NASA Astrophysics Data System (ADS)
Straub, Jeremy
2014-06-01
Resident space objects (RSOs) pose a significant threat to orbital assets. Due to high relative velocities, even a small RSO can cause significant damage to an object that it strikes. Worse, in many cases a collision may create numerous additional RSOs, if the impacted object shatters apart. These new RSOs will have heterogeneous mass, size and orbital characteristics. Collision avoidance systems (CASs) are used to maneuver spacecraft out of the path of RSOs to prevent these impacts. A RSO CAS must be validated to ensure that it is able to perform effectively given a virtually unlimited number of strike scenarios. This paper presents work on the creation of a testing environment and AI testing routine that can be utilized to perform verification and validation activities for cyber-physical systems. It reviews prior work on automated and autonomous testing. Comparative performance (relative to the performance of a human tester) is discussed.
Space Surveillance Catalog growth during SBIRS low deployment.
NASA Astrophysics Data System (ADS)
Hoult, C. P.; Wright, R. P.
The Space Surveillance Catalog is a database of all Resident Space Objects (RSOs) on Earth orbit. It is expected to grow in the future as more RSOs accumulate on orbit. Potentially still more dramatic growth could follow the deployment of the Space Based Infrared System Low Earth Orbit Component (SBTRS Low). SBIRS Low, currently about to enter development, offers the potential to detect and acquire much smaller debris RSOs than can be seen by the current ground-based Space Surveillance Network (SSN). SBIRS Low will host multicolor infrared/visible sensors on each satellite in a proliferated constellation on low Earth orbit, and if appropriately tasked, these sensors could provide significant space surveillance capability. Catalog growth during SBIRS Low deployment was analyzed using a highly aggregated code that numerically integrates the Markov equations governing the state transitions of RSOs from uncataloged to cataloged, and back again. It was assumed that all newly observed debris RSOs will be detected as by-products of routine Catalog maintenance, not including any post breakup searches, and if sufficient sensor resources are available, be acquired into the Catalog. Debris over the entire low to high altitude regime were considered.
Dynamic Steering for Improved Sensor Autonomy and Catalogue Maintenance
NASA Astrophysics Data System (ADS)
Hobson, T.; Gordon, N.; Clarkson, I.; Rutten, M.; Bessell, T.
A number of international agencies endeavour to maintain catalogues of the man-made resident space objects (RSOs) currently orbiting the Earth. Such catalogues are primarily created to anticipate and avoid destructive collisions involving important space assets such as manned missions and active satellites. An agencys ability to achieve this objective is dependent on the accuracy, reliability and timeliness of the information used to update its catalogue. A primary means for gathering this information is by regularly making direct observations of the tens-of-thousands of currently detectable RSOs via networks of space surveillance sensors. But operational constraints sometimes prevent accurate and timely reacquisition of all known RSOs, which can cause them to become lost to the tracking system. Furthermore, when comprehensive acquisition of new objects does not occur, these objects, in addition to the lost RSOs, result in uncorrelated detections when next observed. Due to the rising number of space-missions and the introduction of newer, more capable space-sensors, the number of uncorrelated targets is at an all-time high. The process of differentiating uncorrelated detections caused by once-acquired now-lost RSOs from newly detected RSOs is a difficult and often labour intensive task. Current methods for overcoming this challenge focus on advancements in orbit propagation and object characterisation to improve prediction accuracy and target identification. In this paper, we describe a complementary approach that incorporates increased awareness of error and failed observations into the RSO tracking solution. Our methodology employs a technique called dynamic steering to improve the autonomy and capability of a space surveillance networks steerable sensors. By co-situating each sensor with a low-cost high-performance computer, the steerable sensor can quickly and intelligently decide how to steer itself. The sensor-system uses a dedicated parallel-processing architecture to enable it to compute a high-fidelity estimate of the targets prior state error distribution in real-time. Negative information, such as when an RSO is targeted for observation but it is not observed, is incorporated to improve the likelihood of reacquiring the target when attempting to observe the target in future. The sensor is consequently capable of improving its utility by planning each observation using a sensor steering solution that is informed by all prior attempts at observing the target. We describe the practical implementation of a single experimental sensor and offer the results of recent field trials. These trials involved reacquisition and constrained Initial Orbit Determination of RSOs, a number of months after prior observation and initial detection. Using the proposed approach, the system is capable of using targeting information that would be unusable by existing space surveillance networks. The system consequently offers a means of enhancing space surveillance for SSA via increased system capacity, a higher degree of autonomy and the ability to reacquire objects whose dynamics are insufficiently modelled to cue a conventional space surveillance system for observation and tracking.
Dynamic sensor management of dispersed and disparate sensors for tracking resident space objects
NASA Astrophysics Data System (ADS)
El-Fallah, A.; Zatezalo, A.; Mahler, R.; Mehra, R. K.; Donatelli, D.
2008-04-01
Dynamic sensor management of dispersed and disparate sensors for space situational awareness presents daunting scientific and practical challenges as it requires optimal and accurate maintenance of all Resident Space Objects (RSOs) of interest. We demonstrate an approach to the space-based sensor management problem by extending a previously developed and tested sensor management objective function, the Posterior Expected Number of Targets (PENT), to disparate and dispersed sensors. This PENT extension together with observation models for various sensor platforms, and a Probability Hypothesis Density Particle Filter (PHD-PF) tracker provide a powerful tool for tackling this challenging problem. We demonstrate the approach using simulations for tracking RSOs by a Space Based Visible (SBV) sensor and ground based radars.
Catalogue Creation for Space Situational Awareness with Optical Sensors
NASA Astrophysics Data System (ADS)
Hobson, T.; Clarkson, I.; Bessell, T.; Rutten, M.; Gordon, N.; Moretti, N.; Morreale, B.
2016-09-01
In order to safeguard the continued use of space-based technologies, effective monitoring and tracking of man-made resident space objects (RSOs) is paramount. The diverse characteristics, behaviours and trajectories of RSOs make space surveillance a challenging application of the discipline that is tracking and surveillance. When surveillance systems are faced with non-canonical scenarios, it is common for human operators to intervene while researchers adapt and extend traditional tracking techniques in search of a solution. A complementary strategy for improving the robustness of space surveillance systems is to place greater emphasis on the anticipation of uncertainty. Namely, give the system the intelligence necessary to autonomously react to unforeseen events and to intelligently and appropriately act on tenuous information rather than discard it. In this paper we build from our 2015 campaign and describe the progression of a low-cost intelligent space surveillance system capable of autonomously cataloguing and maintaining track of RSOs. It currently exploits robotic electro-optical sensors, high-fidelity state-estimation and propagation as well as constrained initial orbit determination (IOD) to intelligently and adaptively manage its sensors in order to maintain an accurate catalogue of RSOs. In a step towards fully autonomous cataloguing, the system has been tasked with maintaining surveillance of a portion of the geosynchronous (GEO) belt. Using a combination of survey and track-refinement modes, the system is capable of maintaining a track of known RSOs and initiating tracks on previously unknown objects. Uniquely, due to the use of high-fidelity representations of a target's state uncertainty, as few as two images of previously unknown RSOs may be used to subsequently initiate autonomous search and reacquisition. To achieve this capability, particularly within the congested environment of the GEO-belt, we use a constrained admissible region (CAR) to generate a plausible estimate of the unknown RSO's state probability density function and disambiguate measurements using a particle-based joint probability data association (JPDA) method. Additionally, the use of alternative CAR generation methods, incorporating catalogue-based priors, is explored and tested. We also present the findings of two field trials of an experimental system that incorporates these techniques. The results demonstrate that such a system is capable of autonomously searching for an RSO that was briefly observed days prior in a GEO-survey and discriminating it from the measurements of other previously catalogued RSOs.
Doublet Pulse Coherent Laser Radar for Tracking of Resident Space Objects
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.; Rudd, Van; Shald, Scott; Sandford, Stephen; Dimarcantonio, Albert
2014-01-01
In this paper, the development of a long range ladar system known as ExoSPEAR at NASA Langley Research Center for tracking rapidly moving resident space objects is discussed. Based on 100 W, nanosecond class, near-IR laser, this ladar system with coherent detection technique is currently being investigated for short dwell time measurements of resident space objects (RSOs) in LEO and beyond for space surveillance applications. This unique ladar architecture is configured using a continuously agile doublet-pulse waveform scheme coupled to a closed-loop tracking and control loop approach to simultaneously achieve mm class range precision and mm/s velocity precision and hence obtain unprecedented track accuracies. Salient features of the design architecture followed by performance modeling and engagement simulations illustrating the dependence of range and velocity precision in LEO orbits on ladar parameters are presented. Estimated limits on detectable optical cross sections of RSOs in LEO orbits are discussed.
Improving orbit prediction accuracy through supervised machine learning
NASA Astrophysics Data System (ADS)
Peng, Hao; Bai, Xiaoli
2018-05-01
Due to the lack of information such as the space environment condition and resident space objects' (RSOs') body characteristics, current orbit predictions that are solely grounded on physics-based models may fail to achieve required accuracy for collision avoidance and have led to satellite collisions already. This paper presents a methodology to predict RSOs' trajectories with higher accuracy than that of the current methods. Inspired by the machine learning (ML) theory through which the models are learned based on large amounts of observed data and the prediction is conducted without explicitly modeling space objects and space environment, the proposed ML approach integrates physics-based orbit prediction algorithms with a learning-based process that focuses on reducing the prediction errors. Using a simulation-based space catalog environment as the test bed, the paper demonstrates three types of generalization capability for the proposed ML approach: (1) the ML model can be used to improve the same RSO's orbit information that is not available during the learning process but shares the same time interval as the training data; (2) the ML model can be used to improve predictions of the same RSO at future epochs; and (3) the ML model based on a RSO can be applied to other RSOs that share some common features.
Characterizing Resident Space Object Earthshine Signature Variability
NASA Astrophysics Data System (ADS)
Van Cor, Jared D.
There are three major sources of illumination on objects in the near Earth space environment: Sunshine, Moonshine, and Earthshine. For objects in this environment (satellites, orbital debris, etc.) known as Resident Space Objects (RSOs), the sun and the moon have consistently small illuminating solid angles and can be treated as point sources; this makes their incident illumination easily modeled. The Earth on the other hand has a large illuminating solid angle, is heterogeneous, and is in a constant state of change. The objective of this thesis was to characterize the impact and variability of observed RSO Earthshine on apparent magnitude signatures in the visible optical spectral region. A key component of this research was creating Earth object models incorporating the reflectance properties of the Earth. Two Earth objects were created: a homogeneous diffuse Earth object and a time sensitive heterogeneous Earth object. The homogeneous diffuse Earth object has a reflectance equal to the average global albedo, a standard model used when modeling Earthshine. The time sensitive heterogeneous Earth object was created with two material maps representative of the dynamic reflectance of the surface of the earth, and a shell representative of the atmosphere. NASA's Moderate-resolution Imaging Spectroradiometer (MODIS) Earth observing satellite product libraries, MCD43C1 global surface BRDF map and MOD06 global fractional cloud map, were utilized to create the material maps, and a hybridized version of the Empirical Line Method (ELM) was used to create the atmosphere. This dynamic Earth object was validated by comparing simulated color imagery of the Earth to that taken by: NASAs Earth Polychromatic Imaging Camera (EPIC) located on the Deep Space Climate Observatory (DSCOVR), and by MODIS located on the Terra satellite. The time sensitive heterogeneous Earth object deviated from MODIS imagery by a spectral radiance root mean square error (RMSE) of +/-14.86 [watts/m. 2sr?m]over a sample of ROIs. Further analysis using EPIC imagery found a total albedo difference of +0.03% and a cross correlation of 0.656. Also compared to EPIC imagery it was found our heterogeneous Earth model produced a reflected Earthshine radiance RMSE of +/-28 [watts/m. 2sr?m] incident on diffuse sphericalRSOs, specular spherical RSOs, and diffuse flat plate RSOs with an altitude of 1000km; this resulted in an apparent magnitude error of +/-0.28. Furthermore, it was found our heterogeneous Earthmodel produced a reflected Earthshine radiance RMSE of +/-68 [watts/m. 2sr?m] for specular flat plate RSOs withan altitude of 1000km; this resulted in an apparent magnitude error of +/-0.68. The Earth objects were used in a workflow with the Digital Imaging and Remote Sensing Image Generation (DIRSIG) tool to explore the impact of a range of characteristic RSO geometries, geographies, orientations, and materials on the signatures from an RSO due to Earthshine. An apparent magnitude was calculated and used to quantify RSO Earthshine signature variability; this is discussed in terms of the RMSE and maximum deviations of visible RSO Earthshine apparent magnitude signatures comparing the homogeneous Earth model to heterogeneous Earth model. The homogeneous diffuse Earth object was shown to approximate visible RSO Earthshine apparent magnitude signatures from spheres with a RMSE in reflected Earthshine apparent magnitude of +/-0.4 and a maximum apparent magnitude difference of 1.09 when compared to the heterogeneous Earth model. Similarly for diffuse flat plates, the visible RSO Earthshine apparent magnitude signature RMSE was shown to be +/-0.64, with a maximum apparent magnitude difference of 0.82. For specular flat plates, the visible RSO Earthshine apparent magnitude signature RMSE was shown to be +/-0.97 with maximum apparent magnitude difference of 2.26. This thesis explored only a portion of the parameter dependencies of Earth shine, but has enabled a preliminary understanding of visible RSO Earthshine signature variability and its geometric dependence. This research has demonstrated the impact of Earth heterogeneity on the observed apparent magnitude signatures of RSOs illuminated by Earthshine and the potential for error that comes with approximating the Earth as a diffuse homogeneous object.
NASA Astrophysics Data System (ADS)
Fujimoto, K.; Yanagisawa, T.; Uetsuhara, M.
Automated detection and tracking of faint objects in optical, or bearing-only, sensor imagery is a topic of immense interest in space surveillance. Robust methods in this realm will lead to better space situational awareness (SSA) while reducing the cost of sensors and optics. They are especially relevant in the search for high area-to-mass ratio (HAMR) objects, as their apparent brightness can change significantly over time. A track-before-detect (TBD) approach has been shown to be suitable for faint, low signal-to-noise ratio (SNR) images of resident space objects (RSOs). TBD does not rely upon the extraction of feature points within the image based on some thresholding criteria, but rather directly takes as input the intensity information from the image file. Not only is all of the available information from the image used, TBD avoids the computational intractability of the conventional feature-based line detection (i.e., "string of pearls") approach to track detection for low SNR data. Implementation of TBD rooted in finite set statistics (FISST) theory has been proposed recently by Vo, et al. Compared to other TBD methods applied so far to SSA, such as the stacking method or multi-pass multi-period denoising, the FISST approach is statistically rigorous and has been shown to be more computationally efficient, thus paving the path toward on-line processing. In this paper, we intend to apply a multi-Bernoulli filter to actual CCD imagery of RSOs. The multi-Bernoulli filter can explicitly account for the birth and death of multiple targets in a measurement arc. TBD is achieved via a sequential Monte Carlo implementation. Preliminary results with simulated single-target data indicate that a Bernoulli filter can successfully track and detect objects with measurement SNR as low as 2.4. Although the advent of fast-cadence scientific CMOS sensors have made the automation of faint object detection a realistic goal, it is nonetheless a difficult goal, as measurements arcs in space surveillance are often both short and sparse. FISST methodologies have been applied to the general problem of SSA by many authors, but they generally focus on tracking scenarios with long arcs or assume that line detection is tractable. We will instead focus this work on estimating sensor-level kinematics of RSOs for low SNR too-short arc observations. Once said estimate is made available, track association and simultaneous initial orbit determination may be achieved via any number of proposed solutions to the too-short arc problem, such as those incorporating the admissible region. We show that the benefit of combining FISST-based TBD with too-short arc association goes both ways; i.e., the former provides consistent statistics regarding bearing-only measurements, whereas the latter makes better use of the precise dynamical models nominally applicable to RSOs in orbit determination.
Benefits of Applying Predictive Intelligence to the Space Situational Awareness (SSA) Mission
NASA Astrophysics Data System (ADS)
Lane, B.; Mann, B.; Millard, C.
Recent events have heightened the interest in providing improved Space Situational Awareness (SSA) to the warfighter using novel techniques that are affordable and effective. The current Space Surveillance Network (SSN) detects, tracks, catalogs and identifies artificial objects orbiting earth and provides information on Resident Space Objects (RSO) as well as new foreign launch (NFL) satellites. The reactive nature of the SSN provides little to no warning on changes to the expected states of these RSOs or NFLs. This paper will detail the use of the historical data collected on RSOs to characterize what their steady state is, proactively help identify when changes or anomalies have occurred using a pattern-of-like activity based intelligence approach, and apply dynamic, adaptive mission planning to the observables that lead up to a NFL. Multiple hypotheses will be carried along with the intent or the changes to the steady state to assist the SSN in tasking the various sensors in the network to collect the relevant data needed to help prune the number of hypotheses by assigning likelihood to each of those activities. Depending on the hypothesis and thresholds set, these likelihoods will then be used in turn to alert the SSN operator with changes to the steady state, prioritize additional data collections, and provide a watch list of likely next activities.
Surveillance of medium and high Earth orbits using large baseline stereovision
NASA Astrophysics Data System (ADS)
Danescu, Radu; Ciurte, Anca; Oniga, Florin; Cristea, Octavian; Dolea, Paul; Dascal, Vlad; Turcu, Vlad; Mircea, Liviu; Moldovan, Dan
2014-11-01
The Earth is surrounded by a swarm of satellites and associated debris known as Resident Space Objects (RSOs). All RSOs will orbit the Earth until they reentry into Earth's atmosphere. There are three main RSO categories: Low Earth Orbit (LEO), when the satellite orbits at an altitude below 1 500 km; a Medium Earth Orbit (MEO) for Global Navigation Satellite Systems (GNSS) at an altitude of around 20 000 km, and a Geostationary Earth Orbit (GEO) (also sometimes called the Clarke orbit), for geostationary satellites, at an altitude of 36 000 km. The Geostationary Earth Orbits and the orbits of higher altitude are also known as High Earth Orbits (HEO). Crucial for keeping an eye on RSOs, the Surveillance of Space (SofS) comprises detection, tracking, propagation of orbital parameters, cataloguing and analysis of these objects. This paper presents a large baseline stereovision based approach for detection and ranging of RSO orbiting at medium to high altitudes. Two identical observation systems, consisting of camera, telescope, control computer and GPS receiver are located 37 km apart, and set to observe the same region of the sky. The telescopes are placed on equatorial mounts able to compensate for the Earth's rotation, so that the stars appear stationary in the acquired images, and the satellites will appear as linear streaks. The two cameras are triggered simultaneously. The satellite streaks are detected in each image of the stereo pair using its streak-like appearance against point-like stars, the motion of the streaks between successive frames, and the stereo disparity. The detected satellite pixels are then put into correspondence using the epipolar geometry, and the 3D position of the satellite in the Earth Center, Earth Fixed (ECEF) reference frame is computed using stereo triangulation. Preliminary tests have been performed, for both MEO and HEO orbits. The preliminary results indicate a very high detection rate for MEO orbits, and good detection rate for HEO orbits, dependent on the satellite's rotation.
Optimal SSN Tasking to Enhance Real-time Space Situational Awareness
NASA Astrophysics Data System (ADS)
Ferreira, J., III; Hussein, I.; Gerber, J.; Sivilli, R.
2016-09-01
Space Situational Awareness (SSA) is currently constrained by an overwhelming number of resident space objects (RSOs) that need to be tracked and the amount of data these observations produce. The Joint Centralized Autonomous Tasking System (JCATS) is an autonomous, net-centric tool that approaches these SSA concerns from an agile, information-based stance. Finite set statistics and stochastic optimization are used to maintain an RSO catalog and develop sensor tasking schedules based on operator configured, state information-gain metrics to determine observation priorities. This improves the efficiency of sensors to target objects as awareness changes and new information is needed, not at predefined frequencies solely. A net-centric, service-oriented architecture (SOA) allows for JCATS integration into existing SSA systems. Testing has shown operationally-relevant performance improvements and scalability across multiple types of scenarios and against current sensor tasking tools.
NASA Astrophysics Data System (ADS)
Hobson, T.; Clarkson, V.
2012-09-01
As a result of continual space activity since the 1950s, there are now a large number of man-made Resident Space Objects (RSOs) orbiting the Earth. Because of the large number of items and their relative speeds, the possibility of destructive collisions involving important space assets is now of significant concern to users and operators of space-borne technologies. As a result, a growing number of international agencies are researching methods for improving techniques to maintain Space Situational Awareness (SSA). Computer simulation is a method commonly used by many countries to validate competing methodologies prior to full scale adoption. The use of supercomputing and/or reduced scale testing is often necessary to effectively simulate such a complex problem on todays computers. Recently the authors presented a simulation aimed at reducing the computational burden by selecting the minimum level of fidelity necessary for contrasting methodologies and by utilising multi-core CPU parallelism for increased computational efficiency. The resulting simulation runs on a single PC while maintaining the ability to effectively evaluate competing methodologies. Nonetheless, the ability to control the scale and expand upon the computational demands of the sensor management system is limited. In this paper, we examine the advantages of increasing the parallelism of the simulation by means of General Purpose computing on Graphics Processing Units (GPGPU). As many sub-processes pertaining to SSA management are independent, we demonstrate how parallelisation via GPGPU has the potential to significantly enhance not only research into techniques for maintaining SSA, but also to enhance the level of sophistication of existing space surveillance sensors and sensor management systems. Nonetheless, the use of GPGPU imposes certain limitations and adds to the implementation complexity, both of which require consideration to achieve an effective system. We discuss these challenges and how they can be overcome. We further describe an application of the parallelised system where visibility prediction is used to enhance sensor management. This facilitates significant improvement in maximum catalogue error when RSOs become temporarily unobservable. The objective is to demonstrate the enhanced scalability and increased computational capability of the system.
NASA Astrophysics Data System (ADS)
Linares, R.; Palmer, D.; Thompson, D.; Koller, J.
2013-09-01
Recent events in space, including the collision of Russia's Cosmos 2251 satellite with Iridium 33 and China's Feng Yun 1C anti-satellite demonstration, have stressed the capabilities of Space Surveillance Network (SSN) and its ability to provide accurate and actionable impact probability estimates. The SSN network has the unique challenge of tracking more than 18,000 resident space objects (RSOs) and providing critical collision avoidance warnings to military, NASA, and commercial systems. However, due to the large number of RSOs and the limited number of sensors available to track them, it is impossible to maintain persistent surveillance. Observation gaps result in large propagation intervals between measurements and close approaches. Coupled with nonlinear RSO dynamics this results in difficulty in modeling the probability distribution functions (pdfs) of the RSO. In particular low-Earth orbiting (LEO) satellites are heavily influenced by atmospheric drag, which is very difficult to model accurately. A number of atmospheric models exist which can be classified as either empirical or physics-based models. The current Air Force standard is the High Accuracy Satellite Drag Model (HASDM), which is an empirical model based on observation of calibration satellites. These satellite observations are used to determine model parameters based on their orbit determination solutions. Atmospheric orbits are perturbed by a number of factors including drag coefficient, attitude, and shape of the space object. The satellites used for the HASDM model calibration process are chosen because of their relatively simple shapes, to minimize errors introduced due to shape miss-modeling. Under this requirement the number of calibration satellites that can be used for calibrating the atmospheric models is limited. Los Alamos National Laboratory (LANL) has established a research effort, called IMPACT (Integrated Modeling of Perturbations in Atmospheres for Conjunction Tracking), to improve impact assessment via improved physics-based modeling. As part of this effort calibration satellite observations are used to dynamically calibrate the physics-based model and to improve its forecasting capability. The observations are collected from a variety of sources, including from LANL's own Raven-class optical telescope. This system collects both astrometric and photometric data on space objects. The photometric data will be used to estimate the space objects' attitude and shape. Non-resolved photometric data have been studied by many as a mechanism for space object characterization. Photometry is the measurement of an object's flux or apparent brightness measured over a wavelength band. The temporal variation of photometric measurements is referred to as photometric signature. The photometric optical signature of an object contains information about shape, attitude, size and material composition. This work focuses on the processing of the data collected with LANL's telescope in an effort to use photometric data to expand the number of space objects that can be used as calibration satellites. An Unscented Kalman filter is used to estimate the attitude and angular velocity of the space object; both real data and simulated data scenarios are shown. A number of inactive space objects are used for the real data examples and good estimation results are shown.
Characterization of Inactive Rocket Bodies Via Non-Resolved Photometric Data
NASA Astrophysics Data System (ADS)
Linares, R.; Palmer, D.; Thompson, D.; Klimenko, A.
2014-09-01
Recent events in space, including the collision of Russias Cosmos 2251 satellite with Iridium 33 and Chinas Feng Yun 1C anti-satellite demonstration, have stressed the capabilities of Space Surveillance Network (SSN) and its ability to provide accurate and actionable impact probability estimates. The SSN network has the unique challenge of tracking more than 18,000 resident space objects (RSOs) and providing critical collision avoidance warnings to military, NASA, and commercial systems. However, due to the large number of RSOs and the limited number of sensors available to track them, it is impossible to maintain persistent surveillance. Observation gaps result in large propagation intervals between measurements and close approaches. Coupled with nonlinear RSO dynamics this results in difficulty in modeling the probability distribution functions (pdfs) of the RSO. In particular low-Earth orbiting (LEO) satellites are heavily influenced by atmospheric drag, which is very difficult to model accurately. A number of atmospheric models exist which can be classified as either empirical or physics-based models. The current Air Force standard is the High Accuracy Satellite Drag Model (HASDM), which is an empirical model based on observation of calibration satellites. These satellite observations are used to determine model parameters based on their orbit determination solutions. Atmospheric orbits are perturbed by a number of factors including drag coefficient, attitude, and shape of the space object. The satellites used for the HASDM model calibration process are chosen because of their relatively simple shapes, to minimize errors introduced due to shape miss-modeling. Under this requirement the number of calibration satellites that can be used for calibrating the atmospheric models is limited. Los Alamos National Laboratory (LANL) has established a research effort, called IMPACT (Integrated Modeling of Perturbations in Atmospheres for Conjunction Tracking), to improve impact assessment via improved physics-based modeling. As part of this effort calibration satellite observations are used to dynamically calibrate the physics-based model and to improve its forecasting capability. The observations are collected from a variety of sources, including from LANLs own Raven-class optical telescope. This system collects both astrometric and photometric data on space objects. The photometric data will be used to estimate the space objects attitude and shape. Non-resolved photometric data have been studied by many as a mechanism for space object characterization. Photometry is the measurement of an objects flux or apparent brightness measured over a wavelength band. The temporal variation of photometric measurements is referred to as photometric signature. The photometric optical signature of an object contains information about shape, attitude, size and material composition. This work focuses on the processing of the data collected with LANLs telescope in an effort to use photometric data to expand the number of space objects that can be used as calibration satellites. A nonlinear least squares is used to estimate the attitude and angular velocity of the space object; a number of real data examples are shown. Inactive space objects are used for the real data examples and good estimation results are shown.
Improvements in Space Surveillance Processing for Wide Field of View Optical Sensors
NASA Astrophysics Data System (ADS)
Sydney, P.; Wetterer, C.
2014-09-01
For more than a decade, an autonomous satellite tracking system at the Air Force Maui Optical and Supercomputing (AMOS) observatory has been generating routine astrometric measurements of Earth-orbiting Resident Space Objects (RSOs) using small commercial telescopes and sensors. Recent work has focused on developing an improved processing system, enhancing measurement performance and response while supporting other sensor systems and missions. This paper will outline improved techniques in scheduling, detection, astrometric and photometric measurements, and catalog maintenance. The processing system now integrates with Special Perturbation (SP) based astrodynamics algorithms, allowing covariance-based scheduling and more precise orbital estimates and object identification. A merit-based scheduling algorithm provides a global optimization framework to support diverse collection tasks and missions. The detection algorithms support a range of target tracking and camera acquisition rates. New comprehensive star catalogs allow for more precise astrometric and photometric calibrations including differential photometry for monitoring environmental changes. This paper will also examine measurement performance with varying tracking rates and acquisition parameters.
Efficient and automatic image reduction framework for space debris detection based on GPU technology
NASA Astrophysics Data System (ADS)
Diprima, Francesco; Santoni, Fabio; Piergentili, Fabrizio; Fortunato, Vito; Abbattista, Cristoforo; Amoruso, Leonardo
2018-04-01
In the last years, the increasing number of space debris has triggered the need of a distributed monitoring system for the prevention of possible space collisions. Space surveillance based on ground telescope allows the monitoring of the traffic of the Resident Space Objects (RSOs) in the Earth orbit. This space debris surveillance has several applications such as orbit prediction and conjunction assessment. In this paper is proposed an optimized and performance-oriented pipeline for sources extraction intended to the automatic detection of space debris in optical data. The detection method is based on the morphological operations and Hough Transform for lines. Near real-time detection is obtained using General Purpose computing on Graphics Processing Units (GPGPU). The high degree of processing parallelism provided by GPGPU allows to split data analysis over thousands of threads in order to process big datasets with a limited computational time. The implementation has been tested on a large and heterogeneous images data set, containing both imaging satellites from different orbit ranges and multiple observation modes (i.e. sidereal and object tracking). These images were taken during an observation campaign performed from the EQUO (EQUatorial Observatory) observatory settled at the Broglio Space Center (BSC) in Kenya, which is part of the ASI-Sapienza Agreement.
Towards an Artificial Space Object Taxonomy
NASA Astrophysics Data System (ADS)
Wilkins, M.; Schumacher, P.; Jah, M.; Pfeffer, A.
2013-09-01
Object recognition is the first step in positively identifying a resident space object (RSO), i.e. assigning an RSO to a category such as GPS satellite or space debris. Object identification is the process of deciding that two RSOs are in fact one and the same. Provided we have appropriately defined a satellite taxonomy that allows us to place a given RSO into a particular class of object without any ambiguity, one can assess the probability of assignment to a particular class by determining how well the object satisfies the unique criteria of belonging to that class. Ultimately, tree-based taxonomies delineate unique signatures by defining the minimum amount of information required to positively identify a RSO. Therefore, taxonomic trees can be used to depict hypotheses in a Bayesian object recognition and identification process. This work describes a new RSO taxonomy along with specific reasoning behind the choice of groupings. An alternative taxonomy was recently presented at the Sixth Conference on Space Debris in Darmstadt, Germany. [1] The best example of a taxonomy that enjoys almost universal scientific acceptance is the classical Linnaean biological taxonomy. A strength of Linnaean taxonomy is that it can be used to organize the different kinds of living organisms, simply and practically. Every species can be given a unique name. This uniqueness and stability are a result of the acceptance by biologists specializing in taxonomy, not merely of the binomial names themselves. Fundamentally, the taxonomy is governed by rules for the use of these names, and these are laid down in formal Nomenclature Codes. We seek to provide a similar formal nomenclature system for RSOs through a defined tree-based taxonomy structure. Each categorization, beginning with the most general or inclusive, at any level is called a taxon. Taxon names are defined by a type, which can be a specimen or a taxon of lower rank, and a diagnosis, a statement intended to supply characters that differentiate the taxon from others with which it is likely to be confused. Each taxon will have a set of uniquely distinguishing features that will allow one to place a given object into a specific group without any ambiguity. When a new object does not fall into a specific taxon that is already defined, the entire tree structure will need to be evaluated to determine if a new taxon should be created. Ultimately, an online learning process to facilitate tree growth would be desirable. One can assess the probability of assignment to a particular taxon by determining how well the object satisfies the unique criteria of belonging to that taxon. Therefore, we can use taxonomic trees in a Bayesian process to assign prior probabilities to each of our object recognition and identification hypotheses. We will show that this taxonomy is robust by demonstrating specific stressing classification examples. We will also demonstrate how to implement this taxonomy in Figaro, an open source probabilistic programming language.
Neighborhood Characteristics and the Social Control of Registered Sex Offenders
ERIC Educational Resources Information Center
Socia, Kelly M.; Stamatel, Janet P.
2012-01-01
This study uses geospatial and regression analyses to examine the relationships among social disorganization, collective efficacy, social control, residence restrictions, spatial autocorrelation, and the neighborhood distribution of registered sex offenders (RSOs) in Chicago. RSOs were concentrated in neighborhoods that had higher levels of social…
Space Object Collision Probability via Monte Carlo on the Graphics Processing Unit
NASA Astrophysics Data System (ADS)
Vittaldev, Vivek; Russell, Ryan P.
2017-09-01
Fast and accurate collision probability computations are essential for protecting space assets. Monte Carlo (MC) simulation is the most accurate but computationally intensive method. A Graphics Processing Unit (GPU) is used to parallelize the computation and reduce the overall runtime. Using MC techniques to compute the collision probability is common in literature as the benchmark. An optimized implementation on the GPU, however, is a challenging problem and is the main focus of the current work. The MC simulation takes samples from the uncertainty distributions of the Resident Space Objects (RSOs) at any time during a time window of interest and outputs the separations at closest approach. Therefore, any uncertainty propagation method may be used and the collision probability is automatically computed as a function of RSO collision radii. Integration using a fixed time step and a quartic interpolation after every Runge Kutta step ensures that no close approaches are missed. Two orders of magnitude speedups over a serial CPU implementation are shown, and speedups improve moderately with higher fidelity dynamics. The tool makes the MC approach tractable on a single workstation, and can be used as a final product, or for verifying surrogate and analytical collision probability methods.
Investigating prior probabilities in a multiple hypothesis test for use in space domain awareness
NASA Astrophysics Data System (ADS)
Hardy, Tyler J.; Cain, Stephen C.
2016-05-01
The goal of this research effort is to improve Space Domain Awareness (SDA) capabilities of current telescope systems through improved detection algorithms. Ground-based optical SDA telescopes are often spatially under-sampled, or aliased. This fact negatively impacts the detection performance of traditionally proposed binary and correlation-based detection algorithms. A Multiple Hypothesis Test (MHT) algorithm has been previously developed to mitigate the effects of spatial aliasing. This is done by testing potential Resident Space Objects (RSOs) against several sub-pixel shifted Point Spread Functions (PSFs). A MHT has been shown to increase detection performance for the same false alarm rate. In this paper, the assumption of a priori probability used in a MHT algorithm is investigated. First, an analysis of the pixel decision space is completed to determine alternate hypothesis prior probabilities. These probabilities are then implemented into a MHT algorithm, and the algorithm is then tested against previous MHT algorithms using simulated RSO data. Results are reported with Receiver Operating Characteristic (ROC) curves and probability of detection, Pd, analysis.
Comparison of BRDF-Predicted and Observed Light Curves of GEO Satellites
NASA Astrophysics Data System (ADS)
Ceniceros, A.; Dao, P.; Gaylor, D.; Rast, R.; Anderson, J.; Pinon, E., III
Although the amount of light received by sensors on the ground from Resident Space Objects (RSOs) in geostationary orbit (GEO) is small, information can still be extracted in the form of light curves (temporal brightness or apparent magnitude). Previous research has shown promising results in determining RSO characteristics such as shape, size, reflectivity, and attitude by processing simulated light curve data with various estimation algorithms. These simulated light curves have been produced using one of several existing analytic Bidirectional Reflectance Distribution Function (BRDF) models. These BRDF models have generally come from researchers in computer graphics and machine vision and have not been shown to be realistic for telescope observations of RSOs in GEO. While BRDFs have been used for SSA analysis and characterization, there is a lack of research on the validation of BRDFs with regards to real data. In this paper, we compared telescope data provided by the Air Force Research Laboratory (AFRL) with predicted light curves from the Ashikhmin-Premoze BRDF and two additional popular illumination models, Ashikhmin-Shirley and Cook-Torrance. We computed predicted light curves based on two line mean elements (TLEs), shape model, attitude profile, observing ground station location, observation time and BRDF. The predicted light curves were then compared with AFRL telescope data. The selected BRDFS provided accurate apparent magnitude trends and behavior, but uncertainties due to lack of attitude information and deficiencies in our satellite model prevented us from obtaining a better match to the real data. The current findings present a foundation for ample future research.
Homeless Shelters' Policies on Sex Offenders: Is This Another Collateral Consequence?
Rolfe, Shawn M; Tewksbury, Richard; Schroeder, Ryan D
2017-12-01
The primary focus of sex offender research has been on the efficacy and collateral consequences of sex offender registration and notification (SORN) and residence restrictions. Past scholarship has found these laws to cause numerous re-entry barriers for sex offenders. Such barriers have affected sex offenders' ability to find and maintain housing, employment, and social support. Moreover, registered sex offenders (RSOs) have become homeless due to such laws. Although previous scholarship has highlighted the collateral consequences of SORN, there is a lack of scholarship addressing homeless sex offenders. Specifically, the current study assesses policies regarding RSO access to homeless shelters in a four-state region, focusing on the effect of structural, procedural, and geographic factors, as well as a shelter's proximity to children. Drawing on the loose coupling organizational framework, the findings suggest that a small maximum occupancy, unwritten policies for RSOs, being in Kentucky or Tennessee, being located near a school, and being near a higher proportion of homes with children all decrease the odds that a homeless shelter allows RSOs. Furthermore, although unwilling to make exceptions to the policies regarding RSOs, shelters were generally willing to make exceptions to other policies governing shelter accessibility.
NASA Astrophysics Data System (ADS)
Hussein, I.; Wilkins, M.; Roscoe, C.; Faber, W.; Chakravorty, S.; Schumacher, P.
2016-09-01
Finite Set Statistics (FISST) is a rigorous Bayesian multi-hypothesis management tool for the joint detection, classification and tracking of multi-sensor, multi-object systems. Implicit within the approach are solutions to the data association and target label-tracking problems. The full FISST filtering equations, however, are intractable. While FISST-based methods such as the PHD and CPHD filters are tractable, they require heavy moment approximations to the full FISST equations that result in a significant loss of information contained in the collected data. In this paper, we review Smart Sampling Markov Chain Monte Carlo (SSMCMC) that enables FISST to be tractable while avoiding moment approximations. We study the effect of tuning key SSMCMC parameters on tracking quality and computation time. The study is performed on a representative space object catalog with varying numbers of RSOs. The solution is implemented in the Scala computing language at the Maui High Performance Computing Center (MHPCC) facility.
The United States Air Force Eastern Test Range. Range Instrumentation Handbook
1976-07-01
Officer IRV GBI Grand Bahama Island IT&T GBR timing standard ( Rugby , England) K GDOP geometric dilution of precision GEOS-C geodetic...A n IDIIOM II LOGIC & DISPLAY GEN A PT ROR KSR. 35 •- s KB At KB A2 KB B1 KB 82 RSOS CENTRAL CONSOLE MfU I ROC/ RSOS B T...CONSOLE HMLCRT At’ KB Al (LEFT BAY) -«-<CRT B2) KBB2 ■••^jRTBH KB B1 (RIGHT BAY) <XRTA21 «KB A3 Flgiirt 4-18. Renp S#tty Oisptay SyitMn
NASA Astrophysics Data System (ADS)
Pak, A.; Correa, J.; Adams, M.; Clark, D.; Delande, E.; Houssineau, J.; Franco, J.; Frueh, C.
2016-09-01
Recently, the growing number of inactive Resident Space Objects (RSOs), or space debris, has provoked increased interest in the field of Space Situational Awareness (SSA) and various investigations of new methods for orbital object tracking. In comparison with conventional tracking scenarios, state estimation of an orbiting object entails additional challenges, such as orbit determination and orbital state and covariance propagation in the presence of highly nonlinear system dynamics. The sensors which are available for detecting and tracking space debris are prone to multiple clutter measurements. Added to this problem, is the fact that it is unknown whether or not a space debris type target is present within such sensor measurements. Under these circumstances, traditional single-target filtering solutions such as Kalman Filters fail to produce useful trajectory estimates. The recent Random Finite Set (RFS) based Finite Set Statistical (FISST) framework has yielded filters which are more appropriate for such situations. The RFS based Joint Target Detection and Tracking (JoTT) filter, also known as the Bernoulli filter, is a single target, multiple measurements filter capable of dealing with cluttered and time-varying backgrounds as well as modeling target appearance and disappearance in the scene. Therefore, this paper presents the application of the Gaussian mixture-based JoTT filter for processing measurements from Chilbolton Advanced Meteorological Radar (CAMRa) which contain both defunct and operational satellites. The CAMRa is a fully-steerable radar located in southern England, which was recently modified to be used as a tracking asset in the European Space Agency SSA program. The experiments conducted show promising results regarding the capability of such filters in processing cluttered radar data. The work carried out in this paper was funded by the USAF Grant No. FA9550-15-1-0069, Chilean Conicyt - Fondecyt grant number 1150930, EU Erasmus Mundus MSc Scholarship, Defense Science and Technology Laboratory (DSTL), U. K., and the Chilean Conicyt, Fondecyt project grant number 1150930.
