students' skills in visualizing topography from topographic maps a spatial training activity has been developed that uses 3D objects of various shapes and sizes, a sighting tool, a plastic basin, water, and transparencies. In the first part of the activity, the student is asked to draw a topographic map of one of the 3D objects. Next, the student places the object into a plastic tub in which water is added to specified intervals of height. The shoreline at each interval is used to reference the location of the contour line the student draws on a plastic inkjet transparency directly above the object. A key part of this activity is the use of a sighting tool by the student to assist in keeping the pencil mark directly above the shoreline. It (1) ensures the accurate positioning of the contour line and (2) gives the learner experience with using a sight before going out into the field. Finally, after the student finishes drawing the contour lines onto the transparency, the student can compare and contrast the two maps in order to discover where improvements in their visualization of the contours can be made. The teacher and/or peers can also make suggestions on ways to improve. A number of objects with various shapes and sizes are used in this exercise to produce contour lines representing the different types of topography the student may encounter while field mapping. The intended outcome from using this visualization training activity is improvement in performance of visualizing topography as the student moves between the topographic representation and corresponding topography in the field.

  15. Comparison of elevation derived from insar data with dem from topography map in Son Dong, Bac Giang, Viet Nam

    NASA Astrophysics Data System (ADS)

    Nguyen, Duy

    2012-07-01

    Digital Elevation Models (DEMs) are used in many applications in the context of earth sciences such as in topographic mapping, environmental modeling, rainfall-runoff studies, landslide hazard zonation, seismic source modeling, etc. During the last years multitude of scientific applications of Synthetic Aperture Radar Interferometry (InSAR) techniques have evolved. It has been shown that InSAR is an established technique of generating high quality DEMs from space borne and airborne data, and that it has advantages over other methods for the generation of large area DEM. However, the processing of InSAR data is still a challenging task. This paper describes InSAR operational steps and processing chain for DEM generation from Single Look Complex (SLC) SAR data and compare a satellite SAR estimate of surface elevation with a digital elevation model (DEM) from Topography map. The operational steps are performed in three major stages: Data Search, Data Processing, and product Validation. The Data processing stage is further divided into five steps of Data Pre-Processing, Co-registration, Interferogram generation, Phase unwrapping, and Geocoding. The Data processing steps have been tested with ERS 1/2 data using Delft Object-oriented Interferometric (DORIS) InSAR processing software. Results of the outcome of the application of the described processing steps to real data set are presented.

  16. Neurocognitive stages of spatial cognitive mapping measured during free exploration of a large-scale virtual environment.

    PubMed

    Plank, Markus; Snider, Joseph; Kaestner, Erik; Halgren, Eric; Poizner, Howard

    2015-02-01

    Using a novel, fully mobile virtual reality paradigm, we investigated the EEG correlates of spatial representations formed during unsupervised exploration. On day 1, subjects implicitly learned the location of 39 objects by exploring a room and popping bubbles that hid the objects. On day 2, they again popped bubbles in the same environment. In most cases, the objects hidden underneath the bubbles were in the same place as on day 1. However, a varying third of them were misplaced in each block. Subjects indicated their certainty that the object was in the same location as the day before. Compared with bubble pops revealing correctly placed objects, bubble pops revealing misplaced objects evoked a decreased negativity starting at 145 ms, with scalp topography consistent with generation in medial parietal cortex. There was also an increased negativity starting at 515 ms to misplaced objects, with scalp topography consistent with generation in inferior temporal cortex. Additionally, misplaced objects elicited an increase in frontal midline theta power. These findings suggest that the successive neurocognitive stages of processing allocentric space may include an initial template matching, integration of the object within its spatial cognitive map, and memory recall, analogous to the processing negativity N400 and theta that support verbal cognitive maps in humans. Copyright © 2015 the American Physiological Society.

  17. Cartography of asteroids and comet nuclei from low resolution data

    NASA Technical Reports Server (NTRS)

    Stooke, Philip J.

    1992-01-01

    High resolution images of non-spherical objects, such as Viking images of Phobos and the anticipated Galileo images of Gaspra, lend themselves to conventional planetary cartographic procedures: control network analysis, stereophotogrammetry, image mosaicking in 2D or 3D, and airbrush mapping. There remains the problem of a suitable map projection for bodies which are extremely elongated or irregular in shape. Many bodies will soon be seen at lower resolution (5-30 pixels across the disk) in images from speckle interferometry, the Hubble Space Telescope, ground-based radar, distinct spacecraft encounters, and closer images degraded by smear. Different data with similar effective resolutions are available from stellar occultations, radar or lightcurve convex hulls, lightcurve modeling of albedo variations, and cometary jet modeling. With such low resolution, conventional methods of shape determination will be less useful or will fail altogether, leaving limb and terminator topography as the principal sources of topographic information. A method for shape determination based on limb and terminator topography was developed. It has been applied to the nucleus of Comet Halley and the jovian satellite Amalthea. The Amalthea results are described to give an example of the cartographic possibilities and problems of anticipated data sets.

  18. Topography changes monitoring of small islands using camera drone

    NASA Astrophysics Data System (ADS)

    Bang, E.

    2017-12-01

    Drone aerial photogrammetry was conducted for monitoring topography changes of small islands in the east sea of Korea. Severe weather and sea wave is eroding the islands and sometimes cause landslide and falling rock. Due to rugged cliffs in all direction and bad accessibility, ground based survey methods are less efficient in monitoring topography changes of the whole area. Camera drones can provide digital images and movie in every corner of the islands, and drone aerial photogrammetry is powerful to get precise digital surface model (DSM) for a limited area. We have got a set of digital images to construct a textured 3D model of the project area every year since 2014. Flight height is in less than 100m from the top of those islands to get enough ground sampling distance (GSD). Most images were vertically captured with automatic flights, but we also flied drones around the islands with about 30°-45° camera angle for constructing 3D model better. Every digital image has geo-reference, but we set several ground control points (GCPs) on the islands and their coordinates were measured with RTK surveying methods to increase the absolute accuracy of the project. We constructed 3D textured model using photogrammetry tool, which generates 3D spatial information from digital images. From the polygonal model, we could get DSM with contour lines. Thematic maps such as hill shade relief map, aspect map and slope map were also processed. Those maps make us understand topography condition of the project area better. The purpose of this project is monitoring topography change of these small islands. Elevation difference map between DSMs of each year is constructed. There are two regions showing big negative difference value. By comparing constructed textured models and captured digital images around these regions, it is checked that a region have experienced real topography change. It is due to huge rock fall near the center of the east island. The size of fallen rock can be measured on the digital model exactly, which is about 13m*6m*2m (height*width*thickness). We believe that drone aerial photogrammetry can be an efficient topography changes detection method for a complicated terrain area.

  19. EAARL coastal topography and imagery–Western Louisiana, post-Hurricane Rita, 2005: First surface

    USGS Publications Warehouse

    Bonisteel-Cormier, Jamie M.; Wright, Wayne C.; Fredericks, Alexandra M.; Klipp, Emily S.; Nagle, Doug B.; Sallenger, Asbury H.; Brock, John C.

    2013-01-01

    These remotely sensed, geographically referenced color-infrared (CIR) imagery and elevation measurements of lidar-derived first-surface (FS) topography datasets were produced by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, Florida, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, Virginia. This project provides highly detailed and accurate datasets of a portion of the Louisiana coastline beachface, acquired post-Hurricane Rita on September 27-28 and October 2, 2005. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the National Aeronautics and Space Administration (NASA) Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color-infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the "bare earth" under vegetation from a point cloud of last return elevations. For more information about similar projects, please visit the Lidar for Science and Resource Management Website.

  20. STS-99 Crew Interviews: Janet L. Kavandi

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This NASA JSC video release is one in a series of space shuttle astronaut interviews and was recorded Aug. 9, 1999. Mission Specialist, Janet L. Kavandi, Ph.D. provides answers to questions regarding her role in the Shuttle Radar Topography Mission (SRTM), mission objectives, which center on the three-dimensional mapping of the entire Earth's surface, shuttle imaging radar, payload mast deploy and retraction, data recording vs. downlinking, the fly cast maneuver, applications of recorded data, international participation (DLR), the National Imaging and Mapping Agency (NIMA), and EarthCam (educational middle school project). The interview is summed up by Dr. Kavandi explaining that the mission's objective, if successful, will result in the the most complete high-resolution digital topographic database of the Earth.

  1. KSC-99pp0311

    NASA Image and Video Library

    1999-03-23

    In the Multi-Payload Processing Facility, Mary Reaves and Richard Rainen, with the Jet Propulsion Laboratory, work on the carrier and horizontal antenna mast for the STS-99 Shuttle Radar Topography Mission (SRTM) while Larry Broms watches. The SRTM consists of a specially modified radar system that will fly onboard the Space Shuttle during an 11-day mission in September 1999. This radar system will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. Its objective is to obtain the most complete high-resolution digital topographic database of the Earth

  2. A comparison of spatial analysis methods for the construction of topographic maps of retinal cell density.

    PubMed

    Garza-Gisholt, Eduardo; Hemmi, Jan M; Hart, Nathan S; Collin, Shaun P

    2014-01-01

    Topographic maps that illustrate variations in the density of different neuronal sub-types across the retina are valuable tools for understanding the adaptive significance of retinal specialisations in different species of vertebrates. To date, such maps have been created from raw count data that have been subjected to only limited analysis (linear interpolation) and, in many cases, have been presented as iso-density contour maps with contour lines that have been smoothed 'by eye'. With the use of stereological approach to count neuronal distribution, a more rigorous approach to analysing the count data is warranted and potentially provides a more accurate representation of the neuron distribution pattern. Moreover, a formal spatial analysis of retinal topography permits a more robust comparison of topographic maps within and between species. In this paper, we present a new R-script for analysing the topography of retinal neurons and compare methods of interpolating and smoothing count data for the construction of topographic maps. We compare four methods for spatial analysis of cell count data: Akima interpolation, thin plate spline interpolation, thin plate spline smoothing and Gaussian kernel smoothing. The use of interpolation 'respects' the observed data and simply calculates the intermediate values required to create iso-density contour maps. Interpolation preserves more of the data but, consequently includes outliers, sampling errors and/or other experimental artefacts. In contrast, smoothing the data reduces the 'noise' caused by artefacts and permits a clearer representation of the dominant, 'real' distribution. This is particularly useful where cell density gradients are shallow and small variations in local density may dramatically influence the perceived spatial pattern of neuronal topography. The thin plate spline and the Gaussian kernel methods both produce similar retinal topography maps but the smoothing parameters used may affect the outcome.

  3. SRTM Radar Image, Wrapped Color as Height/EarthKam Optical Honolulu, Hawaii

    NASA Technical Reports Server (NTRS)

    2000-01-01

    These two images of the eastern part of the island of Oahu, Hawaii provide information on regional topography and show the relationship between urban development and sensitive ecosystems. On the left is a topographic radar image collected by the Shuttle Radar Topography Mission (SRTM.) On the right is an optical image acquired by a digital camera on the Space Shuttle Endeavour, which carried SRTM. Features of interest in this scene include Diamond Head (an extinct volcano at the lower center), Waikiki Beach (just left of Diamond Head), the Punchbowl National Cemetery (another extinct volcano, at the foot of the Koolau Mountains), downtown Honolulu and Honolulu airport (lower left of center), and Pearl Harbor (at the left edge.)

    The topography shows the steep, high central part of the island surrounded by flatter coastal areas. The optical image shows the urban areas and a darker, forested region on the mountain slopes. The clouds in the optical image and the black areas on the topographic image are both a result of the steep topography. In this tropical region, high mountain peaks are usually covered in clouds. These steep peaks also cause shadows in the radar data, resulting in missing data 'holes.' A second pass over the island was obtained by SRTM and will be used to fill in the holes.

    The left image combines two types of SRTM data. Brightness corresponds to the strength of the radar signal reflected from the ground, while colors show the elevation. Each color cycle (from pink through blue and back to pink) represents 400 meters (1,300 feet) of elevation difference, like the contour lines on a topographic map. This image contains about 2,400 meters (8,000 feet) of total relief. The optical image was acquired by the Shuttle Electronic Still Camera with a lens focal length of 64 millimeters (2.5 inches) for the Earth Knowledge Acquired by Middle school students (EarthKAM) project. EarthKAM has flown on five space shuttle missions since 1996. Additional information about EarthKAM is available at http://Earthkam.sdsc.edu/geo/ .

    The Shuttle Radar Topography Mission (SRTM) was carried onboard the Space Shuttle Endeavor, which launched on February 11,2000. It uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar(SIR-C/X-SAR) that flew twice on the Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the German (DLR) and Italian (ASI)space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise,Washington, DC.

    Size: 35 by 35 kilometers (22 by 22 miles) Location: 21.4 degrees North latitude, 157.8 degrees West longitude Orientation: North at top Original Data Resolution: SRTM, 30 meters (99 feet), EarthKAM Electronic Still Camera, 40 meters (132 feet) Date Acquired: SRTM, February 18, 2000; EarthKAM, February 12, 2000 Image: NASA/JPL/NIMA

  4. Imaging Laser Altimetry in the Amazon: Mapping Large Areas of Topography, Vegetation Height and Structure, and Biomass

    NASA Technical Reports Server (NTRS)

    Blair, J. Bryan; Nelson, B.; dosSantos, J.; Valeriano, D.; Houghton, R.; Hofton, M.; Lutchke, S.; Sun, Q.

    2002-01-01

    A flight mission of NASA GSFC's Laser Vegetation Imaging Sensor (LVIS) is planned for June-August 2003 in the Amazon region of Brazil. The goal of this flight mission is to map the vegetation height and structure and ground topography of a large area of the Amazon. This data will be used to produce maps of true ground topography, vegetation height, and estimated above-ground biomass and for comparison with and potential calibration of Synthetic Aperture Radar (SAR) data. Approximately 15,000 sq. km covering various regions of the Amazon will be mapped. The LVIS sensor has the unique ability to accurately sense the ground topography beneath even the densest of forest canopies. This is achieved by using a high signal-to-noise laser altimeter to detect the very weak reflection from the ground that is available only through small gaps in between leaves and between tree canopies. Often the amount of ground signal is 1% or less of the total returned echo. Once the ground elevation is identified, that is used as the reference surface from which we measure the vertical height and structure of the vegetation. Test data over tropical forests have shown excellent correlation between LVIS measurements and biomass, basal area, stem density, ground topography, and canopy height. Examples of laser altimetry data over forests and the relationships to biophysical parameters will be shown. Also, recent advances in the LVIS instrument will be discussed.

  5. KSC-2009-2671

    NASA Image and Video Library

    2009-04-15

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., technicians are testing the range of motion on the high-gain antenna for the Lunar Reconnaissance Orbiter. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. Launch of LRO is targeted no earlier than June 2. Photo credit: NASA/Jim Grossmann

  6. KSC-2009-2673

    NASA Image and Video Library

    2009-04-15

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., technicians are testing the range of motion on the high-gain antenna for the Lunar Reconnaissance Orbiter. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. Launch of LRO is targeted no earlier than June 2. Photo credit: NASA/Jim Grossmann

  7. KSC-2009-2672

    NASA Image and Video Library

    2009-04-15

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., technicians are testing the range of motion on the high-gain antenna for the Lunar Reconnaissance Orbiter. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. Launch of LRO is targeted no earlier than June 2. Photo credit: NASA/Jim Grossmann

  8. KSC-2009-2675

    NASA Image and Video Library

    2009-04-15

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., technicians are testing the range of motion on the high-gain antenna for the Lunar Reconnaissance Orbiter. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. Launch of LRO is targeted no earlier than June 2. Photo credit: NASA/Jim Grossmann

  9. KSC-2009-2677

    NASA Image and Video Library

    2009-04-15

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., the range of motion is tested on the high-gain antenna for the Lunar Reconnaissance Orbiter. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. Launch of LRO is targeted no earlier than June 2. Photo credit: NASA/Jim Grossmann

  10. KSC-2009-2674

    NASA Image and Video Library

    2009-04-15

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., the range of motion is being tested on the high-gain antenna for the Lunar Reconnaissance Orbiter. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. Launch of LRO is targeted no earlier than June 2. Photo credit: NASA/Jim Grossmann

  11. KSC-2009-2676

    NASA Image and Video Library

    2009-04-15

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., technicians are testing the range of motion on the high-gain antenna for the Lunar Reconnaissance Orbiter. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. Launch of LRO is targeted no earlier than June 2. Photo credit: NASA/Jim Grossmann

  12. KSC-2009-2698

    NASA Image and Video Library

    2009-04-16

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., technicians begin stowing NASA's Lunar Reconnaissance Orbiter's high-gain antenna. The antenna completed a range of motion test. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. Launch of LRO is targeted no earlier than June 2. Photo credit: NASA/Jack Pfaller

  13. Free-air and Bouguer gravity anomalies and the Martian crustal dichotomy

    NASA Technical Reports Server (NTRS)

    Frey, Herbert; Bills, Bruce G.; Kiefer, Walter S.; Nerem, R. Steven; Roark, James H.; Zuber, Maria T.

    1993-01-01

    Free-air and Bouguer gravity anomalies from a 50x50 field, derived from re-analysis of Viking Orbiter and Mariner 9 tracking data and using a 50x50 expansion of the current Mars topography and the GSFC degree 50 geoid as the equipotential reference surface, with the Martian crustal dichotomy are compared. The spherical harmonic topography used has zero mean elevation, and differs from the USGS maps by about 2 km. In this field the dichotomy boundary in eastern Mars lies mostly at -1 to -2 km elevation. Bouguer gravity anomalies are shown on a map of Noachian, Hesperian, and Amazonian age terrains, simplified from current geologic maps. The map is centered at 300 deg W to show the continuity of the dichotomy boundary. Contour interval is 100 mgals. Gravity and topography were compared along approximately 40 profiles oriented parallel to the dichotomy boundary topographic gradient, to determine how the geophysical character of the boundary changes along its length and what this implies for its origin and development.

  14. Venus gravity - Analysis of Beta Regio

    NASA Technical Reports Server (NTRS)

    Esposito, P. B.; Sjogren, W. L.; Mottinger, N. A.; Bills, B. G.; Abbott, E.

    1982-01-01

    Radio tracking data acquired over Beta Regio were analyzed to obtain a surface mass distribution from which a detailed vertical gravity field was derived. In addition, a corresponding vertical gravity field was evaluated solely from the topography of the Beta region. A comparison of these two maps confirms the strong correlation between gravity and topography which was previously seen in line-of-sight gravity maps. It also demonstrates that the observed gravity is a significant fraction of that predicted from the topography alone. The effective depth of complete isostatic compensation for the Beta region is estimated to be 330 km, which is somewhat deeper than that found for other areas of Venus.

  15. KSC-99pp1385

    NASA Image and Video Library

    1999-12-03

    KENNEDY SPACE CENTER, FLA. -- Lights frame the orbiter Endeavour as it is lowered onto the platform for mating with the external tank and solid rocket boosters. Space Shuttle Endeavour is targeted for launch on mission STS-99 Jan. 13, 2000, at 1:11 p.m. EST. STS-99 is the Shuttle Radar Topography Mission, an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle

  16. KSC-99pp1383

    NASA Image and Video Library

    1999-12-03

    KENNEDY SPACE CENTER, FLA. -- In high bay 1 of the VAB, the orbiter Endeavour is lowered for mating with the external tank below (on right), and the solid rocket boosters. Space Shuttle Endeavour is targeted for launch on mission STS-99 Jan. 13, 2000, at 1:11 p.m. EST. STS-99 is the Shuttle Radar Topography Mission, an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle

  17. KSC-99pp0658

    NASA Image and Video Library

    1999-05-25

    STS-99 Mission Specialist Janice Voss conducts a system verification test on the Shuttle Radar Topography Mission in the Space Station Processing Facility. The primary payload on mission STS-99, the SRTM consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission targeted for launch Sept. 16, 1999. This radar system will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle

  18. KSC-99pp1373

    NASA Image and Video Library

    1999-12-02

    KENNEDY SPACE CENTER, FLA. -- Orbiter Endeavour rolls inside the Vehicle Assembly Building where it will be lifted to vertical and mated to the external tank and solid rocket boosters in high bay 1. Space Shuttle Endeavour is targeted for launch on mission STS-99 Jan. 13, 2000 at 1:11 p.m. EST. STS-99 is the Shuttle Radar Topography Mission, an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle

  19. KSC-99pp1381

    NASA Image and Video Library

    1999-12-03

    KENNEDY SPACE CENTER, FLA. -- Inside the VAB, orbiter Endeavour is lifted to a vertical position before being mated to the external tank (bottom of photo) and solid rocket boosters in high bay 1. Space Shuttle Endeavour is targeted for launch on mission STS-99 Jan. 13, 2000, at 1:11 p.m. EST. STS-99 is the Shuttle Radar Topography Mission, an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle

  20. KSC-99pp1372

    NASA Image and Video Library

    1999-12-02

    KENNEDY SPACE CENTER, FLA. -- Orbiter Endeavour rolls into the Vehicle Assembly Building on its orbiter transfer vehicle. In high bay 1 it will be mated to the external tank and solid rocket boosters. Space Shuttle Endeavour is targeted for launch on mission STS-99 Jan. 13, 2000 at 1:11 p.m. EST. STS-99 is the Shuttle Radar Topography Mission, an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle

  1. An anatomical and functional topography of human auditory cortical areas

    PubMed Central

    Moerel, Michelle; De Martino, Federico; Formisano, Elia

    2014-01-01

    While advances in magnetic resonance imaging (MRI) throughout the last decades have enabled the detailed anatomical and functional inspection of the human brain non-invasively, to date there is no consensus regarding the precise subdivision and topography of the areas forming the human auditory cortex. Here, we propose a topography of the human auditory areas based on insights on the anatomical and functional properties of human auditory areas as revealed by studies of cyto- and myelo-architecture and fMRI investigations at ultra-high magnetic field (7 Tesla). Importantly, we illustrate that—whereas a group-based approach to analyze functional (tonotopic) maps is appropriate to highlight the main tonotopic axis—the examination of tonotopic maps at single subject level is required to detail the topography of primary and non-primary areas that may be more variable across subjects. Furthermore, we show that considering multiple maps indicative of anatomical (i.e., myelination) as well as of functional properties (e.g., broadness of frequency tuning) is helpful in identifying auditory cortical areas in individual human brains. We propose and discuss a topography of areas that is consistent with old and recent anatomical post-mortem characterizations of the human auditory cortex and that may serve as a working model for neuroscience studies of auditory functions. PMID:25120426

  2. STS-99 crew practice driving an M-113 during TCDT

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-99 Mission Specialist Mamoru Mohri, who is with the National Space Development Agency (NASDA) of Japan, practices driving an armored personnel carrier under the watchful eye of Capt. George Hoggard (riding on the front), trainer with the KSC Fire Department. The vehicle is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities and could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. Riding in the rear of the carrier are Mission Specialists Gerhard Thiele (center), Janice Voss (Ph.D.), and Commander Kevin Kregel. TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station- derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST.

  3. Independent psychophysical measurement of experimental modulations in the somatotopy of cutaneous heat-pain stimuli.

    PubMed

    Trojan, Jörg; Kleinböhl, Dieter; Stolle, Annette M; Andersen, Ole K; Hölzl, Rupert; Arendt-Nielsen, Lars

    2009-03-01

    Distortions of the body image have been repeatedly reported for various clinical conditions, but direct experimental analyses of the perceptual changes involved are still scarce. In addition, most experimental studies rely on cerebral activation patterns to assess neuroplastic changes in central representation, although the relationship between cerebral topography and the topology of the perceptual space is not clear. This study examines whether the direct psychophysical mapping approach we introduced recently (Trojan et al., Brain Res 2006;1120:106-113) is capable of tracking perceptual distortions in the somatotopic representation of heat-pain stimuli. Eleven healthy participants indicated the perceived positions of CO(2) laser stimuli, repetitively presented to the dorsal forearm, with a 3D tracking system in two consecutive sessions, separated by the topical application of capsaicin cream. In line with earlier reports, we expected that the resulting individual perceptual maps (i.e., one-dimensional projections of the perceived positions onto the forearm surface) would be subject to modulation through the altered sensory input, to be measured in terms of altered topological parameters. We found that the topology and metrics of the somatotopic representation were well preserved in the second session, but that the perceptual map was compressed to a smaller range in 9 out of 11 participants. By providing dimensional measures of perceptual representations, perceptual maps constitute an independent, genuinely psychological complement to the topography of cortical activations measured with neuroimaging methods. In addition, we expect them to be useful in diagnosing pathological changes in body perception accompanying chronic pain and other disorders.

  4. BedMachine v3: Complete Bed Topography and Ocean Bathymetry Mapping of Greenland From Multibeam Echo Sounding Combined With Mass Conservation

    NASA Astrophysics Data System (ADS)

    Morlighem, M.; Williams, C. N.; Rignot, E.; An, L.; Arndt, J. E.; Bamber, J. L.; Catania, G.; Chauché, N.; Dowdeswell, J. A.; Dorschel, B.; Fenty, I.; Hogan, K.; Howat, I.; Hubbard, A.; Jakobsson, M.; Jordan, T. M.; Kjeldsen, K. K.; Millan, R.; Mayer, L.; Mouginot, J.; Noël, B. P. Y.; O'Cofaigh, C.; Palmer, S.; Rysgaard, S.; Seroussi, H.; Siegert, M. J.; Slabon, P.; Straneo, F.; van den Broeke, M. R.; Weinrebe, W.; Wood, M.; Zinglersen, K. B.

    2017-11-01

    Greenland's bed topography is a primary control on ice flow, grounding line migration, calving dynamics, and subglacial drainage. Moreover, fjord bathymetry regulates the penetration of warm Atlantic water (AW) that rapidly melts and undercuts Greenland's marine-terminating glaciers. Here we present a new compilation of Greenland bed topography that assimilates seafloor bathymetry and ice thickness data through a mass conservation approach. A new 150 m horizontal resolution bed topography/bathymetric map of Greenland is constructed with seamless transitions at the ice/ocean interface, yielding major improvements over previous data sets, particularly in the marine-terminating sectors of northwest and southeast Greenland. Our map reveals that the total sea level potential of the Greenland ice sheet is 7.42 ± 0.05 m, which is 7 cm greater than previous estimates. Furthermore, it explains recent calving front response of numerous outlet glaciers and reveals new pathways by which AW can access glaciers with marine-based basins, thereby highlighting sectors of Greenland that are most vulnerable to future oceanic forcing.

  5. Polar Views of Titan Global Topography

    NASA Image and Video Library

    2013-05-15

    These polar maps show the first global, topographic mapping of Saturn moon Titan, using data from NASA Cassini mission. To create these maps, scientists employed a mathematical process called splining.

  6. In search of the motor engram: motor map plasticity as a mechanism for encoding motor experience.

    PubMed

    Monfils, Marie-H; Plautz, Erik J; Kleim, Jeffrey A

    2005-10-01

    Motor skill acquisition occurs through modification and organization of muscle synergies into effective movement sequences. The learning process is reflected neurophysiologically as a reorganization of movement representations within the primary motor cortex, suggesting that the motor map is a motor engram. However, the specific neural mechanisms underlying map plasticity are unknown. Here the authors review evidence that 1) motor map topography reflects the capacity for skilled movement, 2) motor skill learning induces reorganization of motor maps in a manner that reflects the kinematics of acquired skilled movement, 3) map plasticity is supported by a reorganization of cortical microcircuitry involving changes in synaptic efficacy, and 4) motor map integrity and topography are influenced by various neurochemical signals that coordinate changes in cortical circuitry to encode motor experience. Finally, the role of motor map plasticity in recovery of motor function after brain damage is discussed.

  7. SRTM Data Release for Eurasia, Index Map and Colored Height

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The colored regions of this map show the extent of digital elevation data recently released by the Shuttle Radar Topography Mission (SRTM). This release includes data for most of Europe and Asia plus numerous islands in the Indian and Pacific Oceans. SRTM flew on board the Space Shuttle Endeavour in February 2000 and used an interferometric radar system to map the topography of Earth's landmass between latitudes 56 degrees south and 60 degrees north.

    The data were processed into geographic 'tiles,' each of which represents one by one degree of latitude and longitude. A degree of latitude measures 111 kilometers (69 miles) north-south, and a degree of longitude measures 111 kilometers or less east-west, decreasing away from the equator. The data are being released to the public on a continent-by-continent basis. This Eurasia segment includes 5,940 tiles, more than a third of the total data set. Previous releases covered North America and South America. Forthcoming releases will include Africa-Arabia and Australia plus an 'Islands' release for those islands not included in the continental releases. Together these data releases constitute the world's first high-resolution, near-global elevation model. The resolution of the publicly released data is three arcseconds (1/1,200 of a degree of latitude and longitude), which is about 90 meters (295 feet).

    European coverage in the current data release stretches eastward from the British Isles and the Iberian Peninsula in the west, across the Alps and Carpathian Mountains, as well as the Northern European Plain, to the Ural and Caucasus Mountains bordering Asia. The Asian coverage includes a great diversity of landforms, including the Tibetan Plateau, Tarin Basin, Mongolian Plateau, and the mountains surrounding Lake Baikal, the world's deepest lake. Mt. Everest in the Himalayas, at 8,848 meters (29,029 feet) is the world's highest mountain. From India's Deccan Plateau, to Southeast Asia, coastal China, and Korea, various landforms place constraints upon land use planning for a great population. Volcanoes in the East Indies, the Philippines, Japan, and the Kamchatka Peninsula form the western part of the 'Ring of Fire' around the Pacific Ocean.

    Many of these regions were previously very poorly mapped due to persistent cloud cover or the inaccessibility of the terrain. Digital elevation data, such as provided by SRTM, are particularly in high demand by scientists studying earthquakes, volcanism, and erosion patterns for use in mapping and modeling hazards to human habitation. But the shape of Earth's surface affects nearly every natural process and human endeavor that occurs there, so elevation data are used in a wide range of applications.

    In this index map color-coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations. The large, very dark green feature in western Asia is the Caspian Sea, which is below sea level. Blue areas on the map represent water within the mapped tiles, each of which includes shorelines or islands.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Orientation: North toward the top Image Data: Colored SRTM elevation model Date Acquired: February 2000

  8. Basin-ring spacing on the Moon, Mercury, and Mars

    USGS Publications Warehouse

    Pike, R.J.; Spudis, P.D.

    1987-01-01

    Radial spacing between concentric rings of impact basins that lack central peaks is statistically similar and nonrandom on the Moon, Mercury, and Mars, both inside and outside the main ring. One spacing interval, (2.0 ?? 0.3)0.5D, or an integer multiple of it, dominates most basin rings. Three analytical approaches yield similar results from 296 remapped or newly mapped rings of 67 multi-ringed basins: least-squares of rank-grouped rings, least-squares of rank and ring diameter for each basin, and averaged ratios of adjacent rings. Analysis of 106 rings of 53 two-ring basins by the first and third methods yields an integer multiple (2 ??) of 2.00.5D. There are two exceptions: (1) Rings adjacent to the main ring of multi-ring basins are consistently spaced at a slightly, but significantly, larger interval, (2.1 ?? 0.3)0.5D; (2) The 88 rings of 44 protobasins (large peak-plus-inner-ring craters) are spaced at an entirely different interval (3.3 ?? 0.6)0.5D. The statistically constant and target-invariant spacing of so many rings suggests that this characteristic may constrain formational models of impact basins on the terrestrial planets. The key elements of such a constraint include: (1) ring positions may not have been located by the same process(es) that formed ring topography; (2) ring location and emplacement of ring topography need not be coeval; (3) ring location, but not necessarily the mode of ring emplacement, reflects one process that operated at the time of impact; and (4) the process yields similarly-disposed topographic features that are spatially discrete at 20.5D intervals, or some multiple, rather than continuous. These four elements suggest that some type of wave mechanism dominates the location, but not necessarily the formation, of basin rings. The waves may be standing, rather than travelling. The ring topography itself may be emplaced at impact by this and/or other mechanisms and may reflect additional, including post-impact, influences. ?? 1987 D. Reidel Publishing Company.

  9. NASA Technologists Embrace Laser Instrument Challenge

    NASA Image and Video Library

    2013-11-06

    Goddard scientist David Harding and Goddard technologist Tony Yu are developing a lidar system that could meet an ambitious requirement of the proposed LIST mission. ---------- In 2007, the National Research Council threw down a challenge: Design a space-based laser altimeter that could measure the height of Earth's surface everywhere to within a mere 10 centimeters — all at 5-meter resolution. To this day, some believe it can't be done. Goddard scientist Dave Harding begs to differ. He and his team have embraced the challenge and are developing a laser altimeter that could provide the data from a berth onboard the NRC-proposed Lidar Surface Topography, or LIST, mission. It would generate highly detailed maps of topography and vegetation that scientists could use to forecast and respond to natural hazards and study carbon storage in forests. Read more: 1.usa.gov/17N3Bql NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram Credit: Bill Hrybck/NASA

  10. KSC00pp0020

    NASA Image and Video Library

    2000-01-12

    Under the watchful eye of Capt. George Hoggard, a trainer with the KSC Fire Department, STS-99 Commander Kevin Kregel practices driving the M-113, an armored personnel carrier. Part of Terminal Countdown Demonstration Test (TCDT) activities, the M-113 could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST

  11. KSC-00pp0020

    NASA Image and Video Library

    2000-01-12

    Under the watchful eye of Capt. George Hoggard, a trainer with the KSC Fire Department, STS-99 Commander Kevin Kregel practices driving the M-113, an armored personnel carrier. Part of Terminal Countdown Demonstration Test (TCDT) activities, the M-113 could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST

  12. KSC-00pp0017

    NASA Image and Video Library

    2000-01-12

    During Terminal Countdown Demonstration Test (TCDT) activities, STS-99 Mission Specialist Janice Voss (Ph.D.) is ready to practice driving the M-113, an armored personnel carrier. Part of Terminal Countdown Demonstration Test (TCDT) activities, the M-113 could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. In the rear (right) is Commander Kevin Kregel. TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST

  13. STS-99 crew practice driving an M-113 during TCDT

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During Terminal Countdown Demonstration Test (TCDT) activities, STS-99 Commander Kevin Kregel is ready to practice driving the M- 113, an armored personnel carrier. Part of Terminal Countdown Demonstration Test (TCDT) activities, the M-113 could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST.

