Office of Tracking and Data Acquisition. [deep space network and spacecraft tracking
NASA Technical Reports Server (NTRS)
1975-01-01
The Office of Tracking and Data Acquisition (OTDA) and its two worldwide tracking network facilities, the Spaceflight Tracking and Data Network and the Deep Space Network, are described. Other topics discussed include the NASA communications network, the tracking and data relay satellite system, other OTDA tracking activities, and OTDA milestones.
Read You Loud and Clear! The Story of NASA's Spaceflight Tracking and Data Network
NASA Technical Reports Server (NTRS)
Tsiao, Sunny
2008-01-01
A historical account is provided of NASA's Spaceflight Tracking and Data Network (STDN), starting with its formation in the late 1950s to what it is today in the first decade of the 21st century. It traces the roots of the tracking network from its beginnings at the White Sands Missile Range in New Mexico to the Tracking and Data Relay Satellite System space-based constellation of today. The story spans the early days of satellite tracking using the Minitrack Network, through the expansion of the Satellite Tracking and Data Acquisition Network and the Manned Space Flight Network, and finally, to the Space and Ground networks of today. These accounts tell how international goodwill and foreign cooperation were crucial to the operation of the network and why the space agency chose to build the STDN as it did.
NASA Technical Reports Server (NTRS)
1979-01-01
Deep Space Network progress in flight project support, tracking and data acquisition, research and technology, network engineering, hardware and software implementation, and operations is cited. Topics covered include: tracking and ground based navigation; spacecraft/ground communication; station control and operations technology; ground communications; and deep space stations.
The deep space network. [tracking and communication support for space probes
NASA Technical Reports Server (NTRS)
1974-01-01
The objectives, functions, and organization of the deep space network are summarized. Progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations is reported. Interface support for the Mariner Venus Mercury 1973 flight and Pioneer 10 and 11 missions is included.
Global tracking of space debris via CPHD and consensus
NASA Astrophysics Data System (ADS)
Wei, Baishen; Nener, Brett; Liu, Weifeng; Ma, Liang
2017-05-01
Space debris tracking is of great importance for safe operation of spacecraft. This paper presents an algorithm that achieves global tracking of space debris with a multi-sensor network. The sensor network has unknown and possibly time-varying topology. A consensus algorithm is used to effectively counteract the effects of data incest. Gaussian Mixture-Cardinalized Probability Hypothesis Density (GM-CPHD) filtering is used to estimate the state of the space debris. As an example of the method, 45 clusters of sensors are used to achieve global tracking. The performance of the proposed approach is demonstrated by simulation experiments.
NASA Technical Reports Server (NTRS)
Fahnestock, R. J.; Renzetti, N. A.
1975-01-01
The Madrid space station, operated under bilateral agreements between the governments of the United States and Spain, is described in both Spanish and English. The space station utilizes two tracking and data acquisition networks: the Deep Space Network (DSN) of the National Aeronautics and Space Administration and the Spaceflight Tracking and Data Network (STDN) operated under the direction of the Goddard Space Flight Center. The station, which is staffed by Spanish employees, comprises four facilities: Robledo 1, Cebreros, and Fresnedillas-Navalagamella, all with 26-meter-diameter antennas, and Robledo 2, with a 64-meter antenna.
The scheduling of tracking times for interplanetary spacecraft on the Deep Space Network
NASA Technical Reports Server (NTRS)
Webb, W. A.
1978-01-01
The Deep Space Network (DSN) is a network of tracking stations, located throughout the globe, used to track spacecraft for NASA's interplanetary missions. This paper describes a computer program, DSNTRAK, which provides an optimum daily tracking schedule for the DSN given the view periods at each station for a mission set of n spacecraft, where n is between 2 and 6. The objective function is specified in terms of relative total daily tracking time requirements between the n spacecraft. Linear programming is used to maximize the total daily tracking time and determine an optimal daily tracking schedule consistent with DSN station capabilities. DSNTRAK is used as part of a procedure to provide DSN load forecasting information for proposed future NASA mission sets.
NASA Technical Reports Server (NTRS)
Corliss, W. R.
1974-01-01
The historical and technical aspects of the major networks which comprise the NASA tracking and data acquisition system are considered in a complete reference work which traces the origin and growth of STADAN, MSFN, and NASCOM up to mid-1971. The roles of these networks in both the Gemini and Apollo programs are discussed, and the separate developmental trends are identified for each network.
The Deep Space Network. [tracking and communication functions and facilities
NASA Technical Reports Server (NTRS)
1974-01-01
The objectives, functions, and organization of the Deep Space Network are summarized. The Deep Space Instrumentation Facility, the Ground Communications Facility, and the Network Control System are described.
NASA Astrophysics Data System (ADS)
Bocanegra-Bahamón, T. M.; Molera Calvés, G.; Gurvits, L. I.; Duev, D. A.; Pogrebenko, S. V.; Cimò, G.; Dirkx, D.; Rosenblatt, P.
2018-01-01
Context. Closed-loop Doppler data obtained by deep space tracking networks, such as the NASA Deep Space Network (DSN) and the ESA tracking station network (Estrack), are routinely used for navigation and science applications. By shadow tracking the spacecraft signal, Earth-based radio telescopes involved in the Planetary Radio Interferometry and Doppler Experiment (PRIDE) can provide open-loop Doppler tracking data only when the dedicated deep space tracking facilities are operating in closed-loop mode. Aims: We explain the data processing pipeline in detail and discuss the capabilities of the technique and its potential applications in planetary science. Methods: We provide the formulation of the observed and computed values of the Doppler data in PRIDE tracking of spacecraft and demonstrate the quality of the results using an experiment with the ESA Mars Express spacecraft as a test case. Results: We find that the Doppler residuals and the corresponding noise budget of the open-loop Doppler detections obtained with the PRIDE stations compare to the closed-loop Doppler detections obtained with dedicated deep space tracking facilities.
Neural network based satellite tracking for deep space applications
NASA Technical Reports Server (NTRS)
Amoozegar, F.; Ruggier, C.
2003-01-01
The objective of this paper is to provide a survey of neural network trends as applied to the tracking of spacecrafts in deep space at Ka-band under various weather conditions and examine the trade-off between tracing accuracy and communication link performance.
NASA Astrophysics Data System (ADS)
Dougherty, K.; Sarkissian, J.
2002-01-01
The recent Australian film, The Dish, highlighted the role played by the Parkes Radio Telescope in tracking and communicating with the Apollo 11 mission. However the events depicted in this film represent only a single snapshot of the role played by Australian radio astronomy and space tracking facilities in the exploration of the Solar System. In 1960, NASA established its first deep space tracking station outside the United States at Island Lagoon, near Woomera in South Australia. From 1961 until 1972, this station was an integral part of the Deep Space Network, responsible for tracking and communicating with NASA's interplanetary spacecraft. It was joined in 1965 by the Tidbinbilla tracking station, located near Canberra in eastern Australia, a major DSN facility that is still in operation today. Other NASA tracking facilities (for the STADAN and Manned Space Flight networks) were also established in Australia during the 1960s, making this country home to the largest number of NASA tracking facilities outside the United States. At the same time as the Island Lagoon station was being established in South Australia, one of the world's major radio telescope facilities was being established at Parkes, in western New South Wales. This 64-metre diameter dish, designed and operated by the Commonwealth Scientific and Industrial Research Organisation (CSIRO), was also well-suited for deep space tracking work: its design was, in fact, adapted by NASA for the 64-metre dishes of the Deep Space Network. From Mariner II in 1962 until today, the Parkes Radio Telescope has been contracted by NASA on many occasions to support interplanetary spacecraft, as well as the Apollo lunar missions. This paper will outline the role played by both the Parkes Radio Telescope and the NASA facilities based in Australia in the exploration of the Solar System between 1960 and 1976, when the Viking missions landed on Mars. It will outline the establishment and operation of the Deep Space Network in Australia and consider the joint US-Australian agreement under which it was managed. It will also discuss the relationship of the NASA stations to the Parkes Radio Telescope and the integration of Parkes into the NASA network to support specific space missions. The particular involvement of Australian facilities in significant space missions will be highlighted and assessed.
NASA Technical Reports Server (NTRS)
1977-01-01
Presented is Deep Space Network (DSN) progress in flight project support, tracking and data acquisition (TDA) research and technology, network engineering, hardware and software implementation, and operations.
NASA Technical Reports Server (NTRS)
1975-01-01
Summaries are given of Deep Space Network progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations.
The deep space network, volume 6
NASA Technical Reports Server (NTRS)
1971-01-01
Progress on Deep Space Network (DSN) supporting research and technology is presented, together with advanced development and engineering, implementation, and DSN operations of flight projects. The DSN is described. Interplanetary and planetary flight projects and radio science experiments are discussed. Tracking and navigational accuracy analysis, communications systems and elements research, and supporting research are considered. Development of the ground communications and deep space instrumentation facilities is also presented. Network allocation schedules and angle tracking and test development are included.
The administration of the NASA space tracking system and the NASA space tracking system in Australia
NASA Technical Reports Server (NTRS)
Hollander, N.
1973-01-01
The international activities of the NASA space program were studied with emphasis on the development and maintenance of tracking stations in Australia. The history and administration of the tracking organization and the manning policies for the stations are discussed, and factors affecting station operation are appraised. A field study of the Australian tracking network is included.
NASA Technical Reports Server (NTRS)
1977-01-01
A Deep Space Network progress report is presented dealing with in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations.
NASA Technical Reports Server (NTRS)
1973-01-01
A study was conducted to determine techniques for application to space communication. The subjects considered are as follows: (1) optical communication systems, (2) laser communications for data acquisition networks, (3) spacecraft data rate requirements, (4) telemetry, command, and data handling, (5) spacecraft tracking and data network antenna and preamplifier cost tradeoff study, and (6) spacecraft communication terminal evaluation.
NASA Technical Reports Server (NTRS)
1980-01-01
The functions and facilities of the Deep Space Network are considered. Progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations is reported.
NASA Technical Reports Server (NTRS)
1979-01-01
Progress is reported in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations. The functions and facilities of the Deep Space Network are emphasized.
NASA Technical Reports Server (NTRS)
1979-01-01
A report is given of the Deep Space Networks progress in (1) flight project support, (2) tracking and data acquisition research and technology, (3) network engineering, (4) hardware and software implementation, and (5) operations.
The New Space Network: the Tracking and Data Relay Satellite System
NASA Technical Reports Server (NTRS)
Froehlich, W.
1986-01-01
When the Tracking and Data Relay Satellite System (TDRSS)is completed, the system, together with its various NASA support elements will be known simply as the Space Networks. It will substantially increase information exchanges between low-orbiting spacecraft and the ground. The structural design, functions, earth-based links, and present and future use are discussed.
NASA Technical Reports Server (NTRS)
1977-01-01
The facilities, programming system, and monitor and control system for the deep space network are described. Ongoing planetary and interplanetary flight projects are reviewed, along with tracking and ground-based navigation, communications, and network and facility engineering.
A history of the deep space network
NASA Technical Reports Server (NTRS)
Corliss, W. R.
1976-01-01
The Deep Space Network (DSN) has been managed and operated by the Jet Propulsion Laboratory (JPL) under NASA contract ever since NASA was formed in late 1958. The Tracking and data acquisition tasks of the DSN are markedly different from those of the other NASA network, STDN. STDN, which is an amalgamation of the satellite tracking network (STADAN) and the Manned Space Flight Network (MSFN), is primarily concerned with supporting manned and unmanned earth satellites. In contrast, the DSN deals with spacecraft that are thousands to hundreds of millions of miles away. The radio signals from these distant craft are many orders of magnitude weaker than those from nearby satellites. Distance also makes precise radio location more difficult; and accurate trajectory data are vital to deep space navigation in the vicinities of the other planets of the solar system. In addition to tracking spacecraft and acquiring data from them, the DSN is required to transmit many thousands of commands to control the sophisticated planetary probes and interplanetary monitoring stations. To meet these demanding requirements, the DSN has been compelled to be in the forefront of technology.
2010-08-25
The giant, 70-meter-wide antenna at NASA Deep Space Network complex in Goldstone, Calif., tracks a spacecraft on Nov. 17, 2009. This antenna, officially known as Deep Space Station 14, is also nicknamed the Mars antenna.
The deep space network, volume 13
NASA Technical Reports Server (NTRS)
1973-01-01
The objectives, functions, and organization of the Deep Space Network are summarized. The deep space instrumentation facility, the ground communications facility, and the network control system are described. Other areas reported include: Helios Mission support, DSN support of the Mariner Mars 1971 extended mission, Mariner Venus/Mercury 1973 mission support, Viking mission support, radio science, tracking and ground-based navigation, network control and data processing, and deep space stations.
NASA Astrophysics Data System (ADS)
Ho, Tzung-Hsien; Trisno, Sugianto; Smolyaninov, Igor I.; Milner, Stuart D.; Davis, Christopher C.
2004-02-01
Free space, dynamic, optical wireless communications will require topology control for optimization of network performance. Such networks may need to be configured for bi- or multiple-connectedness, reliability and quality-of-service. Topology control involves the introduction of new links and/or nodes into the network to achieve such performance objectives through autonomous reconfiguration as well as precise pointing, acquisition, tracking, and steering of laser beams. Reconfiguration may be required because of link degradation resulting from obscuration or node loss. As a result, the optical transceivers may need to be re-directed to new or existing nodes within the network and tracked on moving nodes. The redirection of transceivers may require operation over a whole sphere, so that small-angle beam steering techniques cannot be applied. In this context, we are studying the performance of optical wireless links using lightweight, bi-static transceivers mounted on high-performance stepping motor driven stages. These motors provide an angular resolution of 0.00072 degree at up to 80,000 steps per second. This paper focuses on the performance characteristics of these agile transceivers for pointing, acquisition, and tracking (PAT), including the influence of acceleration/deceleration time, motor angular speed, and angular re-adjustment, on latency and packet loss in small free space optical (FSO) wireless test networks.
The Laser Communications Relay and the Path to the Next Generation Near Earth Relay
NASA Technical Reports Server (NTRS)
Israel, David J.
2015-01-01
NASA Goddard Space Flight Center is currently developing the Laser Communications Relay Demonstration (LCRD) as a Path to the Next Generation Near Earth Space Communication Network. The current NASA Space Network or Tracking and Data Relay Satellite System is comprised of a constellation of Tracking and Data Relay Satellites (TDRS) in geosynchronous orbit and associated ground stations and operation centers. NASA is currently targeting a next generation of relay capability on orbit in the 2025 timeframe.
NASA Technical Reports Server (NTRS)
Mudgway, D. J.; Traxler, M. R.
1977-01-01
Problems inherent in the deployment and management of a worldwide tracking and data acquisition network to support the two Viking Orbiters and two Viking Landers simultaneously over 320 million kilometers (200 million miles) of deep space are discussed. Activities described include tracking coverage of the launch phase, the deep space operations during the long cruise phase that occupied approximately 11 months, and the implementation of the a vast worldwide network of tracking sttions and global communications systems. The performance of the personnel, hardware, and software involved in this vast undertaking are evaluated.
The deep space network, Volume 11
NASA Technical Reports Server (NTRS)
1972-01-01
Deep Space Network progress in flight project support, Tracking and Data Acquisition research and technology, network engineering, hardware and software implementation, and operations are presented. Material is presented in each of the following categories: description of DSN; mission support; radio science; support research and technology; network engineering and implementation; and operations and facilities.
NASA Technical Reports Server (NTRS)
Aller, R. O.
1985-01-01
The Tracking and Data Relay Satellite System (TDRSS) represents the principal element of a new space-based tracking and communication network which will support NASA spaceflight missions in low earth orbit. In its complete configuration, the TDRSS network will include a space segment consisting of three highly specialized communication satellites in geosynchronous orbit, a ground segment consisting of an earth terminal, and associated data handling and control facilities. The TDRSS network has the objective to provide communication and data relay services between the earth-orbiting spacecraft and their ground-based mission control and data handling centers. The first TDRSS spacecraft has been now in service for two years. The present paper is concerned with the TDRSS experience from the perspective of the various programmatic and economic considerations which relate to the program.
Tracking and data system support for the Viking 1975 mission to Mars. Volume 3: Planetary operations
NASA Technical Reports Server (NTRS)
Mudgway, D. J.
1977-01-01
The support provided by the Deep Space Network to the 1975 Viking Mission from the first landing on Mars July 1976 to the end of the Prime Mission on November 15, 1976 is described and evaluated. Tracking and data acquisition support required the continuous operation of a worldwide network of tracking stations with 64-meter and 26-meter diameter antennas, together with a global communications system for the transfer of commands, telemetry, and radio metric data between the stations and the Network Operations Control Center in Pasadena, California. Performance of the deep-space communications links between Earth and Mars, and innovative new management techniques for operations and data handling are included.
Using Multiple Space Assests with In-Situ Measurements to Track Flooding in Thailand
NASA Technical Reports Server (NTRS)
Chien, Steve; Doubleday, Joshua; Mclaren, David; Tran, Daniel; Khunboa, Chatchai; Leelapatra, Watis; Pergamon, Vichain; Tanpipat, Veerachai; Chitradon, Royal; Boonya-aroonnet, Surajate;
2001-01-01
Increasing numbers of space assets can enable coordinated measurements of flooding phenomena to enhance tracking of extreme events. We describe the use of space and ground measurements to target further measurements as part of a flood monitoring system in Thailand. We utilize rapidly delivered MODIS data to detect major areas of flooding and the target the Earth Observing One Advanced Land Imager sensor to acquire higher spatial resolution data. Automatic surface water extent mapping products delivered to interested parties. We are also working to extend our network to include in-situ sensing networks and additional space assets.
The deep space network, volume 15
NASA Technical Reports Server (NTRS)
1973-01-01
The DSN progress is reported in flight project support, TDA research and technology, network engineering, hardware and software implementation, and operations. Topics discussed include: DSN functions and facilities, planetary flight projects, tracking and ground-based navigation, communications, data processing, network control system, and deep space stations.
The Deep Space Network, volume 39
NASA Technical Reports Server (NTRS)
1977-01-01
The functions, facilities, and capabilities of the Deep Space Network and its support of the Pioneer, Helios, and Viking missions are described. Progress in tracking and data acquisition research and technology, network engineering and modifications, as well as hardware and software implementation and operations are reported.
The telecommunications and data acquisition report
NASA Technical Reports Server (NTRS)
Renzetti, N. A. (Editor)
1981-01-01
Developments in Earth-based ratio technology as applied to the Deep Space Network are reported. Topics include ratio astronomy and spacecraft tracking networks. Telemetric methods and instrumentation are described. Station control and system technology for space communication is discussed. Special emphasis is placed on network data processing.
The Deep Space Network. An instrument for radio navigation of deep space probes
NASA Technical Reports Server (NTRS)
Renzetti, N. A.; Jordan, J. F.; Berman, A. L.; Wackley, J. A.; Yunck, T. P.
1982-01-01
The Deep Space Network (DSN) network configurations used to generate the navigation observables and the basic process of deep space spacecraft navigation, from data generation through flight path determination and correction are described. Special emphasis is placed on the DSN Systems which generate the navigation data: the DSN Tracking and VLBI Systems. In addition, auxiliary navigational support functions are described.
Delay/Disruption Tolerant Networks for Human Space Flight Video Project
NASA Technical Reports Server (NTRS)
Fink, Patrick W.; Ngo, Phong; Schlesinger, Adam
2010-01-01
The movie describes collaboration between NASA and Vint Cerf on the development of Disruption Tolerant Networks (DTN) for use in space exploration. Current evaluation efforts at Johnson Space Center are focused on the use of DTNs in space communications. Tests include the ability of rovers to store data for later display, tracking local and remote habitat inventory using radio-frequency identification tags, and merging networks.
Architectural Design for European SST System
NASA Astrophysics Data System (ADS)
Utzmann, Jens; Wagner, Axel; Blanchet, Guillaume; Assemat, Francois; Vial, Sophie; Dehecq, Bernard; Fernandez Sanchez, Jaime; Garcia Espinosa, Jose Ramon; Agueda Mate, Alberto; Bartsch, Guido; Schildknecht, Thomas; Lindman, Niklas; Fletcher, Emmet; Martin, Luis; Moulin, Serge
2013-08-01
The paper presents the results of a detailed design, evaluation and trade-off of a potential European Space Surveillance and Tracking (SST) system architecture. The results have been produced in study phase 1 of the on-going "CO-II SSA Architectural Design" project performed by the Astrium consortium as part of ESA's Space Situational Awareness Programme and are the baseline for further detailing and consolidation in study phase 2. The sensor network is comprised of both ground- and space-based assets and aims at being fully compliant with the ESA SST System Requirements. The proposed ground sensors include a surveillance radar, an optical surveillance system and a tracking network (radar and optical). A space-based telescope system provides significant performance and robustness for the surveillance and tracking of beyond-LEO target objects.
NASA Technical Reports Server (NTRS)
1975-01-01
The objectives, functions, and organization of the Deep Space Network are summarized along with deep space station, ground communication, and network operations control capabilities. Mission support of ongoing planetary/interplanetary flight projects is discussed with emphasis on Viking orbiter radio frequency compatibility tests, the Pioneer Venus orbiter mission, and Helios-1 mission status and operations. Progress is also reported in tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations.
NASA Technical Reports Server (NTRS)
1974-01-01
The objectives, functions, and organization, of the Deep Space Network are summarized. Deep Space stations, ground communications, and network operations control capabilities are described. The network is designed for two-way communications with unmanned spacecraft traveling approximately 1600 km from earth to the farthest planets in the solar system. It has provided tracking and data acquisition support for the following projects: Ranger, Surveyor, Mariner, Pioneer, Apollo, Helios, Viking, and the Lunar Orbiter.
GSFC network operations with Tracking and Data Relay Satellites
NASA Astrophysics Data System (ADS)
Spearing, R.; Perreten, D. E.
The Tracking and Data Relay Satellite System (TDRSS) Network (TN) has been developed to provide services to all NASA User spacecraft in near-earth orbits. Three inter-relating entities will provide these services. The TN has been transformed from a network continuously changing to meet User specific requirements to a network which is flexible to meet future needs without significant changes in operational concepts. Attention is given to the evolution of the TN network, the TN capabilities-space segment, forward link services, tracking services, return link services, the three basic capabilities, single access services, multiple access services, simulation services, the White Sands Ground Terminal, the NASA communications network, and the network control center.
GSFC network operations with Tracking and Data Relay Satellites
NASA Technical Reports Server (NTRS)
Spearing, R.; Perreten, D. E.
1984-01-01
The Tracking and Data Relay Satellite System (TDRSS) Network (TN) has been developed to provide services to all NASA User spacecraft in near-earth orbits. Three inter-relating entities will provide these services. The TN has been transformed from a network continuously changing to meet User specific requirements to a network which is flexible to meet future needs without significant changes in operational concepts. Attention is given to the evolution of the TN network, the TN capabilities-space segment, forward link services, tracking services, return link services, the three basic capabilities, single access services, multiple access services, simulation services, the White Sands Ground Terminal, the NASA communications network, and the network control center.
NASA Technical Reports Server (NTRS)
Orr, R. S.
1984-01-01
Tracking and data acquisition system (TDAS) requirements, TDAS architectural goals, enhanced TDAS subsystems, constellation and networking options, TDAS spacecraft options, crosslink implementation, baseline TDAS space segment architecture, and treat model development/security analysis are addressed.
NASA Technical Reports Server (NTRS)
Donnelly, H.
1983-01-01
Before discussing Deep Space Network receivers, a brief description of the functions of receivers and how they interface with other elements of the Network is presented. Different types of receivers are used in the Network for various purposes. The principal receiver type is used for telemetry and tracking. This receiver provides the capability, with other elements of the Network, to track the space probe utilizing Doppler and range measurements, and to receive telemetry, including both scientific data from the onboard experiments and engineering data pertaining to the health of the probe. Another type of receiver is used for radio science applications. This receiver measures phase perturbations on the carrier signal to obtain information on the composition of solar and planetary atmospheres and interplanetary space. A third type of receiver utilizes very long baseline interferometry (VLBI) techniques for both radio science and spacecraft navigation data. Only the telemetry receiver is described in detail in this document. The integration of the Receiver-Exciter subsystem with other portions of the Deep Space Network is described.
7.3 Communications and Navigation
NASA Technical Reports Server (NTRS)
Manning, Rob
2005-01-01
This presentation gives an overview of the networks NASA currently uses to support space communications and navigation, and the requirements for supporting future deep space missions, including manned lunar and Mars missions. The presentation addresses the Space Network, Deep Space Network, and Ground Network, why new support systems are needed, and the potential for catastrophic failure of aging antennas. Space communications and navigation are considered during Aerocapture, Entry, Descent and Landing (AEDL) only in order to precisely position, track and interact with the spacecraft at its destination (moon, Mars and Earth return) arrival. The presentation recommends a combined optical/radio frequency strategy for deep space communications.
NASA Technical Reports Server (NTRS)
Greenberg, Ed; MacMedan, Marv; Kazz, Greg; Kallemeyn, Pieter
2000-01-01
The NASA Deep Space Network (DSN) is a world-class spacecraft tracking facility with stations located in Spain, Australia and USA, servicing Deep Space Missions of many space agencies. The current system of scheduling spacecraft during cruise for multiple 8 hour tracking sessions per week currently leads to an overcommitted DSN. Studies indicate that future projected mission demands upon the Network will only make the loading problem worse. Therefore, a more efficient scheduling of DSN resources is necessary in order to support the additional network loading envisioned in the next few years: The number of missions is projected to increase from 25 in 1998 to 34 by 2001. In fact given the challenge of the NASA administrator, Dan Goldin, of launching 12 spacecraft per year, the DSN would be tracking approximately 90 spacecraft by 2010. Currently a large amount of antenna time and network resources are subscribed by a project in order to have their mission supported during the cruise phase. The recently completed Mars Pathfinder mission was tracked 3 times a week (8 hours/day) during the majority of its cruise to Mars. This paper proposes an innovative approach called Message Mode Operations (MMO) for mitigating the Network loading problem while continuing to meet the tracking, reporting, time management, and scheduling requirements of these missions during Cruise while occupying very short tracking times. MMO satisfies these requirements by providing the following services: Spacecraft Health and Welfare Monitoring Service Command Delivery Service Adaptive Spacecraft Scheduling Service Orbit Determination Service Time Calibration Service Utilizing more efficient engineering telemetry summarization and filtering techniques on-board the spacecraft and collapsing the navigation requirements for Doppler and Range into shorter tracks, we believe spacecraft can be adequately serviced using short 10 to 30 minute tracking sessions. This claim assumes that certain changes would have to he made in the way the Network traditionally services missions in Cruise. Furthermore, limiting spacecraft to short sessions will free up larger blocks of time in the tracking schedule to help accommodate future tracking demands soon to be placed upon the Network. This paper describes the key characteristics and benefits of MMO, the operational scenarios for its use, the required changes to the ground system in order to make this approach feasible and the results of two simulations: 1) to determine the effects of MMO on projected mission loading on the DSN and, 2) to determine the effect MMO has on spacecraft orbit determination.
NASA Astrophysics Data System (ADS)
Torteeka, Peerapong; Gao, Peng-Qi; Shen, Ming; Guo, Xiao-Zhang; Yang, Da-Tao; Yu, Huan-Huan; Zhou, Wei-Ping; Zhao, You
2017-02-01
Although tracking with a passive optical telescope is a powerful technique for space debris observation, it is limited by its sensitivity to dynamic background noise. Traditionally, in the field of astronomy, static background subtraction based on a median image technique has been used to extract moving space objects prior to the tracking operation, as this is computationally efficient. The main disadvantage of this technique is that it is not robust to variable illumination conditions. In this article, we propose an approach for tracking small and dim space debris in the context of a dynamic background via one of the optical telescopes that is part of the space surveillance network project, named the Asia-Pacific ground-based Optical Space Observation System or APOSOS. The approach combines a fuzzy running Gaussian average for robust moving-object extraction with dim-target tracking using a particle-filter-based track-before-detect method. The performance of the proposed algorithm is experimentally evaluated, and the results show that the scheme achieves a satisfactory level of accuracy for space debris tracking.
The deep space network, volume 12
NASA Technical Reports Server (NTRS)
1972-01-01
Progress in the development of the DSN is reported along with TDA research and technology, network engineering, hardware, and software implementation. Included are descriptions of the DSN function and facilities, Helios mission support, Mariner Venus/Mercury 1973 mission support, Viking mission support, tracking and ground-based navigation, communications, network control and data processing, and deep space stations.
Multi-Gigabit Free-Space Optical Data Communication and Network System
2016-04-01
IR), Ultraviolet ( UV ), Laser Transceiver, Adaptive Beam Tracking, Electronic Attack (EA), Cyber Attack, Multipoint-to-Multipoint Network, Adaptive...FileName.pptx Free Space Optical Datalink Timeline Phase 1 Point-to-point demonstration 2012 Future Adaptive optic & Quantum Cascade Laser
Scoring sensor observations to facilitate the exchange of space surveillance data
NASA Astrophysics Data System (ADS)
Weigel, M.; Fiedler, H.; Schildknecht, T.
2017-08-01
In this paper, a scoring metric for space surveillance sensor observations is introduced. A scoring metric allows for direct comparison of data quantity and data quality, and makes transparent the effort made by different sensor operators. The concept might be applied to various sensor types like tracking and surveillance radar, active optical laser tracking, or passive optical telescopes as well as combinations of different measurement types. For each measurement type, a polynomial least squares fit is performed on the measurement values contained in the track. The track score is the average sum over the polynomial coefficients uncertainties and scaled by reference measurement accuracy. Based on the newly developed scoring metric, an accounting model and a rating model are introduced. Both models facilitate the exchange of observation data within a network of space surveillance sensors operators. In this paper, optical observations are taken as an example for analysis purposes, but both models can also be utilized for any other type of observations. The rating model has the capability to distinguish between network participants with major and minor data contribution to the network. The level of sanction on data reception is defined by the participants themselves enabling a high flexibility. The more elaborated accounting model translates the track score to credit points earned for data provision and spend for data reception. In this model, data reception is automatically limited for participants with low contribution to the network. The introduced method for observation scoring is first applied for transparent data exchange within the Small Aperture Robotic Telescope Network (SMARTnet). Therefore a detailed mathematical description is presented for line of sight measurements from optical telescopes, as well as numerical simulations for different network setups.
The Tracking & Data Relay Satellite System. The New Space Network.
ERIC Educational Resources Information Center
Froehlich, Walter
This publication describes the giant-capacity space communications installation called the "Tracking and Data Relay Satellite System" (TDRSS). Chapters include: (1) "A New Communications Bridge to Orbit" (illustrating what it is and how it looks); (2) "TDRSS Goes to Work" (describing how it functions); (3) "The…
The deep space network, volume 19
NASA Technical Reports Server (NTRS)
1974-01-01
The progress is reported in the DSN for Nov. and Dec. 1973. Research is described for the following areas: functions and facilities, mission support for flight projects, tracking and ground-based navigation, spacecraft/ground communication, network control and operations technology, and deep space stations.
The Telecommunications and Data Acquisition Report. [Deep Space Network
NASA Technical Reports Server (NTRS)
Posner, E. C. (Editor)
1986-01-01
This publication, one of a series formerly titled The Deep Space Network Progress Report, documents DSN progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations. In addition, developments in Earth-based radio technology as applied to geodynamics, astrophysics and the radio search for extraterrestrial intelligence are reported.
ERIC Educational Resources Information Center
Moore, Gil; Doop, Skip; Millson, David
1998-01-01
Describes Student-Tracked Atmospheric Research Satellite for Heuristic International Networking Experiment (STARSHINE), which enables students to explore optical astronomy, orbital dynamics, space and atmospheric physics, mathematics and international cooperation by tracking a satellite. (Author)
Tracking Data Certification for the Lunar Reconnaissance Orbiter
NASA Technical Reports Server (NTRS)
Morinelli, Patrick J.; Socoby, Joseph; Hendry, Steve; Campion, Richard
2010-01-01
This paper details the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF) tracking data certification effort of the Lunar Reconnaissance Orbiter (LRO) Space Communications Network (SCN) complement of tracking stations consisting of the NASA White Sands 1 antenna (WS1), and the commercial provider Universal Space Network (USN) antennas at South Point, Hawaii; Dongara Australia; Weilheim, Germany; and Kiruna, Sweden. Certification assessment required the cooperation and coordination of parties not under the control of either the LRO project or ground stations as uplinks on cooperating spacecraft were necessary. The LRO range-tracking requirement of 10m 1 sigma could be satisfactorily demonstrated using any typical spacecraft capable of range tracking. Though typical Low Earth Orbiting (LEO) or Geosynchronous Earth Orbiting (GEO) spacecraft may be adequate for range certification, their measurement dynamics and noise would be unacceptable for proper Doppler certification of 1-3mm/sec 1 sigma. As LRO will orbit the Moon, it was imperative that a suitable target spacecraft be utilized which can closely mimic the expected lunar orbital Doppler dynamics of +/-1.6km/sec and +/-1.5m/sq sec to +/-0.15m/sq sec, is in view of the ground stations, supports coherent S-Band Doppler tracking measurements, and can be modeled by the FDF. In order to meet the LRO metric tracking data specifications, the SCN ground stations employed previously uncertified numerically controlled tracking receivers. Initial certification testing revealed certain characteristics of the units that required resolution before being granted certification.
Supply support of NASA tracking networks
NASA Technical Reports Server (NTRS)
1973-01-01
The extent which supply support for Jet Propulsion Laboratory's Deep Space Network and Goddard Space Flight Center's Space Flight Tracking and Data Network should be consolidated is considered along with the Identification of opportunities for improvements in each of the supply systems without regard to consolidation. There is a considerable amount of commonality between the items in the stock catalogs at the two network depots, 58% for federal stock number items and 30% overall. The workload at the DSIF Supply Depot (DSD) is small (less than 20%) compared to the Network Logistics Depot (NLD). A number of important benefits in supply support would result from a consolidation of DSD into NLD. LMI found that a consolidation as is, without any changes in inventory management techniques, would reduce annual operating costs by from $208,000 to $358,000. However, if the consolidation were coupled with a change to use of economic order quantities, the annual operating cost reduction would range from $930,000 to $1,078,000.
The deep space network, volume 10
NASA Technical Reports Server (NTRS)
1972-01-01
Progress on the Deep Space Network (DSN) supporting research and technology is reported. The objectives, functions and facilities of the DSN are described along with the mission support for the following: interplanetary flight projects, planetary flight projects, and manned space flight projects. Work in advanced engineering and communications systems is reported along with changes in hardware and software configurations in the DSN/MSFN tracking stations.
NASA Technical Reports Server (NTRS)
Mudgway, D. J.; Traxler, M. R.
1977-01-01
The tracking and data acquisition support for the 1975 Viking Missions to Mars is described. The history of the effort from its inception in late 1968 through the launches of Vikings 1 and 2 from Cape Kennedy in August and September 1975 is given. The Viking mission requirements for tracking and data acquisition support in both the near earth and deep space phases involved multiple radar tracking and telemetry stations, and communications networks together with the global network of tracking stations, communications, and control center. The planning, implementation, testing and management of the program are presented.
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Posner, E. C. (Editor)
1988-01-01
Deep Space Network and Systems topics addressed include: tracking and ground-base navigation; communications, spacecraft-ground; station control and system technology; capabilities for existing projects; and network upgrading and sustaining.
Kennedy Space Center network documentation system
NASA Technical Reports Server (NTRS)
Lohne, William E.; Schuerger, Charles L.
1995-01-01
The Kennedy Space Center Network Documentation System (KSC NDS) is being designed and implemented by NASA and the KSC contractor organizations to provide a means of network tracking, configuration, and control. Currently, a variety of host and client platforms are in use as a result of each organization having established its own network documentation system. The solution is to incorporate as many existing 'systems' as possible in the effort to consolidate and standardize KSC-wide documentation.
Neural network-based nonlinear model predictive control vs. linear quadratic gaussian control
Cho, C.; Vance, R.; Mardi, N.; Qian, Z.; Prisbrey, K.
1997-01-01
One problem with the application of neural networks to the multivariable control of mineral and extractive processes is determining whether and how to use them. The objective of this investigation was to compare neural network control to more conventional strategies and to determine if there are any advantages in using neural network control in terms of set-point tracking, rise time, settling time, disturbance rejection and other criteria. The procedure involved developing neural network controllers using both historical plant data and simulation models. Various control patterns were tried, including both inverse and direct neural network plant models. These were compared to state space controllers that are, by nature, linear. For grinding and leaching circuits, a nonlinear neural network-based model predictive control strategy was superior to a state space-based linear quadratic gaussian controller. The investigation pointed out the importance of incorporating state space into neural networks by making them recurrent, i.e., feeding certain output state variables into input nodes in the neural network. It was concluded that neural network controllers can have better disturbance rejection, set-point tracking, rise time, settling time and lower set-point overshoot, and it was also concluded that neural network controllers can be more reliable and easy to implement in complex, multivariable plants.
Tracking and data relay satellite system (TDRSS) capabilities
NASA Astrophysics Data System (ADS)
Spearing, R. E.
1985-10-01
The Tracking and Data Relay Satellite System (TDRSS) is the latest implementation to tracking and data acquisition network for near-earth orbiting satellite support designed to meet the requirements of the current and projected (to the year 2000) satellite user community. The TDRSS consists of a space segment (SS) and a ground segment (GS) that fit within NASA's Space Network (SN) complex controlled at the Goddard Space Flight Center. The SS currently employs a single satellite, TDRS-1, with two additional satellites to be deployed in January 1986 and July 1986. The GS contains the communications and equipment required to manage the three TDR satellites and to transmit and receive information to and from TDRSS user satellites. Diagrams and tables illustrating the TDRSS signal characteristics, the situation of TDRSS within the SN, the SN operations and element interrelationships, as well as future plans for new missions are included.
Tracking and data relay satellite system (TDRSS) capabilities
NASA Technical Reports Server (NTRS)
Spearing, R. E.
1985-01-01
The Tracking and Data Relay Satellite System (TDRSS) is the latest implementation to tracking and data acquisition network for near-earth orbiting satellite support designed to meet the requirements of the current and projected (to the year 2000) satellite user community. The TDRSS consists of a space segment (SS) and a ground segment (GS) that fit within NASA's Space Network (SN) complex controlled at the Goddard Space Flight Center. The SS currently employs a single satellite, TDRS-1, with two additional satellites to be deployed in January 1986 and July 1986. The GS contains the communications and equipment required to manage the three TDR satellites and to transmit and receive information to and from TDRSS user satellites. Diagrams and tables illustrating the TDRSS signal characteristics, the situation of TDRSS within the SN, the SN operations and element interrelationships, as well as future plans for new missions are included.
Range Measurement as Practiced in the Deep Space Network
NASA Technical Reports Server (NTRS)
Berner, Jeff B.; Bryant, Scott H.; Kinman, Peter W.
2007-01-01
Range measurements are used to improve the trajectory models of spacecraft tracked by the Deep Space Network. The unique challenge of deep-space ranging is that the two-way delay is long, typically many minutes, and the signal-to-noise ratio is small. Accurate measurements are made under these circumstances by means of long correlations that incorporate Doppler rate-aiding. This processing is done with commercial digital signal processors, providing a flexibility in signal design that can accommodate both the traditional sequential ranging signal and pseudonoise range codes. Accurate range determination requires the calibration of the delay within the tracking station. Measurements with a standard deviation of 1 m have been made.
NASA Astrophysics Data System (ADS)
Song, Young-Joo; Choi, Su-Jin; Ahn, Sang-il; Sim, Eun-Sup
2014-03-01
In this work, the preliminary analysis on both the tracking schedule and measurements characteristics for the spacecraft on the phase of lunar transfer and capture is performed. To analyze both the tracking schedule and measurements characteristics, lunar transfer and capture phases¡¯ optimized trajectories are directly adapted from former research, and eleven ground tracking facilities (three Deep Space Network sties, seven Near Earth Network sites, one Daejeon site) are assumed to support the mission. Under these conceptual mission scenarios, detailed tracking schedules and expected measurement characteristics during critical maneuvers (Trans Lunar Injection, Lunar Orbit Insertion and Apoapsis Adjustment Maneuver), especially for the Deajeon station, are successfully analyzed. The orders of predicted measurements' variances during lunar capture phase according to critical maneuvers are found to be within the order of mm/s for the range and micro-deg/s for the angular measurements rates which are in good agreement with the recommended values of typical measurement modeling accuracies for Deep Space Networks. Although preliminary navigation accuracy guidelines are provided through this work, it is expected to give more practical insights into preparing the Korea's future lunar mission, especially for developing flight dynamics subsystem.
Space Network Control Conference on Resource Allocation Concepts and Approaches
NASA Technical Reports Server (NTRS)
Moe, Karen L. (Editor)
1991-01-01
The results are presented of the Space Network Control (SNC) Conference. In the late 1990s, when the Advanced Tracking and Data Relay Satellite System is operational, Space Network communication services will be supported and controlled by the SNC. The goals of the conference were to survey existing resource allocation concepts and approaches, to identify solutions applicable to the Space Network, and to identify avenues of study in support of the SNC development. The conference was divided into three sessions: (1) Concepts for Space Network Allocation; (2) SNC and User Payload Operations Control Center (POCC) Human-Computer Interface Concepts; and (3) Resource Allocation Tools, Technology, and Algorithms. Key recommendations addressed approaches to achieving higher levels of automation in the scheduling process.
NASA Technical Reports Server (NTRS)
Goodwin, P. S.; Traxler, M. R.; Meeks, W. G.; Flanagan, F. M.
1976-01-01
The overall evolution of the Helios Project is summarized from its conception through to the completion of the Helios-1 mission phase 2. Beginning with the project objectives and concluding with the Helios-1 spacecraft entering its first superior conjunction (end of mission phase 2), descriptions of the project, the mission and its phases, international management and interfaces, and Deep Space Network-spacecraft engineering development in telemetry, tracking, and command systems to ensure compatibility between the U.S. Deep Space Network and the German-built spacecraft are included.
Deep Space Network-Wide Portal Development: Planning Service Pilot Project
NASA Technical Reports Server (NTRS)
Doneva, Silviya
2011-01-01
The Deep Space Network (DSN) is an international network of antennas that supports interplanetary spacecraft missions and radio and radar astronomy observations for the exploration of the solar system and the universe. DSN provides the vital two-way communications link that guides and controls planetary explorers, and brings back the images and new scientific information they collect. In an attempt to streamline operations and improve overall services provided by the Deep Space Network a DSN-wide portal is under development. The project is one step in a larger effort to centralize the data collected from current missions including user input parameters for spacecraft to be tracked. This information will be placed into a principal repository where all operations related to the DSN are stored. Furthermore, providing statistical characterization of data volumes will help identify technically feasible tracking opportunities and more precise mission planning by providing upfront scheduling proposals. Business intelligence tools are to be incorporated in the output to deliver data visualization.
Major technological innovations introduced in the large antennas of the Deep Space Network
NASA Technical Reports Server (NTRS)
Imbriale, W. A.
2002-01-01
The NASA Deep Space Network (DSN) is the largest and most sensitive scientific, telecommunications and radio navigation network in the world. Its principal responsibilities are to provide communications, tracking, and science services to most of the world's spacecraft that travel beyond low Earth orbit. The network consists of three Deep Space Communications Complexes. Each of the three complexes consists of multiple large antennas equipped with ultra sensitive receiving systems. A centralized Signal Processing Center (SPC) remotely controls the antennas, generates and transmits spacecraft commands, and receives and processes the spacecraft telemetry.
Temperature control simulation for a microwave transmitter cooling system. [deep space network
NASA Technical Reports Server (NTRS)
Yung, C. S.
1980-01-01
The thermal performance of a temperature control system for the antenna microwave transmitter (klystron tube) of the Deep Space Network antenna tracking system is discussed. In particular the mathematical model is presented along with the details of a computer program which is written for the system simulation and the performance parameterization. Analytical expressions are presented.
Space and energy. [space systems for energy generation, distribution and control
NASA Technical Reports Server (NTRS)
Bekey, I.
1976-01-01
Potential contributions of space to energy-related activities are discussed. Advanced concepts presented include worldwide energy distribution to substation-sized users using low-altitude space reflectors; powering large numbers of large aircraft worldwide using laser beams reflected from space mirror complexes; providing night illumination via sunlight-reflecting space mirrors; fine-scale power programming and monitoring in transmission networks by monitoring millions of network points from space; prevention of undetected hijacking of nuclear reactor fuels by space tracking of signals from tagging transmitters on all such materials; and disposal of nuclear power plant radioactive wastes in space.
AN/FSY-3 Space Fence System Support of Conjunction Assessment
NASA Astrophysics Data System (ADS)
Koltiska, M.; Du, H.; Prochoda, D.; Kelly, K.
2016-09-01
The Space Fence System is a ground-based space surveillance radar system designed to detect and track all objects in Low Earth Orbit the size of a softball or larger. The system detects many objects that are not currently in the catalog of satellites and space debris that is maintained by the US Air Force. In addition, it will also be capable of tracking many of the deep space objects in the catalog. By providing daily updates of the orbits of these new objects along with updates of most of the objects in the catalog, it will enhance Space Situational Awareness and significantly improve our ability to predict close approaches, aka conjunctions, of objects in space. With this additional capacity for tracking objects in space the Space Surveillance Network has significantly more resources for monitoring orbital debris, especially for debris that could collide with active satellites and other debris.
The deep space network, volume 16
NASA Technical Reports Server (NTRS)
1973-01-01
The objectives, functions, and organization of the DSN are summarized, and the instrumentation facility, ground communication facility, and the network control system are described. The requirements for supporting planetary flight projects are discussed along with the research and technology for tracking, navigation, network control, and data processing.
2006-11-08
Communications, Navigation, and Network Reconfigurable Test-bed (CoNNeCT) Flight Hardware Compatibility Test Sets - Glenn Research Center and Networks Integration Management Office (NIMO) Testing for the Tracking and Data Relay Satellite System (TDRSS) - Goddard Space Flight Center Testing
2006-11-16
Communications, Navigation, and Network Reconfigurable Test-bed (CoNNeCT) Flight Hardware Compatibility Test Sets - Glenn Research Center and Networks Integration Management Office (NIMO) Testing for the Tracking and Data Relay Satellite System (TDRSS) - Goddard Space Flight Center Testing
Columbia's first flight shakes down space transportation system
NASA Technical Reports Server (NTRS)
Garrett, D.; Young, D.; White, T.
1981-01-01
The first space shuttle mission is described. Topics include launch preparations, flight profile, trajectory, and landing operations. The spaceflight tracking and data network is discussed and the photography and television schedules are included.
Network Level Association and Fusion of Kinematic and Attribute Information
2010-12-15
L. Svensson, ``More Ways to Track Closely-Spaced Targets Than You Wanted To Know or Tips For Not Pissing Off the Radar Operator So Much That He Turns...To Know or Tips For Not Pissing Off the Radar Operator So Much That He Turns Off the Track Display”, Proc. ONR-GTRI Workshop on Tracking, Santa Barbara
NASA's next generation all-digital deep space network breadboard receiver
NASA Technical Reports Server (NTRS)
Hinedi, Sami
1993-01-01
This paper describes the breadboard advanced receiver (ARX) that is currently being built for future use in NASA's deep space network (DSN). This receiver has unique requirements in having to operate with very weak signals from deep space probes and provide high quality telemetry and tracking data. The hybrid analog/digital receiver performs multiple functions including carrier, subcarrier and symbol synchronization. Tracking can be achieved for either residual, suppressed or hybrid carriers and for both sinusoidal and square wave subcarriers. System requirements are specified and a functional description of the ARX is presented. The various digital signal processing algorithms used are also discussed and illustrated with block diagrams. Other functions such as time tagged Doppler extraction and monitor/control are also discussed including acquisition algorithms and lock detection schemes.
Image-based systems for space surveillance: from images to collision avoidance
NASA Astrophysics Data System (ADS)
Pyanet, Marine; Martin, Bernard; Fau, Nicolas; Vial, Sophie; Chalte, Chantal; Beraud, Pascal; Fuss, Philippe; Le Goff, Roland
2011-11-01
In many spatial systems, image is a core technology to fulfil the mission requirements. Depending on the application, the needs and the constraints are different and imaging systems can offer a large variety of configurations in terms of wavelength, resolution, field-of-view, focal length or sensitivity. Adequate image processing algorithms allow the extraction of the needed information and the interpretation of images. As a prime contractor for many major civil or military projects, Astrium ST is very involved in the proposition, development and realization of new image-based techniques and systems for space-related purposes. Among the different applications, space surveillance is a major stake for the future of space transportation. Indeed, studies show that the number of debris in orbit is exponentially growing and the already existing population of small and medium debris is a concrete threat to operational satellites. This paper presents Astrium ST activities regarding space surveillance for space situational awareness (SSA) and space traffic management (STM). Among other possible SSA architectures, the relevance of a ground-based optical station network is investigated. The objective is to detect and track space debris and maintain an exhaustive and accurate catalogue up-to-date in order to assess collision risk for satellites and space vehicles. The system is composed of different type of optical stations dedicated to specific functions (survey, passive tracking, active tracking), distributed around the globe. To support these investigations, two in-house operational breadboards were implemented and are operated for survey and tracking purposes. This paper focuses on Astrium ST end-to-end optical-based survey concept. For the detection of new debris, a network of wide field of view survey stations is considered: those stations are able to detect small objects and associated image processing (detection and tracking) allow a preliminary restitution of their orbit.
Improved Space Surveillance Network (SSN) Scheduling using Artificial Intelligence Techniques
NASA Astrophysics Data System (ADS)
Stottler, D.
There are close to 20,000 cataloged manmade objects in space, the large majority of which are not active, functioning satellites. These are tracked by phased array and mechanical radars and ground and space-based optical telescopes, collectively known as the Space Surveillance Network (SSN). A better SSN schedule of observations could, using exactly the same legacy sensor resources, improve space catalog accuracy through more complementary tracking, provide better responsiveness to real-time changes, better track small debris in low earth orbit (LEO) through efficient use of applicable sensors, efficiently track deep space (DS) frequent revisit objects, handle increased numbers of objects and new types of sensors, and take advantage of future improved communication and control to globally optimize the SSN schedule. We have developed a scheduling algorithm that takes as input the space catalog and the associated covariance matrices and produces a globally optimized schedule for each sensor site as to what objects to observe and when. This algorithm is able to schedule more observations with the same sensor resources and have those observations be more complementary, in terms of the precision with which each orbit metric is known, to produce a satellite observation schedule that, when executed, minimizes the covariances across the entire space object catalog. If used operationally, the results would be significantly increased accuracy of the space catalog with fewer lost objects with the same set of sensor resources. This approach inherently can also trade-off fewer high priority tasks against more lower-priority tasks, when there is benefit in doing so. Currently the project has completed a prototyping and feasibility study, using open source data on the SSN's sensors, that showed significant reduction in orbit metric covariances. The algorithm techniques and results will be discussed along with future directions for the research.
NASA Technical Reports Server (NTRS)
Lindqwister, Ulf J.; Lichten, Stephen M.; Davis, Edgar S.; Theiss, Harold L.
1993-01-01
Topex/Poseidon, a cooperative satellite mission between United States and France, aims to determine global ocean circulation patterns and to study their influence on world climate through precise measurements of sea surface height above the geoid with an on-board altimeter. To achieve the mission science aims, a goal of 13-cm orbit altitude accuracy was set. Topex/Poseidon includes a Global Positioning System (GPS) precise orbit determination (POD) system that has now demonstrated altitude accuracy better than 5 cm. The GPS POD system includes an on-board GPS receiver and a 6-station GPS global tracking network. This paper reviews early GPS results and discusses multi-mission capabilities available from a future enhanced global GPS network, which would provide ground-based geodetic and atmospheric calibrations needed for NASA deep space missions while also supplying tracking data for future low Earth orbiters. Benefits of the enhanced global GPS network include lower operations costs for deep space tracking and many scientific and societal benefits from the low Earth orbiter missions, including improved understanding of ocean circulation, ocean-weather interactions, the El Nino effect, the Earth thermal balance, and weather forecasting.