Thermospheric density and satellite drag modeling
NASA Astrophysics Data System (ADS)
Mehta, Piyush Mukesh
The United States depends heavily on its space infrastructure for a vast number of commercial and military applications. Space Situational Awareness (SSA) and Threat Assessment require maintaining accurate knowledge of the orbits of resident space objects (RSOs) and the associated uncertainties. Atmospheric drag is the largest source of uncertainty for low-perigee RSOs. The uncertainty stems from inaccurate modeling of neutral atmospheric mass density and inaccurate modeling of the interaction between the atmosphere and the RSO. In order to reduce the uncertainty in drag modeling, both atmospheric density and drag coefficient (CD) models need to be improved. Early atmospheric density models were developed from orbital drag data or observations of a few early compact satellites. To simplify calculations, densities derived from orbit data used a fixed CD value of 2.2 measured in a laboratory using clean surfaces. Measurements from pressure gauges obtained in the early 1990s have confirmed the adsorption of atomic oxygen on satellite surfaces. The varying levels of adsorbed oxygen along with the constantly changing atmospheric conditions cause large variations in CD with altitude and along the orbit of the satellite. Therefore, the use of a fixed CD in early development has resulted in large biases in atmospheric density models. A technique for generating corrections to empirical density models using precision orbit ephemerides (POE) as measurements in an optimal orbit determination process was recently developed. The process generates simultaneous corrections to the atmospheric density and ballistic coefficient (BC) by modeling the corrections as statistical exponentially decaying Gauss-Markov processes. The technique has been successfully implemented in generating density corrections using the CHAMP and GRACE satellites. This work examines the effectiveness, specifically the transfer of density models errors into BC estimates, of the technique using the CHAMP and GRACE satellites. Moving toward accurate atmospheric models and absolute densities requires physics based models for CD. Closed-form solutions of CD have been developed and exist for a handful of simple geometries (flat plate, sphere, and cylinder). However, for complex geometries, the Direct Simulation Monte Carlo (DSMC) method is an important tool for developing CD models. DSMC is computationally intensive and real-time simulations for CD are not feasible. Therefore, parameterized models for CD are required. Modeling CD for an RSO requires knowledge of the gas-surface interaction (GSI) that defines the manner in which the atmospheric particles exchange momentum and energy with the surface. The momentum and energy exchange is further influenced by likely adsorption of atomic oxygen that may partially or completely cover the surface. An important parameter that characterizes the GSI is the energy accommodation coefficient, α. An innovative and state-of-the-art technique of developing parameterized drag coefficient models is presented and validated using the GRACE satellite. The effect of gas-surface interactions on physical drag coefficients is examined. An attempt to reveal the nature of gas-surface interactions at altitudes above 500 km is made using the STELLA satellite. A model that can accurately estimate CD has the potential to: (i) reduce the sources of uncertainty in the drag model, (ii) improve density estimates by resolving time-varying biases and moving toward absolute densities, and (iii) increase data sources for density estimation by allowing for the use of a wide range of RSOs as information sources. Results from this work have the potential to significantly improve the accuracy of conjunction analysis and SSA.
DSMC Simulations of Disturbance Torque to ISS During Airlock Depressurization
NASA Technical Reports Server (NTRS)
Lumpkin, F. E., III; Stewart, B. S.
2015-01-01
The primary attitude control system on the International Space Station (ISS) is part of the United States On-orbit Segment (USOS) and uses Control Moment Gyroscopes (CMG). The secondary system is part of the Russian On orbit Segment (RSOS) and uses a combination of gyroscopes and thrusters. Historically, events with significant disturbances such as the airlock depressurizations associated with extra-vehicular activity (EVA) have been performed using the RSOS attitude control system. This avoids excessive propulsive "de-saturations" of the CMGs. However, transfer of attitude control is labor intensive and requires significant propellant. Predictions employing NASA's DSMC Analysis Code (DAC) of the disturbance torque to the ISS for depressurization of the Pirs airlock on the RSOS will be presented [1]. These predictions were performed to assess the feasibility of using USOS control during these events. The ISS Pirs airlock is vented using a device known as a "T-vent" as shown in the inset in figure 1. By orienting two equal streams of gas in opposite directions, this device is intended to have no propulsive effect. However, disturbance force and torque to the ISS do occur due to plume impingement. The disturbance torque resulting from the Pirs depressurization during EVAs is estimated by using a loosely coupled CFD/DSMC technique [2]. CFD is used to simulate the flow field in the nozzle and the near field plume. DSMC is used to simulate the remaining flow field using the CFD results to create an in flow boundary to the DSMC simulation. Due to the highly continuum nature of flow field near the T-vent, two loosely coupled DSMC domains are employed. An 88.2 cubic meter inner domain contains the Pirs airlock and the T-vent. Inner domain results are used to create an in flow boundary for an outer domain containing the remaining portions of the ISS. Several orientations of the ISS solar arrays and radiators have been investigated to find cases that result in minimal disturbance torque. Figure 1 shows surface pressure contours on the ISS and a plane of number density contours for a particular case.
NASA Astrophysics Data System (ADS)
Johnson, K.; Kim, R.; Echeverry, J.
The Joint Space Operations Center (JSpOC) is a command and control center focused on executing the Space Control mission of the Joint Functional Component Command for Space (JFCC-SPACE) to ensure freedom of action of United States (US) space assets, while preventing adversary use of space against the US. To accomplish this, the JSpOC tasks a network of space surveillance sensors to collect Space Situational Awareness (SSA) data on resident space objects (RSOs) in near earth and deep space orbits. SSA involves the ingestion of data sources and use of algorithms and tools to build, maintain, and disseminate situational awareness of RSOs in space. On the heels of emergent and complex threats to space assets, the JSpOC's capabilities are limited by legacy systems and CONOPs. The JSpOC Mission System (JMS) aims to consolidate SSA efforts across US agencies, international partners, and commercial partners. The JMS program is intended to deliver a modern service-oriented architecture (SOA) based infrastructure with increased process automation and improved tools to remove the current barriers to JSpOC operations. JMS has been partitioned into several developmental increments. Increment 1, completed and operational in early 2013, and Increment 2, which is expected to be completed in 2016, will replace the legacy Space Defense Operations Center (SPADOC) and Astrodynamics Support Workstation (ASW) capabilities. In 2017 JMS Increment 3 will continue to provide additional SSA and C2 capabilities that will require development of new applications and procedures as well as the exploitation of new data sources. Most importantly, Increment 3 is uniquely postured to evolve the JSpOC into the centralized and authoritative source for all Space Control applications by using its SOA to aggregate information and capabilities from across the community. To achieve this goal, Scitor Corporation has supported the JMS Program Office as it has entered into a partnership with AFRL/RD (Directed Energy) and AFRL/RV (Space Vehicles) to create the Advanced Research, Collaboration, and Application Development Environment (ARCADE). The ARCADE formalizes capability development processes that hitherto have been ad hoc, slow to address the evolving space threat environment, and not easily repeatable. Therefore, the purpose of the ARCADE is to: (1) serve as a centralized testbed for all research and development (R&D) activities related to JMS applications, including algorithm development, data source exposure, service orchestration, and software services, and provide developers reciprocal access to relevant tools and data to accelerate technology development, (2) allow the JMS program to communicate user capability priorities and requirements to developers, (3) facilitate collaboration among developers who otherwise would not collaborate due to organizational, policy, or geographical barriers, and (4) support market research efforts by identifying outstanding performers that are available to shepherd into the formal transition process. Over the last several years Scitor Corporation has provided systems engineering support to the JMS Increment 3 Program Office, and has worked with AFRL/RV and AFRL/RD to create a high performance computing environment and SOA at both unclassified and classified levels that together allow developers to develop applications in an environment similar to the version of JMS currently in use by the JSpOC operators. Currently the ARCADE is operational in an unclassified environment via the High Performance Computing Modernization Program (HPCMP) Portal on DREN. The ARCADE also exists on SECRET and TOP SECRET environments on multiple networks. This presentation will cover the following topics: (1) Scitors role in shaping the ARCADE into its current form, (2) ARCADEs value proposition for potential technology developers, and (3) ARCADEs value proposition for the Government. These topics will be discussed by way of several case studies: a JMS Prototype activity, integration of the Search and Determine Integrated Environment (SADIE) system into the ARCADE, and developer challenge opportunities using the ARCADE. The contents of this presentation will be UNCLASSIFIED.
NASA Astrophysics Data System (ADS)
Tran, T.
With the onset of the SmallSat era, the RSO catalog is expected to see continuing growth in the near future. This presents a significant challenge to the current sensor tasking of the SSN. The Air Force is in need of a sensor tasking system that is robust, efficient, scalable, and able to respond in real-time to interruptive events that can change the tracking requirements of the RSOs. Furthermore, the system must be capable of using processed data from heterogeneous sensors to improve tasking efficiency. The SSN sensor tasking can be regarded as an economic problem of supply and demand: the amount of tracking data needed by each RSO represents the demand side while the SSN sensor tasking represents the supply side. As the number of RSOs to be tracked grows, demand exceeds supply. The decision-maker is faced with the problem of how to allocate resources in the most efficient manner. Braxton recently developed a framework called Multi-Objective Resource Optimization using Genetic Algorithm (MOROUGA) as one of its modern COTS software products. This optimization framework took advantage of the maturing technology of evolutionary computation in the last 15 years. This framework was applied successfully to address the resource allocation of an AFSCN-like problem. In any resource allocation problem, there are five key elements: (1) the resource pool, (2) the tasks using the resources, (3) a set of constraints on the tasks and the resources, (4) the objective functions to be optimized, and (5) the demand levied on the resources. In this paper we explain in detail how the design features of this optimization framework are directly applicable to address the SSN sensor tasking domain. We also discuss our validation effort as well as present the result of the AFSCN resource allocation domain using a prototype based on this optimization framework.
Numerical integration of KPZ equation with restrictions
NASA Astrophysics Data System (ADS)
Torres, M. F.; Buceta, R. C.
2018-03-01
In this paper, we introduce a novel integration method of Kardar–Parisi–Zhang (KPZ) equation. It is known that if during the discrete integration of the KPZ equation the nearest-neighbor height-difference exceeds a critical value, instabilities appear and the integration diverges. One way to avoid these instabilities is to replace the KPZ nonlinear-term by a function of the same term that depends on a single adjustable parameter which is able to control pillars or grooves growing on the interface. Here, we propose a different integration method which consists of directly limiting the value taken by the KPZ nonlinearity, thereby imposing a restriction rule that is applied in each integration time-step, as if it were the growth rule of a restricted discrete model, e.g. restricted-solid-on-solid (RSOS). Taking the discrete KPZ equation with restrictions to its dimensionless version, the integration depends on three parameters: the coupling constant g, the inverse of the time-step k, and the restriction constant ε which is chosen to eliminate divergences while keeping all the properties of the continuous KPZ equation. We study in detail the conditions in the parameters’ space that avoid divergences in the 1-dimensional integration and reproduce the scaling properties of the continuous KPZ with a particular parameter set. We apply the tested methodology to the d-dimensional case (d = 3, 4 ) with the purpose of obtaining the growth exponent β, by establishing the conditions of the coupling constant g under which we recover known values reached by other authors, particularly for the RSOS model. This method allows us to infer that d = 4 is not the critical dimension of the KPZ universality class, where the strong-coupling phase disappears.
Parallel discrete-event simulation schemes with heterogeneous processing elements.
Kim, Yup; Kwon, Ikhyun; Chae, Huiseung; Yook, Soon-Hyung
2014-07-01
To understand the effects of nonidentical processing elements (PEs) on parallel discrete-event simulation (PDES) schemes, two stochastic growth models, the restricted solid-on-solid (RSOS) model and the Family model, are investigated by simulations. The RSOS model is the model for the PDES scheme governed by the Kardar-Parisi-Zhang equation (KPZ scheme). The Family model is the model for the scheme governed by the Edwards-Wilkinson equation (EW scheme). Two kinds of distributions for nonidentical PEs are considered. In the first kind computing capacities of PEs are not much different, whereas in the second kind the capacities are extremely widespread. The KPZ scheme on the complex networks shows the synchronizability and scalability regardless of the kinds of PEs. The EW scheme never shows the synchronizability for the random configuration of PEs of the first kind. However, by regularizing the arrangement of PEs of the first kind, the EW scheme is made to show the synchronizability. In contrast, EW scheme never shows the synchronizability for any configuration of PEs of the second kind.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobsen, Jesper Lykke; Salas, Jesus; Scullard, Christian R.
Here, we study the phase diagram of the triangular-lattice Q-state Potts model in the realmore » $(Q, v)$ -plane, where $$v={\\rm e}^J-1$$ is the temperature variable. Our first goal is to provide an obviously missing feature of this diagram: the position of the antiferromagnetic critical curve. This curve turns out to possess a bifurcation point with two branches emerging from it, entailing important consequences for the global phase diagram. We have obtained accurate numerical estimates for the position of this curve by combining the transfer-matrix approach for strip graphs with toroidal boundary conditions and the recent method of critical polynomials. The second goal of this work is to study the corresponding $$A_{p-1}$$ RSOS model on the torus, for integer $$p=4, 5, \\ldots, 8$$ . We clarify its relation to the corresponding Potts model, in particular concerning the role of boundary conditions. For certain values of p, we identify several new critical points and regimes for the RSOS model and we initiate the study of the flows between the corresponding field theories.« less
Event-based Sensing for Space Situational Awareness
NASA Astrophysics Data System (ADS)
Cohen, G.; Afshar, S.; van Schaik, A.; Wabnitz, A.; Bessell, T.; Rutten, M.; Morreale, B.
A revolutionary type of imaging device, known as a silicon retina or event-based sensor, has recently been developed and is gaining in popularity in the field of artificial vision systems. These devices are inspired by a biological retina and operate in a significantly different way to traditional CCD-based imaging sensors. While a CCD produces frames of pixel intensities, an event-based sensor produces a continuous stream of events, each of which is generated when a pixel detects a change in log light intensity. These pixels operate asynchronously and independently, producing an event-based output with high temporal resolution. There are also no fixed exposure times, allowing these devices to offer a very high dynamic range independently for each pixel. Additionally, these devices offer high-speed, low power operation and a sparse spatiotemporal output. As a consequence, the data from these sensors must be interpreted in a significantly different way to traditional imaging sensors and this paper explores the advantages this technology provides for space imaging. The applicability and capabilities of event-based sensors for SSA applications are demonstrated through telescope field trials. Trial results have confirmed that the devices are capable of observing resident space objects from LEO through to GEO orbital regimes. Significantly, observations of RSOs were made during both day-time and nighttime (terminator) conditions without modification to the camera or optics. The event based sensor’s ability to image stars and satellites during day-time hours offers a dramatic capability increase for terrestrial optical sensors. This paper shows the field testing and validation of two different architectures of event-based imaging sensors. An eventbased sensor’s asynchronous output has an intrinsically low data-rate. In addition to low-bandwidth communications requirements, the low weight, low-power and high-speed make them ideally suitable to meeting the demanding challenges required by space-based SSA systems. Results from these experiments and the systems developed highlight the applicability of event-based sensors to ground and space-based SSA tasks.
Phase diagram of the triangular-lattice Potts antiferromagnet
Jacobsen, Jesper Lykke; Salas, Jesus; Scullard, Christian R.
2017-07-28
Here, we study the phase diagram of the triangular-lattice Q-state Potts model in the realmore » $(Q, v)$ -plane, where $$v={\\rm e}^J-1$$ is the temperature variable. Our first goal is to provide an obviously missing feature of this diagram: the position of the antiferromagnetic critical curve. This curve turns out to possess a bifurcation point with two branches emerging from it, entailing important consequences for the global phase diagram. We have obtained accurate numerical estimates for the position of this curve by combining the transfer-matrix approach for strip graphs with toroidal boundary conditions and the recent method of critical polynomials. The second goal of this work is to study the corresponding $$A_{p-1}$$ RSOS model on the torus, for integer $$p=4, 5, \\ldots, 8$$ . We clarify its relation to the corresponding Potts model, in particular concerning the role of boundary conditions. For certain values of p, we identify several new critical points and regimes for the RSOS model and we initiate the study of the flows between the corresponding field theories.« less
The Use of Theatre Tours in Road Safety Education.
ERIC Educational Resources Information Center
Powney, Janet; And Others
The Scottish Road Safety Campaign and the Road Safety Council of Wales have made a large investment in theater tours as a method of providing road safety education. This study aimed to evaluate the effectiveness of a road safety message delivered by a theater group, Road Safety Officers (RSOs), or, teachers for pupils in upper secondary classes.…
Conjunction Assessment for Commercial Satellite Constellations Using Commercial Radar Data Sources
NASA Astrophysics Data System (ADS)
Nicolls, M.; Vittaldev, V.; Ceperley, D.; Creus-Costa, J.; Foster, C.; Griffith, N.; Lu, E.; Mason, J.; Park, I.; Rosner, C.; Stepan, L.
For companies with multiple orbital assets, managing the risk of collision with other low-Earth orbit (LEO) Resident Space Objects (RSOs) can amount to a significant operational burden. LeoLabs and Planet investigate the impact of a workflow that integrates commercial Space Situational Awareness (SSA) data into conjunction assessments for large satellite constellations. Radar measurements from LeoLabs are validated against truth orbits provided by the International Laser Ranging Service (ILRS) and to measurements from Planet’s on-board GPS instrumentation. The radar data is then used as input for orbit fits in order to form the basis of a conjunction assessment. To confirm the reliability of the orbit determination (OD), the generated ephemerides are validated against ILRS and GPS-derived orbits. In addition, a covariance realism assessment is performed in order to check for self-consistency by comparing the propagated orbit and the associated covariance against later measurements. Several cases are investigated to assess the benefits of integrating radar-derived products with Conjunction Data Messages (CDMs) received on Planet spacecraft. Conjunction assessment is refined using onboard GPS measurements from Planet satellites along with tracking measurements of the secondary RSO by LeoLabs. This study demonstrates that commercial data provided by LeoLabs is reliable, accurate, and timely, and that ephemeris generated from LeoLabs data provides solutions and insights which are consistent with those provided in CDMs. For the cases analyzed, the addition of commercial SSA data from LeoLabs has a positive impact on operations due to the additional information on the state of the secondary RSO which can lead to increased confidence in any maneuver-related decisions. Measurements from LeoLabs can also be used to improve conjunction assessment for commercial satellites that do not have any operator OD.
Strasser, Jane E.; Arribas, Monica; Blagoveshchenskaya, Anastasia D.; Cutler, Daniel F.
1999-01-01
The membrane proteins of all regulated secretory organelles (RSOs) recycle after exocytosis. However, the recycling of those membrane proteins that are targeted to both dense core granules (DCGs) and synaptic-like microvesicles (SLMVs) has not been addressed. Since neuroendocrine cells contain both RSOs, and the recycling routes that lead to either organelle overlap, transfer between the two pools of membrane proteins could occur during recycling. We have previously demonstrated that a chimeric protein containing the cytosolic and transmembrane domains of P-selectin coupled to horseradish peroxidase is targeted to both the DCG and the SLMV in PC12 cells. Using this chimera, we have characterized secretagogue-induced traffic in PC12 cells. After stimulation, this chimeric protein traffics from DCGs to the cell surface, internalizes into transferrin receptor (TFnR)-positive endosomes and thence to a population of secretagogue-responsive SLMVs. We therefore find a secretagogue-dependent rise in levels of HRP within SLMVs. In addition, the levels within SLMVs of the endogenous membrane protein, synaptotagmin, as well as a green fluorescent protein-tagged version of vesicle-associated membrane protein (VAMP)/synaptobrevin, also show a secretagogue-dependent increase. PMID:10436017
Reachability Analysis Applied to Space Situational Awareness
NASA Astrophysics Data System (ADS)
Holzinger, M.; Scheeres, D.
Several existing and emerging applications of Space Situational Awareness (SSA) relate directly to spacecraft Rendezvous, Proximity Operations, and Docking (RPOD) and Formation / Cluster Flight (FCF). When multiple Resident Space Ob jects (RSOs) are in vicinity of one another with appreciable periods between observations, correlating new RSO tracks to previously known objects becomes a non-trivial problem. A particularly difficult sub-problem is seen when long breaks in observations are coupled with continuous, low- thrust maneuvers. Reachability theory, directly related to optimal control theory, can compute contiguous reachability sets for known or estimated control authority and can support such RSO search and correlation efforts in both ground and on-board settings. Reachability analysis can also directly estimate the minimum control authority of a given RSO. For RPOD and FCF applications, emerging mission concepts such as fractionation drastically increase system complexity of on-board autonomous fault management systems. Reachability theory, as applied to SSA in RPOD and FCF applications, can involve correlation of nearby RSO observations, control authority estimation, and sensor track re-acquisition. Additional uses of reachability analysis are formation reconfiguration, worst-case passive safety, and propulsion failure modes such as a "stuck" thruster. Existing reachability theory is applied to RPOD and FCF regimes. An optimal control policy is developed to maximize the reachability set and optimal control law discontinuities (switching) are examined. The Clohessy-Wiltshire linearized equations of motion are normalized to accentuate relative control authority for spacecraft propulsion systems at both Low Earth Orbit (LEO) and Geostationary Earth Orbit (GEO). Several examples with traditional and low thrust propulsion systems in LEO and GEO are explored to illustrate the effects of relative control authority on the time-varying reachability set surface. Both monopropellant spacecraft at LEO and Hall thruster spacecraft at GEO are shown to be strongly actuated while Hall thruster spacecraft at LEO are found to be weakly actuated. Weaknesses with the current implementation are discussed and future numerical improvements and analytical efforts are discussed.
NASA Astrophysics Data System (ADS)
Wilkins, M.; Moyer, E. J.; Hussein, Islam I.; Schumacher, P. W., Jr.
Correlating new detections back to a large catalog of resident space objects (RSOs) requires solving one of three types of data association problems: observation-to-track, track-to-track, or observation-to-observation. The authors previous work has explored the use of various information divergence metrics for solving these problems: Kullback-Leibler (KL) divergence, mutual information, and Bhattacharrya distance. In addition to approaching the data association problem strictly from the metric tracking aspect, we have explored fusing metric and photometric data using Bayesian probabilistic reasoning for RSO identification to aid in our ability to correlate data to specific RS Os. In this work, we will focus our attention on the KL Divergence, which is a measure of the information gained when new evidence causes the observer to revise their beliefs. We can apply the Principle of Minimum Discrimination Information such that new data produces as small an information gain as possible and this information change is bounded by ɛ. Choosing an appropriate value for ɛ for both convergence and change detection is a function of your risk tolerance. Small ɛ for change detection increases alarm rates while larger ɛ for convergence means that new evidence need not be identical in information content. We need to understand what this change detection metric implies for Type I α and Type II β errors when we are forced to make a decision on whether new evidence represents a true change in characterization of an object or is merely within the bounds of our measurement uncertainty. This is unclear for the case of fusing multiple kinds and qualities of characterization evidence that may exist in different metric spaces or are even semantic statements. To this end, we explore the use of Sequential Probability Ratio Testing where we suppose that we may need to collect additional evidence before accepting or rejecting the null hypothesis that a change has occurred. In this work, we will explore the effects of choosing ɛ as a function of α and β. Our intent is that this work will help bridge understanding between the well-trodden grounds of Type I and Type II errors and changes in information theoretic content.
NASA Astrophysics Data System (ADS)
Lederer, S. M.; Hickson, P.; Cowardin, H. M.; Buckalew, B.; Frith, J.; Alliss, R.
In June 2015, the construction of the Meter Class Autonomous Telescope was completed and MCAT saw the light of the stars for the first time. In 2017, MCAT was newly dedicated as the Eugene Stansbery-MCAT telescope by NASA’s Orbital Debris Program Office (ODPO), in honour of his inspiration and dedication to this newest optical member of the NASA ODPO. Since that time, MCAT has viewed the skies with one engineering camera and two scientific cameras, and the ODPO optical team has begun the process of vetting the entire system. The full system vetting includes verification and validation of: (1) the hardware comprising the system (e.g. the telescopes and its instruments, the dome, weather systems, all-sky camera, FLIR cloud infrared camera, etc.), (2) the custom-written Observatory Control System (OCS) master software designed to autonomously control this complex system of instruments, each with its own control software, and (3) the custom written Orbital Debris Processing software for post-processing the data. ES-MCAT is now capable of autonomous observing to include Geosyncronous survey, TLE (Two-line element) tracking of individual catalogued debris at all orbital regimes (Low-Earth Orbit all the way to Geosynchronous (GEO) orbit), tracking at specified non-sidereal rates, as well as sidereal rates for proper calibration with standard stars. Ultimately, the data will be used for validation of NASA’s Orbital Debris Engineering Model, ORDEM, which aids in engineering designs of spacecraft that require knowledge of the orbital debris environment and long-term risks for collisions with Resident Space Objects (RSOs).
NASA Technical Reports Server (NTRS)
Lederer, S. M.; Hickson, P.; Cowardin, H. M.; Buckalew, B.; Frith, J.; Alliss, R.
2017-01-01
In June 2015, the construction of the Meter Class Autonomous Telescope was completed and MCAT saw the light of the stars for the first time. In 2017, MCAT was newly dedicated as the Eugene Stansbery-MCAT telescope by NASA's Orbital Debris Program Office (ODPO), in honor of his inspiration and dedication to this newest optical member of the NASA ODPO. Since that time, MCAT has viewed the skies with one engineering camera and two scientific cameras, and the ODPO optical team has begun the process of vetting the entire system. The full system vetting includes verification and validation of: (1) the hardware comprising the system (e.g. the telescopes and its instruments, the dome, weather systems, all-sky camera, FLIR cloud infrared camera, etc.), (2) the custom-written Observatory Control System (OCS) master software designed to autonomously control this complex system of instruments, each with its own control software, and (3) the custom written Orbital Debris Processing software for post-processing the data. ES-MCAT is now capable of autonomous observing to include Geosynchronous survey, TLE (Two-line element) tracking of individual catalogued debris at all orbital regimes (Low-Earth Orbit all the way to Geosynchronous (GEO) orbit), tracking at specified non-sidereal rates, as well as sidereal rates for proper calibration with standard stars. Ultimately, the data will be used for validation of NASA's Orbital Debris Engineering Model, ORDEM, which aids in engineering designs of spacecraft that require knowledge of the orbital debris environment and long-term risks for collisions with Resident Space Objects (RSOs).
Robust Bounded Influence Tests in Linear Models
1988-11-01
sensitivity analysis and bounded influence estimation. In: Evaluation of Econometric Models, J. Kmenta and J.B. Ramsey (eds.) Academic Press, New York...1R’OBUST bOUNDED INFLUENCE TESTS IN LINEA’ MODELS and( I’homas P. [lettmansperger* Tim [PennsylvanLa State UJniversity A M i0d fix pu111 rsos.p JJ 1 0...November 1988 ROBUST BOUNDED INFLUENCE TESTS IN LINEAR MODELS Marianthi Markatou The University of Iowa and Thomas P. Hettmansperger* The Pennsylvania
Conventional Weapons Effects on Reinforced Soil Walls.
1995-03-01
parametric study of the influence of specific design variables on wall panel response. D. METHODOLOGY A single degree of freedom model was modified to...t. dAev AVoF design methodologies for reinforced soil subjected o bl...at lad, LM, r..s.o.s. of these systems to such loading must be established...for many years and then on short notice be shipped to a location for use. The design for this shelter would be done as needed, although some non -site
Genetic Analysis of Seed-Soluble Oligosaccharides in Relation to Seed Storability of Arabidopsis1
Bentsink, Leónie; Alonso-Blanco, Carlos; Vreugdenhil, Dick; Tesnier, Karine; Groot, Steven P.C.; Koornneef, Maarten
2000-01-01
Seed oligosaccharides (OSs) and especially raffinose series OSs (RSOs) are hypothesized to play an important role in the acquisition of desiccation tolerance and consequently in seed storability. In the present work we analyzed the seed-soluble OS (sucrose, raffinose, and stachyose) content of several Arabidopsis accessions and thus identified the genotype Cape Verde Islands having a very low RSO content. By performing quantitative trait loci (QTL) mapping in a recombinant inbred line population, we found one major QTL responsible for the practically monogenic segregation of seed stachyose content. This locus also affected the content of the two other OSs, sucrose, and raffinose. Two candidate genes encoding respectively for galactinol synthase and raffinose synthase were located within the genomic region around this major QTL. In addition, three smaller-effect QTL were identified, each one specifically affecting the content of an individual OS. Seed storability was analyzed in the same recombinant inbred line population by measuring viability (germination) under two different seed aging assays: after natural aging during 4 years of dry storage at room temperature and after artificial aging induced by a controlled deterioration test. Thus, four QTL responsible for the variation of this trait were mapped. Comparison of the QTL genetic positions showed that the genomic region containing the major OS locus did not significantly affect the seed storability. We concluded that in the studied material neither RSOs nor sucrose content had a specific effect on seed storability. PMID:11115877
Height of a faceted macrostep for sticky steps in a step-faceting zone
NASA Astrophysics Data System (ADS)
Akutsu, Noriko
2018-02-01
The driving force dependence of the surface velocity and the average height of faceted merged steps, the terrace-surface slope, and the elementary step velocity are studied using the Monte Carlo method in the nonequilibrium steady state. The Monte Carlo study is based on a lattice model, the restricted solid-on-solid model with point-contact-type step-step attraction (p-RSOS model). The main focus of this paper is a change of the "kink density" on the vicinal surface. The temperature is selected to be in the step-faceting zone [N. Akutsu, AIP Adv. 6, 035301 (2016), 10.1063/1.4943400] where the vicinal surface is surrounded by the (001) terrace and the (111) faceted step at equilibrium. Long time simulations are performed at this temperature to obtain steady states for the different driving forces that influence the growth/recession of the surface. A Wulff figure of the p-RSOS model is produced through the anomalous surface tension calculated using the density-matrix renormalization group method. The characteristics of the faceted macrostep profile at equilibrium are classified with respect to the connectivity of the surface tension. This surface tension connectivity also leads to a faceting diagram, where the separated areas are, respectively, classified as a Gruber-Mullins-Pokrovsky-Talapov zone, step droplet zone, and step-faceting zone. Although the p-RSOS model is a simplified model, the model shows a wide variety of dynamics in the step-faceting zone. There are four characteristic driving forces: Δ μy,Δ μf,Δ μc o , and Δ μR . For the absolute value of the driving force, |Δ μ | is smaller than Max[ Δ μy,Δ μf] , the step attachment-detachments are inhibited, and the vicinal surface consists of (001) terraces and the (111) side surfaces of the faceted macrosteps. For Max[ Δ μy,Δ μf]<|Δ μ |<Δ μc o , the surface grows/recedes intermittently through the two-dimensional (2D) heterogeneous nucleation at the facet edge of the macrostep. For Δ μc o<|Δ μ | <Δ μR , the surface grows/recedes with the successive attachment-detachment of steps to/from a macrostep. When |Δ μ | exceeds Δ μR , the macrostep vanishes and the surface roughens kinetically. Classical 2D heterogeneous multinucleation was determined to be valid with slight modifications based on the Monte Carlo results of the step velocity and the change in the surface slope of the "terrace." The finite-size effects were also determined to be distinctive near equilibrium.
2017-01-01
This article studies correlated two-person games constructed from games with independent players as proposed in Iqbal et al. (2016 R. Soc. open sci. 3, 150477. (doi:10.1098/rsos.150477)). The games are played in a collective manner, both in a two-dimensional lattice where the players interact with their neighbours, and with players interacting at random. Four game types are scrutinized in iterated games where the players are allowed to change their strategies, adopting that of their best paid mate neighbour. Particular attention is paid in the study to the effect of a variable degree of correlation on Nash equilibrium strategy pairs. PMID:29291120
The critical boundary RSOS M(3,5) model
NASA Astrophysics Data System (ADS)
El Deeb, O.
2017-12-01
We consider the critical nonunitary minimal model M(3, 5) with integrable boundaries and analyze the patterns of zeros of the eigenvalues of the transfer matrix and then determine the spectrum of the critical theory using the thermodynamic Bethe ansatz ( TBA) equations. Solving the TBA functional equation satisfied by the transfer matrices of the associated A 4 restricted solid-on-solid Forrester-Baxter lattice model in regime III in the continuum scaling limit, we derive the integral TBA equations for all excitations in the ( r, s) = (1, 1) sector and then determine their corresponding energies. We classify the excitations in terms of ( m, n) systems.
Finite-volume spectra of the Lee-Yang model
NASA Astrophysics Data System (ADS)
Bajnok, Zoltan; el Deeb, Omar; Pearce, Paul A.
2015-04-01
We consider the non-unitary Lee-Yang minimal model in three different finite geometries: (i) on the interval with integrable boundary conditions labelled by the Kac labels ( r, s) = (1 , 1) , (1 , 2), (ii) on the circle with periodic boundary conditions and (iii) on the periodic circle including an integrable purely transmitting defect. We apply φ 1,3 integrable perturbations on the boundary and on the defect and describe the flow of the spectrum. Adding a Φ1,3 integrable perturbation to move off-criticality in the bulk, we determine the finite size spectrum of the massive scattering theory in the three geometries via Thermodynamic Bethe Ansatz (TBA) equations. We derive these integral equations for all excitations by solving, in the continuum scaling limit, the TBA functional equations satisfied by the transfer matrices of the associated A 4 RSOS lattice model of Forrester and Baxter in Regime III. The excitations are classified in terms of ( m, n) systems. The excited state TBA equations agree with the previously conjectured equations in the boundary and periodic cases. In the defect case, new TBA equations confirm previously conjectured transmission factors.
Upside-down: Perceived space affects object-based attention.
Papenmeier, Frank; Meyerhoff, Hauke S; Brockhoff, Alisa; Jahn, Georg; Huff, Markus
2017-07-01
Object-based attention influences the subjective metrics of surrounding space. However, does perceived space influence object-based attention, as well? We used an attentive tracking task that required sustained object-based attention while objects moved within a tracking space. We manipulated perceived space through the availability of depth cues and varied the orientation of the tracking space. When rich depth cues were available (appearance of a voluminous tracking space), the upside-down orientation of the tracking space (objects appeared to move high on a ceiling) caused a pronounced impairment of tracking performance compared with an upright orientation of the tracking space (objects appeared to move on a floor plane). In contrast, this was not the case when reduced depth cues were available (appearance of a flat tracking space). With a preregistered second experiment, we showed that those effects were driven by scene-based depth cues and not object-based depth cues. We conclude that perceived space affects object-based attention and that object-based attention and perceived space are closely interlinked. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Kalanov, Temur Z.
2003-04-01
A new theory of space is suggested. It represents the new point of view which has arisen from the critical analysis of the foundations of physics (in particular the theory of relativity and quantum mechanics), mathematics, cosmology and philosophy. The main idea following from the analysis is that the concept of movement represents a key to understanding of the essence of space. The starting-point of the theory is represented by the following philosophical (dialectical materialistic) principles. (a) The principle of the materiality (of the objective reality) of the Nature: the Nature (the Universe) is a system (a set) of material objects (particles, bodies, fields); each object has properties, features, and the properties, the features are inseparable characteristics of material object and belong only to material object. (b) The principle of the existence of material object: an object exists as the objective reality, and movement is a form of existence of object. (c) The principle (definition) of movement of object: the movement is change (i.e. transition of some states into others) in general; the movement determines a direction, and direction characterizes the movement. (d) The principle of existence of time: the time exists as the parameter of the system of reference. These principles lead to the following statements expressing the essence of space. (1) There is no space in general, and there exist space only as a form of existence of the properties and features of the object. It means that the space is a set of the measures of the object (the measure is the philosophical category meaning unity of the qualitative and quantitative determinacy of the object). In other words, the space of the object is a set of the states of the object. (2) The states of the object are manifested only in a system of reference. The main informational property of the unitary system researched physical object + system of reference is that the system of reference determines (measures, calculates) the parameters of the subsystem researched physical object (for example, the coordinates of the object M); the parameters characterize the system of reference (for example, the system of coordinates S). (3) Each parameter of the object is its measure. Total number of the mutually independent parameters of the object is called dimension of the space of the object. (4) The set of numerical values (i.e. the range, the spectrum) of each parameter is the subspace of the object. (The coordinate space, the momentum space and the energy space are examples of the subspaces of the object). (5) The set of the parameters of the object is divided into two non intersecting (opposite) classes: the class of the internal parameters and the class of the non internal (i.e. external) parameters. The class of the external parameters is divided into two non intersecting (opposite) subclasses: the subclass of the absolute parameters (characterizing the form, the sizes of the object) and the subclass of the non absolute (relative) parameters (characterizing the position, the coordinates of the object). (6) Set of the external parameters forms the external space of object. It is called geometrical space of object. (7) Since a macroscopic object has three mutually independent sizes, the dimension of its external absolute space is equal to three. Consequently, the dimension of its external relative space is also equal to three. Thus, the total dimension of the external space of the macroscopic object is equal to six. (8) In general case, the external absolute space (i.e. the form, the sizes) and the external relative space (i.e. the position, the coordinates) of any object are mutually dependent because of influence of a medium. The geometrical space of such object is called non Euclidean space. If the external absolute space and the external relative space of some object are mutually independent, then the external relative space of such object is the homogeneous and isotropic geometrical space. It is called Euclidean space of the object. Consequences: (i) the question of true geometry of the Universe is incorrect; (ii) the theory of relativity has no physical meaning.
AN/FSY-3 Space Fence System Support of Conjunction Assessment
NASA Astrophysics Data System (ADS)
Koltiska, M.; Du, H.; Prochoda, D.; Kelly, K.
2016-09-01
The Space Fence System is a ground-based space surveillance radar system designed to detect and track all objects in Low Earth Orbit the size of a softball or larger. The system detects many objects that are not currently in the catalog of satellites and space debris that is maintained by the US Air Force. In addition, it will also be capable of tracking many of the deep space objects in the catalog. By providing daily updates of the orbits of these new objects along with updates of most of the objects in the catalog, it will enhance Space Situational Awareness and significantly improve our ability to predict close approaches, aka conjunctions, of objects in space. With this additional capacity for tracking objects in space the Space Surveillance Network has significantly more resources for monitoring orbital debris, especially for debris that could collide with active satellites and other debris.
Ackerman, Alissa R; Harris, Andrew J; Levenson, Jill S; Zgoba, Kristen
2011-01-01
Despite growing focus on registration and notification systems as central elements of national sex offender management practice, there has been remarkably little systematic analysis of the content of these registries and the diversity of individuals contained within them. Specifically, little research attention has been paid to examining the heterogeneity of the population of registered sex offenders - a circumstance that may obscure important distinctions within the population and, in turn, may undermine the ostensible purpose of SORN to prevent sexual victimization. Addressing this significant gap in our current knowledge, this article sets forth a national profile of the registered sex offender (RSO) population, drawn from an analysis of data on 445,127 RSOs obtained from the public registries of 49 states, Washington, DC, Puerto Rico and Guam. In contrast with the homogenized perception about registered sex offenders that permeates much public discourse, the analysis illuminates the wide diversity of registrants across a range of demographic, offense-related, registry status, and risk-oriented variables. Policy and practice implications concerning risk, prevention, and the public safety utility of sex offender registries are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.
An approach to radiation safety department benchmarking in academic and medical facilities.
Harvey, Richard P
2015-02-01
Based on anecdotal evidence and networking with colleagues at other facilities, it has become evident that some radiation safety departments are not adequately staffed and radiation safety professionals need to increase their staffing levels. Discussions with management regarding radiation safety department staffing often lead to similar conclusions. Management acknowledges the Radiation Safety Officer (RSO) or Director of Radiation Safety's concern but asks the RSO to provide benchmarking and justification for additional full-time equivalents (FTEs). The RSO must determine a method to benchmark and justify additional staffing needs while struggling to maintain a safe and compliant radiation safety program. Benchmarking and justification are extremely important tools that are commonly used to demonstrate the need for increased staffing in other disciplines and are tools that can be used by radiation safety professionals. Parameters that most RSOs would expect to be positive predictors of radiation safety staff size generally are and can be emphasized in benchmarking and justification report summaries. Facilities with large radiation safety departments tend to have large numbers of authorized users, be broad-scope programs, be subject to increased controls regulations, have large clinical operations, have significant numbers of academic radiation-producing machines, and have laser safety responsibilities.
The uncrowded window of object recognition
Pelli, Denis G; Tillman, Katharine A
2009-01-01
It is now emerging that vision is usually limited by object spacing rather than size. The visual system recognizes an object by detecting and then combining its features. ‘Crowding’ occurs when objects are too close together and features from several objects are combined into a jumbled percept. Here, we review the explosion of studies on crowding—in grating discrimination, letter and face recognition, visual search, selective attention, and reading—and find a universal principle, the Bouma law. The critical spacing required to prevent crowding is equal for all objects, although the effect is weaker between dissimilar objects. Furthermore, critical spacing at the cortex is independent of object position, and critical spacing at the visual field is proportional to object distance from fixation. The region where object spacing exceeds critical spacing is the ‘uncrowded window’. Observers cannot recognize objects outside of this window and its size limits the speed of reading and search. PMID:18828191
14 CFR 417.19 - Registration of space objects.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Registration of space objects. 417.19 Section 417.19 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... Registration of space objects. (a) To assist the U.S. Government in implementing Article IV of the 1975...
14 CFR 417.19 - Registration of space objects.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Registration of space objects. 417.19 Section 417.19 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... Registration of space objects. (a) To assist the U.S. Government in implementing Article IV of the 1975...
14 CFR 417.19 - Registration of space objects.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Registration of space objects. 417.19 Section 417.19 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... Registration of space objects. (a) To assist the U.S. Government in implementing Article IV of the 1975...
14 CFR 417.19 - Registration of space objects.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Registration of space objects. 417.19 Section 417.19 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... Registration of space objects. (a) To assist the U.S. Government in implementing Article IV of the 1975...
14 CFR 417.19 - Registration of space objects.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Registration of space objects. 417.19 Section 417.19 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... Registration of space objects. (a) To assist the U.S. Government in implementing Article IV of the 1975...
NASA Astrophysics Data System (ADS)
Choi, E.; Cho, S.; Shin, S.; Park, J.; Kim, J.; Kim, D.