  14. STS-99 crew practice driving an M-113 during TCDT

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During Terminal Countdown Demonstration Test (TCDT) activities, STS-99 Mission Specialist Janet Lynn Kavandi (Ph.D.) is ready to practice driving the M-113, an armored personnel carrier. Part of Terminal Countdown Demonstration Test (TCDT) activities, the M- 113 could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station- derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST.

  15. STS-99 crew practice driving an M-113 during TCDT

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Under the watchful eye of Capt. George Hoggard, a trainer with the KSC Fire Department, STS-99 Commander Kevin Kregel practices driving the M-113, an armored personnel carrier. Part of Terminal Countdown Demonstration Test (TCDT) activities, the M-113 could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST.

  16. High-resolution gravity model of Venus

    NASA Technical Reports Server (NTRS)

    Reasenberg, R. D.; Goldberg, Z. M.

    1992-01-01

    The anomalous gravity field of Venus shows high correlation with surface features revealed by radar. We extract gravity models from the Doppler tracking data from the Pioneer Venus Orbiter by means of a two-step process. In the first step, we solve the nonlinear spacecraft state estimation problem using a Kalman filter-smoother. The Kalman filter has been evaluated through simulations. This evaluation and some unusual features of the filter are discussed. In the second step, we perform a geophysical inversion using a linear Bayesian estimator. To allow an unbiased comparison between gravity and topography, we use a simulation technique to smooth and distort the radar topographic data so as to yield maps having the same characteristics as our gravity maps. The maps presented cover 2/3 of the surface of Venus and display the strong topography-gravity correlation previously reported. The topography-gravity scatter plots show two distinct trends.

  17. Ten-m3 Is Required for the Development of Topography in the Ipsilateral Retinocollicular Pathway

    PubMed Central

    Dharmaratne, Nuwan; Glendining, Kelly A.; Young, Timothy R.; Tran, Heidi; Sawatari, Atomu; Leamey, Catherine A.

    2012-01-01

    Background The alignment of ipsilaterally and contralaterally projecting retinal axons that view the same part of visual space is fundamental to binocular vision. While much progress has been made regarding the mechanisms which regulate contralateral topography, very little is known of the mechanisms which regulate the mapping of ipsilateral axons such that they align with their contralateral counterparts. Results Using the advantageous model provided by the mouse retinocollicular pathway, we have performed anterograde tracing experiments which demonstrate that ipsilateral retinal axons begin to form terminal zones (TZs) in the superior colliculus (SC), within the first few postnatal days. These appear mature by postnatal day 11. Importantly, TZs formed by ipsilaterally-projecting retinal axons are spatially offset from those of contralaterally-projecting axons arising from the same retinotopic location from the outset. This pattern is consistent with that required for adult visuotopy. We further demonstrate that a member of the Ten-m/Odz/Teneurin family of homophilic transmembrane glycoproteins, Ten-m3, is an essential regulator of ipsilateral retinocollicular topography. Ten-m3 mRNA is expressed in a high-medial to low-lateral gradient in the developing SC. This corresponds topographically with its high-ventral to low-dorsal retinal gradient. In Ten-m3 knockout mice, contralateral ventrotemporal axons appropriately target rostromedial SC, whereas ipsilateral axons exhibit dramatic targeting errors along both the mediolateral and rostrocaudal axes of the SC, with a caudal shift of the primary TZ, as well as the formation of secondary, caudolaterally displaced TZs. In addition to these dramatic ipsilateral-specific mapping errors, both contralateral and ipsilateral retinocollicular TZs exhibit more subtle changes in morphology. Conclusions We conclude that important aspects of adult visuotopy are established via the differential sensitivity of ipsilateral and contralateral axons to intrinsic guidance cues. Further, we show that Ten-m3 plays a critical role in this process and is particularly important for the mapping of the ipsilateral retinocollicular pathway. PMID:23028443

  18. A scanning radar altimeter for mapping continental topography

    NASA Technical Reports Server (NTRS)

    Dixon, T. H.

    1986-01-01

    Topographic information constitutes a fundamental data set for the Earth sciences. In the geological and geophysical sciences, topography combined with gravitational information provides an important constraint on the structure and rheologic properties of the crust and lithosphere. Detailed topography data can also be used to map offsets associated with faulting and to reveal the effects of tectonic deformation. In the polar regions, elevation data form a crucial but as yet largely unavailable resource for studying ice sheet mass balance and ice flow dynamics. The vast Antarctic ice sheet is the largest fresh water reservoir on Earth and is an important influence on ocean circulation and global climate. However, our knowledge of its stability is so limited that we cannot even specify whether the Antarctic ice sheet is growing or shrinking. It is clear that there is need for high quality global topography data. A summary of potential applications with their resolution requirements is shown.

  19. Mapping the Topography of Europa: The Galileo-Clipper Story

    NASA Astrophysics Data System (ADS)

    Schenk, Paul M.

    2014-11-01

    The renewed effort to return to Europa for global mapping and landing site selection raises the question: What do we know about Europa topography and how do we know it? The question relates to geologic questions of feature formation, to the issue of ice shell thickness, mechanical strength, and internal activity, and to landing hazards. Our topographic data base for Europa is sparse indeed (no global map is possible), but we are not without hope. Two prime methods have been employed in our mapping program are stereo image and shape-from-shading (PC) slope analyses. On Europa, we are fortunate that many PC-DEM areas are also controlled by stereo-DEMs, mitigating the long-wavelength uncertainties in the PC data. Due to the Galileo antenna malfunction, mapping is limited to no more than 20% of the surface, far less than for any of the inner planets. Thirty-seven individual mapping sites have been identified, scattered across the globe, and all have now been mapped. Excellent stereo mapping is possible at all Sun angles, if resolution is below ~350 m. PC mapping is possible at Sun angles greater than ~60 degrees, if emission angles are less than ~40 degrees. The only extended contiguous areas of topographic mapping larger than 150 km across are the two narrow REGMAP mapping mosaics extending pole-to-pole along longitudes 85 and 240 W. These are PC-only and subject to long-wavelength uncertainties and errors, especially in the north/south where oblique imaging produces layover. Key findings include the mean slopes of individual terrain types (Schenk, 2009), topography across chaos (Schenk and Pappalardo, 2004), topography of craters and inferences for ice shell thickness (Schenk, 2002; Schenk and Turtle, 2009), among others. A key discovery, despite the limited data, is that Europan terrains rarely have topographic amplitude greater than 250 meters, but that regionally Europa has imprinted on it topographic amplitudes of +/- 1 km, in the form of raised plateaus and bowed-down arcuate troughs. Such amplitudes imply that the ice shell is capable of supporting relief and is not extremely thin.

  20. High Resolution Mapping and Interpretation of Channel and Floodplain Topography With a Narrow-Beam Terrestrial-Aquatic Lidar

    NASA Astrophysics Data System (ADS)

    McKean, J.; Isaak, D.; Tonina, D.; Wright, W.; Kinzel, P.

    2007-12-01

    Basic description of channel and floodplain topography remains a fundamental challenge for modeling flow and sediment transport or even simply mapping habitat. Standard field wading and boat surveys of stream topography are limited by costs and logistics to relatively small sample reaches and floodplain maps are seldom well- integrated with channel bathymetry. We used the NASA Experimental Advanced Airborne Research Lidar (EAARL) to map channel and floodplain topography and investigate geomorphic controls on physical habitat in two diverse channels in the watershed of the Middle Fork Salmon River, Idaho. Bear Valley Creek is a small low-gradient gravel-bed stream flowing across an unconfined valley filled with glacial outwash materials. A hierarchy of nested geomorphic features is evident in this channel with the broadest fluvial domains a legacy of ~15,000 years of post-glacial valley evolution. Contemporary hydraulics operate on this broad template and control two smaller scales of pool-riffle morphology. Salmon spawning patterns closely reflect these nested physical domains, demonstrating how geomorphic history can influence modern distributions of aquatic habitat and organisms. In contrast, Big Creek is a higher-gradient stream predominately confined by steep side slopes in a deep valley. Here, the distribution of geomorphic domains and physical habitat is controlled by modern erosion processes and rock quality. Tributaries and valley walls contribute coarse debris, up to large boulders, to the channel, resulting in very rough and poorly organized bed topography. Tributary fans also function as local grade control with sediment deposition in lower-gradient reaches upstream of fans. A GIS toolkit is under development to extract at-a-station channel metrics from EAARL data, including for example, cross section and longitudinal profile characteristics. A new investigation has also begun to further investigate the quality of EAARL data. This study will explore the question of how well we must describe channel topography to adequately: i) map the spatial distribution of physical habitat for management purposes and in support of organism population growth models, and ii) define boundary conditions for flow and sediment transport predictions using the USGS model MD SWMS.

  1. A Comparison of Spatial Analysis Methods for the Construction of Topographic Maps of Retinal Cell Density

    PubMed Central

    Garza-Gisholt, Eduardo; Hemmi, Jan M.; Hart, Nathan S.; Collin, Shaun P.

    2014-01-01

    Topographic maps that illustrate variations in the density of different neuronal sub-types across the retina are valuable tools for understanding the adaptive significance of retinal specialisations in different species of vertebrates. To date, such maps have been created from raw count data that have been subjected to only limited analysis (linear interpolation) and, in many cases, have been presented as iso-density contour maps with contour lines that have been smoothed ‘by eye’. With the use of stereological approach to count neuronal distribution, a more rigorous approach to analysing the count data is warranted and potentially provides a more accurate representation of the neuron distribution pattern. Moreover, a formal spatial analysis of retinal topography permits a more robust comparison of topographic maps within and between species. In this paper, we present a new R-script for analysing the topography of retinal neurons and compare methods of interpolating and smoothing count data for the construction of topographic maps. We compare four methods for spatial analysis of cell count data: Akima interpolation, thin plate spline interpolation, thin plate spline smoothing and Gaussian kernel smoothing. The use of interpolation ‘respects’ the observed data and simply calculates the intermediate values required to create iso-density contour maps. Interpolation preserves more of the data but, consequently includes outliers, sampling errors and/or other experimental artefacts. In contrast, smoothing the data reduces the ‘noise’ caused by artefacts and permits a clearer representation of the dominant, ‘real’ distribution. This is particularly useful where cell density gradients are shallow and small variations in local density may dramatically influence the perceived spatial pattern of neuronal topography. The thin plate spline and the Gaussian kernel methods both produce similar retinal topography maps but the smoothing parameters used may affect the outcome. PMID:24747568

  2. Modeling Earth's surface topography: decomposition of the static and dynamic components

    NASA Astrophysics Data System (ADS)

    Guerri, M.; Cammarano, F.; Tackley, P. J.

    2017-12-01

    Isolating the portion of topography supported by mantle convection, the so-called dynamic topography, would give us precious information on vigor and style of the convection itself. Contrasting results on the estimate of dynamic topography motivate us to analyse the sources of uncertainties affecting its modeling. We obtain models of mantle and crust density, leveraging on seismic and mineral physics constraints. We use the models to compute isostatic topography and residual topography maps. Estimates of dynamic topography and associated synthetic geoid are obtained by instantaneous mantle flow modeling. We test various viscosity profiles and 3D viscosity distributions accounting for inferred lateral variations in temperature. We find that the patterns of residual and dynamic topography are robust, with an average correlation coefficient of 0.74 and 0.71, respectively. The amplitudes are however poorly constrained. For the static component, the considered lithospheric mantle density models result in topographies that differ, on average, 720 m, with peaks reaching 1.7 km. The crustal density models produce variations in isostatic topography averaging 350 m, with peaks of 1 km. For the dynamic component, we obtain peak-to-peak topography amplitude exceeding 3 km for all the tested mantle density and viscosity models. Such values of dynamic topography produce geoid undulations that are not in agreement with observations. Assuming chemical heterogeneities in the lower mantle, in correspondence with the LLSVPs (Large Low Shear wave Velocity Provinces), helps to decrease the amplitudes of dynamic topography and geoid, but reduces the correlation between synthetic and observed geoid. The correlation coefficients between the residual and dynamic topography maps is always less than 0.55. In general, our results indicate that, i) current knowledge of crust density, mantle density and mantle viscosity is still limited, ii) it is important to account for all the various sources of uncertainties when computing static and dynamic topography. In conclusion, a multidisciplinary approach, which involves multiple geophysics observations and constraints from mineral physics, is necessary for obtaining robust density models and, consequently, for properly estimating the dynamic topography.

  3. Wind-Related Topography in Phoenix's Region of Mars (Animation)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    This movie shifts from a global zoom indicating the Phoenix landing area on Mars to a topographical map indicating relative elevations in the landing region. The elevations could affect wind patterns at the site.

    In particular, Phoenix is in a broad, shallow valley. The edge of the valley, about 150 meters (500 feet) above the floor, may provide enough of a slope to the east of Phoenix to explain winds coming from the east during nights at the site. Cooler, denser air could be sinking down the slope and toward the lander.

    Atmospheric scientists on the Phoenix team are analyzing wind patterns to distiguish effects of nearby topography from larger-scale movement of the atmosphere in the polar region.

    The elevation information for this topographical mapping comes from the Mars Orbiter Laser Altimeter on NASA's Mars Global Surveyor orbiter. The blue-coded area is the valley floor. Orange and yellow indicate relatively higher elevations.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver. JPL managed the Mars Global Surveyor mission for the NASA Science Mission Directorate.

  4. The effect of dynamic topography and gravity on lithospheric effective elastic thickness estimation: a case study

    NASA Astrophysics Data System (ADS)

    Bai, Yongliang; Dong, Dongdong; Kirby, Jon F.; Williams, Simon E.; Wang, Zhenjie

    2018-04-01

    Lithospheric effective elastic thickness (Te), a proxy for plate strength, is helpful for the understanding of subduction characteristics. Affected by curvature, faulting and magma activity, lithospheric strength near trenches should be weakened but some regional inversion studies have shown much higher Te values along some trenches than in their surroundings. In order to improve Te estimation accuracy, here we discuss the long-wavelength effect of dynamic topography and gravity on Te estimation by taking the Izu-Bonin-Mariana (IBM) Trench as a case study area. We estimate the long-wavelength influence of the density and negative buoyancy of the subducting slab on observed gravity anomalies and seafloor topography. The residual topography and gravity are used to map Te using the fan-wavelet coherence method. Maps of Te, both with and without the effects of dynamic topography and slab gravity anomaly, contain a band of high-Te values along the IBM Trench, though these values and their errors are lower when slab effects are accounted for. Nevertheless, tests show that the Te map is relatively insensitive to the choice of slab-density modelling method, even though the dynamic topography and slab-induced gravity anomaly vary considerably when the slab density is modelled by different methods. The continued presence of a high-Te band along the trench after application of dynamic corrections shows that, before using 2D inversion methods to estimate Te variations in subduction zones, there are other factors that should be considered besides the slab dynamic effects on the overriding plate.

  5. The effect of dynamic topography and gravity on lithospheric effective elastic thickness estimation: a case study

    NASA Astrophysics Data System (ADS)

    Bai, Yongliang; Dong, Dongdong; Kirby, Jon F.; Williams, Simon E.; Wang, Zhenjie

    2018-07-01

    Lithospheric effective elastic thickness (Te), a proxy for plIate strength, is helpful for the understanding of subduction characteristics. Affected by curvature, faulting and magma activity, lithospheric strength near trenches should be weakened but some regional inversion studies have shown much higher Te values along some trenches than in their surroundings. In order to improve Te-estimation accuracy, here we discuss the long-wavelength effect of dynamic topography and gravity on Te estimation by taking the Izu-Bonin-Mariana (IBM) Trench as a case study area. We estimate the long-wavelength influence of the density and negative buoyancy of the subducting slab on observed gravity anomalies and seafloor topography. The residual topography and gravity are used to map Te using the fan-wavelet coherence method. Maps of Te, both with and without the effects of dynamic topography and slab gravity anomaly, contain a band of high-Te values along the IBM Trench, though these values and their errors are lower when slab effects are accounted for. Nevertheless, tests show that the Te map is relatively insensitive to the choice of slab-density modelling method, even though the dynamic topography and slab-induced gravity anomaly vary considerably when the slab density is modelled by different methods. The continued presence of a high-Te band along the trench after application of dynamic corrections shows that, before using 2-D inversion methods to estimate Te variations in subduction zones, there are other factors that should be considered besides the slab dynamic effects on the overriding plate.

  6. Kamchatka Peninsula, Russia 3-D Perspective with Landsat Overlay

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This three-dimensional perspective view, looking up the Tigil River, shows the western side of the volcanically active Kamchatka Peninsula, Russia. The image shows that the Tigil River has eroded down from a higher and differing landscape and now flows through, rather than around the large green-colored bedrock ridge in the foreground. The older surface was likely composed of volcanic ash and debris from eruptions of nearby volcanoes. The green tones indicate that denser vegetation grows on south facing sunlit slopes at the northern latitudes. High resolution SRTM elevation data will be used by geologists to study how rivers shape the landscape, and by ecologists to study the influence of topography on ecosystems.

    This image shows how data collected by the Shuttle Radar Topography Mission (SRTM) can be used to enhance other satellite images. Color and natural shading are provided by a Landsat 7 image acquired on January 31, 2000. Terrain perspective and shading were derived from SRTM elevation data acquired on February 12, 2000. Topography is exaggerated by about six times vertically. The United States Geological Survey's Earth Resources Observations Systems (EROS) DataCenter, Sioux Falls, South Dakota, provided the Landsat data.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the German (DLR) and Italian (ASI) space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Size: 71 km (44 miles) x 20 km (12 miles) Location: 57 deg. North lat., 159 deg. East lon. Orientation: Looking to the east Original Data Resolution: 30 meters (99 feet) Date Acquired: February 12, 2000

  7. Global Correlation and Non-Correlation of Topography with Color and Reflectance on Pluto

    NASA Astrophysics Data System (ADS)

    Schenk, Paul M.; Beyer, Ross A.; Moore, Jeffrey M.; Young, Leslie; Ennico, Kimberly; Olkin, Catherine; Weaver, Harold A.; Stern, S. Alan; New Horizons Geology and Geophysics Team

    2017-10-01

    A key objective of the New Horizons mission at Pluto in July 2015 was completion of global maps of surface brightness and color patterns (covering 78% of surface) and topography (covering ~42%) of Pluto and its large moon Charon. The first calibrated and registered versions of these maps have now been completed for posting in the PDS this fall (with a peer-reviewed report on these products to be submitted). Rich in detail, investigation into the roles of local topography and insolation are ongoing (e.g., Lewis et al., 2017). Here we focus on the data sets and links between elevation and global color and brightness patterns and the global mapping revealed by them. In the “north,” yellowish deposits correlate with non-depressed portions of an eroded polar topographic dome ~600 km wide & 2-3 km high (e.g., Young et al., 2017). The broad dark band along the equator forming Cthulhu Macula to the west of Sputnik Planitia is topographically indistinguishable from the vast smooth lightly cratered plains to the north, indicating that latitude is the primary control, not topography. The curious lack of dark material along the equatorial band east of Sputnik Planitia may be partly due to topography of Eastern Tombaugh Regio, which is ~500 m above eroded plains the north and Cthulhu Macula itself. To the south of Cthulhu Macula, plains are slightly brighter, which correlates with a modest rise in topography of <1 km. To the southeast of Cthulhu Macula, however, an abrupt increase in reflectance correlates with the edge of elevated plateau that rises 2-3 km above the plains. The areas with the strongest signature in the CH4-band are associated with bladed terrain, the highest standing geologic unit in absolute elevation. Similar colored amoeboid-shaped units are evident along the equator in the low-resolution mapping areas, indicating their probable occurrence elsewhere. Thus, while many of Pluto’s major color and albedo features correlate well with topography and are thus controlled by it, some (especially Cthulhu Macula) are not. Latitude controls some of the global patterns, but geology may be a more important driver.

  8. KSC-99pp0776

    NASA Image and Video Library

    1999-06-19

    In the Space Station Processing Facility, the STS-99 crew pose in front of the Shuttle Radar Topography Mission, the payload for their mission. From left are Mission Specialists Mamoru Mohri of Japan, Janet Lynn Kavandi (Ph.D.), and Janice Voss (Ph.D.); Commander Kevin R. Kregel; Mission Specialist Gerhard Thiele of Germany; and Pilot Dominic L. Pudwill Gorie. Mohri represents the National Space Development Agency of Japan and Thiele represents the European Space Agency. An international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR, the SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A

  9. Topsoil moisture mapping using geostatistical techniques under different Mediterranean climatic conditions.

    PubMed

    Martínez-Murillo, J F; Hueso-González, P; Ruiz-Sinoga, J D

    2017-10-01

    Soil mapping has been considered as an important factor in the widening of Soil Science and giving response to many different environmental questions. Geostatistical techniques, through kriging and co-kriging techniques, have made possible to improve the understanding of eco-geomorphologic variables, e.g., soil moisture. This study is focused on mapping of topsoil moisture using geostatistical techniques under different Mediterranean climatic conditions (humid, dry and semiarid) in three small watersheds and considering topography and soil properties as key factors. A Digital Elevation Model (DEM) with a resolution of 1×1m was derived from a topographical survey as well as soils were sampled to analyzed soil properties controlling topsoil moisture, which was measured during 4-years. Afterwards, some topography attributes were derived from the DEM, the soil properties analyzed in laboratory, and the topsoil moisture was modeled for the entire watersheds applying three geostatistical techniques: i) ordinary kriging; ii) co-kriging considering as co-variate topography attributes; and iii) co-kriging ta considering as co-variates topography attributes and gravel content. The results indicated topsoil moisture was more accurately mapped in the dry and semiarid watersheds when co-kriging procedure was performed. The study is a contribution to improve the efficiency and accuracy of studies about the Mediterranean eco-geomorphologic system and soil hydrology in field conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Influence of local topography on precision irrigation management

    USDA-ARS?s Scientific Manuscript database

    Precision irrigation management is currently accomplished using spatial information about soil properties through soil series maps or electrical conductivity (EC measurements. Crop yield, however, is consistently influenced by local topography, both in rain-fed and irrigated environments. Utilizing ...

  11. The North America tapestry of time and terrain

    USGS Publications Warehouse

    Barton, Kate E.; Howell, David G.; Vigil, Jose F.

    2003-01-01

    The North America Tapestry of Time and Terrain (1:8,000,000 scale) is a product of the US Geological Survey in the I-map series (I-2781). This map was prepared in collaboration with the Geological Survey of Canada and the Mexican Consejo Recursos de Minerales. This cartographic Tapestry is woven from a geologic map and a shaded relief image. This digital combination reveals the geologic history of North America through the interrelation of rock type, topography and time. Regional surface processes as well as continent-scale tectonic events are exposed in the three dimensions of space and the fourth dimension, geologic time. The large map shows the varying age of bedrock underlying North America, while four smaller maps show the distribution of four principal types of rock: sedimentary, volcanic, plutonic and metamorphic.This map expands the original concept of the 2000 Tapestry of Time and Terrain, by José F. Vigil, Richard J. Pike and David G. Howell, which covered the conterminous United States. The U.S. Tapestry poster and website have been popular in classrooms, homes, and even the Google office building, and we anticipate the North America Tapestry will have a similarly wide appeal, and to a larger audience.

  12. Absolute color scale for improved diagnostics with wavefront error mapping.

    PubMed

    Smolek, Michael K; Klyce, Stephen D

    2007-11-01

    Wavefront data are expressed in micrometers and referenced to the pupil plane, but current methods to map wavefront error lack standardization. Many use normalized or floating scales that may confuse the user by generating ambiguous, noisy, or varying information. An absolute scale that combines consistent clinical information with statistical relevance is needed for wavefront error mapping. The color contours should correspond better to current corneal topography standards to improve clinical interpretation. Retrospective analysis of wavefront error data. Historic ophthalmic medical records. Topographic modeling system topographical examinations of 120 corneas across 12 categories were used. Corneal wavefront error data in micrometers from each topography map were extracted at 8 Zernike polynomial orders and for 3 pupil diameters expressed in millimeters (3, 5, and 7 mm). Both total aberrations (orders 2 through 8) and higher-order aberrations (orders 3 through 8) were expressed in the form of frequency histograms to determine the working range of the scale across all categories. The standard deviation of the mean error of normal corneas determined the map contour resolution. Map colors were based on corneal topography color standards and on the ability to distinguish adjacent color contours through contrast. Higher-order and total wavefront error contour maps for different corneal conditions. An absolute color scale was produced that encompassed a range of +/-6.5 microm and a contour interval of 0.5 microm. All aberrations in the categorical database were plotted with no loss of clinical information necessary for classification. In the few instances where mapped information was beyond the range of the scale, the type and severity of aberration remained legible. When wavefront data are expressed in micrometers, this absolute scale facilitates the determination of the severity of aberrations present compared with a floating scale, particularly for distinguishing normal from abnormal levels of wavefront error. The new color palette makes it easier to identify disorders. The corneal mapping method can be extended to mapping whole eye wavefront errors. When refraction data are expressed in diopters, the previously published corneal topography scale is suggested.

  13. Effect of Misalignment between Successive Corneal Videokeratography Maps on the Repeatability of Topography Data

    PubMed Central

    Bao, FangJun; Wang, JunJie; Huang, JinHai; Yu, Ye; Deng, ManLi; Li, LinNa; Yu, AYong; Wang, QinMei; Davey, Pinakin Gunvant; Elsheikh, Ahmed

    2015-01-01

    Purpose To improve the reliability of corneal topographic data through the development of a method to estimate the magnitude of misalignment between successive corneal videokeratography (VK) maps and eliminate the effect of misalignment on the repeatability of topography data. Methods Anterior and posterior topography maps were recorded twice for 124 healthy eyes of 124 participants using a Pentacam, and the repeatability of measurements was assessed by calculating the differences in elevation between each two sets of data. The repeatability of measurements was re-assessed following the determination of the magnitude of misalignment components (translational displacements: x0, y0 and z0, and rotational displacements: α, β and γ) between each two data sets and using them to modify the second data set within each pair based on an Iterative Closest Point (ICP) algorithm. The method simultaneously considered the anterior and posterior maps taken for the same eye since they were assumed to have the same set of misalignment components. A new parameter, named Combined Misalignment parameter (CM), has been developed to combine the effect of all six misalignment components on topography data and so enable study of the association between misalignment and the data repeatability test results. Results The repeatability tests resulted in average root mean square (RMS) differences in elevation data of 8.46±2.75 μm before ICP map matching when simultaneously considering anterior and posterior surfaces. With map matching and misalignment correction, the differences decreased to 7.28±2.58 μm (P = 0.00). When applied to only the anterior maps, misalignment correction led to a more pronounced reduction in elevation data differences from 4.58±1.84 μm to 2.97±1.29 μm (P = 0.00). CM was found to be associated with the repeatability error (P = 0.00), with posterior maps being responsible for most of the error due to their relatively lower accuracy compared to anterior maps. Conclusions The ICP algorithm can be used to estimate, and effectively correct for, the potential misalignment between successive corneal videokeratography maps. PMID:26599442

  14. Hydrologic overlay maps of the Cape Canaveral Quadrangle, Florida

    USGS Publications Warehouse

    Frazee, James M.; Laughlin, Charles P.

    1979-01-01

    Brevard County is an area of some 1,300 square miles located on the east coast of central Florida.  The Cape Canaveral quadrangle, in central Brevard, includes part of the Merritt Island National Wildlife Refuge, John F. Kennedy Space Center (NASA), and Cape Canaveral Air Force Station.  The eastern part of the quadrangle is occupied by the Atlantic Ocean and the western part by estuarine waters of the Banana River.  Topography is characterized by numerous elongate sand dumes, with altitudes up to 10 feet or greater, which roughly parallel the estuary and ocean.

  15. KSC-2009-2678

    NASA Image and Video Library

    2009-04-15

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., technicians check data (left) as the range of motion is tested on the high-gain antenna (foreground) for the Lunar Reconnaissance Orbiter. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. Launch of LRO is targeted no earlier than June 2. Photo credit: NASA/Jim Grossmann

  16. KSC-2009-2679

    NASA Image and Video Library

    2009-04-15

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., technicians check data (left) as the range of motion is tested on the high-gain antenna (foreground) for the Lunar Reconnaissance Orbiter. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. Launch of LRO is targeted no earlier than June 2. Photo credit: NASA/Jim Grossmann

  17. KSC-2009-2702

    NASA Image and Video Library

    2009-04-16

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., technicians secure NASA's Lunar Reconnaissance Orbiter's high-gain antenna into place for stowage. The antenna completed a range of motion test. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. Launch of LRO is targeted no earlier than June 2. Photo credit: NASA/Jack Pfaller

  18. KSC-2009-2700

    NASA Image and Video Library

    2009-04-16

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., technicians maneuver NASA's Lunar Reconnaissance Orbiter's high-gain antenna into place for stowage. The antenna completed a range of motion test. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. Launch of LRO is targeted no earlier than June 2. Photo credit: NASA/Jack Pfaller

  19. KSC-2009-2697

    NASA Image and Video Library

    2009-04-16

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., technicians prepare NASA's Lunar Reconnaissance Orbiter's high-gain antenna for stowage. The antenna completed a range of motion test. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. Launch of LRO is targeted no earlier than June 2. Photo credit: NASA/Jack Pfaller

  20. KSC-2009-2701

    NASA Image and Video Library

    2009-04-16

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., technicians secure NASA's Lunar Reconnaissance Orbiter's high-gain antenna into place for stowage. The antenna completed a range of motion test. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. Launch of LRO is targeted no earlier than June 2. Photo credit: NASA/Jack Pfaller

  1. KSC-2009-2699

    NASA Image and Video Library

    2009-04-16

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., technicians maneuver NASA's Lunar Reconnaissance Orbiter's high-gain antenna into place for stowage. The antenna completed a range of motion test. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. Launch of LRO is targeted no earlier than June 2. Photo credit: NASA/Jack Pfaller

  2. Colored Height and Shaded Relief, Central America

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Panama, Costa Rica, Nicaragua, El Salvador, Honduras, Guatemala, Belize, southern Mexico and parts of Cuba and Jamaica are all seen in this image from NASA's Shuttle Radar Topography Mission. The dominant feature of the northern part of Central America is the Sierra Madre Range, spreading east from Mexico between the narrow Pacific coastal plain and the limestone lowland of the Yucatan Peninsula. Parallel hill ranges sweep across Honduras and extend south, past the Caribbean Mosquito Coast to lakes Managua and Nicaragua. The Cordillera Central rises to the south, gradually descending to Lake Gatun and the Isthmus of Panama. A highly active volcanic belt runs along the Pacific seaboard from Mexico to Costa Rica.

    High-quality satellite imagery of Central America has, until now, been difficult to obtain due to persistent cloud cover in this region of the world. The ability of SRTM to penetrate clouds and make three-dimensional measurements has allowed the generation of the first complete high-resolution topographic map of the entire region. This map was used to generate the image.

    Two visualization methods were combined to produce the image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the north-south direction. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow, red, and magenta, to white at the highest elevations.

    For an annotated version of this image, please select Figure 1, below: [figure removed for brevity, see original site] (Large image: 9 mB jpeg)

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on February 11, 2000. The mission used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar that flew twice on the Space Shuttle Endeavour in 1994. The Shuttle Radar Topography Mission was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (200-foot)-long mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.