2015-03-27
i.e., temporarily focusing on one object instead of wide area survey) or SOI collection on high interest objects (e.g., unidentified objects ...The Air Force Institute of Technology has spent the last seven years conducting research on orbit identification and object characterization of space... objects through the use of commercial-off-the-shelf hardware systems controlled via custom software routines, referred to simply as TeleTrak. Year
Joint JSC/GSFC two-TDRS navigation certification results for STS-29, STS-30, and STS-32
NASA Technical Reports Server (NTRS)
Schmidt, Thomas G.; Brown, Edward T.; Murdock, Valerie E.; Cappellari, James O., Jr.; Smith, Evan A.; Schmitt, Mark W.; Omalley, James W.; Lowes, Flora B.; Joyce, James B.
1990-01-01
The procedures used and the results obtained in the joint Johnson Space Center (JSC)/Goddard Space Flight Center (GSFC) navigation certification of the two-Tracking and Data Relay Satellite (TDRS) S-band tracking configuration for support of low- to medium-inclination (28.5 to 62 degrees) Shuttle missions (STS-29 and STS-30) and Shuttle rendezvous missions (STS-32) are described. The objective of this certification effort was to certify the two-TDRS configuration for nominal Space Transportation System (STS) on-orbit navigation support, thereby making it possible to significantly reduce the ground tracking support requirements for routine STS on-orbit navigation. JSC had the primary responsibility for certification of the two-TDRS configuration for STS support, and GSFC supported the effort by performing Ground Network (GN) and Space Network (SN) tracking data evaluation, parallel orbit solutions, and solution comparisons. In the certification process, two types of orbit determination solutions were generated by JSC and by GSFC for each tracking arc evaluated, one type using TDRS-East and TDRS-West tracking data combined with ground tracking data (the reference solutions) and one type using only TDRS-East and TDRS-West tracking data. The two types of solutions were then compared to determine the maximum position differences over the solution arcs and whether these differences satisfied the navigation certification criteria. The certification criteria were a function of the type of Shuttle activity in the tracking arc, i.e., quiet, moderate, or active. Quiet periods included no attitude maneuvers or ventings; moderate periods included one or two maneuvers or ventings; and active periods included more than two maneuvers or ventings. The results of the individual JSC and GSFC certification analyses for the STS-29, STS-30, and STS-32 missions and the joint JSC/GSFC conclusions regarding certification of the two-TDRS S-band configuration for STS support are presented.
NASA Technical Reports Server (NTRS)
Israel, David J.
2005-01-01
The NASA Space Network (SN) supports a variety of missions using the Tracking and Data Relay Satellite System (TDRSS), which includes ground stations in White Sands, New Mexico and Guam. A Space Network IP Services (SNIS) architecture is being developed to support future users with requirements for end-to-end Internet Protocol (IP) communications. This architecture will support all IP protocols, including Mobile IP, over TDRSS Single Access, Multiple Access, and Demand Access Radio Frequency (RF) links. This paper will describe this architecture and how it can enable Low Earth Orbiting IP satellite missions.
Using The Global Positioning System For Earth Orbiter and Deep Space Network
NASA Technical Reports Server (NTRS)
Lichten, Stephen M.; Haines, Bruce J.; Young, Lawrence E.; Dunn, Charles; Srinivasan, Jeff; Sweeney, Dennis; Nandi, Sumita; Spitzmesser, Don
1994-01-01
The Global Positioning System (GPS) can play a major role in supporting orbit and trajectory determination for spacecraft in a wide range of applications, including low-Earth, high-earth, and even deep space (interplanetary) tracking.
2013-12-12
CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V first stage booster that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit arrives at Cape Canaveral Air Force Station's Launch Complex 41. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Kim Shiflett
2013-12-12
CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V first stage booster that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit arrives at Cape Canaveral Air Force Station's Launch Complex 41. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Kim Shiflett
2013-12-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Launch Complex 41, a Centaur second stage is positioned atop a United Launch Alliance Atlas V rocket that will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser
2013-11-01
CAPE CANAVERAL, Fla. – The United Launch Alliance Centaur upper stage that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit arrives at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station for checkout in preparation for launch. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/ Jim Grossman
2013-12-12
CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V first stage booster that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit arrives at Cape Canaveral Air Force Station's Launch Complex 41. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Kim Shiflett
2013-11-01
CAPE CANAVERAL, Fla. – The United Launch Alliance Centaur upper stage that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit arrives at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station for checkout in preparation for launch. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/ Jim Grossman
2013-12-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Launch Complex 41, a Centaur second stage is positioned atop a United Launch Alliance Atlas V rocket that will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser
Application of inertial instruments for DSN antenna pointing and tracking
NASA Technical Reports Server (NTRS)
Eldred, D. B.; Nerheim, N. M.; Holmes, K. G.
1990-01-01
The feasibility of using inertial instruments to determine the pointing attitude of the NASA Deep Space Network antennas is examined. The objective is to obtain 1 mdeg pointing knowledge in both blind pointing and tracking modes to facilitate operation of the Deep Space Network 70 m antennas at 32 GHz. A measurement system employing accelerometers, an inclinometer, and optical gyroscopes is proposed. The initial pointing attitude is established by determining the direction of the local gravity vector using the accelerometers and the inclinometer, and the Earth's spin axis using the gyroscopes. Pointing during long-term tracking is maintained by integrating the gyroscope rates and augmenting these measurements with knowledge of the local gravity vector. A minimum-variance estimator is used to combine measurements to obtain the antenna pointing attitude. A key feature of the algorithm is its ability to recalibrate accelerometer parameters during operation. A survey of available inertial instrument technologies is also given.
Noncoherent Doppler tracking: first flight results
NASA Astrophysics Data System (ADS)
DeBoy, Christopher C.; Robert Jensen, J.; Asher, Mark S.
2005-01-01
Noncoherent Doppler tracking has been devised as a means to achieve highly accurate, two-way Doppler measurements with a simple, transceiver-based communications system. This technique has been flown as an experiment on the Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics (TIMED) spacecraft, (launched 7 December 2001), as the operational technique for Doppler tracking on CONTOUR, and is baselined on several future deep space missions at JHU/APL. This paper reports on initial results from a series of successful tests of this technique between the TIMED spacecraft and NASA ground stations in the Deep Space Network. It also examines the advantages that noncoherent Doppler tracking and a transceiver-based system may offer to small satellite systems, including reduced cost, mass, and power.
NASA directory of observation station locations, volume 1
NASA Technical Reports Server (NTRS)
1973-01-01
Geodetic information for NASA tracking stations and for observation stations cooperating in NASA geodetic satellite programs is presented. A Geodetic Data Sheet is provided for each station, giving the position of the station and describing briefly how it was established. Geodetic positions and geocentric coordinates of these stations are tabulated on local or major geodetic datums and on selected world geodetic systems. The principal tracking facilities used by NASA, including the Spaceflight Tracking and Data Network, the Deep Space Network, and several large radio telescopes are discussed. Positions of these facilities are tabulated on their local or national datums, the Mercury Spheroid 1960, the Modified Mercury Datum 1968, and the Spaceflight Tracking and Data Network System. Observation stations in the NASA Geodetic Satellites Program are included along with stations participating in the National Geodetic Satellite Program. Positions of these facilities are given on local or preferred major datums, and on the Modified Mercury Datum 1968.
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Yuen, Joseph H. (Editor)
1993-01-01
This quarterly publication provides archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. The papers included in this document cover satellite tracking and ground-based navigation, spacecraft-ground communications, and optical communication systems for the Deep Space Network.
Telecommunications and data acquisition
NASA Technical Reports Server (NTRS)
Renzetti, N. A. (Editor)
1981-01-01
Deep Space Network progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations is reported. In addition, developments in Earth based radio technology as applied to geodynamics, astrophysics, and the radio search for extraterrestrial intelligence are reported.
NASA Technical Reports Server (NTRS)
Shaw, Harry C.; McLaughlin, Brian; Stocklin, Frank; Fortin, Andre; Israel, David; Dissanayake, Asoka; Gilliand, Denise; LaFontaine, Richard; Broomandan, Richard; Hyunh, Nancy
2015-01-01
Protection of the national infrastructure is a high priority for cybersecurity of the homeland. Critical infrastructure such as the national power grid, commercial financial networks, and communications networks have been successfully invaded and re-invaded from foreign and domestic attackers. The ability to re-establish authentication and confidentiality of the network participants via secure channels that have not been compromised would be an important countermeasure to compromise of our critical network infrastructure. This paper describes a concept of operations by which the NASA Tracking and Data Relay (TDRS) constellation of spacecraft in conjunction with the White Sands Complex (WSC) Ground Station host a security recovery system for re-establishing secure network communications in the event of a national or regional cyberattack. Users would perform security and network restoral functions via a Broadcast Satellite Service (BSS) from the TDRS constellation. The BSS enrollment only requires that each network location have a receive antenna and satellite receiver. This would be no more complex than setting up a DIRECTTV-like receiver at each network location with separate network connectivity. A GEO BSS would allow a mass re-enrollment of network nodes (up to nationwide) simultaneously depending upon downlink characteristics. This paper details the spectrum requirements, link budget, notional assets and communications requirements for the scheme. It describes the architecture of such a system and the manner in which it leverages off of the existing secure infrastructure which is already in place and managed by the NASAGSFC Space Network Project.
Mathematical analysis techniques for modeling the space network activities
NASA Technical Reports Server (NTRS)
Foster, Lisa M.
1992-01-01
The objective of the present work was to explore and identify mathematical analysis techniques, and in particular, the use of linear programming. This topic was then applied to the Tracking and Data Relay Satellite System (TDRSS) in order to understand the space network better. Finally, a small scale version of the system was modeled, variables were identified, data was gathered, and comparisons were made between actual and theoretical data.
Positioning and tracking control system analysis for mobile free space optical network
NASA Astrophysics Data System (ADS)
Li, Yushan; Refai, Hazem; Sluss, , James J., Jr.; Verma, Pramode; LoPresti, Peter
2005-08-01
Free Space Optical (FSO) communication has evolved to be applied to the mobile network, because it can provide up to 2.5Gbps or higher data rate wireless communication. One of the key challenges with FSO systems is to maintain the Line of Sight (LOS) between transmitter and receiver. In this paper, the feasibility and performance of applying the FSO technology to the mobile network is explored, and the design plan of the attitude positioning and tracking control system of the FSO transceiver is investigated. First, the system architecture is introduced, the requirements for the control system are analyzed, the involved reference frames and frame transformation are presented. Second, the control system bandwidth is used to evaluate the system performance in controlling a positioning system consisting of a gimbal and a steering mirror, some definitions to describe the positioning accuracy and tracking capacity are given. The attitude control of a FSO transceiver is split into 2 similar channels: pitch and yaw. Using an equivalent linear control system model, the simulations are carried out, with and without the presence of uncertainties that includes GPS data errors and sensor measurement errors. Finally, based on the simulation results in the pitch channel, the quantitative evaluation on the performance of the control system is given, including positioning accuracy, tracking capability and uncertainty tolerance.
The telecommunications and data acquisition report
NASA Technical Reports Server (NTRS)
Renzetti, N. A.
1980-01-01
Deep Space Network progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implemention, and operations is documented. In addition, developments in Earth based radio technology as applied to geodynamics, astrophysics, and the radio search for extraterrestrial intelligence are reported.
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Posner, E. C. (Editor)
1986-01-01
Deep Space Network progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations is documented. In addition, developments in Earth-based radio technology as applied to geodynamics, astrophysics and the radio search for extraterrestrial intelligence are reported.
NASA Technical Reports Server (NTRS)
Madrid, G. A.; Westmoreland, P. T.
1983-01-01
A progress report is presented on a program to upgrade the existing NASA Deep Space Network in terms of a redesigned computer-controlled data acquisition system for channelling tracking, telemetry, and command data between a California-based control center and three signal processing centers in Australia, California, and Spain. The methodology for the improvements is oriented towards single subsystem development with consideration for a multi-system and multi-subsystem network of operational software. Details of the existing hardware configurations and data transmission links are provided. The program methodology includes data flow design, interface design and coordination, incremental capability availability, increased inter-subsystem developmental synthesis and testing, system and network level synthesis and testing, and system verification and validation. The software has been implemented thus far to a 65 percent completion level, and the methodology being used to effect the changes, which will permit enhanced tracking and communication with spacecraft, has been concluded to feature effective techniques.
NASA Astrophysics Data System (ADS)
Deng, Peng; Kavehrad, Mohsen; Lou, Yan
2017-01-01
Flexible wireless datacenter networks based on free space optical communication (FSO) links are being considered as promising solutions to meet the future datacenter demands of high throughput, robustness to dynamic traffic patterns, cabling complexity and energy efficiency. Robust and precise steerable FSO links over dynamic traffic play a key role in the reconfigurable optical wireless datacenter inter-rack network. In this work, we propose and demonstrate a reconfigurable 10Gbps FSO system incorporated with smart beam acquisition and tracking mechanism based on gimballess two-axis MEMS micro-mirror and retro-reflective film marked aperture. The fast MEMS-based beam acquisition switches laser beam of FSO terminal from one rack to the next for reconfigurable networks, and the precise beam tracking makes FSO device auto-correct the misalignment in real-time. We evaluate the optical power loss and bit error rate performance of steerable FSO links at various directions. Experimental results suggest that the MEMS based beam steerable FSO links hold considerable promise for the future reconfigurable wireless datacenter networks.
2013-12-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, the first stage of the United Launch Alliance Atlas V rocket is lifted for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser
2013-12-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Launch Complex 41, a United Launch Alliance Atlas V rocket, with its Centaur second stage atop, stands in the Vertical Integration Facility as preparations continue for lift off of the Tracking and Data Relay Satellite, or TDRS-L. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser
2013-12-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, the first stage of the United Launch Alliance Atlas V rocket is lifted for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser
2013-12-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, the first stage of the United Launch Alliance Atlas V rocket positioned in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser
2013-12-13
CAPE CANAVERAL, Fla. – The United Launch Alliance Centaur second stage that will help boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being transported from the hangar at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station to Launch Complex 41. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser
2013-12-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Launch Complex 41, a technician supports preparations for lifting the Centaur second stage of the United Launch Alliance rocket that will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser
2013-12-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Launch Complex 41, a Centaur second stage is lifted for stacking atop a United Launch Alliance Atlas V rocket that will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser
2013-11-01
CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V launch vehicle that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit arrives at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station for checkout in preparation for launch. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/ Jim Grossman
2013-12-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, the first stage of the United Launch Alliance Atlas V rocket is lifted for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser
2013-12-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Vertical Integration Facility at Launch Complex 41, a crane is positioned to support stacking of the United Launch Alliance Atlas V rocket that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser
2013-12-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, engineers and technicians prepare the United Launch Alliance Atlas V rocket for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser
2013-12-12
CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V first stage booster that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being transported from the hangar at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station to Launch Complex 41. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Kim Shiflett
2013-11-01
CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V launch vehicle that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit arrives at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station for checkout in preparation for launch. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/ Jim Grossman
2013-12-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Launch Complex 41, engineers and technicians support lifting a Centaur second stage for stacking atop a United Launch Alliance Atlas V rocket that will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser
2013-12-13
CAPE CANAVERAL, Fla. – The United Launch Alliance Centaur second stage that will help boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being transported from the hangar at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station to Launch Complex 41. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser
2013-12-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, the first stage of the United Launch Alliance Atlas V rocket is lifted for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser
2013-12-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Launch Complex 41, engineers and technicians support lifting a Centaur second stage for stacking atop a United Launch Alliance Atlas V rocket that will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser
2013-11-01
CAPE CANAVERAL, Fla. – The United Launch Alliance Centaur upper stage that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being transported to the hangar at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station for checkout in preparation for launch. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/ Jim Grossman
2013-11-01
CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V launch vehicle that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit arrives at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station for checkout in preparation for launch. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/ Jim Grossman
2013-12-12
CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V first stage booster that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being transported from the hangar at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station to Launch Complex 41. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Kim Shiflett
2013-12-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, a technician supports lifting of a United Launch Alliance Atlas V rocket in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser
2013-12-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, the first stage of the United Launch Alliance Atlas V rocket is lifted for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser
2013-12-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, the first stage of the United Launch Alliance Atlas V rocket positioned in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser
2013-11-01
CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V launch vehicle that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being transported to the hangar at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station for checkout in preparation for launch. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/ Jim Grossman
2013-12-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, the first stage of the United Launch Alliance Atlas V rocket is lifted for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser
2013-12-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Launch Complex 41, engineers and technicians support preparations for lifting the Centaur second stage of the United Launch Alliance rocket that will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser
2013-12-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Launch Complex 41, engineers and technicians inspect a Centaur second stage that was just stacked atop a United Launch Alliance Atlas V rocket that will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser
2013-12-12
CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V first stage booster that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being transported from the hangar at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station to Launch Complex 41. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Kim Shiflett
2013-12-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, engineers and technicians prepare the United Launch Alliance Atlas V rocket for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser
2013-11-01
CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V launch vehicle that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being transported to the hangar at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station for checkout in preparation for launch. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/ Jim Grossman
2013-12-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, the first stage of the United Launch Alliance Atlas V rocket is lifted for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser
2013-12-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Launch Complex 41, engineers and technicians support lifting a Centaur second stage for stacking atop a United Launch Alliance Atlas V rocket that will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser
2013-12-13
CAPE CANAVERAL, Fla. – The United Launch Alliance Centaur second stage that will help boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being transported from the hangar at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station to Launch Complex 41. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser
2013-11-01
CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V launch vehicle that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being transported to the hangar at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station for checkout in preparation for launch. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/ Jim Grossman
2013-12-12
CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V first stage booster that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being prepared for transport from the hangar at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station to Launch Complex 41. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Kim Shiflett
2013-12-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, engineers and technicians prepare the United Launch Alliance Atlas V rocket for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser
2013-12-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, the first stage of the United Launch Alliance Atlas V rocket is lifted for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser
2013-12-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Launch Complex 41, a Centaur second stage is lifted for stacking atop a United Launch Alliance Atlas V rocket that will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser
2013-11-01
CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V launch vehicle that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being transported to the hangar at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station for checkout in preparation for launch. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/ Jim Grossman
2013-12-12
CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V first stage booster that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being transported from the hangar at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station to Launch Complex 41. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Kim Shiflett
2013-12-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Vertical Integration Facility at Launch Complex 41, a crane is positioned to support stacking of the United Launch Alliance Atlas V rocket that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser
A DTN-Based Multiple Access Fast Forward Service for the NASA Space Network
NASA Technical Reports Server (NTRS)
Israel, David; Davis, Faith; Marquart. Jane
2011-01-01
The NASA Space Network provides a demand access return link service capable of providing users a space link "on demand". An equivalent service in the forward link direction is not possible due to Tracking and Data Relay Spacecraft (TDRS) constraints. A Disruption Tolerant Networking (DTN)-based Multiple Access Fast Forward (MAFF) service has been proposed to provide a forward link to a user as soon as possible. Previous concept studies have identified a basic architecture and implementation approach. This paper reviews the user scenarios and benefits of an MAFF service and proposes an implementation approach based on the use of DTN protocols.
Some issues related to simulation of the tracking and communications computer network
NASA Technical Reports Server (NTRS)
Lacovara, Robert C.
1989-01-01
The Communications Performance and Integration branch of the Tracking and Communications Division has an ongoing involvement in the simulation of its flight hardware for Space Station Freedom. Specifically, the communication process between central processor(s) and orbital replaceable units (ORU's) is simulated with varying degrees of fidelity. The results of investigations into three aspects of this simulation effort are given. The most general area involves the use of computer assisted software engineering (CASE) tools for this particular simulation. The second area of interest is simulation methods for systems of mixed hardware and software. The final area investigated is the application of simulation methods to one of the proposed computer network protocols for space station, specifically IEEE 802.4.
Some issues related to simulation of the tracking and communications computer network
NASA Astrophysics Data System (ADS)
Lacovara, Robert C.
1989-12-01
The Communications Performance and Integration branch of the Tracking and Communications Division has an ongoing involvement in the simulation of its flight hardware for Space Station Freedom. Specifically, the communication process between central processor(s) and orbital replaceable units (ORU's) is simulated with varying degrees of fidelity. The results of investigations into three aspects of this simulation effort are given. The most general area involves the use of computer assisted software engineering (CASE) tools for this particular simulation. The second area of interest is simulation methods for systems of mixed hardware and software. The final area investigated is the application of simulation methods to one of the proposed computer network protocols for space station, specifically IEEE 802.4.
NASA Astrophysics Data System (ADS)
Gao, Xiangdong; Chen, Yuquan; You, Deyong; Xiao, Zhenlin; Chen, Xiaohui
2017-02-01
An approach for seam tracking of micro gap weld whose width is less than 0.1 mm based on magneto optical (MO) imaging technique during butt-joint laser welding of steel plates is investigated. Kalman filtering(KF) technology with radial basis function(RBF) neural network for weld detection by an MO sensor was applied to track the weld center position. Because the laser welding system process noises and the MO sensor measurement noises were colored noises, the estimation accuracy of traditional KF for seam tracking was degraded by the system model with extreme nonlinearities and could not be solved by the linear state-space model. Also, the statistics characteristics of noises could not be accurately obtained in actual welding. Thus, a RBF neural network was applied to the KF technique to compensate for the weld tracking errors. The neural network can restrain divergence filter and improve the system robustness. In comparison of traditional KF algorithm, the RBF with KF was not only more effectively in improving the weld tracking accuracy but also reduced noise disturbance. Experimental results showed that magneto optical imaging technique could be applied to detect micro gap weld accurately, which provides a novel approach for micro gap seam tracking.
A Ten-Meter Ground-Station Telescope for Deep-Space Optical Communications: A Preliminary Design
NASA Technical Reports Server (NTRS)
Britcliffe, M.; Hoppe, D.; Roberts, W.; Page, N.
2001-01-01
This article describes a telescope design for a 10-m optical ground station for deep-space communications. The design for a direct-detection optical communications telescope differs dramatically from a telescope for imaging applications. In general, the requirements for optical manufacturing and tracking performance are much less stringent for direct detection of optical signals. The technical challenge is providing a design that will operate in the daytime/nighttime conditions required for a Deep Space Network tracking application. The design presented addresses these requirements. The design will provide higher performance at lower cost than existing designs.
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Posner, E. C. (Editor)
1985-01-01
Deep Space Network (DSN) progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operation is discussed. In addition, developments in Earth-based radio technology as applied to geodynamics, astrophysics and the radio search for extraterrestrial intelligence are reported.
FIESTA: An operational decision aid for space network fault isolation
NASA Technical Reports Server (NTRS)
Lowe, Dawn; Quillin, Bob; Matteson, Nadine; Wilkinson, Bill; Miksell, Steve
1987-01-01
The Fault Tolerance Expert System for Tracking and Data Relay Satellite System (TDRSS) Applications (FIESTA) is a fault detection and fault diagnosis expert system being developed as a decision aid to support operations in the Network Control Center (NCC) for NASA's Space Network. The operational objectives which influenced FIESTA development are presented and an overview of the architecture used to achieve these goals are provided. The approach to the knowledge engineering effort and the methodology employed are also presented and illustrated with examples drawn from the FIESTA domain.
NASA Technical Reports Server (NTRS)
Miller, R. B.
1974-01-01
The Tracking and Data System supported the deep space phases of the Pioneer 6, 7, 8, and 9 missions, with two spacecraft in an inward trajectory and two spacecraft in an outward trajectory from the earth in heliocentric orbits. During the period of this report, scientific instruments aboard each of the spacecraft continued to register information relative to interplanetary particles and fields, and radiometric data generated by the network continued to contribute to knowledge of the celestial mechanics of the solar system. In addition, to network support activity detail, network performance and special support activities are covered.
NASA Technical Reports Server (NTRS)
Renzetti, N. A.; Siegmeth, A. J.
1973-01-01
The Tracking and Data System supported the deep space phases of the Pioneer 6, 7, 8, and 9 missions, with two spacecraft in an inward trajectory and two spacecraft in an outward trajectory from the earth in heliocentric orbits. Scientific instruments aboard each of the spacecraft continued to register information relative to interplanetary particles and fields, and radio metric data generated by the network continued to improve our knowledge of the celestial mechanics of the solar system. In addition to network support activity detail, network performance and special support activities are covered.
High Speed A/D DSP Interface for Carrier Doppler Tracking
NASA Technical Reports Server (NTRS)
Baggett, Timothy
1998-01-01
As on-board satellite systems continue to increase in ability to perform self diagnostic checks, it will become more important for satellites to initiate ground communications contact. Currently, the NASA Space Network requires users to pre-arranged times for satellite communications links through the Tracking and Data Relay Satellite (TDRS). One of the challenges in implementing an on-demand access protocol into the Space Network, is the fact that a low Earth orbiting (LEO) satellite's communications will be subject to a doppler shift which is outside the capability of the NASA ground station to lock onto. In a prearranged system, the satellite's doppler is known a priori, and the ground station is able to lock onto the satellite's signal. This paper describes the development of a high speed analog to digital interface into a Digital Signal Processor (DSP). This system will be used for identifying the doppler shift of a LEO satellite through the Space Network, and aiding the ground station equipment in locking onto the signal. Although this interface is specific to one application, it can be used as a basis for interfacing other devices with a DSP.
New tracking implementation in the Deep Space Network
NASA Technical Reports Server (NTRS)
Berner, Jeff B.; Bryant, Scott H.
2001-01-01
As part of the Network Simplification Project, the tracking system of the Deep Space Network is being upgraded. This upgrade replaces the discrete logic sequential ranging system with a system that is based on commercial Digital Signal Processor boards. The new implementation allows both sequential and pseudo-noise types of ranging. The other major change is a modernization of the data formatting. Previously, there were several types of interfaces, delivering both intermediate data and processed data (called 'observables'). All of these interfaces were bit-packed blocks, which do not allow for easy expansion, and many of these interfaces required knowledge of the specific hardware implementations. The new interface supports four classes of data: raw (direct from the measuring equipment), derived (the observable data), interferometric (multiple antenna measurements), and filtered (data whose values depend on multiple measurements). All of the measurements are reported at the sky frequency or phase level, so that no knowledge of the actual hardware is required. The data is formatted into Standard Formatted Data Units, as defined by the Consultative Committee for Space Data Systems, so that expansion and cross-center usage is greatly enhanced.
Network control processor for a TDMA system
NASA Astrophysics Data System (ADS)
Suryadevara, Omkarmurthy; Debettencourt, Thomas J.; Shulman, R. B.
Two unique aspects of designing a network control processor (NCP) to monitor and control a demand-assigned, time-division multiple-access (TDMA) network are described. The first involves the implementation of redundancy by synchronizing the databases of two geographically remote NCPs. The two sets of databases are kept in synchronization by collecting data on both systems, transferring databases, sending incremental updates, and the parallel updating of databases. A periodic audit compares the checksums of the databases to ensure synchronization. The second aspect involves the use of a tracking algorithm to dynamically reallocate TDMA frame space. This algorithm detects and tracks current and long-term load changes in the network. When some portions of the network are overloaded while others have excess capacity, the algorithm automatically calculates and implements a new burst time plan.
Mark 4A DSN receiver-exciter and transmitter subsystems
NASA Technical Reports Server (NTRS)
Wick, M. R.
1986-01-01
The present configuration of the Mark 4A DSN Receiver-Exciter and Transmitter Subsystems is described. Functional requirements and key characteristics are given to show the differences in the capabilities required by the Networks Consolidation task for combined High Earth Orbiter and Deep Space Network tracking support.
2012-09-01
the Space Surveillance Network has been tracking orbital objects and maintaining a catalog that allows space operators to safely operate satellites ...collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources...Distribution Unlimited) backward) in time , but the accuracy degrades as the amount of propagation time increases. Thus, the need to maintain a
NASA Technical Reports Server (NTRS)
Edwards, C. D.
1990-01-01
Connected-element interferometry (CEI) has the potential to provide high-accuracy angular spacecraft tracking on short baselines by making use of the very precise phase delay observable. Within the Goldstone Deep Space Communications Complex (DSCC), one of three tracking complexes in the NASA Deep Space Network, baselines of up to 21 km in length are available. Analysis of data from a series of short-baseline phase-delay interferometry experiments are presented to demonstrate the potential tracking accuracy on these baselines. Repeated differential observations of pairs of angularly close extragalactic radio sources were made to simulate differential spacecraft-quasar measurements. Fiber-optic data links and a correlation processor are currently being developed and installed at Goldstone for a demonstration of real-time CEI in 1990.
Satellite situation report, volume 30, no. 4
NASA Technical Reports Server (NTRS)
1990-01-01
Space objects are listed as well as those which decayed during this reporting period. Data provided include international designation and catalog number, nation of source, launch date, inclination, apogee, and perigee. Transmitting frequencies for satellites being monitored by NASA's space flight tracking and data network are given.
SSC Tenant Meeting: NASA Near Earth Network (NEN) Overview
NASA Technical Reports Server (NTRS)
Carter, David; Larsen, David; Baldwin, Philip; Wilson, Cristy; Ruley, LaMont
2018-01-01
The Near Earth Network (NEN) consists of globally distributed tracking stations that are strategically located throughout the world which provide Telemetry, Tracking, and Commanding (TTC) services support to a variety of orbital and suborbital flight missions, including Low Earth Orbit (LEO), Geosynchronous Earth Orbit (GEO), highly elliptical, and lunar orbits. Swedish Space Corporation (SSC), which is one of the NEN Commercial Service Provider, has provided the NEN with TTC services support from its Alaska, Hawaii, Chile and Sweden. The presentation will give an overview of the NEN and its support from SSC.
NASA Technical Reports Server (NTRS)
Barton, W. R.; Miller, R. B.
1975-01-01
The tracking and data system support of the planning, testing, launch, near-earth, and deep space phases of the Pioneer 11 Jupiter Mission are described, including critical phases of spacecraft flight and guidance. Scientific instruments aboard the spacecraft registered information relative to interplanetary particles and fields. Knowledge of the celestial mechanics of the solar system was improved through radiometric data gathering. Network performance, details of network support activity, and special support activities are discussed.
Arc tracking of cables for space applications
NASA Technical Reports Server (NTRS)
Koenig, D.; Frontzek, F. R.; Hanson, J.; Reher, H. J.; Judd, M. D.; Bryant, D.
1995-01-01
The main objective of this study is to develop a new test method that is suitable for the assessment of the resistance of aerospace cables to arc tracking for different specific environmental and network conditions of spacecrafts. This paper reports the purpose, test conditions, test specimen, test procedure, and test acceptance criteria of seven different (200-250 mm long) cables.
Design and Efficiency Analysis of Operational Scenarios for Space Situational Awareness Radar System
NASA Astrophysics Data System (ADS)
Choi, E. J.; Cho, S.; Jo, J. H.; Park, J.; Chung, T.; Park, J.; Jeon, H.; Yun, A.; Lee, Y.
In order to perform the surveillance and tracking of space objects, optical and radar sensors are the technical components for space situational awareness system. Especially, space situational awareness radar system in combination with optical sensors network plays an outstanding role for space situational awareness. At present, OWL-Net(Optical Wide Field patrol Network) optical system, which is the only infra structures for tracking of space objects in Korea is very limited in all-weather and observation time. Therefore, the development of radar system capable of continuous operation is becoming an essential space situational awareness element. Therefore, for an efficient space situational awareness at the current state, the strategy of the space situational awareness radar development should be considered. The purpose of this paper is to analyze the efficiency of radar system for detection and tracking of space objects. The detection capabilities are limited to an altitude of 2,000 km with debris size of 1 m2 in radar cross section (RCS) for the radar operating frequencies of L, S, C, X, and Ku-band. The power budget analysis results showed that the maximum detection range of 2,000km can be achieved with the transmitted power of 900 kW, transmit and receive antenna gains of 40 dB and 43 dB, respectively, pulse width of 2 ms, and a signal processing gain of 13.3dB, at frequency of 1.3GHz. The required signal-to-noise ratio (SNR) was assumed to be 12.6 dB for probability of detection of 80% with false alarm rate 10-6. Through the efficiency analysis and trade-off study, the key parameters of the radar system are designed. As a result, this research will provide the guideline for the conceptual design of space situational awareness system.
2013-11-01
CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V launch vehicle, left, and Centaur upper stage that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being transported to the hangar at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station for checkout in preparation for launch. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/ Jim Grossman
2013-12-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, engineers and technicians support lifting the first stage of the United Launch Alliance Atlas V rocket during stacking operations in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser
2013-12-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, a technician support lifting the first stage of the United Launch Alliance Atlas V rocket during stacking operations in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser
2013-12-13
CAPE CANAVERAL, Fla. – The United Launch Alliance Centaur second stage that will help boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit arrives at Cape Canaveral Air Force Station's Launch Complex 41. It will be lifted and mounted atop the Atlas V first stage already in position inside the Vertical Integration Facility. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser
2013-12-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, engineers and technicians support lifting the first stage of the United Launch Alliance Atlas V rocket during stacking operations in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser
2013-11-01
PORT CANAVERAL, Fla. – Following arrival at Port Canaveral, Fla., the United Launch Alliance Atlas V first stage and Centaur upper stage that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being transported to Cape Canaveral Air Force Station's Atlas Spaceflight Operations Center for checkout in preparation for launch. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/ Kim Shiflett
2013-12-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, engineers and technicians support lifting the first stage of the United Launch Alliance Atlas V rocket during stacking operations in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser
2013-11-01
PORT CANAVERAL, Fla. – Following arrival at Port Canaveral, Fla., the United Launch Alliance Atlas V first stage and Centaur upper stage that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being transported to Cape Canaveral Air Force Station's Atlas Spaceflight Operations Center for checkout in preparation for launch. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/ Kim Shiflett
Optical neural network system for pose determination of spinning satellites
NASA Technical Reports Server (NTRS)
Lee, Andrew; Casasent, David
1990-01-01
An optical neural network architecture and algorithm based on a Hopfield optimization network are presented for multitarget tracking. This tracker utilizes a neuron for every possible target track, and a quadratic energy function of neural activities which is minimized using gradient descent neural evolution. The neural net tracker is demonstrated as part of a system for determining position and orientation (pose) of spinning satellites with respect to a robotic spacecraft. The input to the system is time sequence video from a single camera. Novelty detection and filtering are utilized to locate and segment novel regions from the input images. The neural net multitarget tracker determines the correspondences (or tracks) of the novel regions as a function of time, and hence the paths of object (satellite) parts. The path traced out by a given part or region is approximately elliptical in image space, and the position, shape and orientation of the ellipse are functions of the satellite geometry and its pose. Having a geometric model of the satellite, and the elliptical path of a part in image space, the three-dimensional pose of the satellite is determined. Digital simulation results using this algorithm are presented for various satellite poses and lighting conditions.
NASA Technical Reports Server (NTRS)
Gaposchkin, E. M.
1973-01-01
Geodetic parameters describing the earth's gravity field and the positions of satellite-tracking stations in a geocentric reference frame were computed. These parameters were estimated by means of a combination of five different types of data: routine and simultaneous satellite observations, observations of deep-space probes, measurements of terrestrial gravity, and surface-triangulation data. The combination gives better parameters than does any subset of data types. The dynamic solution used precision-reduced Baker-Nunn observations and laser range data of 25 satellites. Data from the 49-station National Oceanic and Atmospheric Administration BC-4 network, the 19-station Smithsonian Astrophysical Observatory Baker-Nunn network, and independent camera stations were employed in the geometrical solution. Data from the tracking of deep-space probes were converted to relative longitudes and distances to the earth's axis of rotation of the tracking stations. Surface-gravity data in the form of 550-km squares were derived from 19,328 1 deg X 1 deg mean gravity anomalies.
Orbit Determination for the Lunar Reconnaissance Orbiter Using an Extended Kalman Filter
NASA Technical Reports Server (NTRS)
Slojkowski, Steven; Lowe, Jonathan; Woodburn, James
2015-01-01
Since launch, the FDF has performed daily OD for LRO using the Goddard Trajectory Determination System (GTDS). GTDS is a batch least-squares (BLS) estimator. The tracking data arc for OD is 36 hours. Current operational OD uses 200 x 200 lunar gravity, solid lunar tides, solar radiation pressure (SRP) using a spherical spacecraft area model, and point mass gravity for the Earth, Sun, and Jupiter. LRO tracking data consists of range and range-rate measurements from: Universal Space Network (USN) stations in Sweden, Germany, Australia, and Hawaii. A NASA antenna at White Sands, New Mexico (WS1S). NASA Deep Space Network (DSN) stations. DSN data was sparse and not included in this study. Tracking is predominantly (50) from WS1S. The OD accuracy requirements are: Definitive ephemeris accuracy of 500 meters total position root-mean-squared (RMS) and18 meters radial RMS. Predicted orbit accuracy less than 800 meters root sum squared (RSS) over an 84-hour prediction span.
NASA Astrophysics Data System (ADS)
Papers are presented on local area networks; formal methods for communication protocols; computer simulation of communication systems; spread spectrum and coded communications; tropical radio propagation; VLSI for communications; strategies for increasing software productivity; multiple access communications; advanced communication satellite technologies; and spread spectrum systems. Topics discussed include Space Station communication and tracking development and design; transmission networks; modulation; data communications; computer network protocols and performance; and coding and synchronization. Consideration is given to free space optical communications systems; VSAT communication networks; network topology design; advances in adaptive filtering echo cancellation and adaptive equalization; advanced signal processing for satellite communications; the elements, design, and analysis of fiber-optic networks; and advances in digital microwave systems.
Project Report: Design and Analysis for the Deep Space Network BWG Type 2 Antenna Feed Platform
NASA Technical Reports Server (NTRS)
Crawford, Andrew
2011-01-01
The following report explains in detail the solid modeling design process and structural analysis of the LNA (Low Noise Amplifier) feed platform to be constructed and installed on the new BWG (Beam Wave Guide) Type-2 tracking antenna in Canberra, Australia, as well as all future similar BWG Type-2 antennas builds. The Deep Space Networks new BWG Type-2 antennas use beam waveguides to funnel and 'extract' the desired signals received from spacecraft, and the feed platform supports and houses the LNA(Low Noise Amplifier) feed-cone and cryogenic cooling equipment used in the signal transmission and receiving process. The mandated design and construction of this platform to be installed on the new tracking antenna will be used and incorporated on all future similar antenna builds.
Satellite situation report, volume 17, no. 5
NASA Technical Reports Server (NTRS)
1977-01-01
Space objects in orbit are listed as well as those which decayed during this reporting period. Data provided include international designation and catalog number, nation of source, launch data, inclination, apogee and perigee. Transmitting frequencies for satellites being monitored by NASA space flight tracking and data network are given.
Satellite situation report, volume 17, no. 4
NASA Technical Reports Server (NTRS)
1977-01-01
Space objects in orbit are listed as well as those which decayed during this reporting period. Data provided include international designation and catalog number, nation of source, launch date, inclination, apogee and perigee. Transmitting frequencies for satellites being monitored by NASA space flight tracking and data network are given.
Satellite situation report, volume 17, no. 2
NASA Technical Reports Server (NTRS)
1977-01-01
Space objects in orbit are listed as well as those which decayed during the reporting period. Data provided include international designation and catalog number, nation of source, launch date, and inclination, apogee and perigee. Transmitting frequencies for satellites being monitored by NASA space flight tracking and data network are given.
Satellite situation report, volume 17, no. 6
NASA Technical Reports Server (NTRS)
1977-01-01
Space objects in orbit are listed as well as those which decayed during this reporting period. Data provided include international designation and catalog number, nation of source, launch data, inclination, and apogee and perigee. Transmitting frequencies for satellites being monitored by NASA space flight tracking and data network are given.
NASA Technical Reports Server (NTRS)
Helfrich, Cliff; Berry, David S.; Bhat, Ramachandra; Border, James; Graat, Eric; Halsell, Allen; Kruizinga, Gerhard; Lau, Eunice; Mottinger, Neil; Rush, Brian;
2015-01-01
In late 2013, the Indian Space Research Organization (ISRO) launched its "Mars Orbiter Mission" (MOM). ISRO engaged NASA's Jet Propulsion Laboratory (JPL) for navigation services to support ISRO's objectives of MOM achieving and maintaining Mars orbit. The navigation support included planning, documentation, testing, orbit determination, maneuver design /analysis, and tracking data analysis. Several of MOM's attributes had an impact on navigation processes, e.g., S -band telecommunications, Earth Orbit Phase maneuvers, and frequent angular momentum desaturation s (AMDs). The primary source of tracking data was NASA/ JPL's Deep Space Network (DSN); JPL also conducted a performance assessment of Indian Deep Space Network (IDSN) tracking data. Planning for the Mars Orbit Insertion (MOI) was complicated by a pressure regulator failure that created uncertainty regarding MOM's main engine and raised potential planetary protection issues. A successful main engine test late on approach resolved these issues; it was quickly followed by a successful MOI on 24-September - 2014 at 02:00 UTC. Less than a month later, Comet Siding Spring's Mars flyby necessitated plans to minimize potential spacecraft damage. At the time of this writing, MOM's orbital operations continue, and plans to extend JPL 's support are in progress. This paper covers the JPL 's support of MOM through the Comet Siding Spring event.
Goldstone Tracking the Echo Satelloon.
2016-10-27
This archival image was released as part of a gallery comparing JPL’s past and present, commemorating the 80th anniversary of NASA’s Jet Propulsion Laboratory on Oct. 31, 2016. This photograph shows the first pass of Echo 1, NASA's first communications satellite, over the Goldstone Tracking Station managed by NASA's Jet Propulsion Laboratory, in Pasadena, California, in the early morning of Aug. 12, 1960. The movement of the antenna, star trails (shorter streaks), and Echo 1 (the long streak in the middle) are visible in this image. Project Echo bounced radio signals off a 10-story-high, aluminum-coated balloon orbiting the Earth. This form of "passive" satellite communication -- which mission managers dubbed a "satelloon" -- was an idea conceived by an engineer from NASA's Langley Research Center in Hampton, Virginia, and was a project managed by NASA's Goddard Space Flight Center in Greenbelt, Maryland. JPL's role involved sending and receiving signals through two of its 85-foot-diameter (26-meter-diameter) antennas at the Goldstone Tracking Station in California's Mojave Desert. The Goldstone station later became part of NASA's Deep Space Network. JPL, a division of Caltech in Pasadena, California, manages the Deep Space Network for NASA. http://photojournal.jpl.nasa.gov/catalog/PIA21114
Role of TDRSS in tracking and data acquisition
NASA Technical Reports Server (NTRS)
Spearing, R. E.
1980-01-01
The integration and operation of the Tracking Data Relay Satellite System (TDRSS) into the NASA Communications Network (NASCOM) equipment and services is described. The system concept employs spacecraft in geosynchronous orbit, operating as communications front-ends, and a single ground terminal, which provides primary tracking and data acquisition services for earth-orbiting user satellites and for the Space Shuttle. The TDRSS system is further characterized by real-time throughput of user data and a high degree of automation.
Report of the panel on international programs
NASA Technical Reports Server (NTRS)
Anderson, Allen Joel; Fuchs, Karl W.; Ganeka, Yasuhiro; Gaur, Vinod; Green, Andrew A.; Siegfried, W.; Lambert, Anthony; Rais, Jacub; Reighber, Christopher; Seeger, Herman
1991-01-01
The panel recommends that NASA participate and take an active role in the continuous monitoring of existing regional networks, the realization of high resolution geopotential and topographic missions, the establishment of interconnection of the reference frames as defined by different space techniques, the development and implementation of automation for all ground-to-space observing systems, calibration and validation experiments for measuring techniques and data, the establishment of international space-based networks for real-time transmission of high density space data in standardized formats, tracking and support for non-NASA missions, and the extension of state-of-the art observing and analysis techniques to developing nations.
E55_Inflight_IndyStar_Off_Track_2018_0517_1330_654170
2018-05-21
SPACE STATION CREW DISCUSSES AUTO RACING FROM ORBIT------- Aboard the International Space Station, Expedition 55 NASA Flight Engineers Drew Feustel and Scott Tingle discussed their thoughts on the upcoming Indianapolis “500” auto race during in-flight interviews May 17 with the USA Today Network and the “Off Track with Hinch and Rossi” podcast. Feustel, in particular, is an enormous auto racing aficionado. The crew plans to have the televised May 27 race uplinked to them on orbit during an off-duty day.
NASA Astrophysics Data System (ADS)
Mao, D.; Torrence, M. H.; Mazarico, E.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.
2016-12-01
LRO has been in a polar lunar orbit for 7 year since it was launched in June 2009. Seven instruments are onboard LRO to perform a global and detailed geophysical, geological and geochemical mapping of the Moon, some of which have very high spatial resolution. To take full advantage of the high resolution LRO datasets from these instruments, the spacecraft orbit must be reconstructed precisely. The baseline LRO tracking was the NASA's White Sands station in New Mexico and a commercial network, the Universal Space Network (USN), providing up to 20 hours per day of almost continuous S-band radio frequency link to LRO. The USN stations produce S-band range data with a 0.4 m precision and Doppler data with a 0.8 mm/s precision. Using the S-band tracking data together with the high-resolution gravity field model from the GRAIL mission, definitive LRO orbit solutions are obtained with an accuracy of 10 m in total position and 0.5 m radially. Confirmed by the 0.50-m high-resolution NAC images from the LROC team, these orbits well represent the LRO orbit "truth". In addition to the S-band data, one-way Laser Ranging (LR) to LRO provides a unique LRO optical tracking dataset over 5 years, from June 2009 to September 2014. Ten international satellite laser ranging stations contributed over 4000 hours LR data with the 0.05 - 0.10 m normal point precision. Another set of high precision LRO tracking data is provided by the Deep Space Network (DSN), which produces radiometric tracking data more precise than the USN S-band data. In the last two years of the LRO mission, the temporal coverage of the USN data has decreased significantly. We show that LR and DSN data can be a good supplement to the baseline tracking data for the orbit reconstruction.
Coping with data from Space Station Freedom
NASA Technical Reports Server (NTRS)
Johnson, Marjory J.
1991-01-01
The volume of data from future NASA space missions will be phenomenal. Here, we examine the expected data flow from the Space Station Freedom and describe techniques that are being developed to transport and process that data. Networking in space, the Tracking and Data Relay Satellite System (TDRSS), recommendations of the Consultative Committee for Space Data systems (CCSDS), NASA institutional ground support, communications system architecture, and principal data types and formats are discussed.
Deep space network resource scheduling approach and application
NASA Technical Reports Server (NTRS)
Eggemeyer, William C.; Bowling, Alan
1987-01-01
Deep Space Network (DSN) resource scheduling is the process of distributing ground-based facilities to track multiple spacecraft. The Jet Propulsion Laboratory has carried out extensive research to find ways of automating this process in an effort to reduce time and manpower costs. This paper presents a resource-scheduling system entitled PLAN-IT with a description of its design philosophy. The PLAN-IT's current on-line usage and limitations in scheduling the resources of the DSN are discussed, along with potential enhancements for DSN application.
Relocation of the Deep Space Network Maintenance Center
NASA Technical Reports Server (NTRS)
Beutler, K. F.
1981-01-01
The Jet Propulsion Laboratory maintains a Deep Space Network (DSN) maintenance center (DMC), whose task is to engineer and manage the repair and calibration program for the electronic and mechanical equipment used in the tracking stations located at Madrid, Spain, and Canberra, Australia. The DMC also manages the Goldstone complex maintenance facility (GCMF), whose task is to repair and calibrate the Goldstone electronic and mechanical equipment. The rationale for moving the facility to Barstow, California, and the benefits derived from the move are discussed.
Utilization of the Deep Space Atomic Clock for Europa Gravitational Tide Recovery
NASA Technical Reports Server (NTRS)
Seubert, Jill; Ely, Todd
2015-01-01
Estimation of Europa's gravitational tide can provide strong evidence of the existence of a subsurface liquid ocean. Due to limited close approach tracking data, a Europa flyby mission suffers strong coupling between the gravity solution quality and tracking data quantity and quality. This work explores utilizing Low Gain Antennas with the Deep Space Atomic Clock (DSAC) to provide abundant high accuracy uplink-only radiometric tracking data. DSAC's performance, expected to exhibit an Allan Deviation of less than 3e-15 at one day, provides long-term stability and accuracy on par with the Deep Space Network ground clocks, enabling one-way radiometric tracking data with accuracy equivalent to that of its two-way counterpart. The feasibility of uplink-only Doppler tracking via the coupling of LGAs and DSAC and the expected Doppler data quality are presented. Violations of the Kalman filter's linearization assumptions when state perturbations are included in the flyby analysis results in poor determination of the Europa gravitational tide parameters. B-plane targeting constraints are statistically determined, and a solution to the linearization issues via pre-flyby approach orbit determination is proposed and demonstrated.
Towards smart mobility in urban spaces: Bus tracking and information application
NASA Astrophysics Data System (ADS)
Yue, Wong Seng; Chye, Koh Keng; Hoy, Cheong Wan
2017-10-01
Smart city can be defined as an urban space with complete and advanced infrastructure, intelligent networks and platforms, with millions of sensors among which people themselves and their mobile devices. Urban mobility is one of the global smart city project which offers traffic management in real-time, management of passenger transport means, tracking applications and logistics, car sharing services, car park management and more smart mobility services. Due to the frustrated waiting time for the arrival of buses and the difficulty of accessing shuttle bus-related information in a one-stop centre, bus tracking and information application (BTA) is one the proposed solutions to solve the traffic problems in urban spaces. This paper is aimed to design and develop a bus tracking and information application in a selected city in Selangor state, Malaysia. Next, this application also provides an alternative to design public transport tracking and information application for the urban places in Malaysia. Furthermore, the application also provides a smart solution for the management of public infrastructures and urban facilities in Malaysia in future.
NASA Technical Reports Server (NTRS)
Barnum, P. W.; Renzetti, N. A.; Textor, G. P.; Kelly, L. B.
1973-01-01
The Tracking and Data System (TDS) Support for the Mariner Mars 1971 Mission final report contains the deep space tracking and data acquisition activities in support of orbital operations. During this period a major NASA objective was accomplished: completion of the 180th revolution and 90th day of data gathering with the spacecraft about the planet Mars. Included are presentations of the TDS flight support pass chronology data for each of the Deep Space Stations used, and performance evaluation for the Deep Space Network Telemetry, Tracking, Command, and Monitor Systems. With the loss of Mariner 8 at launch, Mariner 9 assumed the mission plan of Mariner 8, which included the TV mapping cycles and a 12-hr orbital period. The mission plan was modified as a result of a severe dust storm on the surface of Mars, which delayed the start of the TV mapping cycles. Thus, the end of primary mission date was extended to complete the TV mapping cycles.
NASDA knowledge-based network planning system
NASA Technical Reports Server (NTRS)
Yamaya, K.; Fujiwara, M.; Kosugi, S.; Yambe, M.; Ohmori, M.
1993-01-01
One of the SODS (space operation and data system) sub-systems, NP (network planning) was the first expert system used by NASDA (national space development agency of Japan) for tracking and control of satellite. The major responsibilities of the NP system are: first, the allocation of network and satellite control resources and, second, the generation of the network operation plan data (NOP) used in automated control of the stations and control center facilities. Up to now, the first task of network resource scheduling was done by network operators. NP system automatically generates schedules using its knowledge base, which contains information on satellite orbits, station availability, which computer is dedicated to which satellite, and how many stations must be available for a particular satellite pass or a certain time period. The NP system is introduced.
A review of satellite time-transfer technology: Accomplishments and future applications
NASA Technical Reports Server (NTRS)
Cooper, R. S.; Chi, A. R.
1978-01-01
The research accomplishments by NASA in meeting the needs of the space program for precise time in satellite tracking are presented. As a major user of precise time signals for clock synchronization of NASA's worldwide satellite tracking networks, the agency provides much of the necessary impetus for the development of stable frequency sources and time synchronization technology. The precision time required for both satellite tracking and space science experiments has increased at a rate of about one order of magnitude per decade from 1 millisecond in the 1950's to 100 microseconds during the Apollo era in the 1960's to 10 microseconds in the 1970's. For the Tracking and Data Relay Satellite System, satellite timing requirements will be extended to 1 microsecond and below. These requirements are needed for spacecraft autonomy and data packeting.