The threat posed by asteroids and comets has become one of the important issues. Jinju meteorite discovered in March 2014 has expanded the interest of the people of the fall of the natural space objects. Furthermore, the growing quantity of space debris is a serious threat to satellites and other spacecraft, which risk being damaged or even destroyed. In May of 2014, Korea established the preparedness plan for space hazards according to the space development promotion act which is amended to take action with respect to hazards from space. This plan is largely composed of 3 items such as system, technology and infrastructure. System is included the establishment and management of national space hazards headquarters at risk situation. Korea Astronomy and Space Science Institute (KASI) was designated as a space environment monitoring agency under the ministry of science, ICT and future planning (MSIP). Technology is supposed to develop the space situational awareness system that can monitor and detect space objects. For infrastructure, research and development of core technology will be promoted for capabilities improvement of space hazards preparedness such as software tools, application and data systems. This paper presents the architectural design for building space situational awareness system. The trade-off study of space situational awareness system for the Korea situation was performed. The results have shown the proposed architectural design. The baseline architecture is composed of Integrated Analysis System and Space Objects Monitoring System. Integrated Analysis System collects the status data from Space Objects Monitoring System and analyzes the space risk information through a data processing. For Space Objects Monitoring System, the all-sky surveillance camera, array radar and meteoroid surveillance sensor networks were considered. This system focuses on not only the threat of a large artificial satellite and natural space objects such as asteroids that crashed to Earth but also the prediction of potential collisions between space objects. Especially, array radar aims to accurately track space objects. By analyzing performance for radar system and sensor networks, several feasible approaches for such a space objects monitoring system will be presented in this paper.
NASA Technical Reports Server (NTRS)
Phillips, Veronica J.
2017-01-01
STI is for a fact sheet on the Space Object Query Tool being created by the MDC. When planning launches, NASA must first factor in the tens of thousands of objects already in orbit around the Earth. The number of human-made objects, including nonfunctional spacecraft, abandoned launch vehicle stages, mission-related debris and fragmentation debris orbiting Earth has grown steadily since Sputnik 1 was launched in 1957. Currently, the U.S. Department of Defenses Joint Space Operations Center, or JSpOC, tracks over 15,000 distinct objects and provides data for more than 40,000 objects via its Space-Track program, found at space-track.org.
Critical issues related to registration of space objects and transparency of space activities
NASA Astrophysics Data System (ADS)
Jakhu, Ram S.; Jasani, Bhupendra; McDowell, Jonathan C.
2018-02-01
The main purpose of the 1975 Registration Convention is to achieve transparency in space activities and this objective is motivated by the belief that a mandatory registration system would assist in the identification of space objects launched into outer space. This would also consequently contribute to the application and development of international law governing the exploration and use of outer space. States Parties to the Convention furnish the required information to the United Nations' Register of Space Objects. However, the furnished information is often so general that it may not be as helpful in creating transparency as had been hoped by the drafters of the Convention. While registration of civil satellites has been furnished with some general details, till today, none of the Parties have described the objects as having military functions despite the fact that a large number of such objects do perform military functions as well. In some cases, the best they have done is to indicate that the space objects are for their defense establishments. Moreover, the number of registrations of space objects is declining. This paper addresses the challenges posed by the non-registration of space objects. Particularly, the paper provides some data about the registration and non-registration of satellites and the States that have and have not complied with their legal obligations. It also analyses the specific requirements of the Convention, the reasons for non-registration, new challenges posed by the registration of small satellites and the on-orbit transfer of satellites. Finally, the paper provides some recommendations on how to enhance the registration of space objects, on the monitoring of the implementation of the Registration Convention and consequently how to achieve maximum transparency in space activities.
Exploring the Role of Space-Defining Objects in Constructing and Maintaining Imagined Scenes
ERIC Educational Resources Information Center
Mullally, Sinead L.; Maguire, Eleanor A.
2013-01-01
It has recently been observed that certain objects, when viewed or imagined in isolation, evoke a strong sense of three-dimensional local space surrounding them (space-defining (SD) objects), while others do not (space-ambiguous (SA) objects), and this is associated with engagement of the parahippocampal cortex (PHC). But activation of the PHC is…
Apparatus for releasably connecting first and second objects in predetermined space relationship
NASA Technical Reports Server (NTRS)
Chandler, J. A. (Inventor)
1984-01-01
A releasable apparatus that connects first and second space objects, such as a spacecraft and a space vehicle, in predetermined spaced relationship is described. The apparatus comprises at least one probe member mounted on the first object, having an elongated shank portion, the distal end of which is provided with a tapered nose portion. At least one drogue assembly is mounted on the second space object for releasably capturing the probe member upon the first and second objects being brought into close proximity with each other.
Challenges in Physical Characterization of Dim Space Objects: What Can We Learn from NEOs
NASA Astrophysics Data System (ADS)
Reddy, V.; Sanchez, J.; Thirouin, A.; Rivera-Valentin, E.; Ryan, W.; Ryan, E.; Mokovitz, N.; Tegler, S.
2016-09-01
Physical characterization of dim space objects in cis-lunar space can be a challenging task. Of particular interest to both natural and artificial space object behavior scientists are the properties beyond orbital parameters that can uniquely identify them. These properties include rotational state, size, shape, density and composition. A wide range of observational and non-observational factors affect our ability to characterize dim objects in cis-lunar space. For example, phase angle (angle between Sun-Target-Observer), temperature, rotational variations, temperature, and particle size (for natural dim objects). Over the last two decades, space object behavior scientists studying natural dim objects have attempted to quantify and correct for a majority of these factors to enhance our situational awareness. These efforts have been primarily focused on developing laboratory spectral calibrations in a space-like environment. Calibrations developed correcting spectral observations of natural dim objects could be applied to characterizing artificial objects, as the underlying physics is the same. The paper will summarize our current understanding of these observational and non-observational factors and present a case study showcasing the state of the art in characterization of natural dim objects.
Simulation analysis of photometric data for attitude estimation of unresolved space objects
NASA Astrophysics Data System (ADS)
Du, Xiaoping; Gou, Ruixin; Liu, Hao; Hu, Heng; Wang, Yang
2017-10-01
The attitude information acquisition of unresolved space objects, such as micro-nano satellites and GEO objects under the way of ground-based optical observations, is a challenge to space surveillance. In this paper, a useful method is proposed to estimate the SO attitude state according to the simulation analysis of photometric data in different attitude states. The object shape model was established and the parameters of the BRDF model were determined, then the space object photometric model was established. Furthermore, the photometric data of space objects in different states are analyzed by simulation and the regular characteristics of the photometric curves are summarized. The simulation results show that the photometric characteristics are useful for attitude inversion in a unique way. Thus, a new idea is provided for space object identification in this paper.
Object-based warping: an illusory distortion of space within objects.
Vickery, Timothy J; Chun, Marvin M
2010-12-01
Visual objects are high-level primitives that are fundamental to numerous perceptual functions, such as guidance of attention. We report that objects warp visual perception of space in such a way that spatial distances within objects appear to be larger than spatial distances in ground regions. When two dots were placed inside a rectangular object, they appeared farther apart from one another than two dots with identical spacing outside of the object. To investigate whether this effect was object based, we measured the distortion while manipulating the structure surrounding the dots. Object displays were constructed with a single object, multiple objects, a partially occluded object, and an illusory object. Nonobject displays were constructed to be comparable to object displays in low-level visual attributes. In all cases, the object displays resulted in a more powerful distortion of spatial perception than comparable non-object-based displays. These results suggest that perception of space within objects is warped.
Space station systems analysis study. Part 1, volume 1: Executive study
NASA Technical Reports Server (NTRS)
1976-01-01
Potential space station system options were examined for a permanent, manned, orbital space facility and to provide data to NASA program planners and decision makers for their use in future program planning. There were ten space station system objectives identified. These were categorized into five major objectives and five supporting objectives. The major objectives were to support the development of: (1) satellite power systems, (2) nuclear energy plants in space, (3) space processing, (4) earth services, and (5) space cosmological research and development. The five supporting objectives, to define space facilities which would be basic building blocks for future systems, were: (1) a multidiscipline science laboratory, (2) an orbital depot to maintain, fuel, and service orbital transfer vehicles, (3) cluster support systems to provide power and data processing for multiple orbital elements, (4) a sensor development facility, and (5) the facilities necessary to enhance man's living and working in space.
NASA Astrophysics Data System (ADS)
Schmidt-Tedd, Bernhard
2017-07-01
Space objects are subject to registration in order to allocate "jurisdiction and control" over those objects in the sovereign-free environment of outer space. This approach is similar to the registration of ships in view of the high sea and for aircrafts with respect to the international airspace. Registration is one of the basic principles of space law, starting with UN General Assembly Resolution 1721 B (XVI) of December 20, 1961, followed by Resolution 1962 (XVIII) of December 13, 1963, then formulated in Article VIII of the Outer Space Treaty of 1967 and as specified in the Registration Convention of 1975. Registration of space objects can be seen today as a principle of customary international law, relevant for each spacefaring state. Registration is divided into a national and an international level. The State Party establishes a national registry for its space objects, and those registrations have to be communicated via diplomatic channel to the UN Register of space objects. This UN Register is handled by the UN Office for Outer Space Affairs (UNOOSA) and is an open source of information for space objects worldwide. Registration is linked to the so-called launching state of the relevant space object. There might be more than one launching state for the specific launch event, but only one state actor can register a specific space object. The state of registry gains "jurisdiction and control" over the space object and therefore no double registration is permissible. Based on the established UN Space Law, registration practice was subject to some adaptions due to technical developments and legal challenges. After the privatization of the major international satellite organizations, a number of non-registrations had to be faced. The state actors reacted with the UN Registration Practice Resolution of 2007 as elaborated in the Legal Subcommittee of UNCOPUOS, the Committee for the Peaceful Use of Outer Space. In this context an UNOOSA Registration Information Submission Form had been developed. Today the complexity of launch activities and the concepts of mega-constellations lead to new challenges to the registration system. The Registration Practice Resolution already recommends that in cases of joint launches, each space object should be registered separately. Registration of space objects is a legal instrument in the context of state responsibility; it is not an instrument of traffic management. The orbit information of the registration system is indicative for identification purposes but not real-time positioning information. Such traffic management information follows different rules.
14 CFR 1203.201 - Information security objectives.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Information security objectives. 1203.201 Section 1203.201 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM NASA Information Security Program § 1203.201 Information security objectives. The objectives of...
14 CFR 1203.201 - Information security objectives.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Information security objectives. 1203.201 Section 1203.201 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM NASA Information Security Program § 1203.201 Information security objectives. The objectives of...
ISODEX: An entry point for developing countries into space activities
NASA Astrophysics Data System (ADS)
Skinner, Mark Andrew
2015-08-01
Several threads current in the community of international space actors have led to calls at UN COPUOS Scientific & Technical Sub-Committee meetings for enhancing the scientific information available on man-made space objects, whilst fostering international space object data sharing. Growing awareness of the problems of space debris proliferation and space traffic management, especially amongst developing countries and non-traditional space faring nations, have fueled their desires to become involved in the areas of space object tracking, utilizing relatively modest astronomical instrumentation. Additionally, several commercial satellite operators, members of the Satellite Data Association, have called for augmentation of the information available from existing catalogs. This confluence of factors has led to an international discussion, at the UN and elsewhere, of the possibility of creating a clearing-house for parties willing to share data on space objects, with a working title of the “International Space Object Data Exchange” (ISODEX). We discuss the ideas behind this concept, how it might be implemented, and it might enhance the public’s knowledge of space activities, as well as providing an entry point into space for developing countries.
Tracking multiple objects is limited only by object spacing, not by speed, time, or capacity.
Franconeri, S L; Jonathan, S V; Scimeca, J M
2010-07-01
In dealing with a dynamic world, people have the ability to maintain selective attention on a subset of moving objects in the environment. Performance in such multiple-object tracking is limited by three primary factors-the number of objects that one can track, the speed at which one can track them, and how close together they can be. We argue that this last limit, of object spacing, is the root cause of all performance constraints in multiple-object tracking. In two experiments, we found that as long as the distribution of object spacing is held constant, tracking performance is unaffected by large changes in object speed and tracking time. These results suggest that barring object-spacing constraints, people could reliably track an unlimited number of objects as fast as they could track a single object.
Awareness-based game-theoretic space resource management
NASA Astrophysics Data System (ADS)
Chen, Genshe; Chen, Huimin; Pham, Khanh; Blasch, Erik; Cruz, Jose B., Jr.
2009-05-01
Over recent decades, the space environment becomes more complex with a significant increase in space debris and a greater density of spacecraft, which poses great difficulties to efficient and reliable space operations. In this paper we present a Hierarchical Sensor Management (HSM) method to space operations by (a) accommodating awareness modeling and updating and (b) collaborative search and tracking space objects. The basic approach is described as follows. Firstly, partition the relevant region of interest into district cells. Second, initialize and model the dynamics of each cell with awareness and object covariance according to prior information. Secondly, explicitly assign sensing resources to objects with user specified requirements. Note that when an object has intelligent response to the sensing event, the sensor assigned to observe an intelligent object may switch from time-to-time between a strong, active signal mode and a passive mode to maximize the total amount of information to be obtained over a multi-step time horizon and avoid risks. Thirdly, if all explicitly specified requirements are satisfied and there are still more sensing resources available, we assign the additional sensing resources to objects without explicitly specified requirements via an information based approach. Finally, sensor scheduling is applied to each sensor-object or sensor-cell pair according to the object type. We demonstrate our method with realistic space resources management scenario using NASA's General Mission Analysis Tool (GMAT) for space object search and track with multiple space borne observers.
Nicholls, Michael E R; Hughes, Georgina; Mattingley, Jason B; Bradshaw, John L
2004-02-01
In contrast to unilateral neglect patients, who overattend to the right hemispace, normal participants attend more to the left: a phenomenon known as pseudoneglect. Two experiments examined whether pseudoneglect results from object- or space-based attentional biases. Normal participants ( n=38, 22) made luminance judgments for two left/right mirror-reversed luminance gradients (greyscales task). The relative lateral position of the greyscales stimuli was manipulated so that object- and space-based coordinates were congruent or incongruent. A baseline condition was also included. A leftward bias, found for the baseline condition, was annulled in the incongruent condition, demonstrating an opposition of object- and space-based biases. The leftward bias was reduced in the congruent condition where object- and space-based biases were expected to be additive. This effect was attributed to extraneous factors, which were avoided in the second experiment by presenting the greyscales stimuli sequentially. Once again, no bias was observed in the incongruent condition where object- and space-based biases were opposed. The leftward bias in the congruent condition was the same as the baseline. The results can be explained by a combination of space- and object-based biases or by space-based biases alone and are discussed with reference to a variety of models, which describe the distribution of attention across space.
Hidden Surface Removal through Object Space Decomposition.
1982-01-01
12 2.1 Methods of Subdividing the Object Space ..................................................... 14 2.2 Accessing...AC.AIIA TO5ASK FORCE MNT OF TECH WRIONT-PATTERSON AFB 0O4 P/O 1a/I 64100(6 SURFACE REMOVAL THROWN4 OBJECT SPACE 0(COMPOSIT109d.(U UiCLASIFIEC AFZITNl...Surface Removal Through Object Space THESlS/ J AJ;I Decomposition 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR() a. CONTRACT OR GRANT NUMBER(s) Robert
14 CFR 431.85 - Registration of space objects.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Registration of space objects. 431.85 Section 431.85 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... Requirements-Reusable Launch Vehicle Mission License Terms and Conditions § 431.85 Registration of space...
14 CFR 431.85 - Registration of space objects.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Registration of space objects. 431.85 Section 431.85 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... Requirements-Reusable Launch Vehicle Mission License Terms and Conditions § 431.85 Registration of space...
14 CFR 431.85 - Registration of space objects.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Registration of space objects. 431.85 Section 431.85 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... Requirements-Reusable Launch Vehicle Mission License Terms and Conditions § 431.85 Registration of space...
14 CFR 431.85 - Registration of space objects.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Registration of space objects. 431.85 Section 431.85 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... Requirements-Reusable Launch Vehicle Mission License Terms and Conditions § 431.85 Registration of space...
14 CFR 431.85 - Registration of space objects.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Registration of space objects. 431.85 Section 431.85 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... Requirements-Reusable Launch Vehicle Mission License Terms and Conditions § 431.85 Registration of space...
A neuroanatomical model of space-based and object-centered processing in spatial neglect.
Pedrazzini, Elena; Schnider, Armin; Ptak, Radek
2017-11-01
Visual attention can be deployed in space-based or object-centered reference frames. Right-hemisphere damage may lead to distinct deficits of space- or object-based processing, and such dissociations are thought to underlie the heterogeneous nature of spatial neglect. Previous studies have suggested that object-centered processing deficits (such as in copying, reading or line bisection) result from damage to retro-rolandic regions while impaired spatial exploration reflects damage to more anterior regions. However, this evidence is based on small samples and heterogeneous tasks. Here, we tested a theoretical model of neglect that takes in account the space- and object-based processing and relates them to neuroanatomical predictors. One hundred and one right-hemisphere-damaged patients were examined with classic neuropsychological tests and structural brain imaging. Relations between neglect measures and damage to the temporal-parietal junction, intraparietal cortex, insula and middle frontal gyrus were examined with two structural equation models by assuming that object-centered processing (involved in line bisection and single-word reading) and space-based processing (involved in cancelation tasks) either represented a unique latent variable or two distinct variables. Of these two models the latter had better explanatory power. Damage to the intraparietal sulcus was a significant predictor of object-centered, but not space-based processing, while damage to the temporal-parietal junction predicted space-based, but not object-centered processing. Space-based processing and object-centered processing were strongly intercorrelated, indicating that they rely on similar, albeit partly dissociated processes. These findings indicate that object-centered and space-based deficits in neglect are partly independent and result from superior parietal and inferior parietal damage, respectively.
Saccone, Elizabeth J; Szpak, Ancret; Churches, Owen; Nicholls, Michael E R
2018-01-01
Research suggests that the human brain codes manipulable objects as possibilities for action, or affordances, particularly objects close to the body. Near-body space is not only a zone for body-environment interaction but also is socially relevant, as we are driven to preserve our near-body, personal space from others. The current, novel study investigated how close proximity of a stranger modulates visuomotor processing of object affordances in shared, social space. Participants performed a behavioural object recognition task both alone and with a human confederate. All object images were in participants' reachable space but appeared relatively closer to the participant or the confederate. Results revealed when participants were alone, objects in both locations produced an affordance congruency effect but when the confederate was present, only objects nearer the participant elicited the effect. Findings suggest space is divided between strangers to preserve independent near-body space boundaries, and in turn this process influences motor coding for stimuli within that social space. To demonstrate that this visuomotor modulation represents a social phenomenon, rather than a general, attentional effect, two subsequent experiments employed nonhuman joint conditions. Neither a small, Japanese, waving cat statue (Experiment 2) nor a metronome (Experiment 3) modulated the affordance effect as in Experiment 1. These findings suggest a truly social explanation of the key interaction from Experiment 1. This study represents an important step toward understanding object affordance processing in real-world, social contexts and has implications broadly across fields of social action and cognition, and body space representation.
Toward Microsatellite Based Space Situational Awareness
NASA Astrophysics Data System (ADS)
Scott, L.; Wallace, B.; Sale, M.; Thorsteinson, S.
2013-09-01
The NEOSSat microsatellite is a dual mission space telescope which will perform asteroid detection and Space Situational Awareness (SSA) observation experiments on deep space, earth orbiting objects. NEOSSat was launched on 25 February 2013 into a 800 dawn-dusk sun synchronous orbit and is currently undergoing satellite commissioning. The microsatellite consists of a small aperture optical telescope, GPS receiver, high performance attitude control system, and stray light rejection baffle designed to reject stray light from the Sun while searching for asteroids with elongations 45 degrees along the ecliptic. The SSA experimental mission, referred to as HEOSS (High Earth Orbit Space Surveillance), will focus on objects in deep space orbits. The HEOSS mission objective is to evaluate the utility of microsatellites to perform catalog maintenance observations of resident space objects in a manner consistent with the needs of the Canadian Forces. The advantages of placing a space surveillance sensor in low Earth orbit are that the observer can conduct observations without the day-night interruption cycle experienced by ground based telescopes, the telescope is insensitive to adverse weather and the system has visibility to deep space resident space objects which are not normally visible from ground based sensors. Also, from a photometric standpoint, the microsatellite is able to conduct observations on objects with a rapidly changing observer position. The possibility of spin axis estimation on geostationary satellites may be possible and an experiment characterize spin axis of distant resident space objects is being planned. Also, HEOSS offers the ability to conduct observations of satellites at high phase angles which can potentially extend the trackable portion of space in which deep space objects' orbits can be monitored. In this paper we describe the HEOSS SSA experimental data processing system and the preliminary findings of the catalog maintenance experiments. The placement of a space based space surveillance sensor in low Earth orbit introduces tasking and image processing complexities such as cosmic ray rejection, scattered light from Earth's limb and unique scheduling limitations due to the observer's rapid positional change and we describe first-look microsatellite space surveillance lessons from this unique orbital vantage point..
Dynamics and control of robot for capturing objects in space
NASA Astrophysics Data System (ADS)
Huang, Panfeng
Space robots are expected to perform intricate tasks in future space services, such as satellite maintenance, refueling, and replacing the orbital replacement unit (ORU). To realize these missions, the capturing operation may not be avoided. Such operations will encounter some challenges because space robots have some unique characteristics unfound on ground-based robots, such as, dynamic singularities, dynamic coupling between manipulator and space base, limited energy supply and working without a fixed base, and so on. In addition, since contacts and impacts may not be avoided during capturing operation. Therefore, dynamics and control problems of space robot for capturing objects are significant research topics if the robots are to be deployed for the space services. A typical servicing operation mainly includes three phases: capturing the object, berthing and docking the object, then repairing the target. Therefore, this thesis will focus on resolving some challenging problems during capturing the object, berthing and docking, and so on. In this thesis, I study and analyze the dynamics and control problems of space robot for capturing objects. This work has potential impact in space robotic applications. I first study the contact and impact dynamics of space robot and objects. I specifically focus on analyzing the impact dynamics and mapping the relationship of influence and speed. Then, I develop the fundamental theory for planning the minimum-collision based trajectory of space robot and designing the configuration of space robot at the moment of capture. To compensate for the attitude of the space base during the capturing approach operation, a new balance control concept which can effectively balance the attitude of the space base using the dynamic couplings is developed. The developed balance control concept helps to understand of the nature of space dynamic coupling, and can be readily applied to compensate or minimize the disturbance to the space base. After capturing the object, the space robot must complete the following two tasks: one is to berth the object, and the other is to re-orientate the attitude of the whole robot system for communication and power supply. Therefore, I propose a method to accomplish these two tasks simultaneously using manipulator motion only. The ultimate goal of space services is to realize the capture and manipulation autonomously. Therefore, I propose an affective approach based on learning human skill to track and capture the objects automatically in space. With human-teaching demonstration, the space robot is able to learn and abstract human tracking and capturing skill using an efficient neural-network learning architecture that combines flexible Cascade Neural Networks with Node Decoupled Extended Kalman Filtering (CNN-NDEKF). The simulation results attest that this approach is useful and feasible in tracking trajectory planning and capturing of space robot. Finally I propose a novel approach based on Genetic Algorithms (GAs) to optimize the approach trajectory of space robots in order to realize effective and stable operations. I complete the minimum-torque path planning in order to save the limited energy in space, and design the minimum jerk trajectory for the stabilization of the space manipulator and its space base. These optimal algorithms are very important and useful for the application of space robot.
Meilinger, Tobias; Strickrodt, Marianne; Bülthoff, Heinrich H
2016-10-01
Two classes of space define our everyday experience within our surrounding environment: vista spaces, such as rooms or streets which can be perceived from one vantage point, and environmental spaces, for example, buildings and towns which are grasped from multiple views acquired during locomotion. However, theories of spatial representations often treat both spaces as equal. The present experiments show that this assumption cannot be upheld. Participants learned exactly the same layout of objects either within a single room or spread across multiple corridors. By utilizing a pointing and a placement task we tested the acquired configurational memory. In Experiment 1 retrieving memory of the object layout acquired in environmental space was affected by the distance of the traveled path and the order in which the objects were learned. In contrast, memory retrieval of objects learned in vista space was not bound to distance and relied on different ordering schemes (e.g., along the layout structure). Furthermore, spatial memory of both spaces differed with respect to the employed reference frame orientation. Environmental space memory was organized along the learning experience rather than layout intrinsic structure. In Experiment 2 participants memorized the object layout presented within the vista space room of Experiment 1 while the learning procedure emulated environmental space learning (movement, successive object presentation). Neither factor rendered similar results as found in environmental space learning. This shows that memory differences between vista and environmental space originated mainly from the spatial compartmentalization which was unique to environmental space learning. Our results suggest that transferring conclusions from findings obtained in vista space to environmental spaces and vice versa should be made with caution. Copyright © 2016 Elsevier B.V. All rights reserved.
Application of Multi-Hypothesis Sequential Monte Carlo for Breakup Analysis
NASA Astrophysics Data System (ADS)
Faber, W. R.; Zaidi, W.; Hussein, I. I.; Roscoe, C. W. T.; Wilkins, M. P.; Schumacher, P. W., Jr.
As more objects are launched into space, the potential for breakup events and space object collisions is ever increasing. These events create large clouds of debris that are extremely hazardous to space operations. Providing timely, accurate, and statistically meaningful Space Situational Awareness (SSA) data is crucial in order to protect assets and operations in space. The space object tracking problem, in general, is nonlinear in both state dynamics and observations, making it ill-suited to linear filtering techniques such as the Kalman filter. Additionally, given the multi-object, multi-scenario nature of the problem, space situational awareness requires multi-hypothesis tracking and management that is combinatorially challenging in nature. In practice, it is often seen that assumptions of underlying linearity and/or Gaussianity are used to provide tractable solutions to the multiple space object tracking problem. However, these assumptions are, at times, detrimental to tracking data and provide statistically inconsistent solutions. This paper details a tractable solution to the multiple space object tracking problem applicable to space object breakup events. Within this solution, simplifying assumptions of the underlying probability density function are relaxed and heuristic methods for hypothesis management are avoided. This is done by implementing Sequential Monte Carlo (SMC) methods for both nonlinear filtering as well as hypothesis management. This goal of this paper is to detail the solution and use it as a platform to discuss computational limitations that hinder proper analysis of large breakup events.
The Study of Indicatrices of Space Object Coatings in a Controlled Laboratory Environment
NASA Astrophysics Data System (ADS)
Koshkin, N.; Burlak, N.; Petrov, M.; Strakhova, S.
The indicatrices of light scattering by radiation balance coatings used on space objects (SO) were determined in the laboratory experiment in a controlled condition. The laboratory device for the physical simulation of photometric observations of space objects in orbit, which was used in this case to study optical properties of coating samples, is described. The features of light reflection off plane coating samples, including multi-layer insulation (MLI) blankets, metal surfaces coated with several layers of enamel EP-140, special polyacrylate enamel AK-512 and matte finish Tp-CO-2, were determined. The indicated coatings are compound reflectors which exhibit both diffuse and specular reflections. The data obtained are to be used in the development of computer optical-geometric models of space objects or their fragments (space debris) to interpret the photometry results for real space objects.
A Study on Re-entry Predictions of Uncontrolled Space Objects for Space Situational Awareness
NASA Astrophysics Data System (ADS)
Choi, Eun-Jung; Cho, Sungki; Lee, Deok-Jin; Kim, Siwoo; Jo, Jung Hyun
2017-12-01
The key risk analysis technologies for the re-entry of space objects into Earth’s atmosphere are divided into four categories: cataloguing and databases of the re-entry of space objects, lifetime and re-entry trajectory predictions, break-up models after re-entry and multiple debris distribution predictions, and ground impact probability models. In this study, we focused on re- entry prediction, including orbital lifetime assessments, for space situational awareness systems. Re-entry predictions are very difficult and are affected by various sources of uncertainty. In particular, during uncontrolled re-entry, large spacecraft may break into several pieces of debris, and the surviving fragments can be a significant hazard for persons and properties on the ground. In recent years, specific methods and procedures have been developed to provide clear information for predicting and analyzing the re-entry of space objects and for ground-risk assessments. Representative tools include object reentry survival analysis tool (ORSAT) and debris assessment software (DAS) developed by National Aeronautics and Space Administration (NASA), spacecraft atmospheric re-entry and aerothermal break-up (SCARAB) and debris risk assessment and mitigation analysis (DRAMA) developed by European Space Agency (ESA), and semi-analytic tool for end of life analysis (STELA) developed by Centre National d’Etudes Spatiales (CNES). In this study, various surveys of existing re-entry space objects are reviewed, and an efficient re-entry prediction technique is suggested based on STELA, the life-cycle analysis tool for satellites, and DRAMA, a re-entry analysis tool. To verify the proposed method, the re-entry of the Tiangong-1 Space Lab, which is expected to re-enter Earth’s atmosphere shortly, was simulated. Eventually, these results will provide a basis for space situational awareness risk analyses of the re-entry of space objects.
Autonomous Space Object Catalogue Construction and Upkeep Using Sensor Control Theory
NASA Astrophysics Data System (ADS)
Moretti, N.; Rutten, M.; Bessell, T.; Morreale, B.
The capability to track objects in space is critical to safeguard domestic and international space assets. Infrequent measurement opportunities, complex dynamics and partial observability of orbital state makes the tracking of resident space objects nontrivial. It is not uncommon for human operators to intervene with space tracking systems, particularly in scheduling sensors. This paper details the development of a system that maintains a catalogue of geostationary objects through dynamically tasking sensors in real time by managing the uncertainty of object states. As the number of objects in space grows the potential for collision grows exponentially. Being able to provide accurate assessment to operators regarding costly collision avoidance manoeuvres is paramount; the accuracy of which is highly dependent on how object states are estimated. The system represents object state and uncertainty using particles and utilises a particle filter for state estimation. Particle filters capture the model and measurement uncertainty accurately, allowing for a more comprehensive representation of the state’s probability density function. Additionally, the number of objects in space is growing disproportionally to the number of sensors used to track them. Maintaining precise positions for all objects places large loads on sensors, limiting the time available to search for new objects or track high priority objects. Rather than precisely track all objects our system manages the uncertainty in orbital state for each object independently. The uncertainty is allowed to grow and sensor data is only requested when the uncertainty must be reduced. For example when object uncertainties overlap leading to data association issues or if the uncertainty grows to beyond a field of view. These control laws are formulated into a cost function, which is optimised in real time to task sensors. By controlling an optical telescope the system has been able to construct and maintain a catalogue of approximately 100 geostationary objects.
[Bio-objects and biological methods of space radiation effects evaluation].
Kaminskaia, E V; Nevzgodina, L V; Platova, N G
2009-01-01
The unique conditions of space experiments place austere requirements to bio-objects and biological methods of radiation effects evaluation. The paper discusses suitability of a number of bio-objects varying in stage of evolution and metabolism for space researches aimed to state common patterns of the radiation damage caused by heavy ions (HI), and character of HI-cell interaction. Physical detectors in space experiments of the BIOBLOCK series make it possible to identify bio-objects hit by space HI and to set correlation between HI track topography and biological effect. The paper provides an all-round description of the bio-objects chosen for two BIOBLOCK experiments (population of hydrophyte Wolffia arrhiza (fam. duckweed) and Lactuca sativa seeds) and the method of evaluating effects from single space radiation HI. Direct effects of heavy ions on cells can be determined by the criteria of chromosomal aberrations and delayed morphologic abnormalities. The evaluation results are compared with the data about human blood lymphocytes. Consideration is being given to the procedures of test-objects' treatment and investigation.
NASA Astrophysics Data System (ADS)
Han, Yongquan
2015-03-01
To study on vacuum force, we must clear what is vacuum, vacuum is a space do not have any air and also ray. There is not exist an absolute the vacuum of space. The vacuum of space is relative, so that the vacuum force is relative. There is a certain that vacuum vacuum space exists. In fact, the vacuum space is relative, if the two spaces compared to the existence of relative vacuum, there must exist a vacuum force, and the direction of the vacuum force point to the vacuum region. Any object rotates and radiates. Rotate bend radiate- centripetal, gravity produced, relative gravity; non gravity is the vacuum force. Gravity is centripetal, is a trend that the objects who attracted wants to Centripetal, or have been do Centripetal movement. Any object moves, so gravity makes the object curve movement, that is to say, the radiation range curve movement must be in the gravitational objects, gravity must be existed in non vacuum region, and make the object who is in the region of do curve movement (for example: The earth moves around the sun), or final attracted in the form gravitational objects, and keep relatively static with attract object. (for example: objects on the earth moves but can't reach the first cosmic speed).
NASA Astrophysics Data System (ADS)
Zhang, Ka; Sheng, Yehua; Wang, Meizhen; Fu, Suxia
2018-05-01
The traditional multi-view vertical line locus (TMVLL) matching method is an object-space-based method that is commonly used to directly acquire spatial 3D coordinates of ground objects in photogrammetry. However, the TMVLL method can only obtain one elevation and lacks an accurate means of validating the matching results. In this paper, we propose an enhanced multi-view vertical line locus (EMVLL) matching algorithm based on positioning consistency for aerial or space images. The algorithm involves three components: confirming candidate pixels of the ground primitive in the base image, multi-view image matching based on the object space constraints for all candidate pixels, and validating the consistency of the object space coordinates with the multi-view matching result. The proposed algorithm was tested using actual aerial images and space images. Experimental results show that the EMVLL method successfully solves the problems associated with the TMVLL method, and has greater reliability, accuracy and computing efficiency.
Space program: Space debris a potential threat to Space Station and shuttle
NASA Technical Reports Server (NTRS)
Schwartz, Stephen A.; Beers, Ronald W.; Phillips, Colleen M.; Ramos, Yvette
1990-01-01
Experts estimate that more than 3.5 million man-made objects are orbiting the earth. These objects - space debris - include whole and fragmentary parts of rocket bodies and other discarded equipment from space missions. About 24,500 of these objects are 1 centimeter across or larger. A 1-centimeter man-made object travels in orbit at roughly 22,000 miles per hour. If it hit a spacecraft, it would do about the same damage as would a 400-pound safe traveling at 60 miles per hour. The Government Accounting Office (GAO) reviews NASA's plans for protecting the space station from debris, the extent and precision of current NASA and Defense Department (DOD) debris-tracking capabilities, and the extent to which debris has already affected shuttle operations. GAO recommends that the space debris model be updated, and that the findings be incorporated into the plans for protecting the space station from such debris. GAO further recommends that the increased risk from debris to the space shuttle operations be analyzed.
Modeling the long-term evolution of space debris
Nikolaev, Sergei; De Vries, Willem H.; Henderson, John R.; Horsley, Matthew A.; Jiang, Ming; Levatin, Joanne L.; Olivier, Scot S.; Pertica, Alexander J.; Phillion, Donald W.; Springer, Harry K.
2017-03-07
A space object modeling system that models the evolution of space debris is provided. The modeling system simulates interaction of space objects at simulation times throughout a simulation period. The modeling system includes a propagator that calculates the position of each object at each simulation time based on orbital parameters. The modeling system also includes a collision detector that, for each pair of objects at each simulation time, performs a collision analysis. When the distance between objects satisfies a conjunction criterion, the modeling system calculates a local minimum distance between the pair of objects based on a curve fitting to identify a time of closest approach at the simulation times and calculating the position of the objects at the identified time. When the local minimum distance satisfies a collision criterion, the modeling system models the debris created by the collision of the pair of objects.
Peripersonal space representation develops independently from visual experience.
Ricciardi, Emiliano; Menicagli, Dario; Leo, Andrea; Costantini, Marcello; Pietrini, Pietro; Sinigaglia, Corrado
2017-12-15
Our daily-life actions are typically driven by vision. When acting upon an object, we need to represent its visual features (e.g. shape, orientation, etc.) and to map them into our own peripersonal space. But what happens with people who have never had any visual experience? How can they map object features into their own peripersonal space? Do they do it differently from sighted agents? To tackle these questions, we carried out a series of behavioral experiments in sighted and congenitally blind subjects. We took advantage of a spatial alignment effect paradigm, which typically refers to a decrease of reaction times when subjects perform an action (e.g., a reach-to-grasp pantomime) congruent with that afforded by a presented object. To systematically examine peripersonal space mapping, we presented visual or auditory affording objects both within and outside subjects' reach. The results showed that sighted and congenitally blind subjects did not differ in mapping objects into their own peripersonal space. Strikingly, this mapping occurred also when objects were presented outside subjects' reach, but within the peripersonal space of another agent. This suggests that (the lack of) visual experience does not significantly affect the development of both one's own and others' peripersonal space representation.
NASA Astrophysics Data System (ADS)
Sahraei, S.; Asadzadeh, M.
2017-12-01
Any modern multi-objective global optimization algorithm should be able to archive a well-distributed set of solutions. While the solution diversity in the objective space has been explored extensively in the literature, little attention has been given to the solution diversity in the decision space. Selection metrics such as the hypervolume contribution and crowding distance calculated in the objective space would guide the search toward solutions that are well-distributed across the objective space. In this study, the diversity of solutions in the decision-space is used as the main selection criteria beside the dominance check in multi-objective optimization. To this end, currently archived solutions are clustered in the decision space and the ones in less crowded clusters are given more chance to be selected for generating new solution. The proposed approach is first tested on benchmark mathematical test problems. Second, it is applied to a hydrologic model calibration problem with more than three objective functions. Results show that the chance of finding more sparse set of high-quality solutions increases, and therefore the analyst would receive a well-diverse set of options with maximum amount of information. Pareto Archived-Dynamically Dimensioned Search, which is an efficient and parsimonious multi-objective optimization algorithm for model calibration, is utilized in this study.
NASA Astrophysics Data System (ADS)
Kang, Jian
2004-05-01
Much attention has been paid to acoustic spaces such as concert halls and recording studios, whereas research on nonacoustic buildings/spaces has been rather limited, especially from the viewpoint of acoustic comfort. In this research a series of case studies has been carried out on this topic, considering various spaces including shopping mall atrium spaces, library reading rooms, football stadia, swimming spaces, churches, dining spaces, as well as urban open public spaces. The studies focus on the relationships between objective acoustic indices such as sound pressure level and reverberation time and perceptions of acoustic comfort. The results show that the acoustic atmosphere is an important consideration in such spaces and the evaluation of acoustic comfort may vary considerably even if the objective acoustic indices are the same. It is suggested that current guidelines and technical regulations are insufficient in terms of acoustic design of these spaces, and the relationships established from the case studies between objective and subjective aspects would be useful for developing further design guidelines. [Work supported partly by the British Academy.
Harnessing Orbital Debris to Sense the Space Environment
NASA Astrophysics Data System (ADS)
Mutschler, S.; Axelrad, P.; Matsuo, T.
A key requirement for accurate space situational awareness (SSA) is knowledge of the non-conservative forces that act on space objects. These effects vary temporally and spatially, driven by the dynamical behavior of space weather. Existing SSA algorithms adjust space weather models based on observations of calibration satellites. However, lack of sufficient data and mismodeling of non-conservative forces cause inaccuracies in space object motion prediction. The uncontrolled nature of debris makes it particularly sensitive to the variations in space weather. Our research takes advantage of this behavior by inverting observations of debris objects to infer the space environment parameters causing their motion. In addition, this research will produce more accurate predictions of the motion of debris objects. The hypothesis of this research is that it is possible to utilize a "cluster" of debris objects, objects within relatively close proximity of each other, to sense their local environment. We focus on deriving parameters of an atmospheric density model to more precisely predict the drag force on LEO objects. An Ensemble Kalman Filter (EnKF) is used for assimilation; the prior ensemble to the posterior ensemble is transformed during the measurement update in a manner that does not require inversion of large matrices. A prior ensemble is utilized to empirically determine the nonlinear relationship between measurements and density parameters. The filter estimates an extended state that includes position and velocity of the debris object, and atmospheric density parameters. The density is parameterized as a grid of values, distributed by latitude and local sidereal time over a spherical shell encompassing Earth. This research focuses on LEO object motion, but it can also be extended to additional orbital regimes for observation and refinement of magnetic field and solar radiation models. An observability analysis of the proposed approach is presented in terms of the measurement cadence necessary to estimate the local space environment.
Efficient characterization of phase space mapping in axially symmetric optical systems
NASA Astrophysics Data System (ADS)
Barbero, Sergio; Portilla, Javier
2018-01-01
Phase space mapping, typically between an object and image plane, characterizes an optical system within a geometrical optics framework. We propose a novel conceptual frame to characterize the phase mapping in axially symmetric optical systems for arbitrary object locations, not restricted to a specific object plane. The idea is based on decomposing the phase mapping into a set of bivariate equations corresponding to different values of the radial coordinate on a specific object surface (most likely the entrance pupil). These equations are then approximated through bivariate Chebyshev interpolation at Chebyshev nodes, which guarantees uniform convergence. Additionally, we propose the use of a new concept (effective object phase space), defined as the set of points of the phase space at the first optical element (typically the entrance pupil) that are effectively mapped onto the image surface. The effective object phase space provides, by means of an inclusion test, a way to avoid tracing rays that do not reach the image surface.
Space Object Classification and Characterization Via Multiple Model Adaptive Estimation
2014-07-14
BRDF ) which models light distribution scattered from the surface due to the incident light. The BRDF at any point on the surface is a function of two...uu B vu B nu obs I u sun I u I hu (b) Reflection Geometry Fig. 2: Reflection Geometry and Space Object Shape Model of the BRDF is ρdiff(i...Space Object Classification and Characterization Via Multiple Model Adaptive Estimation Richard Linares Director’s Postdoctoral Fellow Space Science
Rhythmic Sampling within and between Objects despite Sustained Attention at a Cued Location
Fiebelkorn, Ian C.; Saalmann, Yuri B.; Kastner, Sabine
2013-01-01
SUMMARY The brain directs its limited processing resources through various selection mechanisms, broadly referred to as attention. The present study investigated the temporal dynamics of two such selection mechanisms: space- and object-based selection. Previous evidence has demonstrated that preferential processing resulting from a spatial cue (i.e., space-based selection) spreads to uncued locations, if those locations are part of the same object (i.e., resulting in object-based selection). But little is known about the relationship between these fundamental selection mechanisms. Here, we used human behavioral data to determine how space- and object-based selection simultaneously evolve under conditions that promote sustained attention at a cued location, varying the cue-to-target interval from 300—1100 ms. We tracked visual-target detection at a cued location (i.e., space-based selection), at an uncued location that was part of the same object (i.e., object-based selection), and at an uncued location that was part of a different object (i.e., in the absence of space- and object-based selection). The data demonstrate that even under static conditions, there is a moment-to-moment reweighting of attentional priorities based on object properties. This reweighting is revealed through rhythmic patterns of visual-target detection both within (at 8 Hz) and between (at 4 Hz) objects. PMID:24316204
NASA Technical Reports Server (NTRS)
Kessler, D. J.; Cour-Palais, B. G.; Taylor, R. E.; Landry, P. M.