    Size: 1720 by 1670 kilometers (1068 by 1036 miles) Location: 14.5 degrees North latitude, 85.0 degrees West longitude Orientation: North toward the top Image Data: Shaded and colored SRTM elevation model Date Acquired: February 2000

  3. Precise mapping of annual river bed changes based on airborne laser bathymetry

    NASA Astrophysics Data System (ADS)

    Mandlburger, Gottfried; Wieser, Martin; Pfeifer, Norbert; Pfennigbauer, Martin; Steinbacher, Frank; Aufleger, Markus

    2014-05-01

    Airborne Laser Bathymtery (ALB) is a method for capturing relatively shallow water bodies from the air using a pulsed green laser (wavelength=532nm). While this technique was first used for mapping coastal waters only, recent progress in sensor technology has opened the field to apply ALB to running inland waters. Especially for alpine rivers the precise mapping of the channel topography is a challenging task as the flow velocities are often high and the area is difficult and/or dangerous to access by boat or by feet. Traditional mapping techniques like tachymetry or echo sounding fail in such situations while ALB provides, both, high spot position accuracy in the cm range and high spatial resolution in the dm range. Furthermore, state-of-the-art ALB systems allow simultaneous mapping of the river bed and the riparian area and, therefore, represent a comprehensive and efficient technology for mapping the entire floodplain area. The maximum penetration depth depends on, both, water turbidity and bottom reflectivity. Consequently, ALB provides the highest accuracy and resolution over bright gravel rivers with relatively clear water. We demonstrate the capability of ALB for precise mapping of river bed changes based on three flight campaigns in April, May and October 2013 at the River Pielach (Lower Austria) carried out with Riegl's VQ-820-G topo-bathymetric laser scanner. Operated at a flight height of 600m above ground with a pulse repetition rate of 510kHz (effective measurement rate 200kHz) this yielded a mean point spacing within the river bed of 20cm (i.e. point density: 25 points/m2). The positioning accuracy of the river bed points is approx. 2-5cm and depends on the overall ranging precision (20mm), the quality of the water surface model (derived from the ALB point cloud), and the signal intensity (decreasing with water depth). All in all, the obtained point cloud allowed the derivation of a dense grid model of the channel topography (0.25m cell size) for all three epochs constituting an excellent basis for, both, the visual and quantitative estimation of the changes over the year. It turned out that even between the April and May flight remarkable differences could be detected although there was no major precipitation event in-between and the flow conditions were entirely below mean flow. In contrast to the moderate changes between April and May, the flood event in June 2013 (HQ1) resulted in a radical change of the river bed topography documented by the October flight. Since the study site (Neubacher Au) is a Natura2000 conservation area, space for a meandering flow is allowed. Entire gravel bars have been removed and new bars were deposited down-stream. Furthermore, the river axis was locally shifted by more than 1m during the flood event. The results demonstrate the high potential of laser bathymetry for precise mapping of river bed changes. This opens new perspectives for the validation of sediment transport models models and a much better understanding of the river morphology (e.g. formation and changes of sand and gravel banks). The traditional approach in sediment transport modelling based on a limited number of cross sections can be completed respectively replaced by a more comprehensive and more reliable concept on the basis of spatial distributed river bed data. Valuable calibration data in a new quality will be available.

  4. Correcting for surface topography in X-ray fluorescence imaging

    PubMed Central

    Geil, E. C.; Thorne, R. E.

    2014-01-01

    Samples with non-planar surfaces present challenges for X-ray fluorescence imaging analysis. Here, approximations are derived to describe the modulation of fluorescence signals by surface angles and topography, and suggestions are made for reducing this effect. A correction procedure is developed that is effective for trace element analysis of samples having a uniform matrix, and requires only a fluorescence map from a single detector. This procedure is applied to fluorescence maps from an incised gypsum tablet. PMID:25343805

  5. High resolution Ceres HAMO atlas derived from Dawn FC images

    NASA Astrophysics Data System (ADS)

    Roatsch, Thomas; Kersten, Elke; Matz, Klaus-Dieter; Preusker, Frank; Scholten, Frank; Jaumann, Ralf; Raymond, Carol A.; Russell, Chris T.

    2016-04-01

    Introduction: NASA's Dawn spacecraft entered the orbit of dwarf planet Ceres in March 2015, and will characterize the geology, elemental and mineralogical composition, topography, shape, and internal structure of Ceres. One of the major goals of the mission is a global mapping of Ceres. Data: The Dawn mission was mapping Ceres in HAMO (High Altitude Mapping Orbit, 1475 km altitude) between August and October 2015. The framing camera took about 2,600 clear filter images with a resolution of about 140 m/pixel during these cycles. The images were taken with different viewing angles and different illumination conditions. We selected images from one cycle (cycle #1) for the mosaicking process to have similar viewing and illumination conditions. Very minor gaps in the coverage were filled with a few images from cycle #2. Data Processing: The first step of the processing chain towards the cartographic products is to ortho-rectify the images to the proper scale and map projec-tion type. This process requires detailed information of the Dawn orbit and attitude data and of the topography of the targets. Both, improved orientation and a high-resolution shape model, are provided by stereo processing (bundle block adjustment) of the HAMO stereo image dataset [3]. Ceres's HAMO shape model was used for the calculation of the ray intersection points while the map projection itself was done onto the reference sphere of Ceres with a radius of 470 km. The final step is the controlled mosaicking) of all images to a global mosaic of Ceres, the so-called basemap. Ceres map tiles: The Ceres atlas was produced in a scale of 1:750,000 and consists of 15 tiles that conform to the quadrangle scheme proposed by Greeley and Batson [4]. A map scale of 1:750,000 guarantees a mapping at the highest available Dawn resolution in HAMO. The individual tiles were extracted from the global mosaic and reprojected. Nomenclature: The Dawn team proposed 81 names for geological features. By international agreement, craters must be named after gods and goddesses of agriculture and vegetation from world mythology, whereas other geological features must be named after agricultural festivals of the world. The nomenclature proposed by the Dawn team was approved by the IAU [http://planetarynames.wr.usgs.gov/] and is shown in Fig. 1. The entire Ceres HAMO atlas will be available to the public through the Dawn GIS web page [http://dawngis.dlr.de/atlas]. References: [1] Russell, C.T. and Raymond, C.A., Space Sci. Rev., 163, DOI 10.1007/s11214-011-9836-2; [2] Sierks, et al., 2011, Space Sci. Rev., 163, DOI 10.1007/s11214-011-9745-4; [3] Preusker, F. et al., this session; [4] Greeley, R. and Batson, G., 1990, Planetary Mapping, Cambridge University Press.

  6. HEND Maps of Fast Neutrons

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Observations by NASA's 2001 Mars Odyssey spacecraft show a global view of Mars in high-energy, or fast, neutrons. These maps are based on data acquired by the high-energy neutron detector, one of the instruments in the gamma ray spectrometer suite. Fast neutrons, like epithermal neutrons, are sensitive to the presence of hydrogen. Unlike epithermal neutrons, however, they are not affected by the presence of carbon dioxide, which at the time of these observations covered the north polar area as 'dry ice' frost. The low flux of fast neutrons (blue and purple colors) in the north polar region suggests an abundance of hydrogen in the soil comparable to that determined in the south from the flux of epithermal neutrons. These observations were acquired during the first two months of mapping operations. Contours of topography are superimposed on these maps for geographic reference.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. Investigators at Arizona State University in Tempe, the University of Arizona in Tucson, and NASA's Johnson Space Center, Houston, operate the science instruments. The gamma-ray spectrometer was provided by the University of Arizona in collaboration with the Russian Aviation and Space Agency, which provided the high-energy neutron detector, and the Los Alamos National Laboratories, New Mexico, which provided the neutron spectrometer. Lockheed Martin Astronautics, Denver, is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  7. Detecting Small-Scale Topographic Changes and Relict Geomorphic Features on Barrier Islands Using SAR

    NASA Technical Reports Server (NTRS)

    Gibeaut, James C.; Crawford, Melba M.; Gutierrez, Roberto; Slatton, K. Clint; Neuenschwander, Amy L.; Ricard, Michael R.

    1997-01-01

    The shapes and elevations of barrier islands may change dramatically over a short period of time during a storm. Coastal scientists and engineers, however, are currently unable to measure these changes occurring over an entire barrier island at once. This three-year project, which is funded by NASA and jointly conducted by the Bureau of Economic Geology and the Center for Space Research at The University of Texas at Austin, is designed to overcome this problem by developing the use of interferometry from airborne synthetic aperture radar (AIRSAR) to measure coastal topography and to detect storm-induced changes in topography. Surrogate measures of topography observed in multiband, fully polarimetric AIRSAR (This type of data are now referred to as POLSAR data.) are also being investigated. Digital elevation models (DEM) of Galveston Island and Bolivar Peninsula, Texas obtained with Topographic SAR (TOPSAR) are compared with measurements by Global Positioning System (GPS) ground surveys and electronic total station surveys. In addition to topographic mapping, this project is evaluating the use of POLSAR to detect old features such as storm scarps, storm channels, former tidal inlets, and beach ridges that have been obscured by vegetation, erosion, deposition, and artificial filling. We have also expanded the work from the original proposal to include the mapping of coastal wetland vegetation and depositional environments. Methods developed during this project will provide coastal geologists with an unprecedented tool for monitoring and understanding barrier island systems. This understanding will improve overall coastal management policies and will help reduce the effects of natural and man-induced coastal hazards. This report summarizes our accomplishments during the second year of the study. Also included is a discussion of our planned activities for year 3 and a revised budget.

  8. Topographic gravity modeling for global Bouguer maps to degree 2160: Validation of spectral and spatial domain forward modeling techniques at the 10 microGal level

    NASA Astrophysics Data System (ADS)

    Hirt, Christian; Reußner, Elisabeth; Rexer, Moritz; Kuhn, Michael

    2016-09-01

    Over the past years, spectral techniques have become a standard to model Earth's global gravity field to 10 km scales, with the EGM2008 geopotential model being a prominent example. For some geophysical applications of EGM2008, particularly Bouguer gravity computation with spectral techniques, a topographic potential model of adequate resolution is required. However, current topographic potential models have not yet been successfully validated to degree 2160, and notable discrepancies between spectral modeling and Newtonian (numerical) integration well beyond the 10 mGal level have been reported. Here we accurately compute and validate gravity implied by a degree 2160 model of Earth's topographic masses. Our experiments are based on two key strategies, both of which require advanced computational resources. First, we construct a spectrally complete model of the gravity field which is generated by the degree 2160 Earth topography model. This involves expansion of the topographic potential to the 15th integer power of the topography and modeling of short-scale gravity signals to ultrahigh degree of 21,600, translating into unprecedented fine scales of 1 km. Second, we apply Newtonian integration in the space domain with high spatial resolution to reduce discretization errors. Our numerical study demonstrates excellent agreement (8 μGgal RMS) between gravity from both forward modeling techniques and provides insight into the convergence process associated with spectral modeling of gravity signals at very short scales (few km). As key conclusion, our work successfully validates the spectral domain forward modeling technique for degree 2160 topography and increases the confidence in new high-resolution global Bouguer gravity maps.

  9. Single-pass Airborne InSAR for Wide-swath, High-Resolution Cryospheric Surface Topography Mapping

    NASA Astrophysics Data System (ADS)

    Moller, D.; Hensley, S.; Wu, X.; Muellerschoen, R.

    2014-12-01

    In May 2009 a mm-wave single-pass interferometric synthetic aperture radar (InSAR) for the first time demonstrated ice surface topography swath-mapping in Greenland. This was achieved with the airborne Glacier and Ice Surface Topography Interferometer (GLISTIN-A). Ka-band (35.6GHz) was chosen for high-precision topographic mapping from a compact sensor with minimal surface penetration. In recent years, the system was comprehensively upgraded for improved performance, stability and calibration. In April 2013, after completing the upgrades, GLISTIN-A flew a brief campaign to Alaska. The primary purpose was to demonstrate the InSAR's ability to generate high-precision, high resolution maps of ice surface topography with swaths in excess of 10km. Comparison of GLISTIN-A's elevations over glacial ice with lidar verified the precision requirements and established elevation accuracies to within 2 m without tie points. Feature tracking of crevasses on Columbia Glacier using data acquired with a 3-day separation exhibit an impressive velocity mapping capability. Furthermore, GLISTIN-A flew over the Beaufort sea to determine if we could not only map sea ice, but also measure freeboard. Initial analysis has established we can measure sea-ice freeboard using height differences from the top of the sea-ice and the sea surface in open leads. In the future, a campaign with lidar is desired for a quantitative validation. Another proof-of-concept collection mapped snow-basins for hydrology. Snow depth measurements using summer and winter collections in the Sierras were compared with lidar measurements. Unsurprisingly when present, trees complicate the interpretation, but additional filtering and processing is in work. For each application, knowledge of the interferometric penetration is important for scientific interpretation. We present analytical predictions and experimental data to upper bound the elevation bias of the InSAR measurements over snow and snow-covered ice.

  10. Topography of Earth's moon

    NASA Image and Video Library

    2014-10-07

    Topography of Earth's moon generated from data collected by the Lunar Orbiter Laser Altimeter, aboard NASA's Lunar Reconnaissance Orbiter, with the gravity anomalies bordering the Procellarum region superimposed in blue. The border structures are shown using gravity gradients calculated with data from NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission. These gravity anomalies are interpreted as ancient lava-flooded rift zones buried beneath the volcanic plains (or maria) on the nearside of the Moon. Launched as GRAIL A and GRAIL B in September 2011, the probes, renamed Ebb and Flow, operated in a nearly circular orbit near the poles of the moon at an altitude of about 34 miles (55 kilometers) until their mission ended in December 2012. The distance between the twin probes changed slightly as they flew over areas of greater and lesser gravity caused by visible features, such as mountains and craters, and by masses hidden beneath the lunar surface. The twin spacecraft flew in a nearly circular orbit until the end of the mission on Dec. 17, 2012, when the probes intentionally were sent into the moon's surface. NASA later named the impact site in honor of late astronaut Sally K. Ride, who was America's first woman in space and a member of the GRAIL mission team. GRAIL's prime and extended science missions generated the highest-resolution gravity field map of any celestial body. The map will provide a better understanding of how Earth and other rocky planets in the solar system formed and evolved. The GRAIL mission was managed by NASA's Jet Propulsion Laboratory (JPL) in Pasadena, California, for NASA's Science Mission Directorate in Washington. The mission was part of the Discovery Program managed at NASA's Marshall Space Flight Center in Huntsville, Alabama. GRAIL was built by Lockheed Martin Space Systems in Denver. For more information about GRAIL, please visit grail.nasa.gov. Credit: NASA/Colorado School of Mines/MIT/GSFC/Scientific Visualization Studio

  11. Topography and Landforms of Ecuador

    USGS Publications Warehouse

    Chirico, Peter G.; Warner, Michael B.

    2005-01-01

    EXPLANATION The digital elevation model of Ecuador represented in this data set was produced from over 40 individual tiles of elevation data from the Shuttle Radar Topography Mission (SRTM). Each tile was downloaded, converted from its native Height file format (.hgt), and imported into a geographic information system (GIS) for additional processing. Processing of the data included data gap filling, mosaicking, and re-projection of the tiles to form one single seamless digital elevation model. For 11 days in February of 2000, NASA, the National Geospatial-Intelligence Agency (NGA), the German Aerospace Center (DLR), and the Italian Space Agency (ASI) flew X-band and C-band radar interferometry onboard the Space Shuttle Endeavor. The mission covered the Earth between 60?N and 57?S and will provide interferometric digital elevation models (DEMs) of approximately 80% of the Earth's land mass when processing is complete. The radar-pointing angle was approximately 55? at scene center. Ascending and descending orbital passes generated multiple interferometric data scenes for nearly all areas. Up to eight passes of data were merged to form the final processed SRTM DEMs. The effect of merging scenes averages elevation values recorded in coincident scenes and reduces, but does not completely eliminate, the amount of area with layover and terrain shadow effects. The most significant form of data processing for the Ecuador DEM was gap-filling areas where the SRTM data contained a data void. These void areas are a result of radar shadow, layover, standing water, and other effects of terrain, as well as technical radar interferometry phase unwrapping issues. To fill these gaps, topographic contours were digitized from 1:50,000 - scale topographic maps which date from the mid-late 1980's (Souris, 2001). Digital contours were gridded to form elevation models for void areas and subsequently were merged with the SRTM data through GIS and remote sensing image-processing techniques. The data contained in this publication includes a gap filled, countrywide SRTM DEM of Ecuador projected in Universal Transverse Mercator (UTM) Zone 17 North projection, Provisional South American, 1956, Ecuador datum and a non gap filled SRTM DEM of the Galapagos Islands projected in UTM Zone 15 North projection. Both the Ecuador and Galapagos Islands DEMs are available as an ESRI Grid, stored as ArcInfo Export files (.e00), and in Erdas Imagine (IMG) file formats with a 90 meter pixel resolution. Also included in this publication are high and low resolution Adobe Acrobat (PDF) files of topography and landforms maps in Ecuador. The high resolution map should be used for printing and display, while the lower resolution map can be used for quick viewing and reference purposes.

  12. Resting State Network Estimation in Individual Subjects

    PubMed Central

    Hacker, Carl D.; Laumann, Timothy O.; Szrama, Nicholas P.; Baldassarre, Antonello; Snyder, Abraham Z.

    2014-01-01

    Resting-state functional magnetic resonance imaging (fMRI) has been used to study brain networks associated with both normal and pathological cognitive function. The objective of this work is to reliably compute resting state network (RSN) topography in single participants. We trained a supervised classifier (multi-layer perceptron; MLP) to associate blood oxygen level dependent (BOLD) correlation maps corresponding to pre-defined seeds with specific RSN identities. Hard classification of maps obtained from a priori seeds was highly reliable across new participants. Interestingly, continuous estimates of RSN membership retained substantial residual error. This result is consistent with the view that RSNs are hierarchically organized, and therefore not fully separable into spatially independent components. After training on a priori seed-based maps, we propagated voxel-wise correlation maps through the MLP to produce estimates of RSN membership throughout the brain. The MLP generated RSN topography estimates in individuals consistent with previous studies, even in brain regions not represented in the training data. This method could be used in future studies to relate RSN topography to other measures of functional brain organization (e.g., task-evoked responses, stimulation mapping, and deficits associated with lesions) in individuals. The multi-layer perceptron was directly compared to two alternative voxel classification procedures, specifically, dual regression and linear discriminant analysis; the perceptron generated more spatially specific RSN maps than either alternative. PMID:23735260

  13. Mapping of the Moon by Clementine

    USGS Publications Warehouse

    McEwen, A.S.; Robinson, M.S.

    1997-01-01

    The "faster, cheaper, better" Clementine spacecraft mission mapped the Moon from February 19 to May 3, 1994. Global coverage was acquired in 11 spectral bandpasses from 415 to 2792 nm and at resolutions of 80-330 m/pixel; a thermal-infrared camera sampled ???20% of the surface; a high-resolution camera sampled selected areas (especially the polar regions); and a lidar altimeter mapped the large-scale topography up to latitudes of ??75??. The spacecraft was in a polar, elliptical orbit, 400-450 km periselene altitude. Periselene latitude was -28.5?? for the first month of mapping, then moved to +28.5??. NASA is supporting the archiving, systematic processing, and analysis of the ???1.8 million lunar images and other datasets. A new global positional network has been constructed from 43,000 images and ???0.5 million match points; new digital maps will facilitate future lunar exploration. In-flight calibrations now enable photometry to a high level of precision for the uv-visible CCD camera. Early science results include: (1) global models of topography, gravity, and crustal thicknesses; (2) new information on the topography and structure of multiring impact basins; (3) evidence suggestive of water ice in large permanent shadows near the south pole; (4) global mapping of iron abundances; and (5) new constraints on the Phanerozoic cratering rate of the Earth. Many additional results are expected following completion of calibration and systematic processing efforts. ?? 1997 COSPAR. Published by Elsevier Science Ltd.

  14. The Tölz Temporal Topography Study: mapping the visual field across the life span. Part II: cognitive factors shaping visual field maps.

    PubMed

    Poggel, Dorothe A; Treutwein, Bernhard; Calmanti, Claudia; Strasburger, Hans

    2012-08-01

    Part I described the topography of visual performance over the life span. Performance decline was explained only partly by deterioration of the optical apparatus. Part II therefore examines the influence of higher visual and cognitive functions. Visual field maps for 95 healthy observers of static perimetry, double-pulse resolution (DPR), reaction times, and contrast thresholds, were correlated with measures of visual attention (alertness, divided attention, spatial cueing), visual search, and the size of the attention focus. Correlations with the attentional variables were substantial, particularly for variables of temporal processing. DPR thresholds depended on the size of the attention focus. The extraction of cognitive variables from the correlations between topographical variables and participant age substantially reduced those correlations. There is a systematic top-down influence on the aging of visual functions, particularly of temporal variables, that largely explains performance decline and the change of the topography over the life span.

  15. Spike voltage topography in temporal lobe epilepsy.

    PubMed

    Asadi-Pooya, Ali A; Asadollahi, Marjan; Shimamoto, Shoichi; Lorenzo, Matthew; Sperling, Michael R

    2016-07-15

    We investigated the voltage topography of interictal spikes in patients with temporal lobe epilepsy (TLE) to see whether topography was related to etiology for TLE. Adults with TLE, who had epilepsy surgery for drug-resistant seizures from 2011 until 2014 at Jefferson Comprehensive Epilepsy Center were selected. Two groups of patients were studied: patients with mesial temporal sclerosis (MTS) on MRI and those with other MRI findings. The voltage topography maps of the interictal spikes at the peak were created using BESA software. We classified the interictal spikes as polar, basal, lateral, or others. Thirty-four patients were studied, from which the characteristics of 340 spikes were investigated. The most common type of spike orientation was others (186 spikes; 54.7%), followed by lateral (146; 42.9%), polar (5; 1.5%), and basal (3; 0.9%). Characteristics of the voltage topography maps of the spikes between the two groups of patients were somewhat different. Five spikes in patients with MTS had polar orientation, but none of the spikes in patients with other MRI findings had polar orientation (odds ratio=6.98, 95% confidence interval=0.38 to 127.38; p=0.07). Scalp topographic mapping of interictal spikes has the potential to offer different information than visual inspection alone. The present results do not allow an immediate clinical application of our findings; however, detecting a polar spike in a patient with TLE may increase the possibility of mesial temporal sclerosis as the underlying etiology. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Altimeter measurements for the determination of the Earth's gravity field

    NASA Technical Reports Server (NTRS)

    Tapley, B. D.; Schutz, B. E.; Shum, C. K.

    1987-01-01

    The ability of satellite-borne radar altimeter data to measure the global ocean surface with high precision and dense spatial coverage provides a unique tool for the mapping of the Earth's gravity field and its geoid. The altimeter crossover measurements, created by differencing direct altimeter measurements at the subsatellite points where the orbit ground tracks intersect, have the distinct advantage of eliminating geoid error and other nontemporal or long period oceanographic features. In the 1990's, the joint U.S./French TOPEX/POSEIDON mission and the European Space Agency's ERS-1 mission will carry radar altimeter instruments capable of global ocean mapping with high precision. This investigation aims at the development and application of dynamically consistent direct altimeter and altimeter crossover measurement models to the simultaneous mapping of the Earth's gravity field and its geoid, the ocean tides and the quasi-stationary component of the dynamic sea surface topography. Altimeter data collected by SEASAT, GEOS-3, and GEOSAT are used for the investigation.

  17. KSC-99pp1374

    NASA Image and Video Library

    1999-12-02

    KENNEDY SPACE CENTER, FLA. -- Orbiter Endeavour aims its nose toward the Vehicle Assembly Building (left) where it will be lifted to vertical and mated to the external tank and solid rocket boosters in high bay 1. Space Shuttle Endeavour is targeted for launch on mission STS-99 Jan. 13, 2000 at 1:11 p.m. EST. STS-99 is the Shuttle Radar Topography Mission, an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle

  18. KSC-99pp1382

    NASA Image and Video Library

    1999-12-03

    KENNEDY SPACE CENTER, FLA. -- In this dizzying view from overhead in high bay 1 of the VAB, the orbiter Endeavour is lowered for mating with the external tank below (on left), and the solid rocket boosters. Space Shuttle Endeavour is targeted for launch on mission STS-99 Jan. 13, 2000, at 1:11 p.m. EST. STS-99 is the Shuttle Radar Topography Mission, an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle

  19. KSC-99pp1371

    NASA Image and Video Library

    1999-12-02

    KENNEDY SPACE CENTER, FLA. -- Workers at KSC lead the way as Orbiter Endeavour, on an orbiter transfer vehicle, rolls from the Orbiter Processing Facility to the Vehicle Assembly Building, where it will be mated to the external tank and solid rocket boosters in high bay 1. Space Shuttle Endeavour is targeted for launch on mission STS-99 Jan. 13, 2000 at 1:11 p.m. EST. STS-99 is the Shuttle Radar Topography Mission, an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle

  20. KSC-99pp1370

    NASA Image and Video Library

    1999-12-02

    KENNEDY SPACE CENTER, FLA. -- Orbiter Endeavour rolls out of the Orbiter Processing Facility bay 2 for transfer to the Vehicle Assembly Building. There it will be mated to the external tank and solid rocket boosters in high bay 1. Space Shuttle Endeavour is targeted for launch on mission STS-99 Jan. 13, 2000 at 1:11 p.m. EST. STS-99 is the Shuttle Radar Topography Mission, an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle

  1. KSC-99pp1384

    NASA Image and Video Library

    1999-12-03

    KENNEDY SPACE CENTER, FLA. -- Viewed from the ground level in high bay 1 of the VAB, the orbiter Endeavour seems to float in mid-air as it is lowered for mating with the external tank and solid rocket boosters behind and below it. Space Shuttle Endeavour is targeted for launch on mission STS-99 Jan. 13, 2000, at 1:11 p.m. EST. STS-99 is the Shuttle Radar Topography Mission, an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle

  2. Detailed Mapping of Historical and Preinstrumental Earthquake Ruptures in Central Asia Using Multi-Scale, Multi-Platform Photogrammetry

    NASA Astrophysics Data System (ADS)

    Elliott, A. J.; Walker, R. T.; Parsons, B.; Ren, Z.; Ainscoe, E. A.; Abdrakhmatov, K.; Mackenzie, D.; Arrowsmith, R.; Gruetzner, C.

    2016-12-01

    In regions of the planet with long historical records, known past seismic events can be attributed to specific fault sources through the identification and measurement of single-event scarps in high-resolution imagery and topography. The level of detail captured by modern remote sensing is now sufficient to map and measure complete earthquake ruptures that were originally only sparsely mapped or overlooked entirely. We can thus extend the record of mapped earthquake surface ruptures into the preinstrumental period and capture the wealth of information preserved in the numerous historical earthquake ruptures throughout regions like Central Asia. We investigate two major late 19th and early 20th century earthquakes that are well located macroseismically but whose fault sources had proved enigmatic in the absence of detailed imagery and topography. We use high-resolution topographic models derived from photogrammetry of satellite, low-altitude, and ground-based optical imagery to map and measure the coseismic scarps of the 1889 M8.3 Chilik, Kazakhstan and 1932 M7.6 Changma, China earthquakes. Measurement of the scarps on the combined imagery and topography reveals the extent and slip distribution of coseismic rupture in each of these events, showing both earthquakes involved multiple faults with variable kinematics. We use a 1-m elevation model of the Changma fault derived from Pleiades satellite imagery to map the changing kinematics of the 1932 rupture along strike. For the 1889 Chilik earthquake we use 1.5-m SPOT-6 satellite imagery to produce a regional elevation model of the fault ruptures, from which we identify three distinct, intersecting fault systems that each have >20 km of fresh, single-event scarps. Along sections of each of these faults we construct high resolution (330 points per sq m) elevation models using quadcopter- and helikite-mounted cameras. From the detailed topography we measure single-event oblique offsets of 6-10 m, consistent with the large inferred magnitude of the 1889 Chilik event. High resolution, photogrammetric topography offers a low-cost, effective way to thoroughly map rupture traces and measure coseismic displacements for past fault ruptures, extending our record of coseismic displacements into a past rich with formerly sparsely documented ruptures.

  3. Compiling Mercury relief map using several data sources

    NASA Astrophysics Data System (ADS)

    Zakharova, M.

    2015-12-01

    There are several data of Mercury topography obtained as the result of processing materials collected by two spacecraft - the Mariner-10 and the MESSENGER during their Mercury flybys.The history of the visual mapping of Mercury begins at the recent times as the first significant observations were made during the latter half of the 20th century, whereas today we have no data with 100% coverage of the entire surface of the Mercury except the global mosaic composed of the images acquired by MESSENGER. The main objective of this work is to provide the first Mercury relief map using all the existing elevation data. The workflow included collecting, combining and processing the existing data and afterwards merging them correctly for one single map compiling. The preference was given to topography data while the global mosaic was used to fill the gaps where there was insufficient topography.The Mercury relief map has been created with the help of four different types of data: - global mosaic with 100% coverage of Mercury's surface created from Messenger orbital images (36% of the final map);- Digital Terrain Models obtained by the treating stereo images made during the Mariner 10's flybys (15% of the map) (Cook and Robinson, 2000);- Digital Terrain Models obtained from images acquired during the Messenger flybys (24% of the map) (F. Preusker et al., 2011);- the data sets produced by the MESSENGER Mercury Laser Altimeter (MLA) (25 % of the map).The final map is created in the Lambert azimuthal Equal area projection and has the scale 1:18 000 000. It represents two hemispheres - western and eastern which are separated by the zero meridian. It mainly shows the hypsometric features of the planet and craters with a diameter more than 200 kilometers.

  4. Stereo Pair, Honolulu, Oahu

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Honolulu, on the island of Oahu, is a large and growing urban area. This stereoscopic image pair, combining a Landsat image with topography measured by the Shuttle Radar Topography Mission (SRTM), shows how topography controls the urban pattern. This color image can be viewed in 3-D by viewing the left image with the right eye and the right image with the left eye (cross-eyed viewing), or by downloading and printing the image pair, and viewing them with a stereoscope.

    Features of interest in this scene include Diamond Head (an extinct volcano near the bottom of the image), Waikiki Beach (just above Diamond Head), the Punchbowl National Cemetary (another extinct volcano, near the image center), downtown Honolulu and Honolulu harbor (image left-center), and offshore reef patterns. The slopes of the Koolau mountain range are seen in the right half of the image. Clouds commonly hang above ridges and peaks of the Hawaiian Islands, but in this synthesized stereo rendition appear draped directly on the mountains. The clouds are actually about 1000 meters (3300 feet) above sea level.

    This stereoscopic image pair was generated using topographic data from the Shuttle Radar Topography Mission, combined with a Landsat 7 Thematic Mapper image collected at the same time as the SRTM flight. The topography data were used to create two differing perspectives, one for each eye. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. The United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota, provided the Landsat data.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the German (DLR) and Italian (ASI)space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Size: 11 by 20 kilometers (7 by 13 miles) Location: 21.3 deg. North lat., 157.9 deg. West lon. Orientation: North toward upper right Original Data Resolution: SRTM, 30 meters (99 feet); Landsat, 15 meters (50 feet) Date Acquired: SRTM, February 18, 2000; Landsat February 12, 2000 Image: NASA/JPL/NIMA

  5. ATM Coastal Topography-Alabama 2001

    USGS Publications Warehouse

    Nayegandhi, Amar; Yates, Xan; Brock, John C.; Sallenger, A.H.; Bonisteel, Jamie M.; Klipp, Emily S.; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the Alabama coastline, acquired October 3-4, 2001. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative scanning Lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning Lidar system that measures high-resolution topography of the land surface, and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for pre-survey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used to create maps that represent submerged or first surface topography.

  6. ATM Coastal Topography-Florida 2001: Eastern Panhandle

    USGS Publications Warehouse

    Yates, Xan; Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Bonisteel, Jamie M.; Klipp, Emily S.; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the eastern Florida panhandle coastline, acquired October 2, 2001. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative scanning Lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning Lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used to create maps that represent submerged or first surface topography.

  7. Mapping the Topography of Mercury with MESSENGER Laser Altimetry

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Cavanaugh, John F.; Neumann, Gregory A.; Smith, David E..; Zubor, Maria T.

    2012-01-01

    The Mercury Laser Altimeter onboard MESSENGER involves unique design elements that deal with the challenges of being in orbit around Mercury. The Mercury Laser Altimeter (MLA) is one of seven instruments on NASA's MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. MESSENGER was launched on 3 August 2004, and entered into orbit about Mercury on 18 March 2011 after a journey through the inner solar system. This involved six planetary flybys, including three of Mercury. MLA is designed to map the topography and landforms of Mercury's surface. It also measures the planet's forced libration (motion about the spin axis), which helps constrain the state of the core. The first science measurements from orbit taken with MLA were made on 29 March 2011 and continue to date. MLA had accumulated about 8.3 million laser ranging measurements to Mercury's surface, as of 31 July 2012, i.e., over six Mercury years (528 Earth days). Although MLA is the third planetary lidar built at the NASA Goddard Space Flight Center (GSFC), MLA must endure a much harsher thermal environment near Mercury than the previous instruments on Mars and Earth satellites. The design of MLA was derived in part from that of the Mars Orbiter Laser Altimeter on Mars Global Surveyor. However, MLA must range over greater distances and often in off-nadir directions from a highly eccentric orbit. In MLA we use a single-mode diode-pumped Nd:YAG (neodymium-doped yttrium aluminum garnet) laser that is highly collimated to maintain a small footprint on the planet. The receiver has both a narrow field of view and a narrow spectral bandwidth to minimize the amount of background light detected from the sunlit hemisphere of Mercury. We achieve the highest possible receiver sensitivity by employing the minimum receiver detection threshold.

  8. STS-99 crew practice driving an M-113 during TCDT

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During Terminal Countdown Demonstration Test (TCDT) activities, STS-99 Mission Specialist Janice Voss (Ph.D.) is ready to practice driving the M-113, an armored personnel carrier. Part of Terminal Countdown Demonstration Test (TCDT) activities, the M- 113 could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. In the rear (right) is Commander Kevin Kregel. TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST.

  9. New aerogravity and aeromagnetic anomaly data over Lomonosov Ridge and adjacent areas for bathymetric and tectonic mapping

    NASA Astrophysics Data System (ADS)

    Dossing, A.; Olesen, A. V.; Forsberg, R.