NASA Technical Reports Server (NTRS)
Clements, P. A.; Borutzki, S. E.; Kirk, A.
1984-01-01
The Deep Space Network (DSN), managed by the Jet Propulsion Laboratory for NASA, must maintain time and frequency within specified limits in order to accurately track the spacecraft engaged in deep space exploration. Various methods are used to coordinate the clocks among the three tracking complexes. These methods include Loran-C, TV Line 10, Very Long Baseline Interferometry (VLBI), and the Global Positioning System (GPS). Calculations are made to obtain frequency offsets and Allan variances. These data are analyzed and used to monitor the performance of the hydrogen masers that provide the reference frequencies for the DSN Frequency and Timing System (DFT). Areas of discussion are: (1) a brief history of the GPS timing receivers in the DSN, (2) a description of the data and information flow, (3) data on the performance of the DSN master clocks and GPS measurement system, and (4) a description of hydrogen maser frequency steering using these data.
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Posner, E. C. (Editor)
1992-01-01
Archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA) are provided. In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, in supporting research and technology, in implementation, and in operations. Also included is standards activity at JPL for space data and information. In the search for extraterrestrial intelligence (SETI), the TDA Progress Report reports on implementation and operations for searching the microwave spectrum. Topics covered include tracking and ground-based navigation; communications, spacecraft-ground; station control and system technology; capabilities for new projects; network upgrade and sustaining; network operations and operations support; and TDA program management and analysis.
NASA Technical Reports Server (NTRS)
Foster, R.; Schlutsmeyer, A.
1997-01-01
A new technology that can lower the cost of mission operations on future spacecraft will be tested on the NASA New Millennium Deep Space 1 (DS-1) Mission. This technology, the Beacon Monitor Experiment (BMOX), can be used to reduce the Deep Space Network (DSN) tracking time and its associated costs on future missions.
Space Communication and Navigation Testbed Communications Technology for Exploration
NASA Technical Reports Server (NTRS)
Reinhart, Richard
2013-01-01
NASA developed and launched an experimental flight payload (referred to as the Space Communication and Navigation Test Bed) to investigate software defined radio, networking, and navigation technologies, operationally in the space environment. The payload consists of three software defined radios each compliant to NASAs Space Telecommunications Radio System Architecture, a common software interface description standard for software defined radios. The software defined radios are new technology developed by NASA and industry partners. The payload is externally mounted to the International Space Station truss and available to NASA, industry, and university partners to conduct experiments representative of future mission capability. Experiment operations include in-flight reconfiguration of the SDR waveform functions and payload networking software. The flight system communicates with NASAs orbiting satellite relay network, the Tracking, Data Relay Satellite System at both S-band and Ka-band and to any Earth-based compatible S-band ground station.
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Posner, E. C. (Editor)
1986-01-01
This publication, one of a series formerly titled The Deep Space Network (DSN) Progress Report, documents DSN progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations. In addition, developments in Earth-based radio technology as applied to geodynamics, astrophysics, and the radio search for extraterrestrial intelligence are reported.
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Posner, E. C. (Editor)
1988-01-01
This publication, one of a series formerly titled The Deep Space Network Progress Report, documents DSN progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations. In addition, developments in earth-based radio technology as applied to geodynamics, astrophysics, and the radio search for extraterrestrial intelligence are reported.
The Deep Space Atomic Clock Mission
NASA Technical Reports Server (NTRS)
Ely, Todd A.; Koch, Timothy; Kuang, Da; Lee, Karen; Murphy, David; Prestage, John; Tjoelker, Robert; Seubert, Jill
2012-01-01
The Deep Space Atomic Clock (DSAC) mission will demonstrate the space flight performance of a small, low-mass, high-stability mercury-ion atomic clock with long term stability and accuracy on par with that of the Deep Space Network. The timing stability introduced by DSAC allows for a 1-Way radiometric tracking paradigm for deep space navigation, with benefits including increased tracking via utilization of the DSN's Multiple Spacecraft Per Aperture (MSPA) capability and full ground station-spacecraft view periods, more accurate radio occultation signals, decreased single-frequency measurement noise, and the possibility for fully autonomous on-board navigation. Specific examples of navigation and radio science benefits to deep space missions are highlighted through simulations of Mars orbiter and Europa flyby missions. Additionally, this paper provides an overview of the mercury-ion trap technology behind DSAC, details of and options for the upcoming 2015/2016 space demonstration, and expected on-orbit clock performance.
NASA Technical Reports Server (NTRS)
Siegmeth, A. J.; Purdue, R. E.; Ryan, R. E.
1973-01-01
The tracking and data system support of the launch, near-earth, and deep space phases of the Pioneer 10 mission, which sent a Pioneer spacecraft into a flyby of Jupiter that would eventually allow the spacecraft to escape the solar system is discussed. The support through the spacecraft's second trajectory correction is reported. During this period, scientific instruments aboard the spacecraft registered information relative to interplanetary particles and fields, and radiometric data generated by the network continued to improve knowledge of the celestial mechanics of the solar system. In addition to network support activity detail, network performance and special support activities are covered.
Networks consolidation program: Maintenance and Operations (M&O) staffing estimates
NASA Technical Reports Server (NTRS)
Goodwin, J. P.
1981-01-01
The Mark IV-A consolidate deep space and high elliptical Earth orbiter (HEEO) missions tracking and implements centralized control and monitoring at the deep space communications complexes (DSCC). One of the objectives of the network design is to reduce maintenance and operations (M&O) costs. To determine if the system design meets this objective an M&O staffing model for Goldstone was developed which was used to estimate the staffing levels required to support the Mark IV-A configuration. The study was performed for the Goldstone complex and the program office translated these estimates for the overseas complexes to derive the network estimates.
The telecommunications and data acquisition
NASA Technical Reports Server (NTRS)
Renzetti, N. A. (Editor)
1980-01-01
Radio astronomy and radio interferometry at microwave frequencies are discussed. Other topics concerning the Deep Space Network include program planning, planetary and interplanetary mission support, tracking and ground based navigation, communications, and station control and system technology.
Navigation Architecture For A Space Mobile Network
NASA Technical Reports Server (NTRS)
Valdez, Jennifer E.; Ashman, Benjamin; Gramling, Cheryl; Heckler, Gregory W.; Carpenter, Russell
2016-01-01
The Tracking and Data Relay Satellite System (TDRSS) Augmentation Service for Satellites (TASS) is a proposed beacon service to provide a global, space-based GPS augmentation service based on the NASA Global Differential GPS (GDGPS) System. The TASS signal will be tied to the GPS time system and usable as an additional ranging and Doppler radiometric source. Additionally, it will provide data vital to autonomous navigation in the near Earth regime, including space weather information, TDRS ephemerides, Earth Orientation Parameters (EOP), and forward commanding capability. TASS benefits include enhancing situational awareness, enabling increased autonomy, and providing near real-time command access for user platforms. As NASA Headquarters Space Communication and Navigation Office (SCaN) begins to move away from a centralized network architecture and towards a Space Mobile Network (SMN) that allows for user initiated services, autonomous navigation will be a key part of such a system. This paper explores how a TASS beacon service enables the Space Mobile Networking paradigm, what a typical user platform would require, and provides an in-depth analysis of several navigation scenarios and operations concepts.
NASA Technical Reports Server (NTRS)
Schaire, Scott H.; Altunc, Serhat; Bussey, George; Shaw, Harry; Horne, Bill; Schier, Jim
2015-01-01
There has been a historical trend to increase capability and drive down the Size, Weight and Power (SWAP) of satellites and that trend continues today. Small satellites, including systems conforming to the CubeSat specification, because of their low launch and development costs, are enabling new concepts and capabilities for science investigations across multiple fields of interest to NASA. NASA scientists and engineers across many of NASAs Mission Directorates and Centers are developing exciting CubeSat concepts and welcome potential partnerships for CubeSat endeavors. From a communications and tracking point of view, small satellites including CubeSats are a challenge to coordinate because of existing small spacecraft constraints, such as limited SWAP and attitude control, low power, and the potential for high numbers of operational spacecraft. The NASA Space Communications and Navigation (SCaN) Programs Near Earth Network (NEN), Deep Space Network (DSN) and the Space Network (SN) are customer driven organizations that provide comprehensive communications services for space assets including data transport between a missions orbiting satellite and its Mission Operations Center (MOC). The NASA NEN consists of multiple ground antennas. The SN consists of a constellation of geosynchronous (Earth orbiting) relay satellites, named the Tracking and Data Relay Satellite System (TDRSS). The DSN currently makes available 13 antennas at its three tracking stations located around the world for interplanetary communication. The presentation will analyze how well these space communication networks are positioned to support the emerging small satellite and CubeSat market. Recognizing the potential support, the presentation will review the basic capabilities of the NEN, DSN and SN in the context of small satellites and will present information about NEN, DSN and SN-compatible flight radios and antenna development activities at the Goddard Space Flight Center (GSFC) and across industry. The presentation will review concepts on how the SN multiple access capability could help locate CubeSats and provide a low-latency early warning system. The presentation will also present how the DSN is evolving to maximize use of its assets for interplanetary CubeSats. The critical spectrum-related topics of available and appropriate frequency bands, licensing, and coordination will be reviewed. Other key considerations, such as standardization of radio frequency interfaces and flight and ground communications hardware systems, will be addressed as such standardization may reduce the amount of time and cost required to obtain frequency authorization and perform compatibility and end-to-end testing. Examples of standardization that exist today are the NASA NEN, DSN and SN systems which have published users guides and defined frequency bands for high data rate communication, as well as conformance to CCSDS standards. The workshop session will also seek input from the workshop participants to better understand the needs of small satellite systems and to identify key development activities and operational approaches necessary to enhance communication and navigation support using NASA's NEN, DSN and SN.
Association, roost use and simulated disruption of Myotis septentrionalis maternity colonies
Silvis, Alexander; Ford, W. Mark; Britzke, Eric R.; Johnson, Joshua B.
2014-01-01
How wildlife social and resource networks are distributed on the landscape and how animals respond to resource loss are important aspects of behavioral ecology. For bats, understanding these responses may improve conservation efforts and provide insights into adaptations to environmental conditions. We tracked maternity colonies of northern bats (Myotis septentrionalis) at Fort Knox, Kentucky, USA to evaluate their social and resource networks and space use. Roost and social network structure differed between maternity colonies. Overall roost availability did not appear to be strongly related to network characteristics or space use. In simulations for our two largest networks, roost removal was related linearly to network fragmentation; despite this, networks were relatively robust, requiring removal of >20% of roosts to cause network fragmentation. Results from our analyses indicate that northern bat behavior and space use may differ among colonies and potentially across the maternity season. Simulation results suggest that colony social structure is robust to fragmentation caused by random loss of small numbers of roosts. Flexible social dynamics and tolerance of roost loss may be adaptive strategies for coping with ephemeral conditions in dynamic forest habitats.
Gravitational wave searches using the DSN (Deep Space Network)
NASA Technical Reports Server (NTRS)
Nelson, S. J.; Armstrong, J. W.
1988-01-01
The Deep Space Network Doppler spacecraft link is currently the only method available for broadband gravitational wave searches in the 0.01 to 0.001 Hz frequency range. The DSN's role in the worldwide search for gravitational waves is described by first summarizing from the literature current theoretical estimates of gravitational wave strengths and time scales from various astrophysical sources. Current and future detection schemes for ground based and space based detectors are then discussed. Past, present, and future planned or proposed gravitational wave experiments using DSN Doppler tracking are described. Lastly, some major technical challenges to improve gravitational wave sensitivities using the DSN are discussed.
NASA deep space network operations planning and preparation
NASA Technical Reports Server (NTRS)
Jensen, W. N.
1982-01-01
The responsibilities and structural organization of the Operations Planning Group of NASA Deep Space Network (DSN) Operations are outlined. The Operations Planning group establishes an early interface with a user's planning organization to educate the user on DSN capabilities and limitations for deep space tracking support. A team of one or two individuals works through all phases of the spacecraft launch and also provides planning and preparation for specific events such as planetary encounters. Coordinating interface is also provided for nonflight projects such as radio astronomy and VLBI experiments. The group is divided into a Long Range Support Planning element and a Near Term Operations Coordination element.
TDRS-L Pre-Launch Press Conference
2014-01-21
CAPE CANAVERAL, Fla. – During a news conference at NASA's Kennedy Space Center in Florida, agency and contractor officials discussed preparations for the launch of NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft. Participants included Andy Kopito, Civil Space Programs director for Boeing Space & Intelligence Systems in El Segundo, Calif. The TDRS-L spacecraft is the second of three new satellites designed to ensure vital operational continuity for NASA by expanding the lifespan of the Tracking and Data Relay Satellite System TDRSS fleet, which consists of eight satellites in geosynchronous orbit. The spacecraft provide tracking, telemetry, command and high bandwidth data return services for numerous science and human exploration missions orbiting Earth. These include NASA's Hubble Space Telescope and the International Space Station. TDRS-L has a high-performance solar panel designed for more spacecraft power to meet the growing S-band communications requirements. TDRSS is one of NASA Space Communication and Navigation’s SCaN three networks providing space communications to NASA’s missions. For more information more about TDRS-L, visit: http://www.nasa.gov/tdrs To learn more about SCaN, visit: www.nasa.gov/scan Photo credit: NASA/Frankie Martin
NASA Technical Reports Server (NTRS)
Wang, Yeou-Fang; Baldwin, John
2007-01-01
TIGRAS is client-side software, which provides tracking-station equipment planning, allocation, and scheduling services to the DSMS (Deep Space Mission System). TIGRAS provides functions for schedulers to coordinate the DSN (Deep Space Network) antenna usage time and to resolve the resource usage conflicts among tracking passes, antenna calibrations, maintenance, and system testing activities. TIGRAS provides a fully integrated multi-pane graphical user interface for all scheduling operations. This is a great improvement over the legacy VAX VMS command line user interface. TIGRAS has the capability to handle all DSN resource scheduling aspects from long-range to real time. TIGRAS assists NASA mission operations for DSN tracking of station equipment resource request processes from long-range load forecasts (ten years or longer), to midrange, short-range, and real-time (less than one week) emergency tracking plan changes. TIGRAS can be operated by NASA mission operations worldwide to make schedule requests for the DSN station equipment.
A review of satellite time transfer technology - Accomplishments and future applications
NASA Technical Reports Server (NTRS)
Cooper, R. S.; Chi, A. R.
1979-01-01
A brief review of the research accomplishments by NASA in meeting the needs of the space program for precise time in satellite tracking is presented. As a major user of precise time signals for clock synchronization of NASA's worldwide satellite tracking networks, the agency provided much of the necessary impetus for the development of stable frequency sources and time synchronization technology. The precision in time required for both satellite tracking and space science experiments has increased at a rate of about 1 order of magnitude per decade from 1 ms in the 1950's to 100 microsec during the Apollo era in the 1960's to 10 microsec in the 1970's. In the 1980's, when the Tracking and Data Relay Satellite System (TDRSS) comes into operation, satellite timing requirements will be extended to 1 microsec and below. These requirements are needed for spacecraft autonomy and data packeting which are now in active planning stages.
NASA Technical Reports Server (NTRS)
Goodwin, P. S.; Traxler, M. R.; Meeks, W. G.; Flanagan, F. M.
1977-01-01
Deep Space Network activities in the development of the Helios B mission from planning through entry of Helios 2 into first superior conjunction (end of Mission Phase II) are summarized. Network operational support activities for Helios 1 from first superior conjunction through entry into third superior conjunction are included.
Deep Space Network capabilities for receiving weak probe signals
NASA Technical Reports Server (NTRS)
Asmar, Sami; Johnston, Doug; Preston, Robert
2004-01-01
This paper will describe the capability and highlight the cases of the critical communications for the Mars rovers and Saturn Orbit Insertion and preparation radio tracking of the Huygens probe at (non-DSN) radio telescopes.
NASA Technical Reports Server (NTRS)
Benjamin, Norman M.; Gill, Tepper; Charles, Mary
1994-01-01
The network control center (NCC) provides scheduling, monitoring, and control of services to the NASA space network. The space network provides tracking and data acquisition services to many low-earth orbiting spacecraft. This report describes the second phase in the development of simulation models for the FCC. Phase one concentrated on the computer systems and interconnecting network.Phase two focuses on the implementation of the network message dialogs and the resources controlled by the NCC. Performance measures were developed along with selected indicators of the NCC's operational effectiveness.The NCC performance indicators were defined in terms of the following: (1) transfer rate, (2) network delay, (3) channel establishment time, (4) line turn around time, (5) availability, (6) reliability, (7) accuracy, (8) maintainability, and (9) security. An NCC internal and external message manual is appended to this report.
Time synchronization of NASA tracking stations via LORAN-C
NASA Technical Reports Server (NTRS)
Mazur, W. E., Jr.
1973-01-01
A report is presented of the results observed in comparison between LORAN-C and accurate portable clocks carried to the stations of NASA's world-wide space tracking and data network. It is believed that such information can provide a meaningful determination of the accuracy of the LORAN-C technique. The investigation shows the need for the employment of portable clocks during, or shortly after the installation of LORAN-C receivers.
Applications of inertial-sensor high-inheritance instruments to DSN precision antenna pointing
NASA Technical Reports Server (NTRS)
Goddard, R. E.
1992-01-01
Laboratory test results of the initialization and tracking performance of an existing inertial-sensor-based instrument are given. The instrument, although not primarily designed for precision antenna pointing applications, demonstrated an on-average 10-hour tracking error of several millidegrees. The system-level instrument performance is shown by analysis to be sensor limited. Simulated instrument improvements show a tracking error of less than 1 mdeg, which would provide acceptable performance, i.e., low pointing loss, for the Deep Space Network 70-m antenna subnetwork, operating at Ka-band (1-cm wavelength).
New approaches for tracking earth orbiters using modified GPS ground receivers
NASA Technical Reports Server (NTRS)
Lichten, S. M.; Young, L. E.; Nandi, S.; Haines, B. J.; Dunn, C. E.; Edwards, C. D.
1993-01-01
A Global Positioning System (GPS) flight receiver provides a means to precisely determine orbits for satellites in low to moderate altitude orbits. Above a 5000-km altitude, however, relatively few GPS satellites are visible. New approaches to orbit determination for satellites at higher altitudes could reduce DSN antenna time needed to provide navigation and orbit determination support to future missions. Modification of GPS ground receivers enables a beacon from the orbiter to be tracked simultaneously with GPS data. The orbit accuracy expected from this GPS-like tracking (GLT) technique is expected to be in the range of a few meters or better for altitudes up to 100,000 km with a global ground network. For geosynchronous satellites, however, there are unique challenges due to geometrical limitations and to the lack of strong dynamical signature in tracking data. We examine two approaches for tracking the Tracking and Data Relay Satellite System (TDRSS) geostationary orbiters. One uses GLT with a global network; the other relies on a small 'connected element' ground network with a distributed clock for short-baseline differential carrier phase (SB Delta Phi). We describe an experiment planned for late 1993, which will combine aspects of both GLT and SB Delta Phi, to demonstrate a new approach for tracking the Tracking and Data Relay Satellites (TDRSs) that offers a number of operationally convenient and attractive features. The TDRS demonstration will be in effect a proof-of-concept experiment for a new approach to tracking spacecraft which could be applied more generally to deep-space as well as near-Earth regimes.
Operation's Concept for Array-Based Deep Space Network
NASA Technical Reports Server (NTRS)
Bagri, Durgadas S.; Statman, Joseph I.; Gatti, Mark S.
2005-01-01
The Array-based Deep Space Network (DSNArray) will be a part of more than 10(exp 3) times increase in the downlink/telemetry capability of the Deep space Network (DSN). The key function of the DSN-Array is to provide cost-effective, robust Telemetry, Tracking and Command (TT&C) services to the space missions of NASA and its international partners. It provides an expanded approach to the use of an array-based system. Instead of using the array as an element in the existing DSN, relying to a large extent on the DSN infrastructure, we explore a broader departure from the current DSN, using fewer elements of the existing DSN, and establishing a more modern Concept of Operations. This paper gives architecture of DSN-Array and its operation's philosophy. It also describes customer's view of operations, operations management and logistics - including maintenance philosophy, anomaly analysis and reporting.
NASA Near Earth Network (NEN) and Space Network (SN) CubeSat Communications
NASA Technical Reports Server (NTRS)
Schaire, Scott H.; Shaw, Harry; Altunc, Serhat; Bussey, George; Celeste, Peter; Kegege, Obadiah; Wong, Yen; Zhang, Yuwen; Patel, Chitra; Raphael, David;
2016-01-01
There has been a recent trend to increase capability and drive down the Size, Weight and Power (SWAP) of satellites. NASA scientists and engineers across many of NASA's Mission Directorates and Centers are developing exciting CubeSat concepts and welcome potential partnerships for CubeSat endeavors. From a "Telemetry, Tracking and Command (TT&C) Systems and Flight Operations for Small Satellites" point of view, small satellites including CubeSats are a challenge to coordinate because of existing small spacecraft constraints, such as limited SWAP and attitude control, and the potential for high numbers of operational spacecraft. The NASA Space Communications and Navigation (SCaN) Program's Near Earth Network (NEN) and Space Network (SN) are customer driven organizations that provide comprehensive communications services for space assets including data transport between a mission's orbiting satellite and its Mission Operations Center (MOC). This paper presents how well the SCaN networks, SN and NEN, are currently positioned to support the emerging small small satellite and CubeSat market as well as planned enhancements for future support.
NASA Near Earth Network (NEN) and Space Network (SN) Support of CubeSat Communications
NASA Technical Reports Server (NTRS)
Schaire, Scott H.; Shaw, Harry C.; Altunc, Serhat; Bussey, George; Celeste, Peter; Kegege, Obadiah; Wong, Yen; Zhang, Yuwen; Patel, Chitra; Raphael, David;
2016-01-01
There has been a historical trend to increase capability and drive down the Size, Weight and Power (SWAP) of satellites and that trend continues today. NASA scientists and engineers across many of NASAs Mission Directorates and Centers are developing exciting CubeSat concepts and welcome potential partnerships for CubeSat endeavors. From a Telemetry, Tracking and Command (TTC) Systems and Flight Operations for Small Satellites point of view, small satellites including CubeSats are a challenge to coordinate because of existing small spacecraft constraints, such as limited SWAP and attitude control, and the potential for high numbers of operational spacecraft. The NASA Space Communications and Navigation (SCaN) Programs Near Earth Network (NEN) and Space Network (SN) are customer driven organizations that provide comprehensive communications services for space assets including data transport between a missions orbiting satellite and its Mission Operations Center (MOC). This paper presents how well the SCaN networks, SN and NEN, are currently positioned to support the emerging small small satellite and CubeSat market as well as planned enhancements for future support.
In-Space Networking on NASA's SCAN Testbed
NASA Technical Reports Server (NTRS)
Brooks, David E.; Eddy, Wesley M.; Clark, Gilbert J.; Johnson, Sandra K.
2016-01-01
The NASA Space Communications and Navigation (SCaN) Testbed, an external payload onboard the International Space Station, is equipped with three software defined radios and a flight computer for supporting in-space communication research. New technologies being studied using the SCaN Testbed include advanced networking, coding, and modulation protocols designed to support the transition of NASAs mission systems from primarily point to point data links and preplanned routes towards adaptive, autonomous internetworked operations needed to meet future mission objectives. Networking protocols implemented on the SCaN Testbed include the Advanced Orbiting Systems (AOS) link-layer protocol, Consultative Committee for Space Data Systems (CCSDS) Encapsulation Packets, Internet Protocol (IP), Space Link Extension (SLE), CCSDS File Delivery Protocol (CFDP), and Delay-Tolerant Networking (DTN) protocols including the Bundle Protocol (BP) and Licklider Transmission Protocol (LTP). The SCaN Testbed end-to-end system provides three S-band data links and one Ka-band data link to exchange space and ground data through NASAs Tracking Data Relay Satellite System or a direct-to-ground link to ground stations. The multiple data links and nodes provide several upgradable elements on both the space and ground systems. This paper will provide a general description of the testbeds system design and capabilities, discuss in detail the design and lessons learned in the implementation of the network protocols, and describe future plans for continuing research to meet the communication needs for evolving global space systems.
Growth in the Number of SSN Tracked Orbital Objects
NASA Technical Reports Server (NTRS)
Stansbery, Eugene G.
2004-01-01
The number of objects in earth orbit tracked by the US Space Surveillance Network (SSN) has experienced unprecedented growth since March, 2003. Approximately 2000 orbiting objects have been added to the "Analyst list" of tracked objects. This growth is primarily due to the resumption of full power/full time operation of the AN/FPS-108 Cobra Dane radar located on Shemya Island, AK. Cobra Dane is an L-band (23-cm wavelength) phased array radar which first became operational in 1977. Cobra Dane was a "Collateral Sensor" in the SSN until 1994 when its communication link with the Space Control Center (SCC) was closed. NASA and the Air Force conducted tests in 1999 using Cobra Dane to detect and track small debris. These tests confirmed that the radar was capable of detecting and maintaining orbits on objects as small as 5-cm diameter. Subsequently, Cobra Dane was reconnected to the SSN and resumed full power/full time space surveillance operations on March 4, 2003. This paper will examine the new data and its implications to the understanding of the orbital debris environment and orbital safety.
Performance of the all-digital data-transition tracking loop in the advanced receiver
NASA Astrophysics Data System (ADS)
Cheng, U.; Hinedi, S.
1989-11-01
The performance of the all-digital data-transition tracking loop (DTTL) with coherent or noncoherent sampling is described. The effects of few samples per symbol and of noncommensurate sampling rates and symbol rates are addressed and analyzed. Their impacts on the loop phase-error variance and the mean time to lose lock (MTLL) are quantified through computer simulations. The analysis and preliminary simulations indicate that with three to four samples per symbol, the DTTL can track with negligible jitter because of the presence of earth Doppler rate. Furthermore, the MTLL is also expected to be large engough to maintain lock over a Deep Space Network track.
Preliminary Concept of Operations for the Deep Space Array-Based Network
NASA Astrophysics Data System (ADS)
Bagri, D. S.; Statman, J. I.
2004-05-01
The Deep Space Array-Based Network (DSAN) will be an array-based system, part of a greater than 1000 times increase in the downlink/telemetry capability of the Deep Space Network. The key function of the DSAN is provision of cost-effective, robust telemetry, tracking, and command services to the space missions of NASA and its international partners. This article presents an expanded approach to the use of an array-based system. Instead of using the array as an element in the existing Deep Space Network (DSN), relying to a large extent on the DSN infrastructure, we explore a broader departure from the current DSN, using fewer elements of the existing DSN, and establishing a more modern concept of operations. For example, the DSAN will have a single 24 x 7 monitor and control (M&C) facility, while the DSN has four 24 x 7 M&C facilities. The article gives the architecture of the DSAN and its operations philosophy. It also briefly describes the customer's view of operations, operations management, logistics, anomaly analysis, and reporting.
Accuracy analysis of TDRSS demand forecasts
NASA Technical Reports Server (NTRS)
Stern, Daniel C.; Levine, Allen J.; Pitt, Karl J.
1994-01-01
This paper reviews Space Network (SN) demand forecasting experience over the past 16 years and describes methods used in the forecasts. The paper focuses on the Single Access (SA) service, the most sought-after resource in the Space Network. Of the ten years of actual demand data available, only the last five years (1989 to 1993) were considered predictive due to the extensive impact of the Challenger accident of 1986. NASA's Space Network provides tracking and communications services to user spacecraft such as the Shuttle and the Hubble Space Telescope. Forecasting the customer requirements is essential to planning network resources and to establishing service commitments to future customers. The lead time to procure Tracking and Data Relay Satellites (TDRS's) requires demand forecasts ten years in the future a planning horizon beyond the funding commitments for missions to be supported. The long range forecasts are shown to have had a bias toward underestimation in the 1991 -1992 period. The trend of underestimation can be expected to be replaced by overestimation for a number of years starting with 1998. At that time demand from new missions slated for launch will be larger than the demand from ongoing missions, making the potential for delay the dominant factor. If the new missions appear as scheduled, the forecasts are likely to be moderately underestimated. The SN commitment to meet the negotiated customer's requirements calls for conservatism in the forecasting. Modification of the forecasting procedure to account for a delay bias is, therefore, not advised. Fine tuning the mission model to more accurately reflect the current actual demand is recommended as it may marginally improve the first year forecasting.
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Posner, E. C. (Editor)
1991-01-01
This quarterly reports on space communications, radio navigation, radio science, and ground based radio and radar astronomy in connection with the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and in operations. Also included is standards activity at JPL for space data and information systems and DSN work. Specific areas of research are: Tracking and ground based navigation; Spacecraft and ground communications; Station control and system technology; DSN Systems Implementation; and DSN Operations.
TDRS-L Spacecraft Transported from Astrotech to SLC
2014-01-13
CAPE CANAVERAL, Fla. – Encapsulated in its payload fairing, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft is transported along the Saturn Causeway at the Kennedy Space Center on its way to Launch Complex 41 at Cape Canaveral Air Force Station. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html Photo credit: NASA/Dimitri Gerondidakis
Deep space communication - A one billion mile noisy channel
NASA Technical Reports Server (NTRS)
Smith, J. G.
1982-01-01
Deep space exploration is concerned with the study of natural phenomena in the solar system with the aid of measurements made at spacecraft on deep space missions. Deep space communication refers to communication between earth and spacecraft in deep space. The Deep Space Network is an earth-based facility employed for deep space communication. It includes a network of large tracking antennas located at various positions around the earth. The goals and achievements of deep space exploration over the past 20 years are discussed along with the broad functional requirements of deep space missions. Attention is given to the differences in space loss between communication satellites and deep space vehicles, effects of the long round-trip light time on spacecraft autonomy, requirements for the use of massive nuclear power plants on spacecraft at large distances from the sun, and the kinds of scientific return provided by a deep space mission. Problems concerning a deep space link of one billion miles are also explored.
NASA Astrophysics Data System (ADS)
Deschenes, Sylvain; Sheng, Yunlong; Chevrette, Paul C.
1998-03-01
3D object classification from 2D IR images is shown. The wavelet transform is used for edge detection. Edge tracking is used for removing noise effectively int he wavelet transform. The invariant Fourier descriptor is used to describe the contour curves. Invariance under out-of-plane rotation is achieved by the feature space trajectory neural network working as a classifier.
Ubiquitous Indoor Geolocation: a Case Study of Jewellery Management System
NASA Astrophysics Data System (ADS)
Nikparvar, B.; Sadeghi-Niaraki, A.; Azari, P.
2014-10-01
Addressing and geolocation for indoor environments are important fields of research in the recent years. The problem of finding location of objects in indoor spaces is proposed to solve in two ways. The first, is to assign coordinates to objects and second is to divide space into cells and detect the presence or absence of objects in each cell to track them. In this paper the second approach is discussed by using Radio Frequency Identification technology to identify and track high value objects in jewellery retail industry. In Ubiquitous Sensor Networks, the reactivity or proactivity of the environment are important issues. Reactive environments wait for a request to response to it. Instead, in proactive spaces, the environment acts in advance to deal with an expected action. In this research, a geo-sensor network containing RFID readers, tags, and antennas which continuously exchange radio frequency signal streams is proposed to manage and monitor jewellery galleries ubiquitously. The system is also equipped with a GIS representation which provides a more user-friendly system to manage a jewellery gallery.
Predictive control and estimation algorithms for the NASA/JPL 70-meter antennas
NASA Technical Reports Server (NTRS)
Gawronski, W.
1991-01-01
A modified output prediction procedure and a new controller design is presented based on the predictive control law. Also, a new predictive estimator is developed to complement the controller and to enhance system performance. The predictive controller is designed and applied to the tracking control of the Deep Space Network 70 m antennas. Simulation results show significant improvement in tracking performance over the linear quadratic controller and estimator presently in use.
Space Communication and Navigation SDR Testbed, Overview and Opportunity for Experiments
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.
2013-01-01
NASA has developed an experimental flight payload (referred to as the Space Communication and Navigation (SCAN) Test Bed) to investigate software defined radio (SDR) communications, networking, and navigation technologies, operationally in the space environment. The payload consists of three software defined radios each compliant to NASAs Space Telecommunications Radio System Architecture, a common software interface description standard for software defined radios. The software defined radios are new technology developments underway by NASA and industry partners launched in 2012. The payload is externally mounted to the International Space Station truss to conduct experiments representative of future mission capability. Experiment operations include in-flight reconfiguration of the SDR waveform functions and payload networking software. The flight system will communicate with NASAs orbiting satellite relay network, the Tracking and Data Relay Satellite System at both S-band and Ka-band and to any Earth-based compatible S-band ground station. The system is available for experiments by industry, academia, and other government agencies to participate in the SDR technology assessments and standards advancements.
NASA Technical Reports Server (NTRS)
Mankins, J. C.
1982-01-01
A review of the Deep Space Network's (DSN) use of precision Doppler-tracking of deep space vehicles is presented. The review emphasizes operational and configurational aspects and considers: the projected configuration of the DSN's frequency and timing system; the environment within the DSN provided by the precision atomic standards within the frequency and timing system--both current and projected; and the general requirements placed on the DSN and the frequency and timing system for both the baseline and the nominal gravitational wave experiments. A comment is made concerning the current probability that such an experiment will be carried out in the foreseeable future.
NASA Technical Reports Server (NTRS)
Holmes, Dwight P.; Thompson, Tommy; Simpson, Richard; Tyler, G. Leonard; Dehant, Veronique; Rosenblatt, Pascal; Hausler, Bernd; Patzold, Martin; Goltz, Gene; Kahan, Daniel;
2008-01-01
Radio Science is an opportunistic discipline in the sense that the communication link between a spacecraft and its supporting ground station can be used to probe the intervening media remotely. Radio science has recently expanded to greater, cooperative use of international assets. Mars Express and Venus Express are two such cooperative missions managed by the European Space Agency with broad international science participation supported by NASA's Deep Space Network (DSN) and ESA's tracking network for deep space missions (ESTRAK). This paper provides an overview of the constraints, opportunities, and lessons learned from international cross support of radio science, and it explores techniques for potentially optimizing the resultant data sets.
Subnanosecond GPS-based clock synchronization and precision deep-space tracking
NASA Technical Reports Server (NTRS)
Dunn, C. E.; Lichten, S. M.; Jefferson, D. C.; Border, J. S.
1992-01-01
Interferometric spacecraft tracking is accomplished by the Deep Space Network (DSN) by comparing the arrival time of electromagnetic spacecraft signals at ground antennas separated by baselines on the order of 8000 km. Clock synchronization errors within and between DSN stations directly impact the attainable tracking accuracy, with a 0.3-nsec error in clock synchronization resulting in an 11-nrad angular position error. This level of synchronization is currently achieved by observing a quasar which is angularly close to the spacecraft just after the spacecraft observations. By determining the differential arrival times of the random quasar signal at the stations, clock offsets and propagation delays within the atmosphere and within the DSN stations are calibrated. Recent developments in time transfer techniques may allow medium accuracy (50-100 nrad) spacecraft tracking without near-simultaneous quasar-based calibrations. Solutions are presented for a worldwide network of Global Positioning System (GPS) receivers in which the formal errors for DSN clock offset parameters are less than 0.5 nsec. Comparisons of clock rate offsets derived from GPS measurements and from very long baseline interferometry (VLBI), as well as the examination of clock closure, suggest that these formal errors are a realistic measure of GPS-based clock offset precision and accuracy. Incorporating GPS-based clock synchronization measurements into a spacecraft differential ranging system would allow tracking without near-simultaneous quasar observations. The impact on individual spacecraft navigation-error sources due to elimination of quasar-based calibrations is presented. System implementation, including calibration of station electronic delays, is discussed.
The HEP.TrkX Project: deep neural networks for HL-LHC online and offline tracking
Farrell, Steven; Anderson, Dustin; Calafiura, Paolo; ...
2017-08-08
Particle track reconstruction in dense environments such as the detectors of the High Luminosity Large Hadron Collider (HL-LHC) is a challenging pattern recognition problem. Traditional tracking algorithms such as the combinatorial Kalman Filter have been used with great success in LHC experiments for years. However, these state-of-the-art techniques are inherently sequential and scale poorly with the expected increases in detector occupancy in the HL-LHC conditions. The HEP.TrkX project is a pilot project with the aim to identify and develop cross-experiment solutions based on machine learning algorithms for track reconstruction. Machine learning algorithms bring a lot of potential to this problemmore » thanks to their capability to model complex non-linear data dependencies, to learn effective representations of high-dimensional data through training, and to parallelize easily on high-throughput architectures such as GPUs. This contribution will describe our initial explorations into this relatively unexplored idea space. Furthermore, we will discuss the use of recurrent (LSTM) and convolutional neural networks to find and fit tracks in toy detector data.« less
The HEP.TrkX Project: deep neural networks for HL-LHC online and offline tracking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrell, Steven; Anderson, Dustin; Calafiura, Paolo
Particle track reconstruction in dense environments such as the detectors of the High Luminosity Large Hadron Collider (HL-LHC) is a challenging pattern recognition problem. Traditional tracking algorithms such as the combinatorial Kalman Filter have been used with great success in LHC experiments for years. However, these state-of-the-art techniques are inherently sequential and scale poorly with the expected increases in detector occupancy in the HL-LHC conditions. The HEP.TrkX project is a pilot project with the aim to identify and develop cross-experiment solutions based on machine learning algorithms for track reconstruction. Machine learning algorithms bring a lot of potential to this problemmore » thanks to their capability to model complex non-linear data dependencies, to learn effective representations of high-dimensional data through training, and to parallelize easily on high-throughput architectures such as GPUs. This contribution will describe our initial explorations into this relatively unexplored idea space. Furthermore, we will discuss the use of recurrent (LSTM) and convolutional neural networks to find and fit tracks in toy detector data.« less
The HEP.TrkX Project: deep neural networks for HL-LHC online and offline tracking
NASA Astrophysics Data System (ADS)
Farrell, Steven; Anderson, Dustin; Calafiura, Paolo; Cerati, Giuseppe; Gray, Lindsey; Kowalkowski, Jim; Mudigonda, Mayur; Prabhat; Spentzouris, Panagiotis; Spiropoulou, Maria; Tsaris, Aristeidis; Vlimant, Jean-Roch; Zheng, Stephan
2017-08-01
Particle track reconstruction in dense environments such as the detectors of the High Luminosity Large Hadron Collider (HL-LHC) is a challenging pattern recognition problem. Traditional tracking algorithms such as the combinatorial Kalman Filter have been used with great success in LHC experiments for years. However, these state-of-the-art techniques are inherently sequential and scale poorly with the expected increases in detector occupancy in the HL-LHC conditions. The HEP.TrkX project is a pilot project with the aim to identify and develop cross-experiment solutions based on machine learning algorithms for track reconstruction. Machine learning algorithms bring a lot of potential to this problem thanks to their capability to model complex non-linear data dependencies, to learn effective representations of high-dimensional data through training, and to parallelize easily on high-throughput architectures such as GPUs. This contribution will describe our initial explorations into this relatively unexplored idea space. We will discuss the use of recurrent (LSTM) and convolutional neural networks to find and fit tracks in toy detector data.
Array signal processing in the NASA Deep Space Network
NASA Technical Reports Server (NTRS)
Pham, Timothy T.; Jongeling, Andre P.
2004-01-01
In this paper, we will describe the benefits of arraying and past as well as expected future use of this application. The signal processing aspects of array system are described. Field measurements via actual tracking spacecraft are also presented.
NASA Astrophysics Data System (ADS)
Cheung, K.-M.; Abraham, D.; Arroyo, B.; Basilio, E.; Babuscia, A.; Duncan, C.; Lee, D.; Oudrhiri, K.; Pham, T.; Staehle, R.; Waldherr, S.; Welz, G.; Wyatt, J.; Lanucara, M.; Malphrus, B.; Bellardo, J.; Puig-Suari, J.; Corpino, S.
2015-08-01
As small spacecraft venture out of Earth orbit, they will encounter challenges not experienced or addressed by the numerous low Earth orbit (LEO) CubeSat and smallsat missions staged to date. The LEO CubeSats typically use low-cost, proven CubeSat radios, antennas, and university ground stations with small apertures. As more ambitious yet cost-constrained space mission concepts to the Moon and beyond are being developed, CubeSats and smallsats have the potential to provide a more affordable platform for exploring deep space and performing the associated science. Some of the challenges that have, so far, slowed the proliferation of small interplanetary spacecraft are those of communications and navigation. Unlike Earth-orbiting spacecraft that navigate via government services such as North American Aerospace Defense Command's (NORAD's) tracking elements or the Global Positioning Satellite (GPS) system, interplanetary spacecraft would have to operate in a fundamentally different manner that allows the deep-space communications link to provide both command/telemetry and the radiometric data needed for navigation. Another challenge occurs when smallsat and CubeSat missions would involve multiple spacecraft that require near-simultaneous communication and/or navigation, but have a very limited number of ground antenna assets, as well as available spectrum, to support their links. To address these challenges, the Jet Propulsion Laboratory (JPL) and the Deep Space Network (DSN) it operates for NASA are pursuing the following efforts: (1) Developing a CubeSat-compatible, DSN-compatible transponder -- Iris -- which a commercial vendor can then make available as a product line. (2) Developing CubeSat-compatible high-gain antennas -- deployable reflectors, reflectarrays, and inflatable antennas. (3) Streamlining access and utilization processes for DSN and related services such as the Advanced Multi-Mission Operations System (AMMOS). (4) Developing methodologies for tracking and operating multiple spacecraft simultaneously, including spectrum coordination. (5) Coordination and collaboration with non-DSN facilities. This article further describes the communications and tracking challenges facing interplanetary smallsats and CubeSats, and the next-generation ground network architecture being evolved to mitigate those challenges.
NASA Technical Reports Server (NTRS)
Clement, Bradley; Johnston, Mark; Wax, Allan; Chouinard, Caroline
2008-01-01
The DSN (Deep Space Network) Scheduling Engine targets all space missions that use DSN services. It allows clients to issue scheduling, conflict identification, conflict resolution, and status requests in XML over a Java Message Service interface. The scheduling requests may include new requirements that represent a set of tracks to be scheduled under some constraints. This program uses a heuristic local search to schedule a variety of schedule requirements, and is being infused into the Service Scheduling Assembly, a mixed-initiative scheduling application. The engine resolves conflicting schedules of resource allocation according to a range of existing and possible requirement specifications, including optional antennas; start of track and track duration ranges; periodic tracks; locks on track start, duration, and allocated antenna; MSPA (multiple spacecraft per aperture); arraying/VLBI (very long baseline interferometry)/delta DOR (differential one-way ranging); continuous tracks; segmented tracks; gap-to-track ratio; and override or block-out of requirements. The scheduling models now include conflict identification for SOA(start of activity), BOT (beginning of track), RFI (radio frequency interference), and equipment constraints. This software will search through all possible allocations while providing a best-effort solution at any time. The engine reschedules to accommodate individual emergency tracks in 0.2 second, and emergency antenna downtime in 0.2 second. The software handles doubling of one mission's track requests over one week (to 42 total) in 2.7 seconds. Further tests will be performed in the context of actual schedules.
Introduction and Progress of APOSOS Project
NASA Astrophysics Data System (ADS)
Zhao, You; Gao, P. Q.; Shen, Ming; Chaudhry, Maqbool A.; Guo, Xiaozhong; Teng, D. P.; Yang, Datao; Yu, Huanhuan; Zhao, Zhe
Asia-Pacific Ground-Based Optical Satellite Observation System (APOSOS) project is based on members of Asia-Pacific Space Cooperation Organization (APSCO). Its aim is to develop a regional or even global satellite tracking network basically composed of optical trackers. The system will be used to track objects of interest or space-debris for the safety of spacecraft launch mission or the intactness of operational satellites. The system will benefit from the distribution of APSCO members and multi-national fund support or technical cooperation. Thus APOSOS will have a potential capability to observe all the satellites orbiting earth with high precision but relatively low cost. This paper will present the introduction, progress and current status of APOSOS project, including: System Requirements Definition, System Main Mission, System Goal, System design, Services and Clients, Organization Framework of Observation Center, Major Function of Observation Center, Establishment of Observation Plan, Format Standard for Exchanging Data, Data Policy, Implementation Schedule, etc.. APOSOS will build a unified surveillance network from observational facilities of member states involved, to utilize the wide geographical distribution advantage of multi-country. It will be operated under the coordination of APSCO observation mission management department. (1)APOSOS should conduct observation missions of specific satellites, space-debris or other space objects of interest, based on requirements of member states. APOSOS should fulfill the basic requirement for satellites observation and tracking missions. And it should also have the potential ability of small debris detection to support collision avoidance planning, which can protect the members high valued space assets. (2)In some particular application, APOSOS would be able to be used for long-term tracking of specific space object of interest, and have the ability of data processing and analysis, so as to provide conjunction assessment, collision probability calculation and avoidance planning for space assets. (3)APOSOS should have the capability of publishing information and sharing data among member states, with the ability to deal with user’s requests for data and mange the data in different levels. (4)APOSOS should have the capability of providing services such as technical consultation, training and science popularization.
Artificial neural networks and approximate reasoning for intelligent control in space
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.
1991-01-01
A method is introduced for learning to refine the control rules of approximate reasoning-based controllers. A reinforcement-learning technique is used in conjunction with a multi-layer neural network model of an approximate reasoning-based controller. The model learns by updating its prediction of the physical system's behavior. The model can use the control knowledge of an experienced operator and fine-tune it through the process of learning. Some of the space domains suitable for applications of the model such as rendezvous and docking, camera tracking, and tethered systems control are discussed.
2013-01-29
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Dr. Compton Tucker, senior scientist from NASA's Goddard Space Flight Center, addresses agency social media followers on the first day of activities of a NASA Social revolving around NASA's Tracking and Data Relay Satellite-K mission. NASA Socials are in-person meetings for people who engage with the agency through Twitter, Facebook, Google+ and other social networks. The satellite, known as TDRS-K, is set to launch at 8:48 p.m. EST on Jan. 30 aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on nearby Cape Canaveral Air Force Station. About 50 followers were selected to participate in the TDRS-K prelaunch and launch activities and share them with their own fan base. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html. Photo credit: NASA/Jim Grossmann
2013-01-29
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Badri Younes, NASA deputy associate administrator for Space Communications and Navigation, or SCaN, addresses agency social media followers on the first day of activities of a NASA Social revolving around NASA's Tracking and Data Relay Satellite-K mission. NASA Socials are in-person meetings for people who engage with the agency through Twitter, Facebook, Google+ and other social networks. The satellite, known as TDRS-K, is set to launch at 8:48 p.m. EST on Jan. 30 aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on nearby Cape Canaveral Air Force Station. About 50 followers were selected to participate in the TDRS-K prelaunch and launch activities and share them with their own fan base. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html. Photo credit: NASA/Jim Grossmann
TDRS-L Pre-Launch Press Conference
2014-01-21
CAPE CANAVERAL, Fla. – During a news conference at NASA's Kennedy Space Center in Florida, agency and contractor officials discussed preparations for the launch of NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft. Participants included Clay Flinn, launch weather officer for the 45th Weather Squadron at Cape Canaveral Air Force Station, Fla. Seated behind Flinn is Andy Kopito, Civil Space Programs director for Boeing Space & Intelligence Systems in El Segundo, Calif. The TDRS-L spacecraft is the second of three new satellites designed to ensure vital operational continuity for NASA by expanding the lifespan of the Tracking and Data Relay Satellite System TDRSS fleet, which consists of eight satellites in geosynchronous orbit. The spacecraft provide tracking, telemetry, command and high bandwidth data return services for numerous science and human exploration missions orbiting Earth. These include NASA's Hubble Space Telescope and the International Space Station. TDRS-L has a high-performance solar panel designed for more spacecraft power to meet the growing S-band communications requirements. TDRSS is one of NASA Space Communication and Navigation’s SCaN three networks providing space communications to NASA’s missions. For more information more about TDRS-L, visit: http://www.nasa.gov/tdrs To learn more about SCaN, visit: www.nasa.gov/scan Photo credit: NASA/Frankie Martin
2013-01-29
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, agency social media followers prepare for the first day of activities of a NASA Social revolving around NASA's Tracking and Data Relay Satellite-K mission. NASA Socials are in-person meetings for people who engage with the agency through Twitter, Facebook, Google+ and other social networks. The satellite, known as TDRS-K, is set to launch at 8:48 p.m. EST on Jan. 30 aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on nearby Cape Canaveral Air Force Station. About 50 followers were selected to participate in the TDRS-K prelaunch and launch activities and share them with their own fan base. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html. Photo credit: NASA/Jim Grossmann
2013-01-29
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Jason Townsend of NASA's Social Media Team welcomes agency social media followers to the first day of activities of a NASA Social revolving around NASA's Tracking and Data Relay Satellite-K mission. NASA Socials are in-person meetings for people who engage with the agency through Twitter, Facebook, Google+ and other social networks. The satellite, known as TDRS-K, is set to launch at 8:48 p.m. EST on Jan. 30 aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on nearby Cape Canaveral Air Force Station. About 50 followers were selected to participate in the TDRS-K prelaunch and launch activities and share them with their own fan base. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html. Photo credit: NASA/Jim Grossmann
2013-01-29
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Nancy Bray of NASA Public Affairs welcomes agency social media followers to the first day of activities of a NASA Social revolving around NASA's Tracking and Data Relay Satellite-K mission. NASA Socials are in-person meetings for people who engage with the agency through Twitter, Facebook, Google+ and other social networks. The satellite, known as TDRS-K, is set to launch at 8:48 p.m. EST on Jan. 30 aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on nearby Cape Canaveral Air Force Station. About 50 followers were selected to participate in the TDRS-K prelaunch and launch activities and share them with their own fan base. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html. Photo credit: NASA/Jim Grossmann
NASA Technical Reports Server (NTRS)
Vilnrotter, Victor
2013-01-01
There has been considerable interest in developing and demonstrating a hybrid "polished panel" optical receiver concept that would replace the microwave panels on the Deep Space Network's (DSN) 34 meter antennas with highly polished aluminum panels, thus enabling simultaneous opticaland microwave reception. A test setup has been installed on the 34 meter research antenna at DSS-13 (Deep Space Station 13) at NASA's Goldstone Deep Space Communications Complex in California in order to assess the feasibility of this concept. Here we describe the results of a recent effort todramatically reduce the dimensions of the point-spread function (PSF) generated by a custom polished panel, thus enabling improved optical communications performance. The latest results are compared to the previous configuration in terms of quantifiable PSF improvement. In addition, the performance of acquisition and tracking algorithms designed specifically for the polished panel PSF are evaluated and compared, based on data obtained from real-time tracking of planets and bright stars with the 34 meter research antenna at DSS-13.
Architecture Study on Telemetry Coverage for Immediate Post-Separation Phase
NASA Technical Reports Server (NTRS)
Cheung, Kar-Ming; Lee, Charles H.; Kellogg, Kent H.; Stocklin, Frank J.; Zillig, David J.; Fielhauer, Karl B.
2008-01-01
This paper presents the preliminary results of an architecture study that provides continuous telemetry coverage for NASA missions for immediate post-separation phase. This study is a collaboration effort between Jet Propulsion Laboratory (JPL), Goddard Space Flight Center (GSFC), and Applied Physics Laboratory (APL). After launch when the spacecraft separated from the upper stage, the spacecraft typically executes a number of mission-critical operations prior to the deployment of solar panels and the activation of the primary communication subsystem. JPL, GSFC, and APL have similar design principle statements that require continuous coverage of mission-critical telemetry during the immediate post-separation phase. To conform to these design principles, an architecture that consists of a separate spacecraft transmitter and a robust communication network capable of tracking the spacecraft signals is needed.This paper presents the preliminary results of an architecture study that provides continuous telemetry coverage for NASA missions for immediate post-separation phase. This study is a collaboration effort between Jet Propulsion Laboratory (JPL), Goddard Space Flight Center (GSFC), and Applied Physics Laboratory (APL). After launch when the spacecraft separated from the upper stage, the spacecraft typically executes a number of mission-critical operations prior to the deployment of solar panels and the activation of the primary communication subsystem. JPL, GSFC, and APL have similar design principle statements that require continuous coverage of mission-critical telemetry during the immediate post-separation phase. To conform to these design principles, an architecture that consists of a separate spacecraft transmitter and a robust communication network capable of tracking the spacecraft signals is needed. The main results of this study are as follows: 1) At low altitude (< 10000 km) when most post-separation critical operations are executed, Earth-based network (e.g. Deep Space Network (DSN)) can only provide limited coverage, whereas space-based network (e.g. Space Network (SN)) can provide continuous coverage. 2) Commercial-off-the-shelf SN compatible transmitters are available for small satellite applications. In this paper we present the detailed coverage analysis of Earth-based and Space-based networks. We identify the key functional and performance requirements of the architecture, and describe the proposed selection criteria of the spacecraft transmitter. We conclude the paper with a proposed forward plan.