1980-01-01
Collisions in earth orbital space between operational payloads and various forms of space debris (nonoperational payloads, nonfunctional mission-related objects and fragments resulting from collisions and explosions) are discussed and possible means of avoiding them are considered. From 10,000 to 15,000 objects are estimated to be in earth orbital space, most of which represent spacecraft fragments and debris too small to be detected and tracked by earth-based sensors, and it is considered likely that some of them will be or have already been involved in direct collisions with the ever increasing number of operational satellites and space stations. Means of protecting proposed large space structures and smaller spacecraft from significant damage by larger space objects, particularly in the 400-4000 km altitude range where most debris occurs, include structural redundancy and the double shielding of sensitive components. Other means of collision avoidance are the collection or relocation of satellites, rocket bodies and other objects by the Space Shuttle, the prevention of explosions and the disposal of spent rocket parts by reentry. Finally, a management structure would be required to administer guidelines for the prevention and elimination of space debris.
A Space Object Detection Algorithm using Fourier Domain Likelihood Ratio Test
NASA Astrophysics Data System (ADS)
Becker, D.; Cain, S.
Space object detection is of great importance in the highly dependent yet competitive and congested space domain. Detection algorithms employed play a crucial role in fulfilling the detection component in the situational awareness mission to detect, track, characterize and catalog unknown space objects. Many current space detection algorithms use a matched filter or a spatial correlator to make a detection decision at a single pixel point of a spatial image based on the assumption that the data follows a Gaussian distribution. This paper explores the potential for detection performance advantages when operating in the Fourier domain of long exposure images of small and/or dim space objects from ground based telescopes. A binary hypothesis test is developed based on the joint probability distribution function of the image under the hypothesis that an object is present and under the hypothesis that the image only contains background noise. The detection algorithm tests each pixel point of the Fourier transformed images to make the determination if an object is present based on the criteria threshold found in the likelihood ratio test. Using simulated data, the performance of the Fourier domain detection algorithm is compared to the current algorithm used in space situational awareness applications to evaluate its value.
Research Objectives for Human Missions in the Proving Ground of Cis-Lunar Space
NASA Astrophysics Data System (ADS)
Spann, James; Niles, Paul; Eppler, Dean; Kennedy, Kriss; Lewis, Ruthan; Sullivan, Thomas
2016-07-01
Introduction: This talk will introduce the preliminary findings in support of NASA's Future Capabilities Team. In support of the ongoing studies conducted by NASA's Future Capabilities Team, we are tasked with collecting re-search objectives for the Proving Ground activities. The objectives could include but are certainly not limited to: demonstrating crew well being and performance over long duration missions, characterizing lunar volatiles, Earth monitoring, near Earth object search and identification, support of a far-side radio telescope, and measuring impact of deep space environment on biological systems. Beginning in as early as 2023, crewed missions beyond low Earth orbit will be enabled by the new capabilities of the SLS and Orion vehicles. This will initiate the "Proving Ground" phase of human exploration with Mars as an ultimate destination. The primary goal of the Proving Ground is to demonstrate the capability of suitably long dura-tion spaceflight without need of continuous support from Earth, i.e. become Earth Independent. A major component of the Proving Ground phase is to conduct research activities aimed at accomplishing major objectives selected from a wide variety of disciplines including but not limited to: Astronomy, Heliophysics, Fun-damental Physics, Planetary Science, Earth Science, Human Systems, Fundamental Space Biology, Microgravity, and In Situ Resource Utilization. Mapping and prioritizing the most important objectives from these disciplines will provide a strong foundation for establishing the architecture to be utilized in the Proving Ground. Possible Architectures: Activities and objectives will be accomplished during the Proving Ground phase using a deep space habitat. This habitat will potentially be accompanied by a power/propulsion bus capable of moving the habitat to accomplish different objectives within cis-lunar space. This architecture can also potentially support stag-ing of robotic and tele-robotic assets as well as sample-return. As mission durations increase from 20 days to 300 days, increasingly ambitious objectives may be undertaken in-cluding rendezvous with an asteroid or other near-Earth object. Research activities can occur inside the habitat, outside the habitat, via externally mounted instruments, or using free flying satellites/landers. Research Objectives: Primary mission objectives are listed below. In order to help define details of the mission architecture, including the means by which the architecture can be supported, more specific research objectives are needed. Title/Objective • Crew Transportation/Provide ability to transport at least four crew to cislunar space • Heavy Launch Capability/Provide beyond-LEO launch capabilities to include crew, co-manisfested pay-loads, and large cargo • In-Space Propulsion/Provide in-space propulsion capabilities to send crew and cargo on Mars-class mission durations and distances • Deep Space Navigation and Communication/Provide and validate cislunar and Mars system navigation and communication • Science/Enable science community objectives • Deep Space Operations/Provide deep-space operation capabilities: EVA, Staging, Logistics, Human-robotic integration, Autonomous operations • In-Situ Resource Utilization/Understand the nature and distribution of volatiles and extraction techniques, and decide on their potential use in the human exploration architecture • Deep Space Habitation/Provide beyond-LEO habitation systems sufficient to support at least four crew on Mars-class mission durations and dormancy • Crew Health/Validate crew health, performance, and mitigation protocols for Mars-class missions Reference: NASA, NASA's Journey to Mars: Pioneering Next Steps in Space Exploration. 34 ( October 8, 2015).
Deep Space Wide Area Search Strategies
NASA Astrophysics Data System (ADS)
Capps, M.; McCafferty, J.
There is an urgent need to expand the space situational awareness (SSA) mission beyond catalog maintenance to providing near real-time indications and warnings of emerging events. While building and maintaining a catalog of space objects is essential to SSA, this does not address the threat of uncatalogued and uncorrelated deep space objects. The Air Force therefore has an interest in transformative technologies to scan the geostationary (GEO) belt for uncorrelated space objects. Traditional ground based electro-optical sensors are challenged in simultaneously detecting dim objects while covering large areas of the sky using current CCD technology. Time delayed integration (TDI) scanning has the potential to enable significantly larger coverage rates while maintaining sensitivity for detecting near-GEO objects. This paper investigates strategies of employing TDI sensing technology from a ground based electro-optical telescope, toward providing tactical indications and warnings of deep space threats. We present results of a notional wide area search TDI sensor that scans the GEO belt from three locations: Maui, New Mexico, and Diego Garcia. Deep space objects in the NASA 2030 debris catalog are propagated over multiple nights as an indicative data set to emulate notional uncatalogued near-GEO orbits which may be encountered by the TDI sensor. Multiple scan patterns are designed and simulated, to compare and contrast performance based on 1) efficiency in coverage, 2) number of objects detected, and 3) rate at which detections occur, to enable follow-up observations by other space surveillance network (SSN) sensors. A step-stare approach is also modeled using a dedicated, co-located sensor notionally similar to the Ground-Based Electro-Optical Deep Space Surveillance (GEODSS) tower. Equivalent sensitivities are assumed. This analysis quantifies the relative benefit of TDI scanning for the wide area search mission.
Models of anxiety: responses of rats to novelty in an open space and an enclosed space.
Ennaceur, A; Michalikova, S; Chazot, P L
2006-07-15
Exposure to novelty has been shown to induce anxiety responses in a variety of behavioural paradigms. The purpose of the present study was to investigate whether exposition of naïve rats to novelty would result in a comparable or a different pattern of responses in an open space versus enclosed space with or without the presence of an object in the centre of the field. Lewis and Wistar rats of both genders were used to illustrate and discuss the value and validity of these anxiety paradigms. We examined a wide range of measures, which cover several aspects of animals' responses. The results of this study revealed significant differences between the behaviour of animals in an open space and in the enclosed space. It also revealed significant differences in animal's responses to the presence and absence of an object in the open space and in the enclosed space. In the enclosed space, rats spent most of their time in the outer area with lower number of exits and avoided the object area except when there was an object, while in the open space rats displayed frequent short duration re-entries in the outer area and spent longer time in the object area in presence of an object. The time spent in the inner area (away from the outer area and the object area) was significantly longer and the number of faecal boli was significantly higher in the open space than in the enclosed space. In the present report, we will discuss the fundamental differences between enclosed space and open space models, and we will examine some methodological issues related to the current animal models of human behaviour in anxiety. In the enclosed space, animals can avoid the potential threat associated with the centre area of a box and chose the safety of walls and corners, whereas, in the open space animals have to avoid every parts of the field from which there was no safe escape. The response of animals to novelty in an open space model appears more relevant to anxiety than in an enclosed space. The present studies revealed no correlations between the measures of behaviour in enclosed space and the measures of behaviour in open space, which suggest that these two models do not involve the same construct. Our results suggest that the enclosed space model involves avoidance responses while the open space model involves anxiety responses. The open space model can be very useful in understanding the underlying neural mechanisms of anxiety responses, and in assessing the effects of potential anxiolytic drugs.
ERIC Educational Resources Information Center
Air Univ., Maxwell AFB, AL. Junior Reserve Office Training Corps.
This curriculum guide is prepared for the Aerospace Education III series publication entitled "Space Technology: Propulsion, Control and Guidance of Space Vehicles." It provides guidelines for each chapter. The guide includes objectives, behavioral objectives, suggested outline, orientation, suggested key points, suggestions for…
Photogrammetry of the solar aureole
NASA Technical Reports Server (NTRS)
Deepak, A.
1978-01-01
This paper presents a photogrammetric analysis of the solar aureole for the purpose of making photographic sky radiance measurements for determining aerosol physical characteristics. A photograph is essentially a projection of a 3-D object space onto a 2-D image space. Photogrammetry deals with relations that exist between the object and the image spaces. The main problem of photogrammetry is the reconstruction of configurations in the object space by means of the image space data. It is shown that the almucantar projects onto the photographic plane as a conic section and the sun vertical as a straight line.
Conflict between object structural and functional affordances in peripersonal space.
Kalénine, Solène; Wamain, Yannick; Decroix, Jérémy; Coello, Yann
2016-10-01
Recent studies indicate that competition between conflicting action representations slows down planning of object-directed actions. The present study aims to assess whether similar conflict effects exist during manipulable object perception. Twenty-six young adults performed reach-to-grasp and semantic judgements on conflictual objects (with competing structural and functional gestures) and non-conflictual objects (with similar structural and functional gestures) presented at difference distances in a 3D virtual environment. Results highlight a space-dependent conflict between structural and functional affordances. Perceptual judgments on conflictual objects were slower that perceptual judgments on non-conflictual objects, but only when objects were presented within reach. Findings demonstrate that competition between structural and functional affordances during object perception induces a processing cost, and further show that object position in space can bias affordance competition. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nevodovskyi, P. V.; Steklov, A. F.; Vidmachenko, A. P.
2018-05-01
Relevance of the tasks associated with the observation of the invasion of space objects into the Earth's atmosphere increases with each passing year. We used astronomical panoramic polarimeter for carrying out of polarimetric observations of objects, that flying into the atmosphere of the Earth from the surrounding outer space.
Advances in high energy astronomy from space
NASA Technical Reports Server (NTRS)
Giacconi, R.
1972-01-01
Observational techniques, derived through space technology, and examples of what can be learned from X-ray observations of a few astronomical objects are given. Astronomical phenomena observed include the sun, stellar objects, and galactic objects.
Open-Filter Optical SSA Analysis Considerations
NASA Astrophysics Data System (ADS)
Lambert, J.
2016-09-01
Optical Space Situational Awareness (SSA) sensors used for space object detection and orbit refinement measurements are typically operated in an "open-filter" mode without any spectral filters to maximize sensitivity and signal-to-noise. These same optical brightness measurements are often also employed for size determination (e.g., for orbital debris), object correlation, and object status change. These functions, especially when performed using multiple sensors, are highly dependent on sensor calibration for measurement accuracy. Open-filter SSA sensors are traditionally calibrated against the cataloged visual magnitudes of solar-type stars which have similar spectral distributions as the illuminating source, the Sun. The stellar calibration is performed to a high level of accuracy, a few hundredths of a magnitude, by observing many stars over a range of elevation angles to determine sensor, telescope, and atmospheric effects. However, space objects have individual color properties which alter the reflected solar illumination producing spectral distributions which differ from those of the calibration stars. When the stellar calibrations are applied to the space object measurements, visual magnitude values are obtained which are systematically biased. These magnitudes combined with the unknown Bond albedos of the space objects result in systematically biased size determinations which will differ between sensors. Measurements of satellites of known sizes and surface materials have been analyzed to characterize these effects. The results have combined into standardized Bond albedos to correct the measured magnitudes into object sizes. However, the actual albedo values will vary between objects and represent a mean correction subject to some uncertainty. The objective of this discussion is to characterize the sensor spectral biases that are present in open-filter optical observations and examine the resulting brightness and albedo uncertainties that should accompany object size, correlation, or status change determinations, especially in the SSA analyses of individual space objects using data from multiple sensors.
2015-10-08
Management of Waiver and Deferral Requests Visit us at www.dodig.mil Objective Our objective for this audit was to evaluate the Space and Naval Warfare...We conducted this audit in accordance with generally accepted government auditing standards. We considered management comments on a draft of...OFFICIAL USE ON Y Introduction DODIG-2016-003 │ 1 Introduction Objective Our objective for this audit was to evaluate the Space and Naval Warfare
Space Debris and Space Safety - Looking Forward
NASA Astrophysics Data System (ADS)
Ailor, W.; Krag, H.
Man's activities in space are creating a shell of space debris around planet Earth which provides a growing risk of collision with operating satellites and manned systems. Including both the larger tracked objects and the small, untracked debris, more than 98% of the estimated 600,000 objects larger than 1 cm currently in orbit are “space junk”--dead satellites, expended rocket stages, debris from normal operations, fragments from explosions and collisions, and other material. Recognizing the problem, space faring nations have joined together to develop three basic principles for minimizing the growth of the debris population: prevent on-orbit breakups, remove spacecraft and orbital stages that have reached the end of their mission operations from the useful densely populated orbit regions, and limit the objects released during normal operations. This paper provides an overview of what is being done to support these three principles and describes proposals that an active space traffic control service to warn satellite operators of pending collisions with large objects combined with a program to actively remove large objects may reduce the rate of future collisions. The paper notes that cost and cost effectiveness are important considerations that will affect the evolution of such systems.
Real-time optical multiple object recognition and tracking system and method
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin (Inventor); Liu, Hua Kuang (Inventor)
1987-01-01
The invention relates to an apparatus and associated methods for the optical recognition and tracking of multiple objects in real time. Multiple point spatial filters are employed that pre-define the objects to be recognized at run-time. The system takes the basic technology of a Vander Lugt filter and adds a hololens. The technique replaces time, space and cost-intensive digital techniques. In place of multiple objects, the system can also recognize multiple orientations of a single object. This later capability has potential for space applications where space and weight are at a premium.
Ukrainian network of Optical Stations for man-made space objects observation
NASA Astrophysics Data System (ADS)
Sybiryakova, Yevgeniya
2016-07-01
The Ukrainian Network of Optical Stations (UNOS) for man-made objects research was founded in 2012 as an association of professional astronomers. The main goals of network are: positional and photometric observations of man-made space objects, calculation of orbital elements, research of shape and period of rotation. The network consists of 8 stations: Kiev, Nikolaev, Odesa, Uzhgorod, Lviv, Yevpatoriya, Alchevsk. UNOS has 12 telescopes for observation of man-made space objects. The new original methods of positional observation were developed for optical observation of geosynchronous and low earth orbit satellites. The observational campaigns of LEO satellites held in the network every year. The numerical model of space object motion, developed in UNOS, is using for orbit calculation. The results of orbital elements calculation are represented on the UNOS web-site http://umos.mao.kiev.ua/eng/. The photometric observation of selected objects is also carried out in network.
Research Objectives for Human Missions in the Proving Ground of Cis-Lunar Space
NASA Astrophysics Data System (ADS)
Spann, James; Niles, Paul B.; Eppler, Dean B.; Kennedy, Kriss J.; Lewis, Ruthan.; Sullivan, Thomas A.
2016-04-01
Introduction: This talk will introduce the preliminary findings in support of NASA's Future Capabilities Team. In support of the ongoing studies conducted by NASA's Future Capabilities Team, we are tasked with collecting research objectives for the Proving Ground activities. The objectives could include but are certainly not limited to: demonstrating crew well being and performance over long duration missions, characterizing lunar volatiles, Earth monitoring, near Earth object search and identification, support of a far-side radio telescope, and measuring impact of deep space environment on biological systems. Beginning in as early as 2023, crewed missions beyond low Earth orbit will begin enabled by the new capabilities of the SLS and Orion vehicles. This will initiate the "Proving Ground" phase of human exploration with Mars as an ultimate destination. The primary goal of the Proving Ground is to demonstrate the capability of suitably long duration spaceflight without need of continuous support from Earth, i.e. become Earth Independent. A major component of the Proving Ground phase is to conduct research activities aimed at accomplishing major objectives selected from a wide variety of disciplines including but not limited to: Astronomy, Heliophysics, Fundamental Physics, Planetary Science, Earth Science, Human Systems, Fundamental Space Biology, Microgravity, and In Situ Resource Utilization. Mapping and prioritizing the most important objectives from these disciplines will provide a strong foundation for establishing the architecture to be utilized in the Proving Ground. Possible Architectures: Activities and objectives will be accomplished during the Proving Ground phase using a deep space habitat. This habitat will potentially be accompanied by a power/propulsion bus capable of moving the habitat to accomplish different objectives within cis-lunar space. This architecture can also potentially support staging of robotic and tele-robotic assets as well as sample-return. As mission durations increase from 20 days to 300 days, increasingly ambitious objectives may be undertaken including rendezvous with an asteroid or other near-Earth object. Research activities can occur inside the habitat, outside the habitat, via externally mounted instruments, or using free flying satellites/landers. Research Objectives: Primary mission objectives are listed below. In order to help define details of the mission architecture, including the means by which the architecture can be supported, more specific research objectives are needed. Title/Objective Crew Transportation/Provide ability to transport at least four crew to cislunar space Heavy Launch Capability/Provide beyond LEO launch capabilities to include crew, co-manisfested payloads, and large cargo In-Space Propulsion/Provide in-sapce propulsion capabilities to send crew and cargo on Mars-class mission durations and distances Deep Space Navigation and Communication/Provide and validate cislunar and Mars system navigation and communication Science/Enable science community objectives Deep Space Operations/Provide deep-space operation capabilities: EVA, Staging, Logistics, Human-robotic integration, Autonomous operations In-Situ Resource Utilization/Understand the nature and distribution of volatiles and extraction techniques, and decide on their potential use in the human exploration architecture Deep Space Habitation/Provide beyond LEO habitation systems sufficient to support at least four crew on Mars-class mission durations and dormancy Crew Health/Validate crew health, performance, and mitigation protocols for Mars-class missions Reference: .NASA, NASA's Journey to Mars: Pioneering Next Steps in Space Exploration. 34 ( October 8, 2015).
An object correlation and maneuver detection approach for space surveillance
NASA Astrophysics Data System (ADS)
Huang, Jian; Hu, Wei-Dong; Xin, Qin; Du, Xiao-Yong
2012-10-01
Object correlation and maneuver detection are persistent problems in space surveillance and maintenance of a space object catalog. We integrate these two problems into one interrelated problem, and consider them simultaneously under a scenario where space objects only perform a single in-track orbital maneuver during the time intervals between observations. We mathematically formulate this integrated scenario as a maximum a posteriori (MAP) estimation. In this work, we propose a novel approach to solve the MAP estimation. More precisely, the corresponding posterior probability of an orbital maneuver and a joint association event can be approximated by the Joint Probabilistic Data Association (JPDA) algorithm. Subsequently, the maneuvering parameters are estimated by optimally solving the constrained non-linear least squares iterative process based on the second-order cone programming (SOCP) algorithm. The desired solution is derived according to the MAP criterions. The performance and advantages of the proposed approach have been shown by both theoretical analysis and simulation results. We hope that our work will stimulate future work on space surveillance and maintenance of a space object catalog.
The Differential Effects of Reward on Space- and Object-Based Attentional Allocation
Shomstein, Sarah
2013-01-01
Estimating reward contingencies and allocating attentional resources to a subset of relevant information are the most important contributors to increasing adaptability of an organism. Although recent evidence suggests that reward- and attention-based guidance recruits overlapping cortical regions and has similar effects on sensory responses, the exact nature of the relationship between the two remains elusive. Here, using event-related fMRI on human participants, we contrasted the effects of reward on space- and object-based selection in the same experimental setting. Reward was either distributed randomly or biased a particular object. Behavioral and neuroimaging results show that space- and object-based attention is influenced by reward differentially. Space-based attentional allocation is mandatory, integrating reward information over time, whereas object-based attentional allocation is a default setting that is completely replaced by the reward signal. Nonadditivity of the effects of reward and object-based attention was observed consistently at multiple levels of analysis in early visual areas as well as in control regions. These results provide strong evidence that space- and object-based allocation are two independent attentional mechanisms, and suggest that reward serves to constrain attentional selection. PMID:23804086
Inhibition of Return and Object-based Attentional Selection
List, Alexandra; Robertson, Lynn C.
2008-01-01
Visual attention research has revealed that attentional allocation can occur in space- and/or object-based coordinates. Using the direct and elegant design of R. Egly, J. Driver and R. Rafal (1994), we examine whether space- and object-based inhibition of return (IOR) emerge under similar time courses. The present experiments were capable of isolating both space- and object-based effects induced by peripheral and back-to-center cues. They generally support the contention that spatially non-predictive cues are effective in producing space-based IOR at a variety of SOAs, and under a variety of stimulus conditions. Whether facilitatory or inhibitory in direction, the object-based effects occurred over a very different time course than did the space-based effects. Reliable object-based IOR was only found under limited conditions and was tied to the time since the most recent cue (peripheral or central). The finding that object-based effects are generally determined by SOA from the most recent cue may help to resolve discrepancies in the IOR literature. These findings also have implications for the search facilitator role IOR is purported to play in the guidance of visual attention. PMID:18085946
Apparent rotation properties of space debris extracted from photometric measurements
NASA Astrophysics Data System (ADS)
Šilha, Jiří; Pittet, Jean-Noël; Hamara, Michal; Schildknecht, Thomas
2018-02-01
Knowledge about the rotation properties of space debris objects is essential for the active debris removal missions, accurate re-entry predictions and to investigate the long-term effects of the space environment on the attitude motion change. Different orbital regions and object's physical properties lead to different attitude states and their change over time. Since 2007 the Astronomical Institute of the University of Bern (AIUB) performs photometric measurements of space debris objects. To June 2016 almost 2000 light curves of more than 400 individual objects have been acquired and processed. These objects are situated in all orbital regions, from low Earth orbit (LEO), via global navigation systems orbits and high eccentricity orbit (HEO), to geosynchronous Earth orbit (GEO). All types of objects were observed including the non-functional spacecraft, rocket bodies, fragmentation debris and uncorrelated objects discovered during dedicated surveys. For data acquisition, we used the 1-meter Zimmerwald Laser and Astrometry Telescope (ZIMLAT) at the Swiss Optical Ground Station and Geodynamics Observatory Zimmerwald, Switzerland. We applied our own method of phase-diagram reconstruction to extract the apparent rotation period from the light curve. Presented is the AIUB's light curve database and the obtained rotation properties of space debris as a function of object type and orbit.
Tracks detection from high-orbit space objects
NASA Astrophysics Data System (ADS)
Shumilov, Yu. P.; Vygon, V. G.; Grishin, E. A.; Konoplev, A. O.; Semichev, O. P.; Shargorodskii, V. D.
2017-05-01
The paper presents studies results of a complex algorithm for the detection of highly orbital space objects. Before the implementation of the algorithm, a series of frames with weak tracks of space objects, which can be discrete, is recorded. The algorithm includes pre-processing, classical for astronomy, consistent filtering of each frame and its threshold processing, shear transformation, median filtering of the transformed series of frames, repeated threshold processing and detection decision making. Modeling of space objects weak tracks on of the night starry sky real frames obtained in the regime of a stationary telescope was carried out. It is shown that the permeability of an optoelectronic device has increased by almost 2m.
NASA Technical Reports Server (NTRS)
Long, S. A. T.
1974-01-01
Formulas are derived for the root-mean-square (rms) displacement, slope, and curvature errors in an azimuth-elevation image trace of an elongated object in space, as functions of the number and spacing of the input data points and the rms elevation error in the individual input data points from a single observation station. Also, formulas are derived for the total rms displacement, slope, and curvature error vectors in the triangulation solution of an elongated object in space due to the rms displacement, slope, and curvature errors, respectively, in the azimuth-elevation image traces from different observation stations. The total rms displacement, slope, and curvature error vectors provide useful measure numbers for determining the relative merits of two or more different triangulation procedures applicable to elongated objects in space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apollonov, V V
We discuss the application of ground-based repetitively pulsed, high-frequency DF-laser systems and space-based Nd : YAG-laser systems for elimination of space debris and objects of natural origin. We have estimated the average power level of such systems ensuring destruction of space debris and similar objects. (laser applications)
Space Debris Mitigation Guidelines
NASA Technical Reports Server (NTRS)
Johnson, Nicholas L.
2011-01-01
The purpose of national and international space debris mitigation guides is to promote the preservation of near-Earth space for applications and exploration missions far into the future. To accomplish this objective, the accumulation of objects, particularly in long-lived orbits, must be eliminated or curtailed.
14 CFR Section 16 - Objective Classification-Discontinued Operations
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Objective Classification-Discontinued Operations Section 16 Section 16 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION... AIR CARRIERS Profit and Loss Classification Section 16 Objective Classification—Discontinued...
Cant, Jonathan S.; Xu, Yaoda
2015-01-01
Behavioral research has demonstrated that observers can extract summary statistics from ensembles of multiple objects. We recently showed that a region of anterior-medial ventral visual cortex, overlapping largely with the scene-sensitive parahippocampal place area (PPA), participates in object-ensemble representation. Here we investigated the encoding of ensemble density in this brain region using fMRI-adaptation. In Experiment 1, we varied density by changing the spacing between objects and found no sensitivity in PPA to such density changes. Thus, density may not be encoded in PPA, possibly because object spacing is not perceived as an intrinsic ensemble property. In Experiment 2, we varied relative density by changing the ratio of 2 types of objects comprising an ensemble, and observed significant sensitivity in PPA to such ratio change. Although colorful ensembles were shown in Experiment 2, Experiment 3 demonstrated that sensitivity to object ratio change was not driven mainly by a change in the ratio of colors. Thus, while anterior-medial ventral visual cortex is insensitive to density (object spacing) changes, it does code relative density (object ratio) within an ensemble. Object-ensemble processing in this region may thus depend on high-level visual information, such as object ratio, rather than low-level information, such as spacing/spatial frequency. PMID:24964917
Space-Based but not Object-Based Inhibition of Return is Impaired in Parkinson's Disease
Possin, Katherine L.; Filoteo, J. Vincent; Song, David D.; Salmon, David P.
2009-01-01
Impairments in certain aspects of attention have frequently been reported in Parkinson's disease (PD), including reduced inhibition of return (IOR). Recent evidence suggests that IOR can occur when attention is directed at objects or locations, but previous investigations of IOR in PD have not systematically compared these two frames of reference. The present study compared the performance of 18 nondemented patients with PD and 18 normal controls on an IOR task with two conditions. In the “object-present” condition, objects surrounded the cues and targets so that attention was cued to both a spatial location and to a specific object. In the “object-absent” condition, surrounding objects were not presented so that attention was cued only to a spatial location. When participants had to rely on space-based cues, PD patients demonstrated reduced IOR compared to controls. In contrast, when objects were present in the display and participants could use object-based cues, PD patients exhibited normal IOR. These results suggest that PD patients are impaired in inhibitory aspects of space-based attention, but are able to overcome this impairment when their attention can be directed at object-based frames of reference. This dissociation supports the view that space-based and object-based components of attention involve distinct neurocognitive processes. PMID:19397864
Space-based but not object-based inhibition of return is impaired in Parkinson's disease.
Possin, Katherine L; Filoteo, J Vincent; Song, David D; Salmon, David P
2009-06-01
Impairments in certain aspects of attention have frequently been reported in Parkinson's disease (PD), including reduced inhibition of return (IOR). Recent evidence suggests that IOR can occur when attention is directed at objects or locations, but previous investigations of IOR in PD have not systematically compared these two frames of reference. The present study compared the performance of 18 nondemented patients with PD and 18 normal controls on an IOR task with two conditions. In the "object-present" condition, objects surrounded the cues and targets so that attention was cued to both a spatial location and to a specific object. In the "object-absent" condition, surrounding objects were not presented so that attention was cued only to a spatial location. When participants had to rely on space-based cues, PD patients demonstrated reduced IOR compared to controls. In contrast, when objects were present in the display and participants could use object-based cues, PD patients exhibited normal IOR. These results suggest that PD patients are impaired in inhibitory aspects of space-based attention, but are able to overcome this impairment when their attention can be directed at object-based frames of reference. This dissociation supports the view that space-based and object-based components of attention involve distinct neurocognitive processes.
A world unglued: simultanagnosia as a spatial restriction of attention
Dalrymple, Kirsten A.; Barton, Jason J. S.; Kingstone, Alan
2013-01-01
Simultanagnosia is a disorder of visual attention that leaves a patient's world unglued: scenes and objects are perceived in a piecemeal manner. It is generally agreed that simultanagnosia is related to an impairment of attention, but it is unclear whether this impairment is object- or space-based in nature. We first consider the findings that support a concept of simultanagnosia as deficit of object-based attention. We then examine the evidence suggesting that simultanagnosia results from damage to a space-based attentional system, and in particular a model of simultanagnosia as a narrowed spatial window of attention. We ask whether seemingly object-based deficits can be explained by space-based mechanisms, and consider the evidence that object processing influences spatial deficits in this condition. Finally, we discuss limitations of a space-based attentional explanation. PMID:23616758
Improved Space Surveillance Network (SSN) Scheduling using Artificial Intelligence Techniques
NASA Astrophysics Data System (ADS)
Stottler, D.
There are close to 20,000 cataloged manmade objects in space, the large majority of which are not active, functioning satellites. These are tracked by phased array and mechanical radars and ground and space-based optical telescopes, collectively known as the Space Surveillance Network (SSN). A better SSN schedule of observations could, using exactly the same legacy sensor resources, improve space catalog accuracy through more complementary tracking, provide better responsiveness to real-time changes, better track small debris in low earth orbit (LEO) through efficient use of applicable sensors, efficiently track deep space (DS) frequent revisit objects, handle increased numbers of objects and new types of sensors, and take advantage of future improved communication and control to globally optimize the SSN schedule. We have developed a scheduling algorithm that takes as input the space catalog and the associated covariance matrices and produces a globally optimized schedule for each sensor site as to what objects to observe and when. This algorithm is able to schedule more observations with the same sensor resources and have those observations be more complementary, in terms of the precision with which each orbit metric is known, to produce a satellite observation schedule that, when executed, minimizes the covariances across the entire space object catalog. If used operationally, the results would be significantly increased accuracy of the space catalog with fewer lost objects with the same set of sensor resources. This approach inherently can also trade-off fewer high priority tasks against more lower-priority tasks, when there is benefit in doing so. Currently the project has completed a prototyping and feasibility study, using open source data on the SSN's sensors, that showed significant reduction in orbit metric covariances. The algorithm techniques and results will be discussed along with future directions for the research.
The Wake Shield Facility: A space experiment platform
NASA Technical Reports Server (NTRS)
Allen, Joseph P.
1991-01-01
Information is given in viewgraph form on Wakeshield, a space experiment platform. The Wake Shield Facility (WSF) flight program objectives, product applications, commercial development approach, and cooperative experiments are listed. The program objectives are to produce new industry-driven electronic, magnetic, and superconducting thin-film materials and devices both in terrestrial laboratories and in space; utilize the ultra-vacuum of space for thin film epitaxial growth and materials processing; and develop commercial space hardware for research and development and enhanced access to space.
Noncontact orientation of objects in three-dimensional space using magnetic levitation
Subramaniam, Anand Bala; Yang, Dian; Yu, Hai-Dong; Nemiroski, Alex; Tricard, Simon; Ellerbee, Audrey K.; Soh, Siowling; Whitesides, George M.
2014-01-01
This paper describes several noncontact methods of orienting objects in 3D space using Magnetic Levitation (MagLev). The methods use two permanent magnets arranged coaxially with like poles facing and a container containing a paramagnetic liquid in which the objects are suspended. Absent external forcing, objects levitating in the device adopt predictable static orientations; the orientation depends on the shape and distribution of mass within the objects. The orientation of objects of uniform density in the MagLev device shows a sharp geometry-dependent transition: an analytical theory rationalizes this transition and predicts the orientation of objects in the MagLev device. Manipulation of the orientation of the levitating objects in space is achieved in two ways: (i) by rotating and/or translating the MagLev device while the objects are suspended in the paramagnetic solution between the magnets; (ii) by moving a small external magnet close to the levitating objects while keeping the device stationary. Unlike mechanical agitation or robotic selection, orienting using MagLev is possible for objects having a range of different physical characteristics (e.g., different shapes, sizes, and mechanical properties from hard polymers to gels and fluids). MagLev thus has the potential to be useful for sorting and positioning components in 3D space, orienting objects for assembly, constructing noncontact devices, and assembling objects composed of soft materials such as hydrogels, elastomers, and jammed granular media. PMID:25157136
Noncontact orientation of objects in three-dimensional space using magnetic levitation.
Subramaniam, Anand Bala; Yang, Dian; Yu, Hai-Dong; Nemiroski, Alex; Tricard, Simon; Ellerbee, Audrey K; Soh, Siowling; Whitesides, George M
2014-09-09
This paper describes several noncontact methods of orienting objects in 3D space using Magnetic Levitation (MagLev). The methods use two permanent magnets arranged coaxially with like poles facing and a container containing a paramagnetic liquid in which the objects are suspended. Absent external forcing, objects levitating in the device adopt predictable static orientations; the orientation depends on the shape and distribution of mass within the objects. The orientation of objects of uniform density in the MagLev device shows a sharp geometry-dependent transition: an analytical theory rationalizes this transition and predicts the orientation of objects in the MagLev device. Manipulation of the orientation of the levitating objects in space is achieved in two ways: (i) by rotating and/or translating the MagLev device while the objects are suspended in the paramagnetic solution between the magnets; (ii) by moving a small external magnet close to the levitating objects while keeping the device stationary. Unlike mechanical agitation or robotic selection, orienting using MagLev is possible for objects having a range of different physical characteristics (e.g., different shapes, sizes, and mechanical properties from hard polymers to gels and fluids). MagLev thus has the potential to be useful for sorting and positioning components in 3D space, orienting objects for assembly, constructing noncontact devices, and assembling objects composed of soft materials such as hydrogels, elastomers, and jammed granular media.
14 CFR Section 17 - Objective Classification-Extraordinary Items
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Objective Classification-Extraordinary Items Section 17 Section 17 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION... AIR CARRIERS Profit and Loss Classification Section 17 Objective Classification—Extraordinary Items...
Near, yet so Far: The Effect of Pictorial Cues on Spatial Attention
ERIC Educational Resources Information Center
Nicholls, Michael E. R.; Forte, Jason D.; Loetscher, Tobias; Orr, Catherine A.; Yates, Mark J.; Bradshaw, John L.
2011-01-01
Distinct cognitive and neural mechanisms underlie perception and action in near (within-reach) and far (outside-reach) space. Objects in far space can be brought into the brain's near-space through tool-use. We determined whether a near object can be pushed into far space by changing the pictorial context in which it occurs. Participants (n = 372)…
Personal Spaces in Public Repositories as a Facilitator for Open Educational Resource Usage
ERIC Educational Resources Information Center
Cohen, Anat; Reisman, Sorel; Sperling, Barbra Bied
2015-01-01
Learning object repositories are a shared, open and public space; however, the possibility and ability of personal expression in an open, global, public space is crucial. The aim of this study is to explore personal spaces in a big learning object repository as a facilitator for adoption of Open Educational Resources (OER) into teaching practices…
Is There Space for the Objective Force?
2003-04-07
force through the combination of precision weapons and knowledge-based warfare. Army forces will survive through information dominance , provided by a...Objective Forces. Space-based systems will be foundational building blocks for the Objective Force to achieve information dominance and satellite...communications required for information dominance across a distributed battlefield? Second, what exists to provide the Objective Force information
Space Research and Technology Program: Program and specific objectives, document approval
NASA Technical Reports Server (NTRS)
1982-01-01
A detailed view of the Space Research and Technology program work breakdown structure is provided down to the specific objective level. Goals or objectives at each of these levels are set forth. The specific objective narratives are structured into several parts. First, a short paragraph statement of the specific objective is given. This is followed by a list of subobjectives. A list of targets is then provided for those areas of the specific objective that are amenable to a quantitative description of technical accomplishment and schedule. Fluid and thermal physics, materials and structures, computer science and electronics, space energy conversion, multidisciplinary research, controls and human factors, chemical propulsion, spacecraft systems, transportation systems, platform systems, and spacecraft systems technology comprise the principal research programs.
A Study of Dim Object Detection for the Space Surveillance Telescope
2013-03-21
ENG-13-M-32 Abstract Current methods of dim object detection for space surveillance make use of a Gaussian log-likelihood-ratio-test-based...quantitatively comparing the efficacy of two methods for dim object detection , termed in this paper the point detector and the correlator, both of which rely... applications . It is used in national defense for detecting satellites. It is used to detecting space debris, which threatens both civilian and
Doublet Pulse Coherent Laser Radar for Tracking of Resident Space Objects
2014-09-01
based laser systems can be limited by the effects of tumbling, extremely accurate Doppler measurement is possible using a doublet coherent laser ...Doublet pulse coherent laser radar for tracking of resident space objects Narasimha S. Prasad *1 , Van Rudd 2 , Scott Shald 2 , Stephan...Doublet Pulse Coherent Laser Radar for Tracking of Resident Space Objects 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S
Bello-Medina, Paola C; Sánchez-Carrasco, Livia; González-Ornelas, Nadia R; Jeffery, Kathryn J; Ramírez-Amaya, Víctor
2013-08-01
Here we tested whether the well-known superiority of spaced training over massed training is equally evident in both object identity and object location recognition memory. We trained animals with objects placed in a variable or in a fixed location to produce a location-independent object identity memory or a location-dependent object representation. The training consisted of 5 trials that occurred either on one day (Massed) or over the course of 5 consecutive days (Spaced). The memory test was done in independent groups of animals either 24h or 7 days after the last training trial. In each test the animals were exposed to either a novel object, when trained with the objects in variable locations, or to a familiar object in a novel location, when trained with objects in fixed locations. The difference in time spent exploring the changed versus the familiar objects was used as a measure of recognition memory. For the object-identity-trained animals, spaced training produced clear evidence of recognition memory after both 24h and 7 days, but massed-training animals showed it only after 24h. In contrast, for the object-location-trained animals, recognition memory was evident after both retention intervals and with both training procedures. When objects were placed in variable locations for the two types of training and the test was done with a brand-new location, only the spaced-training animals showed recognition at 24h, but surprisingly, after 7 days, animals trained using both procedures were able to recognize the change, suggesting a post-training consolidation process. We suggest that the two training procedures trigger different neural mechanisms that may differ in the two segregated streams that process object information and that may consolidate differently. Copyright © 2013 Elsevier B.V. All rights reserved.
Distance measurement based on light field geometry and ray tracing.
Chen, Yanqin; Jin, Xin; Dai, Qionghai
2017-01-09
In this paper, we propose a geometric optical model to measure the distances of object planes in a light field image. The proposed geometric optical model is composed of two sub-models based on ray tracing: object space model and image space model. The two theoretic sub-models are derived on account of on-axis point light sources. In object space model, light rays propagate into the main lens and refract inside it following the refraction theorem. In image space model, light rays exit from emission positions on the main lens and subsequently impinge on the image sensor with different imaging diameters. The relationships between imaging diameters of objects and their corresponding emission positions on the main lens are investigated through utilizing refocusing and similar triangle principle. By combining the two sub-models together and tracing light rays back to the object space, the relationships between objects' imaging diameters and corresponding distances of object planes are figured out. The performance of the proposed geometric optical model is compared with existing approaches using different configurations of hand-held plenoptic 1.0 cameras and real experiments are conducted using a preliminary imaging system. Results demonstrate that the proposed model can outperform existing approaches in terms of accuracy and exhibits good performance at general imaging range.
How Prevalent Is Object-Based Attention?
Pilz, Karin S.; Roggeveen, Alexa B.; Creighton, Sarah E.; Bennett, Patrick J.; Sekuler, Allison B.