    2010-12-01

    Results of an 800 x 800 km aero-gravity and aeromagnetic survey (LOMGRAV) of the southern Lomonosov Ridge and surrounding area are presented. The survey was acquired by the Danish National Space Center, DTU in cooperation with National Resources Canada in spring 2009 as a net of ~NE-SW flight lines spaced 8-10 km apart. Nominal flight level was 2000 ft. We have compiled a detailed 2.5x2.5 km gravity anomaly grid based on the LOMGRAV data and existing data from the southern Arctic Ocean (NRL98/99) and the North Greenland continental margin (KMS98/99). The gravity grid reveals detailed, elongated high-low anomaly patterns over the Lomonosov Ridge which is interpreted as the presence of narrow ridges and subbasins. Distinct local topography is also interpreted over the southernmost part of the Lomonosov Ridge where existing bathymetry compilations suggest a smooth topography due to the lack of data. A new bathymetry model is presented for the region predicted by formalized inversion of the available gravity data. Finally, a detailed magnetic anomaly grid has been compiled from the LOMGRAV data and existing NRL98/99 and PMAP data. New tectonic features are revealed, particularly in the Amerasia Basin, compared with existing magnetic anomaly data from the region.

  10. EAARL Coastal Topography and Imagery-Naval Live Oaks Area, Gulf Islands National Seashore, Florida, 2007

    USGS Publications Warehouse

    Nagle, David B.; Nayegandhi, Amar; Yates, Xan; Brock, John C.; Wright, C. Wayne; Bonisteel, Jamie M.; Klipp, Emily S.; Segura, Martha

    2010-01-01

    These remotely sensed, geographically referenced color-infrared (CIR) imagery and elevation measurements of lidar-derived bare-earth (BE) topography, first-surface (FS) topography, and canopy-height (CH) datasets were produced collaboratively by the U.S. Geological Survey (USGS), St. Petersburg Science Center, St. Petersburg, FL; the National Park Service (NPS), Gulf Coast Network, Lafayette, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the Naval Live Oaks Area in Florida's Gulf Islands National Seashore, acquired June 30, 2007. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral CIR camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations. For more information about similar projects, please visit the Decision Support for Coastal Science and Management website.

  11. A new high resolution permafrost map of Iceland from Earth Observation data

    NASA Astrophysics Data System (ADS)

    Barnie, Talfan; Conway, Susan; Balme, Matt; Graham, Alastair

    2017-04-01

    High resolution maps of permafrost are required for ongoing monitoring of environmental change and the resulting hazards to ecosystems, people and infrastructure. However, permafrost maps are difficult to construct - direct observations require maintaining networks of sensors and boreholes in harsh environments and are thus limited in extent in space and time, and indirect observations require models or assumptions relating the measurements (e.g. weather station air temperature, basal snow temperature) to ground temperature. Operationally produced Land Surface Temperature maps from Earth Observation data can be used to make spatially contiguous estimates of mean annual skin temperature, which has been used a proxy for the presence of permafrost. However these maps are subject to biases due to (i) selective sampling during the day due to limited satellite overpass times, (ii) selective sampling over the year due to seasonally varying cloud cover, (iii) selective sampling of LST only during clearsky conditions, (iv) errors in cloud masking (v) errors in temperature emissivity separation (vi) smoothing over spatial variability. In this study we attempt to compensate for some of these problems using a bayesian modelling approach and high resolution topography-based downscaling.

  12. Mapping the environmental and biogeographic complexity of the Amazon basin using remote sensing methods

    NASA Astrophysics Data System (ADS)

    Streher, A. S.; Cordeiro, C. L. O.; Silva, T. S. F.

    2017-12-01

    Mapping environmental envelopes onto geographical space has been classically important for understanding biogeographical patterns. Knowing the biotic and abiotic limits defining these envelopes, we can better understand the requirements limiting species distributions. Most present efforts in this regard have focused on single-species distribution models, but the current breadth and accessibility of quantitative, spatially explicit environmental information can also be explored from an environment-first perspective. We thus used remote sensing to determine the occurrence of environmental discontinuities in the Amazon region and evaluated if such discontinuities may act as barriers to determine species distribution and range limits, forming clear environmental envelopes. We combined data on topography (SRTM), precipitation (CHIRPS), vegetation descriptors (PALSAR-1 backscattering, biomass, NDVI) and temperature (MODIS), using object-based image analysis and unsupervised learning to map environmental envelopes. We identified 14 environmental envelopes for the Amazon sensu latissimo region, mainly delimited by changes in vegetation, topography and precipitation. The resulting envelopes were compared to the distribution of 120 species of Trogonidae, Galbulidae, Bucconidae, Cebidae, Hylidae and Lecythidaceae, amounting to 22,649 occurrence records within the Amazonregion. We determined species prevalence in each envelope by calculating the ratio between species relative frequency per envelope and envelope relative frequency (area) in the complete map. Values closer to 1 indicate a high degree of prevalence. We found strong envelope associations (prevalence > 0.5) for 20 species (17% of analyzed taxa). Although several biogeographical and ecological factors will influence the distribution of a species, our results show that not only geographical barriers, but also modern environmental discontinuities may limit the distribution of some species., and may have also done so in the past. Our work also highlights the environmental complexity of the Amazon region, often considered as "environmentally homogeneous", and shows how environmental mapping can contribute to better understanding of the processes explaining the current assembly and distribution of Amazon biodiversity.

  13. EAARL Coastal Topography - Northeast Barrier Islands 2007: Bare Earth

    USGS Publications Warehouse

    Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Wright, C. Wayne; Yates, Xan; Bonisteel, Jamie M.

    2008-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived bare earth (BE) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the northeast coastal barrier islands in New York and New Jersey, acquired April 29-30 and May 15-16, 2007. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.

  14. EAARL Topography - Natchez Trace Parkway 2007: First Surface

    USGS Publications Warehouse

    Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Segura, Martha; Yates, Xan

    2008-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Gulf Coast Network, Lafayette, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Natchez Trace Parkway in Mississippi, acquired on September 14, 2007. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.

  15. EAARL Topography - Vicksburg National Military Park 2008: Bare Earth

    USGS Publications Warehouse

    Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Segura, Martha; Yates, Xan

    2008-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived bare earth (BE) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Gulf Coast Network, Lafayette, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the Vicksburg National Military Park in Mississippi, acquired on March 6, 2008. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.

  16. EAARL Coastal Topography - Northeast Barrier Islands 2007: First Surface

    USGS Publications Warehouse

    Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Wright, C. Wayne; Yates, Xan; Bonisteel, Jamie M.

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the northeast coastal barrier islands in New York and New Jersey, acquired April 29-30 and May 15-16, 2007. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.

  17. EAARL Topography-Vicksburg National Military Park 2007: First Surface

    USGS Publications Warehouse

    Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Segura, Martha; Yates, Xan

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first-surface (FS) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Gulf Coast Network, Lafayette, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the Vicksburg National Military Park in Mississippi, acquired on September 12, 2007. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.

  18. EAARL Coastal Topography - Sandy Hook 2007

    USGS Publications Warehouse

    Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Stevens, Sara; Yates, Xan; Bonisteel, Jamie M.

    2008-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Northeast Coastal and Barrier Network, Kingston, RI; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of Gateway National Recreation Area's Sandy Hook Unit in New Jersey, acquired on May 16, 2007. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL) was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for pre-survey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.

  19. Topography- and nightlight-based national flood risk assessment in Canada

    NASA Astrophysics Data System (ADS)

    Elshorbagy, Amin; Bharath, Raja; Lakhanpal, Anchit; Ceola, Serena; Montanari, Alberto; Lindenschmidt, Karl-Erich

    2017-04-01

    In Canada, flood analysis and water resource management, in general, are tasks conducted at the provincial level; therefore, unified national-scale approaches to water-related problems are uncommon. In this study, a national-scale flood risk assessment approach is proposed and developed. The study focuses on using global and national datasets available with various resolutions to create flood risk maps. First, a flood hazard map of Canada is developed using topography-based parameters derived from digital elevation models, namely, elevation above nearest drainage (EAND) and distance from nearest drainage (DFND). This flood hazard mapping method is tested on a smaller area around the city of Calgary, Alberta, against a flood inundation map produced by the city using hydraulic modelling. Second, a flood exposure map of Canada is developed using a land-use map and the satellite-based nightlight luminosity data as two exposure parameters. Third, an economic flood risk map is produced, and subsequently overlaid with population density information to produce a socioeconomic flood risk map for Canada. All three maps of hazard, exposure, and risk are classified into five classes, ranging from very low to severe. A simple way to include flood protection measures in hazard estimation is also demonstrated using the example of the city of Winnipeg, Manitoba. This could be done for the entire country if information on flood protection across Canada were available. The evaluation of the flood hazard map shows that the topography-based method adopted in this study is both practical and reliable for large-scale analysis. Sensitivity analysis regarding the resolution of the digital elevation model is needed to identify the resolution that is fine enough for reliable hazard mapping, but coarse enough for computational tractability. The nightlight data are found to be useful for exposure and risk mapping in Canada; however, uncertainty analysis should be conducted to investigate the effect of the overglow phenomenon on flood risk mapping.

  20. Gulf Coast, Shaded Relief and Colored Height

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2

    The topography of the Gulf Coast states is well shown in this color-coded shaded relief map generated with data from the Shuttle Radar Topography Mission. The image on the top (see Figure 1) is a standard view showing southern Louisiana, Mississippi, Alabama and the panhandle of Florida. Green colors indicate low elevations, rising through yellow and tan, to white at the highest elevations.

    For the view on the bottom (see Figure 2), elevations below 10 meters (33 feet) above sea level have been colored light blue. These low coastal elevations are especially vulnerable to flooding associated with storm surges. Planners can use data like these to predict which areas are in the most danger and help develop mitigation plans in the event of particular flood events.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Science Mission Directorate, Washington, D.C.

    Location: 31 degrees north latitude, 88 degrees west longitude Orientation: North toward the top, Mercator projection Size: 702 by 433 kilometers (435 by 268 miles) Image Data: shaded and colored SRTM elevation model Date Acquired: February 2000

  1. SRTM Data Release for Africa, Colored Height

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This color shaded relief image shows the extent of digital elevation data for Africa recently released by the Shuttle Radar Topography Mission (SRTM). This release includes data for all of the continent, plus the island of Madagascar and the Arabian Peninsula. SRTM flew on board the Space Shuttle Endeavour in February 2000 and used an interferometric radar system to map the topography of Earth's landmass between latitudes 56 degrees south and 60 degrees north.

    The data were processed into geographic 'tiles,' each of which represents one by one degree of latitude and longitude. A degree of latitude measures 111 kilometers (69 miles) north-south, and a degree of longitude measures 111 kilometers or less east-west, decreasing away from the equator. The data are being released to the public on a continent-by-continent basis. This Africa segment includes 3256 tiles, almost a quarter of the total data set. Previous releases covered North America, South America and Eurasia. Forthcoming releases will include Australia plus an 'Islands' release for those islands not included in the continental releases. Together these data releases constitute the world's first high-resolution, near-global elevation model. The resolution of the publicly released data is three arcseconds (1/1,200 of a degree of latitude and longitude), which is about 90 meters (295 feet).

    Coverage in the current data release extends from 35 degrees north latitude at the southern edge of the Mediterranean to the very tip of South Africa, encompassing a great diversity of landforms. The northern part of the continent consists of a system of basins and plateaus, with several volcanic uplands whose uplift has been matched by subsidence in the large surrounding basins. Many of these basins have been infilled with sand and gravel, creating the vast Saharan lands. The Atlas Mountains in the northwest were created by convergence of the African and Eurasian tectonic plates.

    The geography of the central latitudes of Africa is dominated by the Great Rift Valley, extending from Lake Nyasa to the Red Sea, and splitting into two arms to enclose an interior plateau and the nearly circular Lake Victoria, visible in the right center of the image. To the west lies the Congo Basin, a vast, shallow depression which rises to form an almost circular rim of highlands.

    Most of the southern part of the continent rests on a concave plateau comprising the Kalahari basin and a mountainous fringe, skirted by a coastal plain which widens out in Mozambique in the southeast.

    Many of these regions were previously very poorly mapped due to persistent cloud cover or the inaccessibility of the terrain. Digital elevation data, such as provided by SRTM, are particularly in high demand by scientists studying earthquakes, volcanism, and erosion patterns for use in mapping and modeling hazards to human habitation. But the shape of Earth's surface affects nearly every natural process and human endeavor that occurs there, so elevation data are used in a wide range of applications.

    In this index map color-coding is directly related to topographic height, with brown and yellow at the lower elevations, rising through green, to white at the highest elevations. Blue areas on the map represent water within the mapped tiles, each of which includes shorelines or islands.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, DC.

    Orientation: North toward the top, Mercator projection Image Data: Colored SRTM elevation model Date Acquired: February 2000

  2. STS-99 Flight Day 04 Highlights and Crew Activities Report

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The primary objective of the STS-99 mission was to complete high resolution mapping of large sections of the Earth's surface using the Shuttle Radar Topography Mission (SRTM), a specially modified radar system. This radar system produced unrivaled 3-D images of the Earth's Surface. The mission was launched at 12:31 on February 11, 2000 onboard the space shuttle Endeavour. and led by Commander Kevin Kregel. The crew was Pilot Dominic L. Pudwill Gorie and Mission Specialists Janet L. Kavandi, Janice E. Voss, Mamoru Mohri from the National Space Development Agency (Japanese Space Agency), and Gerhard P. J. Thiele from DARA (German Space Agency).On the fourth day of the mission the blue team's Dominic Gorie led off the day's tape with a brief memorial to Charles Schultz, as he spoke of some of the vessels that were named for characters in Peanuts, and called to mind the Silver Snoopy, one of the highest awards NASA bestows. Janice Voss answered a couple of questions sent over the internet about a problem with a small thruster on the end of the 200 foot long mast. Mamoru Mohri talks about the EarthKam. Gerhard Thiele and Janet Kavandi describe the process of achieving the digital map of the entire world. At the end of the videotape some of the recently released views from the SRTM are shown. These include shots of the South Island of New Zealand.

  3. Crustal Structure of Mars from Mars Global Surveyor Topography and Gravity

    NASA Technical Reports Server (NTRS)

    Zuber, M. T.; Solomon, S. C.; Phillips, R. J.; Smith, D. E.; Tyler, G. L.; Aharonson, O.; Balmino, G.; Banerdt, W. B.; Head, J. W.; Johnson, C. L.

    2000-01-01

    In this analysis we invert global models of Mars' topography from Mars Orbiter Laser Altimeter (MOLA) and gravity from Doppler tracking obtained during the mapping mission of Mars Global Surveyor (MGS). We analyze the distribution of Martian crust and discuss implications for Mars' thermal history.

  4. Human-Robot Site Survey and Sampling for Space Exploration

    NASA Technical Reports Server (NTRS)

    Fong, Terrence; Bualat, Maria; Edwards, Laurence; Flueckiger, Lorenzo; Kunz, Clayton; Lee, Susan Y.; Park, Eric; To, Vinh; Utz, Hans; Ackner, Nir

    2006-01-01

    NASA is planning to send humans and robots back to the Moon before 2020. In order for extended missions to be productive, high quality maps of lunar terrain and resources are required. Although orbital images can provide much information, many features (local topography, resources, etc) will have to be characterized directly on the surface. To address this need, we are developing a system to perform site survey and sampling. The system includes multiple robots and humans operating in a variety of team configurations, coordinated via peer-to-peer human-robot interaction. In this paper, we present our system design and describe planned field tests.

  5. KSC-99pp0774

    NASA Image and Video Library

    1999-06-19

    In the Space Station Processing Facility, STS-99 crew members inspect the Shuttle Radar Topography Mission (SRTM), the payload for their mission. At left is Commander Kevin R. Kregel talking to Mission Specialist Janice Voss (Ph.D.); and Mission Specialists Gerhard Thiele of Germany and Mamoru Mohri of Japan farther back. In the foreground (back to camera) is Mission Specialist Janet Lynn Kavandi (Ph.D.). The final crew member (not shown) is Pilot Dominic L. Pudwill Gorie. Thiele represents the European Space Agency and Mohri represents the National Space Agency of Japan. An international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR, the SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A

  6. KSC-99pp0775

    NASA Image and Video Library

    1999-06-19

    In the Space Station Processing Facility, STS-99 crew members take part in a simulated flight check of the Shuttle Radar Topography Mission (SRTM), above and behind them. The SRTM is the payload for their mission. The crew members are Commander Kevin R. Kregel, Pilot Dominic L. Pudwill Gorie, and Mission Specialists Janet Lynn kavandi (Ph.D.), Janice Voss (Ph.D.), Mamoru Mohri of Japan and Gerhard Thiele of Germany. Mohri represents the National Space Development Agency of Japan and Thiele represents the European Space Agency. An international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR, the SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A

  7. KSC-99pp0778

    NASA Image and Video Library

    1999-06-19

    The STS-99 crew poses in front of the Shuttle Radar Topography Mission (SRTM) in the Space Station Processing Facility. The crew has been checking out the SRTM, which is the payload for their mission. From left are Mission Specialists Janet Lynn Kavandi (Ph.D.), Mamoru Mohri of Japan, and Gerhard Thiele of Germany; Pilot Dominic L. Pudwill Gorie; Mission Specialist Janice Voss (Ph.D.); and Commander Kevin R. Kregel. Mohri represents the National Space Development Agency of Japan and Thiele represents the European Space Agency. An international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR, the SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A

  8. KSC-99pp0777

    NASA Image and Video Library

    1999-06-19

    In the Space Station Processing Facility, the STS-99 crew looks over the payload for their mission, the Shuttle Radar Topography Mission (SRTM). Pointing to the SRTM are Commander Kevin R. Kregel and Mission Specialist Gerhard Thiele of Germany. Behind them are (left to right) Pilot Dominic L. Pudwill Gorie and Mission Specialists Mamoru Mohri of Japan and Janet Lynn Kavandi (Ph.D.) The remaining crew member (not shown) is Mission Specialist Janice Voss (Ph.D.) Mohri represents the National Space Development Agency of Japan and Thiele represents the European Space Agency. An international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR, the SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A

  9. Mars Topography

    NASA Image and Video Library

    2001-01-17

    These maps are global false-color topographic views of Mars at different orientations from NASA Mars Orbiter Laser Altimeter MOLA. The maps are orthographic projections that contain over 200,000,000 points and about 5,000,000 altimetric crossovers.

  10. 3-D perspective of Saint Pierre and Miquelon Islands

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This image shows two islands, Miquelon and Saint Pierre, located south of Newfoundland, Canada. These islands, along with five smaller islands, are a self-governing territory of France. A thin barrier beach divides Miquelon, with Grande Miquelon to the north and Petite Miquelon to the south. Saint Pierre Island is located to the lower right. With the islands' location in the north Atlantic Ocean and their deep water ports, fishing is the major part of the economy. The maximum elevation of the island is 240 meters (787 feet). The land mass of the islands is about 242 square kilometers, or 1.5 times the size of Washington DC.

    This image shows how data collected by the Shuttle Radar Topography Mission (SRTM) can be used to enhance other satellite images. Color and natural shading are provided by a Landsat 7 image acquired on September 1, 1999. Terrain perspective and shading were derived from SRTM elevation data acquired on February 12, 2000. Topography is exaggerated by about six times vertically. The United States Geological Survey's Earth Resources Observations Systems (EROS) DataCenter, Sioux Falls, South Dakota, provided the Landsat data.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

  11. How the structural architecture of the Eurasian continental margin affects the structure, seismicity, and topography of the south central Taiwan fold-and-thrust belt

    NASA Astrophysics Data System (ADS)

    Brown, Dennis; Alvarez-Marron, Joaquina; Biete, Cristina; Kuo-Chen, Hao; Camanni, Giovanni; Ho, Chun-Wei

    2017-07-01

    Studies of mountain belts worldwide show that along-strike changes are common in their foreland fold-and-thrust belts. These are typically caused by processes related to fault reactivation and/or fault focusing along changes in sedimentary sequences. The study of active orogens, like Taiwan, can also provide insights into how these processes influence transient features such as seismicity and topography. In this paper, we trace regional-scale features from the Eurasian continental margin in the Taiwan Strait into the south central Taiwan fold-and-thrust belt. We then present newly mapped surface geology, P wave velocity maps and sections, seismicity, and topography data to test the hypothesis of whether or not these regional-scale features of the margin are contributing to along-strike changes in structural style, and the distribution of seismicity and topography in this part of the Taiwan fold-and-thrust belt. These data show that the most important along-strike change takes place at the eastward prolongation of the upper part of the margin necking zone, where there is a causal link between fault reactivation, involvement of basement in the thrusting, concentration of seismicity, and the formation of high topography. On the area correlated with the necking zone, the strike-slip reactivation of east northeast striking extensional faults is causing sigmoidal offset of structures and topography along two main zones. Here basement is not involved in the thrusting; there is weak focusing of seismicity and localized development of topography. We also show that there are important differences in structure, seismicity, and topography between the margin shelf and its necking zone.

  12. Preliminary grid data and maps for an aeromagnetic survey of the Taylor mountains quadrangle and a portion of the Bethel quadrangle, Alaska

    USGS Publications Warehouse

    Saltus, R.W.; Milicevic, B.

    2004-01-01

    A preliminary data grid and maps are presented for an aeromagnetic survey of the Taylor Mountains and a portion of the Bethel quadrangles, Alaska. The aeromagnetic survey was flown by McPhar Geosurveys Ltd. for the U.S. Geological Survey (USGS). A flight-line spacing of 1,600 meters (1 mile) and nominal flight height of 305 meters (1,000 feet) above topography (draped) was used for the survey. The preliminary data grid has a grid cell size of 350 meters (1150 feet). Final data processing and quality control have not been applied to these data. The purpose of this preliminary data release is to allow prompt public access to these data, which are of interest for active mineral exploration in the region. A more complete data release and description will be published later once the final data processing is complete.

  13. Simultaneous Nanoscale Surface Charge and Topographical Mapping.

    PubMed

    Perry, David; Al Botros, Rehab; Momotenko, Dmitry; Kinnear, Sophie L; Unwin, Patrick R

    2015-07-28

    Nanopipettes are playing an increasingly prominent role in nanoscience, for sizing, sequencing, delivery, detection, and mapping interfacial properties. Herein, the question of how to best resolve topography and surface charge effects when using a nanopipette as a probe for mapping in scanning ion conductance microscopy (SICM) is addressed. It is shown that, when a bias modulated (BM) SICM scheme is used, it is possible to map the topography faithfully, while also allowing surface charge to be estimated. This is achieved by applying zero net bias between the electrode in the SICM tip and the one in bulk solution for topographical mapping, with just a small harmonic perturbation of the potential to create an AC current for tip positioning. Then, a net bias is applied, whereupon the ion conductance current becomes sensitive to surface charge. Practically this is optimally implemented in a hopping-cyclic voltammetry mode where the probe is approached at zero net bias at a series of pixels across the surface to reach a defined separation, and then a triangular potential waveform is applied and the current response is recorded. Underpinned with theoretical analysis, including finite element modeling of the DC and AC components of the ionic current flowing through the nanopipette tip, the powerful capabilities of this approach are demonstrated with the probing of interfacial acid-base equilibria and high resolution imaging of surface charge heterogeneities, simultaneously with topography, on modified substrates.

  14. Perspective with Landsat Overlay: Mojave to Ventura, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Southern California's dramatic topography plays acritical role in its climate, hydrology, ecology, agriculture, and habitability. This image of Southern California, from the desert at Mojave to the ocean at Ventura, shows a variety of landscapes and environments. Winds usually bring moisture to this area from the west, moving from the ocean, across the coastal plains, to the mountains, and then to the deserts. Most rainfall occurs as the air masses rise over the mountains and cool with altitude. Continuing east, and now drained of their moisture, the air masses drop in altitude and warm as they spread across the desert. The mountain rainfall supports forest and chaparral vegetation, seen here, and also becomes ground water and stream flow that supports citrus, avocado, strawberry, other crops, and a large and growing population on the coastal plains.

    This perspective view was generated by draping a Landsat satellite image over a preliminary topographic map from the Shuttle Radar Topography Mission. It shows the Tehachapi Mountains in the right foreground, the city of Ventura on the coast at the distant left, and the eastern most Santa Ynez Mountains forming the skyline at the distant right.

    Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30 meter resolution of most Landsat images and will substantially help in analyses of the large and growing Landsat image archive.

    The elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington DC.

    Size: 43 kilometers (27 miles) view width, 166 kilometers (103 miles) view distance Location: 34.8 deg. North lat., 118.8 deg. West lon. Orientation: View toward the southwest, 3X vertical exaggeration Image: Landsat bands 1, 2&4, 3 as blue, green, and red, respectively Date Acquired: February 16, 2000 (SRTM), November 11, 1986 (Landsat) Image: NASA/JPL/NIMA

  15. Simultaneous Interfacial Reactivity and Topography Mapping with Scanning Ion Conductance Microscopy.

    PubMed

    Momotenko, Dmitry; McKelvey, Kim; Kang, Minkyung; Meloni, Gabriel N; Unwin, Patrick R

    2016-03-01

    Scanning ion conductance microscopy (SICM) is a powerful technique for imaging the topography of a wide range of materials and interfaces. In this report, we develop the use and scope of SICM, showing how it can be used for mapping spatial distributions of ionic fluxes due to (electro)chemical reactions occurring at interfaces. The basic idea is that there is a change of ion conductance inside a nanopipet probe when it approaches an active site, where the ionic composition is different to that in bulk solution, and this can be sensed via the current flow in the nanopipet with an applied bias. Careful tuning of the tip potential allows the current response to be sensitive to either topography or activity, if desired. Furthermore, the use of a distance modulation SICM scheme allows reasonably faithful probe positioning using the resulting ac response, irrespective of whether there is a reaction at the interface that changes the local ionic composition. Both strategies (distance modulation or tuned bias) allow simultaneous topography-activity mapping with a single channel probe. The application of SICM reaction imaging is demonstrated on several examples, including voltammetric mapping of electrocatalytic reactions on electrodes and high-speed electrochemical imaging at rates approaching 4 s per image frame. These two distinct approaches provide movies of electrochemical current as a function of potential with hundreds of frames (images) of surface reactivity, to reveal a wealth of spatially resolved information on potential- (and time) dependent electrochemical phenomena. The experimental studies are supported by detailed finite element method modeling that places the technique on a quantitative footing.

  16. EAARL coastal topography--Alligator Point, Louisiana, 2010

    USGS Publications Warehouse

    Nayegandhi, Amar; Bonisteel-Cormier, J.M.; Wright, C.W.; Brock, J.C.; Nagle, D.B.; Vivekanandan, Saisudha; Fredericks, Xan; Barras, J.A.

    2012-01-01

    This project provides highly detailed and accurate datasets of a portion of Alligator Point, Louisiana, acquired on March 5 and 6, 2010. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the National Aeronautics and Space Administration (NASA) Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color-infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine aircraft, but the instrument was deployed on a Pilatus PC-6. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the "bare earth" under vegetation from a point cloud of last return elevations.

  17. Software for Generating Troposphere Corrections for InSAR Using GPS and Weather Model Data

    NASA Technical Reports Server (NTRS)

    Moore, Angelyn W.; Webb, Frank H.; Fishbein, Evan F.; Fielding, Eric J.; Owen, Susan E.; Granger, Stephanie L.; Bjoerndahl, Fredrik; Loefgren, Johan; Fang, Peng; Means, James D.; hide

    2013-01-01

    Atmospheric errors due to the troposphere are a limiting error source for spaceborne interferometric synthetic aperture radar (InSAR) imaging. This software generates tropospheric delay maps that can be used to correct atmospheric artifacts in InSAR data. The software automatically acquires all needed GPS (Global Positioning System), weather, and Digital Elevation Map data, and generates a tropospheric correction map using a novel algorithm for combining GPS and weather information while accounting for terrain. Existing JPL software was prototypical in nature, required a MATLAB license, required additional steps to acquire and ingest needed GPS and weather data, and did not account for topography in interpolation. Previous software did not achieve a level of automation suitable for integration in a Web portal. This software overcomes these issues. GPS estimates of tropospheric delay are a source of corrections that can be used to form correction maps to be applied to InSAR data, but the spacing of GPS stations is insufficient to remove short-wavelength tropospheric artifacts. This software combines interpolated GPS delay with weather model precipitable water vapor (PWV) and a digital elevation model to account for terrain, increasing the spatial resolution of the tropospheric correction maps and thus removing short wavelength tropospheric artifacts to a greater extent. It will be integrated into a Web portal request system, allowing use in a future L-band SAR Earth radar mission data system. This will be a significant contribution to its technology readiness, building on existing investments in in situ space geodetic networks, and improving timeliness, quality, and science value of the collected data

  18. Perspective view, Landsat overlay Oahu, Hawaii

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Honolulu, on the island of Oahu, is a large and growing urban area with limited space and water resources. This perspective view, combining a Landsat image with SRTM topography, shows how the topography controls the urban growth pattern, causes cloud formation, and directs the rainfall runoff pattern. Features of interest in this scene include downtown Honolulu (right), Honolulu Harbor (right), Pearl Harbor (center), and offshore reef patterns (foreground). The Koolau mountain range runs through the center of the image. On the north shore of the island are the Mokapu Peninsula and Kaneohe Bay (upper right). Clouds commonly hang above ridges and peaks of the Hawaiian Islands, and in this rendition appear draped directly on the mountains. The clouds are actually about 1000 meters (3300 feet) above sea level. High resolution topographic and image data allow ecologists and planners to assess the effects of urban development on the sensitive ecosystems in tropical regions.

    This type of display adds the important dimension of elevation to the study of land use and environmental processes as observed in satellite images. The perspective view was created by draping a Landsat 7 satellite image over an SRTM elevation model. Topography is exaggerated about six times vertically. The Landsat 7 image was acquired on February 12, 2000, and was provided by the United States Geological Survey's Earth Resources Observations Systems (EROS)Data Center, Sioux Falls, South Dakota.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the German (DLR) and Italian (ASI) space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Size: 28 by 56 kilometers (17 by 35 miles) Location: 21.4 deg. North lat., 157.8 deg. West lon. Orientation: Looking North Original Data Resolution: SRTM, 30 meters (99 feet); Landsat, 15 meters (50 feet) Date Acquired: SRTM, February 18, 2000; Landsat February 12, 2000 Image: NASA/JPL/NIMA

  19. SRTM Colored Height and Shaded Relief: Near Zapala, Argentina

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Topographic data provided by the Shuttle Radar Topography Mission can provide many clues to geologic history and processes. This view of an area southwest of Zapala, Argentina, shows a wide diversity of geologic features. The highest peaks (left) appear to be massive (un-layered)crystalline rocks, perhaps granites. To their right (eastward) are tilted and eroded layered rocks, perhaps old lava flows, forming prominent ridges. Farther east and south, more subtle and curvilinear ridges show that the rock layers have not only been tilted but also folded. At the upper right, plateaus that cap the underlying geologic complexities are more recent lava flows - younger than the folding, but older than the current erosional pattern. Landforms in the southeast (lower right) and south-central areas appear partially wind sculpted.

    Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the north-south direction. Northern slopes appear bright and southern slopes appear dark, as would be the case at noon at this latitude in the southern hemisphere. Color-coding is directly related to topographic height, with green at the lower elevations, rising through yellow, red, and magenta, to white at the highest elevations.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard Space Shuttle Endeavour, launched on February 11,2000. The mission used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar that flew twice on Space Shuttle Endeavour in 1994. Shuttle Radar Topography Mission was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration, the National Imagery and Mapping Agency of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Size: 45.9 by 36.0 kilometers ( 28.5 by 22.3 miles) Location: 39.4 deg. South lat., 70.3 deg. West lon. Orientation: North toward the top Image Data: Shaded and colored Shuttle Radar Topography Mission elevation model Date Acquired: February 2000

  20. The effects of lithology and base level on topography in the northern alpine foreland

    NASA Astrophysics Data System (ADS)

    Baumann, Sebastian; Robl, Jörg; Prasicek, Günther; Salcher, Bernhard; Keil, Melanie

    2018-07-01

    The evolution of topography is driven by climate and tectonics, and strongly influenced by substrate properties and different base levels. The contributions of these factors may vary in space and time and are thus difficult to disentangle. Our study area, the Hausruck-Kobernaußerwald range, has a rather uniform climatic and tectonic history but is drained by rivers with different base levels and consists of contrasting sedimentary rocks, mainly due to different sedimentation environments. This makes them an ideal location to study the effects of lithology and base level on topography. To decipher the roles of these influences, we used a high-resolution digital elevation model and performed a series of morphometric analyses. Longitudinal river profiles indicate that all channels in the study area, independent from base level, bed rock and overall morphological expression, are well graded. Hypsometry shows no evidence for base level effects on the present topography, while variations in the hypsometric curves coincide with lithological differences. This is also reflected in contrasts of mean elevation and slope distributions. Lithology-dependent variations in channel concavity and catchment-wide hypsometric integrals show that lithology controls both channel incision and hillslope processes in the study area. Our results further indicate that variations in channel and catchment metrics are not linked to the prevalence of different rock types alone, but to different successions of lithological units along the channels and within the catchments. Variations in channel slope and geomorphological mapping suggest that lithology-dependent landsliding is the dominant process causing the observed large-scale landscape diversity in the Hausruck-Kobernaußerwald range.