Performance Analysis of Sensor Systems for Space Situational Awareness
NASA Astrophysics Data System (ADS)
Choi, Eun-Jung; Cho, Sungki; Jo, Jung Hyun; Park, Jang-Hyun; Chung, Taejin; Park, Jaewoo; Jeon, Hocheol; Yun, Ami; Lee, Yonghui
2017-12-01
With increased human activity in space, the risk of re-entry and collision between space objects is constantly increasing. Hence, the need for space situational awareness (SSA) programs has been acknowledged by many experienced space agencies. Optical and radar sensors, which enable the surveillance and tracking of space objects, are the most important technical components of SSA systems. In particular, combinations of radar systems and optical sensor networks play an outstanding role in SSA programs. At present, Korea operates the optical wide field patrol network (OWL-Net), the only optical system for tracking space objects. However, due to their dependence on weather conditions and observation time, it is not reasonable to use optical systems alone for SSA initiatives, as they have limited operational availability. Therefore, the strategies for developing radar systems should be considered for an efficient SSA system using currently available technology. The purpose of this paper is to analyze the performance of a radar system in detecting and tracking space objects. With the radar system investigated, the minimum sensitivity is defined as detection of a 1-m2 radar cross section (RCS) at an altitude of 2,000 km, with operating frequencies in the L, S, C, X or Ku-band. The results of power budget analysis showed that the maximum detection range of 2,000 km, which includes the low earth orbit (LEO) environment, can be achieved with a transmission power of 900 kW, transmit and receive antenna gains of 40 dB and 43 dB, respectively, a pulse width of 2 ms, and a signal processing gain of 13.3 dB, at a frequency of 1.3 GHz. We defined the key parameters of the radar following a performance analysis of the system. This research can thus provide guidelines for the conceptual design of radar systems for national SSA initiatives.
Multi-phenomenology Observation Network Evaluation Tool'' (MONET)
NASA Astrophysics Data System (ADS)
Oltrogge, D.; North, P.; Vallado, D.
2014-09-01
Evaluating overall performance of an SSA "system-of-systems" observational network collecting against thousands of Resident Space Objects (RSO) is very difficult for typical tasking or scheduling-based analysis tools. This is further complicated by networks that have a wide variety of sensor types and phenomena, to include optical, radar and passive RF types, each having unique resource, ops tempo, competing customer and detectability constraints. We present details of the Multi-phenomenology Observation Network Evaluation Tool (MONET), which circumvents these difficulties by assessing the ideal performance of such a network via a digitized supply-vs-demand approach. Cells of each sensors supply time are distributed among RSO targets of interest to determine the average performance of the network against that set of RSO targets. Orbit Determination heuristics are invoked to represent observation quantity and geometry notionally required to obtain the desired orbit estimation quality. To feed this approach, we derive the detectability and collection rate performance of optical, radar and passive RF sensor physical and performance characteristics. We then prioritize the selected RSO targets according to object size, active/inactive status, orbit regime, and/or other considerations. Finally, the OD-derived tracking demands of each RSO of interest are levied against remaining sensor supply until either (a) all sensor time is exhausted; or (b) the list of RSO targets is exhausted. The outputs from MONET include overall network performance metrics delineated by sensor type, objects and orbits tracked, along with likely orbit accuracies which might result from the conglomerate network tracking.
2014-01-23
CAPE CANAVERAL, Fla. -- A United Launch Alliance Atlas V rocket streaks through the night sky over Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida, carrying NASA's Tracking and Data Relay Satellite, or TDRS-L, to Earth orbit. Launch was at 9:33 p.m. EST Jan. 23 during a 40-minute launch window. The TDRS-L spacecraft is the second of three new satellites designed to ensure vital operational continuity for NASA by expanding the lifespan of the Tracking and Data Relay Satellite System TDRSS fleet, which consists of eight satellites in geosynchronous orbit. The spacecraft provide tracking, telemetry, command and high-bandwidth data return services for numerous science and human exploration missions orbiting Earth. These include NASA's Hubble Space Telescope and the International Space Station. TDRS-L has a high-performance solar panel designed for more spacecraft power to meet the growing S-band communications requirements. TDRSS is one of three NASA Space Communication and Navigation SCaN networks providing space communications to NASA’s missions. For more information more about TDRS-L, visit http://www.nasa.gov/tdrs. To learn more about SCaN, visit www.nasa.gov/scan. Photo credit: NASA/Kim Shiflett
Space station communications and tracking equipment management/control system
NASA Technical Reports Server (NTRS)
Kapell, M. H.; Seyl, J. W.
1982-01-01
Design details of a communications and tracking (C and T) local area network and the distribution system requirements for the prospective space station are described. The hardware will be constructed of LRUs, including those for baseband, RF, and antenna subsystems. It is noted that the C and T equipment must be routed throughout the station to accommodate growth of the station. Configurations of the C and T modules will therefore be dependent on the function of the space station module where they are located. A block diagram is provided of a sample C and T hardware distribution configuration. A topology and protocol will be needed to accommodate new terminals, wide bandwidths, bidirectional message transmission, and distributed functioning. Consideration will be given to collisions occurring in the data transmission channels.
Direct Data Distribution From Low-Earth Orbit
NASA Technical Reports Server (NTRS)
Budinger, James M.; Fujikawa, Gene; Kunath, Richard R.; Nguyen, Nam T.; Romanofsky, Robert R.; Spence, Rodney L.
1997-01-01
NASA Lewis Research Center (LeRC) is developing the space and ground segment technologies necessary to demonstrate a direct data distribution (1)3) system for use in space-to-ground communication links from spacecraft in low-Earth orbit (LEO) to strategically located tracking ground terminals. The key space segment technologies include a K-band (19 GHz) MMIC-based transmit phased array antenna, and a multichannel bandwidth- and power-efficient digital encoder/modulate with an aggregate data rate of 622 Mb/s. Along with small (1.8 meter), low-cost tracking terminals on the ground, the D3 system enables affordable distribution of data to the end user or archive facility through interoperability with commercial terrestrial telecommunications networks. The D3 system is applicable to both government and commercial science and communications spacecraft in LEO. The features and benefits of the D3 system concept are described. Starting with typical orbital characteristics, a set of baseline requirements for representative applications is developed, including requirements for onboard storage and tracking terminals, and sample link budgets are presented. Characteristics of the transmit array antenna and digital encoder/modulator are described. The architecture and components of the tracking terminal are described, including technologies for the next generation terminal. Candidate flights of opportunity for risk mitigation and space demonstration of the D3 features are identified.
Earth orbit navigation study. Volume 2: System evaluation
NASA Technical Reports Server (NTRS)
1972-01-01
An overall systems evaluation was made of five candidate navigation systems in support of earth orbit missions. The five systems were horizon sensor system, unkown landmark tracking system, ground transponder system, manned space flight network, and tracking and data relay satellite system. Two reference missions were chosen: a low earth orbit mission and a transfer trajectory mission from low earth orbit to geosynchronous orbit. The specific areas addressed in the evaluation were performance, multifunction utilization, system mechanization, and cost.
Castet, Jean-Francois; Saleh, Joseph H.
2013-01-01
This article develops a novel approach and algorithmic tools for the modeling and survivability analysis of networks with heterogeneous nodes, and examines their application to space-based networks. Space-based networks (SBNs) allow the sharing of spacecraft on-orbit resources, such as data storage, processing, and downlink. Each spacecraft in the network can have different subsystem composition and functionality, thus resulting in node heterogeneity. Most traditional survivability analyses of networks assume node homogeneity and as a result, are not suited for the analysis of SBNs. This work proposes that heterogeneous networks can be modeled as interdependent multi-layer networks, which enables their survivability analysis. The multi-layer aspect captures the breakdown of the network according to common functionalities across the different nodes, and it allows the emergence of homogeneous sub-networks, while the interdependency aspect constrains the network to capture the physical characteristics of each node. Definitions of primitives of failure propagation are devised. Formal characterization of interdependent multi-layer networks, as well as algorithmic tools for the analysis of failure propagation across the network are developed and illustrated with space applications. The SBN applications considered consist of several networked spacecraft that can tap into each other's Command and Data Handling subsystem, in case of failure of its own, including the Telemetry, Tracking and Command, the Control Processor, and the Data Handling sub-subsystems. Various design insights are derived and discussed, and the capability to perform trade-space analysis with the proposed approach for various network characteristics is indicated. The select results here shown quantify the incremental survivability gains (with respect to a particular class of threats) of the SBN over the traditional monolith spacecraft. Failure of the connectivity between nodes is also examined, and the results highlight the importance of the reliability of the wireless links between spacecraft (nodes) to enable any survivability improvements for space-based networks. PMID:23599835
Castet, Jean-Francois; Saleh, Joseph H
2013-01-01
This article develops a novel approach and algorithmic tools for the modeling and survivability analysis of networks with heterogeneous nodes, and examines their application to space-based networks. Space-based networks (SBNs) allow the sharing of spacecraft on-orbit resources, such as data storage, processing, and downlink. Each spacecraft in the network can have different subsystem composition and functionality, thus resulting in node heterogeneity. Most traditional survivability analyses of networks assume node homogeneity and as a result, are not suited for the analysis of SBNs. This work proposes that heterogeneous networks can be modeled as interdependent multi-layer networks, which enables their survivability analysis. The multi-layer aspect captures the breakdown of the network according to common functionalities across the different nodes, and it allows the emergence of homogeneous sub-networks, while the interdependency aspect constrains the network to capture the physical characteristics of each node. Definitions of primitives of failure propagation are devised. Formal characterization of interdependent multi-layer networks, as well as algorithmic tools for the analysis of failure propagation across the network are developed and illustrated with space applications. The SBN applications considered consist of several networked spacecraft that can tap into each other's Command and Data Handling subsystem, in case of failure of its own, including the Telemetry, Tracking and Command, the Control Processor, and the Data Handling sub-subsystems. Various design insights are derived and discussed, and the capability to perform trade-space analysis with the proposed approach for various network characteristics is indicated. The select results here shown quantify the incremental survivability gains (with respect to a particular class of threats) of the SBN over the traditional monolith spacecraft. Failure of the connectivity between nodes is also examined, and the results highlight the importance of the reliability of the wireless links between spacecraft (nodes) to enable any survivability improvements for space-based networks.
NASA Technical Reports Server (NTRS)
Younes, Badri A.; Schier, James S.
2010-01-01
The SCaN Program has defined an integrated network architecture that fully meets the Administrator s mandate to the Program, and will result in a NASA infrastructure capable of providing the needed and enabling communications services to future space missions. The integrated network architecture will increase SCaN operational efficiency and interoperability through standardization, commonality and technology infusion. It will enable NASA missions requiring advanced communication and tracking capabilities such as: a. Optical communication b. Antenna arraying c. Lunar and Mars Relays d. Integrated network management (service management and network control) and integrated service execution e. Enhanced tracking for navigation f. Space internetworking with DTN and IP g. End-to-end security h. Enhanced security services Moreover, the SCaN Program has created an Integrated Network Roadmap that depicts an orchestrated and coherent evolution path toward the target architecture, encompassing all aspects that concern network assets (i.e., operations and maintenance, sustaining engineering, upgrade efforts, and major development). This roadmap identifies major NASA ADPs, and shows dependencies and drivers among the various planned undertakings and timelines. The roadmap is scalable to accommodate timely adjustments in response to Agency needs, goals, objectives and funding. Future challenges to implementing this architecture include balancing user mission needs, technology development, and the availability of funding within NASA s priorities. Strategies for addressing these challenges are to: define a flexible architecture, update the architecture periodically, use ADPs to evaluate options and determine when to make decisions, and to engage the stakeholders in these evaluations. In addition, the SCaN Program will evaluate and respond to mission need dates for technical and operational capabilities to be provided by the SCaN integrated network. In that regard, the architecture defined in this ADD is scalable to accommodate programmatic and technical changes.
TDRS-L spacecraft lift to mate on Atlas V
2014-01-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Vertical Integration Facility at Launch Complex 41, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft is lifted for mounting atop a United Launch Alliance Atlas V rocket. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on Jan. 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html Photo credit: NASA/Dimitri Gerondidakis
TDRS-L spacecraft lift to mate on Atlas V
2014-01-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Vertical Integration Facility at Launch Complex 41, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft is moved into position for mating atop a United Launch Alliance Atlas V rocket. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on Jan. 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html Photo credit: NASA/Dimitri Gerondidakis
TDRS-L Spacecraft Fairing Encapsulation
2014-01-08
TITUSVILLE, Fla. – Inside the Astrotech payload processing facility in Titusville, United Launch Alliance engineers and technicians encapsulate the Tracking and Data Relay Satellite, or TDRS-L, spacecraft in its payload fairing. TDRS-L will then be transported to Launch Complex 41 at Cape Canaveral Air Force Station. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html
TDRS-L Spacecraft Fairing Encapsulation
2014-01-08
TITUSVILLE, Fla. – Inside the Astrotech payload processing facility in Titusville NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft is being encapsulated in its payload fairing prior to being transported to Launch Complex 41 at Cape Canaveral Air Force Station. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html
TDRS-L Spacecraft Fairing Encapsulation
2014-01-08
TITUSVILLE, Fla. – Inside the Astrotech payload processing facility in Titusville, the Tracking and Data Relay Satellite, or TDRS-L, spacecraft is being encapsulated in its payload fairing in preparation for begin transported to Launch Complex 41 at Cape Canaveral Air Force Station. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html
TDRS-L Spacecraft Fairing Encapsulation
2014-01-08
TITUSVILLE, Fla. – Inside the Astrotech payload processing facility in Titusville, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft has been encapsulated in its payload fairing. TDRS-L will then be transported to Launch Complex 41 at Cape Canaveral Air Force Station. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html
TDRS-L Spacecraft is Lifted Onto Transporter
2014-01-10
TITUSVILLE, Fla. – Encapsulated in its payload fairing, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft is being mounted on a transporter for its trip from the Astrotech payload processing facility in Titusville to Launch Complex 41 at Cape Canaveral Air Force Station. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html Photo credit: NASA/Kim Shiflett
TDRS-L Spacecraft Transported from Astrotech to SLC
2014-01-13
TITUSVILLE, Fla. – Encapsulated in its payload fairing, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft begins it trip from the Astrotech payload processing facility in Titusville to Launch Complex 41 at Cape Canaveral Air Force Station. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html Photo credit: NASA/Dimitri Gerondidakis
TDRS-L Spacecraft Fairing Encapsulation
2014-01-08
TITUSVILLE, Fla. – Inside the Astrotech payload processing facility in Titusville, United Launch Alliance engineers and technicians ensure precision as the Tracking and Data Relay Satellite, or TDRS-L, spacecraft is being encapsulated in its payload fairing in preparation for begin transported to Launch Complex 41 at Cape Canaveral Air Force Station. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html
TDRS-L Spacecraft Transported from Astrotech to SLC
2014-01-13
CAPE CANAVERAL, Fla. – Encapsulated in its payload fairing, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft arrives at Cape Canaveral Air Force Station's Vertical Integration Facility at Launch Complex 41. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html Photo credit: NASA/Dimitri Gerondidakis
TDRS-L spacecraft lift to mate on Atlas V
2014-01-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Vertical Integration Facility at Launch Complex 41, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft has been mated atop a United Launch Alliance Atlas V rocket. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on Jan. 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html Photo credit: NASA/Dimitri Gerondidakis
TDRS-L Spacecraft is Lifted Onto Transporter
2014-01-10
TITUSVILLE, Fla. – Inside the Astrotech payload processing facility in Titusville, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft has been encapsulated in its payload fairing in preparation for begin transported to Launch Complex 41 at Cape Canaveral Air Force Station. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html Photo credit: NASA/Kim Shiflett
TDRS-L Spacecraft Fairing Encapsulation
2014-01-08
TITUSVILLE, Fla. – Inside the Astrotech payload processing facility in Titusville, the Tracking and Data Relay Satellite, or TDRS-L, spacecraft is being encapsulated in its payload fairing in preparation for being transported to Launch Complex 41 at Cape Canaveral Air Force Station. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html
TDRS-L Spacecraft Fairing Encapsulation
2014-01-08
TITUSVILLE, Fla. – Inside the Astrotech payload processing facility in Titusville, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft is being encapsulated in its payload fairing in preparation for begin transported to Launch Complex 41 at Cape Canaveral Air Force Station. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html
TDRS-L spacecraft lift to mate on Atlas V
2014-01-13
CAPE CANAVERAL, Fla. – Encapsulated in its payload fairing, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft arrives at Cape Canaveral Air Force Station's Vertical Integration Facility at Launch Complex 41. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on Jan. 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html Photo credit: NASA/Dimitri Gerondidakis
2014-01-03
TITUSVILLE, Fla. – Inside the Astrotech payload processing facility in Titusville, members of the news media are given an opportunity for an up-close look at the payload fairing that will encapsulate the Tracking and Data Relay Satellite, or TDRS-L, spacecraft. Journalists visited Astrotech as part of TDRS-L Media Day to conduct interviews and photograph the satellite that will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html
Simulation of Telescope Detectivity for Geo Survey and Tracking
NASA Astrophysics Data System (ADS)
Richard, P.
2014-09-01
As the number of space debris on Earths Orbit increases steadily, the need to survey, track and catalogue them becomes of key importance. In this context, CNES has been using the TAROT Telescopes (Rapid Telescopes for Transient Objects owned and operated by CNRS) for several years to conduct studies about space surveillance and tracking. Today, two testbeds of services using the TAROT telescopes are running every night: one for GEO situational awareness and the second for debris tracking. Additionally to the CNES research activity on space surveillance and tracking domain, an operational collision avoidance service for LEO and GEO satellites is in place at CNES for several years. This service named CAESAR (Conjunction Analysis and Evaluation: Alerts and Recommendations) is used by CNES as well as by external customers. As the optical debris tracking testbed based on TAROT telescopes is the first step toward an operational provider of GEO measures that could be used by CAESAR, simulations have been done to help choosing the sites and types of telescopes that could be added in the GEO survey and debris tracking telescope network. One of the distinctive characteristics of the optical observation of space debris compared to traditional astronomic observation is the need to observe objects at low elevations. The two mains reasons for this are the need to observe the GEO belt from non-equatorial sites and the need to observe debris at longitudes far from the telescope longitude. This paper presents the results of simulations of the detectivity for GEO debris of various telescopes and sites, based on models of the GEO belt, the atmosphere and the instruments. One of the conclusions is that clever detection of faint streaks and spread sources by image processing is one of the major keys to improve the detection of debris on the GEO belt.
Tracking and data relay satellite system: NASA's new spacecraft data acquisition system
NASA Astrophysics Data System (ADS)
Schneider, W. C.; Garman, A. A.
The growth in NASA's ground network complexity and cost triggered a search for an alternative. Through a lease service contract, Western Union will provide to NASA 10 years of space communications services with a Tracking and Data Relay Satellite System (TDRSS). A constellation of four operating satellites in geostationary orbit and a single ground terminal will provide complete tracking, telemetry and command service for all of NASA's Earth orbital satellites below an altitude of 12,000 km. The system is shared: two satellites will be dedicated to NASA service; a third will provide backup as a shared spare; the fourth satellite will be dedicated to Western Union's Advanced Westar commercial service. Western Union will operate the ground terminal and provide operational satellite control. NASA's Network Control Center will provide the focal point for scheduling user services and controlling the interface between TDRSS and the rest of the NASA communications network, project control centers and data processing facilities. TDRSS single access user spacecraft data systems should be designed for efficient time shared data relay support. Reimbursement policy and rate structure for non-NASA users are currently being developed.
Space Programs Summary 37-33. Volume 3. The Deep Space Network for the period 1 March-30 April 1965
1965-05-31
designed to communicate To improve the data rate and distance capability, a 210-ft with, and permit control of, spacecraft designed for deep antenna is...51 experienced doppler problems. It was neces- tracking momentarily to make this change. It was de - sary to determine the bias oscillator frequencies...is being designed and constructed for the Mars site of the Gold- stone space communications station. The operating fre- quency of the AAS will be at
Benefits of Delay Tolerant Networking for Earth Science Missions
NASA Technical Reports Server (NTRS)
Davis, Faith; Marquart, Jane; Menke, Greg
2012-01-01
To date there has been much discussion about the value of Delay Tolerant Networking (DTN) for space missions. Claims of various benefits, based on paper analysis, are good; however a benefits statement with empirical evidence to support is even better. This paper presents potential and actual advantages of using DTN for Earth science missions based on results from multiple demonstrations, conducted by the Communications, Standards, and Technology Laboratory (CSTL) at NASA Goddard Space Flight Center (GSFC). Demonstrations included two flight demonstrations using the Earth Observing Mission 1 (EO-1) and the Near Earth Network (NEN), a ground based demonstration over satellite links to the Internet Router in Space (IRIS) payload on Intelsat-14, and others using the NASA Tracking Data Relay Satellite System (TDRSS). Real and potential findings include increased flexibility and efficiency in science campaigns, reduced latency in a collaborative science scenario, and improved scientist-instrument communication and control.
Toward a standardized structural-functional group connectome in MNI space.
Horn, Andreas; Blankenburg, Felix
2016-01-01
The analysis of the structural architecture of the human brain in terms of connectivity between its subregions has provided profound insights into its underlying functional organization and has coined the concept of the "connectome", a structural description of the elements forming the human brain and the connections among them. Here, as a proof of concept, we introduce a novel group connectome in standard space based on a large sample of 169 subjects from the Enhanced Nathan Kline Institute-Rockland Sample (eNKI-RS). Whole brain structural connectomes of each subject were estimated with a global tracking approach, and the resulting fiber tracts were warped into standard stereotactic (MNI) space using DARTEL. Employing this group connectome, the results of published tracking studies (i.e., the JHU white matter and Oxford thalamic connectivity atlas) could be largely reproduced directly within MNI space. In a second analysis, a study that examined structural connectivity between regions of a functional network, namely the default mode network, was reproduced. Voxel-wise structural centrality was then calculated and compared to others' findings. Furthermore, including additional resting-state fMRI data from the same subjects, structural and functional connectivity matrices between approximately forty thousand nodes of the brain were calculated. This was done to estimate structure-function agreement indices of voxel-wise whole brain connectivity. Taken together, the combination of a novel whole brain fiber tracking approach and an advanced normalization method led to a group connectome that allowed (at least heuristically) performing fiber tracking directly within MNI space. Such an approach may be used for various purposes like the analysis of structural connectivity and modeling experiments that aim at studying the structure-function relationship of the human connectome. Moreover, it may even represent a first step toward a standard DTI template of the human brain in stereotactic space. The standardized group connectome might thus be a promising new resource to better understand and further analyze the anatomical architecture of the human brain on a population level. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Konacki, M.; Lejba, P.; Sybilski, P.; Pawłaszek, R.; Kozłowski, S.; Suchodolski, T.; Słonina, M.; Litwicki, M.; Sybilska, A.; Rogowska, B.; Kolb, U.; Burwitz, V.; Baader, J.; Groot, P.; Bloemen, S.; Ratajczak, M.; Hełminiak, K.; Borek, R.; Chodosiewicz, P.; Chimicz, A.
We present an update on the preparation of our assets that consists of a robotic network of eight optical telescopes and a laser ranging station for regular services in the SST domain. We report the development of new optical assets that include a double telescope system, Panoptes-1AB, and a new astrograph on our Solaris-3 telescope at the Siding Spring Observatory, Australia. Progress in the software development necessary for smooth SST operation includes a web based portal and an XML Azure Queue scheduling for the network giving easy access to our sensors. Astrometry24.net our new prototype cloud service for fast astrometry, streak detection and measurement with precision and performance results is also described. In the laser domain, for more than a year, Space Research Centre Borowiec laser station has regularly tracked space debris cooperative and uncooperative targets. The efforts of the stations’ staff have been focused on the tracking of typical rocket bodies from the LEO regime. Additionally, a second independent laser system fully dedicated to SST activities is under development. It will allow for an increased pace of operation of our consortium in the global SST laser domain.
NASA Technical Reports Server (NTRS)
Dumas, Larry N.; Hornstein, Robert M.
1990-01-01
The Deep Space Network for receiving Voyager 2 data is discussed. The functions of the earth-Voyager radio link are examined, including radiometrics, transmission of commands to the spacecraft, radio sciences, and the transmission of telemetry from the spacecraft to earth. The use of ranging, Doppler, and VLBI measurements to maintain position and velocity data on Voyager 2 is described. Emphasis is placed on the international tracking network for obtaining Voyager 2 data on Neptune and Triton.
NASA Astrophysics Data System (ADS)
Ilina, Olga; Bakker, Gert-Jan; Vasaturo, Angela; Hoffman, Robert M.; Friedl, Peter
2011-02-01
Cancer invasion into an extracellular matrix (ECM) results from a biophysical reciprocal interplay between the expanding cancer lesion and tissue barriers imposed by the adjacent microenvironment. In vivo, connective tissue provides both densely packed ECM barriers adjacent to channel/track-like spaces and loosely organized zones, both of which may impact cancer invasion mode and efficiency; however little is known about how three-dimensional (3D) spaces and aligned tracks present in interstitial tissue guide cell invasion. We here describe a two-photon laser ablation procedure to generate 3D microtracks in dense 3D collagen matrices that support and guide collective cancer cell invasion. Whereas collective invasion of mammary tumor (MMT) breast cancer cells into randomly organized collagen networks required matrix metalloproteinase (MMP) activity for cell-derived collagen breakdown, re-alignment and track generation, preformed tracks supported MMP-independent collective invasion down to a track caliber of 3 µm. Besides contact guidance along the track of least resistance and initial cell deformation (squeezing), MMP-independent collective cell strands led to secondary track expansion by a pushing mechanism. Thus, two-photon laser ablation is useful to generate barrier-free microtracks in a 3D ECM which guide collective invasion independently of pericellular proteolysis.
The JPL Resource Allocation Planning and Scheduling Office (RAPSO) process
NASA Technical Reports Server (NTRS)
Morris, D. G.; Burke, E. S.
2002-01-01
The Jet Propulsion Laboratory's Resource Allocation Planning and Scheduling Office is chartered to divide the limited amount of tracking hours of the Deep Space Network amongst the various missions in as equitable allotment as can be achieved. To best deal with this division of assets and time, an interactive process has evolved that promotes discussion with agreement by consensus between all of the customers that use the Deep Space Network (DSN). Aided by a suite of tools, the task of division of asset time is then performed in three stages of granularity. Using this approach, DSN loads are either forecasted or scheduled throughout a moving 10-year window.
Tracking and visualization of space-time activities for a micro-scale flu transmission study.
Qi, Feng; Du, Fei
2013-02-07
Infectious diseases pose increasing threats to public health with increasing population density and more and more sophisticated social networks. While efforts continue in studying the large scale dissemination of contagious diseases, individual-based activity and behaviour study benefits not only disease transmission modelling but also the control, containment, and prevention decision making at the local scale. The potential for using tracking technologies to capture detailed space-time trajectories and model individual behaviour is increasing rapidly, as technological advances enable the manufacture of small, lightweight, highly sensitive, and affordable receivers and the routine use of location-aware devices has become widespread (e.g., smart cellular phones). The use of low-cost tracking devices in medical research has also been proved effective by more and more studies. This study describes the use of tracking devices to collect data of space-time trajectories and the spatiotemporal processing of such data to facilitate micro-scale flu transmission study. We also reports preliminary findings on activity patterns related to chances of influenza infection in a pilot study. Specifically, this study employed A-GPS tracking devices to collect data on a university campus. Spatiotemporal processing was conducted for data cleaning and segmentation. Processed data was validated with traditional activity diaries. The A-GPS data set was then used for visual explorations including density surface visualization and connection analysis to examine space-time activity patterns in relation to chances of influenza infection. When compared to diary data, the segmented tracking data demonstrated to be an effective alternative and showed greater accuracies in time as well as the details of routes taken by participants. A comparison of space-time activity patterns between participants who caught seasonal influenza and those who did not revealed interesting patterns. This study proved that tracking technology an effective technique for obtaining data for micro-scale influenza transmission research. The findings revealed micro-scale transmission hotspots on a university campus and provided insights for local control and prevention strategies.
Design and Commissioning of a Transportable Laser Ranging Station STAR-C
NASA Astrophysics Data System (ADS)
Humbert, L.; Hasenohr, T.; Hampf, D.; Riede, W.
An increasing number of space debris and the rise of mega constellations as well as the deployment of small cost efficient satellites are a growing concern for space faring nations and their missions. Hence, a tight network of worldwide stations to support maintenance of catalogues for various tasks such as space surveillance tracking and space traffic management will significantly increase the reliability and availability of the collected data and therefore the safety of missions. A promising concept are transportable laser ranging stations in order to increase the number of observing stations and hence the coverage of the sky. Built and tested on a building test site they can be deployed to a desired site for operation. High energy laser with short pulses provide accurate ranging data to objects in space both cooperative and uncooperative, e.g. objects with a retroreflector and without one. This work introduces the progress of a transportable laser ranging station, of a Surveillance, Tracking and Ranging Container (STAR-C), built into a 20ft ISO container.
NASA Technical Reports Server (NTRS)
Vilnrotter, Victor A.
2012-01-01
The development and demonstration of a "polished panel" optical receiver concept on the 34 meter research antenna of the Deep Space Network (DSN) has been the subject of recent papers. This concept would enable simultaneous reception of optical and microwave signals by retaining the original shape of the main reflector for microwave reception, but with the aluminum panels polished to high reflectivity to enable focusing of optical signal energy as well. A test setup has been installed on the DSN's 34 meter research antenna at Deep Space Station 13 (DSS-13) of NASA's Goldstone Communications Complex in California, and preliminary experimental results have been obtained. This paper describes the results of our latest efforts to improve the point-spread function (PSF) generated by a custom polished panel, in an attempt to reduce the dimensions of the PSF, thus enabling more precise tracking and improved detection performance. The design of the new mechanical support structure and its operation are described, and the results quantified in terms of improvements in collected signal energy and optical communications performance, based on data obtained while tracking the planet Jupiter with the 34 meter research antenna at DSS-13.
2011 Mars Science Laboratory Trajectory Reconstruction and Performance from Launch Through Landing
NASA Technical Reports Server (NTRS)
Abilleira, Fernando
2013-01-01
The Mars Science Laboratory (MSL) mission successfully launched on an Atlas V 541 Expendable Evolved Launch Vehicle (EELV) from the Eastern Test Range (ETR) at Cape Canaveral Air Force Station (CCAFS) in Florida at 15:02:00 UTC on November 26th, 2011. At 15:52:06 UTC, six minutes after the MSL spacecraft separated from the Centaur upper stage, the spacecraft transmitter was turned on and in less than 20 s spacecraft carrier lock was achieved at the Universal Space Network (USN) Dongara tracking station located in Western Australia. MSL, carrying the most sophisticated rover ever sent to Mars, entered the Martian atmosphere at 05:10:46 SpaceCraft Event Time (SCET) UTC, and landed inside Gale Crater at 05:17:57 SCET UTC on August 6th, 2012. Confirmation of nominal landing was received at the Deep Space Network (DSN) Canberra tracking station via the Mars Odyssey relay spacecraft at 05:31:45 Earth Received Time (ERT) UTC. This paper summarizes in detail the actual vs. predicted trajectory performance in terms of launch vehicle events, launch vehicle injection performance, actual DSN/USN spacecraft lockup, trajectory correction maneuver performance, Entry, Descent, and Landing events, and overall trajectory and geometry characteristics.
Orion Navigation Sensitivities to Ground Station Infrastructure for Lunar Missions
NASA Technical Reports Server (NTRS)
Getchius, Joel; Kukitschek, Daniel; Crain, Timothy
2008-01-01
The Orion Crew Exploration Vehicle (CEV) will replace the Space Shuttle and serve as the next-generation spaceship to carry humans to the International Space Station and back to the Moon for the first time since the Apollo program. As in the Apollo and Space Shuttle programs, the Mission Control Navigation team will utilize radiometric measurements to determine the position and velocity of the CEV. In the case of lunar missions, the ground station infrastructure consisting of approximately twelve stations distributed about the Earth and known as the Apollo Manned Spaceflight Network, no longer exists. Therefore, additional tracking resources will have to be allocated or constructed to support mission operations for Orion lunar missions. This paper examines the sensitivity of Orion navigation for lunar missions to the number and distribution of tracking sites that form the ground station infrastructure.
Advanced Navigation Strategies For Asteroid Sample Return Missions
NASA Technical Reports Server (NTRS)
Getzandanner, K.; Bauman, J.; Williams, B.; Carpenter, J.
2010-01-01
Flyby and rendezvous missions to asteroids have been accomplished using navigation techniques derived from experience gained in planetary exploration. This paper presents analysis of advanced navigation techniques required to meet unique challenges for precision navigation to acquire a sample from an asteroid and return it to Earth. These techniques rely on tracking data types such as spacecraft-based laser ranging and optical landmark tracking in addition to the traditional Earth-based Deep Space Network radio metric tracking. A systematic study of navigation strategy, including the navigation event timeline and reduction in spacecraft-asteroid relative errors, has been performed using simulation and covariance analysis on a representative mission.
Tracking and Data System Support for the Mariner Venus/Mercury 1973 Project
NASA Technical Reports Server (NTRS)
Davis, E. K.; Traxler, M. R.
1977-01-01
The Tracking and Data System, which provided outstanding support to the Mariner Venus/Mercury 1973 project during the period from January 1970 through March 1975 are chronologically described. In the Tracking and Data System organizations, plans, processes, and technical configurations, which were developed and employed to facilitate achievement of mission objectives, are described. In the Deep Space Network position of the tracking and data system, a number of special actions were taken to greatly increase the scientific data return and to assist the project in coping with in-flight problems. The benefits of such actions were high; however, there was also a significant increase in risk as a function of the experimental equipment and procedures required.
NASA Astrophysics Data System (ADS)
DeSena, J. T.; Martin, S. R.; Clarke, J. C.; Dutrow, D. A.; Newman, A. J.
2012-06-01
As the number and diversity of sensing assets available for intelligence, surveillance and reconnaissance (ISR) operations continues to expand, the limited ability of human operators to effectively manage, control and exploit the ISR ensemble is exceeded, leading to reduced operational effectiveness. Automated support both in the processing of voluminous sensor data and sensor asset control can relieve the burden of human operators to support operation of larger ISR ensembles. In dynamic environments it is essential to react quickly to current information to avoid stale, sub-optimal plans. Our approach is to apply the principles of feedback control to ISR operations, "closing the loop" from the sensor collections through automated processing to ISR asset control. Previous work by the authors demonstrated non-myopic multiple platform trajectory control using a receding horizon controller in a closed feedback loop with a multiple hypothesis tracker applied to multi-target search and track simulation scenarios in the ground and space domains. This paper presents extensions in both size and scope of the previous work, demonstrating closed-loop control, involving both platform routing and sensor pointing, of a multisensor, multi-platform ISR ensemble tasked with providing situational awareness and performing search, track and classification of multiple moving ground targets in irregular warfare scenarios. The closed-loop ISR system is fullyrealized using distributed, asynchronous components that communicate over a network. The closed-loop ISR system has been exercised via a networked simulation test bed against a scenario in the Afghanistan theater implemented using high-fidelity terrain and imagery data. In addition, the system has been applied to space surveillance scenarios requiring tracking of space objects where current deliberative, manually intensive processes for managing sensor assets are insufficiently responsive. Simulation experiment results are presented. The algorithm to jointly optimize sensor schedules against search, track, and classify is based on recent work by Papageorgiou and Raykin on risk-based sensor management. It uses a risk-based objective function and attempts to minimize and balance the risks of misclassifying and losing track on an object. It supports the requirement to generate tasking for metric and feature data concurrently and synergistically, and account for both tracking accuracy and object characterization, jointly, in computing reward and cost for optimizing tasking decisions.
Goldstone radio spectrum protection. [deep space network
NASA Technical Reports Server (NTRS)
Gaudian, B. A.; Cushman, R. B.
1980-01-01
Potential electromagnetic interference to the Goldstone tracking receivers due to neighboring military installations is discussed. Coordination of the military and NASA Goldstone activities in the Mojave Desert area is seen to be an effective method to protect the Goldstone radio spectrum while maintaining compatible operations for the military and Goldstone.
Sub-nanosecond clock synchronization and precision deep space tracking
NASA Technical Reports Server (NTRS)
Dunn, Charles; Lichten, Stephen; Jefferson, David; Border, James S.
1992-01-01
Interferometric spacecraft tracking is accomplished at the NASA Deep Space Network (DSN) by comparing the arrival time of electromagnetic spacecraft signals to ground antennas separated by baselines on the order of 8000 km. Clock synchronization errors within and between DSN stations directly impact the attainable tracking accuracy, with a 0.3 ns error in clock synchronization resulting in an 11 nrad angular position error. This level of synchronization is currently achieved by observing a quasar which is angularly close to the spacecraft just after the spacecraft observations. By determining the differential arrival times of the random quasar signal at the stations, clock synchronization and propagation delays within the atmosphere and within the DSN stations are calibrated. Recent developments in time transfer techniques may allow medium accuracy (50-100 nrad) spacecraft observations without near-simultaneous quasar-based calibrations. Solutions are presented for a global network of GPS receivers in which the formal errors in clock offset parameters are less than 0.5 ns. Comparisons of clock rate offsets derived from GPS measurements and from very long baseline interferometry and the examination of clock closure suggest that these formal errors are a realistic measure of GPS-based clock offset precision and accuracy. Incorporating GPS-based clock synchronization measurements into a spacecraft differential ranging system would allow tracking without near-simultaneous quasar observations. The impact on individual spacecraft navigation error sources due to elimination of quasar-based calibrations is presented. System implementation, including calibration of station electronic delays, is discussed.
NASA Astrophysics Data System (ADS)
Herz, A.; Herz, E.; Center, K.; George, P.; Axelrad, P.; Mutschler, S.; Jones, B.
2016-09-01
The Space Surveillance Network (SSN) is tasked with the increasingly difficult mission of detecting, tracking, cataloging and identifying artificial objects orbiting the Earth, including active and inactive satellites, spent rocket bodies, and fragmented debris. Much of the architecture and operations of the SSN are limited and outdated. Efforts are underway to modernize some elements of the systems. Even so, the ability to maintain the best current Space Situational Awareness (SSA) picture and identify emerging events in a timely fashion could be significantly improved by leveraging non-traditional sensor sites. Orbit Logic, the University of Colorado and the University of Texas at Austin are developing an innovative architecture and operations concept to coordinate the tasking and observation information processing of non - traditional assets based on information-theoretic approaches. These confirmed tasking schedules and the resulting data can then be used to "inform" the SSN tasking process. The 'Heimdall Web' system is comprised of core tasking optimization components and accompanying Web interfaces within a secure, split architecture that will for the first time allow non-traditional sensors to support SSA and improve SSN tasking. Heimdall Web application components appropriately score/prioritize space catalog objects based on covariance, priority, observability, expected information gain, and probability of detect - then coordinate an efficient sensor observation schedule for non-SSN sensors contributing to the overall SSA picture maintained by the Joint Space Operations Center (JSpOC). The Heimdall Web Ops concept supports sensor participation levels of "Scheduled", "Tasked" and "Contributing". Scheduled and Tasked sensors are provided optimized observation schedules or object tracking lists from central algorithms, while Contributing sensors review and select from a list of "desired track objects". All sensors are "Web Enabled" for tasking and feedback, supplying observation schedules, confirmed observations and related data back to Heimdall Web to complete the feedback loop for the next scheduling iteration.
2013-01-29
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Michael Woltman, senior vehicle systems engineer for NASA's Launch Services Program, addresses agency social media followers on the first day of activities of a NASA Social revolving around NASA's Tracking and Data Relay Satellite-K mission. NASA Socials are in-person meetings for people who engage with the agency through Twitter, Facebook, Google+ and other social networks. The satellite, known as TDRS-K, is set to launch at 8:48 p.m. EST on Jan. 30 aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on nearby Cape Canaveral Air Force Station. About 50 followers were selected to participate in the TDRS-K prelaunch and launch activities and share them with their own fan base. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html. Photo credit: NASA/Jim Grossmann
2013-01-29
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Jeremy Parsons, technical manager for operations of NASA's Ground Systems Development and Operations Program, takes a question from an agency social media follower participating in the first day of activities of a NASA Social revolving around NASA's Tracking and Data Relay Satellite-K mission. NASA Socials are in-person meetings for people who engage with the agency through Twitter, Facebook, Google+ and other social networks. The satellite, known as TDRS-K, is set to launch at 8:48 p.m. EST on Jan. 30 aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on nearby Cape Canaveral Air Force Station. About 50 followers were selected to participate in the TDRS-K prelaunch and launch activities and share them with their own fan base. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html. Photo credit: NASA/Jim Grossmann
2013-01-29
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Greg Williams, deputy associate administrator of NASA's Human Exploration and Operations Mission Directorate, addresses agency social media followers on the first day of activities of a NASA Social revolving around NASA's Tracking and Data Relay Satellite-K mission. NASA Socials are in-person meetings for people who engage with the agency through Twitter, Facebook, Google+ and other social networks. The satellite, known as TDRS-K, is set to launch at 8:48 p.m. EST on Jan. 30 aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on nearby Cape Canaveral Air Force Station. About 50 followers were selected to participate in the TDRS-K prelaunch and launch activities and share them with their own fan base. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html. Photo credit: NASA/Jim Grossmann
NASA Technical Reports Server (NTRS)
1990-01-01
The Multi-Compatible Network Interface Unit (MCNIU) is intended to connect the space station's communications and tracking, guidance and navigation, life support, electric power, payload data, hand controls, display consoles and other systems, and also communicate with diverse processors. Honeywell is now marketing MCNIU commercially. It has applicability in certain military operations or civil control centers. It has nongovernment utility among large companies, universities and research organizations that transfer large amounts of data among workstations and computers. *This product is no longer commercially available.
The minitrack tracking function description, volume 1
NASA Technical Reports Server (NTRS)
Englar, T. S., Jr.; Mango, S. A.; Roettcher, C. A.; Watters, D. L.
1973-01-01
The treatment of tracking data by the Minitrack system is described from the transmission of the nominal 136-MHz radio beacon energy from a satellite and the reception of this signal by the interferometer network through the ultimate derivation of the direction cosines (the angular coordinates of the vector from the tracking station to the spacecraft) as a function of time. Descriptions of some of the lesser-known functions operating on the system, such as the computer preprocessing program, are included. A large part of the report is devoted to the preprocessor, which provides for the data compression, smoothing, calibration correction, and ambiguity resolution of the raw interferometer phase tracking measurements teletyped from each of the worldwide Minitrack tracking stations to the central computer facility at Goddard Space Flight Center. An extensive bibliography of Minitrack hardware and theory is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
1996-05-01
The Network Information System (NWIS) was initially implemented in May 1996 as a system in which computing devices could be recorded so that unique names could be generated for each device. Since then the system has grown to be an enterprise wide information system which is integrated with other systems to provide the seamless flow of data through the enterprise. The system Iracks data for two main entities: people and computing devices. The following are the type of functions performed by NWIS for these two entities: People Provides source information to the enterprise person data repository for select contractors andmore » visitors Generates and tracks unique usernames and Unix user IDs for every individual granted cyber access Tracks accounts for centrally managed computing resources, and monitors and controls the reauthorization of the accounts in accordance with the DOE mandated interval Computing Devices Generates unique names for all computing devices registered in the system Tracks the following information for each computing device: manufacturer, make, model, Sandia property number, vendor serial number, operating system and operating system version, owner, device location, amount of memory, amount of disk space, and level of support provided for the machine Tracks the hardware address for network cards Tracks the P address registered to computing devices along with the canonical and alias names for each address Updates the Dynamic Domain Name Service (DDNS) for canonical and alias names Creates the configuration files for DHCP to control the DHCP ranges and allow access to only properly registered computers Tracks and monitors classified security plans for stand-alone computers Tracks the configuration requirements used to setup the machine Tracks the roles people have on machines (system administrator, administrative access, user, etc...) Allows systems administrators to track changes made on the machine (both hardware and software) Generates an adjustment history of changes on selected fields« less
NASA Technical Reports Server (NTRS)
Radomski, M. S.; Doll, C. E.
1995-01-01
The Differenced Range (DR) Versus Integrated Doppler (ID) (DRVID) method exploits the opposition of high-frequency signal versus phase retardation by plasma media to obtain information about the plasma's corruption of simultaneous range and Doppler spacecraft tracking measurements. Thus, DR Plus ID (DRPID) is an observable independent of plasma refraction, while actual DRVID (DR minus ID) measures the time variation of the path electron content independently of spacecraft motion. The DRVID principle has been known since 1961. It has been used to observe interplanetary plasmas, is implemented in Deep Space Network tracking hardware, and has recently been applied to single-frequency Global Positioning System user navigation This paper discusses exploration at the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) of DRVID synthesized from simultaneous two-way range and Doppler tracking for low Earth-orbiting missions supported by the Tracking and Data Relay Satellite System (TDRSS) The paper presents comparisons of actual DR and ID residuals and relates those comparisons to predictions of the Bent model. The complications due to the pilot tone influence on relayed Doppler measurements are considered. Further use of DRVID to evaluate ionospheric models is discussed, as is use of DRPID in reducing dependence on ionospheric modeling in orbit determination.
Neural-network classifiers for automatic real-world aerial image recognition
NASA Astrophysics Data System (ADS)
Greenberg, Shlomo; Guterman, Hugo
1996-08-01
We describe the application of the multilayer perceptron (MLP) network and a version of the adaptive resonance theory version 2-A (ART 2-A) network to the problem of automatic aerial image recognition (AAIR). The classification of aerial images, independent of their positions and orientations, is required for automatic tracking and target recognition. Invariance is achieved by the use of different invariant feature spaces in combination with supervised and unsupervised neural networks. The performance of neural-network-based classifiers in conjunction with several types of invariant AAIR global features, such as the Fourier-transform space, Zernike moments, central moments, and polar transforms, are examined. The advantages of this approach are discussed. The performance of the MLP network is compared with that of a classical correlator. The MLP neural-network correlator outperformed the binary phase-only filter (BPOF) correlator. It was found that the ART 2-A distinguished itself with its speed and its low number of required training vectors. However, only the MLP classifier was able to deal with a combination of shift and rotation geometric distortions.
Neural-network classifiers for automatic real-world aerial image recognition.
Greenberg, S; Guterman, H
1996-08-10
We describe the application of the multilayer perceptron (MLP) network and a version of the adaptive resonance theory version 2-A (ART 2-A) network to the problem of automatic aerial image recognition (AAIR). The classification of aerial images, independent of their positions and orientations, is required for automatic tracking and target recognition. Invariance is achieved by the use of different invariant feature spaces in combination with supervised and unsupervised neural networks. The performance of neural-network-based classifiers in conjunction with several types of invariant AAIR global features, such as the Fourier-transform space, Zernike moments, central moments, and polar transforms, are examined. The advantages of this approach are discussed. The performance of the MLP network is compared with that of a classical correlator. The MLP neural-network correlator outperformed the binary phase-only filter (BPOF) correlator. It was found that the ART 2-A distinguished itself with its speed and its low number of required training vectors. However, only the MLP classifier was able to deal with a combination of shift and rotation geometric distortions.
Navigation Architecture for a Space Mobile Network
NASA Technical Reports Server (NTRS)
Valdez, Jennifer E.; Ashman, Benjamin; Gramling, Cheryl; Heckler, Gregory W.; Carpenter, Russell
2016-01-01
The Tracking and Data Relay Satellite System (TDRSS) Augmentation Service for Satellites (TASS) is a proposed beacon service to provide a global, space based GPS augmentation service based on the NASA Global Differential GPS (GDGPS) System. The TASS signal will be tied to the GPS time system and usable as an additional ranging and Doppler radiometric source. Additionally, it will provide data vital to autonomous navigation in the near Earth regime, including space weather information, TDRS ephemerides, Earth Orientation Parameters (EOP), and forward commanding capability. TASS benefits include enhancing situational awareness, enabling increased autonomy, and providing near real-time command access for user platforms. As NASA Headquarters' Space Communication and Navigation Office (SCaN) begins to move away from a centralized network architecture and towards a Space Mobile Network (SMN) that allows for user initiated services, autonomous navigation will be a key part of such a system. This paper explores how a TASS beacon service enables the Space Mobile Networking paradigm, what a typical user platform would require, and provides an in-depth analysis of several navigation scenarios and operations concepts. This paper provides an overview of the TASS beacon and its role within the SMN and user community. Supporting navigation analysis is presented for two user mission scenarios: an Earth observing spacecraft in low earth orbit (LEO), and a highly elliptical spacecraft in a lunar resonance orbit. These diverse flight scenarios indicate the breadth of applicability of the TASS beacon for upcoming users within the current network architecture and in the SMN.
Detection of multiple airborne targets from multisensor data
NASA Astrophysics Data System (ADS)
Foltz, Mark A.; Srivastava, Anuj; Miller, Michael I.; Grenander, Ulf
1995-08-01
Previously we presented a jump-diffusion based random sampling algorithm for generating conditional mean estimates of scene representations for the tracking and recongition of maneuvering airborne targets. These representations include target positions and orientations along their trajectories and the target type associated with each trajectory. Taking a Bayesian approach, a posterior measure is defined on the parameter space by combining sensor models with a sophisticated prior based on nonlinear airplane dynamics. The jump-diffusion algorithm constructs a Markov process which visits the elements of the parameter space with frequencies proportional to the posterior probability. It consititutes both the infinitesimal, local search via a sample path continuous diffusion transform and the larger, global steps through discrete jump moves. The jump moves involve the addition and deletion of elements from the scene configuration or changes in the target type assoviated with each target trajectory. One such move results in target detection by the addition of a track seed to the inference set. This provides initial track data for the tracking/recognition algorithm to estimate linear graph structures representing tracks using the other jump moves and the diffusion process, as described in our earlier work. Target detection ideally involves a continuous research over a continuum of the observation space. In this work we conclude that for practical implemenations the search space must be discretized with lattice granularity comparable to sensor resolution, and discuss how fast Fourier transforms are utilized for efficient calcuation of sufficient statistics given our array models. Some results are also presented from our implementation on a networked system including a massively parallel machine architecture and a silicon graphics onyx workstation.
Architecture Study on Telemetry Coverage for Immediate Post-Separation Phase
NASA Technical Reports Server (NTRS)
Cheung, Kar-Ming; Lee, Charles; Kellogg, Kent; Stocklin, Frank; Zillig, David; Fielhauer, Karl
2008-01-01
This document is the viewgraphs that accompanies a paper that presents the preliminary results of an architecture study that provides continuous telemetry coverage for NASA missions for immediate post-separation phase. After launch when the spacecraft separated from the upper stage, the spacecraft typically executes a number of mission-critical operations prior to the deployment of solar panels and the activation of the primary communication subsystem. JPL, GSFC, and APL have similar design principle statements that require continuous coverage of mission-critical telemetry during the immediate post-separation phase. To conform to these design principles, an architecture that consists of a separate spacecraft transmitter and a robust communication network capable of tracking the spacecraft signals is needed. The main results of this study are as follows: 1) At low altitude (< 10000 km) when most post-separation critical operations are executed, Earth-based network (e.g. Deep Space Network (DSN)) can only provide limited coverage, whereas space-based network (e.g. Space Network (SN)) can provide continuous coverage. 2) Commercial-off-the-shelf SN compatible transmitters are available for small satellite applications. In this paper we present the detailed coverage analysis of Earth-based and Space-based networks. We identify the key functional and performance requirements of the architecture, and describe the proposed selection criteria of the spacecraft transmitter. We conclude the paper with a proposed forward plan.