2012-01-01
Previous research suggests that visual attention can be allocated to locations in space (space-based attention) and to objects (object-based attention). The cueing effects associated with space-based attention tend to be large and are found consistently across experiments. Object-based attention effects, however, are small and found less consistently across experiments. In three experiments we address the possibility that variability in object-based attention effects across studies reflects low incidence of such effects at the level of individual subjects. Experiment 1 measured space-based and object-based cueing effects for horizontal and vertical rectangles in 60 subjects comparing commonly used target detection and discrimination tasks. In Experiment 2 we ran another 120 subjects in a target discrimination task in which rectangle orientation varied between subjects. Using parametric statistical methods, we found object-based effects only for horizontal rectangles. Bootstrapping methods were used to measure effects in individual subjects. Significant space-based cueing effects were found in nearly all subjects in both experiments, across tasks and rectangle orientations. However, only a small number of subjects exhibited significant object-based cueing effects. Experiment 3 measured only object-based attention effects using another common paradigm and again, using bootstrapping, we found only a small number of subjects that exhibited significant object-based cueing effects. Our results show that object-based effects are more prevalent for horizontal rectangles, which is in accordance with the theory that attention may be allocated more easily along the horizontal meridian. The fact that so few individuals exhibit a significant object-based cueing effect presumably is why previous studies of this effect might have yielded inconsistent results. The results from the current study highlight the importance of considering individual subject data in addition to commonly used statistical methods. PMID:22348018
14 CFR § 1203.201 - Information security objectives.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Information security objectives. § 1203.201 Section § 1203.201 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION... technologies. (e) Provide a timely and effective means for downgrading or declassifying information when the...
Information Measures for Statistical Orbit Determination
ERIC Educational Resources Information Center
Mashiku, Alinda K.
2013-01-01
The current Situational Space Awareness (SSA) is faced with a huge task of tracking the increasing number of space objects. The tracking of space objects requires frequent and accurate monitoring for orbit maintenance and collision avoidance using methods for statistical orbit determination. Statistical orbit determination enables us to obtain…
SO-QT: Collaborative Tool to Project the Future Space Object Population
NASA Technical Reports Server (NTRS)
Stupl, Jan
2017-01-01
Earth orbit gets increasingly congested, a challenge to space operators, both in governments and industry. We present a web tool that provides: 1) data on todays and the historic space object environments, by aggregating object-specific tracking data; and 2) future trends through a collaboration platform to collect information on planed launches. The collaborative platform enables experts to pool and compare their data in order to generate future launch scenarios. The tool is intended to support decision makers and mission designers while they investigate future missions and scholars as they develop strategies for space traffic management.
Approximating the Generalized Voronoi Diagram of Closely Spaced Objects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, John; Daniel, Eric; Pascucci, Valerio
2015-06-22
We present an algorithm to compute an approximation of the generalized Voronoi diagram (GVD) on arbitrary collections of 2D or 3D geometric objects. In particular, we focus on datasets with closely spaced objects; GVD approximation is expensive and sometimes intractable on these datasets using previous algorithms. With our approach, the GVD can be computed using commodity hardware even on datasets with many, extremely tightly packed objects. Our approach is to subdivide the space with an octree that is represented with an adjacency structure. We then use a novel adaptive distance transform to compute the distance function on octree vertices. Themore » computed distance field is sampled more densely in areas of close object spacing, enabling robust and parallelizable GVD surface generation. We demonstrate our method on a variety of data and show example applications of the GVD in 2D and 3D.« less
Zhou, Yuan; Shi, Tie-Mao; Hu, Yuan-Man; Gao, Chang; Liu, Miao; Song, Lin-Qi
2011-12-01
Based on geographic information system (GIS) technology and multi-objective location-allocation (LA) model, and in considering of four relatively independent objective factors (population density level, air pollution level, urban heat island effect level, and urban land use pattern), an optimized location selection for the urban parks within the Third Ring of Shenyang was conducted, and the selection results were compared with the spatial distribution of existing parks, aimed to evaluate the rationality of the spatial distribution of urban green spaces. In the location selection of urban green spaces in the study area, the factor air pollution was most important, and, compared with single objective factor, the weighted analysis results of multi-objective factors could provide optimized spatial location selection of new urban green spaces. The combination of GIS technology with LA model would be a new approach for the spatial optimizing of urban green spaces.
Space assets, technology and services in support of energy policy
NASA Astrophysics Data System (ADS)
Vasko, C. A.; Adriaensen, M.; Bretel, A.; Duvaux-Bechon, I.; Giannopapa, C. G.
2017-09-01
Space can be used as a tool by decision and policy makers in developing, implementing and monitoring various policy areas including resource management, environment, transport, security and energy. This paper focuses on the role of space for the energy policy. Firstly, the paper summarizes the European Union's (EU) main objectives in energy policy enclosed in the Energy Strategy 2020-2030-2050 and demonstrates how space assets can contribute to achieving those objectives. Secondly, the paper addresses how the European Space Agency (ESA) has established multiple initiatives and programs that directly finance the development of space assets, technology and applications that deliver services in support of the EU energy policy and sector. These efforts should be continued and strengthened in order to overcome identified technological challenges. The use of space assets, technology and applications, can help achieve the energy policy objectives for the next decades.
Identifying On-Orbit Test Targets for Space Fence Operational Testing
NASA Astrophysics Data System (ADS)
Pechkis, D.; Pacheco, N.; Botting, T.
2014-09-01
Space Fence will be an integrated system of two ground-based, S-band (2 to 4 GHz) phased-array radars located in Kwajalein and perhaps Western Australia [1]. Space Fence will cooperate with other Space Surveillance Network sensors to provide space object tracking and radar characterization data to support U.S. Strategic Command space object catalog maintenance and other space situational awareness needs. We present a rigorous statistical test design intended to test Space Fence to the letter of the program requirements as well as to characterize the system performance across the entire operational envelope. The design uses altitude, size, and inclination as independent factors in statistical tests of dependent variables (e.g., observation accuracy) linked to requirements. The analysis derives the type and number of necessary test targets. Comparing the resulting sample sizes with the number of currently known targets, we identify those areas where modelling and simulation methods are needed. Assuming hypothetical Kwajalein radar coverage and a conservative number of radar passes per object per day, we conclude that tests involving real-world space objects should take no more than 25 days to evaluate all operational requirements; almost 60 percent of the requirements can be tested in a single day and nearly 90 percent can be tested in one week or less. Reference: [1] L. Haines and P. Phu, Space Fence PDR Concept Development Phase, 2011 AMOS Conference Technical Papers.
NASA Astrophysics Data System (ADS)
Casasent, David P.; Shenoy, Rajesh
1997-10-01
Classification and pose estimation of distorted input objects are considered. The feature space trajectory representation of distorted views of an object is used with a new eigenfeature space. For a distorted input object, the closest trajectory denotes the class of the input and the closest line segment on it denotes its pose. If an input point is too far from a trajectory, it is rejected as clutter. New methods for selecting Fukunaga-Koontz discriminant vectors, the number of dominant eigenvectors per class and for determining training, and test set compatibility are presented.
Space Telecommunications Radio System (STRS) Architecture Goals/Objectives and Level 1 Requirements
NASA Technical Reports Server (NTRS)
Briones, Janette C.; Johnson, Sandra K.; VanDerAar, Lisa
2007-01-01
The Space Telecommunications Radio System (STRS) Architecture Requirements Document provides the basis for the development of an open architecture for NASA Software Defined Radios (SDRs) for space use. The main objective of this document is to evaluate the goals and objectives and high level (Level 1) requirements that have bearing on the design of the architecture. The goals and objectives will provide broad, fundamental direction and purpose. The high level requirements (Level 1) intend to guide the broader and longer term aspects aspects of the SDR Architecture and provide guidance for the development of level 2 requirements.
The use of continuing adult education
NASA Technical Reports Server (NTRS)
Redd, Frank J.
1990-01-01
The objectives of the National Space Grant and Fellowship Program include the expansion of space-oriented educational programs beyond the traditional boundaries of university campuses to reach 'non-traditional' students whose personal and professional lives would be enhanced by access to such programs. These objectives coincide with those of the continuing education programs that exist on most university campuses. By utilizing continuing educations resources and facilities, members of the National Space Grant Program can greatly enhance the achievement of program objectives.
Linear and Nonlinear Time-Frequency Analysis for Parameter Estimation of Resident Space Objects
2017-02-22
AFRL-AFOSR-UK-TR-2017-0023 Linear and Nonlinear Time -Frequency Analysis for Parameter Estimation of Resident Space Objects Marco Martorella...estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the...Nonlinear Time -Frequency Analysis for Parameter Estimation of Resident Space Objects 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-14-1-0183 5c. PROGRAM
How category learning affects object representations: Not all morphspaces stretch alike
Folstein, Jonathan R.; Gauthier, Isabel; Palmeri, Thomas J.
2012-01-01
How does learning to categorize objects affect how we visually perceive them? Behavioral, neurophysiological, and neuroimaging studies have tested the degree to which category learning influences object representations, with conflicting results. Some studies find that objects become more visually discriminable along dimensions relevant to previously learned categories, while others find no such effect. One critical factor we explore here lies in the structure of the morphspaces used in different studies. Studies finding no increase in discriminability often use “blended” morphspaces, with morphparents lying at corners of the space. By contrast, studies finding increases in discriminability use “factorial” morphspaces, defined by separate morphlines forming axes of the space. Using the same four morphparents, we created both factorial and blended morphspaces matched in pairwise discriminability. Category learning caused a selective increase in discriminability along the relevant dimension of the factorial space, but not in the blended space, and led to the creation of functional dimensions in the factorial space, but not in the blended space. These findings demonstrate that not all morphspaces stretch alike: Only some morphspaces support enhanced discriminability to relevant object dimensions following category learning. Our results have important implications for interpreting neuroimaging studies reporting little or no effect of category learning on object representations in the visual system: Those studies may have been limited by their use of blended morphspaces. PMID:22746950
The US space station: Potential base for a spaceborne microwave facility
NASA Technical Reports Server (NTRS)
Mcconnell, D.
1983-01-01
Concepts for a U.S. space station were studied to achieve the full potential of the Space Shuttle and to provide a more permanent presence in space. The space station study is summarized in the following questions: Given a space station in orbit in the 1990's, how should it best be used to achieve science and applications objectives important at that time? To achieve those objectives, of what elements should the station be comprised and how should the elements be configured and equipped. These questions are addressed.
Drummond, Leslie; Shomstein, Sarah
2013-01-01
The relative contributions of objects (i.e., object-based) and underlying spatial (i.e., space-based representations) to attentional prioritization and selection remain unclear. In most experimental circumstances, the two representations overlap thus their respective contributions cannot be evaluated. Here, a dynamic version of the two-rectangle paradigm allowed for a successful de-coupling of spatial and object representations. Space-based (cued spatial location), cued end of the object, and object-based (locations within the cued object) effects were sampled at several timepoints following the cue with high or low certainty as to target location. In the high uncertainty condition spatial benefits prevailed throughout most of the timecourse, as evidenced by facilitatory and inhibitory effects. Additionally, the cued end of the object, rather than a whole object, received the attentional benefit. When target location was predictable (low uncertainty manipulation), only probabilities guided selection (i.e., evidence by a benefit for the statistically biased location). These results suggest that with high spatial uncertainty, all available information present within the stimulus display is used for the purposes of attentional selection (e.g., spatial locations, cued end of the object) albeit to varying degrees and at different time points. However, as certainty increases, only spatial certainty guides selection (i.e., object ends and whole objects are filtered out). Taken together, these results further elucidate the contributing role of space- and object-representations to attentional guidance. PMID:24367302
2015-03-27
i.e., temporarily focusing on one object instead of wide area survey) or SOI collection on high interest objects (e.g., unidentified objects ...The Air Force Institute of Technology has spent the last seven years conducting research on orbit identification and object characterization of space... objects through the use of commercial-off-the-shelf hardware systems controlled via custom software routines, referred to simply as TeleTrak. Year
Space-based visual attention: a marker of immature selective attention in toddlers?
Rivière, James; Brisson, Julie
2014-11-01
Various studies suggested that attentional difficulties cause toddlers' failure in some spatial search tasks. However, attention is not a unitary construct and this study investigated two attentional mechanisms: location selection (space-based attention) and object selection (object-based attention). We investigated how toddlers' attention is distributed in the visual field during a manual search task for objects moving out of sight, namely the moving boxes task. Results show that 2.5-year-olds who failed this task allocated more attention to the location of the relevant object than to the object itself. These findings suggest that in some manual search tasks the primacy of space-based attention over object-based attention could be a marker of immature selective attention in toddlers. © 2014 Wiley Periodicals, Inc.
Accommodating life sciences on the Space Station
NASA Technical Reports Server (NTRS)
Arno, Roger D.
1987-01-01
The NASA Ames Research Center Biological Research Project (BRP) is responsible for identifying and accommodating high priority life science activities, utilizing nonhuman specimens, on the Space Station and is charged to bridge the gap between the science community and the Space Station Program. This paper discusses the approaches taken by the BRP in accomodating these research objectives to constraints imposed by the Space Station System, while maintaining a user-friendly environment. Consideration is given to the particular research disciplines which are given priority, the science objectives in each of these disciplines, the functions and activities required by these objectives, the research equipment, and the equipment suits. Life sciences programs planned by the Space Station participating partners (USA, Europe, Japan, and Canada) are compared.
NASA Technical Reports Server (NTRS)
Gagliano, Larry; McLeod, Todd; Hovater, Mary A.
2017-01-01
Marshall performs research, integrates information, matures technologies, and enhances science to bring together a diverse portfolio of products and services of interest for Space Situational Awareness (SSA) and Space Asset Management (SAM), all of which can be accessed through partnerships with Marshall. Integrated Space Situational Awareness and Asset Management (ISSAAM) is an initiative of NASA's Marshall Space Flight Center to improve space situational awareness and space asset management through technical innovation, collaboration, and cooperation with U.S. Government agencies and the global space community. Marshall Space Flight Center provides solutions for complex issues with in-depth capabilities, a broad range of experience, and expertise unique in the world, and all available in one convenient location. NASA has longstanding guidelines that are used to assess space objects. Specifically, Marshall Space Flight Center has the capabilities, facilities and expertise to address the challenges that space objects, such as near-Earth objects (NEO) or Orbital Debris pose. ISSAAM's three pronged approach brings together vital information and in-depth tools working simultaneously toward examining the complex problems encountered in space situational awareness. Marshall's role in managing, understanding and planning includes many projects grouped under each prong area: Database/Analyses/Visualization; Detection/Tracking/ Mitigation/Removal. These are not limited to those listed below.
Commercial Development Plan for the International Space Station
NASA Technical Reports Server (NTRS)
1998-01-01
The long term objective of the development plan for the International Space Station (ISS) is to establish the foundation for a marketplace and stimulate a national economy for space products and services in low-Earth orbit, where both demand and supply are dominated by the private sector. The short term objective is to begin the transition to private investment and offset a share of the public cost for operating the space shuttle fleet and space station through commercial enterprise in open markets.
Müller, Hermann J; O'Grady, Rebecca; Krummenacher, Joseph; Heller, Dieter
2008-11-01
Three experiments re-examined Baylis and Driver's (1993) strong evidence for object-based selection, that making relative apex location judgments is harder between two objects than within a single object, with object (figure-ground) segmentation determined solely by color-based perceptual set. Using variations of the Baylis and Driver paradigm, the experiments replicated a two-object cost. However, they also showed a large part of the two-object cost to be attributable to space-based factors, though there remained an irreducible cost consistent with 'true' object-based selection.
NASA Astrophysics Data System (ADS)
Wang, Lusheng; Yang, Yong; Lin, Guohui
Finding the closest object for a query in a database is a classical problem in computer science. For some modern biological applications, computing the similarity between two objects might be very time consuming. For example, it takes a long time to compute the edit distance between two whole chromosomes and the alignment cost of two 3D protein structures. In this paper, we study the nearest neighbor search problem in metric space, where the pair-wise distance between two objects in the database is known and we want to minimize the number of distances computed on-line between the query and objects in the database in order to find the closest object. We have designed two randomized approaches for indexing metric space databases, where objects are purely described by their distances with each other. Analysis and experiments show that our approaches only need to compute O(logn) objects in order to find the closest object, where n is the total number of objects in the database.
Measuring Angular Rate of Celestial Objects Using the Space Surveillance Telescope
2015-03-01
is not subject to copyright protection in the United States. AFIT-ENG-MS-15-M-019 MEASURING ANGULAR RATE OF CELESTIAL OBJECTS USING THE SPACE ...Hypothesis Test MHTOR Multi-Hypothesis Test with Outlier Removal NEAs Near Earth Asteroids NASA National Aeronautics and Space Administration OTF...capabilities to warfighters, protecting them from collision with space debris, meteors and microsatellites has become a top priority [19]. In general, EO
Space tug thermal control follow-on
NASA Technical Reports Server (NTRS)
Ward, T. L.
1975-01-01
The Space Tug Thermal Control Follow-On program was conducted to further explore some of the thermal control concepts proposed for use in space tug in a breadboard test program. The objectives were to demonstrate the thermal control capabilities of a louver/battery configuration and a thermal conditioning panel/heat pipe radiator configuration. An additional objective was added to model the header pipe and radiator of the second test and correlate the analysis with the test results. These three objectives were achieved and are discussed within this report.
NASA Astrophysics Data System (ADS)
Blasch, Erik; Pham, Khanh D.; Shen, Dan; Chen, Genshe
2018-05-01
The dynamic data-driven applications systems (DDDAS) paradigm is meant to inject measurements into the execution model for enhanced systems performance. One area off interest in DDDAS is for space situation awareness (SSA). For SSA, data is collected about the space environment to determine object motions, environments, and model updates. Dynamically coupling between the data and models enhances the capabilities of each system by complementing models with data for system control, execution, and sensor management. The paper overviews some of the recent developments in SSA made possible from DDDAS techniques which are for object detection, resident space object tracking, atmospheric models for enhanced sensing, cyber protection, and information management.
Multi-objective optimisation and decision-making of space station logistics strategies
NASA Astrophysics Data System (ADS)
Zhu, Yue-he; Luo, Ya-zhong
2016-10-01
Space station logistics strategy optimisation is a complex engineering problem with multiple objectives. Finding a decision-maker-preferred compromise solution becomes more significant when solving such a problem. However, the designer-preferred solution is not easy to determine using the traditional method. Thus, a hybrid approach that combines the multi-objective evolutionary algorithm, physical programming, and differential evolution (DE) algorithm is proposed to deal with the optimisation and decision-making of space station logistics strategies. A multi-objective evolutionary algorithm is used to acquire a Pareto frontier and help determine the range parameters of the physical programming. Physical programming is employed to convert the four-objective problem into a single-objective problem, and a DE algorithm is applied to solve the resulting physical programming-based optimisation problem. Five kinds of objective preference are simulated and compared. The simulation results indicate that the proposed approach can produce good compromise solutions corresponding to different decision-makers' preferences.
Space Telescope Systems Description Handbook
NASA Technical Reports Server (NTRS)
Carter, R. E.
1985-01-01
The objective of the Space Telescope Project is to orbit a high quality optical 2.4-meter telescope system by the Space Shuttle for use by the astronomical community in conjunction with NASA. The scientific objectives of the Space Telescope are to determine the constitution, physical characteristics, and dynamics of celestial bodies; the nature of processes which occur in the extreme physical conditions existing in stellar objects; the history and evolution of the universe; and whether the laws of nature are universal in the space-time continuum. Like ground-based telescopes, the Space Telescope was designed as a general-purpose instrument, capable of utilizing a wide variety of scientific instruments at its focal plane. This multi-purpose characteristic will allow the Space Telescope to be effectively used as a national facility, capable of supporting the astronomical needs for an international user community and hence making contributions to man's needs. By using the Space Shuttle to provide scientific instrument upgrading and subsystems maintenance, the useful and effective operational lifetime of the Space Telescope will be extended to a decade or more.
PôDET: A Centre for Earth Dynamical Environment
NASA Astrophysics Data System (ADS)
Hestroffer, D.; Deleflie, F.
2013-11-01
The monitoring of the Earth space environment has gained some importance these last decades, in particular at the European level, partly because the phenomenon which origin come from space can have socio-economic consequences; and also because our understanding of those phenomenon - their associated prediction and risks - is still limited. For instance, the Space Situational Awareness programme (SSA) at ESA has set up in 2013 a centre and network for aspects connected to space debris (SST), to space weather (SW), and to near-Earth objects (NEO). At IMCCE, the Pôle sur la dynamique de l'environnement terrestre} (PODET, \\url{podet.imcce.fr}) for the Earth dynamical environment is studying effects and prediction for natural and artificial objects gravitating in the Earth vicinity. These studies englobe near-Earth objects, asteroids, comets, meteoroids, meteorite streams, and space debris. For all object types that are concerned, a general scheme of a functional analysis has been developed. It encompasses data acquisition with dedicated observations--essentially astrometric--or database queries, orbit determination or adjustment, prediction and ephemerides, and eventually impact probability computation and data dissemination. We develop here the general context of this action, the PôDET project, its scientific objectives, interaction with other disciplines, and the development in progress for dedicated tools.
Study of the decay and recovery of orbiting artificial space objects
NASA Technical Reports Server (NTRS)
1976-01-01
The reentry of earth-orbiting space objects unconsumed in the atmosphere represents a potential hazard to populated areas of the earth. The Smithsonian Astrophysical Observatory has conducted a program called Moonwatch, whose purposes were to observe orbiting artificial satellites and reentries of space objects and, if possible, to recover and analyze reentered pieces. In addition, through observations of low-perigee objects, data obtained by Moonwatchers have been instrumental in defining some of the factors affecting satellite decay. The objectives of the program are presented, and the problems that enter into satellite-orbit and decay predictions are addressed. Moonwatchers contributed substantially to increasing an overall prediction capability, and some of the specific achievements over the 6-year period are cited.
Automatic thoracic body region localization
NASA Astrophysics Data System (ADS)
Bai, PeiRui; Udupa, Jayaram K.; Tong, YuBing; Xie, ShiPeng; Torigian, Drew A.
2017-03-01
Radiological imaging and image interpretation for clinical decision making are mostly specific to each body region such as head & neck, thorax, abdomen, pelvis, and extremities. For automating image analysis and consistency of results, standardizing definitions of body regions and the various anatomic objects, tissue regions, and zones in them becomes essential. Assuming that a standardized definition of body regions is available, a fundamental early step needed in automated image and object analytics is to automatically trim the given image stack into image volumes exactly satisfying the body region definition. This paper presents a solution to this problem based on the concept of virtual landmarks and evaluates it on whole-body positron emission tomography/computed tomography (PET/CT) scans. The method first selects a (set of) reference object(s), segments it (them) roughly, and identifies virtual landmarks for the object(s). The geometric relationship between these landmarks and the boundary locations of body regions in the craniocaudal direction is then learned through a neural network regressor, and the locations are predicted. Based on low-dose unenhanced CT images of 180 near whole-body PET/CT scans (which includes 34 whole-body PET/CT scans), the mean localization error for the boundaries of superior of thorax (TS) and inferior of thorax (TI), expressed as number of slices (slice spacing ≍ 4mm)), and using either the skeleton or the pleural spaces as reference objects, is found to be 3,2 (using skeleton) and 3, 5 (using pleural spaces) respectively, or in mm 13, 10 mm (using skeleton) and 10.5, 20 mm (using pleural spaces), respectively. Improvements of this performance via optimal selection of objects and virtual landmarks and other object analytics applications are currently being pursued. and the skeleton and pleural spaces used as a reference objects
Perceptual asymmetries in greyscales: object-based versus space-based influences.
Thomas, Nicole A; Elias, Lorin J
2012-05-01
Neurologically normal individuals exhibit leftward spatial biases, resulting from object- and space-based biases; however their relative contributions to the overall bias remain unknown. Relative position within the display has not often been considered, with similar spatial conditions being collapsed across. Study 1 used the greyscales task to investigate the influence of relative position and object- and space-based contributions. One image in each greyscale pair was shifted towards the left or the right. A leftward object-based bias moderated by a bias to the centre was expected. Results confirmed this as a left object-based bias occurred in the right visual field, where the left side of the greyscale pairs was located in the centre visual field. Further, only lower visual field images exhibited a significant left bias in the left visual field. The left bias was also stronger when images were partially overlapping in the right visual field, demonstrating the importance of examining proximity. The second study examined whether object-based biases were stronger when actual objects, with directional lighting biases, were used. Direction of luminosity was congruent or incongruent with spatial location. A stronger object-based bias emerged overall; however a leftward bias was seen in congruent conditions and a rightward bias was seen in incongruent conditions. In conditions with significant biases, the lower visual field image was chosen most often. Results show that object- and space-based biases both contribute; however stimulus type allows either space- or object-based biases to be stronger. A lower visual field bias also interacts with these biases, leading the left bias to be eliminated under certain conditions. The complex interaction occurring between frame of reference and visual field makes spatial location extremely important in determining the strength of the leftward bias. Copyright © 2010 Elsevier Srl. All rights reserved.
Why Atens Enjoy Enhanced Accessibility for Human Space Flight
NASA Technical Reports Server (NTRS)
Barbee, Brent W.; Adamo, Daniel R.
2011-01-01
Near-Earth objects can be grouped into multiple orbit classifications, among them being the Aten group, whose members have orbits crossing Earth's with semi-major axes less than 1 astronomical unit. Atens comprise well under 10% of known near-Earth objects. This is in dramatic contrast to results from recent human space flight near-Earth object accessibility studies, where the most favorable known destinations are typically almost 50% Atens. Geocentric dynamics explain this enhanced Aten accessibility and lead to an understanding of where the most accessible near-Earth objects reside. Without a comprehensive space-based survey, however, highly accessible Atens will remain largely unknown.
Multi-spectral image analysis for improved space object characterization
NASA Astrophysics Data System (ADS)
Glass, William; Duggin, Michael J.; Motes, Raymond A.; Bush, Keith A.; Klein, Meiling
2009-08-01
The Air Force Research Laboratory (AFRL) is studying the application and utility of various ground-based and space-based optical sensors for improving surveillance of space objects in both Low Earth Orbit (LEO) and Geosynchronous Earth Orbit (GEO). This information can be used to improve our catalog of space objects and will be helpful in the resolution of satellite anomalies. At present, ground-based optical and radar sensors provide the bulk of remotely sensed information on satellites and space debris, and will continue to do so into the foreseeable future. However, in recent years, the Space-Based Visible (SBV) sensor was used to demonstrate that a synthesis of space-based visible data with ground-based sensor data could provide enhancements to information obtained from any one source in isolation. The incentives for space-based sensing include improved spatial resolution due to the absence of atmospheric effects and cloud cover and increased flexibility for observations. Though ground-based optical sensors can use adaptive optics to somewhat compensate for atmospheric turbulence, cloud cover and absorption are unavoidable. With recent advances in technology, we are in a far better position to consider what might constitute an ideal system to monitor our surroundings in space. This work has begun at the AFRL using detailed optical sensor simulations and analysis techniques to explore the trade space involved in acquiring and processing data from a variety of hypothetical space-based and ground-based sensor systems. In this paper, we briefly review the phenomenology and trade space aspects of what might be required in order to use multiple band-passes, sensor characteristics, and observation and illumination geometries to increase our awareness of objects in space.
Inhibition of Return and Object-Based Attentional Selection
ERIC Educational Resources Information Center
List, Alexandra; Robertson, Lynn C.
2007-01-01
Visual attention research has revealed that attentional allocation can occur in space- and/or object-based coordinates. Using the direct and elegant design of R. Egly, J. Driver, and R. Rafal (1994), the present experiments tested whether space- and object-based inhibition of return (IOR) emerge under similar time courses. The experiments were…
Wayfinding concept in University of Brawijaya
NASA Astrophysics Data System (ADS)
Firjatullah, H.; Kurniawan, E. B.; Purnamasari, W. D.
2017-06-01
Wayfinding is an activity related to the orientation and motion from first point to point of destination. Benefits of wayfinding in the area of education, namely as a means of helping direct a person to a destination so as to reduce the lostness and assist users in remembering the way through the role of space and objects wayfinding. Around 48% new students of University of Brawijaya (UB) 2015 that was ever lost when entering the campus. This shows the need for wayfinding concept to someone who was unfamiliar with the surrounding area as freshmen. This study uses mental map analysis to find the objects hierarchy wayfinding determination based on the respondents and the space syntax (visual graph analysis) as a hierarchy based on the determination of the configuration space. The overlay result say that hierarchy between both of analysis shows there are several objects which are potentially in wayfinding process on the campus of UB. The concept of wayfinding generate different treatment of the selected object based of wayfinding classification, both in maintaining the function of the object in space and develop the potential of the object wayfinding.
Non-US approaches to space commercialization
NASA Technical Reports Server (NTRS)
Smith, P. G.
1984-01-01
The approaches to the commercialization of space taken by the four foreign countries most active in the field - Canada, France, the Federal Republic of Germany, and Japan are described. National space program elements with commercial potential are examined in the context of national industrial and science policies, with special attention to objectives, timetables, and budgetary priority relative to other sectors. The role of the European Space Agency in attaining national and regional commercialization objectives is also examined.
Commercial Development Plan for the International Space Station
NASA Technical Reports Server (NTRS)
1998-01-01
The long term objective is to establish the foundation for a marketplace and stimulate a national economy for space products and services in low-Earth orbit, where both demand and supply are dominated by the private sector. The short term objective is to begin the transition to private investment and offset a share of the public cost for operating the space shuttle fleet and space station through commercial enterprise in open markets.
The 1989 long-range program plan
NASA Technical Reports Server (NTRS)
1988-01-01
The President's National Space Policy of 1988 reaffirms that space activities serve a variety of vital national goals and objectives, including the strengthening of U.S. scientific, technological, political, economic, and international leadership. The new policy stresses that civil space activities contribute significantly to enhancing America's world leadership. Goals and objectives must be defined and redefined, and each advance toward a given objective must be viewed as a potential building block for future programs. This important evolutionary process for research and development is reflected, describing NASA's program planning for FY89 and later years. This plan outlines the direction of NASA's future activities by discussing goals, objectives, current programs, and plans for the future. The 1989 plan is consistent with national policy for both space and aeronautics, and with the FY89 budget that the President submitted to Congress in February 1988.
NASA Technical Reports Server (NTRS)
Abell, Paul A.
2011-01-01
Human exploration of near-Earth objects (NEOs) beginning in 2025 is one of the stated objectives of U.S. National Space Policy. Piloted missions to these bodies would further development of deep space mission systems and technologies, obtain better understanding of the origin and evolution of our Solar System, and support research for asteroid deflection and hazard mitigation strategies. As such, mission concepts have received much interest from the exploration, science, and planetary defense communities. One particular system that has been suggested by all three of these communities is a space-based NEO survey telescope. Such an asset is crucial for enabling affordable human missions to NEOs circa 2025 and learning about the primordial population of objects that could present a hazard to the Earth in the future.
Vision requirements for Space Station applications
NASA Technical Reports Server (NTRS)
Crouse, K. R.
1985-01-01
Problems which will be encountered by computer vision systems in Space Station operations are discussed, along with solutions be examined at Johnson Space Station. Lighting cannot be controlled in space, nor can the random presence of reflective surfaces. Task-oriented capabilities are to include docking to moving objects, identification of unexpected objects during autonomous flights to different orbits, and diagnoses of damage and repair requirements for autonomous Space Station inspection robots. The approaches being examined to provide these and other capabilities are television IR sensors, advanced pattern recognition programs feeding on data from laser probes, laser radar for robot eyesight and arrays of SMART sensors for automated location and tracking of target objects. Attention is also being given to liquid crystal light valves for optical processing of images for comparisons with on-board electronic libraries of images.
Cant, Jonathan S; Xu, Yaoda
2015-11-01
Behavioral research has demonstrated that observers can extract summary statistics from ensembles of multiple objects. We recently showed that a region of anterior-medial ventral visual cortex, overlapping largely with the scene-sensitive parahippocampal place area (PPA), participates in object-ensemble representation. Here we investigated the encoding of ensemble density in this brain region using fMRI-adaptation. In Experiment 1, we varied density by changing the spacing between objects and found no sensitivity in PPA to such density changes. Thus, density may not be encoded in PPA, possibly because object spacing is not perceived as an intrinsic ensemble property. In Experiment 2, we varied relative density by changing the ratio of 2 types of objects comprising an ensemble, and observed significant sensitivity in PPA to such ratio change. Although colorful ensembles were shown in Experiment 2, Experiment 3 demonstrated that sensitivity to object ratio change was not driven mainly by a change in the ratio of colors. Thus, while anterior-medial ventral visual cortex is insensitive to density (object spacing) changes, it does code relative density (object ratio) within an ensemble. Object-ensemble processing in this region may thus depend on high-level visual information, such as object ratio, rather than low-level information, such as spacing/spatial frequency. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Multiple Hypothesis Tracking (MHT) for Space Surveillance: Results and Simulation Studies
NASA Astrophysics Data System (ADS)
Singh, N.; Poore, A.; Sheaff, C.; Aristoff, J.; Jah, M.
2013-09-01
With the anticipated installation of more accurate sensors and the increased probability of future collisions between space objects, the potential number of observable space objects is likely to increase by an order of magnitude within the next decade, thereby placing an ever-increasing burden on current operational systems. Moreover, the need to track closely-spaced objects due, for example, to breakups as illustrated by the recent Chinese ASAT test or the Iridium-Kosmos collision, requires new, robust, and autonomous methods for space surveillance to enable the development and maintenance of the present and future space catalog and to support the overall space surveillance mission. The problem of correctly associating a stream of uncorrelated tracks (UCTs) and uncorrelated optical observations (UCOs) into common objects is critical to mitigating the number of UCTs and is a prerequisite to subsequent space catalog maintenance. Presently, such association operations are mainly performed using non-statistical simple fixed-gate association logic. In this paper, we report on the salient features and the performance of a newly-developed statistically-robust system-level multiple hypothesis tracking (MHT) system for advanced space surveillance. The multiple-frame assignment (MFA) formulation of MHT, together with supporting astrodynamics algorithms, provides a new joint capability for space catalog maintenance, UCT/UCO resolution, and initial orbit determination. The MFA-MHT framework incorporates multiple hypotheses for report to system track data association and uses a multi-arc construction to accommodate recently developed algorithms for multiple hypothesis filtering (e.g., AEGIS, CAR-MHF, UMAP, and MMAE). This MHT framework allows us to evaluate the benefits of many different algorithms ranging from single- and multiple-frame data association to filtering and uncertainty quantification. In this paper, it will be shown that the MHT system can provide superior tracking performance compared to existing methods at a lower computational cost, especially for closely-spaced objects, in realistic multi-sensor multi-object tracking scenarios over multiple regimes of space. Specifically, we demonstrate that the prototype MHT system can accurately and efficiently process tens of thousands of UCTs and angles-only UCOs emanating from thousands of objects in LEO, GEO, MEO and HELO, many of which are closely-spaced, in real-time on a single laptop computer, thereby making it well-suited for large-scale breakup and tracking scenarios. This is possible in part because complexity reduction techniques are used to control the runtime of MHT without sacrificing accuracy. We assess the performance of MHT in relation to other tracking methods in multi-target, multi-sensor scenarios ranging from easy to difficult (i.e., widely-spaced objects to closely-spaced objects), using realistic physics and probabilities of detection less than one. In LEO, it is shown that the MHT system is able to address the challenges of processing breakups by analyzing multiple frames of data simultaneously in order to improve association decisions, reduce cross-tagging, and reduce unassociated UCTs. As a result, the multi-frame MHT system can establish orbits up to ten times faster than single-frame methods. Finally, it is shown that in GEO, MEO and HELO, the MHT system is able to address the challenges of processing angles-only optical observations by providing a unified multi-frame framework.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, M.; Grimshaw, A.
1996-12-31
The Legion project at the University of Virginia is an architecture for designing and building system services that provide the illusion of a single virtual machine to users, a virtual machine that provides secure shared object and shared name spaces, application adjustable fault-tolerance, improved response time, and greater throughput. Legion targets wide area assemblies of workstations, supercomputers, and parallel supercomputers, Legion tackles problems not solved by existing workstation based parallel processing tools; the system will enable fault-tolerance, wide area parallel processing, inter-operability, heterogeneity, a single global name space, protection, security, efficient scheduling, and comprehensive resource management. This paper describes themore » core Legion object model, which specifies the composition and functionality of Legion`s core objects-those objects that cooperate to create, locate, manage, and remove objects in the Legion system. The object model facilitates a flexible extensible implementation, provides a single global name space, grants site autonomy to participating organizations, and scales to millions of sites and trillions of objects.« less
A Space Crisis. Alaska State Museum.
ERIC Educational Resources Information Center
Alaska State Museum, Juneau.
The 24,000 square foot Alaska State Museum is experiencing a space crisis which hinders its ability to effectively meet present demands. The museum's collection has more than tripled from 5,600 objects 17 years ago to 23,000 objects today. Available storage and exhibition space is filled and only 10% of the collection is on exhibit. The reason for…
Threats to U.S. National Security Interests in Space: Orbital Debris Mitigation and Removal
2014-01-08
objects larger than the size of a softball and hundreds of thousands of smaller fragments. This population of space debris potentially threatens U.S...catalogues objects as small as about 10 cm ( softball size) in LEO and as small as 1 meter in Geosynchronous Orbit.12 Today, the Space Surveillance
An Unscented Kalman-Particle Hybrid Filter for Space Object Tracking
NASA Astrophysics Data System (ADS)
Raihan A. V, Dilshad; Chakravorty, Suman
2018-03-01
Optimal and consistent estimation of the state of space objects is pivotal to surveillance and tracking applications. However, probabilistic estimation of space objects is made difficult by the non-Gaussianity and nonlinearity associated with orbital mechanics. In this paper, we present an unscented Kalman-particle hybrid filtering framework for recursive Bayesian estimation of space objects. The hybrid filtering scheme is designed to provide accurate and consistent estimates when measurements are sparse without incurring a large computational cost. It employs an unscented Kalman filter (UKF) for estimation when measurements are available. When the target is outside the field of view (FOV) of the sensor, it updates the state probability density function (PDF) via a sequential Monte Carlo method. The hybrid filter addresses the problem of particle depletion through a suitably designed filter transition scheme. To assess the performance of the hybrid filtering approach, we consider two test cases of space objects that are assumed to undergo full three dimensional orbital motion under the effects of J 2 and atmospheric drag perturbations. It is demonstrated that the hybrid filters can furnish fast, accurate and consistent estimates outperforming standard UKF and particle filter (PF) implementations.
Fini, C; Brass, M; Committeri, G
2015-01-01
Space perception depends on our motion potentialities and our intended actions are affected by space perception. Research on peripersonal space (the space in reaching distance) shows that we perceive an object as being closer when we (Witt, Proffitt, & Epstein, 2005; Witt & Proffitt, 2008) or another actor (Costantini, Ambrosini, Sinigaglia, & Gallese, 2011; Bloesch, Davoli, Roth, Brockmole, & Abrams, 2012) can interact with it. Similarly, an object only triggers specific movements when it is placed in our peripersonal space (Costantini, Ambrosini, Tieri, Sinigaglia, & Committeri, 2010) or in the other's peripersonal space (Costantini, Committeri, & Sinigaglia, 2011; Cardellicchio, Sinigaglia, & Costantini, 2013). Moreover, also the extrapersonal space (the space outside reaching distance) seems to be perceived in relation to our movement capabilities: the more effort it takes to cover a distance, the greater we perceive the distance to be (Proffitt, Stefanucci, Banton, & Epstein, 2003; Sugovic & Witt, 2013). However, not much is known about the influence of the other's movement potentialities on our extrapersonal space perception. Three experiments were carried out investigating the categorization of distance in extrapersonal space using human or non-human allocentric reference frames (RF). Subjects were asked to judge the distance ("Near" or "Far") of a target object (a beach umbrella) placed at progressively increasing or decreasing distances until a change from near to far or vice versa was reported. In the first experiment we found a significant "Near space extension" when the allocentric RF was a human virtual agent instead of a static, inanimate object. In the second experiment we tested whether the "Near space extension" depended on the anatomical structure of the RF or its movement potentialities by adding a wooden dummy. The "Near space extension" was only observed for the human agent but not for the dummy. Finally, to rule out the possibility that the effect was simply due to a line-of-sight mechanism (visual perspective taking) we compared the human agent free to move with the same agent tied to a pole with a rope, thus reducing movement potentialities while maintaining equal visual accessibility. The "Near space extension" disappeared when this manipulation was introduced, showing that movement potentialities are the relevant factor for such an effect. Our results demonstrate for the first time that during allocentric distance judgments within extrapersonal space, we implicitly process the movement potentialities of the RF. A target object is perceived as being closer when the allocentric RF is a human with available movement potentialities, suggesting a mechanism of social scaling of extrapersonal space processing. Copyright © 2014. Published by Elsevier B.V.
Feasibility of performing space surveillance tasks with a proposed space-based optical architecture
NASA Astrophysics Data System (ADS)
Flohrer, Tim; Krag, Holger; Klinkrad, Heiner; Schildknecht, Thomas
Under ESA contract an industrial consortium including Aboa Space Research Oy (ASRO), the Astronomical Institute of the University of Bern (AIUB), and the Dutch National Aerospace Laboratory (NLR), proposed the observation concept, developed a suitable sensor architecture, and assessed the performance of a space-based optical (SBO) telescope in 2005. The goal of the SBO instrumentation was to analyse how the existing knowledge gap in the space debris population in the millimetre and centimetre regime may be closed by means of a passive op-tical instrument. SBO was requested to provide statistical information on the space debris population, in terms of number of objects and size distribution. The SBO was considered to be a cost-efficient instrumentation of 20 cm aperture and 6 deg field-of-view with flexible integration requirements. It should be possible to integrate the SBO easily as a secondary payload on satellites launched into low-Earth orbits (LEO), or into geostationary orbit (GEO). Thus the selected mission concept only allowed for fix-mounted telescopes, and the pointing direction could be requested freely. It was shown in the performance analysis that the statistical information on small-sized space debris can only be collected if the observation ranges are comparatively small. Two of the most promising concepts were to observe objects in LEO from a sensor placed into a sun-synchronous LEO, while objects in GEO should be observed from a GEO satellite. Since 2007 ESA focuses space surveillance and tracking activities in the Space Situational Awareness (SSA) preparatory program. Ground-based radars and optical telescopes are stud-ied for the build-up and to maintenance of a catalogue of objects. In this paper we analyse how the SBO architecture could contribute to the space surveillance tasks survey and tracking. We assume that the SBO instrumentation is placed into a circular sun-synchronous orbit at 800 km altitude. We discuss the observation conditions of objects at higher altitude, such as GEO and Medium-Earth Orbits (MEO). Of particular interest are the radiometric performance from which we derive the detectable object diameters, the coverage of a reference population, and the covered arc lengths of individual objects. The latter is of particular interest for the simu-lation of the orbit determination, correlation, and cataloguing. Assuming realistic noise levels known from the SBO design we simulate first orbit determination of unknown objects (surveys) and orbit improvements (tracking) for sample objects. We use a simulation environment that comprises the ESA Program for Radar and Optical Observation Forecasting (PROOF) in the version 2005 and AIUB's program system CelMech. ESA's MASTER-2005 serves as reference population for all analyses.