  1. Hawaii Rifts

    DOE Data Explorer

    Nicole Lautze

    2015-01-01

    Rifts mapped through reviewing the location of dikes and vents on the USGS 2007 Geologic Map of the State of Hawaii, as well as our assessment of topography, and, to a small extent, gravity data. Data is in shapefile format.

  2. Venus gravity and topography: 60th degree and order model

    NASA Technical Reports Server (NTRS)

    Konopliv, A. S.; Borderies, N. J.; Chodas, P. W.; Christensen, E. J.; Sjogren, W. L.; Williams, B. G.; Balmino, G.; Barriot, J. P.

    1993-01-01

    We have combined the most recent Pioneer Venus Orbiter (PVO) and Magellan (MGN) data with the earlier 1978-1982 PVO data set to obtain a new 60th degree and order spherical harmonic gravity model and a 120th degree and order spherical harmonic topography model. Free-air gravity maps are shown over regions where the most marked improvement has been obtained (Ishtar-Terra, Alpha, Bell and Artemis). Gravity versus topography relationships are presented as correlations per degree and axes orientation.

  3. Airborne Instrument Simulator for the Lidar Surface Topography (LIST) Mission

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Krainak, Michael A.; Harding, David J.; Abshire, James B.; Sun, Xiaoli; Cavanaugh, John; Valett, Susan; Ramos-Izquierdo, Luis

    2010-01-01

    In 2007, the National Research Council (NRC) completed its first decadal survey for Earth science at the request of NASA, NOAA, and USGS. The Lidar Surface Topography (LIST) mission is one of fifteen missions recommended by NRC, whose primary objectives are to map global topography and vegetation structure at 5 m spatial resolution, and to acquire global coverage with a few years. NASA Goddard conducted an initial mission concept study for the LIST mission 2007, and developed the initial measurement requirements for the mission.

  4. Effects of Topography-driven Micro-climatology on Evaporation

    NASA Astrophysics Data System (ADS)

    Adams, D. D.; Boll, J.; Wagenbrenner, N. S.

    2017-12-01

    The effects of spatial-temporal variation of climatic conditions on evaporation in micro-climates are not well defined. Current spatially-based remote sensing and modeling for evaporation is limited for high resolutions and complex topographies. We investigated the effect of topography-driven micro-climatology on evaporation supported by field measurements and modeling. Fourteen anemometers and thermometers were installed in intersecting transects over the complex topography of the Cook Agronomy Farm, Pullman, WA. WindNinja was used to create 2-D vector maps based on recorded observations for wind. Spatial analysis of vector maps using ArcGIS was performed for analysis of wind patterns and variation. Based on field measurements, wind speed and direction show consequential variability based on hill-slope location in this complex topography. Wind speed and wind direction varied up to threefold and more than 45 degrees, respectively for a given time interval. The use of existing wind models enables prediction of wind variability over the landscape and subsequently topography-driven evaporation patterns relative to wind. The magnitude of the spatial-temporal variability of wind therefore resulted in variable evaporation rates over the landscape. These variations may contribute to uneven crop development patterns observed during the late growth stages of the agricultural crops at the study location. Use of hill-slope location indexes and appropriate methods for estimating actual evaporation support development of methodologies to better define topography-driven heterogeneity in evaporation. The cumulative effects of spatially-variable climatic factors on evaporation are important to quantify the localized water balance and inform precision farming practices.

  5. Dynamic prescription maps for site-specific variable rate irrigation of cotton

    USDA-ARS?s Scientific Manuscript database

    A prescription map is a set of instructions that controls a variable rate irrigation (VRI) system. These maps, which may be based on prior yield, soil texture, topography, or soil electrical conductivity data, are often manually applied at the beginning of an irrigation season and remain static. The...

  6. 43 CFR 3592.1 - Operating plans.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... OPERATIONS Plans and Maps § 3592.1 Operating plans. (a) Before conducting any operations under any lease(s... description of geologic conditions and mineral resources, with appropriate maps, within the area where mining is to be conducted; (3) A copy of a suitable map or aerial photograph showing the topography, the...

  7. 43 CFR 3592.1 - Operating plans.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... OPERATIONS Plans and Maps § 3592.1 Operating plans. (a) Before conducting any operations under any lease(s... description of geologic conditions and mineral resources, with appropriate maps, within the area where mining is to be conducted; (3) A copy of a suitable map or aerial photograph showing the topography, the...

  8. 43 CFR 3592.1 - Operating plans.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... OPERATIONS Plans and Maps § 3592.1 Operating plans. (a) Before conducting any operations under any lease(s... description of geologic conditions and mineral resources, with appropriate maps, within the area where mining is to be conducted; (3) A copy of a suitable map or aerial photograph showing the topography, the...

  9. Roles of Fog and Topography in Redwood Forest Hydrology

    NASA Astrophysics Data System (ADS)

    Francis, E. J.; Asner, G. P.

    2017-12-01

    Spatial variability of water in forests is a function of both climatic gradients that control water inputs and topo-edaphic variation that determines the flows of water belowground, as well as interactions of climate with topography. Coastal redwood forests are hydrologically unique because they are influenced by coastal low clouds, or fog, that is advected onto land by a strong coastal-to-inland temperature difference. Where fog intersects the land surface, annual water inputs from summer fog drip can be greater than that of winter rainfall. In this study, we take advantage of mapped spatial gradients in forest canopy water storage, topography, and fog cover in California to better understand the roles and interactions of fog and topography in the hydrology of redwood forests. We test a conceptual model of redwood forest hydrology with measurements of canopy water content derived from high-resolution airborne imaging spectroscopy, topographic variables derived from high-resolution LiDAR data, and fog cover maps derived from NASA MODIS data. Landscape-level results provide insight into hydrological processes within redwood forests, and cross-site analyses shed light on their generality.

  10. Topographies of Power: A Critical Historical Geography of Schooling in Tanzania

    ERIC Educational Resources Information Center

    Vavrus, Frances

    2016-01-01

    This article builds a case for critical historical geography in comparative education to examine how, over time, the social production of space contributes to educational disparity. It draws on Gupta and Ferguson's contrasting concepts of the "power of topography" and the "topography of power" and Lefebvre's tripartite theory…

  11. Seasonal Frost Changes on Mars

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Observations by NASA's 2001 Mars Odyssey spacecraft show a comparison of wintertime (left) and summertime (right) views of the north polar region of Mars in intermediate-energy, or epithermal, neutrons. The maps are based on data from the high-energy neutron detector, an instrument in Odyssey's gamma-ray spectrometer suite. Soil enriched by hydrogen is indicated by the purple and deep blue colors on the maps. Progressively smaller amounts of hydrogen are shown in the colors light blue, green, yellow and red. The hydrogen is believed to be in the form of water ice. In some areas, the abundance of water ice is estimated to be up to 90% by volume. In winter, much of the hydrogen is hidden beneath a layer of carbon dioxide frost (dry ice). In the summer, the hydrogen is revealed because the carbon dioxide frost has dissipated. A shaded-relief rendition of topography is superimposed on these maps for geographic reference.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. Investigators at Arizona State University in Tempe, the University of Arizona in Tucson, and NASA's Johnson Space Center, Houston, operate the science instruments. The gamma-ray spectrometer was provided by the University of Arizona in collaboration with the Russian Aviation and Space Agency and Institute for Space Research (IKI), which provided the high-energy neutron detector, and the Los Alamos National Laboratories, New Mexico, which provided the neutron spectrometer. Lockheed Martin Astronautics, Denver, is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  12. A generalized geologic map of Mars

    NASA Technical Reports Server (NTRS)

    Carr, M. H.; Masursky, H.; Saunders, R. S.

    1973-01-01

    A generalized geologic map of Mars has been constructed largely on the basis of differences in the topography of the surface. A number of topographic features on Mars whose form is highly diagnostic of their origin are shown. Of particular note are the shield volcanoes and lava plains. In some areas, the original features have been considerably modified by subsequent erosional and tectonic processes. These have not, however, resulted in homogenization of the planet's surface, but rather have emphasized its variegated character by leaving a characteristic imprint in specific areas. The topography of the planet, therefore, lends itself well to remote geologic interpretation.

  13. Large Impact Features on Saturn's Middle-sized Icy Satellites: Global Image Mosaics and Topography

    NASA Technical Reports Server (NTRS)

    Schenk, P. M.; Moore, J. M.; McKinnon, W. B.

    2003-01-01

    With the approach of Cassini to the Saturn system, attention naturally focuses on the planet, its rings and Titan, but the Saturn system is also populated by a number of smaller satellites. The seven middle-sized icy satellites, along with those of Uranus, (between 400 and 1500 km wide) are distinctly different geophysically and geologically from their much larger Galilean-class brethren [e.g., 1]. Topographic mapping of these bodies is a critical part of understanding their geologic evolution. Here we describe our recent efforts to map the topography of these satellites using Voyager data.

  14. Using 3D Printers to Model Earth Surface Topography for Increased Student Understanding and Retention

    NASA Astrophysics Data System (ADS)

    Thesenga, David; Town, James

    2014-05-01

    In February 2000, the Space Shuttle Endeavour flew a specially modified radar system during an 11-day mission. The purpose of the multinational Shuttle Radar Topography Mission (SRTM) was to "obtain elevation data on a near-global scale to generate the most complete high-resolution digital topographic database of Earth" by using radar interferometry. The data and resulting products are now publicly available for download and give a view of the landscape removed of vegetation, buildings, and other structures. This new view of the Earth's topography allows us to see previously unmapped or poorly mapped regions of the Earth as well as providing a level of detail that was previously unknown using traditional topographic mapping techniques. Understanding and appreciating the geographic terrain is a complex but necessary requirement for middle school aged (11-14yo) students. Abstract in nature, topographic maps and other 2D renderings of the Earth's surface and features do not address the inherent spatial challenges of a concrete-learner and traditional methods of teaching can at times exacerbate the problem. Technological solutions such as 3D-imaging in programs like Google Earth are effective but lack the tactile realness that can make a large difference in learning comprehension and retention for these young students. First developed in the 1980's, 3D printers were not commercial reality until recently and the rapid rise in interest has driven down the cost. With the advent of sub US1500 3D printers, this technology has moved out of the high-end marketplace and into the local office supply store. Schools across the US and elsewhere in the world are adding 3D printers to their technological workspaces and students have begun rapid-prototyping and manufacturing a variety of projects. This project attempted to streamline the process of transforming SRTM data from a GeoTIFF format by way of Python code. The resulting data was then inputted into a CAD-based program for visualization and exporting as a .stl file for 3D printing. A proposal for improving the method and making it more accessible to middle school aged students is provided. Using the SRTM data to print a hand-held visual representation of a portion of the Earth's surface would utilize existing technology in the school and alter how topography can be taught in the classroom. Combining methods of 2D paper representations, on-screen 3D visualizations, and 3D hand-held models, give students the opportunity to truly grasp and retain the information being provided.

  15. EAARL Coastal Topography - Northern Gulf of Mexico

    USGS Publications Warehouse

    Nayegandhi, Amar; Brock, John C.; Sallenger, Abby; Wright, C. Wayne; Travers, Laurinda J.; Lebonitte, James

    2008-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived coastal topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. One objective of this research is to create techniques to survey areas for the purposes of geomorphic change studies following major storm events. The USGS Coastal and Marine Geology Program's National Assessment of Coastal Change Hazards project is a multi-year undertaking to identify and quantify the vulnerability of U.S. shorelines to coastal change hazards such as effects of severe storms, sea-level rise, and shoreline erosion and retreat. Airborne Lidar surveys conducted during periods of calm weather are compared to surveys collected following extreme storms in order to quantify the resulting coastal change. Other applications of high-resolution topography include habitat mapping, ecological monitoring, volumetric change detection, and event assessment. The purpose of this project is to provide highly detailed and accurate datasets of the northern Gulf of Mexico coastal areas, acquired on September 19, 2004, immediately following Hurricane Ivan. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Airborne Advanced Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532 nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking RGB (red-green-blue) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers and an integrated miniature digital inertial measurement unit which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system on September 19, 2004. The survey resulted in the acquisition of 3.2 gigabytes of data. The data were processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for pre-survey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of 'last return' elevations.

  16. Urban forest topographical mapping using UAV LIDAR

    NASA Astrophysics Data System (ADS)

    Putut Ash Shidiq, Iqbal; Wibowo, Adi; Kusratmoko, Eko; Indratmoko, Satria; Ardhianto, Ronni; Prasetyo Nugroho, Budi

    2017-12-01

    Topographical data is highly needed by many parties, such as government institution, mining companies and agricultural sectors. It is not just about the precision, the acquisition time and data processing are also carefully considered. In relation with forest management, a high accuracy topographic map is necessary for planning, close monitoring and evaluating forest changes. One of the solution to quickly and precisely mapped topography is using remote sensing system. In this study, we test high-resolution data using Light Detection and Ranging (LiDAR) collected from unmanned aerial vehicles (UAV) to map topography and differentiate vegetation classes based on height in urban forest area of University of Indonesia (UI). The semi-automatic and manual classifications were applied to divide point clouds into two main classes, namely ground and vegetation. There were 15,806,380 point clouds obtained during the post-process, in which 2.39% of it were detected as ground.

  17. Verification of Geosat sea surface topography in the Gulf Stream extension with surface drifting buoys and hydrographic measurements

    NASA Astrophysics Data System (ADS)

    Willebrand, J.; KäSe, R. H.; Stammer, D.; Hinrichsen, H.-H.; Krauss, W.

    1990-03-01

    Altimeter data from Geosat have been analyzed in the Gulf Stream extension area. Horizontal maps of the sea surface height anomaly relative to an annual mean for various 17-day intervals were constructed using an objective mapping procedure. The mean sea level was approximated by the dynamic topography from climatological hydrographic data. Geostrophic surface velocities derived from the composite maps (mean plus anomaly) are significantly correlated with surface drifter velocities observed during an oceanographie experiment in the spring of 1987. The drifter velocities contain much energy on scales less than 100 km which are not resolved in the altimetric maps. It is shown that the composite sea surface height also agrees well with ground verification from hydrographic data along sections in a triangle between the Azores, Newfoundland, and Bermuda, except in regions of high mean gradients.

  18. Geomorphic Unit Tool (GUT): Applications of Fluvial Mapping

    NASA Astrophysics Data System (ADS)

    Kramer, N.; Bangen, S. G.; Wheaton, J. M.; Bouwes, N.; Wall, E.; Saunders, C.; Bennett, S.; Fortney, S.

    2017-12-01

    Geomorphic units are the building blocks of rivers and represent distinct habitat patches for many fluvial organisms. We present the Geomorphic Unit Toolkit (GUT), a flexible GIS geomorphic unit mapping tool, to generate maps of fluvial landforms from topography. GUT applies attributes to landforms based on flow stage (Tier 1), topographic signatures (Tier 2), geomorphic characteristics (Tier 3) and patch characteristics (Tier 4) to derive attributed maps at the level of detail required by analysts. We hypothesize that if more rigorous and consistent geomorphic mapping is conducted, better correlations between physical habitat units and ecohydraulic model results will be obtained compared to past work. Using output from GUT for coarse bed tributary streams in the Columbia River Basin, we explore relationships between salmonid habitat and geomorphic spatial metrics. We also highlight case studies of how GUT can be used to showcase geomorphic impact from large wood restoration efforts. Provided high resolution topography exists, this tool can be used to quickly assess changes in fluvial geomorphology in watersheds impacted by human activities.

  19. The STS-99 crew poses with NASA Administrator Dan Goldin.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    KENNEDY SPACE CENTER, Fla. -- Members of the STS-99 crew pose with NASA Administrator Dan Goldin underneath Space Shuttle Endeavour on KSC's Shuttle Landing Facility. From left are Commander Kevin Kregel, Mission Specialist Janet Kavandi, Pilot Dominic Gorie, Goldin, and Mission Specialists Gerhard Thiele and Mamoru Mohri. Not in the photo is Mission Specialist Janice Voss. Main gear touchdown was at 6:22:23 p.m. EST Feb. 22 , landing on orbit 181 of the mission. Nose gear touchdown was at 6:22:35 p.m.. EST, and wheel stop at 6:23:25 p.m. EST. The crew returned from the Shuttle Radar Topography Mission after mapping more than 47 million square miles of the Earth's surface. This was the 97th flight in the Space Shuttle program and the 14th for Endeavour, also marking the 50th landing at KSC, the 21st consecutive landing at KSC, and the 28th in the last 29 Shuttle flights.

  20. SRTM Perspective with Landsat Virgin Islands, Carribean

    NASA Technical Reports Server (NTRS)

    2003-01-01

    St. Thomas, St. John, Tortola, and Virgin Gorda are the four main islands (front to back) of this east-looking view of the U.S. Virgin Islands and British Virgin Islands, along the northeast perimeter of the Caribbean Sea. For this view, a nearly cloud-free Landsat image was draped over elevation data from the Shuttle Radar Topography Mission (SRTM), and shading derived from the SRTM data was added to enhance the topographic expression. Elevation is shown with 1.5x scaled vertical exaggeration. Coral reefs fringe the islands in many locations and appear as very light shades of blue. Tropical vegetation appears green, and developed areas appear in shades of brown and white.

    As in much of the world, topography is the primary factor in the pattern of land use development in the Virgin Islands. Topography across most of the islands is quite rugged, and although the steep slopes create a scenic setting, they crowd most development into the small areas of low relief terrain, generally along the shoreline. The topographic pattern also affects water supply, wastewater disposal, landfill locations, road construction, and most other features of the development infrastructure. Topography also defines the natural drainage pattern, which is the major consideration in anticipating tropical storm water runoff dangers, as well as the dangers of heightened sediment impacts upon the adjacent coral reefs.

    Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and substantially helps in analyzing the large and growing Landsat image archive.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on February 11, 2000. The mission used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar that flew twice on the Space Shuttle Endeavour in 1994. The Shuttle Radar Topography Mission was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.

    Size: 94.7 kilometers (58.7 miles) view distance, 29.2 kilometers (18.1 miles) view width Location: 18.25 degrees North latitude, 64.75 degrees West longitude Orientation: Looking EasT Image Data: Landsat Bands 1,2+4, 3 as blue, green, red, respectively Original Data Resolution: SRTM and Landsat 30 meters (99 feet) Date Acquired: February 2000 (SRTM), January 21, 1985 (Landsat)

  1. An Investigation into the Representation of Geological Maps by 15-16 Year-Old Turkish Students

    ERIC Educational Resources Information Center

    Dal, Burckin

    2010-01-01

    This paper explores secondary school students' representations of a geological map. Ninety-two high school students (ninth graders--15- to 16-years-old) participated in the survey in Turkey. The findings indicate that students have only a vague idea of how a geological map is constructed, and how the map is affected by the topography. The…

  2. Nearshore coastal mapping. [in Lake Michigan and Puerto Rico

    NASA Technical Reports Server (NTRS)

    Polcyn, F. C.; Lyzenga, D. R.

    1975-01-01

    Two test sites of different water quality and bottom topography were used to test for maximum water depth penetration using the Skylab S-192 MSS for measurement of nearshore coastal bathymetry. Sites under investigation lie along the Lake Michigan coastline where littoral transport acts to erode sand bluffs and endangers developments along 1,200 miles of shore, and on the west coast of Puerto Rico where unreliable shoal location and depth information constitutes a safety hazard to navigation. The S-192 and S-190A and B provide data on underwater features because of water transparency in the blue/green portion of the spectrum. Depth of 20 meters were measured with the S-192 in the Puerto Rico test site. The S-190B photography with its improved spatial resolution clearly delineates the triple sand bar topography in the Lake Michigan test site. Several processing techniques were employed to test for maximum depth measurement with least error. The results are useful for helping to determine an optimum spectral bandwidth for future space sensors that will increase depth measurements for different water attenuation conditions where a bottom reflection is detectable.

  3. Topography of the ISW2–nucleosome complex: insights into nucleosome spacing and chromatin remodeling

    PubMed Central

    Kagalwala, Mohamedi N; Glaus, Benjamin J; Dang, Weiwei; Zofall, Martin; Bartholomew, Blaine

    2004-01-01

    Linker DNA was found to be critical for the specific docking of ISW2 with nucleosomes as shown by mapping the physical contacts of ISW2 with nucleosomes at base-pair resolution. Hydroxyl radical footprinting revealed that ISW2 not only extensively interacts with the linker DNA, but also approaches the nucleosome from the side perpendicular to the axis of the DNA superhelix and contacts two disparate sites on the nucleosomal DNA from opposite sides of the superhelix. The topography of the ISW2–nucleosome was further delineated by finding which of the ISW2 subunits are proximal to specific sites within the linker and nucleosomal DNA regions by site-directed DNA photoaffinity labeling. Although ISW2 was shown to contact ∼63 bp of linker DNA, a minimum of 20 bp of linker DNA was required for stable binding of ISW2 to nucleosomes. The remaining ∼43 bp of flanking linker DNA promoted more efficient binding under competitive binding conditions and was functionally important for enhanced sliding of nucleosomes when ISW2 was significantly limiting. PMID:15131696

  4. Known Locations of Carbonate Rocks on Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Green dots show the locations of orbital detections of carbonate-bearing rocks on Mars, determined by analysis of targeted observations by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) acquired through January 2008. The spectrometer is on NASA's Mars Reconnaissance Orbiter.

    The base map is color-coded global topography (red is high, blue is low) overlain on mosaicked daytime thermal infrared images. The topography data are from the Mars Orbiter Laser Altimeter on NASA's Mars Global Surveyor. The thermal infrared imagery is from the Thermal Emission Imaging System camera on NASA's Mars Odyssey orbiter.

    The CRISM team, led by The Johns Hopkins University Applied Physics Laboratory, Laurel, Md., includes expertise from universities, government agencies and small businesses in the United States and abroad. Arizona State University, Tempe, operates the Thermal Emission Imaging System, which the university developed in collaboration with Raytheon Santa Barbara Remote Sensing.

    NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter and Mars Odyssey projects for the NASA Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, built the orbiters.

  5. Video Animation of Ocean Topography From TOPEX/POSEIDON

    NASA Technical Reports Server (NTRS)

    Fu, Lee-Lueng; Leconte, Denis; Pihos, Greg; Davidson, Roger; Kruizinga, Gerhard; Tapley, Byron

    1993-01-01

    Three video loops showing various aspects of the dynamic ocean topography obtained from the TOPEX/POSEIDON radar altimetry data will be presented. The first shows the temporal change of the global ocean topography during the first year of the mission. The time-averaged mean is removed to reveal the temporal variabilities. Temporal interpolation is performed to create daily maps for the animation. A spatial smoothing is also performed to retain only the large-sale features. Gyre-scale seasonal changes are the main features. The second shows the temporal evolution of the Gulf Stream. The high resolution gravimetric geoid of Rapp is used to obtain the absolute ocean topography. Simulated drifters are used to visualize the flow pattern of the current. Meanders and rings of the current are the main features. The third is an animation of the global ocean topography on a spherical earth. The JGM-2 geoid is used to obtain the ocean topography...

  6. Rapid mapping of ultrafine fault zone topography with structure from motion

    USGS Publications Warehouse

    Johnson, Kendra; Nissen, Edwin; Saripalli, Srikanth; Arrowsmith, J. Ramón; McGarey, Patrick; Scharer, Katherine M.; Williams, Patrick; Blisniuk, Kimberly

    2014-01-01

    Structure from Motion (SfM) generates high-resolution topography and coregistered texture (color) from an unstructured set of overlapping photographs taken from varying viewpoints, overcoming many of the cost, time, and logistical limitations of Light Detection and Ranging (LiDAR) and other topographic surveying methods. This paper provides the first investigation of SfM as a tool for mapping fault zone topography in areas of sparse or low-lying vegetation. First, we present a simple, affordable SfM workflow, based on an unmanned helium balloon or motorized glider, an inexpensive camera, and semiautomated software. Second, we illustrate the system at two sites on southern California faults covered by existing airborne or terrestrial LiDAR, enabling a comparative assessment of SfM topography resolution and precision. At the first site, an ∼0.1 km2 alluvial fan on the San Andreas fault, a colored point cloud of density mostly >700 points/m2 and a 3 cm digital elevation model (DEM) and orthophoto were produced from 233 photos collected ∼50 m above ground level. When a few global positioning system ground control points are incorporated, closest point vertical distances to the much sparser (∼4 points/m2) airborne LiDAR point cloud are mostly 530 points/m2 and a 2 cm DEM and orthophoto were produced from 450 photos taken from ∼60 m above ground level. Closest point vertical distances to existing terrestrial LiDAR data of comparable density are mostly <6 cm. Each SfM survey took ∼2 h to complete and several hours to generate the scene topography and texture. SfM greatly facilitates the imaging of subtle geomorphic offsets related to past earthquakes as well as rapid response mapping or long-term monitoring of faulted landscapes.

  7. Anaglyph, Landsat overlay Honolulu, Hawaii

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Honolulu, on the island of Oahu, is a large and growing urban area with limited space and water resources. This anaglyph, combining a Landsat image with SRTM topography, shows how the topography controls the urban growth pattern, causes cloud formation, and directs the rainfall runoff pattern. Red/blue glasses are required to see the 3-D effect. Features of interest in this scene include Diamond Head (an extinct volcano on the right side of the image), Waikiki Beach (just left of Diamond Head), the Punchbowl National Cemetary (another extinct volcano, left of center), downtown Honolulu and Honolulu harbor (lower left of center), and offshore reef patterns. The slopes of the Koolau mountain range are seen in the upper half of the image. Clouds commonly hang above ridges and peaks of the Hawaiian Islands, and in this rendition appear draped directly on the mountains. The clouds are actually about 1000 meters (3300 feet) above sea level. High resolution topographic and image data allow ecologists and planners to assess the effects of urban development on the sensitive ecosystems in tropical regions.

    This anaglyph was generated using topographic data from the Shuttle Radar Topography Mission, combined with a Landsat 7 satellite image collected coincident with the SRTM mission. The topography data are used to create two differing perspectives of a single image, one perspective for each eye. Each point in the image is shifted slightly, depending on its elevation. When viewed through special glasses, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter. The United States Geological Survey's Earth Resources Observations Systems (EROS) DataCenter, Sioux Falls, South Dakota, provided the Landsat data.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the German (DLR) and Italian (ASI) space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Size: 18 by 28 kilometers (11 by 17 miles) Location: 21.3 deg. North lat., 157.9 deg. West lon. Orientation: North toward upper left Original Data Resolution: SRTM, 30 meters (99 feet); Landsat, 15 meters (50 feet) Date Acquired: SRTM, February 18, 2000; Landsat February 12, 2000

  8. SRTM Colored and Shaded Topography: Haro and Kas Hills, India

    NASA Technical Reports Server (NTRS)

    2001-01-01

    On January 26, 2001, the Kachchh region in western India suffered the most deadly earthquake in India's history. This shaded topography view of landforms northeast of the city of Bhuj depicts geologic structures that are of interest in the study the tectonic processes that may have led to that earthquake. However, preliminary field studies indicate that these structures are composed of Mesozoic rocks that are overlain by younger rocks showing little deformation. Thus these structures may be old, not actively growing, and not directly related to the recent earthquake.

    The Haro Hills are on the left and the Kas Hills are on the right. The Haro Hills are an 'anticline,' which is an upwardly convex elongated fold of layered rocks. In this view, the anticline is distinctly ringed by an erosion resistant layer of sandstone. The east-west orientation of the anticline may relate to the crustal compression that has occurred during India's northward movement toward, and collision with, Asia. In contrast, the largest of the Kas Hills appears to be a tilted (to the south) and faulted (on the north) block of layered rocks. Also seen here, the linear feature trending toward the southwest from the image center is an erosion-resistant 'dike,' which is an igneous intrusion into older 'host' rocks along a fault plane or other crack. These features are simple examples of how shaded topography can provide a direct input to geologic studies.

    In this image, colors show the elevation as measured by the Shuttle Radar Topography Mission (SRTM). Colors range from green at the lowest elevations, through yellow and red, to purple at the highest elevations. Elevations here range from near sea level to about 300 meters (about 1000 feet). Shading has been added, with illumination from the north (image top).

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise,Washington, DC.

    Size: 26.3 x 16.6 kilometers ( 16.3 x 10.3 miles) Location: 23.4 deg. North lat., 69.8 deg. East lon. Orientation: North toward the top Date Acquired: February 2000

  9. Mapping and Monitoring Stream Aquatic Habitat With a Narrow-Beam Green Lidar

    NASA Astrophysics Data System (ADS)

    McKean, J.; Wright, W.; Kinzel, P.; Isaak, D.

    2006-12-01

    Stream environments are structured by complex biophysical processes that operate across multiple spatial and temporal scales. Disentangling these multiscalar and multicausal relationships is difficult, but fundamental to understanding, managing, and monitoring channel aquatic ecosystems. Standard field wading surveys of stream physical habitat are limited by cost and logistics to relatively small, isolated samples. Traditional remotely sensed surveys, including methods such as photogrammetry and near-infrared lidar, suffer from attenuation by water and do not directly map submerged channel topography. The Experimental Advanced Airborne Research Lidar (EAARL) is a full-waveform lidar with a unique ability to simultaneously map, with relatively high resolution, subaqueous and subaerial topography and the vegetation canopy. We have used the EAARL instrument to investigate two dissimilar stream ecosystems. We mapped 40km of low gradient, meandering, gravel-bed streams in central Idaho that are spawning habitat for threatened Chinook salmon. We are using the continuous three-dimensional channel maps to quantitatively explore how channel features affect the distribution of salmon spawning at multiple spatial scales and how modern stream and floodplain topography is related to post-glacial valley evolution. In contrast, the Platte River in central Nebraska is a wide and shallow, sand-bedded river that provides habitat for migratory water birds, including endangered species such as the whooping crane and least tern. Multi-temporal EAARL data are being used to map and monitor the physical response of the Platte River to habitat improvement projects that include in-channel and riparian vegetation removal and river flow augmentation to limit vegetation encroachment.

  10. Geologic map of the Zarkashan-Anguri copper and gold deposits, Ghazni Province, Afghanistan, modified from the 1968 original map compilation of E.P. Meshcheryakov and V.P. Sayapin

    USGS Publications Warehouse

    Peters, Stephen G.; Stettner, Will R.; Masonic, Linda M.; Moran, Thomas W.

    2011-01-01

    This map is a modified version of Geological map of the area of Zarkashan-Anguri gold deposits, scale 1:50,000, which was compiled by E.P. Meshcheryakov and V.P. Sayapin in 1968. Scientists from the U.S. Geological Survey, in cooperation with the Afghan Geological Survey and the Task Force for Business and Stability Operations of the U.S. Department of Defense, studied the original document and related reports and also visited the field area in April 2010. This modified map, which includes a cross section, illustrates the geologic setting of the Zarkashan-Anguri copper and gold deposits. The map reproduces the topology (contacts, faults, and so forth) of the original Soviet map and cross section and includes modifications based on our examination of that and other documents, and based on observations made and sampling undertaken during our field visit. (Refer to the Introduction and the References in the Map PDF for an explanation of our methodology and for complete citations of the original map and related reports.) Elevations on the cross section are derived from the original Soviet topography and may not match the newer topography used on the current map.

  11. KSC-99pp0522

    NASA Image and Video Library

    1999-05-13

    Inside the Space Station Processing Facility, the Shuttle Radar Topography Mission (SRTM) is maneuvered by an overhead crane toward a workstand below. The SRTM, which is the primary payload on mission STS-99, consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission scheduled for launch in September 1999. The objective of this radar system is to obtain the most complete high-resolution digital topographic database of the Earth. It will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. SRTM will be making use of a technique called radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. To get two radar images taken from different locations, the SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle

  12. KSC-99pp0524

    NASA Image and Video Library

    1999-05-13

    The move of the Shuttle Radar Topography Mission (SRTM) is nearly complete as it is lowered onto the workstand in the Space Station Processing Facility. The SRTM, which is the primary payload on mission STS-99, consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission scheduled for launch in September 1999. The objective of this radar system is to obtain the most complete high-resolution digital topographic database of the Earth. It will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. SRTM will be making use of a technique called radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. To get two radar images taken from different locations, the SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle

  13. KSC-99pp0521

    NASA Image and Video Library

    1999-05-13

    After being lifted off the transporter (lower right) in the Space Station Processing Facility, the Shuttle Radar Topography Mission (SRTM) moves across the floor toward a workstand. The SRTM, which is the primary payload on mission STS-99, consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission scheduled for launch in September 1999. The objective of this radar system is to obtain the most complete high-resolution digital topographic database of the Earth. It will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. SRTM will be making use of a technique called radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. To get two radar images taken from different locations, the SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle

  14. KSC-99pp0523

    NASA Image and Video Library

    1999-05-13

    Inside the Space Station Processing Facility, workers at each end of a workstand watch as the Shuttle Radar Topography Mission (SRTM) begins its descent onto it. The SRTM, which is the primary payload on mission STS-99, consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission scheduled for launch in September 1999. The objective of this radar system is to obtain the most complete high-resolution digital topographic database of the Earth. It will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. SRTM will be making use of a technique called radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. To get two radar images taken from different locations, the SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle

  15. KSC-99pp1367

    NASA Image and Video Library

    1999-11-29

    KENNEDY SPACE CENTER, FLA. -- Orbiter Endeavour waits in the Orbiter Processing Facility bay 2 for the closing of its payload bay doors. The Ku-band antenna (upper right) is still in the open position, outside the payload bay. Endeavour is expected to roll over to the Vehicle Assembly Building in three days for mating to the external tank and solid rocket boosters in high bay 1. Space Shuttle Endeavour is targeted for launch on mission STS-99 Jan. 13, 2000 at 1:11 p.m. EST. STS-99 is the Shuttle Radar Topography Mission, an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle

  16. KSC-99pp1368

    NASA Image and Video Library

    1999-11-01

    KENNEDY SPACE CENTER, FLA. -- Orbiter Endeavour waits in the Orbiter Processing Facility bay 2 for the closing of its payload bay doors. The Ku-band antenna (upper right) is now in its closed position inside the payload bay. Endeavour is expected to roll over to the Vehicle Assembly Building in three days for mating to the external tank and solid rocket boosters in high bay 1. Space Shuttle Endeavour is targeted for launch on mission STS-99 Jan. 13, 2000 at 1:11 p.m. EST. STS-99 is the Shuttle Radar Topography Mission, an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle

  17. Geologic Mapping of the Av-11 Pinaria Quadrangle of Asteroid 4 Vesta

    NASA Astrophysics Data System (ADS)

    Hoogenboom, T.; Schenk, P.; White, O. L.; Williams, D.; Heisinger, H.; Garry, W. B.; Yingst, R. A.; Buczkowski, D. L.; McCord, T. B.; Jaumann, R.; Pieters, C. M.; Gaskell, R. W.; Neukum, G.; Schmedemann, N.; Marchi, S.; Nathues, A.; Lecorre, L.; Roatsch, T.; Preusker, F.; de Sanctis, M. C.; Fillacchione, G.; Raymond, C. A.; Russell, C. T.