Artist concept of the STS-43 Tracking and Data Relay Satellite E (TDRS-E)
1990-06-22
Artist concept shows the Tracking and Data Relay Satellite E (TDRS-E) augmenting a sophisticated TDRS system (TDRSS) communications network after deployment during STS-43 from Atlantis, Orbiter Vehicle (OV) 104. TDRS, built by TRW, will be placed in a geosynchronous orbit and after onorbit testing, which requires several weeks, will be designated TDRS-5. The communications satellite will replace TDRS-3 at 174 degrees West longitude. The backbone of NASA's space-to-ground communications, the TDRSs have increased NASA's ability to send and receive data to spacecraft in low-earth orbit to more than 85 percent of the time. Before TDRS, NASA relied solely on a system of ground stations that permitted communications only 15 percent of the time. Increased coverage has allowed onorbit repairs, live television broadcast from space and continuous dialogues between astronaut crews and ground control during critical periods such as Space Shuttle landings.
Miniaturized sensors to monitor simulated lunar locomotion.
Hanson, Andrea M; Gilkey, Kelly M; Perusek, Gail P; Thorndike, David A; Kutnick, Gilead A; Grodsinsky, Carlos M; Rice, Andrea J; Cavanagh, Peter R
2011-02-01
Human activity monitoring is a useful tool in medical monitoring, military applications, athletic coaching, and home healthcare. We propose the use of an accelerometer-based system to track crewmember activity during space missions in reduced gravity environments. It is unclear how the partial gravity environment of the Moorn or Mars will affect human locomotion. Here we test a novel analogue of lunar gravity in combination with a custom wireless activity tracking system. A noninvasive wireless accelerometer-based sensor system, the activity tracking device (ATD), was developed. The system has two sensor units; one footwear-mounted and the other waist-mounted near the midlower back. Subjects (N=16) were recruited to test the system in the enhanced Zero Gravity Locomotion Simulator (eZLS) at NASA Glenn Research Center. Data were used to develop an artificial neural network for activity recognition. The eZLS demonstrated the ability to replicate reduced gravity environments. There was a 98% agreement between the ATD and force plate-derived stride times during running (9.7 km x h(-1)) at both 1 g and 1/6 g. A neural network was designed and successfully trained to identify lunar walking, running, hopping, and loping from ATD measurements with 100% accuracy. The eZLS is a suitable tool for examining locomotor activity at simulated lunar gravity. The accelerometer-based ATD system is capable of monitoring human activity and may be suitable for use during remote, long-duration space missions. A neural network has been developed to use data from the ATD to aid in remote activity monitoring.
Distributing flight dynamics products via the World Wide Web
NASA Technical Reports Server (NTRS)
Woodard, Mark; Matusow, David
1996-01-01
The NASA Flight Dynamics Products Center (FDPC), which make available selected operations products via the World Wide Web, is reported on. The FDPC can be accessed from any host machine connected to the Internet. It is a multi-mission service which provides Internet users with unrestricted access to the following standard products: antenna contact predictions; ground tracks; orbit ephemerides; mean and osculating orbital elements; earth sensor sun and moon interference predictions; space flight tracking data network summaries; and Shuttle transport system predictions. Several scientific data bases are available through the service.
NASA Technical Reports Server (NTRS)
Pavlis, Erricos C.
1994-01-01
An experiment was designed to launch a corner cube retroreflector array on one of the Global Positioning Satellites (GPS). The launch on Aug. 31, 1993 ushered in the era of SLR tracking of GPS spacecraft. Once the space operations group finished the check-out procedures for the new satellite, the agreed upon SLR sites were allowed to track it. The first site to acquire GPS-35 was the Russian system at Maidanak and closely after the MLRS system at McDonald Observatory, Texas. The laser tracking network is currently tracking the GPS spacecraft known as GPS-35 or PRN 5 with great success. From the NASA side there are five stations that contribute data regularly and nearly as many from the international partners. Upcoming modifications to the ground receivers will allow for a further increase in the tracking capabilities of several additional sites and add some desperately needed southern hemisphere tracking. We are analyzing the data and are comparing SLR-derived orbits to those determined on the basis of GPS radiometric data.
2014-01-03
TITUSVILLE, Fla. – Members of the news media are given an up-close look at the Tracking and Data Relay Satellite, or TDRS-L, spacecraft undergoing preflight processing inside the Astrotech payload processing facility in Titusville. TDRS-L is being prepared for encapsulation inside its payload fairing prior to being transported to Launch Complex 41 at Cape Canaveral Air Force Station. Journalists visited Astrotech as part of TDRS-L Media Day to conduct interviews and photograph the satellite that will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html
NASA Technical Reports Server (NTRS)
Asmar, Sami; Renzetti, Nicholas
1994-01-01
The Deep Space Network generates accurate radio science data observables for investigators who use radio links between spacecraft and the Earth to examine small changes in the phase and/or amplitude of the signal to study a wide variety of structures and phenomena in space. Several such studies are directed at aspects of the theory of general relativity such as gravitational redshift and gravitational waves. A gravitational wave is a propagating, polarized gravitational field, a ripple in the curvature of space-time. In Einstein's theory of general relativity, the waves are propagating solutions of the Einstein field equations. Their amplitudes are dimensionless strain amplitudes that change the fractional difference in distance between test masses and the rates at which separated clocks keep time. Predicted by all relativistic theories of gravity, they are extremely weak (the ratio of gravitational forces to electrical forces is about 10(sup -40)) and are generated at detectable levels only by astrophysical sources - very massive sources under violent dynamical conditions. The waves have never been detected but searches in the low-frequency band using Doppler tracking of many spacecraft have been conducted and others are being planned. Upper limits have been placed on the gravitational wave strength with the best sensitivities to date are for periodic waves being 7 x 10(sup -15).
Sequence-of-events-driven automation of the deep space network
NASA Technical Reports Server (NTRS)
Hill, R., Jr.; Fayyad, K.; Smyth, C.; Santos, T.; Chen, R.; Chien, S.; Bevan, R.
1996-01-01
In February 1995, sequence-of-events (SOE)-driven automation technology was demonstrated for a Voyager telemetry downlink track at DSS 13. This demonstration entailed automated generation of an operations procedure (in the form of a temporal dependency network) from project SOE information using artificial intelligence planning technology and automated execution of the temporal dependency network using the link monitor and control operator assistant system. This article describes the overall approach to SOE-driven automation that was demonstrated, identifies gaps in SOE definitions and project profiles that hamper automation, and provides detailed measurements of the knowledge engineering effort required for automation.
Sequence-of-Events-Driven Automation of the Deep Space Network
NASA Technical Reports Server (NTRS)
Hill, R., Jr.; Fayyad, K.; Smyth, C.; Santos, T.; Chen, R.; Chien, S.; Bevan, R.
1996-01-01
In February 1995, sequence-of-events (SOE)-driven automation technology was demonstrated for a Voyager telemetry downlink track at DSS 13. This demonstration entailed automated generation of an operations procedure (in the form of a temporal dependency network) from project SOE information using artificial intelligence planning technology and automated execution of the temporal dependency network using the link monitor and control operator assistant system. This article describes the overall approach to SOE-driven automation that was demonstrated, identifies gaps in SOE definitions and project profiles that hamper automation, and provides detailed measurements of the knowledge engineering effort required for automation.
Frequency standards requirements of the NASA deep space network to support outer planet missions
NASA Technical Reports Server (NTRS)
Fliegel, H. F.; Chao, C. C.
1974-01-01
Navigation of Mariner spacecraft to Jupiter and beyond will require greater accuracy of positional determination than heretofore obtained if the full experimental capabilities of this type of spacecraft are to be utilized. Advanced navigational techniques which will be available by 1977 include Very Long Baseline Interferometry (VLBI), three-way Doppler tracking (sometimes called quasi-VLBI), and two-way Doppler tracking. It is shown that VLBI and quasi-VLBI methods depend on the same basic concept, and that they impose nearly the same requirements on the stability of frequency standards at the tracking stations. It is also shown how a realistic modelling of spacecraft navigational errors prevents overspecifying the requirements to frequency stability.
ESTABLISHING A NATIONAL ENVIRONMENTAL PUBLIC HEALTH TRACKING NETWORK
This paper describes the CDC's efforts to develop a National Environmental Public Health Tracking Network Tracking Network) with particular focus on air related issues and collaboration with EPA. A Tracking Network is needed in the United States to improve the health of communit...
The Dark Side of Saturn's Gravity
NASA Astrophysics Data System (ADS)
Iess, L.; Racioppa, P.; Durante, D.; Mariani, M., Jr.; Anabtawi, A.; Armstrong, J. W.; Gomez Casajus, L.; Tortora, P.; Zannoni, M.
2017-12-01
On July 19, 2017 the Cassini spacecraft successfully completed its sixth and last pericenter pass devoted to the investigation of Saturn's interior structure and rings. During each pass the spacecraft was tracked for about 24 hours by the antennas of NASA's Deep Space Network and ESA's ESTRACK network, providing high quality measurements of the spacecraft range rate. We report on a preliminary estimate of Saturn's gravity field and ring mass inferred from range rate observables, and discuss the surprising features of our findings.
NASA Astrophysics Data System (ADS)
Langfellner, Jan; Birch, Aaron; Gizon, Laurent
2017-08-01
Solar supergranules remain a mysterious phenomenon, half a century after their discovery. One particularly interesting aspect of supergranulation is its wave-like nature detected in Fourier space. Using SDO/HMI local helioseismology and granulation tracking, we provide new evidence for supergranular waves. We also discuss their influence on the evolution of the network magnetic field using cork simulations.
Multiple-Feed Design For DSN/SETI Antenna
NASA Technical Reports Server (NTRS)
Slobin, S. D.; Bathker, D. A.
1988-01-01
Frequency bands changed with little interruption of operation. Modification of feedhorn mounting on existing 34-m-diameter antenna in Deep Space Network (DSN) enables antenna to be shared by Search for Extra-Terrestrial Intelligence (SET) program with minimal interruption of DSN spacecraft tracking. Modified antenna useful in terrestrial communication systems requiring frequent changes of operating frequencies.
Worldwide differential GPS for Space Shuttle landing operations
NASA Technical Reports Server (NTRS)
Loomis, Peter V. W.; Denaro, Robert P.; Saunders, Penny
1990-01-01
Worldwide differential Global Positioning System (WWDGPS) is viewed as an effective method of offering continuous high-quality navigation worldwide. The concept utilizes a network with as few as 33 ground stations to observe most of the error sources of GPS and provide error corrections to users on a worldwide basis. The WWDGPS real-time GPS tracking concept promises a threefold or fourfold improvement in accuracy for authorized dual-frequency users, and in addition maintains an accurate and current ionosphere model for single-frequency users. A real-time global tracking network also has the potential to reverse declarations of poor health on marginal satellites, increasing the number of satellites in the constellation and lessening the probability of GPS navigation outage. For Space Shuttle operations, the use of WWDGPS-aided P-code equipment promises performance equal to or better than other current landing guidance systems in terms of accuracy and reliability. This performance comes at significantly less cost to NASA, which will participate as a customer in a system designed as a commercial operation serving the global civil navigation community.
Scheduling the future NASA Space Network: Experiences with a flexible scheduling prototype
NASA Technical Reports Server (NTRS)
Happell, Nadine; Moe, Karen L.; Minnix, Jay
1993-01-01
NASA's Space Network (SN) provides telecommunications and tracking services to low earth orbiting spacecraft. One proposal for improving resource allocation and automating conflict resolution for the SN is the concept of flexible scheduling. In this concept, each Payload Operations Control Center (POCC) will possess a Space Network User POCC Interface (SNUPI) to support the development and management of flexible requests. Flexible requests express the flexibility, constraints, and repetitious nature of the user's communications requirements. Flexible scheduling is expected to improve SN resource utilization and user satisfaction, as well as reduce the effort to produce and maintain a schedule. A prototype testbed has been developed to better understand flexible scheduling as it applies to the SN. This testbed consists of a SNUPI workstation, an SN scheduler, and a flexible request language that conveys information between the two systems. All three are being evaluated by operations personnel. Benchmark testing is being conducted on the scheduler to quantify the productivity improvements achieved with flexible requests.
The NASA data systems standardization program - Radio frequency and modulation
NASA Technical Reports Server (NTRS)
Martin, W. L.
1983-01-01
The modifications being considered by the NASA-ESA Working Group (NEWG) for space-data-systems standardization to maximize the commonality of the NASA and ESA RF and modulation systems linking spaceborne scientific experiments with ground stations are summarized. The first phase of the NEWG project shows that the NASA MK-IVA Deep Space Network and Shuttle Interrogator (SI) systems in place or planned for 1985 are generally compatible with the ESA Network, but that communications involving the Tracking and Data Relay Satellite (TDRS) are incompatible due to its use of spread-spectrum modulation, pseudonoise ranging, multiple-access channels, and Mbit/s data rates. Topics under study for the post-1985 period include low-bit-rate capability for the ESA Network, an optional 8-kHz command subcarrier for the SI, fixing the spacecraft-transponder frequency-multiplication ratios for possible X-band uplinks or X-band nondeep-space downlinks, review of incompatible TDRS features, and development of the 32-GHz band.
Human tracking over camera networks: a review
NASA Astrophysics Data System (ADS)
Hou, Li; Wan, Wanggen; Hwang, Jenq-Neng; Muhammad, Rizwan; Yang, Mingyang; Han, Kang
2017-12-01
In recent years, automated human tracking over camera networks is getting essential for video surveillance. The tasks of tracking human over camera networks are not only inherently challenging due to changing human appearance, but also have enormous potentials for a wide range of practical applications, ranging from security surveillance to retail and health care. This review paper surveys the most widely used techniques and recent advances for human tracking over camera networks. Two important functional modules for the human tracking over camera networks are addressed, including human tracking within a camera and human tracking across non-overlapping cameras. The core techniques of human tracking within a camera are discussed based on two aspects, i.e., generative trackers and discriminative trackers. The core techniques of human tracking across non-overlapping cameras are then discussed based on the aspects of human re-identification, camera-link model-based tracking and graph model-based tracking. Our survey aims to address existing problems, challenges, and future research directions based on the analyses of the current progress made toward human tracking techniques over camera networks.
Observing Strategies for Focused Orbital Debris Surveys Using the Magellan Telescope
NASA Technical Reports Server (NTRS)
Frith, James; Cowardin, Heather; Buckalew, Brent; Anz-Meador, Phillip; Lederer, Susan; Matney, Mark
2017-01-01
A breakup of the Titan 3C-17 Transtage rocket body was reported to have occurred on June 4th, 2014 at 02:38 UT by the Space Surveillance Network (SSN). Five objects were associated with this breakup and this is the fourth breakup known for this class of object. There are likely many more objects associated with this event that are not within the Space Surveillance Network's ability to detect and have not been catalogued. Several months after the breakup, observing time was obtained on the Magellan Baade 6.5 meter telescope to be used for observations of geosynchronous (GEO) space debris targets. Using the NASA Standard Satellite Breakup Model (SSBM), a simulated debris cloud of the recent Transtage breakup was produced and propagated forward in time. This provided right ascension, declination, and tracking rate predictions for where debris associated with this breakup may be more likely to be found in the sky over Magellan for our observing run. Magellan observations were then optimized using the angles and tracking rates from the model predictions to focus the search for Transtage debris. Data were collected and analysed and preliminary comparisons made between the number of objects detected and the number expected from the model. We present our results here.
Mars Express Interplanetary Navigation from Launch to Mars Orbit Insertion: The JPL Experience
NASA Technical Reports Server (NTRS)
Han, Dongsuk; Highsmith, Dolan; Jah, Moriba; Craig, Diane; Border, James; Kroger, Peter
2004-01-01
The National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL) played a significant role in supporting the safe arrival of the European Space Agency (ESA) Mars Express (MEX) orbiter to Mars on 25 December 2003. MEX mission is an international collaboration between member nations of the ESA and NASA, where NASA is supporting partner. JPL's involvement included providing commanding and tracking service with JPL's Deep Space Network (DSN), in addition to navigation assurance. The collaborative navigation effort between European Space Operations Centre (ESOC) and JPL is the first since ESA's last deep space mission, Giotto, and began many years before the MEX launch. This paper discusses the navigational experience during the cruise and final approach phase of the mission from JPL's perspective. Topics include technical challenges such as orbit determination using non-DSN tracking data and media calibrations, and modeling of spacecraft physical properties for accurate representation of non-gravitational dynamics. Also mentioned in this paper is preparation and usage of DSN Delta Differential Oneway Range ((Delta)DOR) measurements, a key element to the accuracy of the orbit determination.
DVB-S2 Experiment over NASA's Space Network
NASA Technical Reports Server (NTRS)
Downey, Joseph A.; Evans, Michael A.; Tollis, Nicholas S.
2017-01-01
The commercial DVB-S2 standard was successfully demonstrated over NASAs Space Network (SN) and the Tracking Data and Relay Satellite System (TDRSS) during testing conducted September 20-22nd, 2016. This test was a joint effort between NASA Glenn Research Center (GRC) and Goddard Space Flight Center (GSFC) to evaluate the performance of DVB-S2 as an alternative to traditional NASA SN waveforms. Two distinct sets of tests were conducted: one was sourced from the Space Communication and Navigation (SCaN) Testbed, an external payload on the International Space Station, and the other was sourced from GRCs S-band ground station to emulate a Space Network user through TDRSS. In both cases, a commercial off-the-shelf (COTS) receiver made by Newtec was used to receive the signal at White Sands Complex. Using SCaN Testbed, peak data rates of 5.7 Mbps were demonstrated. Peak data rates of 33 Mbps were demonstrated over the GRC S-band ground station through a 10MHz channel over TDRSS, using 32-amplitude phase shift keying (APSK) and a rate 89 low density parity check (LDPC) code. Advanced features of the DVB-S2 standard were evaluated, including variable and adaptive coding and modulation (VCMACM), as well as an adaptive digital pre-distortion (DPD) algorithm. These features provided additional data throughput and increased link performance reliability. This testing has shown that commercial standards are a viable, low-cost alternative for future Space Network users.
Precise estimation of tropospheric path delays with GPS techniques
NASA Technical Reports Server (NTRS)
Lichten, S. M.
1990-01-01
Tropospheric path delays are a major source of error in deep space tracking. However, the tropospheric-induced delay at tracking sites can be calibrated using measurements of Global Positioning System (GPS) satellites. A series of experiments has demonstrated the high sensitivity of GPS to tropospheric delays. A variety of tests and comparisons indicates that current accuracy of the GPS zenith tropospheric delay estimates is better than 1-cm root-mean-square over many hours, sampled continuously at intervals of six minutes. These results are consistent with expectations from covariance analyses. The covariance analyses also indicate that by the mid-1990s, when the GPS constellation is complete and the Deep Space Network is equipped with advanced GPS receivers, zenith tropospheric delay accuracy with GPS will improve further to 0.5 cm or better.
NASA Technical Reports Server (NTRS)
Rash, James
2014-01-01
NASA's space data-communications infrastructure-the Space Network and the Ground Network-provide scheduled (as well as some limited types of unscheduled) data-communications services to user spacecraft. The Space Network operates several orbiting geostationary platforms (the Tracking and Data Relay Satellite System (TDRSS)), each with its own servicedelivery antennas onboard. The Ground Network operates service-delivery antennas at ground stations located around the world. Together, these networks enable data transfer between user spacecraft and their mission control centers on Earth. Scheduling data-communications events for spacecraft that use the NASA communications infrastructure-the relay satellites and the ground stations-can be accomplished today with software having an operational heritage dating from the 1980s or earlier. An implementation of the scheduling methods and algorithms disclosed and formally specified herein will produce globally optimized schedules with not only optimized service delivery by the space data-communications infrastructure but also optimized satisfaction of all user requirements and prescribed constraints, including radio frequency interference (RFI) constraints. Evolutionary algorithms, a class of probabilistic strategies for searching large solution spaces, is the essential technology invoked and exploited in this disclosure. Also disclosed are secondary methods and algorithms for optimizing the execution efficiency of the schedule-generation algorithms themselves. The scheduling methods and algorithms as presented are adaptable to accommodate the complexity of scheduling the civilian and/or military data-communications infrastructure within the expected range of future users and space- or ground-based service-delivery assets. Finally, the problem itself, and the methods and algorithms, are generalized and specified formally. The generalized methods and algorithms are applicable to a very broad class of combinatorial-optimization problems that encompasses, among many others, the problem of generating optimal space-data communications schedules.
Protocol Architecture Model Report
NASA Technical Reports Server (NTRS)
Dhas, Chris
2000-01-01
NASA's Glenn Research Center (GRC) defines and develops advanced technology for high priority national needs in communications technologies for application to aeronautics and space. GRC tasked Computer Networks and Software Inc. (CNS) to examine protocols and architectures for an In-Space Internet Node. CNS has developed a methodology for network reference models to support NASA's four mission areas: Earth Science, Space Science, Human Exploration and Development of Space (REDS), Aerospace Technology. This report applies the methodology to three space Internet-based communications scenarios for future missions. CNS has conceptualized, designed, and developed space Internet-based communications protocols and architectures for each of the independent scenarios. The scenarios are: Scenario 1: Unicast communications between a Low-Earth-Orbit (LEO) spacecraft inspace Internet node and a ground terminal Internet node via a Tracking and Data Rela Satellite (TDRS) transfer; Scenario 2: Unicast communications between a Low-Earth-Orbit (LEO) International Space Station and a ground terminal Internet node via a TDRS transfer; Scenario 3: Multicast Communications (or "Multicasting"), 1 Spacecraft to N Ground Receivers, N Ground Transmitters to 1 Ground Receiver via a Spacecraft.
NASA Technical Reports Server (NTRS)
Dhas, Chris
2000-01-01
NASAs Glenn Research Center (GRC) defines and develops advanced technology for high priority national needs in communications technologies for application to aeronautics and space. GRC tasked Computer Networks and Software Inc. (CNS) to examine protocols and architectures for an In-Space Internet Node. CNS has developed a methodology for network reference models to support NASAs four mission areas: Earth Science, Space Science, Human Exploration and Development of Space (REDS), Aerospace Technology. CNS previously developed a report which applied the methodology, to three space Internet-based communications scenarios for future missions. CNS conceptualized, designed, and developed space Internet-based communications protocols and architectures for each of the independent scenarios. GRC selected for further analysis the scenario that involved unicast communications between a Low-Earth-Orbit (LEO) International Space Station (ISS) and a ground terminal Internet node via a Tracking and Data Relay Satellite (TDRS) transfer. This report contains a tradeoff analysis on the selected scenario. The analysis examines the performance characteristics of the various protocols and architectures. The tradeoff analysis incorporates the results of a CNS developed analytical model that examined performance parameters.
A distributed database view of network tracking systems
NASA Astrophysics Data System (ADS)
Yosinski, Jason; Paffenroth, Randy
2008-04-01
In distributed tracking systems, multiple non-collocated trackers cooperate to fuse local sensor data into a global track picture. Generating this global track picture at a central location is fairly straightforward, but the single point of failure and excessive bandwidth requirements introduced by centralized processing motivate the development of decentralized methods. In many decentralized tracking systems, trackers communicate with their peers via a lossy, bandwidth-limited network in which dropped, delayed, and out of order packets are typical. Oftentimes the decentralized tracking problem is viewed as a local tracking problem with a networking twist; we believe this view can underestimate the network complexities to be overcome. Indeed, a subsequent 'oversight' layer is often introduced to detect and handle track inconsistencies arising from a lack of robustness to network conditions. We instead pose the decentralized tracking problem as a distributed database problem, enabling us to draw inspiration from the vast extant literature on distributed databases. Using the two-phase commit algorithm, a well known technique for resolving transactions across a lossy network, we describe several ways in which one may build a distributed multiple hypothesis tracking system from the ground up to be robust to typical network intricacies. We pay particular attention to the dissimilar challenges presented by network track initiation vs. maintenance and suggest a hybrid system that balances speed and robustness by utilizing two-phase commit for only track initiation transactions. Finally, we present simulation results contrasting the performance of such a system with that of more traditional decentralized tracking implementations.
2017-08-17
Neil Mallik, NASA deputy network director for Human Spaceflight, speaks to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on preparations to launch NASA's Tracking and Data Relay Satellite, TDRS-M. The latest spacecraft destined for the agency's constellation of communications satellites, TDRS-M will allow nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop a United Launch Alliance Atlas V rocket is scheduled to take place from Space Launch Complex 41 at Cape Canaveral Air Force Station at 8:03 a.m. EDT Aug. 18.
2011-12-01
Network STK Satellite Tool Kit WFOV Wide-Field-of-View xv ACKNOWLEDGMENTS I would like to first and foremost thank the Lord, Jesus Christ, our...frequencies in FSK is easily visualized . Table 5.1 details the phase difference between each state as the number of represented states is increased...assist in visualizing the phase separation when adding additional phases to the system. Each of the rows from Table 5.1 is displayed in Figure 5.10
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Posner, E. C. (Editor)
1984-01-01
This publication provides reports on work performed for the Office of Space Tracking and Data Systems (OSTDS). It reports on the activities of the deep space network (DSN) and the Ground Communications Facility (GCF). Topics discussed on the operation of the DSN include: (1) spacecraft-ground communications; (2) station control and system technology; and (3) capabilities for new projects for systems implementation. The GCF compatibility with packets and data compression is discussed. In geodynamics, the publication reports on the application of radio interferometry at microwave frequencies for geodynamic measurements.
Integration of communications and tracking data processing simulation for space station
NASA Technical Reports Server (NTRS)
Lacovara, Robert C.
1987-01-01
A simplified model of the communications network for the Communications and Tracking Data Processing System (CTDP) was developed. It was simulated by use of programs running on several on-site computers. These programs communicate with one another by means of both local area networks and direct serial connections. The domain of the model and its simulation is from Orbital Replaceable Unit (ORU) interface to Data Management Systems (DMS). The simulation was designed to allow status queries from remote entities across the DMS networks to be propagated through the model to several simulated ORU's. The ORU response is then propagated back to the remote entity which originated the request. Response times at the various levels were investigated in a multi-tasking, multi-user operating system environment. Results indicate that the effective bandwidth of the system may be too low to support expected data volume requirements under conventional operating systems. Instead, some form of embedded process control program may be required on the node computers.
The Software Correlator of the Chinese VLBI Network
NASA Technical Reports Server (NTRS)
Zheng, Weimin; Quan, Ying; Shu, Fengchun; Chen, Zhong; Chen, Shanshan; Wang, Weihua; Wang, Guangli
2010-01-01
The software correlator of the Chinese VLBI Network (CVN) has played an irreplaceable role in the CVN routine data processing, e.g., in the Chinese lunar exploration project. This correlator will be upgraded to process geodetic and astronomical observation data. In the future, with several new stations joining the network, CVN will carry out crustal movement observations, quick UT1 measurements, astrophysical observations, and deep space exploration activities. For the geodetic or astronomical observations, we need a wide-band 10-station correlator. For spacecraft tracking, a realtime and highly reliable correlator is essential. To meet the scientific and navigation requirements of CVN, two parallel software correlators in the multiprocessor environments are under development. A high speed, 10-station prototype correlator using the mixed Pthreads and MPI (Massage Passing Interface) parallel algorithm on a computer cluster platform is being developed. Another real-time software correlator for spacecraft tracking adopts the thread-parallel technology, and it runs on the SMP (Symmetric Multiple Processor) servers. Both correlators have the characteristic of flexible structure and scalability.
The extended tracking network and indications of baseline precision and accuracy in the North Andes
NASA Technical Reports Server (NTRS)
Freymueller, Jeffrey T.; Kellogg, James N.
1990-01-01
The CASA Uno Global Positioning System (GPS) experiment (January-February 1988) included an extended tracking network which covered three continents in addition to the network of scientific interest in Central and South America. The repeatability of long baselines (400-1000 km) in South America is improved by up to a factor of two in the horizontal vector baseline components by using tracking stations in the Pacific and Europe to supplement stations in North America. In every case but one, the differences between the mean solutions obtained using different tracking networks was equal to or smaller than day-to-day rms repeatabilities for the same baselines. The mean solutions obtained by using tracking stations in North America and the Pacific agreed at the 2-3 millimeter level with those using tracking stations in North America and Europe. The agreement of the extended tracking network solutions suggests that a broad distribution of tracking stations provides better geometric constraints on the satellite orbits and that solutions are not sensitive to changes in tracking network configuration when an extended network is use. A comparison of the results from the North Andes and a baseline in North America suggests that the use of a geometrically strong extended tracking network is most important when the network of interest is far from North America.
Combining GPS and VLBI earth-rotation data for improved universal time
NASA Technical Reports Server (NTRS)
Freedman, A. P.
1991-01-01
The Deep Space Network (DSN) routinely measures Earth orientation in support of spacecraft tracking and navigation using very long-baseline interferometry (VLBI) with the deep-space tracking antennas. The variability of the most unpredictable Earth-orientation component, Universal Time 1 (UT1), is a major factor in determining the frequency with which the DSN measurements must be made. The installation of advanced Global Positioning System (GPS) receivers at the DSN sites and elsewhere may soon permit routine measurements of UT1 variation with significantly less dependence on the deep-space tracking antennas than is currently required. GPS and VLBI data from the DSN may be combined to generate a precise UT1 series, while simultaneously reducing the time and effort the DSN must spend on platform-parameter calibrations. This combination is not straightforward, however, and a strategy for the optimal combination of these data is presented and evaluated. It appears that, with the aid of GPS, the frequency of required VLBI measurements of Earth orientation could drop from twice weekly to once per month. More stringent real-time Earth orientation requirements possible in the future would demand significant improvements in both VLBI and GPS capabilities, however.
Interfacing with USSTRATCOM and UTTR during Stardust Earth Return
NASA Technical Reports Server (NTRS)
Jefferson, David C.; Baird, Darren T.; Cangahuala, Laureano A.; Lewis, George D.
2006-01-01
The Stardust Sample Return Capsule separated from the main spacecraft four hours prior to atmospheric entry. Between this time and the time at which the SRC touched down at the Utah Test and Training Range, two organizations external to JPL were involved in tracking the Sample Return Capsule. Orbit determination for the Stardust spacecraft during deep space cruise, the encounters of asteroid Annefrank and comet Wild 2, and the final approach to Earth used X-band radio metric Doppler and range data obtained through the Deep Space Network. The SRC lacked the electronics needed for coherently transponded radio metric tracking, so the DSN was not able to track the SRC after it separated from the main spacecraft. Although the expected delivery accuracy at atmospheric entry was well within the capability needed to target the SRC to the desired ground location, it was still desirable to obtain direct knowledge of the SRC trajectory in case of anomalies. For this reason U.S. Strategic Command was engaged to track the SRC between separation and atmospheric entry. Once the SRC entered the atmosphere, ground sensors at UTTR were tasked to acquire the descending SRC and maintain track during the descent in order to determine the landing location, to which the ground recovery team was then directed. This paper discusses organizational interfaces, data products, and delivery schedules, and the actual tracking operations are described.
A modern control theory based algorithm for control of the NASA/JPL 70-meter antenna axis servos
NASA Technical Reports Server (NTRS)
Hill, R. E.
1987-01-01
A digital computer-based state variable controller was designed and applied to the 70-m antenna axis servos. The general equations and structure of the algorithm and provisions for alternate position error feedback modes to accommodate intertarget slew, encoder referenced tracking, and precision tracking modes are descibed. Development of the discrete time domain control model and computation of estimator and control gain parameters based on closed loop pole placement criteria are discussed. The new algorithm was successfully implemented and tested in the 70-m antenna at Deep Space Network station 63 in Spain.
Global and Local Gravity Field Models of the Moon Using GRAIL Primary and Extended Mission Data
NASA Technical Reports Server (NTRS)
Goossens, Sander; Lemoine, Frank G.; Sabaka, Terence J.; Nicholas, Joseph B.; Mazarico, Erwan; Rowlands, David D.; Loomis, Bryant D.; Chinn, Douglas S.; Neumann, Gregory A.; Smith, David E.;
2015-01-01
The Gravity Recovery and Interior Laboratory (GRAIL) mission was designed to map the structure of the lunar interior from crust to core and to advance the understanding of the Moon's thermal evolution by producing a high-quality, high-resolution map of the gravitational field of the Moon. The mission consisted of two spacecraft, which were launched in September 2011 on a Discovery-class NASA mission. Ka-band tracking between the two satellites was the single science instrument, augmented by tracking from Earth using the Deep Space Network (DSN).
TDRS-L Pre-Launch Press Conference
2014-01-21
CAPE CANAVERAL, Fla. –During a news conference at NASA's Kennedy Space Center in Florida, agency and contractor officials discussed preparations for the launch of NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft. Participating in the briefing, from the left, are Badri Younes, deputy associate administrator, Space Communications and Navigation SCaN NASA Human Exploration and Operations Mission Directorate at NASA Headquarters in Washington D.C., Tim Dunn, NASA launch director at Kennedy, Vernon Thorp, program manager for NASA Missions with United Launch Alliance in Denver, Colo., Jeffrey Gramling, NASA's TDRS-L project manager at the Goddard Space Flight Center in Greenbelt, Md., Andy Kopito, Civil Space Programs director for Boeing Space & Intelligence Systems in El Segundo, Calif., and Clay Flinn, launch weather officer for the 45th Weather Squadron at Cape Canaveral Air Force Station, Fla. The TDRS-L spacecraft is the second of three new satellites designed to ensure vital operational continuity for NASA by expanding the lifespan of the Tracking and Data Relay Satellite System TDRSS fleet, which consists of eight satellites in geosynchronous orbit. The spacecraft provide tracking, telemetry, command and high bandwidth data return services for numerous science and human exploration missions orbiting Earth. These include NASA's Hubble Space Telescope and the International Space Station. TDRS-L has a high-performance solar panel designed for more spacecraft power to meet the growing S-band communications requirements. TDRSS is one of NASA Space Communication and Navigation’s SCaN three networks providing space communications to NASA’s missions. For more information more about TDRS-L, visit: http://www.nasa.gov/tdrs To learn more about SCaN, visit: www.nasa.gov/scan Photo credit: NASA/Frankie Martin
TDRS-L Pre-Launch Press Conference
2014-01-21
CAPE CANAVERAL, Fla. –During a news conference at NASA's Kennedy Space Center in Florida, agency and contractor officials discussed preparations for the launch of NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft. Participating in the briefing, from the left, are George Diller of NASA Public Affairs, Badri Younes, deputy associate administrator, Space Communications and Navigation SCaN NASA Human Exploration and Operations Mission Directorate at NASA Headquarters in Washington D.C., Tim Dunn, NASA launch director at Kennedy, Vernon Thorp, program manager for NASA Missions with United Launch Alliance in Denver, Colo., Jeffrey Gramling, NASA's TDRS-L project manager at the Goddard Space Flight Center in Greenbelt, Md., Andy Kopito, Civil Space Programs director for Boeing Space & Intelligence Systems in El Segundo, Calif., and Clay Flinn, launch weather officer for the 45th Weather Squadron at Cape Canaveral Air Force Station, Fla. The TDRS-L spacecraft is the second of three new satellites designed to ensure vital operational continuity for NASA by expanding the lifespan of the Tracking and Data Relay Satellite System TDRSS fleet, which consists of eight satellites in geosynchronous orbit. The spacecraft provide tracking, telemetry, command and high bandwidth data return services for numerous science and human exploration missions orbiting Earth. These include NASA's Hubble Space Telescope and the International Space Station. TDRS-L has a high-performance solar panel designed for more spacecraft power to meet the growing S-band communications requirements. TDRSS is one of NASA Space Communication and Navigation’s SCaN three networks providing space communications to NASA’s missions. For more information more about TDRS-L, visit: http://www.nasa.gov/tdrs To learn more about SCaN, visit: www.nasa.gov/scan Photo credit: NASA/Frankie Martin
Campos, Andre N.; Souza, Efren L.; Nakamura, Fabiola G.; Nakamura, Eduardo F.; Rodrigues, Joel J. P. C.
2012-01-01
Target tracking is an important application of wireless sensor networks. The networks' ability to locate and track an object is directed linked to the nodes' ability to locate themselves. Consequently, localization systems are essential for target tracking applications. In addition, sensor networks are often deployed in remote or hostile environments. Therefore, density control algorithms are used to increase network lifetime while maintaining its sensing capabilities. In this work, we analyze the impact of localization algorithms (RPE and DPE) and density control algorithms (GAF, A3 and OGDC) on target tracking applications. We adapt the density control algorithms to address the k-coverage problem. In addition, we analyze the impact of network density, residual integration with density control, and k-coverage on both target tracking accuracy and network lifetime. Our results show that DPE is a better choice for target tracking applications than RPE. Moreover, among the evaluated density control algorithms, OGDC is the best option among the three. Although the choice of the density control algorithm has little impact on the tracking precision, OGDC outperforms GAF and A3 in terms of tracking time. PMID:22969329
NASA Technical Reports Server (NTRS)
Marr, Greg C.
2003-01-01
The Triana spacecraft was designed to be launched by the Space Shuttle. The nominal Triana mission orbit will be a Sun-Earth L1 libration point orbit. Using the NASA Goddard Space Flight Center's Orbit Determination Error Analysis System (ODEAS), orbit determination (OD) error analysis results are presented for all phases of the Triana mission from the first correction maneuver through approximately launch plus 6 months. Results are also presented for the science data collection phase of the Fourier Kelvin Stellar Interferometer Sun-Earth L2 libration point mission concept with momentum unloading thrust perturbations during the tracking arc. The Triana analysis includes extensive analysis of an initial short arc orbit determination solution and results using both Deep Space Network (DSN) and commercial Universal Space Network (USN) statistics. These results could be utilized in support of future Sun-Earth libration point missions.
2014-01-03
TITUSVILLE, Fla. – Members of the news media are given an opportunity for an up-close look at the Tracking and Data Relay Satellite, or TDRS-L, spacecraft undergoing preflight processing inside the Astrotech payload processing facility in Titusville. TDRS-L is being prepared for encapsulation inside its payload fairing prior to being transported to Launch Complex 41 at Cape Canaveral Air Force Station. Journalists visited Astrotech as part of TDRS-L Media Day to conduct interviews and photograph the satellite that will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html
Architectural Options for a Future Deep Space Optical Communications Network
NASA Technical Reports Server (NTRS)
Edwards, B. L.; Benjamin, T.; Scozzafava, J.; Khatri, F.; Sharma, J.; Parvin, B.; Liebrecht, P. E.; Fitzgerald, R. J.
2004-01-01
This paper provides an overview of different options at Earth to provide Deep Space optical communication services. It is based mainly on work done for the Mars Laser Communications Demonstration (MLCD) Project, a joint project between NASA's Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory, California Institute of Technology (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT/LL). It also reports preliminary conclusions from the Tracking and Data Relay Satellite System Continuation Study at GSFC. A lasercom flight terminal will be flown on the Mars Telecommunications Orbiter (MTO) to be launched by NASA in 2009, and will be the first high rate deep space demonstration of this revolutionary technology.
Introduction to Fuzzy Set Theory
NASA Technical Reports Server (NTRS)
Kosko, Bart
1990-01-01
An introduction to fuzzy set theory is described. Topics covered include: neural networks and fuzzy systems; the dynamical systems approach to machine intelligence; intelligent behavior as adaptive model-free estimation; fuzziness versus probability; fuzzy sets; the entropy-subsethood theorem; adaptive fuzzy systems for backing up a truck-and-trailer; product-space clustering with differential competitive learning; and adaptive fuzzy system for target tracking.
Data Processing Center of Radioastron Project: 3 years of operation.
NASA Astrophysics Data System (ADS)
Shatskaya, Marina
ASC DATA PROCESSING CENTER (DPC) of Radioastron Project is a fail-safe complex centralized system of interconnected software/ hardware components along with organizational procedures. Tasks facing of the scientific data processing center are organization of service information exchange, collection of scientific data, storage of all of scientific data, data science oriented processing. DPC takes part in the informational exchange with two tracking stations in Pushchino (Russia) and Green Bank (USA), about 30 ground telescopes, ballistic center, tracking headquarters and session scheduling center. Enormous flows of information go to Astro Space Center. For the inquiring of enormous data volumes we develop specialized network infrastructure, Internet channels and storage. The computer complex has been designed at the Astro Space Center (ASC) of Lebedev Physical Institute and includes: - 800 TB on-line storage, - 2000 TB hard drive archive, - backup system on magnetic tapes (2000 TB); - 24 TB redundant storage at Pushchino Radio Astronomy Observatory; - Web and FTP servers, - DPC management and data transmission networks. The structure and functions of ASC Data Processing Center are fully adequate to the data processing requirements of the Radioastron Mission and has been successfully confirmed during Fringe Search, Early Science Program and first year of Key Science Program.
Orbital State Uncertainty Realism
NASA Astrophysics Data System (ADS)
Horwood, J.; Poore, A. B.
2012-09-01
Fundamental to the success of the space situational awareness (SSA) mission is the rigorous inclusion of uncertainty in the space surveillance network. The *proper characterization of uncertainty* in the orbital state of a space object is a common requirement to many SSA functions including tracking and data association, resolution of uncorrelated tracks (UCTs), conjunction analysis and probability of collision, sensor resource management, and anomaly detection. While tracking environments, such as air and missile defense, make extensive use of Gaussian and local linearity assumptions within algorithms for uncertainty management, space surveillance is inherently different due to long time gaps between updates, high misdetection rates, nonlinear and non-conservative dynamics, and non-Gaussian phenomena. The latter implies that "covariance realism" is not always sufficient. SSA also requires "uncertainty realism"; the proper characterization of both the state and covariance and all non-zero higher-order cumulants. In other words, a proper characterization of a space object's full state *probability density function (PDF)* is required. In order to provide a more statistically rigorous treatment of uncertainty in the space surveillance tracking environment and to better support the aforementioned SSA functions, a new class of multivariate PDFs are formulated which more accurately characterize the uncertainty of a space object's state or orbit. The new distribution contains a parameter set controlling the higher-order cumulants which gives the level sets a distinctive "banana" or "boomerang" shape and degenerates to a Gaussian in a suitable limit. Using the new class of PDFs within the general Bayesian nonlinear filter, the resulting filter prediction step (i.e., uncertainty propagation) is shown to have the *same computational cost as the traditional unscented Kalman filter* with the former able to maintain a proper characterization of the uncertainty for up to *ten times as long* as the latter. The filter correction step also furnishes a statistically rigorous *prediction error* which appears in the likelihood ratios for scoring the association of one report or observation to another. Thus, the new filter can be used to support multi-target tracking within a general multiple hypothesis tracking framework. Additionally, the new distribution admits a distance metric which extends the classical Mahalanobis distance (chi^2 statistic). This metric provides a test for statistical significance and facilitates single-frame data association methods with the potential to easily extend the covariance-based track association algorithm of Hill, Sabol, and Alfriend. The filtering, data fusion, and association methods using the new class of orbital state PDFs are shown to be mathematically tractable and operationally viable.
NASA Astrophysics Data System (ADS)
Foster, B.; Heath, G. P.; Llewellyn, T. J.; Gingrich, D. M.; Harnew, N.; Hallam-Baker, P. M.; Khatri, T.; McArthur, I. C.; Morawitz, P.; Nash, J.; Shield, P. D.; Topp-Jorgensen, S.; Wilson, F. F.; Allen, D. B.; Carter, R. C.; Jeffs, M. D.; Morrissey, M. C.; Quinton, S. P. H.; Lane, J. B.; Postranecky, M.
1993-05-01
The Central Tracking Detector of the ZEUS experiment employs a time difference technique to measure the z coordinate of each hit. The method provides fast, three-dimensional space point measurements which are used as input to all levels of the ZEUS trigger. Such a tracking trigger is essential in order to discriminate against events with vertices lying outside the nominal electron-proton interaction region. Since the beam crossing interval of the HERA collider is 96 ns, all data must be pipelined through the front-end readout electronics. Subsequent data aquisition employs a novel technique which utilizes a network of approximately 120 INMOS transputers to process the data in parallel. The z-by-timing method and its data aquisition have been employed successfully in recording and reconstructing tracks from electron-proton interactions in ZEUS.
Unscented Kalman Filter-Trained Neural Networks for Slip Model Prediction
Li, Zhencai; Wang, Yang; Liu, Zhen
2016-01-01
The purpose of this work is to investigate the accurate trajectory tracking control of a wheeled mobile robot (WMR) based on the slip model prediction. Generally, a nonholonomic WMR may increase the slippage risk, when traveling on outdoor unstructured terrain (such as longitudinal and lateral slippage of wheels). In order to control a WMR stably and accurately under the effect of slippage, an unscented Kalman filter and neural networks (NNs) are applied to estimate the slip model in real time. This method exploits the model approximating capabilities of nonlinear state–space NN, and the unscented Kalman filter is used to train NN’s weights online. The slip parameters can be estimated and used to predict the time series of deviation velocity, which can be used to compensate control inputs of a WMR. The results of numerical simulation show that the desired trajectory tracking control can be performed by predicting the nonlinear slip model. PMID:27467703
USAF Academy Center for Space Situational Awareness
NASA Astrophysics Data System (ADS)
Dearborn, M.; Chun, F.; Liu, J.; Tippets, R.
2011-09-01
Since the days of Sputnik, the Air Force has maintained the surveillance of space and a position catalog of objects that can be tracked by primarily ground-based radars and optical systems. Recent events in space such as the test of the Chinese anti-satellite weapon in 2007 and the collision between an Iridium and Russian Cosmo satellite have demonstrated the great need to have a more comprehensive awareness of the situation in space. Hence space situational awareness (SSA) has become an increasingly important mission to the Air Force and to the security of the United States. To help meet the need for future leaders knowledgeable about SSA, the Air Force Academy formally stood up the Center for Space Situational Awareness (CSSAR). The goal of the CSSAR is to provide a unique combination of educational operational experience as well as a world-class research capability for hands-on education in SSA. In order to meet this goal, the CSSAR is implementing an array of sensors, operations center, and associated software, and analysis tools. For example we have radar receivers for bi-static returns from the VHF space fence, a network of small aperture telescopes, AFSPC astro standards software, and Joint Mission System software. This paper focuses on the observational capabilities of our telescopes. In general, the preferable method for characterizing a satellite is to obtain a high-resolution image. However, high-resolution images from groundbased telescopes are only achievable if the satellite is large and close in range. Thus small satellites in low-earth orbits and large satellites in geosynchronous orbits are essentially unresolved in the focal plane of a ground-based telescope. Building ever larger telescopes capable of tracking fast enough for satellites at high resolution requires tremendous resources and funding. Cost is one of the reasons we decided to develop a network of small, commercially available telescopes spatially diverse and networked together. We call this the Falcon Telescope Network (FTN) and it provides the Air Force Academy, Air Force and Department of Defense with a unique capability that is essentially non-existent in today’s research and operational environment. With the FTN we will have the eventual capability to conduct simultaneous observations of satellites for non-resolved space object identification (NRSOI). We present preliminary photometric and spectroscopic observations from LEO to GEO satellites. The Air Force Academy has a unique mission to educate future leaders in the science, technology, and operations in missions critical to the Air Force and the CSSAR is stepping up to meet these requirements for the SSA mission.
NASA Technical Reports Server (NTRS)
Rozenfeld, Pawel
1993-01-01
This paper describes the selection and training process of satellite controllers and data network operators performed at INPE's Satellite Tracking and Control Center in order to prepare them for the mission operations of the INPE's first (SCD1) satellite. An overview of the ground control system and SCD1 architecture and mission is given. Different training phases are described, taking into account that the applicants had no previous knowledge of space operations requiring, therefore, a training which started from the basics.
2015-11-20
between tweets and profiles as follow, • TFIDF Score, which calculates the cosine similarity between a tweet and a profile in vector space model with...TFIDF weight of terms. Vector space model is a model which represents a document as a vector. Tweets and profiles can be expressed as vectors, ~ T = (t...gain(Tr i ) (13) where Tr is the returned tweet sets, gain() is the score func- tion for a tweet. Not interesting, spam/ junk tweets receive a gain of 0
Challenges of Integrating NASA's Space Communications Networks
NASA Technical Reports Server (NTRS)
Reinert, Jessica; Barnes, Patrick
2013-01-01
The transition to new technology, innovative ideas, and resistance to change is something that every industry experiences. Recent examples of this shift are changing to using robots in the assembly line construction of automobiles or the increasing use of robotics for medical procedures. Most often this is done with cost-reduction in mind, though ease of use for the customer is also a driver. All industries experience the push to increase efficiency of their systems; National Aeronautics and Space Administration (NASA) and the commercial space industry are no different. NASA space communication services are provided by three separately designed, developed, maintained, and operated communications networks known as the Deep Space Network (DSN), Near Earth Network (NEN) and Space Network (SN). The Space Communications and Navigation (SCaN) Program is pursuing integration of these networks and has performed a variety of architecture trade studies to determine what integration options would be the most effective in achieving a unified user mission support organization, and increase the use of common operational equipment and processes. The integration of multiple, legacy organizations and existing systems has challenges ranging from technical to cultural. The existing networks are the progeny of the very first communication and tracking capabilities implemented by NASA and the Jet Propulsion Laboratory (JPL) more than 50 years ago and have been customized to the needs of their respective user mission base. The technical challenges to integrating the networks are many, though not impossible to overcome. The three distinct networks provide the same types of services, with customizable data rates, bandwidth, frequencies, and so forth. The differences across the networks have occurred in effort to satisfy their user missions' needs. Each new requirement has made the networks more unique and harder to integrate. The cultural challenges, however, have proven to be a significant obstacle for integration. Over the past few decades of use, user missions and network personnel alike have grown accustomed to the processes by which services are provided by the NASA communications and navigation networks. The culture established by each network has created several challenges that need to be overcome in order to effectively integrate the networks. As with any change, there has been resistance, an apprehension to explore automation of existing processes, and a working environment that attempts to indirectly influence change without mandating compliance. Overcoming technical and cultural challenges is essential to successfully integrating the networks and although the challenges are numerous, the integration of the networks promises a more efficient space communications network for NASA and its customers, as well as potential long-term cost savings to the agency. This paper, Challenges of Integrating NASA Legacy Communications Networks, will provide a brief overview of the current NASA space communications networks as well as the an overview of the process implemented while performing the SCaN Trade Studies and an introduction to the requirements driving integration of the SCaN Networks. This paper will describe in detail the challenges experienced, both technical and cultural, while working with NASA space communications network-specific personnel. The paper will also cover lessons learned during the performance of architecture trade studies and provide recommendations for ways to improve the process.
Challenges of Integrating NASAs Space Communication Networks
NASA Technical Reports Server (NTRS)
Reinert, Jessica M.; Barnes, Patrick
2013-01-01
The transition to new technology, innovative ideas, and resistance to change is something that every industry experiences. Recent examples of this shift are changing to using robots in the assembly line construction of automobiles or the increasing use of robotics for medical procedures. Most often this is done with cost-reduction in mind, though ease of use for the customer is also a driver. All industries experience the push to increase efficiency of their systems; National Aeronautics and Space Administration (NASA) and the commercial space industry are no different. NASA space communication services are provided by three separately designed, developed, maintained, and operated communications networks known as the Deep Space Network (DSN), Near Earth Network (NEN) and Space Network (SN). The Space Communications and Navigation (SCaN) Program is pursuing integration of these networks and has performed a variety of architecture trade studies to determine what integration options would be the most effective in achieving a unified user mission support organization, and increase the use of common operational equipment and processes. The integration of multiple, legacy organizations and existing systems has challenges ranging from technical to cultural. The existing networks are the progeny of the very first communication and tracking capabilities implemented by NASA and the Jet Propulsion Laboratory (JPL) more than 50 years ago and have been customized to the needs of their respective user mission base. The technical challenges to integrating the networks are many, though not impossible to overcome. The three distinct networks provide the same types of services, with customizable data rates, bandwidth, frequencies, and so forth. The differences across the networks have occurred in effort to satisfy their user missions' needs. Each new requirement has made the networks more unique and harder to integrate. The cultural challenges, however, have proven to be a significant obstacle for integration. Over the past few decades of use, user missions and network personnel alike have grown accustomed to the processes by which services are provided by the NASA communications and navigation networks. The culture established by each network has created several challenges that need to be overcome in order to effectively integrate the networks. As with any change, there has been resistance, an apprehension to explore automation of existing processes, and a working environment that attempts to indirectly influence change without mandating compliance. Overcoming technical and cultural challenges is essential to successfully integrating the networks and although the challenges are numerous, the integration of the networks promises a more efficient space communications network for NASA and its customers, as well as potential long-term cost savings to the agency. This paper, Challenges of Integrating NASA Legacy Communications Networks, will provide a brief overview of the current NASA space communications networks as well as the an overview of the process implemented while performing the SCaN Trade Studies and an introduction to the requirements driving integration of the SCaN Networks. This paper will describe in detail the challenges experienced, both technical and cultural, while working with NASA space communications network-specific personnel. The paper will also cover lessons learned during the performance of architecture trade studies and provide recommendations for ways to improve the process.