Ukrainian Database and Atlas of Light Curves of Artificial Space Objects
NASA Astrophysics Data System (ADS)
Koshkin, N.; Savanevich, V.; Pohorelov, A.; Shakun, L.; Zhukov, V.; Korobeynikova, E.; Strakhova, S.; Moskalenko, S.; Kashuba, V.; Krasnoshchokov, A.
This paper describes the Ukrainian database of long-term photometric observations of resident space objects (RSO). For the purpose of using this database for the outer space monitoring and space situational awareness (SSA) the open internet resource has been developed. The paper shows examples of using the Atlas of light curves of RSO's for analyzing the state of rotation around the center of mass of several active and non-functioning satellites in orbit.
The Effects of Solar Maximum on the Earth's Satellite Population and Space Situational Awareness
NASA Technical Reports Server (NTRS)
Johnson, Nicholas L.
2012-01-01
The rapidly approaching maximum of Solar Cycle 24 will have wide-ranging effects not only on the number and distribution of resident space objects, but also on vital aspects of space situational awareness, including conjunction assessment processes. The best known consequence of high solar activity is an increase in the density of the thermosphere, which, in turn, increases drag on the vast majority of objects in low Earth orbit. The most prominent evidence of this is seen in a dramatic increase in space object reentries. Due to the massive amounts of new debris created by the fragmentations of Fengyun-1C, Cosmos 2251 and Iridium 33 during the recent period of Solar Minimum, this effect might reach epic levels. However, space surveillance systems are also affected, both directly and indirectly, historically leading to an increase in the number of lost satellites and in the routine accuracy of the calculation of their orbits. Thus, at a time when more objects are drifting through regions containing exceptionally high-value assets, such as the International Space Station and remote sensing satellites, their position uncertainties increase. In other words, as the possibility of damaging and catastrophic collisions increases, our ability to protect space systems is degraded. Potential countermeasures include adjustments to space surveillance techniques and the resetting of collision avoidance maneuver thresholds.
Hubble Space Telescope, Faint Object Camera
NASA Technical Reports Server (NTRS)
1981-01-01
This drawing illustrates Hubble Space Telescope's (HST's), Faint Object Camera (FOC). The FOC reflects light down one of two optical pathways. The light enters a detector after passing through filters or through devices that can block out light from bright objects. Light from bright objects is blocked out to enable the FOC to see background images. The detector intensifies the image, then records it much like a television camera. For faint objects, images can be built up over long exposure times. The total image is translated into digital data, transmitted to Earth, and then reconstructed. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.
Probabilistic resident space object detection using archival THEMIS fluxgate magnetometer data
NASA Astrophysics Data System (ADS)
Brew, Julian; Holzinger, Marcus J.
2018-05-01
Recent progress in the detection of small space objects, at geosynchronous altitudes, through ground-based optical and radar measurements is demonstrated as a viable method. However, in general, these methods are limited to detection of objects greater than 10 cm. This paper examines the use of magnetometers to detect plausible flyby encounters with charged space objects using a matched filter signal existence binary hypothesis test approach. Relevant data-set processing and reduction of archival fluxgate magnetometer data from the NASA THEMIS mission is discussed in detail. Using the proposed methodology and a false alarm rate of 10%, 285 plausible detections with probability of detection greater than 80% are claimed and several are reviewed in detail.
Cloud Computing Techniques for Space Mission Design
NASA Technical Reports Server (NTRS)
Arrieta, Juan; Senent, Juan
2014-01-01
The overarching objective of space mission design is to tackle complex problems producing better results, and faster. In developing the methods and tools to fulfill this objective, the user interacts with the different layers of a computing system.
Exploring the Universe with the Hubble Space Telescope
NASA Technical Reports Server (NTRS)
1990-01-01
A general overview is given of the operations, engineering challenges, and components of the Hubble Space Telescope. Deployment, checkout and servicing in space are discussed. The optical telescope assembly, focal plane scientific instruments, wide field/planetary camera, faint object spectrograph, faint object camera, Goddard high resolution spectrograph, high speed photometer, fine guidance sensors, second generation technology, and support systems and services are reviewed.
A Continuum Mechanical Approach to Geodesics in Shape Space
2010-01-01
the space of shapes, where shapes are implicitly described as boundary contours of objects. The proposed shape metric is derived from a ...investigate the close link between abstract geometry on the infinite -dimen- sional space of shapes and the continuum mechanical view of shapes as boundary...are texture-coded in the bottom row. of multiple components of volumetric objects. The
Passive Optical Link Budget for LEO Space Surveillance
NASA Astrophysics Data System (ADS)
Wagner, P.; Hasenohr, T.; Hampf, D.; Sproll, F.; Humbert, L.; Rodmann, J.; Riede, W.
The rising space debris population is becoming an increasing risk for space assets. Even objects with the size of 10mm can cause major damages to active spacecraft. Especially the orbits around 800km high are densely populated with space debris objects. To assess the risk of collisions with active satellites, the Earth orbits need to be surveyed permanently. Space debris laser ranging systems for example can deliver highly accurate positional data for precise orbit determination. Therefor a priori information about the objects coarse trajectory is needed. Such initial orbit information can be provided by wide angle optical sensors. The Institute of Technical Physics at the German Aerospace Center in Stuttgart runs an observatory to perform passive as well as laser optical measurements to LEO objects. In order to detect unknown objects, a wide-angle imaging system with a field of view in the range of 5° to 15° equipped with an astronomical CCD camera and a commercial off the shelf (COTS) lens was designed to continuously observe the night sky for LEO objects. This paper presents the passive optical link budget for observing LEO objects to show the benefits and limits of the physical performance of an optical surveillance system. A compact COTS system is able to detect objects with a couple of decimeters in size while a large aperture telescope can detect objects with diameters below 10cm. Additionally, data captured by a passive optical staring system with a 10 cm aperture was analyzed. It is shown that 90% of all objects with a radar cross section larger than 2m² are detected with such a system during twilight conditions. The smallest detected LEO object with this system has a size of 0.32m x 0.32m x 0.26m. These measurements are compared to the developed link budget which allows an estimation of the performance of larger systems.
Life science research objectives and representative experiments for the space station
NASA Technical Reports Server (NTRS)
Johnson, Catherine C. (Editor); Arno, Roger D. (Editor); Mains, Richard (Editor)
1989-01-01
A workshop was convened to develop hypothetical experiments to be used as a baseline for space station designer and equipment specifiers to ensure responsiveness to the users, the life science community. Sixty-five intra- and extramural scientists were asked to describe scientific rationales, science objectives, and give brief representative experiment descriptions compatible with expected space station accommodations, capabilities, and performance envelopes. Experiment descriptions include hypothesis, subject types, approach, equipment requirements, and space station support requirements. The 171 experiments are divided into 14 disciplines.
ESA activities on satellite laser ranging to non-cooperative objects
NASA Astrophysics Data System (ADS)
Flohrer, Tim; Krag, Holger; Funke, Quirin; Jilete, Beatriz; Mancas, Alexandru
2016-07-01
Satellite laser ranging (SLR) to non-cooperative objects is an emerging technology that can contribute significantly to operational, modelling and mitigation needs set by the space debris population. ESA is conducting various research and development activities in SLR to non-cooperative objects. ESA's Space Situational Awareness (SSA) program supports specific activities in the Space Surveillance and Tracking (SST) segment. Research and development activities with operational aspects are run by ESA's Space Debris Office. At ESA SSA/SST comprises detecting, cataloguing and predicting the objects orbiting the Earth, and the derived applications. SST aims at facilitating research and development of sensor and data processing technologies and of related common components while staying complementary with, and in support of, national and multi-national European initiatives. SST promotes standardisation and interoperability of the technology developments. For SLR these goals are implemented through researching, developing, and deploying an expert centre. This centre shall coordinate the contribution of system-external loosely connected SLR sensors, and shall provide back calibration and expert evaluation support to the sensors. The Space Debris Office at ESA is responsible for all aspects related to space debris in the Agency. It is in charge of providing operational support to ESA and third party missions. Currently, the office studies the potential benefits of laser ranging to space debris objects to resolve close approaches to active satellites, to improve re-entry predictions of time and locations, and the more general SLR support during contingency situations. The office studies the determination of attitude and attitude motion of uncooperative objects with special focus on the combination of SLR, light-curve, and radar imaging data. Generating sufficiently precise information to allow for the acquisition of debris objects by a SLR sensor in a stare-and-chase scenario, or from externally provided orbital information, is also investigated. In our paper we will outline the motivation and objectives, as well as detail the current status of the various and parallel SLR-related SST and Space Debris Office activities at ESA. We will provide an overview on plans for SLR activities in research and development and in operational support. Current gaps in the standardisation of data exchange and sensor interfaces will be addressed, reflecting the need of coordinating multiple stations in all tasks.
HST Observations of the Luminous IRAS Source FSC10214+4724: A gravitationally Lensed Infrared Quasar
NASA Technical Reports Server (NTRS)
Eisenhardt, P. R.; Armus, L.; Hogg, D. W.; Soifer, B. T.; Neugebauer, G.; Werner, M. W.
1995-01-01
Observations of a distant object in space with the data being taken by the Hubble Space Telescope (HST) Wide Field Planetary Camera. Scientific examination and hypothesis related to this object which appears to be either an extremely luminous dust embedded quasar, or a representative of a new class of astronomical objects (a primeval galaxy).
The deep space network, volume 7
NASA Technical Reports Server (NTRS)
1972-01-01
The objectives, functions, and organization of the Deep Space Network are summarized. The Deep Space Instrumentation Facility, the Ground Communications Facility, and the Space Flight Operations Facility are described.
Computer graphics testbed to simulate and test vision systems for space applications
NASA Technical Reports Server (NTRS)
Cheatham, John B.; Wu, Chris K.; Lin, Y. H.
1991-01-01
A system was developed for displaying computer graphics images of space objects and the use of the system was demonstrated as a testbed for evaluating vision systems for space applications. In order to evaluate vision systems, it is desirable to be able to control all factors involved in creating the images used for processing by the vision system. Considerable time and expense is involved in building accurate physical models of space objects. Also, precise location of the model relative to the viewer and accurate location of the light source require additional effort. As part of this project, graphics models of space objects such as the Solarmax satellite are created that the user can control the light direction and the relative position of the object and the viewer. The work is also aimed at providing control of hue, shading, noise and shadows for use in demonstrating and testing imaging processing techniques. The simulated camera data can provide XYZ coordinates, pitch, yaw, and roll for the models. A physical model is also being used to provide comparison of camera images with the graphics images.
NASA Astrophysics Data System (ADS)
Speicher, Andy; Matin, Mohammad; Tippets, Roger; Chun, Francis; Strong, David
2015-05-01
In order to protect critical military and commercial space assets, the United States Space Surveillance Network must have the ability to positively identify and characterize all space objects. Unfortunately, positive identification and characterization of space objects is a manual and labor intensive process today since even large telescopes cannot provide resolved images of most space objects. The objective of this study was to collect and analyze visible-spectrum polarization data from unresolved images of geosynchronous satellites taken over various solar phase angles. Different collection geometries were used to evaluate the polarization contribution of solar arrays, thermal control materials, antennas, and the satellite bus as the solar phase angle changed. Since materials on space objects age due to the space environment, their polarization signature may change enough to allow discrimination of identical satellites launched at different times. Preliminary data suggests this optical signature may lead to positive identification or classification of each satellite by an automated process on a shorter timeline. The instrumentation used in this experiment was a United States Air Force Academy (USAFA) Department of Physics system that consists of a 20-inch Ritchey-Chrétien telescope and a dual focal plane optical train fed with a polarizing beam splitter. Following a rigorous calibration, polarization data was collected during two nights on eight geosynchronous satellites built by various manufacturers and launched several years apart. When Stokes parameters were plotted against time and solar phase angle, the data indicates that a polarization signature from unresolved images may have promise in classifying specific satellites.
Stereo-hologram in discrete depth of field (Conference Presentation)
NASA Astrophysics Data System (ADS)
Lee, Kwanghoon; Park, Min-Chul
2017-05-01
In holographic space, continuous object space can be divided as several discrete spaces satisfied each of same depth of field (DoF). In the environment of wearable device using holography, specially, this concept can be applied to macroscopy filed in contrast of the field of microscopy. Since the former has not need to high depth resolution because perceiving power of eye in human visual system, it can distinguish clearly among the objects in depth space, has lower than optical power of microscopic field. Therefore continuous but discrete depth of field (DDoF) for whole object space can present the number of planes included sampled space considered its DoF. Each DoF plane has to consider the occlusion among the object's areas in its region to show the occluded phenomenon inducing by the visual axis around the eye field of view. It makes natural scene in recognition process even though the combined discontinuous DoF regions are altered to the continuous object space. Thus DDoF pull out the advantages such as saving consuming time of the calculation process making the hologram and the reconstruction. This approach deals mainly the properties of several factors required in stereo hologram HMD such as stereoscopic DoF according to the convergence, least number of DDoFs planes in normal visual circumstance (within to 10,000mm), the efficiency of saving time for taking whole holographic process under the our method compared to the existing. Consequently this approach would be applied directly to the stereo-hologram HMD field to embody a real-time holographic imaging.
Localization and tracking of moving objects in two-dimensional space by echolocation.
Matsuo, Ikuo
2013-02-01
Bats use frequency-modulated echolocation to identify and capture moving objects in real three-dimensional space. Experimental evidence indicates that bats are capable of locating static objects with a range accuracy of less than 1 μs. A previously introduced model estimates ranges of multiple, static objects using linear frequency modulation (LFM) sound and Gaussian chirplets with a carrier frequency compatible with bat emission sweep rates. The delay time for a single object was estimated with an accuracy of about 1.3 μs by measuring the echo at a low signal-to-noise ratio (SNR). The range accuracy was dependent not only on the SNR but also the Doppler shift, which was dependent on the movements. However, it was unclear whether this model could estimate the moving object range at each timepoint. In this study, echoes were measured from the rotating pole at two receiving points by intermittently emitting LFM sounds. The model was shown to localize moving objects in two-dimensional space by accurately estimating the object's range at each timepoint.
The infrared video image pseudocolor processing system
NASA Astrophysics Data System (ADS)
Zhu, Yong; Zhang, JiangLing
2003-11-01
The infrared video image pseudo-color processing system, emphasizing on the algorithm and its implementation for measured object"s 2D temperature distribution using pseudo-color technology, is introduced in the paper. The data of measured object"s thermal image is the objective presentation of its surface temperature distribution, but the color has a close relationship with people"s subjective cognition. The so-called pseudo-color technology cross the bridge between subjectivity and objectivity, and represents the measured object"s temperature distribution in reason and at first hand. The algorithm of pseudo-color is based on the distance of IHS space. Thereby the definition of pseudo-color visual resolution is put forward. Both the software (which realize the map from the sample data to the color space) and the hardware (which carry out the conversion from the color space to palette by HDL) co-operate. Therefore the two levels map which is logic map and physical map respectively is presented. The system has been used abroad in failure diagnose of electric power devices, fire protection for lifesaving and even SARS detection in CHINA lately.
Sensitivity to Spacing Changes in Faces and Nonface Objects in Preschool-Aged Children and Adults
ERIC Educational Resources Information Center
Cassia, Viola Macchi; Turati, Chiara; Schwarzer, Gudrun
2011-01-01
Sensitivity to variations in the spacing of features in faces and a class of nonface objects (i.e., frontal images of cars) was tested in 3- and 4-year-old children and adults using a delayed or simultaneous two-alternative forced choice matching-to-sample task. In the adults, detection of spacing information was robust against exemplar…
A hybrid genetic algorithm for resolving closely spaced objects
NASA Technical Reports Server (NTRS)
Abbott, R. J.; Lillo, W. E.; Schulenburg, N.
1995-01-01
A hybrid genetic algorithm is described for performing the difficult optimization task of resolving closely spaced objects appearing in space based and ground based surveillance data. This application of genetic algorithms is unusual in that it uses a powerful domain-specific operation as a genetic operator. Results of applying the algorithm to real data from telescopic observations of a star field are presented.
Space Object and Light Attribute Rendering (SOLAR) Projection System
2017-05-08
AVAILABILITY STATEMENT A DISTRIBUTION UNLIMITED: PB Public Release 13. SUPPLEMENTARY NOTES 14. ABSTRACT A state of the art planetarium style projection system...Rendering (SOLAR) Projection System 1 Abstract A state of the art planetarium style projection system called Space Object and Light Attribute Rendering...planetarium style projection system for emulation of a variety of close proximity and long range imaging experiments. University at Buffalo’s Space
Report on the findings of the Japanese Investigative Team on US Space Station Design (Keidanren)
NASA Technical Reports Server (NTRS)
1985-01-01
The objectives, itinerary and results of the Japanese Investigative Team on U.S. Space Station Design (Keidanren), consisting of members of the Space Development Promotion Council and representatives of Japanese industries involved in Japan's space station development effort are presented. This team visited NASA facilities in February, 1985. The objectives of the study team are to gather information on preliminary design efforts toward space station planning in Japan and the promotion of Japanese space related industries, as well as the evaluation of the present status of space environment exploitation in the U.S. This report is intended to be a basic reference for government agencies and industry in addressing the course of action to be taken in the future development of Japan's space station participation.
How to design and fly your humanly space object in space?
NASA Astrophysics Data System (ADS)
Balint, Tibor; Hall, Ashley
2016-06-01
Today's space exploration, both robotic- and human-exploration driven, is dominated by objects and artifacts which are mostly conceived, designed and built through technology and engineering approaches. They are functional, reliable, safe, and expensive. Building on considerations and concepts established in an earlier paper, we can state that the current approach leaves very little room for art and design based objects, as organizations-typically led by engineers, project and business managers-see the inclusion of these disciplines and artifacts as nice to have instead of a genuine need, let alone requirement. In this paper we will offer initial discussions about where design and engineering practices are different or similar and how to bridge them and highlight the benefits that domains such as design or art can offer to space exploration. Some of the design considerations and approaches will be demonstrated through the double diamond of divergence-convergence cycles of design, leading to an experimental piece called a ;cybernetic astronaut chair;, which was designed as a form of abstraction and discussion point to highlight a subset of concepts and ideas that designers may consider when designing objects for space use, with attention to human-centered or humanly interactions. Although there are few suggested functional needs for chairs in space, they can provide reassuring emotional experiences from home, while being far away from home. In zero gravity, back-to-back seats provide affordances-or add variety in a cybernetic sense-to accommodate two astronauts simultaneously, while implying the circularity of cybernetics in a rather symbolic way. The cybernetic astronaut chair allows us to refine the three-actor model proposed in a previous paper, defining the circular interactions between the artist or designer; object or process; and user or observer. We will also dedicate a brief discussion to the process of navigating through the complex regulations of space agencies, from solicitations through development and testing, to space flight. The provided insights to designers and artists, related to agency-driven processes and requirements, may help to deconvolute the steps and may lead to flying their objects or artifacts in space.
Seals Having Textured Portions for Protection in Space Environments
NASA Technical Reports Server (NTRS)
Daniels, Christopher (Inventor); Garafolo, Nicholas (Inventor)
2016-01-01
A sealing construct for a space environment includes a seal-bearing object, a seal on the seal-bearing object, and a seal-engaging object. The seal includes a seal body having a sealing surface, and a textured pattern at the sealing surface, the textured pattern defining at least one shaded channel surface. The seal-engaging object is selectively engaged with the seal-bearing object through the seal. The seal-engaging object has a sealing surface, wherein, when the seal-engaging object is selectively engaged with the seal-bearing object, the sealing surface of the seal-engaging object engages the sealing surface of the seal, and the seal is compressed between the seal-bearing object and the seal-engaging object such that at least one shaded channel surface engages the sealing surface of the seal-engaging object.
Sovereignty and Protective Zones in Space and the Appropriate Command and Control of Assets
NASA Astrophysics Data System (ADS)
Butler, Richard J.
2001-04-01
This paper examines two issues that are of vital importance to short and long term operations in space and the combat engagement of space borne assets. The first issue analyzed is the question of the establishment of sovereignty and protective zones for free passage in space. This paper will compare international law treaties and other historical analyses to current United States (US) war fighting doctrine on space and propose a United States Air Force (USAF) position on this issue. It will define and discuss the definition for two space protective zones. First and foremost, the immediate safety zone by the space object and secondly, the actual identification area around the object and its orbital track.
Physical Simulation of a Prolonged Plasma-Plume Exposure of a Space Debris Object
NASA Astrophysics Data System (ADS)
Shuvalov, V. A.; Gorev, N. B.; Tokmak, N. A.; Kochubei, G. S.
2018-05-01
A methodology has been developed for the physical (laboratory) simulation of the prolonged exposure of a space debris object to high-energy ions of a plasma plume for removing the object into low-Earth orbit with its subsequent burning in the Earth's atmosphere. The methodology is based on the equivalence criteria of two modes of exposure (in the Earth's ionosphere and in the setup) and the procedure for accelerated resource tests in terms of the sputtering of the space debris material and its deceleration by a plasma jet in the Earth's ionosphere.
3D Reconstruction of Space Objects from Multi-Views by a Visible Sensor
Zhang, Haopeng; Wei, Quanmao; Jiang, Zhiguo
2017-01-01
In this paper, a novel 3D reconstruction framework is proposed to recover the 3D structural model of a space object from its multi-view images captured by a visible sensor. Given an image sequence, this framework first estimates the relative camera poses and recovers the depths of the surface points by the structure from motion (SFM) method, then the patch-based multi-view stereo (PMVS) algorithm is utilized to generate a dense 3D point cloud. To resolve the wrong matches arising from the symmetric structure and repeated textures of space objects, a new strategy is introduced, in which images are added to SFM in imaging order. Meanwhile, a refining process exploiting the structural prior knowledge that most sub-components of artificial space objects are composed of basic geometric shapes is proposed and applied to the recovered point cloud. The proposed reconstruction framework is tested on both simulated image datasets and real image datasets. Experimental results illustrate that the recovered point cloud models of space objects are accurate and have a complete coverage of the surface. Moreover, outliers and points with severe noise are effectively filtered out by the refinement, resulting in an distinct improvement of the structure and visualization of the recovered points. PMID:28737675
Changes of Space Debris Orbits After LDR Operation
NASA Astrophysics Data System (ADS)
Wnuk, E.; Golebiewska, J.; Jacquelard, C.; Haag, H.
2013-09-01
A lot of technical studies are currently developing concepts of active removal of space debris to protect space assets from on orbit collision. For small objects, such concepts include the use of ground-based lasers to remove or reduce the momentum of the objects thereby lowering their orbit in order to facilitate their decay by re-entry into the Earth's atmosphere. The concept of the Laser Debris Removal (LDR) system is the main subject of the CLEANSPACE project. One of the CLEANSPACE objectives is to define a global architecture (including surveillance, identification and tracking) for an innovative ground-based laser solution, which can remove hazardous medium debris around selected space assets. The CLEANSPACE project is realized by a European consortium in the frame of the European Commission Seventh Framework Programme (FP7), Space topic. The use of sequence of laser operations to remove space debris, needs very precise predictions of future space debris orbital positions, on a level even better than 1 meter. Orbit determination, tracking (radar, optical and laser) and orbit prediction have to be performed with accuracy much better than so far. For that, the applied prediction tools have to take into account all perturbation factors that influence object orbit. The expected object's trajectory after the LDR operation is a lowering of its perigee. To prevent the debris with this new trajectory to collide with another object, a precise trajectory prediction after the LDR sequence is therefore the main task allowing also to estimate re-entry parameters. The LDR laser pulses change the debris object velocity v. The future orbit and re-entry parameters of the space debris after the LDR engagement can be calculated if the resulting ?v vector is known with the sufficient accuracy. The value of the ?v may be estimated from the parameters of the LDR station and from the characteristics of the orbital debris. However, usually due to the poor knowledge of the debris object's size, mass, spin and chemical composition the value and the direction of the vector ?v cannot be estimated with the high accuracy. Therefore, a high precise tracking of the debris will be necessary immediately before the engagement of the LDR and also during this engagement. By extending this tracking and ranging for a few seconds after engagement, the necessary data to evaluate the orbital modification can be produced in the same way as it is done for the catalogue generation. In our paper we discuss the object's orbit changes due to LDR operation for different locations of LDR station and different parameters of the laser energy and telescope diameter. We estimate the future orbit and re-entry parameters taking into account the influence of all important perturbation factors on the space debris orbital motion after LDR.
Valdés, Julio J; Barton, Alan J
2007-05-01
A method for the construction of virtual reality spaces for visual data mining using multi-objective optimization with genetic algorithms on nonlinear discriminant (NDA) neural networks is presented. Two neural network layers (the output and the last hidden) are used for the construction of simultaneous solutions for: (i) a supervised classification of data patterns and (ii) an unsupervised similarity structure preservation between the original data matrix and its image in the new space. A set of spaces are constructed from selected solutions along the Pareto front. This strategy represents a conceptual improvement over spaces computed by single-objective optimization. In addition, genetic programming (in particular gene expression programming) is used for finding analytic representations of the complex mappings generating the spaces (a composition of NDA and orthogonal principal components). The presented approach is domain independent and is illustrated via application to the geophysical prospecting of caves.
The INAF contribution to the ASI Space Debris program: observational activities.
NASA Astrophysics Data System (ADS)
Pupillo, G.; Salerno, E.; Bartolini, M.; Di Martino, M.; Mattana, A.; Montebugnoli, S.; Portelli, C.; Pluchino, S.; Schillirò, F.; Konovalenko, A.; Nabatov, A.; Nechaeva, M.
Space debris are man made objects orbiting around Earth that pose a serious hazard for both present and future human activities in space. Since 2007 the Istituto Nazionale di Astrofisica (INAF) carried out a number of radar campaigns in the framework of the ASI ``Space Debris'' program. The observations were performed by using bi- and multi-static radars, composed of the INAF 32-m Italian radiotelescopes located at Medicina and Noto (used as receivers) and the 70-m parabolic antenna at Evpatoria (Ukraine) used as transmitter. The 32 m Ventspils antenna in Latvia also participated in the last campaign at the end of June 2010. Several kinds of objects in various orbital regions (radar calibrators, rocket upper stages, debris of different sizes) were observed and successfully detected. Some unknown objects were also discovered in LEO during the beam-park sessions. In this paper we describe some results of the INAF-ASI space debris research activity.
The French Space Operation Act: Technical Regulations
NASA Astrophysics Data System (ADS)
Trinchero, J. P.; Lazare, B.
2010-09-01
The French Space Operation Act(FSOA) stipulates that a prime objective of the National technical regulations is to protect people, property, public health and the environment. Compliance with these technical regulations is mandatory as of 10 December 2010 for space operations by French space operators and for space operations from French territory. The space safety requirements and regulations governing procedures are based on national and international best practices and experience. A critical design review of the space system and procedures shall be carried out by the applicant, in order to verify compliance with the Technical Regulations. An independent technical assessment of the operation is delegated to CNES. The principles applied when drafting technical regulations are as follows: requirements must as far as possible establish the rules according to the objective to be obtained, rather than how it is to be achieved; requirements must give preference to international standards recognised as being the state of the art; requirements must take previous experience into account. Technical regulations are divided into three sections covering common requirements for the launch, control and return of a space object. A dedicated section will cover specific rules to be applied at the Guiana Space Centre. The main topics addressed by the technical regulations are: operator safety management system; study of risks to people, property, public health and the Earth’s environment; impact study on the outer space environment: space debris generated by the operation; planetary protection.
Neural representation of objects in space: a dual coding account.
Humphreys, G W
1998-01-01
I present evidence on the nature of object coding in the brain and discuss the implications of this coding for models of visual selective attention. Neuropsychological studies of task-based constraints on: (i) visual neglect; and (ii) reading and counting, reveal the existence of parallel forms of spatial representation for objects: within-object representations, where elements are coded as parts of objects, and between-object representations, where elements are coded as independent objects. Aside from these spatial codes for objects, however, the coding of visual space is limited. We are extremely poor at remembering small spatial displacements across eye movements, indicating (at best) impoverished coding of spatial position per se. Also, effects of element separation on spatial extinction can be eliminated by filling the space with an occluding object, indicating that spatial effects on visual selection are moderated by object coding. Overall, there are separate limits on visual processing reflecting: (i) the competition to code parts within objects; (ii) the small number of independent objects that can be coded in parallel; and (iii) task-based selection of whether within- or between-object codes determine behaviour. Between-object coding may be linked to the dorsal visual system while parallel coding of parts within objects takes place in the ventral system, although there may additionally be some dorsal involvement either when attention must be shifted within objects or when explicit spatial coding of parts is necessary for object identification. PMID:9770227
STS-31 Space Shuttle mission report
NASA Technical Reports Server (NTRS)
Camp, David W.; Germany, D. M.; Nicholson, Leonard S.
1990-01-01
The STS-31 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities on this thirty-fifth flight of the Space Shuttle and the tenth flight of the Orbiter Vehicle Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-34/LWT-27), three Space Shuttle main engines (SSME's) (serial numbers 2011, 2031, and 2107), and two Solid Rocket Booster (SRB) (designated as BI-037). The primary objective of the mission was to place the Hubble Space Telescope (HST) into a 330 nmi. circular orbit having an inclination of 28.45 degrees. The secondary objectives were to perform all operations necessary to support the requirements of the Protein Crystal Growth (PCG), Investigations into Polymer Membrane Processing (IPMP), Radiation Monitoring Equipment (RME), Ascent Particle Monitor (APM), IMAX Cargo Bay Camera (ICBC), Air Force Maui Optical Site Calibration Test (AMOS), IMAX Crew Compartment Camera, and Ion Arc payloads. In addition, 12 development test objectives (DTO's) and 10 detailed supplementary objectives (DSO's) were assigned to the flight. The sequence of events for this mission is shown. The significant problems that occurred in the Space Shuttle Orbiter subsystems during the mission are summarized, and the official problem tracking list is presented. In addition, each of the Space Shuttle Orbiter problems is cited in the subsystem discussion.
Investigation of small solar system objects with the space telescope
NASA Technical Reports Server (NTRS)
Morrison, D.
1979-01-01
The application of the space telescope (ST) to study small objects in the solar system in order to understand the birth and the early evolution of the solar system is discussed. The upper size limit of the small bodies is defined as approximately 5000 km and includes planetary satellites, planetary rings, asteroids, and comets.The use of the astronomical instruments aboard the ST, such as the faint object camera, ultraviolet and infrared spectrometers, and spectrophotometers, to study the small solar system objects is discussed.
NASA Technical Reports Server (NTRS)
1985-01-01
Long-term and short-term objectives for the development of a network operating system for the Space Station are stated. The short-term objective is to develop a prototype network operating system for a 100 megabit/second fiber optic data bus. The long-term objective is to establish guidelines for writing a detailed specification for a Space Station network operating system. Major milestones are noted. Information is given in outline form.
International Space Programs. Aerospace Education III.
ERIC Educational Resources Information Center
Air Univ., Maxwell AFB, AL. Junior Reserve Office Training Corps.
This curriculum guide is prepared for the Aerospace Education III series publication entitled "International Space Programs." The guide is organized according to specific chapters in the textbook. It provides guidelines for teachers in terms of objectives, behavioral objectives, suggested outlines, orientation, suggested key points,…
ERIC Educational Resources Information Center
Nature Scope, 1986
1986-01-01
Provides: (1) background information on the space program, space issues and problems, and the search for extraterrestrial life; (2) five activities; and (3) ready-to-duplicate student materials. Activities include objective(s), recommended age level(s), subject area(s), list of materials needed, and procedures. (JN)
Kim, Hwi; Min, Sung-Wook; Lee, Byoungho; Poon, Ting-Chung
2008-07-01
We propose a novel optical sectioning method for optical scanning holography, which is performed in phase space by using Wigner distribution functions together with the fractional Fourier transform. The principle of phase-space optical sectioning for one-dimensional signals, such as slit objects, and two-dimensional signals, such as rectangular objects, is first discussed. Computer simulation results are then presented to substantiate the proposed idea.
NASA Astrophysics Data System (ADS)
Furfaro, R.; Linares, R.; Gaylor, D.; Jah, M.; Walls, R.
2016-09-01
In this paper, we present an end-to-end approach that employs machine learning techniques and Ontology-based Bayesian Networks (BN) to characterize the behavior of resident space objects. State-of-the-Art machine learning architectures (e.g. Extreme Learning Machines, Convolutional Deep Networks) are trained on physical models to learn the Resident Space Object (RSO) features in the vectorized energy and momentum states and parameters. The mapping from measurements to vectorized energy and momentum states and parameters enables behavior characterization via clustering in the features space and subsequent RSO classification. Additionally, Space Object Behavioral Ontologies (SOBO) are employed to define and capture the domain knowledge-base (KB) and BNs are constructed from the SOBO in a semi-automatic fashion to execute probabilistic reasoning over conclusions drawn from trained classifiers and/or directly from processed data. Such an approach enables integrating machine learning classifiers and probabilistic reasoning to support higher-level decision making for space domain awareness applications. The innovation here is to use these methods (which have enjoyed great success in other domains) in synergy so that it enables a "from data to discovery" paradigm by facilitating the linkage and fusion of large and disparate sources of information via a Big Data Science and Analytics framework.
NASA Technical Reports Server (NTRS)
Papanyan, Valeri; Oshle, Edward; Adamo, Daniel
2008-01-01
Measurement of the jettisoned object departure trajectory and velocity vector in the International Space Station (ISS) reference frame is vitally important for prompt evaluation of the object s imminent orbit. We report on the first successful application of photogrammetric analysis of the ISS imagery for the prompt computation of the jettisoned object s position and velocity vectors. As post-EVA analyses examples, we present the Floating Potential Probe (FPP) and the Russian "Orlan" Space Suit jettisons, as well as the near-real-time (provided in several hours after the separation) computations of the Video Stanchion Support Assembly Flight Support Assembly (VSSA-FSA) and Early Ammonia Servicer (EAS) jettisons during the US astronauts space-walk. Standard close-range photogrammetry analysis was used during this EVA to analyze two on-board camera image sequences down-linked from the ISS. In this approach the ISS camera orientations were computed from known coordinates of several reference points on the ISS hardware. Then the position of the jettisoned object for each time-frame was computed from its image in each frame of the video-clips. In another, "quick-look" approach used in near-real time, orientation of the cameras was computed from their position (from the ISS CAD model) and operational data (pan and tilt) then location of the jettisoned object was calculated only for several frames of the two synchronized movies. Keywords: Photogrammetry, International Space Station, jettisons, image analysis.
A comparison of spacecraft penetration hazards due to meteoroids and manmade earth-orbiting objects
NASA Technical Reports Server (NTRS)
Brooks, D. R.
1976-01-01
The ability of a typical double-walled spacecraft structure to protect against penetration by high-velocity incident objects is reviewed. The hazards presented by meteoroids are compared to the current and potential hazards due to manmade orbiting objects. It is shown that the nature of the meteoroid number-mass relationship makes adequate protection for large space facilities a conceptually straightforward structural problem. The present level of manmade orbiting objects (an estimated 10,000 in early 1975) does not pose an unacceptable risk to manned space operations proposed for the near future, but it does produce penetration probabilities in the range of 1-10 percent for a 100-m diameter sphere in orbit for 1,000 days. The number-size distribution of manmade objects is such that adequate protection is difficult to achieve for large permanent space facilities, to the extent that future restrictions on such facilities may result if the growth of orbiting objects continues at its historical rate.
Language within your reach: near-far perceptual space and spatial demonstratives.
Coventry, Kenny R; Valdés, Berenice; Castillo, Alejandro; Guijarro-Fuentes, Pedro
2008-09-01
Spatial demonstratives (this/that) play a crucial role when indicating object locations using language. However, the relationship between the use of these proximal and distal linguistic descriptors and the near (peri-personal) versus far (extra-personal) perceptual space distinction is a source of controversy [Kemmerer, D. (1999). "Near" and "far" in language and perception. Cognition 73, 35-63], and has been hitherto under investigated. Two experiments examined the influence of object distance from speaker, tool use (participants pointed at objects with their finger/arm or with a stick), and interaction with objects (whether or not participants placed objects themselves) on spatial demonstrative use (e.g. this/that red triangle) in English (this/that) and Spanish (este/ese/aquel). The results show that the use of demonstratives across two languages is affected by distance from speaker and by both tool use and interaction with objects. These results support the view that spatial demonstrative use corresponds with a basic distinction between near and far perceptual space.
Implementation of an open-scenario, long-term space debris simulation approach
NASA Astrophysics Data System (ADS)
Stupl, J.; Nelson, B.; Faber, N.; Perez, A.; Carlino, R.; Yang, F.; Henze, C.; Karacalioglu, A.; O'Toole, C.; Swenson, J.
This paper provides a status update on the implementation of a flexible, long-term space debris simulation approach. The motivation is to build a tool that can assess the long-term impact of various options for debris-remediation, including the LightForce space debris collision avoidance scheme. State-of-the-art simulation approaches that assess the long-term development of the debris environment use either completely statistical approaches, or they rely on large time steps in the order of several (5-15) days if they simulate the positions of single objects over time. They cannot be easily adapted to investigate the impact of specific collision avoidance schemes or de-orbit schemes, because the efficiency of a collision avoidance maneuver can depend on various input parameters, including ground station positions, space object parameters and orbital parameters of the conjunctions and take place in much smaller timeframes than 5-15 days. For example, LightForce only changes the orbit of a certain object (aiming to reduce the probability of collision), but it does not remove entire objects or groups of objects. In the same sense, it is also not straightforward to compare specific de-orbit methods in regard to potential collision risks during a de-orbit maneuver. To gain flexibility in assessing interactions with objects, we implement a simulation that includes every tracked space object in LEO, propagates all objects with high precision, and advances with variable-sized time-steps as small as one second. It allows the assessment of the (potential) impact of changes to any object. The final goal is to employ a Monte Carlo approach to assess the debris evolution during the simulation time-frame of 100 years and to compare a baseline scenario to debris remediation scenarios or other scenarios of interest. To populate the initial simulation, we use the entire space-track object catalog in LEO. We then use a high precision propagator to propagate all objects over the entire simulation duration. If collisions are detected, the appropriate number of debris objects are created and inserted into the simulation framework. Depending on the scenario, further objects, e.g. due to new launches, can be added. At the end of the simulation, the total number of objects above a cut-off size and the number of detected collisions provide benchmark parameters for the comparison between scenarios. The simulation approach is computationally intensive as it involves ten thousands of objects; hence we use a highly parallel approach employing up to a thousand cores on the NASA Pleiades supercomputer for a single run. This paper describes our simulation approach, the status of its implementation, the approach in developing scenarios and examples of first test runs.
Liu, Fei; Zhang, Xi; Jia, Yan
2015-01-01
In this paper, we propose a computer information processing algorithm that can be used for biomedical image processing and disease prediction. A biomedical image is considered a data object in a multi-dimensional space. Each dimension is a feature that can be used for disease diagnosis. We introduce a new concept of the top (k1,k2) outlier. It can be used to detect abnormal data objects in the multi-dimensional space. This technique focuses on uncertain space, where each data object has several possible instances with distinct probabilities. We design an efficient sampling algorithm for the top (k1,k2) outlier in uncertain space. Some improvement techniques are used for acceleration. Experiments show our methods' high accuracy and high efficiency.
State-of-the art of dc components for secondary power distribution of Space Station Freedom
NASA Technical Reports Server (NTRS)
Krauthamer, Stanley; Gangal, Mukund; Das, Radhe S. L.
1991-01-01
120-V dc secondary power distribution has been selected for Space Station Freedom. State-of-the art components and subsystems are examined in terms of performance, size, and topology. One of the objectives of this work is to inform Space Station users what is available in power supplies and power control devices. The other objective is to stimulate interest in the component industry so that more focused product development can be started. Based on results of this study, it is estimated that, with some redesign, modifications, and space qualification, may of these components may be applied to Space Station needs.
1996-06-20
Engineers at one of MSFC's vacuum chambers begin testing a microthruster model. The purpose of these tests are to collect sufficient data that will enabe NASA to develop microthrusters that will move the Space Shuttle, a future space station, or any other space related vehicle with the least amount of expended energy. When something is sent into outer space, the forces that try to pull it back to Earth (gravity) are very small so that it only requires a very small force to move very large objects. In space, a force equal to a paperclip can move an object as large as a car. Microthrusters are used to produce these small forces.
Vision-based overlay of a virtual object into real scene for designing room interior
NASA Astrophysics Data System (ADS)
Harasaki, Shunsuke; Saito, Hideo
2001-10-01
In this paper, we introduce a geometric registration method for augmented reality (AR) and an application system, interior simulator, in which a virtual (CG) object can be overlaid into a real world space. Interior simulator is developed as an example of an AR application of the proposed method. Using interior simulator, users can visually simulate the location of virtual furniture and articles in the living room so that they can easily design the living room interior without placing real furniture and articles, by viewing from many different locations and orientations in real-time. In our system, two base images of a real world space are captured from two different views for defining a projective coordinate of object 3D space. Then each projective view of a virtual object in the base images are registered interactively. After such coordinate determination, an image sequence of a real world space is captured by hand-held camera with tracking non-metric measured feature points for overlaying a virtual object. Virtual objects can be overlaid onto the image sequence by taking each relationship between the images. With the proposed system, 3D position tracking device, such as magnetic trackers, are not required for the overlay of virtual objects. Experimental results demonstrate that 3D virtual furniture can be overlaid into an image sequence of the scene of a living room nearly at video rate (20 frames per second).