    2012-03-01

    Dawn entered orbit of the asteroid 4 Vesta in 7/2011, to characterize its geology, elemental and mineralogical composition, topography, shape, and internal structure. This abstract describes the results from mapping quadrangle Av-11.

  18. The Topography of Names and Places.

    ERIC Educational Resources Information Center

    Morehead, Joe

    1999-01-01

    Discusses geographic naming with Geographic Information Systems (GIS) technology. Highlights include the Geographic Names Information System (GNIS) online database; United States Geological Survey (USGS) national mapping information; the USGS-Microsoft connection; and panoramic maps and the small LizardTech company. (AEF)

  19. STS-99 Atlantis, Shuttle Radar Topography Mission (SRTM) in the MPPF with Technicians working

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The primary objective of the STS-99 mission was to complete high resolution mapping of large sections of the Earth's surface using the Shuttle Radar Topography Mission (SRTM), a specially modified radar system. This videotape shows technicians in clean room suits working on the SRTM in the Multi-Payload Processing Facility (MPPF).

  20. STS-99 Endeavour touches down at SLF after successful mission

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the waning light after sundown, Space Shuttle Endeavour touches down on KSC's Shuttle Landing Facility Runway 33 to complete the 11-day, 5-hour, 38-minute-long STS-99 mission. At the controls are Commander Kevin Kregel and Pilot Dominic Gorie. Also onboard the orbiter are Mission Specialists Janet Kavandi, Janice Voss, Mamoru Mohri of Japan and Gerhard Thiele of Germany. Mohri is with the National Space Development Agency (NASDA) and Thiele is with the European Space Agency. The crew are returning from the Shuttle Radar Topography Mission after mapping more than 47 million square miles of the Earth's surface. Main gear touchdown was at 6:22:23 p.m. EST Feb. 22 , landing on orbit 181 of the mission. Nose gear touchdown was at 6:22:35 p.m.. EST, and wheel stop at 6:23:25 p.m. EST. This was the 97th flight in the Space Shuttle program and the 14th for Endeavour, also marking the 50th landing at KSC, the 21st consecutive landing at KSC, and the 28th in the last 29 Shuttle flights.

  1. STS-99 Endeavour touches down at SLF after successful mission

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the waning light after sundown, Space Shuttle Endeavour touches down on KSC's Shuttle Landing Facility Runway 33 to complete the 11-day, 5-hour, 38-minute-long STS-99 mission. At the controls are Commander Kevin Kregel and Pilot Dominic Gorie. Also onboard the orbiter are Mission Specialists Janet Kavandi, Janice Voss, Mamoru Mohri of Japan and Gerhard Thiele of Germany. Mohri is with the National Space Development Agency (NASDA) and Thiele is with the European Space Agency. The crew is returning from the Shuttle Radar Topography Mission after mapping more than 47 million square miles of the Earth's surface. Main gear touchdown was at 6:22:23 p.m. EST Feb. 22 , landing on orbit 181 of the mission. Nose gear touchdown was at 6:22:35 p.m.. EST, and wheel stop at 6:23:25 p.m. EST. This was the 97th flight in the Space Shuttle program and the 14th for Endeavour, also marking the 50th landing at KSC, the 21st consecutive landing at KSC, and the 28th in the last 29 Shuttle flights.

  2. STS-99 Endeavour touches down at SLF after successful mission

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Space Shuttle Endeavour stirs up dust as its wheels touch down on KSC's Shuttle Landing Facility Runway 33 to complete the 11-day, 5-hour, 38-minute-long STS-99 mission. At the controls are Commander Kevin Kregel and Pilot Dominic Gorie. Also onboard the orbiter are Mission Specialists Janet Kavandi, Janice Voss, Mamoru Mohri of Japan and Gerhard Thiele of Germany. Mohri is with the National Space Development Agency (NASDA) and Thiele is with the European Space Agency. The crew is returning from the Shuttle Radar Topography Mission after mapping more than 47 million square miles of the Earth's surface. Main gear touchdown was at 6:22:23 p.m. EST Feb. 22 , landing on orbit 181 of the mission. Nose gear touchdown was at 6:22:35 p.m.. EST, and wheel stop at 6:23:25 p.m. EST. This was the 97th flight in the Space Shuttle program and the 14th for Endeavour, also marking the 50th landing at KSC, the 21st consecutive landing at KSC, and the 28th in the last 29 Shuttle flights.

  3. Application of X-ray topography to USSR and Russian space materials science

    PubMed Central

    Shul’pina, I. L.; Prokhorov, I. A.; Serebryakov, Yu. A.; Bezbakh, I. Zh.

    2016-01-01

    The authors’ experience of the application of X-ray diffraction imaging in carrying out space technological experiments on semiconductor crystal growth for the former USSR and for Russia is reported, from the Apollo–Soyuz programme (1975) up to the present day. X-ray topography was applied to examine defects in crystals in order to obtain information on the crystallization conditions and also on their changes under the influence of factors of orbital flight in space vehicles. The data obtained have promoted a deeper understanding of the conditions and mechanisms of crystallization under both microgravity and terrestrial conditions, and have enabled the elaboration of terrestrial methods of highly perfect crystal growth. The use of X-ray topography in space materials science has enriched its methods in the field of digital image processing of growth striations and expanded its possibilities in investigating the inhomogeneity of crystals. PMID:27158506

  4. Application of X-ray topography to USSR and Russian space materials science.

    PubMed

    Shul'pina, I L; Prokhorov, I A; Serebryakov, Yu A; Bezbakh, I Zh

    2016-05-01

    The authors' experience of the application of X-ray diffraction imaging in carrying out space technological experiments on semiconductor crystal growth for the former USSR and for Russia is reported, from the Apollo-Soyuz programme (1975) up to the present day. X-ray topography was applied to examine defects in crystals in order to obtain information on the crystallization conditions and also on their changes under the influence of factors of orbital flight in space vehicles. The data obtained have promoted a deeper understanding of the conditions and mechanisms of crystallization under both microgravity and terrestrial conditions, and have enabled the elaboration of terrestrial methods of highly perfect crystal growth. The use of X-ray topography in space materials science has enriched its methods in the field of digital image processing of growth striations and expanded its possibilities in investigating the inhomogeneity of crystals.

  5. Automated classifications of topography from DEMs by an unsupervised nested-means algorithm and a three-part geometric signature

    NASA Astrophysics Data System (ADS)

    Iwahashi, Junko; Pike, Richard J.

    2007-05-01

    An iterative procedure that implements the classification of continuous topography as a problem in digital image-processing automatically divides an area into categories of surface form; three taxonomic criteria-slope gradient, local convexity, and surface texture-are calculated from a square-grid digital elevation model (DEM). The sequence of programmed operations combines twofold-partitioned maps of the three variables converted to greyscale images, using the mean of each variable as the dividing threshold. To subdivide increasingly subtle topography, grid cells sloping at less than mean gradient of the input DEM are classified by designating mean values of successively lower-sloping subsets of the study area (nested means) as taxonomic thresholds, thereby increasing the number of output categories from the minimum 8 to 12 or 16. Program output is exemplified by 16 topographic types for the world at 1-km spatial resolution (SRTM30 data), the Japanese Islands at 270 m, and part of Hokkaido at 55 m. Because the procedure is unsupervised and reflects frequency distributions of the input variables rather than pre-set criteria, the resulting classes are undefined and must be calibrated empirically by subsequent analysis. Maps of the example classifications reflect physiographic regions, geological structure, and landform as well as slope materials and processes; fine-textured terrain categories tend to correlate with erosional topography or older surfaces, coarse-textured classes with areas of little dissection. In Japan the resulting classes approximate landform types mapped from airphoto analysis, while in the Americas they create map patterns resembling Hammond's terrain types or surface-form classes; SRTM30 output for the United States compares favorably with Fenneman's physical divisions. Experiments are suggested for further developing the method; the Arc/Info AML and the map of terrain classes for the world are available as online downloads.

  6. Automated classifications of topography from DEMs by an unsupervised nested-means algorithm and a three-part geometric signature

    USGS Publications Warehouse

    Iwahashi, J.; Pike, R.J.

    2007-01-01

    An iterative procedure that implements the classification of continuous topography as a problem in digital image-processing automatically divides an area into categories of surface form; three taxonomic criteria-slope gradient, local convexity, and surface texture-are calculated from a square-grid digital elevation model (DEM). The sequence of programmed operations combines twofold-partitioned maps of the three variables converted to greyscale images, using the mean of each variable as the dividing threshold. To subdivide increasingly subtle topography, grid cells sloping at less than mean gradient of the input DEM are classified by designating mean values of successively lower-sloping subsets of the study area (nested means) as taxonomic thresholds, thereby increasing the number of output categories from the minimum 8 to 12 or 16. Program output is exemplified by 16 topographic types for the world at 1-km spatial resolution (SRTM30 data), the Japanese Islands at 270??m, and part of Hokkaido at 55??m. Because the procedure is unsupervised and reflects frequency distributions of the input variables rather than pre-set criteria, the resulting classes are undefined and must be calibrated empirically by subsequent analysis. Maps of the example classifications reflect physiographic regions, geological structure, and landform as well as slope materials and processes; fine-textured terrain categories tend to correlate with erosional topography or older surfaces, coarse-textured classes with areas of little dissection. In Japan the resulting classes approximate landform types mapped from airphoto analysis, while in the Americas they create map patterns resembling Hammond's terrain types or surface-form classes; SRTM30 output for the United States compares favorably with Fenneman's physical divisions. Experiments are suggested for further developing the method; the Arc/Info AML and the map of terrain classes for the world are available as online downloads. ?? 2006 Elsevier B.V. All rights reserved.

  7. KSC-99pp0925

    NASA Image and Video Library

    1999-07-21

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, a crane lowers the Shuttle Radar Topography Mission (SRTM) toward the opening of the payload bay canister below. The canister will then be moved to the Orbiter Processing Facility and placed in the bay of the orbiter Endeavour. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A

  8. KSC-99pp0923

    NASA Image and Video Library

    1999-07-21

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, the Shuttle Radar Topography Mission (SRTM) is lifted for its move to a payload bay canister on the floor. The canister will then be moved to the Orbiter Processing Facility and placed in the bay of the orbiter Endeavour. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A

  9. KSC-99pp0968

    NASA Image and Video Library

    1999-07-21

    KENNEDY SPACE CENTER, FLA. -- A payload canister containing the Shuttle Radar Topography Mission (SRTM), riding atop a payload transporter, is moved from the Space Station Processing Facility to Orbiter Processing Facility (OPF) bay 2. Once there, the SRTM, the primary payload on STS-99, will be installed into the payload bay of the orbiter Endeavour. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation. The SRTM hardware includes one radar antenna in the Shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A

  10. Expressions for tidal conversion at seafloor topography using physical space integrals

    NASA Astrophysics Data System (ADS)

    Schorghofer, Norbert

    2010-12-01

    The barotropic tide interacts with seafloor topography to generate internal gravity waves. Equations for streamfunction and power conversion are derived in terms of integrals over the topography in spatial coordinates. The slope of the topography does not need to be small. Explicit equations are derived up to second order in slope for general topography, and conversion by a bell-shaped topography is calculated analytically to this order. A concise formalism using Hilbert transforms is developed, the minimally converting topographic shape is discussed, and a numerical scheme for the evaluation of power conversion is designed that robustly deals with the singular integrand.

  11. Shaded Relief with Height as Color, Lake Balbina, near Manaus, Brazil

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These two images show exactly the same area, Lake Balbina near Manaus, Brazil. The image on the left was created using the best global topographic data set previously available, the U.S. Geological Survey's GTOPO30. In contrast, the much more detailed image on the right was generated with data from the Shuttle Radar Topography Mission, which collected enough measurements to map 80 percent of Earth's landmass at this level of precision.

    Lake Balbina is a man-made reservoir created to supply hydroelectric power to the city of Manaus, located 125 kilometers (77 miles) to the south. The reservoir is located on the Uatuma River and drains a 19,100-square-kilometer (7,340-square-mile) basin of mostly upland topography where the relief extends from 30 meters (98 feet) to 200 meters(650 feet) in elevation. The lake includes a cluster of approximately 1,500 islands separated by submerged, shallow valleys within a flooded water-surface area of 2,400 square kilometers (920 square miles). Prior to the dam closure on October 1, 1987, the annually averaged flow on thriver was about 450 cubic meters (16,000 cubic feet) per second. Water depths in the full reservoir average 7.4 meters (24 feet). Because the vegetation was not cleared before filling, the lake consists mostly of forest and inundated trunks of dead, leafless trees.

    For some parts of the globe, Shuttle Radar Topography Mission measurements are 30 times more precise than previously available topographical information, according to NASA scientists. Mission data will be a welcome resource for national and local governments, scientists, commercial enterprises, and members of the public alike. The applications are as diverse as earthquake and volcano studies, flood control, transportation, urban and regional planning, aviation, recreation, and communications. The data's military applications include mission planning and rehearsal, modeling, and simulation.

    This image combines two types of Shuttle Radar Topography Mission data. The image brightness corresponds to the strength of the radar signal reflected from the ground, while colors show the elevation measurements. Colors range from blue at the lowest elevations to brown and white at the highest elevations.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission aboard Space Shuttle Endeavour, launched on Feb. 11,2000. The mission used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR)that flew twice on Endeavour in 1994. The Shuttle Radar Topography Mission was designed to collect 3-D measurements of Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.

    Size: 111 kilometers by 111 kilometers (69 miles by 69 miles) Location: 1.5 degrees South latitude, 59.5 degrees West longitude Orientation: North is at the top Date Acquired: February 2000 (SRTM)

  12. Expanding the Impact of Photogrammetric Topography Through Improved Data Archiving and Access

    NASA Astrophysics Data System (ADS)

    Crosby, C. J.; Arrowsmith, R.; Nandigam, V.

    2016-12-01

    Centimeter to decimeter-scale 2.5 to 3D sampling of the Earth surface topography coupled with the potential for photorealistic coloring of point clouds and texture mapping of meshes enables a wide range of science applications. Not only is the configuration and state of the surface as imaged valuable, but repeat surveys enable quantification of topographic change (erosion, deposition, and displacement) caused by various geologic processes. We are in an era of ubiquitous point clouds which come from both active sources such as laser scanners and radar as well as passive scene reconstruction via structure from motion (SfM) photogrammetry. With the decreasing costs of high-resolution topography (HRT) data collection, via methods such as SfM, the number of researchers collecting these data is increasing. These "long-tail" topographic data are of modest size but great value, and challenges exist to making them widely discoverable, shared, annotated, cited, managed and archived. Presently, there are no central repositories or services to support storage and curation of these datasets. The NSF funded OpenTopography (OT) employs cyberinfrastructure including large-scale data management, high-performance computing, and service-oriented architectures, to provide efficient online access to large HRT (mostly lidar) datasets, metadata, and processing tools. With over 200 datasets and 12,000 registered users, OT is well positioned to provide curation for community collected photogrammetric topographic data. OT is developing a "Community DataSpace", a service built on a low cost storage cloud (e.g. AWS S3) to make it easy for researchers to upload, curate, annotate and distribute their datasets. The system's ingestion workflow will extract metadata from data uploaded; validate it; assign a digital object identifier (DOI); and create a searchable catalog entry, before publishing via the OT portal. The OT Community DataSpace will enable wider discovery and utilization of these HRT datasets via the OT portal and sources that federate the OT data catalog, promote citations, and most importantly increase the impact of investments in data to catalyze scientific discovery.

  13. Managing the explosion of high resolution topography in the geosciences

    NASA Astrophysics Data System (ADS)

    Crosby, Christopher; Nandigam, Viswanath; Arrowsmith, Ramon; Phan, Minh; Gross, Benjamin

    2017-04-01

    Centimeter to decimeter-scale 2.5 to 3D sampling of the Earth surface topography coupled with the potential for photorealistic coloring of point clouds and texture mapping of meshes enables a wide range of science applications. Not only is the configuration and state of the surface as imaged valuable, but repeat surveys enable quantification of topographic change (erosion, deposition, and displacement) caused by various geologic processes. We are in an era of ubiquitous point clouds that come from both active sources such as laser scanners and radar as well as passive scene reconstruction via structure from motion (SfM) photogrammetry. With the decreasing costs of high-resolution topography (HRT) data collection, via methods such as SfM and UAS-based laser scanning, the number of researchers collecting these data is increasing. These "long-tail" topographic data are of modest size but great value, and challenges exist to making them widely discoverable, shared, annotated, cited, managed and archived. Presently, there are no central repositories or services to support storage and curation of these datasets. The U.S. National Science Foundation funded OpenTopography (OT) Facility employs cyberinfrastructure including large-scale data management, high-performance computing, and service-oriented architectures, to provide efficient online access to large HRT (mostly lidar) datasets, metadata, and processing tools. With over 225 datasets and 15,000 registered users, OT is well positioned to provide curation for community collected high-resolution topographic data. OT has developed a "Community DataSpace", a service built on a low cost storage cloud (e.g. AWS S3) to make it easy for researchers to upload, curate, annotate and distribute their datasets. The system's ingestion workflow will extract metadata from data uploaded; validate it; assign a digital object identifier (DOI); and create a searchable catalog entry, before publishing via the OT portal. The OT Community DataSpace enables wider discovery and utilization of these HRT datasets via the OT portal and sources that federate the OT data catalog, promote citations, and most importantly increase the impact of investments in data to catalyzes scientific discovery.

  14. The Mystery of the Mars North Polar Gravity-Topography Correlation(Or Lack Thereof)

    NASA Technical Reports Server (NTRS)

    Phillips, R. J.; Sjogren, W. L.; Johnson, C. L.

    1999-01-01

    Maps of moderately high resolution gravity data obtained from the Mars Global Surveyor (MGS) gravity calibration orbit campaign and high precision topography obtained from the Mars Orbiter Laser Altimeter (MOLA) experiment reveal relationships between gravity and topography in high northern latitudes of Mars. Figure 1 shows the results of a JPL spherical harmonic gravity model bandpass filtered between degrees 6 and 50 contoured over a MOLA topographic image. A positive gravity anomaly exists over the main North Polar cap, but there are at least six additional positive gravity anomalies, as well as a number of smaller negative anomalies, with no obvious correlation to topography. Additional information is contained in the original extended abstract.

  15. KSC-2009-2832

    NASA Image and Video Library

    2009-04-27

    CAPE CANAVERAL, Fla. –– The Atlas V first stage is being transferred from the hangar at the Atlas Space Operations Facility to the Vertical Integration Facility near Cape Canaveral Air Force Station's Launch Complex 41. The Atlas V/Centaur is the launch vehicle for the Lunar Reconnaissance Orbiter, or LRO. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. Launch of LRO is targeted no earlier than June 2. Photo credit: NASA/Kim Shiflett

  16. KSC-2009-2831

    NASA Image and Video Library

    2009-04-27

    CAPE CANAVERAL, Fla. –– The Atlas V first stage is moved from the hangar at the Atlas Space Operations Facility. It is going to the Vertical Integration Facility near Cape Canaveral Air Force Station's Launch Complex 41. The Atlas V/Centaur is the launch vehicle for the Lunar Reconnaissance Orbiter, or LRO. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. Launch of LRO is targeted no earlier than June 2. Photo credit: NASA/Kim Shiflett

  17. Active fault systems of the Kivu rift and Virunga volcanic province, and implications for geohazards

    NASA Astrophysics Data System (ADS)

    Zal, H. J.; Ebinger, C. J.; Wood, D. J.; Scholz, C. A.; d'Oreye, N.; Carn, S. A.; Rutagarama, U.

    2013-12-01

    H Zal, C Ebinger, D. Wood, C. Scholz, N. d'Oreye, S. Carn, U. Rutagarama The weakly magmatic Western rift system, East Africa, is marked by fault-bounded basins filled by freshwater lakes that record tectonic and climatic signals. One of the smallest of the African Great Lakes, Lake Kivu, represents a unique geohazard owing to the warm, saline bottom waters that are saturated in methane, as well as two of the most active volcanoes in Africa that effectively dam the northern end of the lake. Yet, the dynamics of the basin system and the role of magmatism were only loosely constrained prior to new field and laboratory studies in Rwanda. In this work, we curated, merged, and analyzed historical and digital data sets, including spectral analyses of merged Shuttle Radar Topography Mission topography and high resolution CHIRP bathymetry calibrated by previously mapped fault locations along the margins and beneath the lake. We quantitatively compare these fault maps with the time-space distribution of earthquakes located using data from a temporary array along the northern sector of Lake Kivu, as well as space-based geodetic data. During 2012, seismicity rates were highest beneath Nyiragongo volcano, where a range of low frequency (1-3 s peak frequency) to tectonic earthquakes were located. Swarms of low-frequency earthquakes correspond to periods of elevated gas emissions, as detected by Ozone Monitoring Instrument (OMI). Earthquake swarms also occur beneath Karisimbi and Nyamuragira volcanoes. A migrating swarm of earthquakes in May 2012 suggests a sill intrusion at the DR Congo-Rwanda border. We delineate two fault sets: SW-NE, and sub-N-S. Excluding the volcano-tectonic earthquakes, most of the earthquakes are located along subsurface projections of steep border faults, and intrabasinal faults calibrated by seismic reflection data. Small magnitude earthquakes also occur beneath the uplifted rift flanks. Time-space variations in seismicity patterns provide a baseline for hazard assessment, and guide future studies in the Kivu rift, and document the role of magmatism in rifting processes.

  18. Radar Image, Wrapped Color as Height, Lanai and West Maui, Hawaii

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This topographic radar image shows Lanai (left) and western Maui (right). Data such as these will be useful for studying the history of volcanic activity on these now extinct volcanoes. SRTM data also will help local officials evaluate and mitigate natural hazards for islands throughout the Pacific. For example, improved elevation data will make it easier for communities to plan for tsunamis (tidal waves generated by earthquakes around the perimeter of the Pacific) by helping them identify evacuation routes and areas prone to flooding.

    This image combines two types of data from the Shuttle Radar Topography Mission. The image brightness corresponds to the strength of the radar signal reflected from the ground, while colors show the elevation as measured by SRTM. Each cycle of colors (from pink through blue back to pink) represents an equal amount of elevation difference (400 meters or 1300 feet) similar to contour lines on a standard topographic map. This image contains about 1800 meters (5900 feet) of total relief.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the German (DLR) and Italian (ASI) space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise,Washington, DC.

    Size: 68 by 45 kilometers (42 by 28 miles) Location: 20.8 deg. North lat., 156.7 deg. West lon. Orientation: North toward upper left Original Data Resolution: 30 meters (99 feet) Date Acquired: February 18, 2000 Image: NASA/JPL/NIMA

  19. ATM Coastal Topography - Louisiana, 2001: UTM Zone 16 (Part 2 of 2)

    USGS Publications Warehouse

    Yates, Xan; Nayegandhi, Amar; Brock, John C.; Sallenger, Asbury H.; Klipp, Emily S.; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Louisiana coastline beach face within UTM Zone 16, from Grand Isle to the Chandeleur Islands, acquired September 7 and 9, 2001. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative scanning lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or first-surface topography.

  20. ATM Coastal Topography-Louisiana, 2001: UTM Zone 15 (Part 1 of 2)

    USGS Publications Warehouse

    Yates, Xan; Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Klipp, Emily S.; Wright, C. Wayne

    2010-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Louisiana coastline beach face within UTM Zone 15, from Isles Dernieres to Grand Isle, acquired September 7 and 10, 2001. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative scanning lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or first-surface topography.

  1. ATM Coastal Topography-Texas, 2001: UTM Zone 14

    USGS Publications Warehouse

    Klipp, Emily S.; Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Bonisteel, Jamie M.; Yates, Xan; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Texas coastline within UTM zone 14, acquired October 12-13, 2001. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative scanning lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or first-surface topography.

  2. ATM Coastal Topography-Texas, 2001: UTM Zone 15

    USGS Publications Warehouse

    Klipp, Emily S.; Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Bonisteel, Jamie M.; Yates, Xan; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Texas coastline within UTM zone 15, from Matagorda Peninsula to Galveston Island, acquired October 12-13, 2001. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative scanning lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or first-surface topography.

  3. ATM Coastal Topography-Florida 2001: Western Panhandle

    USGS Publications Warehouse

    Yates, Xan; Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Bonisteel, Jamie M.; Klipp, Emily S.; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the western Florida panhandle coastline, acquired October 2-4 and 7-10, 2001. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative scanning Lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning Lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used to create maps that represent submerged or first surface topography.

  4. ATM Coastal Topography-Mississippi, 2001

    USGS Publications Warehouse

    Nayegandhi, Amar; Yates, Xan; Brock, John C.; Sallenger, A.H.; Klipp, Emily S.; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the Mississippi coastline, from Lakeshore to Petit Bois Island, acquired September 9-10, 2001. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative scanning lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or first-surface topography.

  5. Unveiling topographical changes using LiDAR mapping capability: case study of Belaga in Sarawak, East-Malaysia

    NASA Astrophysics Data System (ADS)

    Ganendra, T. R.; Khan, N. M.; Razak, W. J.; Kouame, Y.; Mobarakeh, E. T.

    2016-06-01

    The use of Light Detection and Ranging (LiDAR) remote sensing technology to scan and map landscapes has proven to be one of the most popular techniques to accurately map topography. Thus, LiDAR technology is the ultimate method of unveiling the surface feature under dense vegetation, and, this paper intends to emphasize the diverse techniques that can be utilized to elucidate topographical changes over the study area, using multi-temporal airborne full waveform LiDAR datasets collected in 2012 and 2014. Full waveform LiDAR data offers access to an almost unlimited number of returns per shot, which enables the user to explore in detail topographical changes, such as vegetation growth measurement. The study also found out topography changes at the study area due to earthwork activities contributing to soil consolidation, soil erosion and runoff, requiring cautious monitoring. The implications of this study not only concurs with numerous investigations undertaken by prominent researchers to improve decision making, but also corroborates once again that investigations employing multi-temporal LiDAR data to unveil topography changes in vegetated terrains, produce more detailed and accurate results than most other remote sensing data.

  6. Greenland's 20th Century retreat illuminated - great spatial variability with strong connections to subglacial topography and fjord bathymetry

    NASA Astrophysics Data System (ADS)

    Bjork, A. A.; Kjeldsen, K. K.; Boeckel, M. V.; Korsgaard, N. J.; Fenty, I. G.; Khan, S. A.; Mouginot, J.; Morlighem, M.; Rignot, E. J.; Dowdeswell, J. A.; Kjaer, K. H.

    2017-12-01

    Mass loss acceleration from the Greenland Ice Sheet is a dominant contributor in recent global sea-level rise, and has been for several decades. While ice sheet wide mass loss has recently been documented from the end of the Little Ice Age (c. 1900 CE) to the 1980s, the detailed changes during this period remain poorly known. In this study, we map glacier margins of Greenland's 310 largest outlet glaciers in order to get the full picture of the 20th Century mass loss. We take advantage of the rich history of aerial photography over Greenland and combine photos from archives in Denmark, Norway, United Kingdom, and United States. We supplement the historical aerial photographs with declassified US spy satellite imagery and recent satellite imagery to document glacial retreat and advance on a decadal scale. With recent advances in bathymetry mapping and subglacial topography mapping, we are able to show that spatial differences in retreat throughout the last 100 years are largely controlled by the underlying topography. Our study further highlights hotspots of past rapid mass loss in Greenland, and discusses implications for periods of regional stability and advance.

  7. EAARL Topography - George Washington Birthplace National Monument 2008

    USGS Publications Warehouse

    Brock, John C.; Nayegandhi, Amar; Wright, C. Wayne; Stevens, Sara; Yates, Xan

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived bare earth (BE) and first surface (FS) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Northeast Coastal and Barrier Network, Kingston, RI; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the George Washington Birthplace National Monument in Virginia, acquired on March 26, 2008. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL) was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.

  8. EAARL Coastal Topography-Pearl River Delta 2008: Bare Earth

    USGS Publications Warehouse

    Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Miner, Michael D.; Yates, Xan; Bonisteel, Jamie M.

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived bare earth (BE) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the University of New Orleans (UNO), Pontchartrain Institute for Environmental Sciences (PIES), New Orleans, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Pearl River Delta in Louisiana and Mississippi, acquired March 9-11, 2008. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.

  9. EAARL Coastal Topography-Pearl River Delta 2008: First Surface

    USGS Publications Warehouse

    Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Miner, Michael D.; Michael, D.; Yates, Xan; Bonisteel, Jamie M.

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the University of New Orleans (UNO), Pontchartrain Institute for Environmental Sciences (PIES), New Orleans, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Pearl River Delta in Louisiana and Mississippi, acquired March 9-11, 2008. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.

  10. EAARL Topography - Jean Lafitte National Historical Park and Preserve 2006

    USGS Publications Warehouse

    Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Segura, Martha; Yates, Xan

    2008-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) and bare earth (BE) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Gulf Coast Network, Lafayette, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the Jean Lafitte National Historical Park and Preserve in Louisiana, acquired on September 22, 2006. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.

  11. EAARL Coastal Topography - Northern Gulf of Mexico, 2007: Bare Earth

    USGS Publications Warehouse

    Smith, Kathryn E.L.; Nayegandhi, Amar; Wright, C. Wayne; Bonisteel, Jamie M.; Brock, John C.

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived bare earth (BE) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Gulf Coast Network, Lafayette, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. The purpose of this project is to provide highly detailed and accurate datasets of select barrier islands and peninsular regions of Louisiana, Mississippi, Alabama, and Florida, acquired on June 27-30, 2007. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.

  12. EAARL Submerged Topography - U.S. Virgin Islands 2003

    USGS Publications Warehouse

    Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Stevens, Sara; Yates, Xan; Bonisteel, Jamie M.

    2008-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived submerged topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), South Florida-Caribbean Network, Miami, FL; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate bathymetric datasets of a portion of the U.S. Virgin Islands, acquired on April 21, 23, and 30, May 2, and June 14 and 17, 2003. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.

  13. EAARL Coastal Topography-Eastern Louisiana Barrier Islands, Post-Hurricane Gustav, 2008: First Surface

    USGS Publications Warehouse

    Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Wright, C.W.; Sallenger, A.H.; Brock, J.C.; Nagle, D.B.; Vivekanandan, Saisudha; Fredericks, Xan

    2010-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography datasets were produced collaboratively by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the eastern Louisiana barrier islands, acquired post-Hurricane Gustav (September 2008 hurricane) on September 6 and 7, 2008. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations. For more information about similar projects, please visit the Decision Support for Coastal Science and Management website.

  14. EAARL Coastal Topography-Mississippi and Alabama Barrier Islands, Post-Hurricane Gustav, 2008

    USGS Publications Warehouse

    Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Wright, C.W.; Sallenger, A.H.; Brock, J.C.; Nagle, D.B.; Klipp, E.S.; Vivekanandan, Saisudha; Fredericks, Xan; Segura, Martha

    2010-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived bare-earth (BE) and first-surface (FS) topography datasets were produced collaboratively by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL; the National Park Service (NPS), Gulf Coast Network, Lafayette, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Mississippi and Alabama barrier islands, acquired post-Hurricane Gustav (September 2008 hurricane) on September 8, 2008. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations. For more information about similar projects, please visit the Decision Support for Coastal Science and Management website.

  15. EAARL Coastal Topography-Chandeleur Islands, Louisiana, 2010: Bare Earth

    USGS Publications Warehouse

    Nayegandhi, Amar; Bonisteel-Cormier, Jamie M.; Brock, John C.; Sallenger, A.H.; Wright, C. Wayne; Nagle, David B.; Vivekanandan, Saisudha; Yates, Xan; Klipp, Emily S.