USA Space Debris Environment, Operations, and Research Updates
NASA Technical Reports Server (NTRS)
Liou, J.-C.
2018-01-01
Space Missions in 2017 Earth Satellite Population Collision Avoidance Maneuvers Post mission Disposal of U.S.A. Spacecraft Space Situational Awareness (SSA) and the Space Debris Sensor (SDS) A total of 86 space launches placed more than 400 spacecraft into Earth orbits during 2017, following the trend of increase over the past decade NASA has established conjunction assessment processes for its human spaceflight and uncrewed spacecraft to avoid accidental collisions with objects tracked by the U.S. Space Surveillance Network - NASA also assists other U.S. government spacecraft owners with conjunction assessments and subsequent maneuvers The ISS has conducted 25 debris collision avoidance maneuvers since 1999 - None in 2016-2017, but an ISS visiting vehicle had one collision avoidance maneuver in 2017 During 2017 NASA executed or assisted in the execution of 21 collision avoidance maneuvers by uncrewed spacecraft - Four maneuvers were conducted to avoid debris from Fengyun-1C - Two maneuvers were conducted to avoid debris from the collision of Cosmos 2251 and Iridium 33 - One maneuver was conducted to avoid the ISS NASA has established conjunction assessment processes for its human spaceflight and uncrewed spacecraft to avoid accidental collisions with objects tracked by the U.S. Space Surveillance Network - NASA also assists other U.S. government spacecraft owners with conjunction assessments and subsequent maneuvers The ISS has conducted 25 debris collision avoidance maneuvers since 1999 - None in 2016-2017, but an ISS visiting vehicle had one collision avoidance maneuver in 2017 During 2017 NASA executed or assisted in the execution of 21 collision avoidance maneuvers by uncrewed spacecraft - Four maneuvers were conducted to avoid debris from Fengyun-1C - Two maneuvers were conducted to avoid debris from the collision of Cosmos 2251 and Iridium 33 The 2014-15 NASA Engineering and Safety Center (NESC) study on the micrometeoroid and orbital debris (MMOD) assessment for the Joint Polar Satellite System (JPSS) provided the following findings - Millimeter-sized orbital debris pose the highest penetration risk to most operational spacecraft in LEO - The most effective means to collect direct measurement data on millimetersized debris above 600 km altitude is to conduct in situ measurements - There is currently no in situ data on such small debris above 600 km altitude Since the orbital debris population follows a power-law size distribution, there are many more millimeter-sized debris than the large tracked objects - Current conjunction assessments and collision avoidance maneuvers against the tracked objects (which are typically 10 cm and larger) only address a small fraction (<1%) of the mission-ending risk from orbital debris To address the millimeter-sized debris data gap above 600 km, NASA has recently developed an innovative in situ measurement instrument - the Space Debris Sensor (SDS) - One maneuver was conducted to avoid the ISS
Deep Space Network Capabilities for Receiving Weak Probe Signals
NASA Technical Reports Server (NTRS)
Asmar, Sami; Johnston, Doug; Preston, Robert
2005-01-01
Planetary probes can encounter mission scenarios where communication is not favorable during critical maneuvers or emergencies. Launch, initial acquisition, landing, trajectory corrections, safing. Communication challenges due to sub-optimum antenna pointing or transmitted power, amplitude/frequency dynamics, etc. Prevent lock-up on signal and extraction of telemetry. Examples: loss of Mars Observer, nutation of Ulysses, Galileo antenna, Mars Pathfinder and Mars Exploration Rovers Entry, Descent, and Landing, and the Cassini Saturn Orbit Insertion. A Deep Space Network capability to handle such cases has been used successfully to receive signals to characterize the scenario. This paper will describe the capability and highlight the cases of the critical communications for the Mars rovers and Saturn Orbit Insertion and preparation radio tracking of the Huygens probe at (non-DSN) radio telescopes.
Advanced ground station architecture
NASA Technical Reports Server (NTRS)
Zillig, David; Benjamin, Ted
1994-01-01
This paper describes a new station architecture for NASA's Ground Network (GN). The architecture makes efficient use of emerging technologies to provide dramatic reductions in size, operational complexity, and operational and maintenance costs. The architecture, which is based on recent receiver work sponsored by the Office of Space Communications Advanced Systems Program, allows integration of both GN and Space Network (SN) modes of operation in the same electronics system. It is highly configurable through software and the use of charged coupled device (CCD) technology to provide a wide range of operating modes. Moreover, it affords modularity of features which are optional depending on the application. The resulting system incorporates advanced RF, digital, and remote control technology capable of introducing significant operational, performance, and cost benefits to a variety of NASA communications and tracking applications.
Minimum requirements for predictive pore-network modeling of solute transport in micromodels
NASA Astrophysics Data System (ADS)
Mehmani, Yashar; Tchelepi, Hamdi A.
2017-10-01
Pore-scale models are now an integral part of analyzing fluid dynamics in porous materials (e.g., rocks, soils, fuel cells). Pore network models (PNM) are particularly attractive due to their computational efficiency. However, quantitative predictions with PNM have not always been successful. We focus on single-phase transport of a passive tracer under advection-dominated regimes and compare PNM with high-fidelity direct numerical simulations (DNS) for a range of micromodel heterogeneities. We identify the minimum requirements for predictive PNM of transport. They are: (a) flow-based network extraction, i.e., discretizing the pore space based on the underlying velocity field, (b) a Lagrangian (particle tracking) simulation framework, and (c) accurate transfer of particles from one pore throat to the next. We develop novel network extraction and particle tracking PNM methods that meet these requirements. Moreover, we show that certain established PNM practices in the literature can result in first-order errors in modeling advection-dominated transport. They include: all Eulerian PNMs, networks extracted based on geometric metrics only, and flux-based nodal transfer probabilities. Preliminary results for a 3D sphere pack are also presented. The simulation inputs for this work are made public to serve as a benchmark for the research community.
NASA Astrophysics Data System (ADS)
GENG, T.; Zhao, Q.; Shi, C.; Shum, C.; Guo, J.; Su, X.
2013-12-01
BeiDou Navigation Satellite System (BDS) began to provide the regional open service on December 27th 2012 and will provide the global open service by the end of 2020. Compared to GPS, the space segment of BDS Regional System consists of 5 Geostationary Earth Orbit satellites (GEO), 5 Inclined Geosynchronous Orbit satellites (IGSO) and 4 Medium Earth orbit (MEO) satellites. Since 2011, IGS Multiple-GNSS Experiment (M-GEX) focuses on tracking the newly available GNSS signals. This includes all signals from the modernized satellites of the GPS and GLONASS systems, as well as signals of the BDS, Galileo and QZSS systems. Up to now, BDS satellites are tracked by around 25 stations with a variety of different antennas and receivers from different GNSS manufacture communities in M-GEX network. Meanwhile, there are 17 stations with Unicore Communications Incorporation's GPS/BDS receivers in BeiDou Experimental Tracking Stations (BETS) network by Wuhan University. In addition, 5 BDS satellites have been tracking by the International Laser Ranging Service (ILRS). BDS performance is expected to be further studied by the GNSS communities. Following an introduction of the BDS system and above different tracking network, this paper discusses the achieved BDS characterization and performance assessment. Firstly, the BDS signal and measurement quality are analyzed with different antennas and receivers in detail compared to GPS. This includes depth of coverage for satellite observation, carrier-to-noise-density ratios, code noise and multipath, carrier phase errors. Secondly, BDS Precise Orbit Determination (POD) is processed. Different arc lengths and sets of orbit parameters are tested using Position And Navigation Data Analysis software (PANDA) which is developed at the Wuhan University. GEO, IGSO and MEO satellites orbit quality will be assessed using overlap comparison, 2-day orbit fit and external validations with Satellite Laser Range (SLR). Then BDS satellites are equipped with Rubidium clocks and clocks performance are also presented. Finally, benefits of BDS processing strategies and further developments are concluded.
NASA Astrophysics Data System (ADS)
Steinschneider, S.; Ho, M.; Cook, E. R.; Lall, U.
2017-12-01
This work explores how extreme cold-season precipitation dynamics along the west coast of the United States have varied in the past under natural climate variability through an analysis of the moisture anomalies recorded by tree-ring chronologies across the coast and interior of the western U.S. Winters with high total precipitation amounts in the coastal regions are marked by a small number of extreme storms that exhibit distinct spatial patterns of precipitation across the coast and further inland. Building from this observation, this work develops a novel application of dendroclimatic evidence to explore the following questions: a) how is extreme precipitation variability expressed in a network of tree-ring chronologies; b) can this information provide insight on the space-time variability of storm tracks that cause these extreme events; and c) how can the joint variability of extreme precipitation and storm tracks be modeled to develop consistent, multi-centennial reconstructions of both? We use gridded, tree-ring based reconstructions of the summer Palmer Drought Severity Index (PDSI) extending back 500 years within the western U.S. to build and test a novel statistical framework for reconstructing the space-time variability of coastal extreme precipitation and the associated wintertime storm tracks. Within this framework, we (1) identify joint modes of variability of extreme precipitation fields and tree-ring based PDSI reconstructions; (2) relate these modes to previously identified, unique storm track patterns associated with atmospheric rivers (ARs), which are the dominant type of storm that is responsible for extreme precipitation in the region; and (3) determine latitudinal variations of landfalling ARs across the west coast and their relationship to the these joint modes. To our knowledge, this work is the first attempt to leverage information on storm track patterns stored in a network of paleoclimate proxies to improve reconstruction fidelity.
NASA Astrophysics Data System (ADS)
Steinschneider, S.; Ho, M.; Cook, E. R.; Lall, U.
2016-12-01
This work explores how extreme cold-season precipitation dynamics along the west coast of the United States have varied in the past under natural climate variability through an analysis of the moisture anomalies recorded by tree-ring chronologies across the coast and interior of the western U.S. Winters with high total precipitation amounts in the coastal regions are marked by a small number of extreme storms that exhibit distinct spatial patterns of precipitation across the coast and further inland. Building from this observation, this work develops a novel application of dendroclimatic evidence to explore the following questions: a) how is extreme precipitation variability expressed in a network of tree-ring chronologies; b) can this information provide insight on the space-time variability of storm tracks that cause these extreme events; and c) how can the joint variability of extreme precipitation and storm tracks be modeled to develop consistent, multi-centennial reconstructions of both? We use gridded, tree-ring based reconstructions of the summer Palmer Drought Severity Index (PDSI) extending back 500 years within the western U.S. to build and test a novel statistical framework for reconstructing the space-time variability of coastal extreme precipitation and the associated wintertime storm tracks. Within this framework, we (1) identify joint modes of variability of extreme precipitation fields and tree-ring based PDSI reconstructions; (2) relate these modes to previously identified, unique storm track patterns associated with atmospheric rivers (ARs), which are the dominant type of storm that is responsible for extreme precipitation in the region; and (3) determine latitudinal variations of landfalling ARs across the west coast and their relationship to the these joint modes. To our knowledge, this work is the first attempt to leverage information on storm track patterns stored in a network of paleoclimate proxies to improve reconstruction fidelity.
Network command processing system overview
NASA Technical Reports Server (NTRS)
Nam, Yon-Woo; Murphy, Lisa D.
1993-01-01
The Network Command Processing System (NCPS) developed for the National Aeronautics and Space Administration (NASA) Ground Network (GN) stations is a spacecraft command system utilizing a MULTIBUS I/68030 microprocessor. This system was developed and implemented at ground stations worldwide to provide a Project Operations Control Center (POCC) with command capability for support of spacecraft operations such as the LANDSAT, Shuttle, Tracking and Data Relay Satellite, and Nimbus-7. The NCPS consolidates multiple modulation schemes for supporting various manned/unmanned orbital platforms. The NCPS interacts with the POCC and a local operator to process configuration requests, generate modulated uplink sequences, and inform users of the ground command link status. This paper presents the system functional description, hardware description, and the software design.
Dynamic Steering for Improved Sensor Autonomy and Catalogue Maintenance
NASA Astrophysics Data System (ADS)
Hobson, T.; Gordon, N.; Clarkson, I.; Rutten, M.; Bessell, T.
A number of international agencies endeavour to maintain catalogues of the man-made resident space objects (RSOs) currently orbiting the Earth. Such catalogues are primarily created to anticipate and avoid destructive collisions involving important space assets such as manned missions and active satellites. An agencys ability to achieve this objective is dependent on the accuracy, reliability and timeliness of the information used to update its catalogue. A primary means for gathering this information is by regularly making direct observations of the tens-of-thousands of currently detectable RSOs via networks of space surveillance sensors. But operational constraints sometimes prevent accurate and timely reacquisition of all known RSOs, which can cause them to become lost to the tracking system. Furthermore, when comprehensive acquisition of new objects does not occur, these objects, in addition to the lost RSOs, result in uncorrelated detections when next observed. Due to the rising number of space-missions and the introduction of newer, more capable space-sensors, the number of uncorrelated targets is at an all-time high. The process of differentiating uncorrelated detections caused by once-acquired now-lost RSOs from newly detected RSOs is a difficult and often labour intensive task. Current methods for overcoming this challenge focus on advancements in orbit propagation and object characterisation to improve prediction accuracy and target identification. In this paper, we describe a complementary approach that incorporates increased awareness of error and failed observations into the RSO tracking solution. Our methodology employs a technique called dynamic steering to improve the autonomy and capability of a space surveillance networks steerable sensors. By co-situating each sensor with a low-cost high-performance computer, the steerable sensor can quickly and intelligently decide how to steer itself. The sensor-system uses a dedicated parallel-processing architecture to enable it to compute a high-fidelity estimate of the targets prior state error distribution in real-time. Negative information, such as when an RSO is targeted for observation but it is not observed, is incorporated to improve the likelihood of reacquiring the target when attempting to observe the target in future. The sensor is consequently capable of improving its utility by planning each observation using a sensor steering solution that is informed by all prior attempts at observing the target. We describe the practical implementation of a single experimental sensor and offer the results of recent field trials. These trials involved reacquisition and constrained Initial Orbit Determination of RSOs, a number of months after prior observation and initial detection. Using the proposed approach, the system is capable of using targeting information that would be unusable by existing space surveillance networks. The system consequently offers a means of enhancing space surveillance for SSA via increased system capacity, a higher degree of autonomy and the ability to reacquire objects whose dynamics are insufficiently modelled to cue a conventional space surveillance system for observation and tracking.
Intercontinental time and frequency transfer using a global positioning system timing receiver
NASA Technical Reports Server (NTRS)
Clements, P. A.
1983-01-01
The Deep Space Network (DSN) has a requirement to maintain knowledge of the frequency offset between DSN stations within 3 x 10 to the -13th power and time offset within 10 microseconds. It is further anticipated that in the 1987-1990 era the requirement for knowledge of time offset between DSN stations will be less than 10 nanoseconds. The Jet Propulsion Laboratory (JPL) is using the Global Positioning System (GPS) Space Vehicles, as a development project, to transfer time and frequency over intercontinental distances between stations of the DSN and between the DSN and other agencies. JPL has installed GPS timing receivers at its tracking station near Barstow, California and at its tracking station near Madrid, Spain. The details of the experiment and the data are reported. There is a discussion of the ultimate capabilities of these techniques for meeting the functional requirements of the DSN.
Time lagged ordinal partition networks for capturing dynamics of continuous dynamical systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCullough, Michael; Iu, Herbert Ho-Ching; Small, Michael
2015-05-15
We investigate a generalised version of the recently proposed ordinal partition time series to network transformation algorithm. First, we introduce a fixed time lag for the elements of each partition that is selected using techniques from traditional time delay embedding. The resulting partitions define regions in the embedding phase space that are mapped to nodes in the network space. Edges are allocated between nodes based on temporal succession thus creating a Markov chain representation of the time series. We then apply this new transformation algorithm to time series generated by the Rössler system and find that periodic dynamics translate tomore » ring structures whereas chaotic time series translate to band or tube-like structures—thereby indicating that our algorithm generates networks whose structure is sensitive to system dynamics. Furthermore, we demonstrate that simple network measures including the mean out degree and variance of out degrees can track changes in the dynamical behaviour in a manner comparable to the largest Lyapunov exponent. We also apply the same analysis to experimental time series generated by a diode resonator circuit and show that the network size, mean shortest path length, and network diameter are highly sensitive to the interior crisis captured in this particular data set.« less
NASA Astrophysics Data System (ADS)
Kaliuzhnyi, Mykola; Bushuev, Felix; Shulga, Oleksandr; Sybiryakova, Yevgeniya; Shakun, Leonid; Bezrukovs, Vladislavs; Moskalenko, Sergiy; Kulishenko, Vladislav; Malynovskyi, Yevgen
2016-12-01
An international network of passive correlation ranging of a geostationary telecommunication satellite is considered in the article. The network is developed by the RI "MAO". The network consists of five spatially separated stations of synchronized reception of DVB-S signals of digital satellite TV. The stations are located in Ukraine and Latvia. The time difference of arrival (TDOA) on the network stations of the DVB-S signals, radiated by the satellite, is a measured parameter. The results of TDOA estimation obtained by the network in May-August 2016 are presented in the article. Orbital parameters of the tracked satellite are determined using measured values of the TDOA and two models of satellite motion: the analytical model SGP4/SDP4 and the model of numerical integration of the equations of satellite motion. Both models are realized using the free low-level space dynamics library OREKIT (ORbit Extrapolation KIT).
Analysis of a Dynamic Multi-Track Airway Concept for Air Traffic Management
NASA Technical Reports Server (NTRS)
Wing, David J.; Smith, Jeremy C.; Ballin, Mark G.
2008-01-01
The Dynamic Multi-track Airways (DMA) Concept for Air Traffic Management (ATM) proposes a network of high-altitude airways constructed of multiple, closely spaced, parallel tracks designed to increase en-route capacity in high-demand airspace corridors. Segregated from non-airway operations, these multi-track airways establish high-priority traffic flow corridors along optimal routes between major terminal areas throughout the National Airspace System (NAS). Air traffic controllers transition aircraft equipped for DMA operations to DMA entry points, the aircraft use autonomous control of airspeed to fly the continuous-airspace airway and achieve an economic benefit, and controllers then transition the aircraft from the DMA exit to the terminal area. Aircraft authority within the DMA includes responsibility for spacing and/or separation from other DMA aircraft. The DMA controller is responsible for coordinating the entry and exit of traffic to and from the DMA and for traffic flow management (TFM), including adjusting DMA routing on a daily basis to account for predicted weather and wind patterns and re-routing DMAs in real time to accommodate unpredicted weather changes. However, the DMA controller is not responsible for monitoring the DMA for traffic separation. This report defines the mature state concept, explores its feasibility and performance, and identifies potential benefits. The report also discusses (a) an analysis of a single DMA, which was modeled within the NAS to assess capacity and determine the impact of a single DMA on regional sector loads and conflict potential; (b) a demand analysis, which was conducted to determine likely city-pair candidates for a nationwide DMA network and to determine the expected demand fraction; (c) two track configurations, which were modeled and analyzed for their operational characteristic; (d) software-prototype airborne capabilities developed for DMA operations research; (e) a feasibility analysis of key attributes in the concept design; (f) a near-term, transitional application of the DMA concept as a proving ground for new airborne technologies; and (g) conclusions. The analysis indicates that the operational feasibility of a national DMA network faces significant challenges, especially for interactions between DMAs and between DMA and non-DMA traffic. Provided these issues are resolved, sectors near DMAs could experience significant local capacity benefits.
NASA Technical Reports Server (NTRS)
Wong, Yen F.; Kegege, Obadiah; Schaire, Scott H.; Bussey, George; Altunc, Serhat; Zhang, Yuwen; Patel, Chitra
2016-01-01
National Aeronautics and Space Administration (NASA) CubeSat missions are expected to grow rapidly in the next decade. Higher data rate CubeSats are transitioning away from Amateur Radio bands to higher frequency bands. A high-level communication architecture for future space-to-ground CubeSat communication was proposed within NASA Goddard Space Flight Center. This architecture addresses CubeSat direct-to-ground communication, CubeSat to Tracking Data Relay Satellite System (TDRSS) communication, CubeSat constellation with Mothership direct-to-ground communication, and CubeSat Constellation with Mothership communication through K-Band Single Access (KSA).A Study has been performed to explore this communication architecture, through simulations, analyses, and identifying technologies, to develop the optimum communication concepts for CubeSat communications. This paper will present details of the simulation and analysis that include CubeSat swarm, daughter shipmother ship constellation, Near Earth Network (NEN) S and X-band direct to ground link, TDRS Multiple Access (MA) array vs Single Access mode, notional transceiverantenna configurations, ground asset configurations and Code Division Multiple Access (CDMA) signal trades for daughter mother CubeSat constellation inter-satellite crosslink. Results of Space Science X-band 10 MHz maximum achievable data rate study will be summarized. Assessment of Technology Readiness Level (TRL) of current CubeSat communication technologies capabilities will be presented. Compatibility test of the CubeSat transceiver through NEN and Space Network (SN) will be discussed. Based on the analyses, signal trade studies and technology assessments, the functional design and performance requirements as well as operation concepts for future CubeSat end-to-end communications will be derived.
Stream Tracker: Crowd sourcing and remote sensing to monitor stream flow intermittence
NASA Astrophysics Data System (ADS)
Puntenney, K.; Kampf, S. K.; Newman, G.; Lefsky, M. A.; Weber, R.; Gerlich, J.
2017-12-01
Streams that do not flow continuously in time and space support diverse aquatic life and can be critical contributors to downstream water supply. However, these intermittent streams are rarely monitored and poorly mapped. Stream Tracker is a community powered stream monitoring project that pairs citizen contributed observations of streamflow presence or absence with a network of streamflow sensors and remotely sensed data from satellites to track when and where water is flowing in intermittent stream channels. Citizens can visit sites on roads and trails to track flow and contribute their observations to the project site hosted by CitSci.org. Data can be entered using either a mobile application with offline capabilities or an online data entry portal. The sensor network provides a consistent record of streamflow and flow presence/absence across a range of elevations and drainage areas. Capacitance, resistance, and laser sensors have been deployed to determine the most reliable, low cost sensor that could be mass distributed to track streamflow intermittence over a larger number of sites. Streamflow presence or absence observations from the citizen and sensor networks are then compared to satellite imagery to improve flow detection algorithms using remotely sensed data from Landsat. In the first two months of this project, 1,287 observations have been made at 241 sites by 24 project members across northern and western Colorado.
Architecture for an integrated real-time air combat and sensor network simulation
NASA Astrophysics Data System (ADS)
Criswell, Evans A.; Rushing, John; Lin, Hong; Graves, Sara
2007-04-01
An architecture for an integrated air combat and sensor network simulation is presented. The architecture integrates two components: a parallel real-time sensor fusion and target tracking simulation, and an air combat simulation. By integrating these two simulations, it becomes possible to experiment with scenarios in which one or both sides in a battle have very large numbers of primitive passive sensors, and to assess the likely effects of those sensors on the outcome of the battle. Modern Air Power is a real-time theater-level air combat simulation that is currently being used as a part of the USAF Air and Space Basic Course (ASBC). The simulation includes a variety of scenarios from the Vietnam war to the present day, and also includes several hypothetical future scenarios. Modern Air Power includes a scenario editor, an order of battle editor, and full AI customization features that make it possible to quickly construct scenarios for any conflict of interest. The scenario editor makes it possible to place a wide variety of sensors including both high fidelity sensors such as radars, and primitive passive sensors that provide only very limited information. The parallel real-time sensor network simulation is capable of handling very large numbers of sensors on a computing cluster of modest size. It can fuse information provided by disparate sensors to detect and track targets, and produce target tracks.
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Posner, E. C. (Editor)
1987-01-01
This quarterly publication (July-September 1987) provides archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio astronomy, it reports on activities of the Deep Space Network (DSN) and its associated Ground Communications Facility (GCF) in planning, in supporting research and technology, in implementation, and in operations. This work is performed for NASA's Office of Space Tracking and Data Systems (OSTDS). In geodynamics, the publication reports on the application of radio interferometry at microwave frequencies for geodynamic measurements. In the Search for Extraterrestrial Intelligence (SETI), it reports on implementation and operations for searching the microwave spectrum. The latter two programs are performed for NASA's Office of Space Science and Applications (OSSA).
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Posner, E. C. (Editor)
1986-01-01
This quarterly publication (July-Sept. 1986) provides archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio astronomy, it reports on activities of the Deep Space Network (DSN) and its associated Ground Communications Facility (GCF) in planning, in supporting research and technology, in implementation, and in operations. This work is performed for NASA's Office of Space Tracking and Data Systems (OSTDS). In geodynamics, the publication reports on the application of radio interferometry at microwave frequencies for geodynamic measurements. In the search for extraterrestrial intelligence (SETI), it reports on implementation and operations for searching the microwave spectrum. The latter two programs are performed for NASA's Office of Space Science and Applications (OSSA).
Optimized tracking of RF carriers with phase noise, including Pioneer 10 results
NASA Technical Reports Server (NTRS)
Vilnrotter, V. A.; Hurd, W. J.; Brown, D. H.
1987-01-01
The ability to track very weak signals from distant spacecraft is limited by the phase instabilities of the received signal and of the local oscillator employed by the receiver. These instabilities ultimately limit the minimum loop bandwidth that can be used in a phase-coherent receiver, and hence limit the ratio of received carrier power to noise spectral density which can be tracked phase coherently. A method is presented for near real time estimation of the received carrier phase and additive noise spectrum, and optimization of the phase locked loop bandwidth. The method was used with the breadboard Deep Space Network (DSN) Advanced Receiver to optimize tracking of very weak signals from the Pioneer 10 spacecraft, which is now more distant that the edge of the solar system. Tracking with bandwidths of 0.1 Hz to 1.0 Hz reduces tracking signal threshold and increases carrier loop signal to noise ratio (SNR) by 5 dB to 15 dB compared to the 3 Hz bandwidth of the receivers now used operationally in the DSN. This will enable the DSN to track Pioneer 10 until its power sources fails near the end of the century.
Space Weather Services of Korea
NASA Astrophysics Data System (ADS)
Yoon, K.; Hong, S.; Park, S.; Kim, Y. Y.; Wi, G.
2015-12-01
The Korean Space Weather Center (KSWC) of the National Radio Research Agency (RRA) is a government agency which is the official source of space weather information for Korean Government and the primary action agency of emergency measure to severe space weather condition. KSWC's main role is providing alerts, watches, and forecasts in order to minimize the space weather impacts on both of public and commercial sectors of satellites, aviation, communications, navigations, power grids, and etc. KSWC is also in charge of monitoring the space weather condition and conducting research and development for its main role of space weather operation in Korea. In this study, we will present KSWC's recent efforts on development of application-oriented space weather research products and services on user needs, and introduce new international collaborative projects, such as IPS-Driven Enlil model, global network of DSCOVR and STEREO satellites tracking, and ARMAS (Automated Radiation Measurement for Aviation Safety).
Space Weather Services of Korea
NASA Astrophysics Data System (ADS)
Yoon, KiChang; Kim, Jae-Hun; Kim, Young Yun; Kwon, Yongki; Wi, Gwan-sik
2016-07-01
The Korean Space Weather Center (KSWC) of the National Radio Research Agency (RRA) is a government agency which is the official source of space weather information for Korean Government and the primary action agency of emergency measure to severe space weather condition. KSWC's main role is providing alerts, watches, and forecasts in order to minimize the space weather impacts on both of public and commercial sectors of satellites, aviation, communications, navigations, power grids, and etc. KSWC is also in charge of monitoring the space weather condition and conducting research and development for its main role of space weather operation in Korea. In this study, we will present KSWC's recent efforts on development of application-oriented space weather research products and services on user needs, and introduce new international collaborative projects, such as IPS-Driven Enlil model, DREAM model estimating electron in satellite orbit, global network of DSCOVR and STEREO satellites tracking, and ARMAS (Automated Radiation Measurement for Aviation Safety).
Space Weather Services of Korea
NASA Astrophysics Data System (ADS)
Yoon, K.; Hong, S.; Jangsuk, C.; Dong Kyu, K.; Jinyee, C.; Yeongoh, C.
2016-12-01
The Korean Space Weather Center (KSWC) of the National Radio Research Agency (RRA) is a government agency which is the official source of space weather information for Korean Government and the primary action agency of emergency measure to severe space weather condition. KSWC's main role is providing alerts, watches, and forecasts in order to minimize the space weather impacts on both of public and commercial sectors of satellites, aviation, communications, navigations, power grids, and etc. KSWC is also in charge of monitoring the space weather condition and conducting research and development for its main role of space weather operation in Korea. In this study, we will present KSWC's recent efforts on development of application-oriented space weather research products and services on user needs, and introduce new international collaborative projects, such as IPS-Driven Enlil model, DREAM model estimating electron in satellite orbit, global network of DSCOVR and STEREO satellites tracking, and ARMAS (Automated Radiation Measurement for Aviation Safety).
Upside-down: Perceived space affects object-based attention.
Papenmeier, Frank; Meyerhoff, Hauke S; Brockhoff, Alisa; Jahn, Georg; Huff, Markus
2017-07-01
Object-based attention influences the subjective metrics of surrounding space. However, does perceived space influence object-based attention, as well? We used an attentive tracking task that required sustained object-based attention while objects moved within a tracking space. We manipulated perceived space through the availability of depth cues and varied the orientation of the tracking space. When rich depth cues were available (appearance of a voluminous tracking space), the upside-down orientation of the tracking space (objects appeared to move high on a ceiling) caused a pronounced impairment of tracking performance compared with an upright orientation of the tracking space (objects appeared to move on a floor plane). In contrast, this was not the case when reduced depth cues were available (appearance of a flat tracking space). With a preregistered second experiment, we showed that those effects were driven by scene-based depth cues and not object-based depth cues. We conclude that perceived space affects object-based attention and that object-based attention and perceived space are closely interlinked. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Evolution of the Lunar Network
NASA Technical Reports Server (NTRS)
Gal-Edd, Jonathan; Fatig, Curtis C.; Miller, Ron
2008-01-01
The National Aeronautics and Space Administration (NASA) is planning to upgrade its network Infrastructure to support missions for the 21st century. The first step is to increase the data rate provided to science missions to at least the 100 megabits per second (Mbps) range. This is under way, using Ka-band 26 Gigahertz (GHz), erecting an 18-meter antenna for the Lunar Reconnaissance Orbiter (LRO), and the planned upgrade of the Deep Space Network (DSN) 34-meter network to support the James Webb Space Telescope (JWST). The next step is the support of manned missions to the Moon and beyond. Establishing an outpost with several activities such as rovers, colonization, and observatories, is better achieved by using a network configuration rather than the current method of point-to-point communication. Another challenge associated with the Moon is communication coverage with the Earth. The Moon's South Pole, targeted for human habitat and exploration, is obscured from Earth view for half of the 28-day lunar cycle and requires the use of lunar relay satellites to provide coverage when there is no direct view of the Earth. The future NASA and Constellation network architecture is described in the Space Communications Architecture Working Group (SCAWG) Report. The Space Communications and Navigation (SCAN) Constellation Integration Project (SCIP) is responsible for coordinating Constellation requirements and has assigned the responsibility for implementing these requirements to the existing NASA communication providers: DSN, Space Network (SN), Ground Network (GN) and the NASA Integrated Services Network (NISN). The SCAWG Report provides a future architecture but does not provide implementation details. The architecture calls for a Netcentric system, using hundreds of 12-meter antennas, a ground antenna array, and a relay network around the Moon. The report did not use cost as a variable in determining the feasibility of this approach. As part of the SCIP Mission Concept Review and the second iteration of the Lunar Architecture Team (LAT), the focus is on cost, as well as communication coverage using operational scenarios. This approach maximizes use of existing assets and adds capability in small increments. This paper addresses architecture decisions such as the Radio Frequency (RF) signal and network (Netcentric) decisions that need to be made and the difficulty of implementing them into the existing Space Network and DSN. It discusses the evolution of the lunar system and describes its components: Tracking and Data Relay Satellite System (TDRSS), Earth-based ground stations, Lunar Relay, and surface systems.
Neural network tracking and extension of positive tracking periods
NASA Technical Reports Server (NTRS)
Hanan, Jay C.; Chao, Tien-Hsin; Moreels, Pierre
2004-01-01
Feature detectors have been considered for the role of supplying additional information to a neural network tracker. The feature detector focuses on areas of the image with significant information. Basically, if a picture says a thousand words, the feature detectors are looking for the key phrases (keypoints). These keypoints are rotationally invariant and may be matched across frames. Application of these advanced feature detectors to the neural network tracking system at JPL has promising potential. As part of an ongoing program, an advanced feature detector was tested for augmentation of a neural network based tracker. The advance feature detector extended tracking periods in test sequences including aircraft tracking, rover tracking, and simulated Martian landing. Future directions of research are also discussed.
Neural network tracking and extension of positive tracking periods
NASA Astrophysics Data System (ADS)
Hanan, Jay C.; Chao, Tien-Hsin; Moreels, Pierre
2004-04-01
Feature detectors have been considered for the role of supplying additional information to a neural network tracker. The feature detector focuses on areas of the image with significant information. Basically, if a picture says a thousand words, the feature detectors are looking for the key phrases (keypoints). These keypoints are rotationally invariant and may be matched across frames. Application of these advanced feature detectors to the neural network tracking system at JPL has promising potential. As part of an ongoing program, an advanced feature detector was tested for augmentation of a neural network based tracker. The advance feature detector extended tracking periods in test sequences including aircraft tracking, rover tracking, and simulated Martian landing. Future directions of research are also discussed.
Flow-rate control for managing communications in tracking and surveillance networks
NASA Astrophysics Data System (ADS)
Miller, Scott A.; Chong, Edwin K. P.
2007-09-01
This paper describes a primal-dual distributed algorithm for managing communications in a bandwidth-limited sensor network for tracking and surveillance. The algorithm possesses some scale-invariance properties and adaptive gains that make it more practical for applications such as tracking where the conditions change over time. A simulation study comparing this algorithm with a priority-queue-based approach in a network tracking scenario shows significant improvement in the resulting track quality when using flow control to manage communications.
NASA Astrophysics Data System (ADS)
Kuznetsova, M. M.; Heynderickz, D.; Grande, M.; Opgenoorth, H. J.
2017-12-01
The COSPAR/ILWS roadmap on space weather published in 2015 (Advances in Space Research, 2015: DOI: 10.1016/j.asr.2015.03.023) prioritizes steps to be taken to advance understanding of space environment phenomena and to improve space weather forecasting capabilities. General recommendations include development of a comprehensive space environment specification, assessment of the state of the field on a 5-yr basis, standardization of meta-data and product metrics. To facilitate progress towards roadmap goals there is a need for a global hub for collaborative space weather capabilities assessment and development that brings together research, engineering, operational, educational, and end-user communities. The COSPAR Panel on Space Weather is aiming to build upon past progress and to facilitate coordination of established and new international space weather research and development initiatives. Keys to the success include creating flexible, collaborative, inclusive environment and engaging motivated groups and individuals committed to active participation in international multi-disciplinary teams focused on topics addressing emerging needs and challenges in the rapidly growing field of space weather. Near term focus includes comprehensive assessment of the state of the field and establishing an internationally recognized process to quantify and track progress over time, development of a global network of distributed web-based resources and interconnected interactive services required for space weather research, analysis, forecasting and education.
NASA Astrophysics Data System (ADS)
Curkendall, D. W.; Border, J. S.
2013-05-01
Doppler and range data alone supported navigation for the earliest missions into deep space. Though extremely precise in line-of-sight coordinates, the navigation system built on these data had a weakness for determining the spacecraft declination component. To address this, the Deep Space Network (DSN) developed the capability for very long baseline interferometry measurements beginning in the late 1970s. Both the implementation of the interferometric system and the importance of such measurements to flight projects have evolved significantly over the past three decades. Innovations introduced through research and development programs have led to continuous improvements in performance. Today's system provides data approaching one-nanoradian accuracy with reliability of 98 percent. This article provides an overview of the development and use of interferometric tracking techniques in the DSN starting with the Viking era and continuing with a description of the current system and its planned use to support interplanetary cruise navigation of the Mars Science Laboratory spacecraft.
Report on the survey for electrostatic discharges on Mars using NASA's Deep Space Network (DSN)
NASA Astrophysics Data System (ADS)
Arabshahi, S.; Majid, W.; Geldzahler, B.; Kocz, J.; Schulter, T.; White, L.
2017-12-01
Mars atmosphere has strong dust activity. It is suggested that the larger regional storms are capable of producing electric fields large enough to initiate electrostatic discharges. The storms have charging process similar to terrestrial dust devils and have hot cores and complicated vortex winds similar to terrestrial thunderstorms. However, due to uncertainties in our understanding of the electrical environment of the storms and absence of related in-situ measurements, the existence (or non-existence) of such electrostatic discharges on the planet is yet to be confirmed. Knowing about the electrical activity on Mars is essential for future human explorations of the planet. We have recently launched a long-term monitoring campaign at NASA's Madrid Deep Space Communication Complex (MDSCC) to search for powerful discharges on Mars. The search occurs during routine tracking of Mars orbiting spacecraft by Deep Space Network (DSN) radio telescope. In this presentation, we will report on the result of processing and analysis of the data from the first six months of our campaign.
Empirical Accuracies of U.S. Space Surveillance Network Reentry Predictions
NASA Technical Reports Server (NTRS)
Johnson, Nicholas L.
2008-01-01
The U.S. Space Surveillance Network (SSN) issues formal satellite reentry predictions for objects which have the potential for generating debris which could pose a hazard to people or property on Earth. These prognostications, known as Tracking and Impact Prediction (TIP) messages, are nominally distributed at daily intervals beginning four days prior to the anticipated reentry and several times during the final 24 hours in orbit. The accuracy of these messages depends on the nature of the satellite s orbit, the characteristics of the space vehicle, solar activity, and many other factors. Despite the many influences on the time and the location of reentry, a useful assessment of the accuracies of TIP messages can be derived and compared with the official accuracies included with each TIP message. This paper summarizes the results of a study of numerous uncontrolled reentries of spacecraft and rocket bodies from nearly circular orbits over a span of several years. Insights are provided into the empirical accuracies and utility of SSN TIP messages.
Development of metamodels for predicting aerosol dispersion in ventilated spaces
NASA Astrophysics Data System (ADS)
Hoque, Shamia; Farouk, Bakhtier; Haas, Charles N.
2011-04-01
Artificial neural network (ANN) based metamodels were developed to describe the relationship between the design variables and their effects on the dispersion of aerosols in a ventilated space. A Hammersley sequence sampling (HSS) technique was employed to efficiently explore the multi-parameter design space and to build numerical simulation scenarios. A detailed computational fluid dynamics (CFD) model was applied to simulate these scenarios. The results derived from the CFD simulations were used to train and test the metamodels. Feed forward ANN's were developed to map the relationship between the inputs and the outputs. The predictive ability of the neural network based metamodels was compared to linear and quadratic metamodels also derived from the same CFD simulation results. The ANN based metamodel performed well in predicting the independent data sets including data generated at the boundaries. Sensitivity analysis showed that particle tracking time to residence time and the location of input and output with relation to the height of the room had more impact than the other dimensionless groups on particle behavior.
Dynamics and control of robot for capturing objects in space
NASA Astrophysics Data System (ADS)
Huang, Panfeng
Space robots are expected to perform intricate tasks in future space services, such as satellite maintenance, refueling, and replacing the orbital replacement unit (ORU). To realize these missions, the capturing operation may not be avoided. Such operations will encounter some challenges because space robots have some unique characteristics unfound on ground-based robots, such as, dynamic singularities, dynamic coupling between manipulator and space base, limited energy supply and working without a fixed base, and so on. In addition, since contacts and impacts may not be avoided during capturing operation. Therefore, dynamics and control problems of space robot for capturing objects are significant research topics if the robots are to be deployed for the space services. A typical servicing operation mainly includes three phases: capturing the object, berthing and docking the object, then repairing the target. Therefore, this thesis will focus on resolving some challenging problems during capturing the object, berthing and docking, and so on. In this thesis, I study and analyze the dynamics and control problems of space robot for capturing objects. This work has potential impact in space robotic applications. I first study the contact and impact dynamics of space robot and objects. I specifically focus on analyzing the impact dynamics and mapping the relationship of influence and speed. Then, I develop the fundamental theory for planning the minimum-collision based trajectory of space robot and designing the configuration of space robot at the moment of capture. To compensate for the attitude of the space base during the capturing approach operation, a new balance control concept which can effectively balance the attitude of the space base using the dynamic couplings is developed. The developed balance control concept helps to understand of the nature of space dynamic coupling, and can be readily applied to compensate or minimize the disturbance to the space base. After capturing the object, the space robot must complete the following two tasks: one is to berth the object, and the other is to re-orientate the attitude of the whole robot system for communication and power supply. Therefore, I propose a method to accomplish these two tasks simultaneously using manipulator motion only. The ultimate goal of space services is to realize the capture and manipulation autonomously. Therefore, I propose an affective approach based on learning human skill to track and capture the objects automatically in space. With human-teaching demonstration, the space robot is able to learn and abstract human tracking and capturing skill using an efficient neural-network learning architecture that combines flexible Cascade Neural Networks with Node Decoupled Extended Kalman Filtering (CNN-NDEKF). The simulation results attest that this approach is useful and feasible in tracking trajectory planning and capturing of space robot. Finally I propose a novel approach based on Genetic Algorithms (GAs) to optimize the approach trajectory of space robots in order to realize effective and stable operations. I complete the minimum-torque path planning in order to save the limited energy in space, and design the minimum jerk trajectory for the stabilization of the space manipulator and its space base. These optimal algorithms are very important and useful for the application of space robot.
Magnetospheric Multiscale (MMS) Mission Commissioning Phase Orbit Determination Error Analysis
NASA Technical Reports Server (NTRS)
Chung, Lauren R.; Novak, Stefan; Long, Anne; Gramling, Cheryl
2009-01-01
The Magnetospheric MultiScale (MMS) mission commissioning phase starts in a 185 km altitude x 12 Earth radii (RE) injection orbit and lasts until the Phase 1 mission orbits and orientation to the Earth-Sun li ne are achieved. During a limited time period in the early part of co mmissioning, five maneuvers are performed to raise the perigee radius to 1.2 R E, with a maneuver every other apogee. The current baseline is for the Goddard Space Flight Center Flight Dynamics Facility to p rovide MMS orbit determination support during the early commissioning phase using all available two-way range and Doppler tracking from bo th the Deep Space Network and Space Network. This paper summarizes th e results from a linear covariance analysis to determine the type and amount of tracking data required to accurately estimate the spacecraf t state, plan each perigee raising maneuver, and support thruster cal ibration during this phase. The primary focus of this study is the na vigation accuracy required to plan the first and the final perigee ra ising maneuvers. Absolute and relative position and velocity error hi stories are generated for all cases and summarized in terms of the ma ximum root-sum-square consider and measurement noise error contributi ons over the definitive and predictive arcs and at discrete times inc luding the maneuver planning and execution times. Details of the meth odology, orbital characteristics, maneuver timeline, error models, and error sensitivities are provided.
NASA Astrophysics Data System (ADS)
Ladd, D.; Reeves, R.; Rumi, E.; Trethewey, M.; Fortescue, M.; Appleby, G.; Wilkinson, M.; Sherwood, R.; Ash, A.; Cooper, C.; Rayfield, P.
The Science and Technology Facilities Council (STFC), Control Loop Concepts Limited (CL2), Natural Environment Research Council (NERC) and Defence Science and Technology Laboratory (DSTL), have recently participated in a campaign of satellite observations, with both radar and optical sensors, in order to demonstrate an initial network concept that enhances the value of coordinated observations. STFC and CL2 have developed a Space Surveillance and Tracking (SST) server/client architecture to slave one sensor to another. The concept was originated to enable the Chilbolton radar (an S-band radar on a 25 m diameter fully-steerable dish antenna called CASTR – Chilbolton Advanced Satellite Tracking Radar) which does not have an auto-track function to follow an object based on position data streamed from another cueing sensor. The original motivation for this was to enable tracking during re-entry of ATV-5, a highly manoeuvrable ISS re-supply vessel. The architecture has been designed to be extensible and allows the interface of both optical and radar sensors which may be geographically separated. Connectivity between the sensors is TCP/IP over the internet. The data transferred between the sensors is translated into an Earth centred frame of reference to accommodate the difference in location, and time-stamping and filtering are applied to cope with latency. The server can accept connections from multiple clients, and the operator can switch between the different clients. This architecture is inherently robust and will enable graceful degradation should parts of the system be unavailable. A demonstration was conducted in 2016 whereby a small telescope connected to an agile mount (an EO tracker known as COATS - Chilbolton Optical Advanced Tracking System) located 50m away from the radar at Chilbolton, autonomously tracked several objects and fed the look angle data into a client. CASTR, slaved to COATS through the server followed and successfully detected the objects. In 2017, the baseline was extended to 135 km by developing a client for the SLR (satellite laser ranger) telescope at the Space Geodesy Facility, Herstmonceux. Trials have already demonstrated that CASTR can accurately track the object using the position data being fed from the SLR.
Orbital Debris Research in the United States
NASA Technical Reports Server (NTRS)
Stansbery, Gene
2009-01-01
The presentation includes information about growth of the satellite population, the U.S. Space Surveillance Network, tracking and catalog maintenance, Haystack and HAX radar observation, Goldstone radar, the Michigan Orbital Debris Survey Telescope (MODEST), spacecraft surface examinations and sample of space shuttle impacts. GEO/LEO observations from Kwajalein Atoll, NASA s Orbital Debris Engineering Model (ORDEM2008), a LEO-to-GEO Environment Debris Model (LEGEND), Debris Assessment Software (DAS) 2.0, the NASA/JSC BUMPER-II meteoroid/debris threat assessment code, satellite reentry risk assessment, optical size and shape determination, work on more complicated fragments, and spectral studies.
1990-11-30
Simonotto Universita’ di Genova Learning from Natural Selection in an Artificial Environment ...................................................... 1...11-92 Ethem Alpaydin Swiss Federal Institute of Technology Framework for Distributed Artificial Neural System Simulation...11-129 David Y. Fong Lockheed Missiles and Space Co. and Christopher Tocci Raytheon Co. Simulation of Artificial Neural
The Automated Conflict Resolution System (ACRS)
NASA Technical Reports Server (NTRS)
Kaplan, Ted; Musliner, Andrew; Wampler, David
1993-01-01
The Automated Conflict Resolution System (ACRS) is a mission-current scheduling aid that predicts periods of mutual interference when two or more orbiting spacecraft are scheduled to communicate with the same Tracking and Data Relay Satellite (TDRS) at the same time. The mutual interference predicted has the potential to degrade or prevent communications. Thus the ACRS system is a useful tool for aiding in the scheduling of Space Network (SN) communications.
The Automated Conflict Resolution System (ACRS)
NASA Astrophysics Data System (ADS)
Kaplan, Ted; Musliner, Andrew; Wampler, David
1993-11-01
The Automated Conflict Resolution System (ACRS) is a mission-current scheduling aid that predicts periods of mutual interference when two or more orbiting spacecraft are scheduled to communicate with the same Tracking and Data Relay Satellite (TDRS) at the same time. The mutual interference predicted has the potential to degrade or prevent communications. Thus the ACRS system is a useful tool for aiding in the scheduling of Space Network (SN) communications.
NASA Technical Reports Server (NTRS)
1974-01-01
The significant management and technical aspects of the JPL Project to develop and implement a 64-meter-diameter antenna at the Goldstone Deep Space Communications Complex in California, which was the first of the Advanced Antenna Systems of the National Aeronautics and Space Administration/Jet Propulsion Laboratory Deep Space Network are described. The original need foreseen for a large-diameter antenna to accomplish communication and tracking support of NASA's solar system exploration program is reviewed, and the translation of those needs into the technical specification of an appropriate ground station antenna is described. The antenna project is delineated by phases to show the key technical and managerial skills and the technical facility resources involved. There is a brief engineering description of the antenna and its closely related facilities. Some difficult and interesting engineering problems, then at the state-of-the-art level, which were met in the accomplishment of the Project, are described. The key performance characteristics of the antenna, in relation to the original specifications and the methods of their determination, are stated.
Ambiguous data association and entangled attribute estimation
NASA Astrophysics Data System (ADS)
Trawick, David J.; Du Toit, Philip C.; Paffenroth, Randy C.; Norgard, Gregory J.
2012-05-01
This paper presents an approach to attribute estimation incorporating data association ambiguity. In modern tracking systems, time pressures often leave all but the most likely data association alternatives unexplored, possibly producing track inaccuracies. Numerica's Bayesian Network Tracking Database, a key part of its Tracker Adjunct Processor, captures and manages the data association ambiguity for further analysis and possible ambiguity reduction/resolution using subsequent data. Attributes are non-kinematic discrete sample space sensor data. They may be as distinctive as aircraft ID, or as broad as friend or foe. Attribute data may provide improvements to data association by a process known as Attribute Aided Tracking (AAT). Indeed, certain uniquely identifying attributes (e.g. aircraft ID), when continually reported, can be used to define data association (tracks are the collections of observations with the same ID). However, attribute data arriving infrequently, combined with erroneous choices from ambiguous data associations, can produce incorrect attribute and kinematic state estimation. Ambiguous data associations define the tracks that are entangled with each other. Attribute data observed on an entangled track then modify the attribute estimates on all tracks entangled with it. For example, if a red track and a blue track pass through a region of data association ambiguity, these tracks become entangled. Later red observations on one entangled track make the other track more blue, and reduce the data association ambiguity. Methods for this analysis have been derived and implemented for efficient forward filtering and forensic analysis.
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Niskar, Amanda Sue
2005-01-01
The Centers for Disease Control and Prevention (CDC) is coordinating HELIX- Atlanta to provide information regarding the five-county Metropolitan Atlanta Area (Clayton, Cobb, DeKalb, Fulton, and Gwinett) via a network of integrated environmental monitoring and public health data systems so that all sectors can take action to prevent and control environmentally related health effects. The HELIX-Atlanta Network is a tool to access interoperable information systems with optional information technology linkage functionality driven by scientific rationale. HELIX-Atlanta is a collaborative effort with local, state, federal, and academic partners, including the NASA Marshall Space Flight Center. The HELIX-Atlanta Partners identified the following HELIX-Atlanta initial focus areas: childhood lead poisoning, short-latency cancers, developmental disabilities, birth defects, vital records, respiratory health, age of housing, remote sensing data, and environmental monitoring, HELIX-Atlanta Partners identified and evaluated information systems containing information on the above focus areas. The information system evaluations resulted in recommendations for what resources would be needed to interoperate selected information systems in compliance with the CDC Public Health Information Network (PHIN). This presentation will discuss the collaborative process of building a network that links health and environment data for information exchange, including NASA remote sensing data, for use in HELIX-Atlanta.
NASA Technical Reports Server (NTRS)
Jennings, Esther H.; Nguyen, Sam P.; Wang, Shin-Ywan; Woo, Simon S.