Launch activity and orbital debris mitigation : second quarter 2002 Quarterly Launch Report
DOT National Transportation Integrated Search
2002-01-01
Since the start of human space activity, the number of orbital debris, or artificial objects orbiting Earth that are no longer functional, : has steadily increased. These debris make up 95 percent of all orbiting space objects and consist of spent sa...
Electronystagmography and audio potentials in space flight
NASA Technical Reports Server (NTRS)
Thornton, William E.; Biggers, W. P.; Pool, Sam L.; Thomas, W. G.; Thagard, Norman E.
1985-01-01
Beginning with the fourth flight of the Space Transport System (STS-4), objective measurements of inner ear function were conducted in near-zero G conditions in earth orbit. The problem of space motion sickness (SMS) was approached much like any disequilibrium problem encountered clinically. However, objective testing techniques had built-in limitations superimposed by the strict parameters inherent in each mission. An attempt was made to objectively characterize SMS, and to first ascertain whether the objective measurements indicated that this disorder was of peripheral or central origin. Electronystagmography and auditory brain stem response recordings were the primary investigative tools. One of the authors (W.E.T.) was a mission specialist on board the orbiter Challenger on the eighth shuttle mission (STS-8) and had the opportunity to make direct and personal observations regarding SMS, an opportunity which has added immeasurably to our understanding of this disorder. Except for two abnormal ENG records, which remain to be explained, the remaining ENG records and all the ABR records made in the weightless environment of space were normal.
WWWinda Orchestrator: a mechanism for coordinating distributed flocks of Java Applets
NASA Astrophysics Data System (ADS)
Gutfreund, Yechezkal-Shimon; Nicol, John R.
1997-01-01
The WWWinda Orchestrator is a simple but powerful tool for coordinating distributed Java applets. Loosely derived from the Linda programming language developed by David Gelernter and Nicholas Carriero of Yale, WWWinda implements a distributed shared object space called TupleSpace where applets can post, read, or permanently store arbitrary Java objects. In this manner, applets can easily share information without being aware of the underlying communication mechanisms. WWWinda is a very useful for orchestrating flocks of distributed Java applets. Coordination event scan be posted to WWWinda TupleSpace and used to orchestrate the actions of remote applets. Applets can easily share information via the TupleSpace. The technology combines several functions in one simple metaphor: distributed web objects, remote messaging between applets, distributed synchronization mechanisms, object- oriented database, and a distributed event signaling mechanisms. WWWinda can be used a s platform for implementing shared VRML environments, shared groupware environments, controlling remote devices such as cameras, distributed Karaoke, distributed gaming, and shared audio and video experiences.
Photon momentum transfer plane for asteroid, meteoroid, and comet orbit shaping
NASA Technical Reports Server (NTRS)
Campbell, Jonathan W. (Inventor)
2004-01-01
A spacecraft docks with a spinning and/or rotating asteroid, meteoroid, comet, or other space object, utilizing a tether shaped in a loop and utilizing subvehicles appropriately to control loop instabilities. The loop is positioned about a portion of the asteroid and retracted thereby docking the spacecraft to the asteroid, meteoroid, comet, or other space object. A deployable rigidized, photon momentum transfer plane of sufficient thickness may then be inflated and filled with foam. This plane has a reflective surface that assists in generating a larger momentum from impinging photons. This plane may also be moved relative to the spacecraft to alter the forces acting on it, and thus on the asteroid, meteoroid, comet, or other space object to which it is attached. In general, these forces may be utilized, over time, to alter the orbits of asteroids, meteoroids, comets, or other space objects. Sensors and communication equipment may be utilized to allow remote operation of the rigidized, photon momentum transfer plane and tether.
Orbital debris removal using ground-based lasers
NASA Technical Reports Server (NTRS)
Taylor, Charles R.
1996-01-01
Orbiting the Earth are spent rocket stages, non-functioning satellites, hardware from satellite deployment and staging, fragments of exploded spacecraft, and other relics of decades of space exploration: orbital debris. The United States Space Command tracks and maintains a catalog of the largest objects. The catalog contains over 7000 objects. Recent studies have assessed the debris environment in an effort to estimate the number of smaller particles and the probability of a collision causing catastrophic damage to a functioning spacecraft. The results of the studies can be used to show, for example, that the likelihood of a collision of a particle larger than about one centimeter in diameter with the International Space Station during a 10-year period is a few percent, roughly in agreement with earlier estimates for Space Station Freedom. Particles greater than about one centimeter in diameter pose the greatest risk to shielded spacecraft. There are on the order of 105 such particles in low Earth orbit. The United States National Space Policy, begun in 1988, is to minimize debris consistent with mission requirements. Measures such as venting unused fuel to prevent explosions, retaining staging and deployment hardware, and shielding against smaller debris have been taken by the U.S. and other space faring nations. There is at present no program to remove debris from orbit. The natural tendency for upper atmospheric drag to remove objects from low Earth orbit is more than balanced by the increase in the number of debris objects from new launches and fragmentation of existing objects. In this paper I describe a concept under study by the Program Development Laboratory of Marshall Space Flight Center and others to remove debris with a ground-based laser. A longer version of this report, including figures, is available from the author.
Exploration of complex visual feature spaces for object perception
Leeds, Daniel D.; Pyles, John A.; Tarr, Michael J.
2014-01-01
The mid- and high-level visual properties supporting object perception in the ventral visual pathway are poorly understood. In the absence of well-specified theory, many groups have adopted a data-driven approach in which they progressively interrogate neural units to establish each unit's selectivity. Such methods are challenging in that they require search through a wide space of feature models and stimuli using a limited number of samples. To more rapidly identify higher-level features underlying human cortical object perception, we implemented a novel functional magnetic resonance imaging method in which visual stimuli are selected in real-time based on BOLD responses to recently shown stimuli. This work was inspired by earlier primate physiology work, in which neural selectivity for mid-level features in IT was characterized using a simple parametric approach (Hung et al., 2012). To extend such work to human neuroimaging, we used natural and synthetic object stimuli embedded in feature spaces constructed on the basis of the complex visual properties of the objects themselves. During fMRI scanning, we employed a real-time search method to control continuous stimulus selection within each image space. This search was designed to maximize neural responses across a pre-determined 1 cm3 brain region within ventral cortex. To assess the value of this method for understanding object encoding, we examined both the behavior of the method itself and the complex visual properties the method identified as reliably activating selected brain regions. We observed: (1) Regions selective for both holistic and component object features and for a variety of surface properties; (2) Object stimulus pairs near one another in feature space that produce responses at the opposite extremes of the measured activity range. Together, these results suggest that real-time fMRI methods may yield more widely informative measures of selectivity within the broad classes of visual features associated with cortical object representation. PMID:25309408
Multi-optimization Criteria-based Robot Behavioral Adaptability and Motion Planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pin, Francois G.
2002-06-01
Robotic tasks are typically defined in Task Space (e.g., the 3-D World), whereas robots are controlled in Joint Space (motors). The transformation from Task Space to Joint Space must consider the task objectives (e.g., high precision, strength optimization, torque optimization), the task constraints (e.g., obstacles, joint limits, non-holonomic constraints, contact or tool task constraints), and the robot kinematics configuration (e.g., tools, type of joints, mobile platform, manipulator, modular additions, locked joints). Commercially available robots are optimized for a specific set of tasks, objectives and constraints and, therefore, their control codes are extremely specific to a particular set of conditions. Thus,more » there exist a multiplicity of codes, each handling a particular set of conditions, but none suitable for use on robots with widely varying tasks, objectives, constraints, or environments. On the other hand, most DOE missions and tasks are typically ''batches of one''. Attempting to use commercial codes for such work requires significant personnel and schedule costs for re-programming or adding code to the robots whenever a change in task objective, robot configuration, number and type of constraint, etc. occurs. The objective of our project is to develop a ''generic code'' to implement this Task-space to Joint-Space transformation that would allow robot behavior adaptation, in real time (at loop rate), to changes in task objectives, number and type of constraints, modes of controls, kinematics configuration (e.g., new tools, added module). Our specific goal is to develop a single code for the general solution of under-specified systems of algebraic equations that is suitable for solving the inverse kinematics of robots, is useable for all types of robots (mobile robots, manipulators, mobile manipulators, etc.) with no limitation on the number of joints and the number of controlled Task-Space variables, can adapt to real time changes in number and type of constraints and in task objectives, and can adapt to changes in kinematics configurations (change of module, change of tool, joint failure adaptation, etc.).« less
Dialogue between the Inner and Outer Space of the Building
NASA Astrophysics Data System (ADS)
Orchowska, Anita
2017-10-01
The article presents the issues connected with the creation of the flow of space and the dialogue between the inner and outer space of the existing architectural objects. While the building industry and contemporary architectural concepts are developing, a man constantly turns to nature. He expresses his incessant longing for being in touch with the natural landscape by using these mutual relations in his solutions. In many cases a building may absorb its closest surroundings to the interior creating the illusive impression of its integrity with nature. Such solutions are commonly used and justified especially in suburban areas, where the natural landscape is an inspiration for every kind of spatial solution. Functional and spatial analysis of the solutions for buildings of different purposes prove that the role of the space flow between the inner and outer space of architectural objects is of great significance in shaping the quality of space, living comfort and aesthetic attractiveness of an object. Another beneficial activity is using transparency in the designed objects, letting the natural light into the inside and taking advantage of open spaces such as patios or atriums. A big role in building the relation between the inside and the outside of an object has the use of adequate materials and material borrowings, which integrate these two separate surroundings and make them similar. Finally, the creation of the junctures and the panoramic views from the interior of the object, of the designed place, emphasizes the interaction between the object and its natural surroundings. Which of these solutions create the best microclimate? May the creation of the relationship between the inside and the outside make the architecture more human, bring a man closer to nature, pretend in an unrestrained way the naturalness of the not natural landscape? What role does the spatial dialogue play from the environmental psychology point of view? Is it a desired phenomenon in architecture or just a confusing play? May it sooth the senses and become the remedy for the mankind’s contemporary lifestyle diseases?
NASA Technical Reports Server (NTRS)
Tiscareno, Matthew S.; Showalter, Mark R.; French, Richard G.; Burns, Joseph A.; Cuzzi, Jeffrey N.; de Pater, Imke; Hamilton, Douglas P.; Hedman, Matthew M.; Nicholson, Philip D.; Tamayo, Daniel;
2016-01-01
The James Webb Space Telescope (JWST) will provide unprecedented opportunities to observe the rings and small satellites in our Solar System, accomplishing three primary objectives: (1) discovering new rings and moons, (2) unprecedented spectroscopy, and (3) time-domain observations. We give details on these science objectives and describe requirements that JWST must fulfill in order to accomplish the science objectives.
CAD-model-based vision for space applications
NASA Technical Reports Server (NTRS)
Shapiro, Linda G.
1988-01-01
A pose acquisition system operating in space must be able to perform well in a variety of different applications including automated guidance and inspections tasks with many different, but known objects. Since the space station is being designed with automation in mind, there will be CAD models of all the objects, including the station itself. The construction of vision models and procedures directly from the CAD models is the goal of this project. The system that is being designed and implementing must convert CAD models to vision models, predict visible features from a given view point from the vision models, construct view classes representing views of the objects, and use the view class model thus derived to rapidly determine the pose of the object from single images and/or stereo pairs.
Estimation of the object orientation and location with the use of MEMS sensors
NASA Astrophysics Data System (ADS)
Sawicki, Aleksander; Walendziuk, Wojciech; Idzkowski, Adam
2015-09-01
The article presents the implementation of the estimation algorithms of orientation in 3D space and the displacement of an object in a 2D space. Moreover, a general orientation storage methods using Euler angles, quaternion and rotation matrix are presented. The experimental part presents the results of the complementary filter implementation. In the study experimental microprocessor module based on STM32f4 Discovery system and myRIO hardware platform equipped with FPGA were used. The attempt to track an object in two-dimensional space, which are showed in the final part of this article, were made with the use of the equipment mentioned above.
2003-05-02
KENNEDY SPACE CENTER, FLA. - The Space Infrared Telescope Facility (SIRTF) has been returned to NASA Spacecraft Hangar AE from the launch pad. It will remain in the clean room until it returns to the pad in early August. One of NASA's largest infrared telescopes to be launched, SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.
Identification of geostationary satellites using polarization data from unresolved images
NASA Astrophysics Data System (ADS)
Speicher, Andy
In order to protect critical military and commercial space assets, the United States Space Surveillance Network must have the ability to positively identify and characterize all space objects. Unfortunately, positive identification and characterization of space objects is a manual and labor intensive process today since even large telescopes cannot provide resolved images of most space objects. Since resolved images of geosynchronous satellites are not technically feasible with current technology, another method of distinguishing space objects was explored that exploits the polarization signature from unresolved images. The objective of this study was to collect and analyze visible-spectrum polarization data from unresolved images of geosynchronous satellites taken over various solar phase angles. Different collection geometries were used to evaluate the polarization contribution of solar arrays, thermal control materials, antennas, and the satellite bus as the solar phase angle changed. Since materials on space objects age due to the space environment, it was postulated that their polarization signature may change enough to allow discrimination of identical satellites launched at different times. The instrumentation used in this experiment was a United States Air Force Academy (USAFA) Department of Physics system that consists of a 20-inch Ritchey-Chretien telescope and a dual focal plane optical train fed with a polarizing beam splitter. A rigorous calibration of the system was performed that included corrections for pixel bias, dark current, and response. Additionally, the two channel polarimeter was calibrated by experimentally determining the Mueller matrix for the system and relating image intensity at the two cameras to Stokes parameters S0 and S1. After the system calibration, polarization data was collected during three nights on eight geosynchronous satellites built by various manufacturers and launched several years apart. Three pairs of the eight satellites were identical buses to determine if identical buses could be correctly differentiated. When Stokes parameters were plotted against time and solar phase angle, the data indicates that there were distinguishing features in S0 (total intensity) and S1 (linear polarization) that may lead to positive identification or classification of each satellite.
Realism and Perspectivism: a Reevaluation of Rival Theories of Spatial Vision.
NASA Astrophysics Data System (ADS)
Thro, E. Broydrick
1990-01-01
My study reevaluates two theories of human space perception, a trigonometric surveying theory I call perspectivism and a "scene recognition" theory I call realism. Realists believe that retinal image geometry can supply no unambiguous information about an object's size and distance--and that, as a result, viewers can locate objects in space only by making discretionary interpretations based on familiar experience of object types. Perspectivists, in contrast, think viewers can disambiguate object sizes/distances on the basis of retinal image information alone. More specifically, they believe the eye responds to perspective image geometry with an automatic trigonometric calculation that not only fixes the directions and shapes, but also roughly fixes the sizes and distances of scene elements in space. Today this surveyor theory has been largely superceded by the realist approach, because most vision scientists believe retinal image geometry is ambiguous about the scale of space. However, I show that there is a considerable body of neglected evidence, both past and present, tending to call this scale ambiguity claim into question. I maintain that this evidence against scale ambiguity could hardly be more important, if one considers its subversive implications for the scene recognition theory that is not only today's reigning approach to spatial vision, but also the foundation for computer scientists' efforts to create space-perceiving robots. If viewers were deemed to be capable of automatic surveying calculations, the discretionary scene recognition theory would lose its main justification. Clearly, it would be difficult for realists to maintain that we viewers rely on scene recognition for space perception in spite of our ability to survey. And in reality, as I show, the surveyor theory does a much better job of describing the everyday space we viewers actually see--a space featuring stable, unambiguous relationships among scene elements, and a single horizon and vanishing point for (meter-scale) receding objects. In addition, I argue, the surveyor theory raises fewer philosophical difficulties, because it is more in harmony with our everyday concepts of material objects, human agency and the self.
NASA Astrophysics Data System (ADS)
Bourassa, M.; Osinski, G. R.; Cross, M.; Hill, P.; King, D.; Morse, Z.; Pilles, E.; Tolometti, G.; Tornabene, L. L.; Zanetti, M.
2018-02-01
Canadian contributions to the science goals and objectives of a lunar precursor rover for HERACLES, an international mission concept, are discussed. Enabled by the Deep Space Gateway, this rover is a technical demonstrator for robotic sample return.
ERIC Educational Resources Information Center
Reynolds, Ronald F.
1984-01-01
Describes the basic components of a space telescope that will be launched during a 1986 space shuttle mission. These components include a wide field/planetary camera, faint object spectroscope, high-resolution spectrograph, high-speed photometer, faint object camera, and fine guidance sensors. Data to be collected from these instruments are…
NASA Astrophysics Data System (ADS)
Hu, Yun-peng; Chen, Lei; Huang, Jian-yu
2017-08-01
The US Lincoln Laboratory proved that space-based visible (SBV) observation is efficient to observe space objects, especially Geosynchronous Orbit (GEO) objects. After that, SBV observation plays an important role in the space surveillance. In this paper, a novel space-based observation mode is designed to observe all the GEO objects in a relatively short time. A low earth orbit (LEO) satellite, especially a dawn-dusk sun-synchronous orbit satellite, is useful for space-based observation. Thus, the observation mode for GEO objects is based on a dawn-dusk sun-synchronous orbit satellite. It is found that the Pinch Point (PP) regions proposed by the US Lincoln Laboratory are spreading based on the analysis of the evolution principles of GEO objects. As the PP regions becoming more and more widely in the future, many strategies based on it may not be efficient any more. Hence, the key point of the space-based observation strategy design for GEO objects should be emphasized on the whole GEO belt as far as possible. The pseudo-fixed latitude observation mode is proposed in this paper based on the characteristics of GEO belt. Unlike classical space-based observation modes, pseudo-fixed latitude observation mode makes use of the one-dimensional attitude adjustment of the observation satellite. The pseudo-fixed latitude observation mode is more reliable and simple in engineering, compared with the gazing observation mode which needs to adjust the attitude from the two dimensions. It includes two types of attitude adjustment, i.e. daily and continuous attitude adjustment. Therefore, the pseudo-fixed latitude observation mode has two characteristics. In a day, the latitude of the observation region is fixed and the scanning region is about a rectangle, while the latitude of the observation region centre changes each day in a long term based on a daily strategy. The capabilities of a pseudo-fixed latitude observation instrument with a 98° dawn-dusk sun-synchronous orbit are discussed. It is found that most of GEO objects can be visited every day and almost all the GEO objects can be visited in two days in the whole year using a sensor with 20°×2° field of view (FOV). The seasonal drops, which are caused by the characteristics of GEO belt and the influence of earth shadow at the two equinoxes, have been overcome under the pseudo-fixed observation mode.
The New Jettison Policy for the International Space Station
NASA Technical Reports Server (NTRS)
Johnson, Nicholas L.
2006-01-01
During more than seven years of operations by the International Space Station (ISS), approximately three dozen pieces of debris were released and subsequently cataloged by the U.S. Space Surveillance Network (SSN). The individual mass of these objects ranged from less than 1 kg to 70 kg. Although some of these debris were separated from the ISS accidentally, some were intentionally cast-off, especially the larger items. In addition, small operational satellites are candidates for launch from the ISS, such as the TNS-O satellite deployed from ISS in March 2005. Recently an official ISS Jettison Policy was developed to ensure that decisions to deliberately release objects in the future were based upon a complete evaluation of the benefits and risks to the ISS, other resident space objects, and people on the Earth. The policy identifies four categories of items which might be considered for release: (1) items that pose a safety issue for return on-board a visiting vehicle, (2) items that negatively impact ISS utilization, return, or on-orbit stowage manifests, (3) items that represent an EVA timeline savings, and (4) items that are designed for jettison. Some of the principal issues to be addressed during this evaluation process are the potential for the object to recontact the ISS within the first two days after jettison, the potential of the object to breakup prior to reentry, the ability of the SSN to track the object, and the risk to people on Earth from components which might survive reentry. This paper summarizes the history of objects released from ISS, examines the specifics of the ISS jettison policy, and addresses the overall impact of ISS debris on the space environment.
Smid, Henderikus G. O. M.; Bruggeman, Richard; Martens, Sander
2013-01-01
Background Schizophrenia is associated with impairments of the perception of objects, but how this affects higher cognitive functions, whether this impairment is already present after recent onset of psychosis, and whether it is specific for schizophrenia related psychosis, is not clear. We therefore tested the hypothesis that because schizophrenia is associated with impaired object perception, schizophrenia patients should differ in shifting attention between objects compared to healthy controls. To test this hypothesis, a task was used that allowed us to separately observe space-based and object-based covert orienting of attention. To examine whether impairment of object-based visual attention is related to higher order cognitive functions, standard neuropsychological tests were also administered. Method Patients with recent onset psychosis and normal controls performed the attention task, in which space- and object-based attention shifts were induced by cue-target sequences that required reorienting of attention within an object, or reorienting attention between objects. Results Patients with and without schizophrenia showed slower than normal spatial attention shifts, but the object-based component of attention shifts in patients was smaller than normal. Schizophrenia was specifically associated with slowed right-to-left attention shifts. Reorienting speed was significantly correlated with verbal memory scores in controls, and with visual attention scores in patients, but not with speed-of-processing scores in either group. Conclusions deficits of object-perception and spatial attention shifting are not only associated with schizophrenia, but are common to all psychosis patients. Schizophrenia patients only differed by having abnormally slow right-to-left visual field reorienting. Deficits of object-perception and spatial attention shifting are already present after recent onset of psychosis. Studies investigating visual spatial attention should take into account the separable effects of space-based and object-based shifting of attention. Impaired reorienting in patients was related to impaired visual attention, but not to deficits of processing speed and verbal memory. PMID:23536901
Smid, Henderikus G O M; Bruggeman, Richard; Martens, Sander
2013-01-01
Schizophrenia is associated with impairments of the perception of objects, but how this affects higher cognitive functions, whether this impairment is already present after recent onset of psychosis, and whether it is specific for schizophrenia related psychosis, is not clear. We therefore tested the hypothesis that because schizophrenia is associated with impaired object perception, schizophrenia patients should differ in shifting attention between objects compared to healthy controls. To test this hypothesis, a task was used that allowed us to separately observe space-based and object-based covert orienting of attention. To examine whether impairment of object-based visual attention is related to higher order cognitive functions, standard neuropsychological tests were also administered. Patients with recent onset psychosis and normal controls performed the attention task, in which space- and object-based attention shifts were induced by cue-target sequences that required reorienting of attention within an object, or reorienting attention between objects. Patients with and without schizophrenia showed slower than normal spatial attention shifts, but the object-based component of attention shifts in patients was smaller than normal. Schizophrenia was specifically associated with slowed right-to-left attention shifts. Reorienting speed was significantly correlated with verbal memory scores in controls, and with visual attention scores in patients, but not with speed-of-processing scores in either group. deficits of object-perception and spatial attention shifting are not only associated with schizophrenia, but are common to all psychosis patients. Schizophrenia patients only differed by having abnormally slow right-to-left visual field reorienting. Deficits of object-perception and spatial attention shifting are already present after recent onset of psychosis. Studies investigating visual spatial attention should take into account the separable effects of space-based and object-based shifting of attention. Impaired reorienting in patients was related to impaired visual attention, but not to deficits of processing speed and verbal memory.
In-Space Cryogenic Propellant Depot (ISCPD) Architecture Definitions and Systems Studies
NASA Technical Reports Server (NTRS)
Fikes, John C.; Howell, Joe T.; Henley, Mark
2006-01-01
The objectives of the ISCPD Architecture Definitions and Systems Studies were to determine high leverage propellant depot architecture concepts, system configuration trades, and related technologies to enable more ambitious and affordable human and robotic exploration of the Earth Neighborhood and beyond. This activity identified architectures and concepts that preposition and store propellants in space for exploration and commercial space activities, consistent with Exploration Systems Research and Technology (ESR&T) objectives. Commonalities across mission scenarios for these architecture definitions, depot concepts, technologies, and operations were identified that also best satisfy the Vision of Space Exploration. Trade studies were conducted, technology development needs identified and assessments performed to drive out the roadmap for obtaining an in-space cryogenic propellant depot capability. The Boeing Company supported the NASA Marshall Space Flight Center (MSFC) by conducting this Depot System Architecture Development Study. The primary objectives of this depot architecture study were: (1) determine high leverage propellant depot concepts and related technologies; (2) identify commonalities across mission scenarios of depot concepts, technologies, and operations; (3) determine the best depot concepts and key technology requirements and (4) identify technology development needs including definition of ground and space test article requirements.
NASA Technical Reports Server (NTRS)
Englander, Jacob; Vavrina, Matthew
2015-01-01
The customer (scientist or project manager) most often does not want just one point solution to the mission design problem Instead, an exploration of a multi-objective trade space is required. For a typical main-belt asteroid mission the customer might wish to see the trade-space of: Launch date vs. Flight time vs. Deliverable mass, while varying the destination asteroid, planetary flybys, launch year, etcetera. To address this question we use a multi-objective discrete outer-loop which defines many single objective real-valued inner-loop problems.
Space station thermal control surfaces. Volume 1: Interim report
NASA Technical Reports Server (NTRS)
Maag, C. R.; Millard, J. M.
1978-01-01
The U.S. space program goals for long-duration manned missions place particular demands on thermal-control systems. The objective of this program is to develop plans which are based on the present thermal-control technology, and which will keep pace with the other space program elements. The program tasks are as follows: (1) requirements analysis, with the objectives to define the thermal-control-surface requirements for both space station and 25 kW power module, to analyze the missions, and to determine the thermal-control-surface technology needed to satisfy both sets of requirements; (2) technology assessment, with the objectives to perform a literature/industry survey on thermal-control surfaces, to compare current technology with the requirements developed in the first task, and to determine what technology advancements are required for both the space station and the 25 kW power module; and (3) program planning that defines new initiative and/or program augmentation for development and testing areas required to provide the proper environment control for the space station and the 25 kW power module.
Improved space object detection using short-exposure image data with daylight background.
Becker, David; Cain, Stephen
2018-05-10
Space object detection is of great importance in the highly dependent yet competitive and congested space domain. The detection algorithms employed play a crucial role in fulfilling the detection component in the space situational awareness mission to detect, track, characterize, and catalog unknown space objects. Many current space detection algorithms use a matched filter or a spatial correlator on long-exposure data to make a detection decision at a single pixel point of a spatial image based on the assumption that the data follow a Gaussian distribution. Long-exposure imaging is critical to detection performance in these algorithms; however, for imaging under daylight conditions, it becomes necessary to create a long-exposure image as the sum of many short-exposure images. This paper explores the potential for increasing detection capabilities for small and dim space objects in a stack of short-exposure images dominated by a bright background. The algorithm proposed in this paper improves the traditional stack and average method of forming a long-exposure image by selectively removing short-exposure frames of data that do not positively contribute to the overall signal-to-noise ratio of the averaged image. The performance of the algorithm is compared to a traditional matched filter detector using data generated in MATLAB as well as laboratory-collected data. The results are illustrated on a receiver operating characteristic curve to highlight the increased probability of detection associated with the proposed algorithm.
Hu, Weiming; Gao, Jin; Xing, Junliang; Zhang, Chao; Maybank, Stephen
2017-01-01
An appearance model adaptable to changes in object appearance is critical in visual object tracking. In this paper, we treat an image patch as a two-order tensor which preserves the original image structure. We design two graphs for characterizing the intrinsic local geometrical structure of the tensor samples of the object and the background. Graph embedding is used to reduce the dimensions of the tensors while preserving the structure of the graphs. Then, a discriminant embedding space is constructed. We prove two propositions for finding the transformation matrices which are used to map the original tensor samples to the tensor-based graph embedding space. In order to encode more discriminant information in the embedding space, we propose a transfer-learning- based semi-supervised strategy to iteratively adjust the embedding space into which discriminative information obtained from earlier times is transferred. We apply the proposed semi-supervised tensor-based graph embedding learning algorithm to visual tracking. The new tracking algorithm captures an object's appearance characteristics during tracking and uses a particle filter to estimate the optimal object state. Experimental results on the CVPR 2013 benchmark dataset demonstrate the effectiveness of the proposed tracking algorithm.
NASA Technical Reports Server (NTRS)
1973-01-01
The objectives, functions, and organization of the Deep Space Network are summarized. The Deep Space Instrumentation Facility, the Ground Communications Facility, and the Network Control System are described.
Marginal space learning for efficient detection of 2D/3D anatomical structures in medical images.
Zheng, Yefeng; Georgescu, Bogdan; Comaniciu, Dorin
2009-01-01
Recently, marginal space learning (MSL) was proposed as a generic approach for automatic detection of 3D anatomical structures in many medical imaging modalities [1]. To accurately localize a 3D object, we need to estimate nine pose parameters (three for position, three for orientation, and three for anisotropic scaling). Instead of exhaustively searching the original nine-dimensional pose parameter space, only low-dimensional marginal spaces are searched in MSL to improve the detection speed. In this paper, we apply MSL to 2D object detection and perform a thorough comparison between MSL and the alternative full space learning (FSL) approach. Experiments on left ventricle detection in 2D MRI images show MSL outperforms FSL in both speed and accuracy. In addition, we propose two novel techniques, constrained MSL and nonrigid MSL, to further improve the efficiency and accuracy. In many real applications, a strong correlation may exist among pose parameters in the same marginal spaces. For example, a large object may have large scaling values along all directions. Constrained MSL exploits this correlation for further speed-up. The original MSL only estimates the rigid transformation of an object in the image, therefore cannot accurately localize a nonrigid object under a large deformation. The proposed nonrigid MSL directly estimates the nonrigid deformation parameters to improve the localization accuracy. The comparison experiments on liver detection in 226 abdominal CT volumes demonstrate the effectiveness of the proposed methods. Our system takes less than a second to accurately detect the liver in a volume.
Risk to space sustainability from large constellations of satellites
NASA Astrophysics Data System (ADS)
Bastida Virgili, B.; Dolado, J. C.; Lewis, H. G.; Radtke, J.; Krag, H.; Revelin, B.; Cazaux, C.; Colombo, C.; Crowther, R.; Metz, M.
2016-09-01
The number of artificial objects in orbit continues to increase and, with it, a key threat to space sustainability. In response, space agencies have identified a set of mitigation guidelines aimed at enabling space users to reduce the generation of space debris by, for example, limiting the orbital lifetime of their spacecraft and launcher stages after the end of their mission. Planned, large constellations of satellites in low Earth orbit (LEO), though addressing the lack of basic internet coverage in some world regions, may disrupt the sustainability of the space environment enabled by these mitigation practices. We analyse the response of the space object population to the introduction of a large constellation conforming to the post-mission disposal guideline with differing levels of success and with different disposal orbit options. The results show that a high success rate of post-mission disposal by constellation satellites is a key driver for space sustainability.
The Deep Space Network, volume 17
NASA Technical Reports Server (NTRS)
1973-01-01
The objectives, functions, and organization of the Deep Space Network are summarized. The Deep Space Instrumentation Facility, the Ground Communications Facility, and the Network Control System are described.
Solar Heated Space Systems. A Unit of Instruction.
ERIC Educational Resources Information Center
Hutchinson, John; Weber, Robert D.
Designed for use in vocational education programs, this unit on solar space heating contains information and suggestions for teaching at the secondary school level. It focuses on heating, ventilating, and air conditioning programs. Educational objectives and educational objectives with instructional strategies are provided for each of the eight…
Demonstration of a 3D vision algorithm for space applications
NASA Technical Reports Server (NTRS)
Defigueiredo, Rui J. P. (Editor)
1987-01-01
This paper reports an extension of the MIAG algorithm for recognition and motion parameter determination of general 3-D polyhedral objects based on model matching techniques and using movement invariants as features of object representation. Results of tests conducted on the algorithm under conditions simulating space conditions are presented.
Planning the Recreational-Educational Complex of the Alabama Space and Rocket Center.
ERIC Educational Resources Information Center
Burkhalter, Bettye B.; Kartis, Alexia M.
1983-01-01
Planning for the Alabama Space and Rocket Center's new recreational-educational complex included (1) goal establishment, (2) needs assessment (including accessibility for the disabled), (3) environmental impact analysis, (4) formulation of objectives and priorities, and (5) strategy development to meet objectives, as well as preparation of a…
NASA Astrophysics Data System (ADS)
Goldstein, N.; Dressler, R. A.; Richtsmeier, S. S.; McLean, J.; Dao, P. D.; Murray-Krezan, J.; Fulcoly, D. O.
2013-09-01
Recent ground testing of a wide area camera system and automated star removal algorithms has demonstrated the potential to detect, quantify, and track deep space objects using small aperture cameras and on-board processors. The camera system, which was originally developed for a space-based Wide Area Space Surveillance System (WASSS), operates in a fixed-stare mode, continuously monitoring a wide swath of space and differentiating celestial objects from satellites based on differential motion across the field of view. It would have greatest utility in a LEO orbit to provide automated and continuous monitoring of deep space with high refresh rates, and with particular emphasis on the GEO belt and GEO transfer space. Continuous monitoring allows a concept of change detection and custody maintenance not possible with existing sensors. The detection approach is equally applicable to Earth-based sensor systems. A distributed system of such sensors, either Earth-based, or space-based, could provide automated, persistent night-time monitoring of all of deep space. The continuous monitoring provides a daily record of the light curves of all GEO objects above a certain brightness within the field of view. The daily updates of satellite light curves offers a means to identify specific satellites, to note changes in orientation and operational mode, and to queue other SSA assets for higher resolution queries. The data processing approach may also be applied to larger-aperture, higher resolution camera systems to extend the sensitivity towards dimmer objects. In order to demonstrate the utility of the WASSS system and data processing, a ground based field test was conducted in October 2012. We report here the results of the observations made at Magdalena Ridge Observatory using the prototype WASSS camera, which has a 4×60° field-of-view , <0.05° resolution, a 2.8 cm2 aperture, and the ability to view within 4° of the sun. A single camera pointed at the GEO belt provided a continuous night-long record of the intensity and location of more than 50 GEO objects detected within the camera's 60-degree field-of-view, with a detection sensitivity similar to the camera's shot noise limit of Mv=13.7. Performance is anticipated to scale with aperture area, allowing the detection of dimmer objects with larger-aperture cameras. The sensitivity of the system depends on multi-frame averaging and an image processing algorithm that exploits the different angular velocities of celestial objects and SOs. Principal Components Analysis (PCA) is used to filter out all objects moving with the velocity of the celestial frame of reference. The resulting filtered images are projected back into an Earth-centered frame of reference, or into any other relevant frame of reference, and co-added to form a series of images of the GEO objects as a function of time. The PCA approach not only removes the celestial background, but it also removes systematic variations in system calibration, sensor pointing, and atmospheric conditions. The resulting images are shot-noise limited, and can be exploited to automatically identify deep space objects, produce approximate state vectors, and track their locations and intensities as a function of time.
Multi-Spectral Image Analysis for Improved Space Object Characterization
NASA Astrophysics Data System (ADS)
Duggin, M.; Riker, J.; Glass, W.; Bush, K.; Briscoe, D.; Klein, M.; Pugh, M.; Engberg, B.
The Air Force Research Laboratory (AFRL) is studying the application and utility of various ground based and space-based optical sensors for improving surveillance of space objects in both Low Earth Orbit (LEO) and Geosynchronous Earth Orbit (GEO). At present, ground-based optical and radar sensors provide the bulk of remotely sensed information on satellites and space debris, and will continue to do so into the foreseeable future. However, in recent years, the Space Based Visible (SBV) sensor was used to demonstrate that a synthesis of space-based visible data with ground-based sensor data could provide enhancements to information obtained from any one source in isolation. The incentives for space-based sensing include improved spatial resolution due to the absence of atmospheric effects and cloud cover and increased flexibility for observations. Though ground-based optical sensors can use adaptive optics to somewhat compensate for atmospheric turbulence, cloud cover and absorption are unavoidable. With recent advances in technology, we are in a far better position to consider what might constitute an ideal system to monitor our surroundings in space. This work has begun at the AFRL using detailed optical sensor simulations and analysis techniques to explore the trade space involved in acquiring and processing data from a variety of hypothetical space-based and ground-based sensor systems. In this paper, we briefly review the phenomenology and trade space aspects of what might be required in order to use multiple band-passes, sensor characteristics, and observation and illumination geometries to increase our awareness of objects in space.
International Cooperation and Competition in Civilian Space Activities.
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. Office of Technology Assessment.
This report assesses the state of international competition in civilian space activities, explores United States civilian objectives in space, and suggests alternative options for enhancing the overall U.S. position in space technologies. It also investigated past, present, and projected international cooperative arrangements for space activities…
Collision warning and avoidance considerations for the Space Shuttle and Space Station Freedom
NASA Technical Reports Server (NTRS)
Vilas, Faith; Collins, Michael F.; Kramer, Paul C.; Arndt, G. Dickey; Suddath, Jerry H.
1990-01-01
The increasing hazard of manmade debris in low earth orbit (LEO) has focused attention on the requirement for collision detection, warning and avoidance systems to be developed in order to protect manned (and unmanned) spacecraft. With the number of debris objects expected to be increasing with time, the impact hazard will also be increasing. The safety of the Space Shuttle and the Space Station Freedom from destructive or catastrophic collision resulting from the hypervelocity impact of a LEO object is of increasing concern to NASA. A number of approaches to this problem are in effect or under development. The collision avoidance procedures now in effect for the Shuttle are described, and detection and avoidance procedures presently being developed at the Johnson Space Center for the Space Station Freedom are discussed.
F.I.D.O. Focused Integration for Debris Observation
NASA Astrophysics Data System (ADS)
Ploschnitznig, J.
2013-09-01
The fact that satellites play a growing role in our day-to-day live, contributes to the overall assessment that these assets must be protected. As more and more objects enter space and begin to clutter this apparently endless vacuum, we begin to realize that these objects and associated debris become a potential and recurring threat. The space surveillance community routinely attempts to catalog debris through broad area search collection profiles, hoping to detect and track smaller and smaller objects. There are technical limitations to each collection system, we propose there may be new ways to increase the detection capability, effectively "Teaching an old dog (FIDO), new tricks." Far too often, we are justly criticized for never "stepping out of the box". The philosophy of "if it's not broke, don't fix it" works great if you assume that we are not broke. The assumption that in order to "Find" new space junk we need to increase our surveillance windows and try to cover as much space as possible may be appropriate for Missile Defense, but inappropriate for finding small space debris. Currently, our Phased Array Early Warning Systems support this yearly search program to try to acquire and track space small debris. A phased array can electronically scan the horizons very quickly, but the radar does have limitations. There is a closed-loop resource management equation that must be satisfied. By increasing search volume, we effectively reduce our instantaneous sensitivity which will directly impact our ability to find smaller and smaller space debris. Our proposal will be to focus on increasing sensitivity by reducing the search volume to statistically high probability of detection volumes in space. There are two phases to this proposal, a theoretical and empirical. Theoretical: The first phase will be to investigate the current space catalog and use existing ephemeris data on all satellites in the Space Surveillance Catalog to identify volumes of space with a high likelihood of encountering transiting satellite. Also during this phase, candidate radar systems will be characterized to determine sensitivity levels necessary to detect certain sized objects. Data integration plays a critical role in lowering the noise floor of the collection area in order to detect smaller and smaller objects. Reducing the search volume to these high probability of intercept areas will allow the use of data integration to increase the likelihood of detection of small Radar Cross Section objects. Empirical: The next phase is to employ this technique using a legacy collection system. The collection community may choose any collection system. The goal will be to demonstrate how focusing on a very specific area and employing data integration will increase the likelihood of detection of smaller objects. This will result in the creation of an Inter Range Vector (IRV), which can be handed-off to downrange collection systems for additional tracking. The goal of FIDO will be demonstrate how these legacy systems can be better employed to help find smaller and smaller debris.
NASA Technical Reports Server (NTRS)
Long, S. A. T.
1975-01-01
The effects of various experimental parameters on the displacement errors in the triangulation solution of an elongated object in space due to pointing uncertainties in the lines of sight have been determined. These parameters were the number and location of observation stations, the object's location in latitude and longitude, and the spacing of the input data points on the azimuth-elevation image traces. The displacement errors due to uncertainties in the coordinates of a moving station have been determined as functions of the number and location of the stations. The effects of incorporating the input data from additional cameras at one of the stations were also investigated.
Space Fence PDR Concept Development Phase
NASA Astrophysics Data System (ADS)
Haines, L.; Phu, P.
2011-09-01
The Space Fence, a major Air Force acquisition program, will become the dominant low-earth orbit uncued sensor in the space surveillance network (SSN). Its primary objective is to provide a 24/7 un-cued capability to find, fix, and track small objects in low earth orbit to include emerging and evolving threats, as well as the rapidly growing population of orbital debris. Composed of up to two geographically dispersed large-scale S-band phased array radars, this new system-of-systems concept will provide comprehensive Space Situational Awareness through net-centric operations and integrated decision support. Additionally, this program will facilitate cost saving force structure changes in the SSN, specifically including the decommissioning of very-high frequency VHF Air Force Space Surveillance System (AFSSS). The Space Fence Program Office entered a Preliminary Design Review (PDR) concept development phase in January 2011 to achieve the delivery of the Initial Operational Capability (IOC) expected in FY17. Two contractors were awarded to perform preliminary system design, conduct radar performance analyses and evaluations, and develop a functional PDR radar system prototype. The key objectives for the Phase A PDR effort are to reduce Space Fence total program technical, cost, schedule, and performance risk. The overall program objective is to achieve a preliminary design that demonstrates sufficient technical and manufacturing maturity and that represents a low risk, affordable approach to meet the Space Fence Technical Requirements Document (TRD) requirements for the final development and production phase to begin in 3QFY12. This paper provides an overview of the revised Space Fence program acquisition strategy for the Phase-A PDR phase to IOC, the overall program milestones and major technical efforts. In addition, the key system trade studies and modeling/simulation efforts undertaken during the System Design Requirement (SDR) phase to address and mitigate technical challenges of the Space Fence System will also be discussed. Examples include radar system optimization studies, modeling and simulation for system performance assessment, investigation of innovative Astrodynamics algorithms for initial orbit determination and observation correlation.