    2010-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived bare-earth (BE) and submerged topography datasets were produced collaboratively by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Chandeleur Islands, acquired March 3, 2010. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color-infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations. For more information about similar projects, please visit the Decision Support for Coastal Science and Management website.

  16. EAARL Coastal Topography-Eastern Florida, Post-Hurricane Jeanne, 2004: First Surface

    USGS Publications Warehouse

    Fredericks, Xan; Nayegandhi, Amar; Bonisteel-Cormier, J.M.; Wright, C.W.; Sallenger, A.H.; Brock, J.C.; Klipp, E.S.; Nagle, D.B.

    2010-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography datasets were produced collaboratively by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the eastern Florida coastline beachface, acquired post-Hurricane Jeanne (September 2004 hurricane) on October 1, 2004. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color-infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations. For more information about similar projects, please visit the Decision Support for Coastal Science and Management website.

  17. EAARL Coastal Topography - Fire Island National Seashore 2007

    USGS Publications Warehouse

    Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Stevens, Sara; Yates, Xan; Bonisteel, Jamie M.

    2008-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) and bare earth (BE) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Northeast Coastal and Barrier Network, Kingston, RI; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of Fire Island National Seashore in New York, acquired on April 29-30 and May 15-16, 2007. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL) was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for pre-survey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.

  18. EAARL Coastal Topography-Assateague Island National Seashore, 2008: Bare Earth

    USGS Publications Warehouse

    Bonisteel, Jamie M.; Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Stevens, Sara; Yates, Xan; Klipp, Emily S.

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived bare-earth (BE) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Northeast Coastal and Barrier Network, Kingston, RI; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the Assateague Island National Seashore in Maryland and Virginia, acquired March 24-25, 2008. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL) was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for pre-survey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.

  19. EAARL Coastal Topography-Assateague Island National Seashore, 2008: First Surface

    USGS Publications Warehouse

    Bonisteel, Jamie M.; Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Stevens, Sara; Yates, Xan; Klipp, Emily S.

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Northeast Coastal and Barrier Network, Kingston, RI; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the Assateague Island National Seashore in Maryland and Virginia, acquired March 24-25, 2008. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for pre-survey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.

  20. Development of Columnar Topography in the Excitatory Layer 4 to Layer 2/3 Projection in Rat Barrel Cortex

    PubMed Central

    Bender, Kevin J.; Rangel, Juliana; Feldman, Daniel E.

    2011-01-01

    The excitatory feedforward projection from layer (L) 4 to L2/3 in rat primary somatosensory (S1) cortex exhibits precise, columnar topography that is critical for columnar processing of whisker inputs. Here, we characterize the development of axonal topography in this projection using single-cell reconstructions in S1 slices. In the mature projection [postnatal day (P) 14 –26], axons of L4 cells extending into L2/3 were confined almost entirely to the home barrel column, consistent with previous results. At younger ages (P8 –11), however, axonal topography was significantly less columnar, with a large proportion of branches innervating neighboring barrel columns representing adjacent whisker rows. Mature topography developed from this initial state by targeted axonal growth within the home column and by growth of barrel columns themselves. Raising rats with all or a subset of whiskers plucked from P8 –9, manipulations that induce reorganization of functional whisker maps and synaptic depression at L4 to L2/3 synapses, did not alter normal anatomical development of L4 to L2/3 axons. Thus, development of this projection does not require normal sensory experience after P8, and deprivation-induced reorganization of whisker maps at this age is unlikely to involve physical remodeling of L4 to L2/3 axons. PMID:14507976

  1. A steep peripheral ring in irregular cornea topography, real or an instrument error?

    PubMed

    Galindo-Ferreiro, Alicia; Galvez-Ruiz, Alberto; Schellini, Silvana A; Galindo-Alonso, Julio

    2016-01-01

    To demonstrate that the steep peripheral ring (red zone) on corneal topography after myopic laser in situ keratomileusis (LASIK) could possibly due to instrument error and not always to a real increase in corneal curvature. A spherical model for the corneal surface and modifying topography software was used to analyze the cause of an error due to instrument design. This study involved modification of the software of a commercially available topographer. A small modification of the topography image results in a red zone on the corneal topography color map. Corneal modeling indicates that the red zone could be an artifact due to an instrument-induced error. The steep curvature changes after LASIK, signified by the red zone, could be also an error due to the plotting algorithms of the corneal topographer, besides a steep curvature change.

  2. Chapter 19: The age of scarplike landforms from diffusion-equation analysis

    USGS Publications Warehouse

    Hanks, Thomas C.

    2000-01-01

    The purpose of this paper is to review developments in the quantitative modeling of fault-scarp geomorphology, principally those since 1980. These developments utilize diffusionequation mathematics, in several different forms, as the basic model of fault-scarp evolution. Because solutions to the general diffusion equation evolve with time, as we expect faultscarp morphology to evolve with time, the model solutions carry information about the age of the structure and thus its time of formation; hence the inclusion of this paper in this volume. The evolution of fault-scarp morphology holds a small but special place in the much larger class of problems in landform evolution. In general, landform evolution means the evolution of topography as a function of both space and time. It is the outcome of the competition among those tectonic processes that make topography, erosive processes that destroy topography, and depositional processes that redistribute topography. Deposition and erosion can always be coupled through conservation-of-mass relations, but in general deposition occurs at great distance from the source region of detritus. Moreover, erosion is an inherently rough process whereas deposition is inherently smooth, as is evident from even casual inspection of shaded-relief, digital-elevation maps (e.g., Thelin and Pike, 1990; Simpson and Anders, 1992) and the current fascination with fractal representations oferoding terrains (e.g., Huang and Turcotte, 1989; Newman and Turcotte, 1990). Nevertheless, large-scale landform-evolution modeling, now a computationally intensive, advanced numerical exercise, is generating ever more realistic landforms (e.g., Willgoose and others, 1991a,b; Kooi and Beaumont, 1994; Tucker and Slingerland, 1994), although many of the rate coefficients remain poorly prescribed

  3. Linking Observations of Dynamic Topography from Oceanic and Continental Realms around Australia

    NASA Astrophysics Data System (ADS)

    Czarnota, K.; Hoggard, M. J.; White, N.; Winterbourne, J.

    2012-04-01

    In the last decade, there has been growing interest in predicting the spatial and temporal evolution of dynamic topography (i.e. the surface manifestation of mantle convection). By directly measuring Neogene and Quaternary dynamic topography around Australia's passive margins we assess the veracity of these predictions and the interplay between mantle convection and plate motion. We mapped the present dynamic topography by carefully measuring residual topography of oceanic lithosphere adjacent to passive margins. This map provides a reference with respect to which the relative record of vertical motions, preserved within the stratigraphic architecture of the margins, can be interpreted. We carefully constrained the temporal record of vertical motions along Australia's Northwest Shelf by backstripping Neogene carbonate clinoform rollover trajectories in order to minimise paleobathymetric errors. Elsewhere, we compile temporal constraints from published literature. Three principal insights emerge from our analysis. First, the present-day drawn-down residual topography of Australia, cannot be approximated by a regional tilt down towards the northeast, as previously hypothesised. The south-western and south-eastern corners of Australia are at negligible to slightly positive residual topography which slopes down towards Australia's northern margin and the Great Australian Bight. Secondly, the record of passive margin subsidence suggests drawdown across northern Australia commenced synchronously at 8±2 Ma. The amplitude of this synchronous drawdown corresponds to the amplitude of oceanic residual topography, indicating northern Australia was at an unperturbed dynamic elevation until drawdown commenced. The synchronicity of this subsidence suggests that the Australian plate has not been affected by a southward propagating wave of drawdown, despite Australia's rapid northward motion towards the subduction realm in south-east Asia. In contrast, it appears the mantle anomaly responsible for this drawdown is a relatively young, long-wavelength feature. Thirdly, there is an apparent mismatch between the current drawdown of oceanic lithosphere observed along Australia's southern margin and the onshore record of Cenozoic uplift. This disparity we attribute to the region undergoing recent uplift from a position of dynamic drawdown.

  4. Hot spot heat transfer - Its application to Venus and implications to Venus and earth

    NASA Technical Reports Server (NTRS)

    Morgan, P.; Phillips, R. J.

    1983-01-01

    Using a model that gives a relationship between surface elevation, lithospheric thickness, and heat flux, the hot spot heat loss mechanism is tested for Venus. The mechanism is found to readily explain the predicted heat loss of the planet with a modest number of hot spots (of the order of 35). Lithospheric thickness variations can explain approximately 93 percent of the mapped topography of Venus. Above a radius of 6053 km, additional compensation is required, and this can be effected by incorporating a variable thickness crust into the model. If it is assumed that the crust is generated on the crests of the hot spots, probably by processes associated with volcanism, the model is consistent with nearly 99 percent of the mapped topography of Venus. In addition, the model is basically consistent with available gravity data and interpretations that suggest compensated topography and great depths of compensation (100-1000 km) for the midlatitudes of the planet. It is thought that the approximately 1 percent of the topography not explained by hot spot crustal generation is compensated at a shallower depth primarily by variations in crustal thickness that are not directly related to hot spot volcanism.

  5. Shaded Relief with Height as Color, Manila Bay, Philippines

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These two images show exactly the same area, Manila Bay and nearby volcanoes on Luzon Island in the Philippines. The image on the left was created using the best global topographic data set previously available, the U.S. Geological Survey's GTOPO30. In contrast, the much more detailed image on the right was generated with data from the Shuttle Radar Topography Mission, which collected enough measurements to map 80 percent of Earth's landmass at this level of precision.

    The city of Manila is on the eastern shore of Manila Bay at the right edge of the image. The large central plain to the north of the bay, irrigated by the Panpanga and Agno rivers, is the most important agricultural region in the Philippines. The Bataan Peninsula and volcanic Mt. Bataan at lower center along with the small island of Corregidor near the bottom edge became famous when the Allied forces made their last stand there during World War II. Dominating the upper left of the scene is 1,600 meter (5,249 foot) high Mt. Pinatubo, whose violent eruption on June 15, 1991, wrought widespread destruction on Luzon as well as injecting dust and gas into the atmosphere, which lowered global average temperatures for over a year.

    The image on the right combines two types of Shuttle Radar Topography Mission data. The image brightness corresponds to the strength of the radar signal reflected from the ground, while colors show the elevation measurements. Colors range from blue at the lowest elevations to brown and white at the highest elevations.

    For some parts of the globe, Shuttle Radar Topography Mission measurements are 30 times more precise than previously available topographical information, according to NASA scientists. Mission data will be a welcome resource for national and local governments, scientists, commercial enterprises, and members of the public alike. The applications are as diverse as earthquake and volcano, flood control, transportation, urban and regional planning, aviation, recreation, and communications. The data's military applications include mission planning and rehearsal, modeling, and simulation.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission aboard Space Shuttle Endeavour, launched on Feb. 11,2000. The mission used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR)that flew twice on Endeavour in 1994. The Shuttle Radar Topography Mission was designed to collect 3-D measurements of Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.

    Size: 111 kilometers by 109 kilometers (69 miles by 68 miles) Location: 15 degrees North latitude, 120.5 degrees East longitude Orientation: North is at the top Date Acquired: February 2000 (SRTM)

  6. Perspective View with Landsat Overlay, San Diego, Calif.

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The influence of topography on the growth of the city of San Diego is seen clearly in this computer-generated perspective viewed from the south. The Peninsular Ranges to the east of the city have channeled development of the cities of La Mesa and El Cajon, above the center. San Diego itself clusters around the bay enclosed by Point Loma and Coronado Island. In the mountains to the right, Lower Otay Lake and Sweetwater Reservoir are the dark patches.

    This 3-D perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM) and an enhanced color Landsat 5satellite image. Topographic expression is exaggerated two times.

    Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR)that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.

    Size: scale varies in this perspective image Location: 32.6 deg. North lat., 117.1 deg. West lon. Orientation: looking north Image Data: Landsat Bands 3, 2, 1 as red, green, blue, respectively Original Data Resolution: SRTM 1 arcsecond (30 meters or 98 feet), Thematic Mapper 1 arcsecond (30 meters or 98 feet) Date Acquired: February 2000 (SRTM)

  7. Predictive landslide susceptibility mapping using spatial information in the Pechabun area of Thailand

    NASA Astrophysics Data System (ADS)

    Oh, Hyun-Joo; Lee, Saro; Chotikasathien, Wisut; Kim, Chang Hwan; Kwon, Ju Hyoung

    2009-04-01

    For predictive landslide susceptibility mapping, this study applied and verified probability model, the frequency ratio and statistical model, logistic regression at Pechabun, Thailand, using a geographic information system (GIS) and remote sensing. Landslide locations were identified in the study area from interpretation of aerial photographs and field surveys, and maps of the topography, geology and land cover were constructed to spatial database. The factors that influence landslide occurrence, such as slope gradient, slope aspect and curvature of topography and distance from drainage were calculated from the topographic database. Lithology and distance from fault were extracted and calculated from the geology database. Land cover was classified from Landsat TM satellite image. The frequency ratio and logistic regression coefficient were overlaid for landslide susceptibility mapping as each factor’s ratings. Then the landslide susceptibility map was verified and compared using the existing landslide location. As the verification results, the frequency ratio model showed 76.39% and logistic regression model showed 70.42% in prediction accuracy. The method can be used to reduce hazards associated with landslides and to plan land cover.

  8. Testing Predictions of a Landscape Evolution Model Using the Dragon’s Back Pressure Ridge as a Natural Experiment

    NASA Astrophysics Data System (ADS)

    Perignon, M. C.; Tucker, G. E.; Hilley, G. E.; Arrowsmith, R.

    2009-12-01

    Landscape evolution models use mass transport rules to simulate the temporal development of topography over timescales too long for humans to observe. As such, these models are difficult to test using the decadal time-scale observations of topographic change that can be directly measured. In contrast, natural systems in which driving forces, boundary conditions, and timing of landscape evolution over millennial time-scales can be well constrained may be used to test the ability of mathematical models to reproduce various attributes of the observed topography. The Dragon’s Back pressure ridge, a 4km x 0.5 km x 100 m high area of elevated topography elongate parallel to the south-central San Andreas fault (SAF) in California, serves as a natural laboratory for studying how the timing and spatial distribution of uplift affects patterns of erosion and topography. Geologic mapping and geophysical studies show that, at this location, the Pacific plate is forced over a relatively stationary shallow discontinuity in the SAF, resulting in local uplift. Continued right-lateral motion along the fault results in the movement of material though the uplift zone at the SAF slip rate of 35 mm/yr. This allows for the substitution of space for time when observing topographic change, and can be used to constrain the tectonic conditions to which the surface processes responded and developed the resulting landscape. We used the CHILD model of landscape evolution to recreate the Dragon’s Back pressure ridge system in order to test the reliability of the model predictions and determine the necessary and sufficient conditions to explain the observed topography. To do this, we first ran a Monte Carlo simulation in which we varied the model inputs within a range of plausible values. We then compared the model results with LiDAR topography from the Dragon’s Back pressure ridge to determine which combinations of input parameters best reproduced the observed topography and how well it was reproduced. Our simulations show a nonlinear geomorphic response to tectonic processes, suggesting that landscape response time varies strongly with local relief. Our results demonstrate that a relatively simple combination of geomorphic transport laws, when suitably calibrated, can account for the morphology of the ridge.

  9. The global topography of Mars and implications for surface evolution

    NASA Technical Reports Server (NTRS)

    Smith, D. E.; Zuber, M. T.; Solomon, S. C.; Phillips, R. J.; Head, J. W.; Garvin, J. B.; Banerdt, W. B.; Muhleman, D. O.; Pettengill, G. H.; Neumann, G. A.; hide

    1999-01-01

    Elevations measured by the Mars Orbiter Laser Altimeter have yielded a high-accuracy global map of the topography of Mars. Dominant features include the low northern hemisphere, the Tharsis province, and the Hellas impact basin. The northern hemisphere depression is primarily a long-wavelength effect that has been shaped by an internal mechanism. The topography of Tharsis consists of two broad rises. Material excavated from Hellas contributes to the high elevation of the southern hemisphere and to the scarp along the hemispheric boundary. The present topography has three major drainage centers, with the northern lowlands being the largest. The two polar cap volumes yield an upper limit of the present surface water inventory of 3.2 to 4.7 million cubic kilometers.

  10. Sea floor maps showing topography, sun-illuminated topography, and backscatter intensity of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts

    USGS Publications Warehouse

    Valentine, P.C.; Middleton, T.J.; Fuller, S.J.

    2000-01-01

    This data set contains the sea floor topographic contours, sun-illuminated topographic imagery, and backscatter intensity generated from a multibeam sonar survey of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts, an area of approximately 1100 square nautical miles. The Stellwagen Bank NMS Mapping Project is designed to provide detailed maps of the Stellwagen Bank region's environments and habitats and the first complete multibeam topographic and sea floor characterization maps of a significant region of the shallow EEZ. Data were collected on four cruises over a two year period from the fall of 1994 to the fall of 1996. The surveys were conducted aboard the Candian Hydrographic Service vessel Frederick G. Creed, a SWATH (Small Waterplane Twin Hull) ship that surveys at speeds of 16 knots. The multibeam data were collected utilizing a Simrad Subsea EM 1000 Multibeam Echo Sounder (95 kHz) that is permanently installed in the hull of the Creed.

  11. Mapping topographic plant location properties using a dense matching approach

    NASA Astrophysics Data System (ADS)

    Niederheiser, Robert; Rutzinger, Martin; Lamprecht, Andrea; Bardy-Durchhalter, Manfred; Pauli, Harald; Winkler, Manuela

    2017-04-01

    Within the project MEDIALPS (Disentangling anthropogenic drivers of climate change impacts on alpine plant species: Alps vs. Mediterranean mountains) six regions in Alpine and in Mediterranean mountain regions are investigated to assess how plant species respond to climate change. The project is embedded in the Global Observation Research Initiative in Alpine Environments (GLORIA), which is a well-established global monitoring initiative for systematic observation of changes in the plant species composition and soil temperature on mountain summits worldwide to discern accelerating climate change pressures on these fragile alpine ecosystems. Close-range sensing techniques such as terrestrial photogrammetry are well suited for mapping terrain topography of small areas with high resolution. Lightweight equipment, flexible positioning for image acquisition in the field, and independence on weather conditions (i.e. wind) make this a feasible method for in-situ data collection. New developments of dense matching approaches allow high quality 3D terrain mapping with less requirements for field set-up. However, challenges occur in post-processing and required data storage if many sites have to be mapped. Within MEDIALPS dense matching is used for mapping high resolution topography for 284 3x3 meter plots deriving information on vegetation coverage, roughness, slope, aspect and modelled solar radiation. This information helps identifying types of topography-dependent ecological growing conditions and evaluating the potential for existing refugial locations for specific plant species under climate change. This research is conducted within the project MEDIALPS - Disentangling anthropogenic drivers of climate change impacts on alpine plant species: Alps vs. Mediterranean mountains funded by the Earth System Sciences Programme of the Austrian Academy of Sciences.

  12. SRTM Colored Height and Shaded Relief: Sredinnyy Khrebet, Kamchatka Peninsula, Russia

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Kamchatka Peninsula in eastern Russia is shown in this scene created from a preliminary elevation model derived from the first data collected during the Shuttle Radar Topography Mission (SRTM) on February 12, 2000. Sredinnyy Khrebet, the mountain range that makes up the spine of the peninsula, is a chain of active volcanic peaks. Pleistocene and recent glaciers have carved the broad valleys and jagged ridges that are common here. The relative youth of the volcanism is revealed by the topography as infilling and smoothing of the otherwise rugged terrain by lava, ash, and pyroclastic flows, particularly surrounding the high peaks in the south central part of the image. Elevations here range from near sea level up to 2,618 meters (8,590 feet).

    Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the north-south direction. Northern slopes appear bright and southern slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow, red, and magenta, to white at the highest elevations.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard Space Shuttle Endeavour, launched on February 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Size: 93.0 x 105.7 kilometers ( 57.7 x 65.6 miles) Location: 58.3 deg. North lat., 160.9 deg. East lon. Orientation: North toward the top Image Data: Shaded and colored SRTM elevation model Date Acquired: February 12, 2000

  13. SRTM Anaglyph: Sredinnyy Khrebet, Kamchatka Peninsula, Russia

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Kamchatka Peninsula in eastern Russia is shown in this scene created from a preliminary elevation model derived from the first data collected during the Shuttle Radar Topography Mission (SRTM) on February 12, 2000. Sredinnyy Khrebet, the mountain range that makes up the spine of the peninsula, is a chain of active volcanic peaks. Pleistocene and recent glaciers have carved the broad valleys and jagged ridges that are common here. The relative youth of the volcanism is revealed by the topography as infilling and smoothing of the otherwise rugged terrain by lava, ash, and pyroclastic flows, particularly surrounding the high peaks in the south central part of the image. Elevations here range from near sea level up to 2,618 meters (8,590 feet).

    This anaglyph was produced by first shading a preliminary SRTM elevation model. The stereoscopic effect was then created by generating two differing perspectives, one for each eye. When viewed through special glasses, the result is a vertically exaggerated view of Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard Space Shuttle Endeavour, launched on February 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Size: 93.0 x 105.7 kilometers ( 57.7 x 65.6 miles) Location: 58.3 deg. North lat., 160.9 deg. East lon. Orientation: North toward the top Image Data: Shaded SRTM elevation model Date Acquired: February 12, 2000

  14. Sredinnyy Khrebet, Kamchatka Peninsula, Russia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Kamchatka Peninsula in eastern Russia is shown in this scene created from a preliminary elevation model derived from the first data collected during the Shuttle Radar Topography Mission (SRTM) on February 12, 2000. Sredinnyy Khrebet, the mountain range that makes up the spine of the peninsula, is a chain of active volcanic peaks. Pleistocene and recent glaciers have carved the broad valleys and jagged ridges that are common here. The relative youth of the volcanism is revealed by the topography as infilling and smoothing of the otherwise rugged terrain by lava, ash, and pyroclastic flows, particularly surrounding the high peaks in the south central part of the image. Elevations here range from near sea level up to 2,618 meters (8,590 feet). Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the north-south direction. Northern slopes appear bright and southern slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow, red, and magenta, to white at the highest elevations. Elevation data used in this image were acquired by the Shuttle Radar Topography Mission (SRTM) aboard Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC. Size: 93.0 x 105.7 kilometers ( 57.7 x 65.6 miles) Location: 58.3 deg. North lat., 160.9 deg. East lon. Orientation: North toward the top Image Data: Shaded and colored SRTM elevation model Date Acquired: February 12, 2000 Image courtesy NASA/JPL/NIMA

  15. Surface topography of 1€ coin measured by stereo-PIXE

    NASA Astrophysics Data System (ADS)

    Gholami-Hatam, E.; Lamehi-Rachti, M.; Vavpetič, P.; Grlj, N.; Pelicon, P.

    2013-07-01

    We demonstrate the stereo-PIXE method by measurement of surface topography of the relief details on 1€ coin. Two X-ray elemental maps were simultaneously recorded by two X-ray detectors positioned at the left and the right side of the proton microbeam. The asymmetry of the yields in the pixels of the two X-ray maps occurs due to different photon attenuation on the exit travel path of the characteristic X-rays from the point of emission through the sample into the X-ray detectors. In order to calibrate the inclination angle with respect to the X-ray asymmetry, a flat inclined surface model was at first applied for the sample in which the matrix composition and the depth elemental concentration profile is known. After that, the yield asymmetry in each image pixel was transferred into corresponding local inclination angle using calculated dependence of the asymmetry on the surface inclination. Finally, the quantitative topography profile was revealed by integrating the local inclination angle over the lateral displacement of the probing beam.

  16. Influence of Fault-Controlled Topography on Fluvio-Deltaic Sedimentary Systems in Eberswalde Crater, Mars

    NASA Technical Reports Server (NTRS)

    Rice, Melissa S.; Gupta, Sanjeev; Bell, James F., III; Warner, Nicholas H.

    2011-01-01

    Eberswalde crater was selected as a candidate landing site for the Mars Science Laboratory (MSL) mission based on the presence of a fan-shaped sedimentary deposit interpreted as a delta. We have identified and mapped five other candidate fluvio -deltaic systems in the crater, using images and digital terrain models (DTMs) derived from the Mars Reconnaissance Orbiter (MRO) High Resolution Imaging Science Experiment (HiRISE) and Context Camera (CTX). All of these systems consist of the same three stratigraphic units: (1) an upper layered unit, conformable with (2) a subpolygonally fractured unit, unconformably overlying (3) a pitted unit. We have also mapped a system of NNE-trending scarps interpreted as dip-slip faults that pre-date the fluvial -lacustrine deposits. The post-impact regional faulting may have generated the large-scale topography within the crater, which consists of a Western Basin, an Eastern Basin, and a central high. This topography subsequently provided depositional sinks for sediment entering the crater and controlled the geomorphic pattern of delta development.

  17. The Tölz Temporal Topography Study: mapping the visual field across the life span. Part I: the topography of light detection and temporal-information processing.

    PubMed

    Poggel, Dorothe A; Treutwein, Bernhard; Calmanti, Claudia; Strasburger, Hans

    2012-08-01

    Temporal performance parameters vary across the visual field. Their topographical distributions relative to each other and relative to basic visual performance measures and their relative change over the life span are unknown. Our goal was to characterize the topography and age-related change of temporal performance. We acquired visual field maps in 95 healthy participants (age: 10-90 years): perimetric thresholds, double-pulse resolution (DPR), reaction times (RTs), and letter contrast thresholds. DPR and perimetric thresholds increased with eccentricity and age; the periphery showed a more pronounced age-related increase than the center. RT increased only slightly and uniformly with eccentricity. It remained almost constant up to the age of 60, a marked change occurring only above 80. Overall, age was a poor predictor of functionality. Performance decline could be explained only in part by the aging of the retina and optic media. In Part II, we therefore examine higher visual and cognitive functions.

  18. Space Science

    NASA Image and Video Library

    1996-11-07

    The journey back to Mars begins with a liftoff of the Mars Global Surveyor atop a Delta II 7925A expendable launch vehicle from the Cape Canaveral Air Station. After an approximate 10-month interplanetary odyssey, the spacecraft will arrive at Mars and begin a 4-month aerobreaking phase, an irnovative technique first demonstrated during the Magellan mission to Venus, to achieve a mapping orbit. It will take about 2 Earth years for Surveyor to circle above most of the planet, its suite of sophisticated remote-sensing instruments building a comprehensive global portrait of Mars by mapping its topography, magnetism, mineral composition and atmosphere. Among the locations the Surveyor will pass over are the landing sites where the two U.S. Viking landers have stood since 1975 as silent monuments to the most recent successful U.S. missions to Mars. The Global Surveyor is the first of a trio of spacecraft being launched to Mars; next is Russia's Mars `96 spacecraft, followed by the U.S.'s Mars Pathfinder.

  19. KSC-99pp1010

    NASA Image and Video Library

    1999-08-05

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, a radar antenna, part of the Shuttle Radar Topography Mission (SRTM), is stored in the payload bay of the orbiter Endeavour before door closure. SRTM is the primary payload on mission STS-99, scheduled to launch Sept. 16 at 8:47 a.m. EDT from Launch Pad 39A. A specially modified radar system, the SRTM will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware consists of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR

  20. KSC-99pp1009

    NASA Image and Video Library

    1999-08-05

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, a radar antenna, part of the Shuttle Radar Topography Mission (SRTM), is ready to be stored in the payload bay of the orbiter Endeavour before door closure. SRTM is the primary payload on mission STS-99, scheduled to launch Sept. 16 at 8:47 a.m. EDT from Launch Pad 39A. A specially modified radar system, the SRTM will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware consists of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR

  1. KSC-99pp1008

    NASA Image and Video Library

    1999-08-05

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, a radar antenna, part of the Shuttle Radar Topography Mission (SRTM), is nestled in the cargo bay of the orbiter Endeavour just before door closure. SRTM is the primary payload on mission STS-99, scheduled to launch Sept. 16 at 8:47 a.m. EDT from Launch Pad 39A. A specially modified radar system, the SRTM will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware consists of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR

  2. Bathymetry of Torssukatak fjord and one century of glacier stability

    NASA Astrophysics Data System (ADS)

    An, L.; Rignot, E. J.; Morlighem, M.

    2017-12-01

    Marine-terminating glaciers dominate the evolution of the Greenland Ice Sheet(GrIS) mass balance as they control 90% of the ice discharge into the ocean. Warm air temperatures thin the glaciers from the top to unground ice fronts from the bed. Warm oceans erode the submerged grounded ice, causing the grounding line to retreat. To interpret the recent and future evolution of two outlet glaciers, Sermeq Avangnardleq (AVA) and Sermeq Kujatdleq (KUJ) in central West Greenland, flowing into the ice-choked Torssukatak fjord (TOR), we need to know their ice thickness and bed topography and the fjord bathymetry. Here, we present a novel mapping of the glacier bed topography, ice thickness and sea floor bathymetry near the grounding line using high resolution airborne gravity data from AIRGrav collected in August 2012 with a helicopter platform, at 500 m spacing grid, 50 knots ground speed, 80 m ground clearance, with submilligal accuracy, i.e. higher than NASA Operation IceBridge (OIB)'s 5.2 km resolution, 290 knots, and 450 m clearance. We also employ MultiBeam Echo Sounding data (MBES) collected in the fjord since 2009. We had to wait until the summer of 2016, during Ocean Melting Greenland (OMG), to map the fjord bathymetry near the ice fronts for the first time. We constrain the 3D inversion of the gravity data with MBES in the fjord and a reconstruction of the glacier bed topography using mass conservation (MC) on land ice. The seamless topography obtained across the grounding line reveal the presence of a 300-m sill for AVA, which explains why this glacier has been stable for a century, despite changes in surface melt and ocean-induced melt and the presence of a deep fjord (800 m) in front of the glacier. For KUJ, we also reveal the presence of a wide sill (300 m depth) near the current ice front which explains its stability and the stranding of iceberg debris in front of the glacier. The results shed new light on the evolution of these glaciers and explain their apparent stability. The data also reveal the presence of a deep bed upstream, indicating a potential for rapid retreat if ocean and surface melting are able to dislodge the glaciers from their stabilizing sills. This work was funded by NASA Cryosphere Program and from a grant by the Gordon and Betty Moore Foundation.

  3. SRTM Anaglyph: Las Bayas, Argentina

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The interplay of volcanism, stream erosion and landslides is evident in this Shuttle Radar Topography Mission view of the eastern flank of the Andes Mountains, southeast of San Carlos de Bariloche, Argentina. Older lava flows emanating from the Andes once covered much of this area. Younger, local volcanoes (seen here as small peaks) then covered parts of the area with fresh, erosion resistant flows (seen here as very smooth surfaces). Subsequent erosion has created fine patterns on the older surfaces (bottom of the image) and bolder, irregular patterns through and around the younger surfaces (upper center and right center). Meanwhile, where a large stream immediately borders the resistant plateau (center of the image), lateral erosion has undercut the resistant plateau causing slivers of it to fall into the stream channel. This scene well illustrate show topographic data alone can reveal some aspects of recent geologic history.

    This anaglyph was produced by first shading a preliminary elevation model from data acquired by the Shuttle Radar Topography Mission. The stereoscopic effect was then created by generating two differing perspectives, one for each eye. When viewed through special glasses, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on February 11, 2000. The mission used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar that flew twice on the Space Shuttle Endeavour in 1994. The Shuttle Radar Topography Mission was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Size: 54.3 x 36.4 kilometers ( 33.7 x 22.6 miles) Location: 41.4 deg. South lat., 70.8 deg. West lon. Orientation: North toward the top Image Data: Shaded SRTM elevation model Date Acquired: February 2000

  4. Multiscale geomorphometric modeling of Mercury

    NASA Astrophysics Data System (ADS)

    Florinsky, I. V.

    2018-02-01

    Topography is one of the key characteristics of a planetary body. Geomorphometry deals with quantitative modeling and analysis of the topographic surface and relationships between topography and other natural components of landscapes. The surface of Mercury is systematically studied by interpretation of images acquired during the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission. However, the Mercurian surface is still little explored by methods of geomorphometry. In this paper, we evaluate the Mercury MESSENGER Global DEM MSGR_DEM_USG_SC_I_V02 - a global digital elevation model (DEM) of Mercury with the resolution of 0.015625° - as a source for geomorphometric modeling of this planet. The study was performed at three spatial scales: the global, regional (the Caloris basin), and local (the Pantheon Fossae area) ones. As the initial data, we used three DEMs of these areas with resolutions of 0.25°, 0.0625°, and 0.015625°, correspondingly. The DEMs were extracted from the MESSENGER Global DEM. From the DEMs, we derived digital models of several fundamental morphometric variables, such as: slope gradient, horizontal curvature, vertical curvature, minimal curvature, maximal curvature, catchment area, and dispersive area. The morphometric maps obtained represent peculiarities of the Mercurian topography in different ways, according to the physical and mathematical sense of a particular variable. Geomorphometric models are a rich source of information on the Mercurian surface. These data can be utilized to study evolution and internal structure of the planet, for example, to visualize and quantify regional topographic differences as well as to refine geological boundaries.

  5. Venus - Global gravity and topography

    NASA Technical Reports Server (NTRS)

    Mcnamee, J. B.; Borderies, N. J.; Sjogren, W. L.