2008-01-01
NASA's planned Lunar missions will involve multiple NASA centers where each participating center has a specific role and specialization. In this vision, the Constellation program (CxP)'s Distributed System Integration Laboratories (DSIL) architecture consist of multiple System Integration Labs (SILs), with simulators, emulators, testlabs and control centers interacting with each other over a broadband network to perform test and verification for mission scenarios. To support the end-to-end simulation and emulation effort of NASA' exploration initiatives, different NASA centers are interconnected to participate in distributed simulations. Currently, DSIL has interconnections among the following NASA centers: Johnson Space Center (JSC), Kennedy Space Center (KSC), Marshall Space Flight Center (MSFC) and Jet Propulsion Laboratory (JPL). Through interconnections and interactions among different NASA centers, critical resources and data can be shared, while independent simulations can be performed simultaneously at different NASA locations, to effectively utilize the simulation and emulation capabilities at each center. Furthermore, the development of DSIL can maximally leverage the existing project simulation and testing plans. In this work, we describe the specific role and development activities at JPL for Space Communications and Navigation Network (SCaN) simulator using the Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) tool to simulate communications effects among mission assets. Using MACHETE, different space network configurations among spacecrafts and ground systems of various parameter sets can be simulated. Data that is necessary for tracking, navigation, and guidance of spacecrafts such as Crew Exploration Vehicle (CEV), Crew Launch Vehicle (CLV), and Lunar Relay Satellite (LRS) and orbit calculation data are disseminated to different NASA centers and updated periodically using the High Level Architecture (HLA). In addition, the performance of DSIL under different traffic loads with different mix of data and priorities are evaluated.
The design and performance of the ZEUS Central Tracking Detector z-by-timing system
NASA Astrophysics Data System (ADS)
Bailey, D. S.; Foster, B.; Heath, G. P.; Morgado, C. J. S.; Harnew, N.; Khatri, T.; Lancaster, M.; McArthur, I. C.; McFall, J. D.; Nash, J.; Shield, P. D.; Topp-Jorgensen, S.; Wilson, F. F.; Carter, R. C.; Jeffs, M. D.; Milborrow, R.; Morrissey, M. C.; Phillips, D. A.; Quinton, S. P. H.; Westlake, G.; White, D. J.; Lane, J. B.; Nixon, G.; Postranecky, M.
1997-02-01
The ZEUS Central Tracking Detector utilizes a time difference measurement to provide a fast determination of the z coordinate of each hit. The z-by-timing measurement is achieved by using a Time-to-Amplitude Converter which has an intrinsic timing resolution of 36 ps, has pipelined readout, and has a multihit capability of 48 ns. In order to maintain the required sub-nanosecond timing accuracy, the technique incorporates an automated self-calibration system. The readout of the z-by-timing data utilizes a fully customized timing control system which runs synchronously with the HERA beam-crossing clock, and a data acquisition system implemented on a network of Transputers. Three dimensional space-points provided by the z-by-timing system are used as input to all three levels of the ZEUS trigger and for offline track reconstruction. The average z resolution is determined to be 4.4 cm for multi-track events from positron-proton collisions in the ZEUS detector.
Goddard Monitors Orions EFT-1 Test Flight
2017-12-08
NASA's Goddard Space Flight Center in Greenbelt, Maryland, played a critical role in the test flight of the #Orion spacecraft on Dec. 5, 2014. Goddard's Networks Integration Center, pictured here, coordinated the communications support for both the Orion vehicle and the Delta IV rocket, ensuring complete communications coverage through NASA's Space Network and Tracking and Data Relay Satellite. The Orion spacecraft lifted off from Cape Canaveral Air Force Station's Space Launch Complex 37 in Florida at 7:05 a.m. EST. The Orion capsule splashed down about four and a half hours later, at 11:29 a.m. EST, about 600 miles off the coast of San Diego, California. While no humans were aboard Orion for this test flight, in the future, Orion will allow humans to travel deeper in to space than ever before, including an asteroid and Mars. Credit: NASA/Goddard/Amber Jacobson Credit: NASA/Goddard/Amber Jacobson NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
The Influence of Academic Tracking on Adolescent Social Networks
ERIC Educational Resources Information Center
Fisher, Kim W.; Shogren, Karrie A.
2016-01-01
This study examined adolescents' social capital, through social network analyses (i.e., ego network analyses), in two high schools where students were placed into academic tracks adopted by the schools and shaped by disability status (i.e., general education, co-taught, segregated special education classrooms). The impact of academic tracks, as…
Foong, Shaohui; Sun, Zhenglong
2016-08-12
In this paper, a novel magnetic field-based sensing system employing statistically optimized concurrent multiple sensor outputs for precise field-position association and localization is presented. This method capitalizes on the independence between simultaneous spatial field measurements at multiple locations to induce unique correspondences between field and position. This single-source-multi-sensor configuration is able to achieve accurate and precise localization and tracking of translational motion without contact over large travel distances for feedback control. Principal component analysis (PCA) is used as a pseudo-linear filter to optimally reduce the dimensions of the multi-sensor output space for computationally efficient field-position mapping with artificial neural networks (ANNs). Numerical simulations are employed to investigate the effects of geometric parameters and Gaussian noise corruption on PCA assisted ANN mapping performance. Using a 9-sensor network, the sensing accuracy and closed-loop tracking performance of the proposed optimal field-based sensing system is experimentally evaluated on a linear actuator with a significantly more expensive optical encoder as a comparison.
Conceptual Design of a Communication-Based Deep Space Navigation Network
NASA Technical Reports Server (NTRS)
Anzalone, Evan J.; Chuang, C. H.
2012-01-01
As the need grows for increased autonomy and position knowledge accuracy to support missions beyond Earth orbit, engineers must push and develop more advanced navigation sensors and systems that operate independent of Earth-based analysis and processing. Several spacecraft are approaching this problem using inter-spacecraft radiometric tracking and onboard autonomous optical navigation methods. This paper proposes an alternative implementation to aid in spacecraft position fixing. The proposed method Network-Based Navigation technique takes advantage of the communication data being sent between spacecraft and between spacecraft and ground control to embed navigation information. The navigation system uses these packets to provide navigation estimates to an onboard navigation filter to augment traditional ground-based radiometric tracking techniques. As opposed to using digital signal measurements to capture inherent information of the transmitted signal itself, this method relies on the embedded navigation packet headers to calculate a navigation estimate. This method is heavily dependent on clock accuracy and the initial results show the promising performance of a notional system.
Convolutional networks for vehicle track segmentation
NASA Astrophysics Data System (ADS)
Quach, Tu-Thach
2017-10-01
Existing methods to detect vehicle tracks in coherent change detection images, a product of combining two synthetic aperture radar images taken at different times of the same scene, rely on simple and fast models to label track pixels. These models, however, are unable to capture natural track features, such as continuity and parallelism. More powerful but computationally expensive models can be used in offline settings. We present an approach that uses dilated convolutional networks consisting of a series of 3×3 convolutions to segment vehicle tracks. The design of our networks considers the fact that remote sensing applications tend to operate in low power and have limited training data. As a result, we aim for small and efficient networks that can be trained end-to-end to learn natural track features entirely from limited training data. We demonstrate that our six-layer network, trained on just 90 images, is computationally efficient and improves the F-score on a standard dataset to 0.992, up from 0.959 obtained by the current state-of-the-art method.
Gravity model improvement using the DORIS tracking system on the SPOT 2 satellite
NASA Technical Reports Server (NTRS)
Nerem, R. S.; Lerch, F. J.; Williamson, R. G.; Klosko, S. M.; Robbins, J. W.; Patel, G. B.
1994-01-01
A high-precision radiometric satellite tracking system, Doppler Orbitography and Radio-positioning Integrated by Satellite system (DORIS), has recently been developed by the French space agency, Centre National d'Etudes Spatiales (CNES). DORIS was designed to provide tracking support for missions such as the joint United States/French TOPEX/Poseidon. As part of the flight testing process, a DORIS package was flown on the French SPOT 2 satellite. A substantial quantity of geodetic quality tracking data was obtained on SPOT 2 from an extensive international DORIS tracking network. These data were analyzed to assess their accuracy and to evaluate the gravitational modeling enhancements provided by these data in combination with the Goddard Earth Model-T3 (GEM-T3) gravitational model. These observations have noise levels of 0.4 to 0.5 mm/s, with few residual systematic effects. Although the SPOT 2 satellite experiences high atmospheric drag forces, the precision and global coverage of the DORIS tracking data have enabled more extensive orbit parameterization to mitigate these effects. As a result, the SPOT 2 orbital errors have been reduced to an estimated radial accuracy in the 10-20 cm RMS range. The addition of these data, which encompass many regions heretofore lacking in precision satellite tracking, has significantly improved GEM-T3 and allowed greatly improved orbit accuracies for Sun-synchronous satellites like SPOT 2 (such as ERS 1 and EOS). Comparison of the ensuing gravity model with other contemporary fields (GRIM-4C2, TEG2B, and OSU91A) provides a means to assess the current state of knowledge of the Earth's gravity field. Thus, the DORIS experiment on SPOT 2 has provided a strong basis for evaluating this new orbit tracking technology and has demonstrated the important contribution of the DORIS network to the success of the TOPEX/Poseidon mission.
Hybrid Analog/Digital Receiver
NASA Technical Reports Server (NTRS)
Brown, D. H.; Hurd, W. J.
1989-01-01
Advanced hybrid analog/digital receiver processes intermediate-frequency (IF) signals carrying digital data in form of phase modulation. Uses IF sampling and digital phase-locked loops to track carrier and subcarrier signals and to synchronize data symbols. Consists of three modules: IF assembly, signal-processing assembly, and test-signal assembly. Intended for use in Deep Space Network, but presumably basic design modified for such terrestrial uses as communications or laboratory instrumentation where signals weak and/or noise strong.
Covariance and Uncertainty Realism in Space Surveillance and Tracking
2016-06-27
control infrastructure , there are also further complications in the implementation of centralized scheduling of some of the SSN sensors due to their...this data however. 5.8.3 Long-Term Long-term developments of JSpOC processing, net-centric interfaces and sensor backends will provide the...with particle filters for mobile sensor network control. In Proceedings of the 45th IEEE Conference on Decision and Control, pages 1019–1024, December
NASA Astrophysics Data System (ADS)
Hetherington, Jorden; Pesteie, Mehran; Lessoway, Victoria A.; Abolmaesumi, Purang; Rohling, Robert N.
2017-03-01
Percutaneous needle insertion procedures on the spine often require proper identification of the vertebral level in order to effectively deliver anesthetics and analgesic agents to achieve adequate block. For example, in obstetric epidurals, the target is at the L3-L4 intervertebral space. The current clinical method involves "blind" identification of the vertebral level through manual palpation of the spine, which has only 30% accuracy. This implies the need for better anatomical identification prior to needle insertion. A system is proposed to identify the vertebrae, assigning them to their respective levels, and track them in a standard sequence of ultrasound images, when imaged in the paramedian plane. Machine learning techniques are developed to identify discriminative features of the laminae. In particular, a deep network is trained to automatically learn the anatomical features of the lamina peaks, and classify image patches, for pixel-level classification. The chosen network utilizes multiple connected auto-encoders to learn the anatomy. Pre-processing with ultrasound bone enhancement techniques is done to aid the pixel-level classification performance. Once the lamina are identified, vertebrae are assigned levels and tracked in sequential frames. Experimental results were evaluated against an expert sonographer. Based on data acquired from 15 subjects, vertebrae identification with sensitivity of 95% and precision of 95% was achieved within each frame. Between pairs of subsequently analyzed frames, matches of predicted vertebral level labels were correct in 94% of cases, when compared to matches of manually selected labels
The use of integrated focal plane array technologies in laser microsatellite networks
NASA Astrophysics Data System (ADS)
Arnon, Shlomi
2004-10-01
Clustering micro satellites in cooperative fly formation constellations leads to high-performance space systems. The only way to achieve high-speed communication between the satellites is by a laser beam with a narrow divergence angle. In order to make the communication successful three types of focal plane detector arrays are required in the communication terminal: acquisition, tracking and communication detector arrays. The acquisition detector array is used to acquire the neighbor satellite using a wide field-of-view telescope. The tracking detector provides fast, real time and accurate direction location of the neighbor satellite. Based on the information from the acquisition and tracking detectors the receiver and transmitter maintain line of sight. The development of large, fast and very sensitive focal plane detector arrays makes it possible to implement the acquisition, tracking and communication with only one focal plane detector array. By doing so it is possible to reduce dramatically the size, weight, and cost of the optics and electronics which leads to lightweight communication terminals. As a result, the satellites are smaller and lighter, which reduces the space mission cost and increases the booster efficiency. In this paper we will present an overview of the concept of integrated focal plane arrays for laser satellite communication. We also present simulation results based on real system parameters and compare different implementation options.
Command and Control of Space Assets Through Internet-Based Technologies Demonstrated
NASA Technical Reports Server (NTRS)
Foltz, David A.
2002-01-01
The NASA Glenn Research Center successfully demonstrated a transmission-control-protocol/ Internet-protocol- (TCP/IP) based approach to the command and control of onorbit assets over a secure network. This is a significant accomplishment because future NASA missions will benefit by using Internet-standards-based protocols. Benefits of this Internet-based space command and control system architecture include reduced mission costs and increased mission efficiency. The demonstration proved that this communications architecture is viable for future NASA missions. This demonstration was a significant feat involving multiple NASA organizations and industry. Phillip Paulsen, from Glenn's Project Development and Integration Office, served as the overall project lead, and David Foltz, from Glenn's Satellite Networks and Architectures Branch, provided the hybrid networking support for the required Internet connections. The goal was to build a network that would emulate a connection between a space experiment on the International Space Station and a researcher accessing the experiment from anywhere on the Internet, as shown. The experiment was interfaced to a wireless 802.11 network inside the demonstration area. The wireless link provided connectivity to the Tracking and Data Relay Satellite System (TDRSS) Internet Link Terminal (TILT) satellite uplink terminal located 300 ft away in a parking lot on top of a panel van. TILT provided a crucial link in this demonstration. Leslie Ambrose, NASA Goddard Space Flight Center, provided the TILT/TDRSS support. The TILT unit transmitted the signal to TDRS 6 and was received at the White Sands Second TDRSS Ground Station. This station provided the gateway to the Internet. Coordination also took place at the White Sands station to install a Veridian Firewall and automated security incident measurement (ASIM) system to the Second TDRSS Ground Station Internet gateway. The firewall provides a trusted network for the simulated space experiment. A second Internet connection at the demonstration area was implemented to provide Internet connectivity to a group of workstations to serve as platforms for controlling the simulated space experiment. Installation of this Internet connection was coordinated with an Internet service provider (ISP) and local NASA Johnson Space Center personnel. Not only did this TCP/IP-based architecture prove that a principal investigator on the Internet can securely command and control on-orbit assets, it also demonstrated that valuable virtual testing of planned on-orbit activities can be conducted over the Internet prior to actual deployment in space.
Virtual target tracking (VTT) as applied to mobile satellite communication networks
NASA Astrophysics Data System (ADS)
Amoozegar, Farid
1999-08-01
Traditionally, target tracking has been used for aerospace applications, such as, tracking highly maneuvering targets in a cluttered environment for missile-to-target intercept scenarios. Although the speed and maneuvering capability of current aerospace targets demand more efficient algorithms, many complex techniques have already been proposed in the literature, which primarily cover the defense applications of tracking methods. On the other hand, the rapid growth of Global Communication Systems, Global Information Systems (GIS), and Global Positioning Systems (GPS) is creating new and more diverse challenges for multi-target tracking applications. Mobile communication and computing can very well appreciate a huge market for Cellular Communication and Tracking Devices (CCTD), which will be tracking networked devices at the cellular level. The objective of this paper is to introduce a new concept, i.e., Virtual Target Tracking (VTT) for commercial applications of multi-target tracking algorithms and techniques as applied to mobile satellite communication networks. It would be discussed how Virtual Target Tracking would bring more diversity to target tracking research.
A Phased Array of Widely Separated Antennas for Space Communication and Planetary Radar
NASA Astrophysics Data System (ADS)
Geldzahler, B.; Bershad, C.; Brown, R.; Cox, R.; Hoblitzell, R.; Kiriazes, J.; Ledford, B.; Miller, M.; Woods, G.; Cornish, T.; D'Addario, L.; Davarian, F.; Lee, D.; Morabito, D.; Tsao, P.; Soloff, J.; Church, K.; Deffenbaugh, P.; Abernethy, K.; Anderson, W.; Collier, J.; Wellen, G.
NASA has successfully demonstrated coherent uplink arraying with real time compensation for atmospheric phase fluctuations at 7.145-7.190 GHz (X-band) and is pursuing a similar demonstration 30-31 GHz (Ka-band) using three 12m diameter COTS antennas separated by 60m at the Kennedy Space Center in Florida. In addition, we have done the same demonstration with up to three 34m antennas separated by 250m at the Goldstone Deep Space Communication Complex in California at X-band 7.1 GHz. We have begun to infuse the capability at Goldstone into the Deep Space Network to provide a quasi-operational system. Such a demonstration can enable NASA to design and establish a high power (10 PW) high resolution (<10 cm), 24/7 availability radar system for (a) tracking and characterizing observations of Near Earth Objects (NEOs), (b) tracking, characterizing and determining the statistics of small-scale (≤10cm) orbital debris, (c) incorporating the capability into its space communication and navigation tracking stations for emergency spacecraft commanding in the Ka band era which NASA is entering, and (d) fielding capabilities of interest to other US government agencies. We present herein the results of our phased array uplink combining at near 7.17 and 8.3 GHz using widely separated antennas demonstrations, our moderately successful attempts to rescue the STEREO-B spacecraft (distance 2 astronomical units (185,000,000 miles), the first two attempts at imaging and ranging of near Earth asteroids, and progress in developing telescopes that are fully capable at radio and optical frequencies. And progress toward the implementation of our vision for going forward in implementing a high performance, low lifecycle cost multi-element radar array.
Observations of Magnetic Evolution and Network Flares Driven by Photospheric Flows in the Quiet Sun
NASA Astrophysics Data System (ADS)
Attie, Raphael; Thompson, Barbara J.
2017-08-01
The quiet Sun may be the biggest laboratory to study physical elementary processes of fundamental importance to space plasma. The advantage is the continuous availability of small-scale events, carrying the hidden microphysics that is responsible for larger-scale phenomena. By small-scale events, we mean spatial dimensions of a few Mm at most, and durations of less than an hour. I present here an attempt to describe and understand the coupling between the photospheric flows, the photospheric magnetic flux, and small-scale energetic transient events. By adapting and improving the highly efficient Balltracking technique for Hinode/SOT data, we relate the fine structures of the supergranular flow fields with the magnetic flux evolution. For studying the dynamics of the latter, and more precisely, the magnetic flux cancellation at sites of energy releases, we applied a new feature tracking algorithm called "Magnetic Balltracking" -- which tracks photospheric magnetic elements -- to high-resolution magnetograms from Hinode/SOT.Using observations of the low corona in soft X-rays with Hinode/XRT, we analyse the triggering mechanism of small-scale network flares. By tracking both the flow fields on the one hand, and the magnetic motions on the other hand, we relate the flows with cancelling magnetic flux. We identify two patterns of horizontal flows that act as catalysts for efficient magnetic reconnection: (i) Funnel-shaped streamlines in which the magnetic flux is carried, and (ii) large-scale vortices (~10 Mm and above) at the network intersections, in which distant magnetic features of opposite polarities seem to be sucked in and ultimately vanish. The excess energy stored in the stressed magnetic field of the vortices is sufficient to power network flares.Prospects for determining the magnetic energy budget in the quiet sun are discussed.
Station report on the Goddard Space Flight Center (GSFC) 1.2 meter telescope facility
NASA Technical Reports Server (NTRS)
Mcgarry, Jan F.; Zagwodzki, Thomas W.; Abbott, Arnold; Degnan, John J.; Cheek, Jack W.; Chabot, Richard S.; Grolemund, David A.; Fitzgerald, Jim D.
1993-01-01
The 1.2 meter telescope system was built for the Goddard Space Flight Center (GSFC) in 1973-74 by the Kollmorgen Corporation as a highly accurate tracking telescope. The telescope is an azimuth-elevation mounted six mirror Coude system. The facility has been used for a wide range of experimentation including helioseismology, two color refractometry, lunar laser ranging, satellite laser ranging, visual tracking of rocket launches, and most recently satellite and aircraft streak camera work. The telescope is a multi-user facility housed in a two story dome with the telescope located on the second floor above the experimenter's area. Up to six experiments can be accommodated at a given time, with actual use of the telescope being determined by the location of the final Coude mirror. The telescope facility is currently one of the primary test sites for the Crustal Dynamics Network's new UNIX based telescope controller software, and is also the site of the joint Crustal Dynamics Project / Photonics Branch two color research into atmospheric refraction.
ERIC Educational Resources Information Center
CAUSE, Boulder, CO.
Six papers from the 1990 CAUSE conference's Track V, Managing Telecommunications and Networking are presented. Topics address such subjects as network funding, support services, access to networks, improvement of instruction through networks, and image transmission. Papers and their authors are as follows: "What's New in…
A Deep Space Orbit Determination Software: Overview and Event Prediction Capability
NASA Astrophysics Data System (ADS)
Kim, Youngkwang; Park, Sang-Young; Lee, Eunji; Kim, Minsik
2017-06-01
This paper presents an overview of deep space orbit determination software (DSODS), as well as validation and verification results on its event prediction capabilities. DSODS was developed in the MATLAB object-oriented programming environment to support the Korea Pathfinder Lunar Orbiter (KPLO) mission. DSODS has three major capabilities: celestial event prediction for spacecraft, orbit determination with deep space network (DSN) tracking data, and DSN tracking data simulation. To achieve its functionality requirements, DSODS consists of four modules: orbit propagation (OP), event prediction (EP), data simulation (DS), and orbit determination (OD) modules. This paper explains the highest-level data flows between modules in event prediction, orbit determination, and tracking data simulation processes. Furthermore, to address the event prediction capability of DSODS, this paper introduces OP and EP modules. The role of the OP module is to handle time and coordinate system conversions, to propagate spacecraft trajectories, and to handle the ephemerides of spacecraft and celestial bodies. Currently, the OP module utilizes the General Mission Analysis Tool (GMAT) as a third-party software component for highfidelity deep space propagation, as well as time and coordinate system conversions. The role of the EP module is to predict celestial events, including eclipses, and ground station visibilities, and this paper presents the functionality requirements of the EP module. The validation and verification results show that, for most cases, event prediction errors were less than 10 millisec when compared with flight proven mission analysis tools such as GMAT and Systems Tool Kit (STK). Thus, we conclude that DSODS is capable of predicting events for the KPLO in real mission applications.
Space Station Information System - Concepts and international issues
NASA Technical Reports Server (NTRS)
Williams, R. B.; Pruett, David; Hall, Dana L.
1987-01-01
The Space Station Information System (SSIS) is outlined in terms of its functions and probable physical facilities. The SSIS includes flight element systems as well as existing and planned institutional systems such as the NASA Communications System, the Tracking and Data Relay Satellite System, and the data and communications networks of the international partners. The SSIS strives to provide both a 'user friendly' environment and a software environment which will allow for software transportability and interoperability across the SSIS. International considerations are discussed as well as project management, software commonality, data communications standards, data security, documentation commonality, transaction management, data flow cross support, and key technologies.
ASTP Onboard Voice Transcription
NASA Technical Reports Server (NTRS)
1975-01-01
The transcription is presented of the Apollo-Soyuz Test Project voice communications as recorded on the command module data storage equipment. Data from this recorder are telemetered (dumped) to Space Tracking and Data Network sites for retransmission to the Johnson Space Center. The transcript is divided into three columns -- time, speaker, and text. The Greenwich mean time column consists of three two-digit numbers representing hours, minutes, and seconds (e.g., 22 34 14) for the Julian dates shown at the top of the page on which a new day begins. The speaker column indicates the source of a transmission; the text column contains the verbatim transcript of the communications.
Deep Space Network Radiometric Remote Sensing Program
NASA Technical Reports Server (NTRS)
Walter, Steven J.
1994-01-01
Planetary spacecraft are viewed through a troposphere that absorbs and delays radio signals propagating through it. Tropospheric water, in the form of vapor, cloud liquid, and precipitation, emits radio noise which limits satellite telemetry communication link performance. Even at X-band, rain storms have severely affected several satellite experiments including a planetary encounter. The problem will worsen with DSN implementation of Ka-band because communication link budgets will be dominated by tropospheric conditions. Troposphere-induced propagation delays currently limit VLBI accuracy and are significant sources of error for Doppler tracking. Additionally, the success of radio science programs such as satellite gravity wave experiments and atmospheric occultation experiments depends on minimizing the effect of water vapor-induced propagation delays. In order to overcome limitations imposed by the troposphere, the Deep Space Network has supported a program of radiometric remote sensing. Currently, water vapor radiometers (WVRs) and microwave temperature profilers (MTPs) support many aspects of the Deep Space Network operations and research and development programs. Their capability to sense atmospheric water, microwave sky brightness, and atmospheric temperature is critical to development of Ka-band telemetry systems, communication link models, VLBI, satellite gravity wave experiments, and radio science missions. During 1993, WVRs provided data for propagation model development, supported planetary missions, and demonstrated advanced tracking capability. Collection of atmospheric statistics is necessary to model and predict performance of Ka-band telemetry links, antenna arrays, and radio science experiments. Since the spectrum of weather variations has power at very long time scales, atmospheric measurements have been requested for periods ranging from one year to a decade at each DSN site. The resulting database would provide reliable statistics on daily, monthly, and seasonal variations. Only long-term monitoring will prevent biases from being introduced by an exceptionally wet or dry year. Support for planetary missions included tropospheric calibration for the recent Mars Observer gravity wave experiments and Ka-band link experiment (KaBLE). Additionally, several proposed radio science experiments such as profiling planetary atmospheres using satellite occultations and Ka-band gravitational wave searches require advanced radiometer technology development. Finally, there has been a consistent advanced technology program to advance satellite navigational and tracking capabilities. This year that included an experiment with radiometer based tropospheric calibration for a series of VLBI catalog measurements.
(abstract) Deep Space Network Radiometric Remote Sensing Program
NASA Technical Reports Server (NTRS)
Walter, Steven J.
1994-01-01
Planetary spacecraft are viewed through a troposphere that absorbs and delays radio signals propagating through it. Tropospheric water, in the form of vapor, cloud liquid,and precipitation , emits radio noise which limits satellite telemetry communication link performance. Even at X-band, rain storms have severely affected several satellite experiments including a planetary encounter. The problem will worsen with DSN implementation of Ka-band becausecommunication link budgets will be dominated by tropospheric conditions. Troposphere-induced propagation delays currently limit VLBI accuracy and are significant sources of error for Doppler tracking. Additionally, the success of radio science programs such as satellite gravity wave experiments and atmospheric occultation experiments depends on minimizing the effect of watervapor-induced prop agation delays. In order to overcome limitations imposed by the troposphere, the Deep Space Network has supported a program of radiometric remote sensing. Currently, water vapor radiometers (WVRs) and microwave temperature profilers (MTPs) support many aspects of the Deep Space Network operations and research and development programs. Their capability to sense atmospheric water, microwave sky brightness, and atmospheric temperature is critical to development of Ka-band telemetry systems, communication link models, VLBI, satellite gravity waveexperiments, and r adio science missions. During 1993, WVRs provided data for propagation mode development, supp orted planetary missions, and demonstrated advanced tracking capability. Collection of atmospheric statistics is necessary to model and predict performance of Ka-band telemetry links, antenna arrays, and radio science experiments. Since the spectrum of weather variations has power at very long time scales, atmospheric measurements have been requested for periods ranging from one year to a decade at each DSN site. The resulting database would provide reliable statistics on daily, monthly, and seasonal variations. Only long-term monitoring will prevent biases from being introduced by an exceptionally wet or dry year. Support for planetary missions included tropospheric calibration for the recent Mars Observer gravity wave experiments and Ka-band link experiment (KaBLE). Additionally, several proposed radio science experiments such as profiling planetary atmospheres using satellite occultations and Ka-band gravitational wave searches require advanced radiometer technology development. Finally, there has been a consistent advanced technology program to advance satellite navigational and tracking capabilities. This year that included an experiment with radiometer based tropospheric calibration for a series of VLBI catalog measurements.
Convolutional networks for vehicle track segmentation
Quach, Tu-Thach
2017-08-19
Existing methods to detect vehicle tracks in coherent change detection images, a product of combining two synthetic aperture radar images taken at different times of the same scene, rely on simple, fast models to label track pixels. These models, however, are unable to capture natural track features such as continuity and parallelism. More powerful, but computationally expensive models can be used in offline settings. We present an approach that uses dilated convolutional networks consisting of a series of 3-by-3 convolutions to segment vehicle tracks. The design of our networks considers the fact that remote sensing applications tend to operate inmore » low power and have limited training data. As a result, we aim for small, efficient networks that can be trained end-to-end to learn natural track features entirely from limited training data. We demonstrate that our 6-layer network, trained on just 90 images, is computationally efficient and improves the F-score on a standard dataset to 0.992, up from 0.959 obtained by the current state-of-the-art method.« less
Convolutional networks for vehicle track segmentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quach, Tu-Thach
Existing methods to detect vehicle tracks in coherent change detection images, a product of combining two synthetic aperture radar images taken at different times of the same scene, rely on simple, fast models to label track pixels. These models, however, are unable to capture natural track features such as continuity and parallelism. More powerful, but computationally expensive models can be used in offline settings. We present an approach that uses dilated convolutional networks consisting of a series of 3-by-3 convolutions to segment vehicle tracks. The design of our networks considers the fact that remote sensing applications tend to operate inmore » low power and have limited training data. As a result, we aim for small, efficient networks that can be trained end-to-end to learn natural track features entirely from limited training data. We demonstrate that our 6-layer network, trained on just 90 images, is computationally efficient and improves the F-score on a standard dataset to 0.992, up from 0.959 obtained by the current state-of-the-art method.« less
Robust visual tracking via multiscale deep sparse networks
NASA Astrophysics Data System (ADS)
Wang, Xin; Hou, Zhiqiang; Yu, Wangsheng; Xue, Yang; Jin, Zefenfen; Dai, Bo
2017-04-01
In visual tracking, deep learning with offline pretraining can extract more intrinsic and robust features. It has significant success solving the tracking drift in a complicated environment. However, offline pretraining requires numerous auxiliary training datasets and is considerably time-consuming for tracking tasks. To solve these problems, a multiscale sparse networks-based tracker (MSNT) under the particle filter framework is proposed. Based on the stacked sparse autoencoders and rectifier linear unit, the tracker has a flexible and adjustable architecture without the offline pretraining process and exploits the robust and powerful features effectively only through online training of limited labeled data. Meanwhile, the tracker builds four deep sparse networks of different scales, according to the target's profile type. During tracking, the tracker selects the matched tracking network adaptively in accordance with the initial target's profile type. It preserves the inherent structural information more efficiently than the single-scale networks. Additionally, a corresponding update strategy is proposed to improve the robustness of the tracker. Extensive experimental results on a large scale benchmark dataset show that the proposed method performs favorably against state-of-the-art methods in challenging environments.
Scalable Track Detection in SAR CCD Images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chow, James G; Quach, Tu-Thach
Existing methods to detect vehicle tracks in coherent change detection images, a product of combining two synthetic aperture radar images ta ken at different times of the same scene, rely on simple, fast models to label track pixels. These models, however, are often too simple to capture natural track features such as continuity and parallelism. We present a simple convolutional network architecture consisting of a series of 3-by-3 convolutions to detect tracks. The network is trained end-to-end to learn natural track features entirely from data. The network is computationally efficient and improves the F-score on a standard dataset to 0.988,more » up fr om 0.907 obtained by the current state-of-the-art method.« less
PRiFi Networking for Tracking-Resistant Mobile Computing
2017-11-01
PRiFi NETWORKING FOR TRACKING-RESISTANT MOBILE COMPUTING YALE UNIVERSITY NOVEMBER 2017 FINAL TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE...From - To) FEB 2016 – MAY 2017 4. TITLE AND SUBTITLE PRiFi NETWORKING FOR TRACKING-RESISTANT MOBILE COMPUTING 5a. CONTRACT NUMBER FA8750-16-2-0034...3 Figure 2: What We Have: A Cloud of Secret Mass Surveillance Processes .................................. 6 Figure 3: What
Distributed cluster management techniques for unattended ground sensor networks
NASA Astrophysics Data System (ADS)
Essawy, Magdi A.; Stelzig, Chad A.; Bevington, James E.; Minor, Sharon
2005-05-01
Smart Sensor Networks are becoming important target detection and tracking tools. The challenging problems in such networks include the sensor fusion, data management and communication schemes. This work discusses techniques used to distribute sensor management and multi-target tracking responsibilities across an ad hoc, self-healing cluster of sensor nodes. Although miniaturized computing resources possess the ability to host complex tracking and data fusion algorithms, there still exist inherent bandwidth constraints on the RF channel. Therefore, special attention is placed on the reduction of node-to-node communications within the cluster by minimizing unsolicited messaging, and distributing the sensor fusion and tracking tasks onto local portions of the network. Several challenging problems are addressed in this work including track initialization and conflict resolution, track ownership handling, and communication control optimization. Emphasis is also placed on increasing the overall robustness of the sensor cluster through independent decision capabilities on all sensor nodes. Track initiation is performed using collaborative sensing within a neighborhood of sensor nodes, allowing each node to independently determine if initial track ownership should be assumed. This autonomous track initiation prevents the formation of duplicate tracks while eliminating the need for a central "management" node to assign tracking responsibilities. Track update is performed as an ownership node requests sensor reports from neighboring nodes based on track error covariance and the neighboring nodes geo-positional location. Track ownership is periodically recomputed using propagated track states to determine which sensing node provides the desired coverage characteristics. High fidelity multi-target simulation results are presented, indicating the distribution of sensor management and tracking capabilities to not only reduce communication bandwidth consumption, but to also simplify multi-target tracking within the cluster.
McQuilken, Molly; La Riviere, Patrick J.; Occhipinti, Patricia; Verma, Amitabh; Oldenbourg, Rudolf; Gladfelter, Amy S.; Tani, Tomomi
2016-01-01
Regulation of order, such as orientation and conformation, drives the function of most molecular assemblies in living cells but remains difficult to measure accurately through space and time. We built an instantaneous fluorescence polarization microscope, which simultaneously images position and orientation of fluorophores in living cells with single-molecule sensitivity and a time resolution of 100 ms. We developed image acquisition and analysis methods to track single particles that interact with higher-order assemblies of molecules. We tracked the fluctuations in position and orientation of molecules from the level of an ensemble of fluorophores down to single fluorophores. We tested our system in vitro using fluorescently labeled DNA and F-actin, in which the ensemble orientation of polarized fluorescence is known. We then tracked the orientation of sparsely labeled F-actin network at the leading edge of migrating human keratinocytes, revealing the anisotropic distribution of actin filaments relative to the local retrograde flow of the F-actin network. Additionally, we analyzed the position and orientation of septin-GFP molecules incorporated in septin bundles in growing hyphae of a filamentous fungus. Our data indicate that septin-GFP molecules undergo positional fluctuations within ∼350 nm of the binding site and angular fluctuations within ∼30° of the central orientation of the bundle. By reporting position and orientation of molecules while they form dynamic higher-order structures, our approach can provide insights into how micrometer-scale ordered assemblies emerge from nanoscale molecules in living cells. PMID:27679846
The effect of tracking network configuration on GPS baseline estimates for the CASA Uno experiment
NASA Technical Reports Server (NTRS)
Wolf, S. Kornreich; Dixon, T. H.; Freymueller, J. T.
1990-01-01
The effect of the tracking network on long (greater than 100 km) GPS baseline estimates was estimated using various subsets of the global tracking network initiated by the first Central and South America (CASA Uno) experiment. It was found that best results could be obtained with a global tacking network consisting of three U.S. stations, two sites in the southwestern Pacific, and two sites in Europe. In comparison with smaller subsets, this global network improved the baseline repeatability, the resolution of carrier phase cycle ambiguities, and formal errors of the orbit estimates.
Investigating a New Approach to Space-Based Information Networks
2012-09-01
Tracking and Communications UAV Unmanned Aerial Vehicle UFO UHF Follow On UHF Ultra High Frequency VBR...Follow on ( UFO ) and most recently the Mobile User Objective System (MUOS) Protected MILSATCOM is intended to support mobile users with very small...where it is needed. Ultra High Frequency Follow on ( UFO ) is currently the primary provider of narrowband communications for the military. The current
NASA Technical Reports Server (NTRS)
Dulac, J.; Latour, J.
1991-01-01
The DSN (Deep Space Network) mission support requirements for Telecom 2-A (TC2A) are summarized. The Telecom 2-A will provide high-speed data link applications, telephone, and television service between France and overseas territories. The mission objectives are outlined and the DSN support requirements are defined through the presentation of tables and narratives describing the spacecraft flight profile; DSN support coverage; frequency assignments; support parameters for telemetry, command and support systems; and tracking support responsibility.
Voyager-Jupiter radio science data papers
NASA Technical Reports Server (NTRS)
Levy, G. S.; Wood, G. E.
1980-01-01
The reduction and interpretation of the radio science data from the Voyager 1 and 2 encounters of the planet Jupiter and its satellites resulted in the preparation of several papers for publication in the special Voyager-Jupiter issue of the Journal of Geophysical Research. The radio science and tracking systems of the Deep Space Network provide the data which makes this research possible. This article lists submitted papers by title, with their authors and with abstracts of their contents.
2014-09-01
Analysis Simulation for Advanced Tracking (TASAT) satellite modeling tool [8,9]. The method uses the bi-reflectance distribution functions ( BRDF ...directional Reflectance Model Validation and Utilization, Air Force Avionics Laboratory Technical Report, AFAL-TR-73-303, October 1973. [10] Hall, D...failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE SEP 2014 2. REPORT
2006-06-01
space environment. 1.0 INTRODUCTION The current geographical coverage of the International GNSS Service (IGS) tracking network limits the spatial...routes to Antarctica and the Southern Ocean Islands serviced by the South African National Antarctic programme (SANAP). The routes of the SA Agulhas to...collection of information, including suggestions for reducing this burden, to Washington Headquarters Services , Directorate for Information
A Comparison of Atmospheric Quantities Determined from Advanced WVR and Weather Analysis Data
NASA Astrophysics Data System (ADS)
Morabito, D.; Wu, L.; Slobin, S.
2017-05-01
Lower frequency bands used for deep space communications (e.g., 2.3 GHz and 8.4 GHz) are oversubscribed. Thus, NASA has become interested in using higher frequency bands (e.g., 26 GHz and 32 GHz) for telemetry, making use of the available wider bandwidth. However, these bands are more susceptible to atmospheric degradation. Currently, flight projects tend to be conservative in preparing their communications links by using worst-case or conservative assumptions, which result in nonoptimum data return. We previously explored the use of weather forecasting over different weather condition scenarios to determine more optimal values of atmospheric attenuation and atmospheric noise temperature for use in telecommunications link design. In this article, we present the results of a comparison of meteorological parameters (columnar water vapor and liquid water content) estimated from multifrequency Advanced Water Vapor Radiometer (AWVR) data with those estimated from weather analysis tools (FNL). We find that for the Deep Space Network's Goldstone and Madrid tracking sites, the statistics are in reasonable agreement between the two methods. We can then use the statistics of these quantities based on FNL runs to estimate statistics of atmospheric signal degradation for tracking sites that do not have the benefit of possessing multiyear WVR data sets, such as those of the NASA Near-Earth Network (NEN). The resulting statistics of atmospheric attenuation and atmospheric noise temperature increase can then be used in link budget calculations.
Oeldorf-Hirsch, Anne; High, Andrew C; Christensen, John L
2018-04-23
This study investigates the relationship between sharing tracked mobile health (mHealth) information online, supportive communication, feedback, and health behavior. Based on the Integrated Theory of mHealth, our model asserts that sharing tracked health information on social networking sites benefits users' perceptions of their health because of the supportive communication they gain from members of their online social networks and that the amount of feedback people receive moderates these associations. Users of mHealth apps (N = 511) completed an online survey, and results revealed that both sharing tracked health information and receiving feedback from an online social network were positively associated with supportive communication. Network support both corresponded with improved health behavior and mediated the association between sharing health information and users' health behavior. As users received greater amounts of feedback from their online social networks, however, the association between sharing tracked health information and health behavior decreased. Theoretical implications for sharing tracked health information and practical implications for using mHealth apps are discussed.
Lunar Radio_phase Ranging in Chinese Lunar Lander Mission for Astrometry
NASA Astrophysics Data System (ADS)
Ping, Jinsong; Meng, Qiao; Li, Wenxiao; Wang, Mingyuan; Wang, Zhen; Zhang, Tianyi; Han, Songtao
2015-08-01
The radio tracking data in lunar and planetary missions can be directly applied for scientific investigation. The variations of phase and of amplitude of the radio carrier wave signal linked between the spacecraft and the ground tracking antenna are used to deduce the planetary atmospheric and ionospheric structure, planetary gravity field, mass, ring, ephemeris, and even to test the general relativity. In the Chinese lunar missions, we developed the lunar and planetary radio science receiver to measure the distance variation between the tracking station-lander by means of open loop radio phase tracking. Using this method in Chang’E-3 landing mission, a lunar radio_phase ranging (LRR) technique was realized at Chinese deep space tracking stations and astronomical VLBI stations with H-maser clocks installed. Radio transponder and transmitter had been installed on the Chang’E-3/4. Transponder will receive the uplink S/X band radio wave transmitted from the two newly constructed Chinese deep space stations, where the high quality hydrogen maser atomic clocks have been used as local time and frequency standard. The clocks between VLBI stations and deep space stations can be synchronized to UTC standard within 20 nanoseconds using satellite common view methods. In the near future there will be a plan to improve this accuracy to 5 nanoseconds or better, as the level of other deep space network around world. In the preliminary LRR experiments of Chang'E-3, the obtained 1sps phase ranging observables have a resolution of 0.2 millimeter or better, with a fitting RMS about 2~3 millimeter, after the atmospheric and ionospheric errors removed. This method can be a new astrometric technique to measure the Earth tide and rotation, lunar orbit, tides and liberation, by means of solo observation or of working together with Lunar Laser Ranging. After differencing the ranging, we even obtained 1sps doppler series of 2-way observables with resolution of 0.07mm/second, which can be used to check the uplimit for low frequency (0.001~1 Hz) gravitational wave detection between the Earth and the Moon.
NASA Technical Reports Server (NTRS)
Mardirossian, H.; Beri, A. C.; Doll, C. E.
1990-01-01
The Flight Dynamics Facility (FDF) at Goddard Space Flight Center (GSFC) provides spacecraft trajectory determination for a wide variety of National Aeronautics and Space Administration (NASA)-supported satellite missions, using the Tracking Data Relay Satellite System (TDRSS) and Ground Spaceflight and Tracking Data Network (GSTDN). To take advantage of computerized decision making processes that can be used in spacecraft navigation, the Orbit Determination Automation System (ODAS) was designed, developed, and implemented as a prototype system to automate orbit determination (OD) and orbit quality assurance (QA) functions performed by orbit operations. Based on a machine-resident generic schedule and predetermined mission-dependent QA criteria, ODAS autonomously activates an interface with the existing trajectory determination system using a batch least-squares differential correction algorithm to perform the basic OD functions. The computational parameters determined during the OD are processed to make computerized decisions regarding QA, and a controlled recovery process is activated when the criteria are not satisfied. The complete cycle is autonomous and continuous. ODAS was extensively tested for performance under conditions resembling actual operational conditions and found to be effective and reliable for extended autonomous OD. Details of the system structure and function are discussed, and test results are presented.
NASA Technical Reports Server (NTRS)
Mardirossian, H.; Heuerman, K.; Beri, A.; Samii, M. V.; Doll, C. E.
1989-01-01
The Flight Dynamics Facility (FDF) at Goddard Space Flight Center (GSFC) provides spacecraft trajectory determination for a wide variety of National Aeronautics and Space Administration (NASA)-supported satellite missions, using the Tracking Data Relay Satellite System (TDRSS) and Ground Spaceflight and Tracking Data Network (GSTDN). To take advantage of computerized decision making processes that can be used in spacecraft navigation, the Orbit Determination Automation System (ODAS) was designed, developed, and implemented as a prototype system to automate orbit determination (OD) and orbit quality assurance (QA) functions performed by orbit operations. Based on a machine-resident generic schedule and predetermined mission-dependent QA criteria, ODAS autonomously activates an interface with the existing trajectory determination system using a batch least-squares differential correction algorithm to perform the basic OD functions. The computational parameters determined during the OD are processed to make computerized decisions regarding QA, and a controlled recovery process isactivated when the criteria are not satisfied. The complete cycle is autonomous and continuous. ODAS was extensively tested for performance under conditions resembling actual operational conditions and found to be effective and reliable for extended autonomous OD. Details of the system structure and function are discussed, and test results are presented.
Scalable Conjunction Processing using Spatiotemporally Indexed Ephemeris Data
NASA Astrophysics Data System (ADS)
Budianto-Ho, I.; Johnson, S.; Sivilli, R.; Alberty, C.; Scarberry, R.
2014-09-01
The collision warnings produced by the Joint Space Operations Center (JSpOC) are of critical importance in protecting U.S. and allied spacecraft against destructive collisions and protecting the lives of astronauts during space flight. As the Space Surveillance Network (SSN) improves its sensor capabilities for tracking small and dim space objects, the number of tracked objects increases from thousands to hundreds of thousands of objects, while the number of potential conjunctions increases with the square of the number of tracked objects. Classical filtering techniques such as apogee and perigee filters have proven insufficient. Novel and orders of magnitude faster conjunction analysis algorithms are required to find conjunctions in a timely manner. Stellar Science has developed innovative filtering techniques for satellite conjunction processing using spatiotemporally indexed ephemeris data that efficiently and accurately reduces the number of objects requiring high-fidelity and computationally-intensive conjunction analysis. Two such algorithms, one based on the k-d Tree pioneered in robotics applications and the other based on Spatial Hash Tables used in computer gaming and animation, use, at worst, an initial O(N log N) preprocessing pass (where N is the number of tracked objects) to build large O(N) spatial data structures that substantially reduce the required number of O(N^2) computations, substituting linear memory usage for quadratic processing time. The filters have been implemented as Open Services Gateway initiative (OSGi) plug-ins for the Continuous Anomalous Orbital Situation Discriminator (CAOS-D) conjunction analysis architecture. We have demonstrated the effectiveness, efficiency, and scalability of the techniques using a catalog of 100,000 objects, an analysis window of one day, on a 64-core computer with 1TB shared memory. Each algorithm can process the full catalog in 6 minutes or less, almost a twenty-fold performance improvement over the baseline implementation running on the same machine. We will present an overview of the algorithms and results that demonstrate the scalability of our concepts.
Galileo Earth approach navigation using connected-element interferometer phase-delay tracking
NASA Technical Reports Server (NTRS)
Thurman, S. W.
1990-01-01
The application of a Connected-Element Interferometer (CEI) to the navigation of the Galileo spacecraft during its encounter with Earth in December 1990 is investigated. A CEI tracking demonstration is planned for the week of November 11 through 18, 1990, from 27 days to 20 days prior to Earth encounter on December 8. During this period, the spacecraft will be tracked daily with Deep Space Network Stations 13 and 15 at Goldstone. The purpose of this work is twofold: first, to establish and define the navigation performance expected during the tracking demonstration and, second, to study, in a more general sense, the sensitivity of orbit demonstration results obtained with CEI to the data density within CEI tracking passes and to important system parameters, such as baseline orientation errors and the phase-delay measurement accuracy. Computer simulation results indicate that the use of CEI data, coupled with conventional range and Doppler data, may reduce the uncertainty in the declination of the spacecraft's incoming trajectory by 15 to 66 percent compared with the operational solution using range and Doppler data only. The level of improvement depends upon the quantity and quality of the CEI data.
Tracking multiple objects is limited only by object spacing, not by speed, time, or capacity.
Franconeri, S L; Jonathan, S V; Scimeca, J M
2010-07-01
In dealing with a dynamic world, people have the ability to maintain selective attention on a subset of moving objects in the environment. Performance in such multiple-object tracking is limited by three primary factors-the number of objects that one can track, the speed at which one can track them, and how close together they can be. We argue that this last limit, of object spacing, is the root cause of all performance constraints in multiple-object tracking. In two experiments, we found that as long as the distribution of object spacing is held constant, tracking performance is unaffected by large changes in object speed and tracking time. These results suggest that barring object-spacing constraints, people could reliably track an unlimited number of objects as fast as they could track a single object.
Data fusion for target tracking and classification with wireless sensor network
NASA Astrophysics Data System (ADS)
Pannetier, Benjamin; Doumerc, Robin; Moras, Julien; Dezert, Jean; Canevet, Loic
2016-10-01
In this paper, we address the problem of multiple ground target tracking and classification with information obtained from a unattended wireless sensor network. A multiple target tracking (MTT) algorithm, taking into account road and vegetation information, is proposed based on a centralized architecture. One of the key issue is how to adapt classical MTT approach to satisfy embedded processing. Based on track statistics, the classification algorithm uses estimated location, velocity and acceleration to help to classify targets. The algorithms enables tracking human and vehicles driving both on and off road. We integrate road or trail width and vegetation cover, as constraints in target motion models to improve performance of tracking under constraint with classification fusion. Our algorithm also presents different dynamic models, to palliate the maneuvers of targets. The tracking and classification algorithms are integrated into an operational platform (the fusion node). In order to handle realistic ground target tracking scenarios, we use an autonomous smart computer deposited in the surveillance area. After the calibration step of the heterogeneous sensor network, our system is able to handle real data from a wireless ground sensor network. The performance of system is evaluated in a real exercise for intelligence operation ("hunter hunt" scenario).
NASA Astrophysics Data System (ADS)
1995-09-01
The highlights of the STS-70 mission are presented in this video. The flight crew consisted of Cmdr. John Hendricks, Pilot Kevin Kregel, Flight Engineer Nancy Curie, and Mission Specialists Dr. Don Thomas and Dr. Mary Ellen Weber. The mission's primary objective was the deployment of the 7th Tracking Data and Relay Satellite (TDRS), which will provide a communication, tracking, telemetry, data acquisition, and command services space-based network system essential to low Earth orbital spacecraft. Secondary mission objectives included activating and studying the Physiological and Anatomical Rodent Experiment/National Institutes of Health-Rodents (PARE/NIH-R), The Bioreactor Demonstration System (BDS), the Commercial Protein Crystal Growth (CPCG) studies, the Space Tissue Loss/National Institutes of Health-Cells (STL/NIH-C) experiment, the Biological Research in Canisters (BRIC) experiment, Shuttle Amateur Radio Experiment-2 (SAREX-2), the Visual Function Tester-4 (VFT-4), the Hand-Held, Earth Oriented, Real-Time, Cooperative, User-Friendly, Location-Targeting and Environmental System (HERCULES), the Microcapsules in Space-B (MIS-B) experiment, the Windows Experiment (WINDEX), the Radiation Monitoring Equipment-3 (RME-3), and the Military Applications of Ship Tracks (MAST) experiment. There was an in-orbit dedication ceremony by the spacecrew and the newly Integrated Mission Control Center to commemorate the Center's integration. The STS-70 mission was the first mission monitored by this new control center. Earth views included the Earth's atmosphere, a sunrise over the Earth's horizon, several views of various land masses, some B/W lightning shots, some cloud cover, and a tropical storm.
The effect of clock, media, and station location errors on Doppler measurement accuracy
NASA Technical Reports Server (NTRS)
Miller, J. K.
1993-01-01
Doppler tracking by the Deep Space Network (DSN) is the primary radio metric data type used by navigation to determine the orbit of a spacecraft. The accuracy normally attributed to orbits determined exclusively with Doppler data is about 0.5 microradians in geocentric angle. Recently, the Doppler measurement system has evolved to a high degree of precision primarily because of tracking at X-band frequencies (7.2 to 8.5 GHz). However, the orbit determination system has not been able to fully utilize this improved measurement accuracy because of calibration errors associated with transmission media, the location of tracking stations on the Earth's surface, the orientation of the Earth as an observing platform, and timekeeping. With the introduction of Global Positioning System (GPS) data, it may be possible to remove a significant error associated with the troposphere. In this article, the effect of various calibration errors associated with transmission media, Earth platform parameters, and clocks are examined. With the introduction of GPS calibrations, it is predicted that a Doppler tracking accuracy of 0.05 microradians is achievable.