    1993-01-01

    A new gravity field determination that has been produced combines both the Pioneer Venus Orbiter (PVO) and the Magellan Doppler radio data. Comparisonsbetween this estimate, a spherical harmonic model of degree and order 21, and previous models show that significant improvements have been made. Results are displayed as gravity contours overlaying a topographic map. We also calculate a new spherical harmonic model of topography based on Magellan altimetry, with PVO altimetry included where gaps exist in the Magellan data. This model is also of degree and order 21, so in conjunction with the gravity model, Bouguer and isostatic anomaly maps can be produced. These results are very consistent with previous results, but reveal more spatial resolution in the higher latitudes.

  6. Experiences with Acquiring Highly Redundant Spatial Data to Support Driverless Vehicle Technologies

    NASA Astrophysics Data System (ADS)

    Koppanyi, Z.; Toth, C. K.

    2018-05-01

    As vehicle technology is moving towards higher autonomy, the demand for highly accurate geospatial data is rapidly increasing, as accurate maps have a huge potential of increasing safety. In particular, high definition 3D maps, including road topography and infrastructure, as well as city models along the transportation corridors represent the necessary support for driverless vehicles. In this effort, a vehicle equipped with high-, medium- and low-resolution active and passive cameras acquired data in a typical traffic environment, represented here by the OSU campus, where GPS/GNSS data are available along with other navigation sensor data streams. The data streams can be used for two purposes. First, high-definition 3D maps can be created by integrating all the sensory data, and Data Analytics/Big Data methods can be tested for automatic object space reconstruction. Second, the data streams can support algorithmic research for driverless vehicle technologies, including object avoidance, navigation/positioning, detecting pedestrians and bicyclists, etc. Crucial cross-performance analyses on map database resolution and accuracy with respect to sensor performance metrics to achieve economic solution for accurate driverless vehicle positioning can be derived. These, in turn, could provide essential information on optimizing the choice of geospatial map databases and sensors' quality to support driverless vehicle technologies. The paper reviews the data acquisition and primary data processing challenges and performance results.

  7. A method for producing digital probabilistic seismic landslide hazard maps

    USGS Publications Warehouse

    Jibson, R.W.; Harp, E.L.; Michael, J.A.

    2000-01-01

    The 1994 Northridge, California, earthquake is the first earthquake for which we have all of the data sets needed to conduct a rigorous regional analysis of seismic slope instability. These data sets include: (1) a comprehensive inventory of triggered landslides, (2) about 200 strong-motion records of the mainshock, (3) 1:24 000-scale geologic mapping of the region, (4) extensive data on engineering properties of geologic units, and (5) high-resolution digital elevation models of the topography. All of these data sets have been digitized and rasterized at 10 m grid spacing using ARC/INFO GIS software on a UNIX computer. Combining these data sets in a dynamic model based on Newmark's permanent-deformation (sliding-block) analysis yields estimates of coseismic landslide displacement in each grid cell from the Northridge earthquake. The modeled displacements are then compared with the digital inventory of landslides triggered by the Northridge earthquake to construct a probability curve relating predicted displacement to probability of failure. This probability function can be applied to predict and map the spatial variability in failure probability in any ground-shaking conditions of interest. We anticipate that this mapping procedure will be used to construct seismic landslide hazard maps that will assist in emergency preparedness planning and in making rational decisions regarding development and construction in areas susceptible to seismic slope failure. ?? 2000 Elsevier Science B.V. All rights reserved.

  8. A method for producing digital probabilistic seismic landslide hazard maps; an example from the Los Angeles, California, area

    USGS Publications Warehouse

    Jibson, Randall W.; Harp, Edwin L.; Michael, John A.

    1998-01-01

    The 1994 Northridge, California, earthquake is the first earthquake for which we have all of the data sets needed to conduct a rigorous regional analysis of seismic slope instability. These data sets include (1) a comprehensive inventory of triggered landslides, (2) about 200 strong-motion records of the mainshock, (3) 1:24,000-scale geologic mapping of the region, (4) extensive data on engineering properties of geologic units, and (5) high-resolution digital elevation models of the topography. All of these data sets have been digitized and rasterized at 10-m grid spacing in the ARC/INFO GIS platform. Combining these data sets in a dynamic model based on Newmark's permanent-deformation (sliding-block) analysis yields estimates of coseismic landslide displacement in each grid cell from the Northridge earthquake. The modeled displacements are then compared with the digital inventory of landslides triggered by the Northridge earthquake to construct a probability curve relating predicted displacement to probability of failure. This probability function can be applied to predict and map the spatial variability in failure probability in any ground-shaking conditions of interest. We anticipate that this mapping procedure will be used to construct seismic landslide hazard maps that will assist in emergency preparedness planning and in making rational decisions regarding development and construction in areas susceptible to seismic slope failure.

  9. Traces of influence of the surface topography in the Venus atmosphere

    NASA Astrophysics Data System (ADS)

    Zasova, Ludmila; Khatuntsev, Igor; Patsaeva, Marina; Ignatiev, Nikolay; Gorinov, Dmitry

    2017-04-01

    We study the traces of influence of the Venus' topography like Ishtar , Beta Regio, Atalanta Planitia in the Venus atmosphere. From the Fourier Spectrometry on Venera-15 (FS-V15) the 3-D temperature and clouds fields in mesosphere were retrieved [Zasova et al, PSS,2007]. It was found that distribution of temperature is described by the Fourier decomposition with 1, 1/2, 1/3, and 1/4days and upper boundary of clouds (1, 1/2 days) harmonics in Solar-fixed coordinates. The amplitudes of the thermal tide harmonics with wavenumbers 1 and 2 reach 10 K. We found that in the Sun- fixed frame of reference, both maxima and minima are shifted from noon and from midnight to westwards, in direction of the superrotation. Comparison the fields of temperature at isobaric levels (from 60 to 95 km), altitude of upper boundary of the upper and middle clouds, the thermal zonal wind with the Magellan topography maps shows that for all cases the high correlation with the images of the structures in Ishtar, Beta Regio, Atalanta Planitia are observed. For example, it was found that temperature field near upper boundary of clouds (at 65 km) in latitude-longitude coordinates shows a good correspondence between topography (Ishtar, Beta Regio and Atalanta Planitia) and temperature perturbations with coefficient of correlation CC>0.9. The temperature and clouds maps in comparison to the map of Magellan topography show that the perturbations are shifted by 30° also in the direction of superrotation. Venera-15 had geometry observations very convenient for thermal tides observation (polar orbit with pericenter near N-pole), the important results was obtained even with spatial coverage not enough. Interpretation of observed phenomena still not clear. Detailed study continues, also in comparison with VMS and VIRTIS observations for the Southern hemisphere.

  10. KSC-99pd-812-06

    NASA Image and Video Library

    1999-08-01

    KENNEDY SPACE CENTER, FLA. -- An orbiter has more than 300 miles of wires such as these shown here in the cable tray inside Columbia's payload bay. During launch of Columbia on mission STS-93, a damaged wire caused a short circuit in two separate main engine controllers. As a result of the findings, Shuttle program managers have decided to conduct inspections of the wiring in Endeavour's payload bay before its next mission, STS-99. The inspection and possible repair work will lead to a delayed launch date no earlier than Oct.7. The primary payload of the mission is the Shuttle Radar Topography Mission, a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled

  11. KSC-99pd-812-02

    NASA Image and Video Library

    1999-08-01

    KENNEDY SPACE CENTER, FLA. -- Proper Wiring Protection: The cables closest to the heads of the screws in this photo are properly protected from abrasion. During launch of Columbia on mission STS-93, a wire damaged from abrasion caused a short circuit in two separate main engine controllers. As a result of the findings, Shuttle program managers decided to conduct inspections of the wiring in Endeavour's payload bay before its next mission, STS-99. The inspection and possible repair work will lead to a delayed launch date no earlier than Oct.7. The primary payload of the mission is the Shuttle Radar Topography Mission, a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled

  12. KSC-2009-2801

    NASA Image and Video Library

    2009-04-19

    CAPE CANAVERAL, Fla. –– At Astrotech Space Operations in Titusville, Fla., technicians prepare the Lunar Reconnaissance Orbiter, or LRO, for installation of the solar array panels. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. The polar regions of the moon are the main focus of the mission because continuous access to sunlight may be possible and water ice may exist in permanently shadowed areas of the poles. Launch of LRO is targeted for June 2. Photo credit: NASA/Jim Grossmann

  13. KSC-2009-2811

    NASA Image and Video Library

    2009-04-19

    CAPE CANAVERAL, Fla. –– At Astrotech Space Operations in Titusville, Fla., technicians move the solar array panel closer to the Lunar Reconnaissance Orbiter, or LRO, for installation. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. The polar regions of the moon are the main focus of the mission because continuous access to sunlight may be possible and water ice may exist in permanently shadowed areas of the poles. Launch of LRO is targeted for June 2. Photo credit: NASA/Jim Grossmann

  14. KSC-2009-2809

    NASA Image and Video Library

    2009-04-19

    CAPE CANAVERAL, Fla. –– At Astrotech Space Operations in Titusville, Fla., technicians prepare the solar array panel for installation on the Lunar Reconnaissance Orbiter, or LRO. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. The polar regions of the moon are the main focus of the mission because continuous access to sunlight may be possible and water ice may exist in permanently shadowed areas of the poles. Launch of LRO is targeted for June 2. Photo credit: NASA/Jim Grossmann

  15. KSC-2009-2813

    NASA Image and Video Library

    2009-04-19

    CAPE CANAVERAL, Fla. –– At Astrotech Space Operations in Titusville, Fla., a technician checks the installation of a solar array panel on the Lunar Reconnaissance Orbiter, or LRO. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. The polar regions of the moon are the main focus of the mission because continuous access to sunlight may be possible and water ice may exist in permanently shadowed areas of the poles. Launch of LRO is targeted for June 2. Photo credit: NASA/Jim Grossmann

  16. KSC-2009-2807

    NASA Image and Video Library

    2009-04-19

    CAPE CANAVERAL, Fla. –– At Astrotech Space Operations in Titusville, Fla., technicians prepare the solar array panel for installation on the Lunar Reconnaissance Orbiter, or LRO. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. The polar regions of the moon are the main focus of the mission because continuous access to sunlight may be possible and water ice may exist in permanently shadowed areas of the poles. Launch of LRO is targeted for June 2. Photo credit: NASA/Jim Grossmann

  17. KSC-2009-2810

    NASA Image and Video Library

    2009-04-19

    CAPE CANAVERAL, Fla. –– At Astrotech Space Operations in Titusville, Fla., technicians prepare the solar array panel for installation on the Lunar Reconnaissance Orbiter, or LRO, at left. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. The polar regions of the moon are the main focus of the mission because continuous access to sunlight may be possible and water ice may exist in permanently shadowed areas of the poles. Launch of LRO is targeted for June 2. Photo credit: NASA/Jim Grossmann

  18. KSC-2009-2808

    NASA Image and Video Library

    2009-04-19

    CAPE CANAVERAL, Fla. –– At Astrotech Space Operations in Titusville, Fla., technicians prepare the solar array panel for installation on the Lunar Reconnaissance Orbiter, or LRO. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. The polar regions of the moon are the main focus of the mission because continuous access to sunlight may be possible and water ice may exist in permanently shadowed areas of the poles. Launch of LRO is targeted for June 2. Photo credit: NASA/Jim Grossmann

  19. KSC-2009-2814

    NASA Image and Video Library

    2009-04-19

    CAPE CANAVERAL, Fla. –– At Astrotech Space Operations in Titusville, Fla., the Lunar Reconnaissance Orbiter, or LRO, with a solar array panel installed. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. The polar regions of the moon are the main focus of the mission because continuous access to sunlight may be possible and water ice may exist in permanently shadowed areas of the poles. Launch of LRO is targeted for June 2. Photo credit: NASA/Jim Grossmann

  20. KSC-2009-2812

    NASA Image and Video Library

    2009-04-19

    CAPE CANAVERAL, Fla. –– At Astrotech Space Operations in Titusville, Fla., technicians prepare to install the solar array panel to the Lunar Reconnaissance Orbiter, or LRO. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. The polar regions of the moon are the main focus of the mission because continuous access to sunlight may be possible and water ice may exist in permanently shadowed areas of the poles. Launch of LRO is targeted for June 2. Photo credit: NASA/Jim Grossmann

  1. KSC-2009-2802

    NASA Image and Video Library

    2009-04-19

    CAPE CANAVERAL, Fla. –– At Astrotech Space Operations in Titusville, Fla., technicians prepare for installation of the solar array panels on the Lunar Reconnaissance Orbiter, or LRO. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. The polar regions of the moon are the main focus of the mission because continuous access to sunlight may be possible and water ice may exist in permanently shadowed areas of the poles. Launch of LRO is targeted for June 2. Photo credit: NASA/Jim Grossmann

  2. Mapping ecological systems in southeastern Arizona

    Treesearch

    Jim Malusa; Donald Falk; Larry Laing; Brooke Gebow

    2013-01-01

    Beginning in 2007 in and around the Huachuca Mountains, the Coronado National Forest and other partners have been mapping ecosystems at multiple scales. The approach has focused on identifying land type associations (LTA), which represent the sum of bedrock and superficial geology, topography, elevation, potential and existing vegetation, soil properties, and local...

  3. Geodesy and cartography methods of exploration of the outer planetary systems: Galilean satellites and Enceladus

    NASA Astrophysics Data System (ADS)

    Zubarev, Anatoliy; Kozlova, Natalia; Kokhanov, Alexander; Oberst, Jürgen; Nadezhdina, Irina; Patraty, Vyacheslav; Karachevtseva, Irina

    Introduction. While Galilean satellites have been observed by different spacecrafts, including Pioneer, Voyager-1 and -2, Galileo, New Horizons, and Enceladus by Cassini and Voyager-2, only data from Galileo, Cassini and the two Voyagers are useful for precise mapping [1, 2]. For purposes of future missions to the system of outer planets we have re-computed the control point network of the Io, Ganymede and Enceladus to support spacecraft navigation and coordinate knowledge. Based on the control networks, we have produced global image mosaics and maps. Geodesy approach. For future mission Laplace-P we mainly focused on Ganymede which coverage is nearly complete except for polar areas (which includes multispectral data). However, large differences exist in data resolutions (minimum global resolution: 30 km/pixel). Only few areas enjoy coverage by highest resolution images, so we suggest to obtain regional Digital Elevation Models (DEMs) from stereo images for selected areas. Also using our special software, we provide calculation of illumination conditions of Ganymede surface in various representations [3]. Finally, we propose a careful evaluation of all available data from the previous Voyager and Galileo missions to re-determine geodetic control and rotation model for other Galilean satellites - Callisto and Europe. Mapping. Based on re-calculated control point networks and global mosaics we have prepared new maps for Io, Ganymede and Enceladus [4]. Due to the difference in resolution between the images, which were also taken from different angles relative to the surface, we can prepare only regional high resolution shape models, so for demonstrating of topography and mapping of the satellites we used orthographic projection with different parameters. Our maps, which include roughness calculations based on our GIS technologies [5], will also be an important tool for studies of surface morphology. Conclusions. Updated data collection, including new calculation of elements of external orientation, provides new image processing of previous missions to outer planetary system. Using Photomod software (http://www.racurs.ru/) we have generated a new control point network in 3-D and orthomosaics for Io, Ganymede and Enceladus. Based on improved orbit data for Galileo we have used larger numbers of images than were available before, resulting in a more rigid network for Ganymede. The obtained results will be used for further processing and improvement of the various parameters: body shape parameters and shape modeling, libration, as well as for studying of the surface interesting geomorphological phenomena, for example, distribution of bright and dark surface materials on Ganymede and their correlations with topography and slopes [6]. Acknowledgments: The Ganymede study was partly supported by ROSKOSMOS and Space Research Institute under agreement No. 36/13 “Preliminary assessment of the required coordinate and navigation support for selection of landing sites for lander mission “Laplace” and partly funding by agreement No. 11-05-91323 for “Geodesy, cartography and research satellites Phobos and Deimos” References: [1] Nadezhdina et al. Vol. 14, EGU2012-11210, 2012. [2] Zhukov et al. International Colloquium and Workshop "Ganymede Lander: scientific goals and experiments", Space Research Institute, Moscow, Russia, 4-8 March, 2013. [3] Zubarev et al. International Colloquium and Workshop "Ganymede Lander: scientific goals and experiments", Space Research Institute, Moscow, Russia, 4-8 March, 2013. [4] Lazarev et al. Izvestia VUZov. 2012, No 6, pp. 9-11 http://miigaik.ru/journal.miigaik.ru/2012/20130129120215-2593.pdf (in Russian). [5] Kokhanov et al. Current problems in remote sensing of the Earth from space. 2013. Vol. 10. No 4. pp. 136-153. http://d33.infospace.ru/d33_conf/sb2013t4/136-153.pdf (in Russian). [6] Oberst et al., 2013 International Colloquium and Workshop "Ganymede Lander: scientific goals and experiments", Space Research Institute, Moscow, Russia, 4-8 March, 2013.

  4. STS-99 Mission Specialist Mohri waves before DEPARTing from PAFB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-99 Mission Specialist Mamoru Mohri of Japan waves before his departure from Patrick Air Force Base and return to Houston. With the postponement of the launch of STS-99 on Jan. 31, the crew have an opportunity for more training and time with their families. During the launch countdown, Endeavour's enhanced master events controller (E-MEC) No. 2 failed a standard preflight test. Launch was postponed and Shuttle managers decided to replace the E-MEC located in the orbiter's aft compartment. Launch controllers will be in a position to begin the STS-99 countdown the morning of Feb. 6 and ready to support a launch mid- to late next week pending availability of the Eastern Range. Known as the Shuttle Radar Topography Mission, it will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety.

  5. STS-99 Mission Specialist Thiele and Commander Kregel DEPART from SLF

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-99 Mission Specialist Gerhard Thiele (foreground) and Commander Kevin Kregel make their way to the runway at the Shuttle Landing Facility for a return flight to Houston. During the Jan. 31 launch countdown, Endeavour's enhanced master events controller (E-MEC) No. 2 failed a standard preflight test. Launch was postponed and Shuttle managers decided to replace the E-MEC located in the orbiter's aft compartment. Launch controllers will be in a position to begin the STS-99 countdown the morning of Feb. 6 and ready to support a launch mid- to late next week pending availability of the Eastern Range. The postponed launch gives the crew an opportunity for more training and time with their families. Known as the Shuttle Radar Topography Mission, it will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety.

  6. KSC-00pp0149

    NASA Image and Video Library

    2000-02-02

    STS-99 Mission Specialist Mamoru Mohri of Japan waves before his departure from Patrick Air Force Base and return to Houston. With the postponement of the launch of STS-99 on Jan. 31, the crew have an opportunity for more training and time with their families. During the launch countdown, Endeavour's enhanced master events controller (E-MEC) No. 2 failed a standard preflight test. Launch was postponed and Shuttle managers decided to replace the E-MEC located in the orbiter's aft compartment. Launch controllers will be in a position to begin the STS-99 countdown the morning of Feb. 6 and ready to support a launch midto late next week pending availability of the Eastern Range. Known as the Shuttle Radar Topography Mission, it will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety

  7. KSC-00pp0148

    NASA Image and Video Library

    2000-02-02

    STS-99 Mission Specialist Mamoru Mohri of Japan and his wife, Akiko, wave before their departure from Patrick Air Force Base and return to Houston. With the postponement of the launch of STS-99 on Jan. 31, the crew have an opportunity for more training and time with their families. During the launch countdown, Endeavour's enhanced master events controller (E-MEC) No. 2 failed a standard preflight test. Launch was postponed and Shuttle managers decided to replace the E-MEC located in the orbiter's aft compartment. Launch controllers will be in a position to begin the STS-99 countdown the morning of Feb. 6 and ready to support a launch midto late next week pending availability of the Eastern Range. Known as the Shuttle Radar Topography Mission, it will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety

  8. KSC00pp0149

    NASA Image and Video Library

    2000-02-02

    STS-99 Mission Specialist Mamoru Mohri of Japan waves before his departure from Patrick Air Force Base and return to Houston. With the postponement of the launch of STS-99 on Jan. 31, the crew have an opportunity for more training and time with their families. During the launch countdown, Endeavour's enhanced master events controller (E-MEC) No. 2 failed a standard preflight test. Launch was postponed and Shuttle managers decided to replace the E-MEC located in the orbiter's aft compartment. Launch controllers will be in a position to begin the STS-99 countdown the morning of Feb. 6 and ready to support a launch midto late next week pending availability of the Eastern Range. Known as the Shuttle Radar Topography Mission, it will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety

  9. KSC00pp0148

    NASA Image and Video Library

    2000-02-02

    STS-99 Mission Specialist Mamoru Mohri of Japan and his wife, Akiko, wave before their departure from Patrick Air Force Base and return to Houston. With the postponement of the launch of STS-99 on Jan. 31, the crew have an opportunity for more training and time with their families. During the launch countdown, Endeavour's enhanced master events controller (E-MEC) No. 2 failed a standard preflight test. Launch was postponed and Shuttle managers decided to replace the E-MEC located in the orbiter's aft compartment. Launch controllers will be in a position to begin the STS-99 countdown the morning of Feb. 6 and ready to support a launch midto late next week pending availability of the Eastern Range. Known as the Shuttle Radar Topography Mission, it will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety

  10. KSC00pp0145

    NASA Image and Video Library

    2000-02-02

    STS-99 Mission Specialist Gerhard Thiele (foreground) and Commander Kevin Kregel make their way to the runway at the Shuttle Landing Facility for a return flight to Houston. During the Jan. 31 launch countdown, Endeavour's enhanced master events controller (E-MEC) No. 2 failed a standard preflight test. Launch was postponed and Shuttle managers decided to replace the E-MEC located in the orbiter's aft compartment. Launch controllers will be in a position to begin the STS-99 countdown the morning of Feb. 6 and ready to support a launch midto late next week pending availability of the Eastern Range. The postponed launch gives the crew an opportunity for more training and time with their families. Known as the Shuttle Radar Topography Mission, it will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety

  11. KSC-00pp0145

    NASA Image and Video Library

    2000-02-02

    STS-99 Mission Specialist Gerhard Thiele (foreground) and Commander Kevin Kregel make their way to the runway at the Shuttle Landing Facility for a return flight to Houston. During the Jan. 31 launch countdown, Endeavour's enhanced master events controller (E-MEC) No. 2 failed a standard preflight test. Launch was postponed and Shuttle managers decided to replace the E-MEC located in the orbiter's aft compartment. Launch controllers will be in a position to begin the STS-99 countdown the morning of Feb. 6 and ready to support a launch midto late next week pending availability of the Eastern Range. The postponed launch gives the crew an opportunity for more training and time with their families. Known as the Shuttle Radar Topography Mission, it will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety

  12. KSC-99pp0519

    NASA Image and Video Library

    1999-05-13

    Inside the Space Station Processing Facility, workers watch as an overhead crane is lowered for lifting the Shuttle Radar Topography Mission (SRTM) from the transporter it is resting on. The SRTM is being moved to a workstand. The primary payload on mission STS-99, the SRTM consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission scheduled for launch in September 1999. The objective of this radar system is to obtain the most complete high-resolution digital topographic database of the Earth. It will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. SRTM will be making use of a technique called radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. To get two radar images taken from different locations, the SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle

  13. KSC-99pp0520

    NASA Image and Video Library

    1999-05-13

    Workers inside the Space Station Processing Facility keep watch as an overhead crane begins lifting the Shuttle Radar Topography Mission (SRTM) from the transporter below. The SRTM is being moved to a workstand. The primary payload on mission STS-99, the SRTM consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission scheduled for launch in September 1999. The objective of this radar system is to obtain the most complete high-resolution digital topographic database of the Earth. It will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. SRTM will be making use of a technique called radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. To get two radar images taken from different locations, the SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle

  14. KSC-99pp1369

    NASA Image and Video Library

    1999-11-29

    KENNEDY SPACE CENTER, FLA. -- Viewed end to end, the interior of orbiter Endeavour's payload bay can be seen with its cargo (center and right) in place, before the close of its payload bay doors. The Ku-band antenna (lower right) is now in its closed position inside the payload bay. Endeavour is expected to roll over to the Vehicle Assembly Building in three days for mating to the external tank and solid rocket boosters in high bay 1. Space Shuttle Endeavour is targeted for launch on mission STS-99 Jan. 13, 2000 at 1:11 p.m. EST. STS-99 is the Shuttle Radar Topography Mission, an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle

  15. The perfection and defect structure of organic hourglass inclusion K 2SO 4 crystals

    NASA Astrophysics Data System (ADS)

    Vetter, William M.; Totsuka, Hirono; Dudley, Michael; Kahr, Bart

    2002-06-01

    Hourglass inclusion crystals of K 2SO 4 were grown from aqueous solutions containing the dye acid fuchsin, and studied by synchrotron white-beam X-ray topography and reciprocal space mapping. Both self-nucleated and larger, seeded dye-included crystals were prepared, as well as comparable undoped crystals. While the dye modified the crystals' habit strongly, X-ray topographs showed it had no influence on their dislocation configurations, which were typical for solution-grown crystals. No kinematical contrast arising from the presence of the dye was observed that indicated dye-induced strain in the crystal lattice. Growth sector boundaries were visible in the dyed crystals but not in undoped crystals, implying there was a slightly higher lattice mismatch across growth sector boundaries in the dye-included crystals. Reciprocal space maps of small areas on an hourglass inclusion crystal within either a dye-included growth sector or an undoped growth sector showed single peaks with the same perfect crystal rocking curve width and no dilatation or tilt of the host lattice resulting from the dye's presence. These results showed hourglass inclusion crystals can be grown in which the presence of the dye disturbs the crystalline structure of the host salt minimally, and that hourglass inclusions have the nature of a solid solution.

  16. Geologic map of the Haji-Gak iron deposit, Bamyan Province, Afghanistan, modified from the 1965 original map compilation of M.S. Smirnov and I.K. Kusov

    USGS Publications Warehouse

    Renaud, Karine M.; Tucker, Robert D.; Peters, Stephen G.; Stettner, Will R.; Masonic, Linda M.; Moran, Thomas W.

    2011-01-01

    This map is a modified version of Geological-structural map of Hajigak iron-ore deposit, scale 1:10,000, which was compiled by M.S. Smirnov and I.K. Kusov in 1965. (Refer to the References Cited section in the Map PDF for complete citations of the original map and a related report.) USGS scientists, in cooperation with the Afghan Geological Survey and the Task Force for Business and Stability Operations of the U.S. Department of Defense, studied the original documents and also visited the field area in November 2009. This modified map illustrates the geological structure of the Haji-Gak iron deposit and includes cross sections of the same area. The map reproduces the topology (contacts, faults, and so forth) of the original Soviet map and cross sections and includes modifications based on our examination of these documents. Elevations on the cross sections are derived from the original Soviet topography and may not match the newer topography used on the current map. We have attempted to translate the original Russian terminology and rock classification into modern English geologic usage as literally as possible without changing any genetic or process-oriented implications in the original descriptions. We also use the age designations from the original map. The unit colors on the map and cross sections differ from the colors shown on the original version. The units are colored according to the color and pattern scheme of the Commission for the Geological Map of the World (CGMW) (http://www.ccgm.org).

  17. Changes in Serial Optical Topography and TMS during Task Performance after Constraint-Induced Movement Therapy in Stroke: A Case Study

    PubMed Central

    Park, Si-Woon; Butler, Andrew J.; Cavalheiro, Vanessa; Alberts, Jay L.; Wolf, Steven L.

    2013-01-01

    The authors examined serial changes in optical topography in a stroke patient performing a functional task, as well as clinical and physiologic measures while undergoing constraint-induced therapy (CIT). A 73-year-old right hemiparetic patient, who had a subcortical stroke 4 months previously, received 2 weeks of CIT. During the therapy, daily optical topography imaging using near-infrared light was measured serially while the participant performed a functional key-turning task. Clinical outcome measures included the Wolf Motor Function Test (WMFT), Motor Activity Log (MAL), and functional key grip test. Transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) were also used to map cortical areas and hemodynamic brain responses, respectively. Optical topography measurement showed an overall decrease in oxy-hemoglobin concentration in both hemispheres as therapy progressed and the laterality index increased toward the contralateral hemisphere. An increased TMS motor map area was observed in the contralateral cortex following treatment. Posttreatment fMRI showed bilateral primary motor cortex activation, although slightly greater in the contralateral hemisphere, during affected hand movement. Clinical scores revealed marked improvement in functional activities. In one patient who suffered a stroke, 2 weeks of CIT led to improved function and cortical reorganization in the hemisphere contralateral to the affected hand. PMID:15228805

  18. Probabilistic terrain models from waveform airborne LiDAR: AutoProbaDTM project results

    NASA Astrophysics Data System (ADS)

    Jalobeanu, A.; Goncalves, G. R.

    2012-12-01

    The main objective of the AutoProbaDTM project was to develop new methods for automated probabilistic topographic map production using the latest LiDAR scanners. It included algorithmic development, implementation and validation over a 200 km2 test area in continental Portugal, representing roughly 100 GB of raw data and half a billion waveforms. We aimed to generate digital terrain models automatically, including ground topography as well as uncertainty maps, using Bayesian inference for model estimation and error propagation, and approaches based on image processing. Here we are presenting the results of the completed project (methodological developments and processing results from the test dataset). In June 2011, the test data were acquired in central Portugal, over an area of geomorphological and ecological interest, using a Riegl LMS-Q680i sensor. We managed to survey 70% of the test area at a satisfactory sampling rate, the angular spacing matching the laser beam divergence and the ground spacing nearly equal to the footprint (almost 4 pts/m2 for a 50cm footprint at 1500 m AGL). This is crucial for a correct processing as aliasing artifacts are significantly reduced. A reverse engineering had to be done as the data were delivered in a proprietary binary format, so we were able to read the waveforms and the essential parameters. A robust waveform processing method has been implemented and tested, georeferencing and geometric computations have been coded. Fast gridding and interpolation techniques have been developed. Validation is nearly completed, as well as geometric calibration, IMU error correction, full error propagation and large-scale DEM reconstruction. A probabilistic processing software package has been implemented and code optimization is in progress. This package includes new boresight calibration procedures, robust peak extraction modules, DEM gridding and interpolation methods, and means to visualize the produced uncertain surfaces (topography and accuracy map). Vegetation filtering for bare ground extraction has been left aside, and we wish to explore this research area in the future. A thorough validation of the new techniques and computed models has been conducted, using large numbers of ground control points (GCP) acquired with GPS, evenly distributed and classified according to ground cover and terrain characteristics. More than 16,000 GCP have been acquired during field work. The results are now freely accessible online through a web map service (GeoServer) thus allowing users to visualize data interactively without having to download the full processed dataset.

  19. Adaptive landscapes: Top-down and bottom-up perspectives

    NASA Astrophysics Data System (ADS)

    Kerr, Benjamin

    Sewall Wright introduced the metaphor of the adaptive landscape, a map from genotype to fitness, more than 80 years ago to help describe his view of adaptive evolution. This metaphor has been immensely popular and has been used in a variety of incarnations. However, a systematic study of the genotype-fitness map presents significant problems. The space of possible genotypes is vast, and the mapping is likely dependent on both environment and the composition of genotypes in a population. In this talk, I will discuss some of these problems and present experimental strategies for uncovering features of adaptive landscapes. In particular, I will discuss how population structure can be used as an experimental variable to elucidate landscape topography and how a combination of experimental evolution and genetic engineering can reveal important landscape features in changing environments. I will also present some potential applications of this work to the problem of antibiotic resistance and potential implications for evolutionary rescue in the face of global climate change. For some of these topics, the classic notion of the adaptive landscape must itself be adapted; however, I propose that there are fruitful ways to continue to apply this metaphor.

  20. Potential fields on the ventricular surface of the exposed dog heart during normal excitation.

    PubMed

    Arisi, G; Macchi, E; Baruffi, S; Spaggiari, S; Taccardi, B

    1983-06-01

    We studied the normal spread of excitation on the anterior and posterior ventricular surface of open-chest dogs by recording unipolar electrograms from an array of 1124 electrodes spaced 2 mm apart. The array had the shape of the ventricular surface of the heart. The electrograms were processed by a computer and displayed as epicardial equipotential maps at 1-msec intervals. Isochrone maps also were drawn. Several new features of epicardial potential fields were identified: (1) a high number of breakthrough points; (2) the topography, apparent widths, velocities of the wavefronts and the related potential drop; (3) the topography of positive potential peaks in relation to the wavefronts. Fifteen to 24 breakthrough points were located on the anterior, and 10 to 13 on the posterior ventricular surface. Some were in previously described locations and many others in new locations. Specifically, 3 to 5 breakthrough points appeared close to the atrioventricular groove on the anterior right ventricle and 2 to 4 on the posterior heart aspect; these basal breakthrough points appeared when a large portion of ventricular surface was still unexcited. Due to the presence of numerous breakthrough points on the anterior and posterior aspect of the heart which had not previously been described, the spread of excitation on the ventricular surface was "mosaic-like," with activation wavefronts spreading in all directions, rather than radially from the two breakthrough points, as traditionally described. The positive potential peaks which lay ahead of the expanding wavefronts moved along preferential directions which were probably related to the myocardial fiber direction.

Top