Tracking of time-varying genomic regulatory networks with a LASSO-Kalman smoother
2014-01-01
It is widely accepted that cellular requirements and environmental conditions dictate the architecture of genetic regulatory networks. Nonetheless, the status quo in regulatory network modeling and analysis assumes an invariant network topology over time. In this paper, we refocus on a dynamic perspective of genetic networks, one that can uncover substantial topological changes in network structure during biological processes such as developmental growth. We propose a novel outlook on the inference of time-varying genetic networks, from a limited number of noisy observations, by formulating the network estimation as a target tracking problem. We overcome the limited number of observations (small n large p problem) by performing tracking in a compressed domain. Assuming linear dynamics, we derive the LASSO-Kalman smoother, which recursively computes the minimum mean-square sparse estimate of the network connectivity at each time point. The LASSO operator, motivated by the sparsity of the genetic regulatory networks, allows simultaneous signal recovery and compression, thereby reducing the amount of required observations. The smoothing improves the estimation by incorporating all observations. We track the time-varying networks during the life cycle of the Drosophila melanogaster. The recovered networks show that few genes are permanent, whereas most are transient, acting only during specific developmental phases of the organism. PMID:24517200
14 CFR 1215.106 - User command and tracking data.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false User command and tracking data. 1215.106 Section 1215.106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION TRACKING AND DATA... User command and tracking data. (a) User command data shall enter TDRSS via the NISN interface at WSC...
The Pulkovo Cooperation for Radar and Optical Observations of Space Objects
NASA Astrophysics Data System (ADS)
Molotov, I.; Konovalenko, A. A.; Tuccari, G.; Falkovich, I.; Nechaeva, M.; Kiladze, R.; Titenko, V.; Agapov, V.; Khutorovsky, Z. N.; Sukhov, P. P.; Burtsev, Yu.; Sochilina, A.; Abalakin, V.; et al.
The Pulkovo observatory is arranging the cooperation of optical and radio telescopes for space debris studies in two main research directions, i.e. the precise tracking of the GEO-objects for development of the dynamical control method and the barrier method study of small fragments produced by GEO-object explosions.Radar experiments are being carried out a few times per year by using the Evpatoria RT-70 transmitter and the receiving radio telescopes in Bear Lakes (Russia), Simeiz (Ukraine), Noto (Italy), and Urumqi (China). The data processing centers are located in N. Novgorod and Noto, and integrated into the Low Frequency VLBI Network (LFVN). The adjustment of the coordinated radar VLBI measurements has been completed, and the technique of beam-track searching has been tested. The program of the LFVN modernizations is in progress The Pulkovo cooperation of optical observers (PULCOO) includes observatories and observation stations of the former Soviet Union around the world, and is to provide the routine tracking of the GEO-objects. The adjustment has been carried out for the method to search for GEO-fragments in the barriers predicted on basis of the Pulkovo "LAPLACE" theory of motion. The refurbishment program for telescopes, which cooperate with the PULCOO, is in progress.
Probabilistic track coverage in cooperative sensor networks.
Ferrari, Silvia; Zhang, Guoxian; Wettergren, Thomas A
2010-12-01
The quality of service of a network performing cooperative track detection is represented by the probability of obtaining multiple elementary detections over time along a target track. Recently, two different lines of research, namely, distributed-search theory and geometric transversals, have been used in the literature for deriving the probability of track detection as a function of random and deterministic sensors' positions, respectively. In this paper, we prove that these two approaches are equivalent under the same problem formulation. Also, we present a new performance function that is derived by extending the geometric-transversal approach to the case of random sensors' positions using Poisson flats. As a result, a unified approach for addressing track detection in both deterministic and probabilistic sensor networks is obtained. The new performance function is validated through numerical simulations and is shown to bring about considerable computational savings for both deterministic and probabilistic sensor networks.
2010-01-01
target kinematics for multiple sensor detections is referred to as the track - before - detect strategy, and is commonly adopted in multi-sensor surveillance...of moving targets. Wettergren [4] presented an application of track - before - detect strategies to undersea distributed sensor networks. In de- signing...the deployment of a distributed passive sensor network that employs this track - before - detect procedure, it is impera- tive that the placement of
Enhanced online convolutional neural networks for object tracking
NASA Astrophysics Data System (ADS)
Zhang, Dengzhuo; Gao, Yun; Zhou, Hao; Li, Tianwen
2018-04-01
In recent several years, object tracking based on convolution neural network has gained more and more attention. The initialization and update of convolution filters can directly affect the precision of object tracking effective. In this paper, a novel object tracking via an enhanced online convolution neural network without offline training is proposed, which initializes the convolution filters by a k-means++ algorithm and updates the filters by an error back-propagation. The comparative experiments of 7 trackers on 15 challenging sequences showed that our tracker can perform better than other trackers in terms of AUC and precision.
Broken Detailed Balance of Filament Dynamics in Active Networks
NASA Astrophysics Data System (ADS)
Schmidt, Christoph F.; Gladrow, Jannes; Fakhri, Nikta; Mackintosh, Fred C.; Broedersz, Chase
Endogenous embedded semiflexible filaments such as microtubules, or added filaments such as single- walled carbon nanotubes can be used as novel tools to noninvasively track equilibrium and nonequilibrium fluctuations in biopolymer networks. We analytically calculated shape fluctuations of semi- flexible probe filaments in a viscoelastic environment, driven out of equilibrium by motor activity. Transverse bending fluctuations of the probe filaments can be decomposed into dynamic normal modes. We find that these modes no longer evolve independently under non-equilibrium driving. This effective mode coupling results in nonzero circulatory currents in a conformational phase space, reflecting a violation of detailed balance. We present predictions for the characteristic frequencies associated with these currents and investigate how the temporal signatures of motor activity determine mode correlations, which we find to be consistent with recent experiments on microtubules embedded in cytoskeletal networks.
NASA Technical Reports Server (NTRS)
Lee, David; Ge, Yi; Cha, Soyoung Stephen; Ramachandran, Narayanan; Rose, M. Franklin (Technical Monitor)
2001-01-01
Measurement of three-dimensional (3-D) three-component velocity fields is of great importance in both ground and space experiments for understanding materials processing and fluid physics. The experiments in these fields most likely inhibit the application of conventional planar probes for observing 3-D phenomena. Here, we present the investigation results of stereoscopic tracking velocimetry (STV) for measuring 3-D velocity fields, which include diagnostic technology development, experimental velocity measurement, and comparison with analytical and numerical computation. STV is advantageous in system simplicity for building compact hardware and in software efficiency for continual near-real-time monitoring. It has great freedom in illuminating and observing volumetric fields from arbitrary directions. STV is based on stereoscopic observation of particles-Seeded in a flow by CCD sensors. In the approach, part of the individual particle images that provide data points is likely to be lost or cause errors when their images overlap and crisscross each other especially under a high particle density. In order to maximize the valid recovery of data points, neural networks are implemented for these two important processes. For the step of particle overlap decomposition, the back propagation neural network is utilized because of its ability in pattern recognition with pertinent particle image feature parameters. For the step of particle tracking, the Hopfield neural network is employed to find appropriate particle tracks based on global optimization. Our investigation indicates that the neural networks are very efficient and useful for stereoscopically tracking particles. As an initial assessment of the diagnostic technology performance, laminar water jets with and without pulsation are measured. The jet tip velocity profiles are in good agreement with analytical predictions. Finally, for testing in material processing applications, a simple directional solidification apparatus is built for experimenting with a metal analog of succinonitrile. Its 3-D velocity field at the liquid phase is then measured to be compared with those from numerical computation. Our theoretical, numerical, and experimental investigations have proven STV to be a viable candidate for reliably measuring 3-D flow velocities. With current activities are focused on further improving the processing efficiency, overall accuracy, and automation, the eventual efforts of broad experimental applications and concurrent numerical modeling validation will be vital to many areas in fluid flow and materials processing.
Dynamical Networks Characterization of Space Weather Events
NASA Astrophysics Data System (ADS)
Orr, L.; Chapman, S. C.; Dods, J.; Gjerloev, J. W.
2017-12-01
Space weather can cause disturbances to satellite systems, impacting navigation technology and telecommunications; it can cause power loss and aviation disruption. A central aspect of the earth's magnetospheric response to space weather events are large scale and rapid changes in ionospheric current patterns. Space weather is highly dynamic and there are still many controversies about how the current system evolves in time. The recent SuperMAG initiative, collates ground-based vector magnetic field time series from over 200 magnetometers with 1-minute temporal resolution. In principle this combined dataset is an ideal candidate for quantification using dynamical networks. Network properties and parameters allow us to characterize the time dynamics of the full spatiotemporal pattern of the ionospheric current system. However, applying network methodologies to physical data presents new challenges. We establish whether a given pair of magnetometers are connected in the network by calculating their canonical cross correlation. The magnetometers are connected if their cross correlation exceeds a threshold. In our physical time series this threshold needs to be both station specific, as it varies with (non-linear) individual station sensitivity and location, and able to vary with season, which affects ground conductivity. Additionally, the earth rotates and therefore the ground stations move significantly on the timescales of geomagnetic disturbances. The magnetometers are non-uniformly spatially distributed. We will present new methodology which addresses these problems and in particular achieves dynamic normalization of the physical time series in order to form the network. Correlated disturbances across the magnetometers capture transient currents. Once the dynamical network has been obtained [1][2] from the full magnetometer data set it can be used to directly identify detailed inferred transient ionospheric current patterns and track their dynamics. We will show our first results that use network properties such as cliques and clustering coefficients to map these highly dynamic changes in ionospheric current patterns.[l] Dods et al, J. Geophys. Res 120, doi:10.1002/2015JA02 (2015). [2] Dods et al, J. Geophys. Res. 122, doi:10.1002/2016JA02 (2017).
Surveillance of Space in Australia
NASA Astrophysics Data System (ADS)
Newsam, G.
Australia's geography and technology base got it off to a flying start in the early days of surveillance of space, starting with CSIRO's first radio telescope in the 1940's and climaxing in NASA's establishment of station 43 in the Deep Space Network at Tidbinbilla in 1965. But Britain's exit from space and the subsequent closure of the Woomera launch range and associated space tracking facilities in the early 1970's saw the start of a long draw-down of capability. Programs such as CSIRO's radio astronomy telescopes, Electro-Optic Systems' adoption of laser technology for satellite laser ranging and tracking system, and the exploration of the use of technology developed in Australia's over-the-horizon-radar program for surveillance of space, kept some interest in the problem alive, but there has been no serious national investment in the area for the last thirty years. Recently, however, increased awareness of the vulnerability of space systems and the need to include potential opponents' space capabilities in operations planning has led to a revival of interest in space situational awareness within the Australian Defence Organisation. While firm commitments to new systems must wait on the next Defence White Paper due out at the end of 2007 and the policy directions it formally endorses, discussions have already started with the US on participating in the Space Surveillance Network (SSN) and developing a comprehensive space situational awareness capability. In support of these initiatives the Defence Science and Technology Organisation (DSTO) is drawing up an inventory of relevant Australian capabilities, technologies and activities: the paper will describe the findings of this inventory, and in particular local technologies and systems that might be deployed in Australia to contribute to the SSN. In the optical regime the available options are rather limited; they centre primarily on the satellite laser ranging technology developed by Electro-Optic Systems and operating in stations at Yarragadee, Western Australia and Mt Stromlo, Australian Capital Territory. Recently, however, Australia has also agreed to host a node of AFRL's Extended HANDS telescope network in Learmonth, Western Australia, and discussions are underway with researchers in Australian academia about also participating in this research program. In the RF regime, however, DSTO has substantial HF and microwave radar programs, elements of which could be readily adapted to surveillance of space. Proposals have already been developed internally within both programs for various forms of space surveillance systems including both broad area surveillance and imaging along with some very initial technology concept demonstrator systems. Recently proposals have also been floated to substantially increase Australia's civilian space surveillance programs including the Ionospheric Prediction Service's longstanding program to monitor the ionosphere and space weather, meteor radars and other systems. Finally Australia's bid to host the international Square Kilometre Array radio telescope has already generated concrete commitments to establish several very substantial RF arrays in Western Australia that may also provide instruments of unprecedented sensitivity and resolution for surveillance of space. The paper will survey these technology development programs and associated progress on integrating them into some sort of national program for space situational awareness.
Zhang, Senlin; Chen, Huayan; Liu, Meiqin; Zhang, Qunfei
2017-11-07
Target tracking is one of the broad applications of underwater wireless sensor networks (UWSNs). However, as a result of the temporal and spatial variability of acoustic channels, underwater acoustic communications suffer from an extremely limited bandwidth. In order to reduce network congestion, it is important to shorten the length of the data transmitted from local sensors to the fusion center by quantization. Although quantization can reduce bandwidth cost, it also brings about bad tracking performance as a result of information loss after quantization. To solve this problem, this paper proposes an optimal quantization-based target tracking scheme. It improves the tracking performance of low-bit quantized measurements by minimizing the additional covariance caused by quantization. The simulation demonstrates that our scheme performs much better than the conventional uniform quantization-based target tracking scheme and the increment of the data length affects our scheme only a little. Its tracking performance improves by only 4.4% from 2- to 3-bit, which means our scheme weakly depends on the number of data bits. Moreover, our scheme also weakly depends on the number of participate sensors, and it can work well in sparse sensor networks. In a 6 × 6 × 6 sensor network, compared with 4 × 4 × 4 sensor networks, the number of participant sensors increases by 334.92%, while the tracking accuracy using 1-bit quantized measurements improves by only 50.77%. Overall, our optimal quantization-based target tracking scheme can achieve the pursuit of data-efficiency, which fits the requirements of low-bandwidth UWSNs.
Feasibility study of robotic neural controllers
NASA Technical Reports Server (NTRS)
Magana, Mario E.
1990-01-01
The results are given of a feasibility study performed to establish if an artificial neural controller could be used to achieve joint space trajectory tracking of a two-link robot manipulator. The study is based on the results obtained by Hecht-Nielsen, who claims that a functional map can be implemented to a desired degree of accuracy with a three layer feedforward artificial neural network. Central to this study is the assumption that the robot model as well as its parameters values are known.
NASA Technical Reports Server (NTRS)
Anderson, J. D.; Mashhoon, B.
1985-01-01
The nature of the response of the Doppler tracking system to a stochastic background of gravitational radiation is discussed. Using data acquired in 1981 by the Deep Space Network with the Pioneer 10 spacecraft, interesting upper limits are placed on the energy density of the background in three frequency bands extending from 7 x 10 to the -7th to 10 to the -4th Hz, a region that has been inaccessible previously by any technique.
Recent advances in the development and transfer of machine vision technologies for space
NASA Technical Reports Server (NTRS)
Defigueiredo, Rui J. P.; Pendleton, Thomas
1991-01-01
Recent work concerned with real-time machine vision is briefly reviewed. This work includes methodologies and techniques for optimal illumination, shape-from-shading of general (non-Lambertian) 3D surfaces, laser vision devices and technology, high level vision, sensor fusion, real-time computing, artificial neural network design and use, and motion estimation. Two new methods that are currently being developed for object recognition in clutter and for 3D attitude tracking based on line correspondence are discussed.
14 CFR § 1215.106 - User command and tracking data.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false User command and tracking data. § 1215.106 Section § 1215.106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION TRACKING AND DATA... User command and tracking data. (a) User command data shall enter TDRSS via the NISN interface at WSC...
TDRS-L Tribute Decal to Arthur "Skip" Mackey, Jr.
2014-01-22
CAPE CANAVERAL, Fla. – This memorial message was added to the Atlas V rocket for NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft being prepared for launch from Cape Canaveral Air Force Station's Launch Complex 41. Arthur J. "Skip" Mackey Jr. was the “Voice of NASA” during the 1960s, 1970s and early 1980s for flight commentary after liftoff for expendable vehicles launched from Cape Canaveral. Mackey served as branch chief for Telemetry and Communications at Hangar AE in the agency’s Expendable Launch Vehicle Program and then the Launch Services Program for 39 years. He died in Fort Lauderdale, Fla., on Nov. 19, 2013. The TDRS-L spacecraft is the second of three new satellites designed to ensure vital operational continuity for NASA by expanding the lifespan of the Tracking and Data Relay Satellite System TDRSS fleet, which consists of eight satellites in geosynchronous orbit. The spacecraft provide tracking, telemetry, command and high bandwidth data return services for numerous science and human exploration missions orbiting Earth. These include NASA's Hubble Space Telescope and the International Space Station. TDRS-L has a high-performance solar panel designed for more spacecraft power to meet the growing S-band communications requirements. TDRSS is one of NASA Space Communication and Navigation’s SCaN three networks providing space communications to NASA’s missions. For more information more about TDRS-L, visit: http://www.nasa.gov/tdrs To learn more about SCaN, visit: www.nasa.gov/scan For more on "Skip" Mackey go to: http://www.nasa.gov/content/skip-mackey-remembered-by-colleagues-as-voice-of-nasa/ Image credit: United Launch Alliance
2017-08-17
Social media gather in Kennedy Space Center’s Press Site auditorium for a briefing focused on preparations to launch NASA's Tracking and Data Relay Satellite, TDRS-M. The latest spacecraft destined for the agency's constellation of communications satellites, TDRS-M will allow nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop a United Launch Alliance Atlas V rocket is scheduled to take place from Space Launch Complex 41 at Cape Canaveral Air Force Station at 8:03 a.m. EDT Aug. 18. NASA Social Media Team includes: Emily Furfaro and Amber Jacobson. Guest speakers include: Badri Younes, Deputy Associate Administrator for Space Communications and Navigation at NASA Headquarters in Washington; Dave Littmann, Project Manager for TDRS-M at NASA’s Goddard Space Flight Center; Neil Mallik, NASA Deputy Network Director for Human Spaceflight; Nicole Mann, NASA Astronaut; Steve Bowen, NASA Astronaut; Skip Owen, NASA Launch Services; Scott Messer, United Launch Alliance Program Manager for NASA Missions.
Fuzzy Neural Network-Based Interacting Multiple Model for Multi-Node Target Tracking Algorithm
Sun, Baoliang; Jiang, Chunlan; Li, Ming
2016-01-01
An interacting multiple model for multi-node target tracking algorithm was proposed based on a fuzzy neural network (FNN) to solve the multi-node target tracking problem of wireless sensor networks (WSNs). Measured error variance was adaptively adjusted during the multiple model interacting output stage using the difference between the theoretical and estimated values of the measured error covariance matrix. The FNN fusion system was established during multi-node fusion to integrate with the target state estimated data from different nodes and consequently obtain network target state estimation. The feasibility of the algorithm was verified based on a network of nine detection nodes. Experimental results indicated that the proposed algorithm could trace the maneuvering target effectively under sensor failure and unknown system measurement errors. The proposed algorithm exhibited great practicability in the multi-node target tracking of WSNs. PMID:27809271
Online dimensionality reduction using competitive learning and Radial Basis Function network.
Tomenko, Vladimir
2011-06-01
The general purpose dimensionality reduction method should preserve data interrelations at all scales. Additional desired features include online projection of new data, processing nonlinearly embedded manifolds and large amounts of data. The proposed method, called RBF-NDR, combines these features. RBF-NDR is comprised of two modules. The first module learns manifolds by utilizing modified topology representing networks and geodesic distance in data space and approximates sampled or streaming data with a finite set of reference patterns, thus achieving scalability. Using input from the first module, the dimensionality reduction module constructs mappings between observation and target spaces. Introduction of specific loss function and synthesis of the training algorithm for Radial Basis Function network results in global preservation of data structures and online processing of new patterns. The RBF-NDR was applied for feature extraction and visualization and compared with Principal Component Analysis (PCA), neural network for Sammon's projection (SAMANN) and Isomap. With respect to feature extraction, the method outperformed PCA and yielded increased performance of the model describing wastewater treatment process. As for visualization, RBF-NDR produced superior results compared to PCA and SAMANN and matched Isomap. For the Topic Detection and Tracking corpus, the method successfully separated semantically different topics. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Wong, Yen F.; Kegege, Obadiah; Schaire, Scott H.; Bussey, George; Altunc, Serhat; Zhang, Yuwen; Patel Chitra
2016-01-01
National Aeronautics and Space Administration (NASA) CubeSat missions are expected to grow rapidly in the next decade. Higher data rate CubeSats are transitioning away from Amateur Radio bands to higher frequency bands. A high-level communication architecture for future space-to-ground CubeSat communication was proposed within NASA Goddard Space Flight Center. This architecture addresses CubeSat direct-to-ground communication, CubeSat to Tracking Data Relay Satellite System (TDRSS) communication, CubeSat constellation with Mothership direct-to-ground communication, and CubeSat Constellation with Mothership communication through K-Band Single Access (KSA). A study has been performed to explore this communication architecture, through simulations, analyses, and identifying technologies, to develop the optimum communication concepts for CubeSat communications. This paper presents details of the simulation and analysis that include CubeSat swarm, daughter ship/mother ship constellation, Near Earth Network (NEN) S and X-band direct to ground link, TDRSS Multiple Access (MA) array vs Single Access mode, notional transceiver/antenna configurations, ground asset configurations and Code Division Multiple Access (CDMA) signal trades for daughter ship/mother ship CubeSat constellation inter-satellite cross link. Results of space science X-band 10 MHz maximum achievable data rate study are summarized. CubeSat NEN Ka-Band end-to-end communication analysis is provided. Current CubeSat communication technologies capabilities are presented. Compatibility test of the CubeSat transceiver through NEN and SN is discussed. Based on the analyses, signal trade studies and technology assessments, the desired CubeSat transceiver features and operation concepts for future CubeSat end-to-end communications are derived.
Ramulu, Pradeep Y; Chan, Emilie S; Loyd, Tara L; Ferrucci, Luigi; Friedman, David S
2012-08-01
Measuring physical at home and away from home is essential for assessing health and well-being, and could help design interventions to increase physical activity. Here, we describe how physical activity at home and away from home can be quantified by combining information from cellular network-based tracking devices and accelerometers. Thirty-five working adults wore a cellular network-based tracking device and an accelerometer for 6 consecutive days and logged their travel away from home. Performance of the tracking device was determined using the travel log for reference. Tracking device and accelerometer data were merged to compare physical activity at home and away from home. The tracking device detected 98.6% of all away-from-home excursions, accurately measured time away from home and demonstrated few prolonged signal drop-out periods. Most physical activity took place away from home on weekdays, but not on weekends. Subjects were more physically active per unit of time while away from home, particularly on weekends. Cellular network-based tracking devices represent an alternative to global positioning systems for tracking location, and provide information easily integrated with accelerometers to determine where physical activity takes place. Promoting greater time spent away from home may increase physical activity.
Collaborative Commercial Space Situational Awareness
NASA Astrophysics Data System (ADS)
Kelso, T. S.; Hendrix, D.; Sibert, D.; Hall, R. A.; Therien, W.
2013-09-01
There is an increasing recognition by commercial and civil space operators of the need for space situational awareness (SSA) data to support ongoing conjunction analysis, maneuver planning, and radio frequency interference mitigation as part of daily operations. While some SSA data is available from the Joint Space Operations Center via the Space Track web site, access to raw observations and photometric data is limited due to national security considerations. These data, however, are of significant value in calibrating intra- and inter-operator orbit determination results, determining inter-system biases, and assessing operating profiles in the geostationary orbit. This paper details an ongoing collaborative effort to collect and process optical observations and photometric data using a network of low-cost telescope installations and shows how these data are being used to support ongoing operations in the Space Data Center. This presentation will demonstrate how by leveraging advance photometric processing algorithms developed for Missile Defense Agency and the Ballistic Missile Defense (BMD) mission ExoAnalytic and AGI have been able to provide actionable SSA for satellite operators from small telescopes in less than optimal viewing conditions. Space has become an increasingly cluttered environment requiring satellite operators to remain forever vigilant in order to prevent collisions to preserve their assets and prevent further cluttering the space environment. The Joint Space Operations Center (JSpOC), which tracks all objects in earth orbit, reports possible upcoming conjunctions to operators by providing Conjunction Summary Messages (CSMs). However due to large positional uncertainties in the forward predicted position of space objects at the time closest approach the volume of CSMs is excessive to the point that maneuvers in response to CSMs without additional screening is cost prohibitive. CSSI and the Space Data Association have been able to screen most CSMs by using more accurate operator ephemeris. By screening with operator ephemeris alone they have been able to demonstrate that safety limits will not be exceeded in a good number of these encounters and that extra delta-V need to not be expended in a Collision Avoidance (COLA) maneuver. However there remains a decent portion of alerts that may warrant action especially when the secondary object is an uncontrolled space object such as a dead satellite or rocket body. By dynamically tasking the ESpOC observatories to provide real-time tracking and photometric characterization of the secondary objects in response to these CSMs satellite operators benefit from an additional method of conjunction screening. The refined tracks and conjunction assessments obtained by ESpOC screening allows operators to safely reduce the number of COLAs performed in response to safe close approaches and provide optimized COLA maneuver planning in response to validated threats.
A neural network z-vertex trigger for Belle II
NASA Astrophysics Data System (ADS)
Neuhaus, S.; Skambraks, S.; Abudinen, F.; Chen, Y.; Feindt, M.; Frühwirth, R.; Heck, M.; Kiesling, C.; Knoll, A.; Paul, S.; Schieck, J.
2015-05-01
We present the concept of a track trigger for the Belle II experiment, based on a neural network approach, that is able to reconstruct the z (longitudinal) position of the event vertex within the latency of the first level trigger. The trigger will thus be able to suppress a large fraction of the dominating background from events outside of the interaction region. The trigger uses the drift time information of the hits from the Central Drift Chamber (CDC) of Belle II within narrow cones in polar and azimuthal angle as well as in transverse momentum (sectors), and estimates the z-vertex without explicit track reconstruction. The preprocessing for the track trigger is based on the track information provided by the standard CDC trigger. It takes input from the 2D (r — φ) track finder, adds information from the stereo wires of the CDC, and finds the appropriate sectors in the CDC for each track in a given event. Within each sector, the z-vertex of the associated track is estimated by a specialized neural network, with a continuous output corresponding to the scaled z-vertex. The input values for the neural network are calculated from the wire hits of the CDC.
NASA Astrophysics Data System (ADS)
Gagliano, Alexander; Taylor, Morgan; Black, William; Smidt, Joseph; Wiggins, Brandon K.
2018-01-01
Recent models indicate that the sun's protoplanetary disk provided insufficient pathways for water formation, as evidenced by [D/H]H2O measurements in asteroids and Earth's oceans. It is therefore likely that the early universe contained sites conducive to water chemistry. This research tracks the timeline and abundance rates of water using cosmological simulations in Enzo. A 64 Mpc cube of space is evolved from z = 200 to z = 2. Simulations are then centered on a massive halo, and a 26-species reaction network is applied using operator split to track water formation rates. Density projection plots with metallicity contours predict regions of water formation, which are then compared to simulated abundances at both galactic and extragalactic scales. Observational signatures of formation sites are further discussed, and allow for additional validation of the simulations used.
Resource allocation planning with international components
NASA Technical Reports Server (NTRS)
Burke, Gene; Durham, Ralph; Leppla, Frank; Porter, David
1993-01-01
Dumas, Briggs, Reid and Smith (1989) describe the need for identifying mutually acceptable methodologies for developing standard agreements for the exchange of tracking time or facility use among international components. One possible starting point is the current process used at the Jet Propulsion Laboratory (JPL) in planning the use of tracking resources. While there is a significant promise of better resource utilization by international cooperative agreements, there is a serious challenge to provide convenient user participation given the separate project and network locations. Coordination among users and facility providers will require a more decentralized communication process and a wider variety of automated planning tools to help users find potential exchanges. This paper provides a framework in which international cooperation in the utilization of ground based space communication systems can be facilitated.
NASA Astrophysics Data System (ADS)
Krejcar, Ondrej
The ability to let a mobile device determine its location in an indoor environment supports the creation of a new range of mobile information system applications. The goal of my project is to complement the data networking capabilities of RF wireless LANs with accurate user location and tracking capabilities for user needed data prebuffering. I created a location based system enhancement for locating and tracking users of indoor information system. User position is used for data prebuffering and pushing information from a server to his mobile client. All server data is saved as artifacts (together) with its indoor position information. The area definition for artifacts selecting is described for current and predicted user position along with valuating options for artifacts ranging. Future trends are also discussed.
Siamese convolutional networks for tracking the spine motion
NASA Astrophysics Data System (ADS)
Liu, Yuan; Sui, Xiubao; Sun, Yicheng; Liu, Chengwei; Hu, Yong
2017-09-01
Deep learning models have demonstrated great success in various computer vision tasks such as image classification and object tracking. However, tracking the lumbar spine by digitalized video fluoroscopic imaging (DVFI), which can quantitatively analyze the motion mode of spine to diagnose lumbar instability, has not yet been well developed due to the lack of steady and robust tracking method. In this paper, we propose a novel visual tracking algorithm of the lumbar vertebra motion based on a Siamese convolutional neural network (CNN) model. We train a full-convolutional neural network offline to learn generic image features. The network is trained to learn a similarity function that compares the labeled target in the first frame with the candidate patches in the current frame. The similarity function returns a high score if the two images depict the same object. Once learned, the similarity function is used to track a previously unseen object without any adapting online. In the current frame, our tracker is performed by evaluating the candidate rotated patches sampled around the previous frame target position and presents a rotated bounding box to locate the predicted target precisely. Results indicate that the proposed tracking method can detect the lumbar vertebra steadily and robustly. Especially for images with low contrast and cluttered background, the presented tracker can still achieve good tracking performance. Further, the proposed algorithm operates at high speed for real time tracking.
Direct determination of geocenter motion by combining SLR, VLBI, GNSS, and DORIS time series
NASA Astrophysics Data System (ADS)
Wu, X.; Abbondanza, C.; Altamimi, Z.; Chin, T. M.; Collilieux, X.; Gross, R. S.; Heflin, M. B.; Jiang, Y.; Parker, J. W.
2013-12-01
The longest-wavelength surface mass transport includes three degree-one spherical harmonic components involving hemispherical mass exchanges. The mass load causes geocenter motion between the center-of-mass of the total Earth system (CM) and the center-of-figure of the solid Earth surface (CF), and deforms the solid Earth. Estimation of the degree-1 surface mass changes through CM-CF and degree-1 deformation signatures from space geodetic techniques can thus complement GRACE's time-variable gravity data to form a complete change spectrum up to a high resolution. Currently, SLR is considered the most accurate technique for direct geocenter motion determination. By tracking satellite motion from ground stations, SLR determines the motion between CM and the geometric center of its ground network (CN). This motion is then used to approximate CM-CF and subsequently for deriving degree-1 mass changes. However, the SLR network is very sparse and uneven in global distribution. The average number of operational tracking stations is about 20 in recent years. The poor network geometry can have a large CN-CF motion and is not ideal for the determination of CM-CF motion and degree-1 mass changes. We recently realized an experimental Terrestrial Reference Frame (TRF) through station time series using the Kalman filter and the RTS smoother. The TRF has its origin defined at nearly instantaneous CM using weekly SLR measurement time series. VLBI, GNSS and DORIS time series are combined weekly with those of SLR and tied to the geocentric (CM) reference frame through local tie measurements and co-motion constraints on co-located geodetic stations. The unified geocentric time series of the four geodetic techniques provide a much better network geometry for direct geodetic determination of geocenter motion. Results from this direct approach using a 90-station network compares favorably with those obtained from joint inversions of GPS/GRACE data and ocean bottom pressure models. We will also show that a previously identified discrepancy in X-component between direct SLR orbit-tracking and inverse determined geocenter motions is largely reconciled with the new unified network.
Precise Orbit Determination of BeiDou Navigation Satellite System
NASA Astrophysics Data System (ADS)
He, Lina; Ge, Maorong; Wang, Jiexian; Wickert, Jens; Schuh, Harald
2013-04-01
China has been developing its own independent satellite navigation system since decades. Now the COMPASS system, also known as BeiDou, is emerging and gaining more and more interest and attention in the worldwide GNSS communities. The current regional BeiDou system is ready for its operational service around the end of 2012 with a constellation including five Geostationary Earth Orbit satellites (GEO), five Inclined Geosynchronous Orbit satellites (IGSO) and four Medium Earth orbit (MEO) satellites in operation. Besides the open service with positioning accuracy of around 10m which is free to civilian users, both precise relative positioning, and precise point positioning are demonstrated as well. In order to enhance the BeiDou precise positioning service, Precise Orbit Determination (POD) which is essential of any satellite navigation system has been investigated and studied thoroughly. To further improving the orbits of different types of satellites, we study the impact of network coverage on POD data products by comparing results from tracking networks over the Chinese territory, Asian-Pacific, Asian and of global scale. Furthermore, we concentrate on the improvement of involving MEOs on the orbit quality of GEOs and IGSOs. POD with and without MEOs are undertaken and results are analyzed. Finally, integer ambiguity resolution which brings highly improvement on orbits and positions with GPS data is also carried out and its effect on POD data products is assessed and discussed in detail. Seven weeks of BeiDou data from a ground tracking network, deployed by Wuhan University is employed in this study. The test constellation includes four GEO, five IGSO and two MEO satellites in operation. The three-day solution approach is employed to enhance its strength due to the limited coverage of the tracking network and the small movement of most of the satellites. A number of tracking scenarios and processing schemas are identified and processed and overlapping orbit differences are utilized to qualify the estimated orbits and clocks. The results show that GEO orbits, especially the along-track component, can be significantly improved by extending the tracking network in China along longitude direction, whereas IGSOs gain more improvement if the tracking network extends in latitude. For the current tracking network, deploying tracking stations on the eastern side, for example in New Zealand and/or in Hawaii, will significantly reduce along-track biases of GEOs on the same side. The involvement of MEOs and ambiguity-fixing also make the orbits better but rather moderate. Key words: BeiDou, precise orbit determination (POD), tracking network, ambiguity-fixing
UWB Tracking System Design with TDOA Algorithm
NASA Technical Reports Server (NTRS)
Ni, Jianjun; Arndt, Dickey; Ngo, Phong; Phan, Chau; Gross, Julia; Dusl, John; Schwing, Alan
2006-01-01
This presentation discusses an ultra-wideband (UWB) tracking system design effort using a tracking algorithm TDOA (Time Difference of Arrival). UWB technology is exploited to implement the tracking system due to its properties, such as high data rate, fine time resolution, and low power spectral density. A system design using commercially available UWB products is proposed. A two-stage weighted least square method is chosen to solve the TDOA non-linear equations. Matlab simulations in both two-dimensional space and three-dimensional space show that the tracking algorithm can achieve fine tracking resolution with low noise TDOA data. The error analysis reveals various ways to improve the tracking resolution. Lab experiments demonstrate the UWBTDOA tracking capability with fine resolution. This research effort is motivated by a prototype development project Mini-AERCam (Autonomous Extra-vehicular Robotic Camera), a free-flying video camera system under development at NASA Johnson Space Center for aid in surveillance around the International Space Station (ISS).
Enhancing DSN Operations Efficiency with the Discrepancy Reporting Management System (DRMS)
NASA Technical Reports Server (NTRS)
Chatillon, Mark; Lin, James; Cooper, Tonja M.
2003-01-01
The DRMS is the Discrepancy Reporting Management System used by the Deep Space Network (DSN). It uses a web interface and is a management tool designed to track and manage: data outage incidents during spacecraft tracks against equipment and software known as DRs (discrepancy Reports), to record "out of pass" incident logs against equipment and software in a Station Log, to record instances where equipment has be restarted or reset as Reset records, and to electronically record equipment readiness status across the DSN. Tracking and managing these items increases DSN operational efficiency by providing: the ability to establish the operational history of equipment items, data on the quality of service provided to the DSN customers, the ability to measure service performance, early insight into processes, procedures and interfaces that may need updating or changing, and the capability to trace a data outage to a software or hardware change. The items listed above help the DSN to focus resources on areas of most need.
NASA Technical Reports Server (NTRS)
1972-01-01
Satellite tracking and earth dynamics research programs are discussed. Geodetic and geophysical investigations are reported along with atmospheric research using satellite drag data. Satellite tracking network functions and support groups which are discussed include: network operations, communications, data-services division, moonwatch, and programming group.
The Ethnic Dimensions of Social Capital: How Parental Networks Shape Track Placement in Germany.
ERIC Educational Resources Information Center
Werum, Regina E.
This research examined the relationship between parental social capital and children's educational track placement in Germany, and how parental social capital differentially affected the tracking experiences of German and non-German children. Parental social capital was defined as the degree to which adults used family networks or connections to…
NASA Astrophysics Data System (ADS)
Dods, Joe; Chapman, Sandra; Gjerloev, Jesper
2016-04-01
Quantitative understanding of the full spatial-temporal pattern of space weather is important in order to estimate the ground impact. Geomagnetic indices such as AE track the peak of a geomagnetic storm or substorm, but cannot capture the full spatial-temporal pattern. Observations by the ~100 ground based magnetometers in the northern hemisphere have the potential to capture the detailed evolution of a given space weather event. We present the first analysis of the full available set of ground based magnetometer observations of substorms using dynamical networks. SuperMAG offers a database containing ground station magnetometer data at a cadence of 1min from 100s stations situated across the globe. We use this data to form dynamic networks which capture spatial dynamics on timescales from the fast reconfiguration seen in the aurora, to that of the substorm cycle. Windowed linear cross-correlation between pairs of magnetometer time series along with a threshold is used to determine which stations are correlated and hence connected in the network. Variations in ground conductivity and differences in the response functions of magnetometers at individual stations are overcome by normalizing to long term averages of the cross-correlation. These results are tested against surrogate data in which phases have been randomised. The network is then a collection of connected points (ground stations); the structure of the network and its variation as a function of time quantify the detailed dynamical processes of the substorm. The network properties can be captured quantitatively in time dependent dimensionless network parameters and we will discuss their behaviour for examples of 'typical' substorms and storms. The network parameters provide a detailed benchmark to compare data with models of substorm dynamics, and can provide new insights on the similarities and differences between substorms and how they correlate with external driving and the internal state of the magnetosphere. We can also investigate the solar wind control of the magnetospheric-ionospheric convection system using dynamical networks. The dynamical networks are first interpolated onto a regular grid. Statistically averaged network responses are then formed for a variety of solar wind conditions, including investigating the network response to southward turnings. [1] Dods, J., S. C. Chapman, and J. W. Gjerloev (2015), Network analysis of geomagnetic substorms using the SuperMAG database of ground-based magnetometer stations, J. Geophys. Res. Space Physics, 120, 7774-7784, doi:10.1002/2015JA021456
Regionalized Lunar South Pole Surface Navigation System Analysis
NASA Technical Reports Server (NTRS)
Welch, Bryan W.
2008-01-01
Apollo missions utilized Earth-based assets for navigation because the landings took place at lunar locations in constant view from the Earth. The new exploration campaign to the lunar south pole region will have limited Earth visibility, but the extent to which a navigation system comprised solely of Earth-based tracking stations will provide adequate navigation solutions in this region is unknown. This report presents a dilution-of-precision (DoP)-based, stationary surface navigation analysis of the performance of multiple lunar satellite constellations, Earth-based deep space network assets, and combinations thereof. Results show that kinematic and integrated solutions cannot be provided by the Earth-based deep space network stations. Also, the stationary surface navigation system needs to be operated either as a two-way navigation system or as a one-way navigation system with local terrain information, while the position solution is integrated over a short duration of time with navigation signals being provided by a lunar satellite constellation.
NASA Astrophysics Data System (ADS)
Wang, Jin; Xu, Fan; Lu, GuoDong
2017-09-01
More complex problems of simultaneous position and internal force control occur with cooperative manipulator systems than that of a single one. In the presence of unwanted parametric and modelling uncertainties as well as external disturbances, a decentralised position synchronised force control scheme is proposed. With a feedforward neural network estimating engine, a precise model of the system dynamics is not required. Unlike conventional cooperative or synchronised controllers, virtual position and virtual synchronisation errors are introduced for internal force tracking control and task space position synchronisation. Meanwhile joint space synchronisation and force measurement are unnecessary. Together with simulation studies and analysis, the position and the internal force errors are shown to asymptotically converge to zero. Moreover, the controller exhibits different characteristics with selected synchronisation factors. Under certain settings, it can deal with temporary cooperation by an intelligent retreat mechanism, where less internal force would occur and rigid collision can be avoided. Using a Lyapunov stability approach, the controller is proven to be robust in face of the aforementioned uncertainties.
A Random Finite Set Approach to Space Junk Tracking and Identification
2014-09-03
Final 3. DATES COVERED (From - To) 31 Jan 13 – 29 Apr 14 4. TITLE AND SUBTITLE A Random Finite Set Approach to Space Junk Tracking and...01-2013 to 29-04-2014 4. TITLE AND SUBTITLE A Random Finite Set Approach to Space Junk Tracking and Identification 5a. CONTRACT NUMBER FA2386-13...Prescribed by ANSI Std Z39-18 A Random Finite Set Approach to Space Junk Tracking and Indentification Ba-Ngu Vo1, Ba-Tuong Vo1, 1Department of
NASA Technical Reports Server (NTRS)
Kremer, Steven E.; Bundick, Steven N.
1999-01-01
In response to the current government budgetary environment that requires the National Aeronautics and Space Administration (NASA) to do more with less, NASA/Goddard Space Flight Center's Wallops Flight Facility has developed and implemented a class of ground stations known as a Low Earth Orbiter-Terminal (LEO-T). This development thus provides a low-cost autonomous ground tracking service for NASA's customers. More importantly, this accomplishment provides a commercial source to spacecraft customers around the world to purchase directly from the company awarded the NASA contract to build these systems. A few years ago, NASA was driven to provide more ground station capacity for spacecraft telemetry, tracking, and command (TT&C) services with a decreasing budget. NASA also made a decision to develop many smaller, cheaper satellites rather than a few large spacecraft as done in the past. In addition, university class missions were being driven to provide their own TT&C services due to the increasing load on the NASA ground-tracking network. NASA's solution for this ever increasing load was to use the existing large aperture systems to support those missions requiring that level of performance and to support the remainder of the missions with the autonomous LEO-T systems. The LEO-T antenna system is a smaller, cheaper, and fully autonomous unstaffed system that can operate without the existing NASA support infrastructure. The LEO-T provides a low-cost, reliable space communications service to the expanding number of low-earth orbiting missions around the world. The system is also fostering developments that improve cost-effectiveness of autonomous-class capabilities for NASA and commercial space use. NASA has installed three LEO-T systems. One station is at the University of Puerto Rico, the second system is installed at the Poker Flat Research Range near Fairbanks, Alaska, and the third system is installed at NASA's Wallops Flight Facility in Virginia. This paper will describe the current NASA implementation of the LEO-T network of antenna systems, the customers now being supported, and the services NASA can now offer with this new breed of autonomous ground stations. In addition, the paper will define the technical capabilities of the system and the cost effectiveness of using the systems including the capital costs of installation.
Ye, Tao; Zhou, Fuqiang
2015-04-10
When imaged by detectors, space targets (including satellites and debris) and background stars have similar point-spread functions, and both objects appear to change as detectors track targets. Therefore, traditional tracking methods cannot separate targets from stars and cannot directly recognize targets in 2D images. Consequently, we propose an autonomous space target recognition and tracking approach using a star sensor technique and a Kalman filter (KF). A two-step method for subpixel-scale detection of star objects (including stars and targets) is developed, and the combination of the star sensor technique and a KF is used to track targets. The experimental results show that the proposed method is adequate for autonomously recognizing and tracking space targets.
Symplectic multiparticle tracking model for self-consistent space-charge simulation
Qiang, Ji
2017-01-23
Symplectic tracking is important in accelerator beam dynamics simulation. So far, to the best of our knowledge, there is no self-consistent symplectic space-charge tracking model available in the accelerator community. In this paper, we present a two-dimensional and a three-dimensional symplectic multiparticle spectral model for space-charge tracking simulation. This model includes both the effect from external fields and the effect of self-consistent space-charge fields using a split-operator method. Such a model preserves the phase space structure and shows much less numerical emittance growth than the particle-in-cell model in the illustrative examples.
Symplectic multiparticle tracking model for self-consistent space-charge simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiang, Ji
Symplectic tracking is important in accelerator beam dynamics simulation. So far, to the best of our knowledge, there is no self-consistent symplectic space-charge tracking model available in the accelerator community. In this paper, we present a two-dimensional and a three-dimensional symplectic multiparticle spectral model for space-charge tracking simulation. This model includes both the effect from external fields and the effect of self-consistent space-charge fields using a split-operator method. Such a model preserves the phase space structure and shows much less numerical emittance growth than the particle-in-cell model in the illustrative examples.
Orbit Determination Issues for Libration Point Orbits
NASA Technical Reports Server (NTRS)
Beckman, Mark; Bauer, Frank (Technical Monitor)
2002-01-01
Libration point mission designers require knowledge of orbital accuracy for a variety of analyses including station keeping control strategies, transfer trajectory design, and formation and constellation control. Past publications have detailed orbit determination (OD) results from individual libration point missions. This paper collects both published and unpublished results from four previous libration point missions (ISEE (International Sun-Earth Explorer) -3, SOHO (Solar and Heliospheric Observatory), ACE (Advanced Composition Explorer) and MAP (Microwave Anisotropy Probe)) supported by Goddard Space Flight Center's Guidance, Navigation & Control Center. The results of those missions are presented along with OD issues specific to each mission. All past missions have been limited to ground based tracking through NASA ground sites using standard range and Doppler measurement types. Advanced technology is enabling other OD options including onboard navigation using seaboard attitude sensors and the use of the Very Long Baseline Interferometry (VLBI) measurement Delta Differenced One-Way Range (DDOR). Both options potentially enable missions to reduce coherent dedicated tracking passes while maintaining orbital accuracy. With the increased projected loading of the DSN (Deep Space Network), missions must find alternatives to the standard OD scenario.
Algebraic Approach for Recovering Topology in Distributed Camera Networks
2009-01-14
not valid for camera networks. Spatial sam- pling of plenoptic function [2] from a network of cameras is rarely i.i.d. (independent and identi- cally...coverage can be used to track and compare paths in a wireless camera network without any metric calibration information. In particular, these results can...edition edition, 2000. [14] A. Rahimi, B. Dunagan, and T. Darrell. Si- multaneous calibration and tracking with a network of non-overlapping sensors. In
H∞ output tracking control of discrete-time nonlinear systems via standard neural network models.
Liu, Meiqin; Zhang, Senlin; Chen, Haiyang; Sheng, Weihua
2014-10-01
This brief proposes an output tracking control for a class of discrete-time nonlinear systems with disturbances. A standard neural network model is used to represent discrete-time nonlinear systems whose nonlinearity satisfies the sector conditions. H∞ control performance for the closed-loop system including the standard neural network model, the reference model, and state feedback controller is analyzed using Lyapunov-Krasovskii stability theorem and linear matrix inequality (LMI) approach. The H∞ controller, of which the parameters are obtained by solving LMIs, guarantees that the output of the closed-loop system closely tracks the output of a given reference model well, and reduces the influence of disturbances on the tracking error. Three numerical examples are provided to show the effectiveness of the proposed H∞ output tracking design approach.
The impact of fluid topology on residual saturations - A pore-network model study
NASA Astrophysics Data System (ADS)
Doster, F.; Kallel, W.; van Dijke, R.
2014-12-01
In two-phase flow in porous media only fractions of the resident fluid are mobilised during a displacement process and, in general, a significant amount of the resident fluid remains permanently trapped. Depending on the application, entrapment is desirable (geological carbon storage), or it should be obviated (enhanced oil recovery, contaminant remediation). Despite its utmost importance for these applications, predictions of trapped fluid saturations for macroscopic systems, in particular under changing displacement conditions, remain challenging. The models that aim to represent trapping phenomena are typically empirical and require tracking of the history of the state variables. This exacerbates the experimental verification and the design of sophisticated displacement technologies that enhance or impede trapping. Recently, experiments [1] have suggested that a macroscopic normalized Euler number, quantifying the topology of fluid distributions, could serve as a parameter to predict residual saturations based on state variables. In these experiments the entrapment of fluids was visualised through 3D micro CT imaging. However, the experiments are notoriously time consuming and therefore only allow for a sparse sampling of the parameter space. Pore-network models represent porous media through an equivalent network structure of pores and throats. Under quasi-static capillary dominated conditions displacement processes can be modeled through simple invasion percolation rules. Hence, in contrast to experiments, pore-network models are fast and therefore allow full sampling of the parameter space. Here, we use pore-network modeling [2] to critically investigate the knowledge gained through observing and tracking the normalized Euler number. More specifically, we identify conditions under which (a) systems with the same saturations but different normalized Euler numbers lead to different residual saturations and (b) systems with the same saturations and the same normalized Euler numbers but different process histories yield the same residual saturations. Special attention is given to contact angle and process histories with varying drainage and imbibition periods. [1] Herring et al., Adv. Water. Resour., 62, 47-58 (2013) [2] Ryazanov et al., Transp. Porous Media, 80, 79-99 (2009).
Comparing Optical Oscillators across the Air to Milliradians in Phase and 10^{-17} in Frequency.
Sinclair, Laura C; Bergeron, Hugo; Swann, William C; Baumann, Esther; Deschênes, Jean-Daniel; Newbury, Nathan R
2018-02-02
We demonstrate carrier-phase optical two-way time-frequency transfer (carrier-phase OTWTFT) through the two-way exchange of frequency comb pulses. Carrier-phase OTWTFT achieves frequency comparisons with a residual instability of 1.2×10^{-17} at 1 s across a turbulent 4-km free space link, surpassing previous OTWTFT by 10-20 times and enabling future high-precision optical clock networks. Furthermore, by exploiting the carrier phase, this approach is able to continuously track changes in the relative optical phase of distant optical oscillators to 9 mrad (7 as) at 1 s averaging, effectively extending optical phase coherence over a broad spatial network for applications such as correlated spectroscopy between distant atomic clocks.
Nonlinear Dynamic of Curved Railway Tracks in Three-Dimensional Space
NASA Astrophysics Data System (ADS)
Liu, X.; Ngamkhanong, C.; Kaewunruen, S.
2017-12-01
On curved tracks, high-pitch noise pollution can often be a considerable concern of rail asset owners, commuters, and people living or working along the rail corridor. Inevitably, wheel/rail interface can cause a traveling source of sound and vibration, which spread over a long distance of rail network. The sound and vibration can be in various forms and spectra. The undesirable sound and vibration on curves is often called ‘noise,’ includes flanging and squealing noises. This paper focuses on the squeal noise phenomena on curved tracks located in urban environments. It highlights the effect of curve radii on lateral track dynamics. It is important to note that rail freight curve noises, especially for curve squeals, can be observed almost everywhere and every type of track structures. The most pressing noise appears at sharper curved tracks where excessive lateral wheel/rail dynamics resonate with falling friction states, generating a tonal noise problem, so-call ‘squeal’. Many researchers have carried out measurements and simulations to understand the actual root causes of the squeal noise. Most researchers believe that wheel resonance over falling friction is the main cause, whilst a few others think that dynamic mode coupling of wheel and rail may also cause the squeal. Therefore, this paper is devoted to systems thinking the approach and dynamic assessment in resolving railway curve noise problems. The simulations of railway tracks with different curve radii will be carried out to develop state-of-the-art understanding into lateral track dynamics, including rail dynamics, cant dynamics, gauge dynamics and overall track responses.
Source space analysis of event-related dynamic reorganization of brain networks.
Ioannides, Andreas A; Dimitriadis, Stavros I; Saridis, George A; Voultsidou, Marotesa; Poghosyan, Vahe; Liu, Lichan; Laskaris, Nikolaos A
2012-01-01
How the brain works is nowadays synonymous with how different parts of the brain work together and the derivation of mathematical descriptions for the functional connectivity patterns that can be objectively derived from data of different neuroimaging techniques. In most cases static networks are studied, often relying on resting state recordings. Here, we present a quantitative study of dynamic reconfiguration of connectivity for event-related experiments. Our motivation is the development of a methodology that can be used for personalized monitoring of brain activity. In line with this motivation, we use data with visual stimuli from a typical subject that participated in different experiments that were previously analyzed with traditional methods. The earlier studies identified well-defined changes in specific brain areas at specific latencies related to attention, properties of stimuli, and tasks demands. Using a recently introduced methodology, we track the event-related changes in network organization, at source space level, thus providing a more global and complete view of the stages of processing associated with the regional changes in activity. The results suggest the time evolving modularity as an additional brain code that is accessible with noninvasive means and hence available for personalized monitoring and clinical applications.