Hansen, Eva; Grimme, Britta; Reimann, Hendrik; Schöner, Gregor
2018-05-01
In a sequence of arm movements, any given segment could be influenced by its predecessors (carry-over coarticulation) and by its successor (anticipatory coarticulation). To study the interdependence of movement segments, we asked participants to move an object from an initial position to a first and then on to a second target location. The task involved ten joint angles controlling the three-dimensional spatial path of the object and hand. We applied the principle of the uncontrolled manifold (UCM) to analyze the difference between joint trajectories that either affect (non-motor equivalent) or do not affect (motor equivalent) the hand's trajectory in space. We found evidence for anticipatory coarticulation that was distributed equally in the two directions in joint space. We also found strong carry-over coarticulation, which showed clear structure in joint space: More of the difference between joint configurations observed for different preceding movements lies in directions in joint space that leaves the hand's path in space invariant than in orthogonal directions in joint space that varies the hand's path in space. We argue that the findings are consistent with anticipatory coarticulation reflecting processes of movement planning that lie at the level of the hand's trajectory in space. Carry-over coarticulation may reflect primarily processes of motor control that are governed by the principle of the UCM, according to which changes that do not affect the hand's trajectory in space are not actively delimited. Two follow-up experiments zoomed in on anticipatory coarticulation. These experiments strengthened evidence for anticipatory coarticulation. Anticipatory coarticulation was motor-equivalent when visual information supported the steering of the object to its first target, but was not motor equivalent when that information was removed. The experiments showed that visual updating of the hand's path in space when the object approaches the first target only affected the component of the joint difference vector orthogonal to the UCM, consistent with the UCM principle.
The National Space Program from the Fifties into the Eighties,
1983-01-01
force on 3 December 1968. The third space agreement, "Convention on International Uability for Damage Caused by Space Objects," took the longest to...of the civilian space effort; Third , space added to the responsibilities of the Atomic Energy Commission; Fourth, the responsibilities of the National
Incoherent coincidence imaging of space objects
NASA Astrophysics Data System (ADS)
Mao, Tianyi; Chen, Qian; He, Weiji; Gu, Guohua
2016-10-01
Incoherent Coincidence Imaging (ICI), which is based on the second or higher order correlation of fluctuating light field, has provided great potentialities with respect to standard conventional imaging. However, the deployment of reference arm limits its practical applications in the detection of space objects. In this article, an optical aperture synthesis with electronically connected single-pixel photo-detectors was proposed to remove the reference arm. The correlation in our proposed method is the second order correlation between the intensity fluctuations observed by any two detectors. With appropriate locations of single-pixel detectors, this second order correlation is simplified to absolute-square Fourier transform of source and the unknown object. We demonstrate the image recovery with the Gerchberg-Saxton-like algorithms and investigate the reconstruction quality of our approach. Numerical experiments has been made to show that both binary and gray-scale objects can be recovered. This proposed method provides an effective approach to promote detection of space objects and perhaps even the exo-planets.
Direct-to-digital holography reduction of reference hologram noise and fourier space smearing
Voelkl, Edgar
2006-06-27
Systems and methods are described for reduction of reference hologram noise and reduction of Fourier space smearing, especially in the context of direct-to-digital holography (off-axis interferometry). A method of reducing reference hologram noise includes: recording a plurality of reference holograms; processing the plurality of reference holograms into a corresponding plurality of reference image waves; and transforming the corresponding plurality of reference image waves into a reduced noise reference image wave. A method of reducing smearing in Fourier space includes: recording a plurality of reference holograms; processing the plurality of reference holograms into a corresponding plurality of reference complex image waves; transforming the corresponding plurality of reference image waves into a reduced noise reference complex image wave; recording a hologram of an object; processing the hologram of the object into an object complex image wave; and dividing the complex image wave of the object by the reduced noise reference complex image wave to obtain a reduced smearing object complex image wave.
Impact of high-risk conjunctions on Active Debris Removal target selection
NASA Astrophysics Data System (ADS)
Lidtke, Aleksander A.; Lewis, Hugh G.; Armellin, Roberto
2015-10-01
Space debris simulations show that if current space launches continue unchanged, spacecraft operations might become difficult in the congested space environment. It has been suggested that Active Debris Removal (ADR) might be necessary in order to prevent such a situation. Selection of objects to be targeted by ADR is considered important because removal of non-relevant objects will unnecessarily increase the cost of ADR. One of the factors to be used in this ADR target selection is the collision probability accumulated by every object. This paper shows the impact of high-probability conjunctions on the collision probability accumulated by individual objects as well as the probability of any collision occurring in orbit. Such conjunctions cannot be predicted far in advance and, consequently, not all the objects that will be involved in such dangerous conjunctions can be removed through ADR. Therefore, a debris remediation method that would address such events at short notice, and thus help prevent likely collisions, is suggested.
NASA Astrophysics Data System (ADS)
Golubovic, Leonardo; Knudsen, Steven
2017-01-01
We consider general problem of modeling the dynamics of objects sliding on moving strings. We introduce a powerful computational algorithm that can be used to investigate the dynamics of objects sliding along non-relativistic strings. We use the algorithm to numerically explore fundamental physics of sliding climbers on a unique class of dynamical systems, Rotating Space Elevators (RSE). Objects sliding along RSE strings do not require internal engines or propulsion to be transported from the Earth's surface into outer space. By extensive numerical simulations, we find that sliding climbers may display interesting non-linear dynamics exhibiting both quasi-periodic and chaotic states of motion. While our main interest in this study is in the climber dynamics on RSEs, our results for the dynamics of sliding object are of more general interest. In particular, we designed tools capable of dealing with strongly nonlinear phenomena involving moving strings of any kind, such as the chaotic dynamics of sliding climbers observed in our simulations.
A experiment on radio location of objects in the near-Earth space with VLBI in 2012
NASA Astrophysics Data System (ADS)
Nechaeva, M.; Antipenko, A.; Bezrukovs, V.; Bezrukov, D.; Dementjev, A.; Dugin, N.; Konovalenko, A.; Kulishenko, V.; Liu, X.; Nabatov, A.; Nesteruk, V.; Pupillo, G.; Reznichenko, A.; Salerno, E.; Shmeld, I.; Shulga, O.; Sybiryakova, Y.; Tikhomirov, Yu.; Tkachenko, A.; Volvach, A.; Yang, W.-J.
An experiment on radar location of space debris objects using of the method of VLBI was carried out in April, 2012. The radar VLBI experiment consisted in irradiation of some space debris objects (4 rocket stages and 5 inactive satellites) with a signal of the transmitter with RT-70 in Evpatoria, Ukraine. Reflected signals were received by a complex of radio telescopes in the VLBI mode. The following VLBI stations took part in the observations: Ventspils (RT-32), Urumqi (RT-25), Medicina (RT-32) and Simeiz (RT-22). The experiment included measurements of the Doppler frequency shift and the delay for orbit refining, and measurements of the rotation period and sizes of objects by the amplitudes of output interferometer signals. The cross-correlation of VLBI-data is performed at a correlator NIRFI-4 of Radiophysical Research Institute (Nizhny Novgorod). Preliminary data processing resulted in the series of Doppler frequency shifts, which comprised the information on radial velocities of the objects. Some results of the experiment are presented.
Generalized Minimum-Time Follow-up Approaches Applied to Tasking Electro-Optical Sensor Tasking
NASA Astrophysics Data System (ADS)
Murphy, T. S.; Holzinger, M. J.
This work proposes a methodology for tasking of sensors to search an area of state space for a particular object, group of objects, or class of objects. This work creates a general unified mathematical framework for analyzing reacquisition, search, scheduling, and custody operations. In particular, this work looks at searching for unknown space object(s) with prior knowledge in the form of a set, which can be defined via an uncorrelated track, region of state space, or a variety of other methods. The follow-up tasking can occur from a variable location and time, which often requires searching a large region of the sky. This work analyzes the area of a search region over time to inform a time optimal search method. Simulation work looks at analyzing search regions relative to a particular sensor, and testing a tasking algorithm to search through the region. The tasking algorithm is also validated on a reacquisition problem with a telescope system at Georgia Tech.
SOAR 89: Space Station. Space suit test program
NASA Technical Reports Server (NTRS)
Kosmo, Joseph J.; West, Philip; Rouen, Michael
1990-01-01
The elements of the test program for the space suit to be used on Space Station Freedom are noted in viewgraph form. Information is given on evaluation objectives, zero gravity evaluation, mobility evaluation, extravehicular activity task evaluation, and shoulder joint evaluation.
Presencing Culture: Ethnology Museums, Objects, and Spaces
ERIC Educational Resources Information Center
Gaudelli, William; Mungur, Amy
2014-01-01
Ethnology museums are pedagogical. As educators attempting to make sense of how museums teach about the world, the authors of this article are especially interested in how ethnology museums curate otherness through objects, texts, and spaces, and how these combine to present a narrative of others. Ellsworth has referred to this as the…
Space Object Radiometric Modeling for Hardbody Optical Signature Database Generation
2009-09-01
Introduction This presentation summarizes recent activity in monitoring spacecraft health status using passive remote optical nonimaging ...Approved for public release; distribution is unlimited. Space Object Radiometric Modeling for Hardbody Optical Signature Database Generation...It is beneficial to the observer/analyst to understand the fundamental optical signature variability associated with these detection and
In-space propellant systems safety. Volume 3: System safety analysis
NASA Technical Reports Server (NTRS)
1972-01-01
The primary objective was to examine from a system safety viewpoint in-space propellant logistic elements and operations to define the potential hazards and to recommend means to reduce, eliminate or control them. A secondary objective was to conduct trade studies of specific systems or operations to determine the safest of alternate approaches.
A.M. Skeffington: the father of behavioral optometry--his contributions
NASA Astrophysics Data System (ADS)
Maples, Willis C.
1998-10-01
Life of Dr. A. M. Skeffington, his model of vision, and his contributions to optometry are reviewed. In particular, vision as s spatial information processing system and dual sensing ocular system are discussed to answer the questions: `where is the object in space?' and `what is the object in space?'.
Integrating Machine Learning into Space Operations
NASA Astrophysics Data System (ADS)
Kelly, K. G.
There are significant challenges with managing activities in space, which for the scope of this paper are primarily the identification of objects in orbit, maintaining accurate estimates of the orbits of those objects, detecting changes to those orbits, warning of possible collisions between objects and detection of anomalous behavior. The challenges come from the large amounts of data to be processed, which is often incomplete and noisy, limitations on the ability to influence objects in space and the overall strategic importance of space to national interests. The focus of this paper is on defining an approach to leverage the improved capabilities that are possible using state of the art machine learning in a way that empowers operations personnel without sacrificing the security and mission assurance associated with manual operations performed by trained personnel. There has been significant research in the development of algorithms and techniques for applying machine learning in this domain, but deploying new techniques into such a mission critical domain is difficult and time consuming. Establishing a common framework could improve the efficiency with which new techniques are integrated into operations and the overall effectiveness at providing improvements.
NASA Technical Reports Server (NTRS)
Elberg, R.
1984-01-01
This experiment has three objectives. The first and main objective is to detect a possible variation in the coefficient of thermal expansion of composite samples during a 1-year exposure to the near-Earth orbital environment. A second objective is to detect a possible change in the mechanical integrity of composite products, both simple elements and honeycomb sandwich assemblies. A third objective is to compare the behavior of two epoxy resins commonly used in space structural production. The experimental approach is to passively expose samples of epoxy matrix composite materials to the space environment and to compare preflight and postflight measurements of mechanical properties. The experiment will be located in one of the three FRECOPA (French cooperative payload) boxes in a 12-in.-deep peripheral tray that contains nine other experiments from France. The FRECOPA box will protect the samples from contamination during the launch and reentry phases of the mission. The coefficients of thermal expansion are measured on Earth before and after space exposure.
Impact of End-of-Life manoeuvres on the collision risk in protected regions
NASA Astrophysics Data System (ADS)
Frey, Stefan; Lemmens, Stijn; Bastida Virgili, Benjamin; Flohrer, Tim; Gass, Volker
2017-09-01
The Inter-Agency Space Debris Coordination Committee (IADC) Space Debris Mitigation Guidelines, issued in 2002 and revised in 2007, address the post mission disposal of objects in orbit. After their mission, objects crossing the Low Earth Orbit (LEO) should have a remaining lifetime in orbit not exceeding 25 years. Objects near the Geostationary Orbit (GEO) region should be placed in an orbit that remains outside of the GEO protected region. In this paper, the impact of satellites and rocket bodies performing End-of-Life (EOL) orbital manoeuvres on the collision risk in the LEO and GEO protected regions is investigated. The cases of full or partial compliance with the IADC post mission disposal guideline are studied. ESA's Meteoroid and Space Debris Terrestrial Environment Reference (MASTER) model is used to compare the space debris flux rate of the object during the remaining lifetime estimated for the pre-EOL-manoeuvre and for the post-EOL-manoeuvre orbit. The study shows that, on average, the probability of collision can be significantly decreased by performing an EOL-manoeuver.
NASA Technical Reports Server (NTRS)
Abell, Paul A.; Barbee, B. W.; Mink, R. G.; Alberding, C. M.; Adamo, D. R.; Mazanek, D. D.; Johnson, L. N.; Yeomans, D. K.; Chodas, P. W.; Chamberlin, A. B.;
2012-01-01
Over the past several years, much attention has been focused on the human exploration of near-Earth asteroids (NEAs). Two independent NASA studies examined the feasibility of sending piloted missions to NEAs [1, 2], and in 2009, the Augustine Commission identified NEAs as high profile destinations for human exploration missions beyond the Earth-Moon system [3]. More recently the current U.S. presidential administration directed NASA to include NEAs as destinations for future human exploration with the goal of sending astronauts to a NEA in the mid to late 2020s. This directive became part of the official National Space Policy of the United States of America as of June 28, 2010 [4]. Detailed planning for such deep space exploration missions and identifying potential NEAs as targets for human spaceflight requires selecting objects from the ever growing list of newly discovered NEAs. Hence NASA developed and implemented the Near-Earth Object (NEO) Human Space Flight (HSF) Accessible Target Study (NHATS), which identifies potential candidate objects on the basis of defined dynamical trajectory performance constraints.
The Size of the Universe and Where Will We Go?
NASA Technical Reports Server (NTRS)
Lawson, B. Mike
2012-01-01
As an avid engineer and amateur astronomer, Mike Lawson presented a perspective on the size of the universe and asked the question, "Where will we go?" This was an entry-level overview for the average space worker who really wanted to understand the size of stars and the distance between objects in space. Mike provided information about familiar orbital objects and elaborated more on galaxies during the discussion. He also explored where humans could go in space and the physical limitations of going there.
Space transportation booster engine configuration study. Volume 1: Executive Summary
NASA Technical Reports Server (NTRS)
1989-01-01
The objective of the Space Transportation Booster Engine (STBE) Configuration Study is to contribute to the Advanced Launch System (ALS) development effort by providing highly reliable, low cost booster engine concepts for both expendable and reusable rocket engines. The objectives of the Space Transportation Booster Engine (STBE) Configuration Study were to identify engine configurations which enhance vehicle performance and provide operational flexibility at low cost, and to explore innovative approaches to the follow-on full-scale development (FSD) phase for the STBE.
Joint search and sensor management for geosynchronous satellites
NASA Astrophysics Data System (ADS)
Zatezalo, A.; El-Fallah, A.; Mahler, R.; Mehra, R. K.; Pham, K.
2008-04-01
Joint search and sensor management for space situational awareness presents daunting scientific and practical challenges as it requires a simultaneous search for new, and the catalog update of the current space objects. We demonstrate a new approach to joint search and sensor management by utilizing the Posterior Expected Number of Targets (PENT) as the objective function, an observation model for a space-based EO/IR sensor, and a Probability Hypothesis Density Particle Filter (PHD-PF) tracker. Simulation and results using actual Geosynchronous Satellites are presented.
NASA Technical Reports Server (NTRS)
Keys, Andrew S.; Adams, James H.; Darty, Ronald C.; Patrick, Marshall C.; Johnson, Michael A.; Cressler, John D.
2008-01-01
Primary Objective: 1) A computational tool to accurately predict electronics performance in the presence of space radiation in support of spacecraft design: a) Total dose; b) Single Event Effects; and c) Mean Time Between Failure. (Developed as successor to CR ME96.) Secondary Objectives: 2) To provide a detailed description of the natural radiation environment in support of radiation health and instrument design: a) In deep space; b) Inside the magnetosphere; and c) Behind shielding.
The Deep Space Network. [tracking and communication functions and facilities
NASA Technical Reports Server (NTRS)
1974-01-01
The objectives, functions, and organization of the Deep Space Network are summarized. The Deep Space Instrumentation Facility, the Ground Communications Facility, and the Network Control System are described.
NASA Technical Reports Server (NTRS)
Tarver, William J.
2012-01-01
Learning Objectives are: (1) Understand the unique work environment of astronauts. (2) Understand the effect microgravity has on human physiology (3) Understand how NASA Space Medicine Division is mitigating the health risks of space missions.
Economic analysis of the space shuttle system, volume 1
NASA Technical Reports Server (NTRS)
1972-01-01
An economic analysis of the space shuttle system is presented. The analysis is based on economic benefits, recurring costs, non-recurring costs, and ecomomic tradeoff functions. The most economic space shuttle configuration is determined on the basis of: (1) objectives of reusable space transportation system, (2) various space transportation systems considered and (3) alternative space shuttle systems.
Oklahoma Space Industry Development Authority
NASA Technical Reports Server (NTRS)
2002-01-01
The purpose of this grant was to increase the awareness of students of space sciences and commerce through experimentation. This objective was carried out through the award and administration, by OSIDA, the Oklahoma Space Industry Development Authority, of eleven smaller grants to fund thirteen projects at schools determined by competitive application. Applications were graded on potential outreach, experimentation objectives and impact on students' awareness of space sciences. We chose projects from elementary, middle and high schools as well as colleges that would encourage students through research and experimentation to consider education and careers in related disciplines. Each organization did not receive an equal share of the grant; instead, OSIDA distributed the money to each project based on the organization's need. A copy of the dispersement record is enclosed with this final grant report. The projects covered topics such as: space colonization, space stations, constellations, model rocketry, and space commerce.
NASA Technical Reports Server (NTRS)
1982-01-01
The impact on space systems of three alternative waste mixes was evaluated as part of an effort to investigate the disposal of certain high-level nuclear wastes in space as a complement to mined geologic repositories. A brief overview of the study background, objectives, scope, approach and guidelines, and limitations is presented. The effects of variations in waste mixes on space system concepts were studied in order to provide data for determining relative total system risk benefits resulting from space disposal of the alternative waste mixes. Overall objectives of the NASA-DOE sustaining-level study program are to investigate space disposal concepts which can provide information to support future nuclear waste terminal storage programmatic decisions and to maintain a low level of research activity in this area to provide a baseline for future development should a decision be made to increase the emphasis on this option.
The Interface Theory of Perception.
Hoffman, Donald D; Singh, Manish; Prakash, Chetan
2015-12-01
Perception is a product of evolution. Our perceptual systems, like our limbs and livers, have been shaped by natural selection. The effects of selection on perception can be studied using evolutionary games and genetic algorithms. To this end, we define and classify perceptual strategies and allow them to compete in evolutionary games in a variety of worlds with a variety of fitness functions. We find that veridical perceptions--strategies tuned to the true structure of the world--are routinely dominated by nonveridical strategies tuned to fitness. Veridical perceptions escape extinction only if fitness varies monotonically with truth. Thus, a perceptual strategy favored by selection is best thought of not as a window on truth but as akin to a windows interface of a PC. Just as the color and shape of an icon for a text file do not entail that the text file itself has a color or shape, so also our perceptions of space-time and objects do not entail (by the Invention of Space-Time Theorem) that objective reality has the structure of space-time and objects. An interface serves to guide useful actions, not to resemble truth. Indeed, an interface hides the truth; for someone editing a paper or photo, seeing transistors and firmware is an irrelevant hindrance. For the perceptions of H. sapiens, space-time is the desktop and physical objects are the icons. Our perceptions of space-time and objects have been shaped by natural selection to hide the truth and guide adaptive behaviors. Perception is an adaptive interface.
How Category Structure Influences the Perception of Object Similarity: The Atypicality Bias
Tanaka, James William; Kantner, Justin; Bartlett, Marni
2011-01-01
Why do some faces appear more similar than others? Beyond structural factors, we speculate that similarity is governed by the organization of faces located in a multi-dimensional face space. To test this hypothesis, we morphed a typical face with an atypical face. If similarity judgments are guided purely by their physical properties, the morph should be perceived to be equally similar to its typical parent as its atypical parent. However, contrary to the structural prediction, our results showed that the morph face was perceived to be more similar to the atypical face than the typical face. Our empirical studies show that the atypicality bias is not limited to faces, but extends to other object categories (birds) whose members share common shape properties. We also demonstrate atypicality bias is malleable and can change subject to category learning and experience. Collectively, the empirical evidence indicates that perceptions of face and object similarity are affected by the distribution of stimuli in a face or object space. In this framework, atypical stimuli are located in a sparser region of the space where there is less competition for recognition and therefore, these representations capture a broader range of inputs. In contrast, typical stimuli are located in a denser region of category space where there is increased competition for recognition and hence, these representation draw a more restricted range of face inputs. These results suggest that the perceived likeness of an object is influenced by the organization of surrounding exemplars in the category space. PMID:22685441
The contribution of working memory to divided attention.
Santangelo, Valerio; Macaluso, Emiliano
2013-01-01
Previous studies have indicated that increasing working memory (WM) load can affect the attentional selection of signals originating from one object/location. Here we assessed whether WM load affects also the selection of multiple objects/locations (divided attention). Participants monitored either two object-categories (vs. one category; object-based divided attention) or two locations (vs. one location; space-based divided attention) while maintaining in WM either a variable number of objects (object-based WM load) or locations (space-based WM load). Behavioural results showed that WM load affected attentional performance irrespective of divided or focused attention. However, fMRI results showed that the activity associated with object-based divided attention increased linearly with increasing object-based WM load in the left and right intraparietal sulcus (IPS); while, in the same areas, activity associated with space-based divided attention was not affected by any type of WM load. These findings support the hypothesis that WM contributes to the maintenance of resource-demanding attentional sets in a domain-specific manner. Moreover, the dissociable impact of WM load on performance and brain activity suggests that increased IPS activation reflects a recruitment of additional, domain-specific processing resources that enable dual-task performance under conditions of high WM load and high attentional demand. Copyright © 2011 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Speicher, Andy; Matin, Mohammad; Tippets, Roger; Chun, Francis
2014-09-01
In order to protect critical military and commercial space assets, the United States Space Surveillance Network must have the ability to positively identify and characterize all space objects. Unfortunately, positive identification and characterization of space objects is a manual and labor intensive process today since even large telescopes cannot provide resolved images of most space objects. The objective of this study was to calibrate a system to exploit the optical signature of unresolved geosynchronous satellite images by collecting polarization data in the visible wavelengths for the purpose of revealing discriminating features. These features may lead to positive identification or classification of each satellite. The system was calibrated with an algorithm and process that takes raw observation data from a two-channel polarimeter and converts it to Stokes parameters S0 and S1. This instrumentation is a new asset for the United States Air Force Academy (USAFA) Department of Physics and consists of one 20-inch Ritchey-Chretien telescope and a dual focal plane system fed with a polarizing beam splitter. This study calibrated the system and collected preliminary polarization data on five geosynchronous satellites to validate performance. Preliminary data revealed that each of the five satellites had a different polarization signature that could potentially lead to identification in future studies.
River channel bars and dunes - Theory of kinematic waves
Langbein, Walter Basil; Leopold, Luna Bergere
1968-01-01
A kinematic wave is a grouping cf moving objects in zones along a flow path and through which the objects pass. These concentrations may be characterized by a simple relation between the speed of the moving objects and their spacing as a result of interaction between them.Vehicular traffic has long been known to have such properties. Data are introduced to show that beads carried by flowing water in a narrow flume behave in an analogous way. The flux or transport of objects in a single lane of traffic is greatest when the objects are spaced about two diameters apart; beads in a single-lane flume as well as highway traffic conform to this property.By considering the sand in a pipe or flume to a depth affected by dune movement, it is shown that flux-concentration curves similar to the previously known cases can be constructed from experimental data. From the kinematic point of view, concentration of particles in dunes and other wave bed forms results when particles in transport become more numerous or closely spaced and interact to reduce the effectiveness of the ambient water to move them.Field observations over a 5-year period are reported in which individual rocks were painted for identification and placed at various spacings on the bed of ephemeral stream in New Mexico, to study the effect of storm flows on rock movement. The data on about 14,000 rocks so observed show the effect of variable spacing which is quantitatively as well as qualitatively comparable to the spacing effect on small glass beads in a flume. Dunes and gravel bars may be considered kinematic waves caused by particle interaction, and certain of their properties can be related to the characteristics of the flux-concentration curve.
NASA Technical Reports Server (NTRS)
Bolinger, Allison
2016-01-01
This presentation will be used to educate elementary students on the purposes and components of the International Space Station and then allow them to build their own space stations with household objects and then present details on their space stations to the rest of the group.
ERIC Educational Resources Information Center
Allen, Joseph P.
1973-01-01
Discusses the scientific objectives of the space missions to illustrate the role of scientists in space-borne research studies. Included is a tentative list of demonstration experiments worth conducting in order to attain pedagogical goals. (CC)
Intrinsic Bayesian Active Contours for Extraction of Object Boundaries in Images
Srivastava, Anuj
2010-01-01
We present a framework for incorporating prior information about high-probability shapes in the process of contour extraction and object recognition in images. Here one studies shapes as elements of an infinite-dimensional, non-linear quotient space, and statistics of shapes are defined and computed intrinsically using differential geometry of this shape space. Prior models on shapes are constructed using probability distributions on tangent bundles of shape spaces. Similar to the past work on active contours, where curves are driven by vector fields based on image gradients and roughness penalties, we incorporate the prior shape knowledge in the form of vector fields on curves. Through experimental results, we demonstrate the use of prior shape models in the estimation of object boundaries, and their success in handling partial obscuration and missing data. Furthermore, we describe the use of this framework in shape-based object recognition or classification. PMID:21076692
Statistical Approach to the Operational Testing of Space Fence
2015-07-01
detect, track, and catalog space objects, including the growing population of space debris (“ space junk ”). The new system will consist of two S-Band...Statistical Association Volume 64, pages 610-620, June 1969. [26] L. Hutchinson, “How NASA steers the Internaional Space Station around space junk ...Arstechnica, (2013,July) [Online]. Available: http://arstechnica.com/science/2013/07/how-nasa-steers-the-international- space -station-around- space - junk
Space Debris and Observational Astronomy
NASA Astrophysics Data System (ADS)
Seitzer, Patrick
2018-01-01
Since the launch of Sputnik 1 in 1957, astronomers have faced an increasing number of artificial objects contaminating their images of the night sky. Currently almost 17000 objects larger than 10 cm are tracked and have current orbits in the public catalog. Active missions are only a small fraction of these objects. Most are inactive satellites, rocket bodies, and fragments of larger objects: all space debris. Several mega-constellations are planned which will increase this number by 20% or more in low Earth orbit (LEO). In terms of observational astronomy, this population of Earth orbiting objects has three implications: 1) the number of streaks and glints from spacecraft will only increase. There are some practical steps that can be taken to minimize the number of such streaks and glints in astronomical imaging data. 2) The risk to damage to orbiting astronomical telescopes will only increase, particularly those in LEO. 3) If you are working on a plan for an orbiting telescope project, then there are specific steps that must be taken to minimize space debris generation during the mission lifetime, and actions to safely dispose of the spacecraft at end of mission to prevent it from becoming space debris and a risk to other missions. These steps may involve sacrifices to mission performance and lifetime, but are essential in today's orbital environment.
Orbital Debris and NASA's Measurement Program
NASA Astrophysics Data System (ADS)
Africano, J. L.; Stansbery, E. G.
2002-05-01
Since the launch of Sputnik in 1957, the number of manmade objects in orbit around the Earth has dramatically increased. The United States Space Surveillance Network (SSN) tracks and maintains orbits on over nine thousand objects down to a limiting diameter of about ten centimeters. Unfortunately, active spacecraft are only a small percentage ( ~ 7%) of this population. The rest of the population is orbital debris or ``space junk" consisting of expended rocket bodies, dead payloads, bits and pieces from satellite launches, and fragments from satellite breakups. The number of these smaller orbital debris objects increases rapidly with decreasing size. It is estimated that there are at least 130,000 orbital debris objects between one and ten centimeters in diameter. Most objects smaller than 10 centimeters go untracked! As the orbital debris population grows, the risk to other orbiting objects, most importantly manned space vehicles, of a collision with a piece of debris also grows. The kinetic energy of a solid 1 cm aluminum sphere traveling at an orbital velocity of 10 km/sec is equivalent to a 400 lb. safe traveling at 60 mph. Fortunately, the volume of space in which the orbiting population resides is large, collisions are infrequent, but they do occur. The Space Shuttle often returns to earth with its windshield pocked with small pits or craters caused by collisions with very small, sub-millimeter-size pieces of debris (paint flakes, particles from solid rocket exhaust, etc.), and micrometeoroids. To get a more complete picture of the orbital-debris environment, NASA has been using both radar and optical techniques to monitor the orbital debris environment. This paper gives an overview of the orbital debris environment and NASA's measurement program.
Spaceflight Operations Services Grid (SOSG) Project
NASA Technical Reports Server (NTRS)
Bradford, Robert; Lisotta, Anthony
2004-01-01
The motivation, goals, and objectives of the Space Operations Services Grid Project (SOSG) are covered in this viewgraph presentation. The goals and objectives of SOSG include: 1) Developing a grid-enabled prototype providing Space-based ground operations end user services through a collaborative effort between NASA, academia, and industry to assess the technical and cost feasibility of implementation of Grid technologies in the Space Operations arena; 2) Provide to space operations organizations and processes, through a single secure portal(s), access to all the information technology (Grid and Web based) services necessary for program/project development, operations and the ultimate creation of new processes, information and knowledge.
Cognition versus Constitution of Objects: From Kant to Modern Physics
NASA Astrophysics Data System (ADS)
Mittelstaedt, Peter
2009-07-01
Classical mechanics in phase space as well as quantum mechanics in Hilbert space lead to states and observables but not to objects that may be considered as carriers of observable quantities. However, in both cases objects can be constituted as new entities by means of invariance properties of the theories in question. We show, that this way of reasoning has a long history in physics and philosophy and that it can be traced back to the transcendental arguments in Kant’s critique of pure reason.
Batman flies: a compact spectro-imager for space observation
NASA Astrophysics Data System (ADS)
Zamkotsian, Frederic; Ilbert, Olivier; Zoubian, Julien; Delsanti, Audrey; Boissier, Samuel; Lancon, Ariane
2017-11-01
Multi-object spectroscopy (MOS) is a key technique for large field of view surveys. MOEMS programmable slit masks could be next-generation devices for selecting objects in future infrared astronomical instrumentation for space telescopes. MOS is used extensively to investigate astronomical objects by optimizing the Signal-to-Noise Ratio (SNR): high precision spectra are obtained and the problem of spectral confusion and background level occurring in slitless spectroscopy is cancelled. Fainter limiting fluxes are reached and the scientific return is maximized both in cosmology and in legacy science. Major telescopes around the world are equipped with MOS in order to simultaneously record several hundred spectra in a single observation run. Next generation MOS for space like the Near Infrared Multi-Object Spectrograph (NIRSpec) for the James Webb Space Telescope (JWST) require a programmable multi-slit mask. Conventional masks or complex fiber-optics-based mechanisms are not attractive for space. The programmable multi-slit mask requires remote control of the multislit configuration in real time. During the early-phase studies of the European Space Agency (ESA) EUCLID mission, a MOS instrument based on a MOEMS device has been assessed. Due to complexity and cost reasons, slitless spectroscopy was chosen for EUCLID, despite a much higher efficiency with slit spectroscopy. A promising possible solution is the use of MOEMS devices such as micromirror arrays (MMA) [1,2,3] or micro-shutter arrays (MSA) [4]. MMAs are designed for generating reflecting slits, while MSAs generate transmissive slits. In Europe an effort is currently under way to develop single-crystalline silicon micromirror arrays for future generation infrared multi-object spectroscopy (collaboration LAM / EPFL-CSEM) [5,6]. By placing the programmable slit mask in the focal plane of the telescope, the light from selected objects is directed toward the spectrograph, while the light from other objects and from the sky background is blocked. To get more than 2 millions independent micromirrors, the only available component is a Digital Micromirror Device (DMD) chip from Texas Instruments (TI) that features 2048 x 1080 mirrors and a 13.68μm pixel pitch. DMDs have been tested in space environment (-40°C, vacuum, radiations) by LAM and no showstopper has been revealed [7]. We are presenting in this paper a DMD-based spectrograph called BATMAN, including two arms, one spectroscopic channel and one imaging channel. This instrument is designed for getting breakthrough results in several science cases, from high-z galaxies to nearby galaxies and Trans-Neptunian Objects of Kuiper Belt.
Information sciences and human factors overview
NASA Technical Reports Server (NTRS)
Holcomb, Lee B.
1988-01-01
An overview of program objectives of the Information Sciences and Human Factors Division of NASA's Office of Aeronautics and Space Technology is given in viewgraph form. Information is given on the organizational structure, goals, the research and technology base, telerobotics, systems autonomy in space operations, space sensors, humans in space, space communications, space data systems, transportation vehicle guidance and control, spacecraft control, and major program directions in space.
2003-05-02
KENNEDY SPACE CENTER, FLA. - Workers in NASA Spacecraft Hangar AE position the Space Infrared Telescope Facility (SIRTF), which has been returned to the hangar from the launch pad, for further processing. SIRTF will remain in the clean room until it returns to the pad in early August. One of NASA's largest infrared telescopes to be launched, SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.
Role of Corticosteroids in Bone Loss During Space Flight
NASA Technical Reports Server (NTRS)
Wronski, Thomas J.; Halloran, Bernard P.; Miller, Scott C.
1998-01-01
The primary objective of this research project is to test the hypothesis that corticosteroids contribute to the adverse skeletal effects of space flight. To achieve this objective, serum corticosteroids, which are known to increase during space flight, must be maintained at normal physiologic levels in flight rats by a combination of adrenalectomy and corticosteroid supplementation via implanted hormone pellets. Bone analyses in these animals will then be compared to those of intact flight rats that, based on past experience, will undergo corticosteroid excess and bone loss during space flight. The results will reveal whether maintaining serum corticosteroids at physiologic levels in flight rats affects the skeletal abnormalities that normally develop during space flight. A positive response to this question would indicate that the bone loss and decreased bone formation associated with space flight are mediated, at least in part, by corticosteroid excess.
Implementation of an Open-Scenario, Long-Term Space Debris Simulation Approach
NASA Technical Reports Server (NTRS)
Nelson, Bron; Yang Yang, Fan; Carlino, Roberto; Dono Perez, Andres; Faber, Nicolas; Henze, Chris; Karacalioglu, Arif Goktug; O'Toole, Conor; Swenson, Jason; Stupl, Jan
2015-01-01
This paper provides a status update on the implementation of a flexible, long-term space debris simulation approach. The motivation is to build a tool that can assess the long-term impact of various options for debris-remediation, including the LightForce space debris collision avoidance concept that diverts objects using photon pressure [9]. State-of-the-art simulation approaches that assess the long-term development of the debris environment use either completely statistical approaches, or they rely on large time steps on the order of several days if they simulate the positions of single objects over time. They cannot be easily adapted to investigate the impact of specific collision avoidance schemes or de-orbit schemes, because the efficiency of a collision avoidance maneuver can depend on various input parameters, including ground station positions and orbital and physical parameters of the objects involved in close encounters (conjunctions). Furthermore, maneuvers take place on timescales much smaller than days. For example, LightForce only changes the orbit of a certain object (aiming to reduce the probability of collision), but it does not remove entire objects or groups of objects. In the same sense, it is also not straightforward to compare specific de-orbit methods in regard to potential collision risks during a de-orbit maneuver. To gain flexibility in assessing interactions with objects, we implement a simulation that includes every tracked space object in Low Earth Orbit (LEO) and propagates all objects with high precision and variable time-steps as small as one second. It allows the assessment of the (potential) impact of physical or orbital changes to any object. The final goal is to employ a Monte Carlo approach to assess the debris evolution during the simulation time-frame of 100 years and to compare a baseline scenario to debris remediation scenarios or other scenarios of interest. To populate the initial simulation, we use the entire space-track object catalog in LEO. We then use a high precision propagator to propagate all objects over the entire simulation duration. If collisions are detected, the appropriate number of debris objects are created and inserted into the simulation framework. Depending on the scenario, further objects, e.g. due to new launches, can be added. At the end of the simulation, the total number of objects above a cut-off size and the number of detected collisions provide benchmark parameters for the comparison between scenarios. The simulation approach is computationally intensive as it involves tens of thousands of objects; hence we use a highly parallel approach employing up to a thousand cores on the NASA Pleiades supercomputer for a single run. This paper describes our simulation approach, the status of its implementation, the approach to developing scenarios and examples of first test runs.
Using Space to Inspire and Engage Children
ERIC Educational Resources Information Center
Clements, Allan
2015-01-01
The European Space Education Resources Office (ESERO-UK) is a project of the European Space Agency (ESA) and national partners including the Department for Education (DfE), The UK Space Agency (UKSA) and the Science and Technology Facilities Council (STFC). The key objective of the project is to promote space as an exciting inspirational context…
36 CFR 254.20 - Purpose and scope.
Code of Federal Regulations, 2012 CFR
2012-07-01
... serve indigenous community objectives that outweigh the public objectives and values of retaining the lands in Federal ownership. Indigenous community objectives may include space for housing and for...
36 CFR 254.20 - Purpose and scope.
Code of Federal Regulations, 2011 CFR
2011-07-01
... serve indigenous community objectives that outweigh the public objectives and values of retaining the lands in Federal ownership. Indigenous community objectives may include space for housing and for...
36 CFR 254.20 - Purpose and scope.
Code of Federal Regulations, 2013 CFR
2013-07-01
... serve indigenous community objectives that outweigh the public objectives and values of retaining the lands in Federal ownership. Indigenous community objectives may include space for housing and for...
36 CFR 254.20 - Purpose and scope.
Code of Federal Regulations, 2014 CFR
2014-07-01
... serve indigenous community objectives that outweigh the public objectives and values of retaining the lands in Federal ownership. Indigenous community objectives may include space for housing and for...
NASA Technical Reports Server (NTRS)
Mandell, M. J.; Harvey, J. M.; Katz, I.
1977-01-01
The NASCAP (NASA Charging Analyzer Program) code simulates the charging process for a complex object in either tenuous plasma or ground test environment. Detailed specifications needed to run the code are presented. The object definition section, OBJDEF, allows the test object to be easily defined in the cubic mesh. The test object is composed of conducting sections which may be wholly or partially covered with thin dielectric coatings. The potential section, POTENT, obtains the electrostatic potential in the space surrounding the object. It uses the conjugate gradient method to solve the finite element formulation of Poisson's equation. The CHARGE section of NASCAP treats charge redistribution among the surface cells of the object as well as charging through radiation bombardment. NASCAP has facilities for extensive graphical output, including several types of object display plots, potential contour plots, space charge density contour plots, current density plots, and particle trajectory plots.
Introducing the Benson Prize for Discovery Methods of Near Earth Objects by Amateurs
NASA Astrophysics Data System (ADS)
Benson, J. W.
1997-05-01
The Benson Prize Sponsored by Space Development Corporation The Benson Prize for Discovery Methods of Near Earth Objects by Amateurs is an annual competition which awards prizes to the best proposed methods by which amateur astronomers may discover such near earth objects as asteroids and comet cores. The purpose of the Benson Prize is to encourage the discovery of near earth objects by amateur astronomers. The utilization of valuable near earth resources can provide many new jobs and economic activities on earth, while also creating many new opportunities for opening up the space frontier. The utilization of near earth resources will significantly contribute to the lessening of environmental degradation on the Earth caused by mining and chemical leaching operations required to exploit the low grade ores now remaining on Earth. In addition, near earth objects pose grave dangers for life on earth. Discovering and plotting the orbits of all potentially dangerous near earth objects is the first and necessary step in protecting ourselves against the enormous potential damage possible from near earth objects. With the high quality, large size and low cost of todays consumer telescopes, the rapid development of powerful, high resolution and inexpensive CCD cameras, and the proliferation of inexpensive software for todays powerful home computers, the discovery of near earth objects by amateur astronomers is more attainable than ever. The Benson Prize is sponsored by the Space Development Corporation, a space resource exploration and utilization company. In 1997 one prize of \\500 will be awarded to the best proposed method for the amateur discovery of NEOs, and in each of the four following years, Prizes of \\500, \\250 and \\100 will be awarded. Prizes for the actual discovery of Near Earth Asteroids will be added in later years.
Toward an International Lunar Polar Volatiles Strategy
NASA Technical Reports Server (NTRS)
Gruener, J. E.; Suzuki, N. H.; Carpenter, J. D.
2015-01-01
Fourteen international space agencies are participating in the International Space Exploration Coordination Group (ISECG), working together to advance a long-range human space exploration strategy. The ISECG is a voluntary, non-binding international coordination mechanism through which individual agencies may exchange information regarding interests, objectives, and plans in space exploration with the goal of strengthening both individual exploration programs as well as the collective effort. The ISECG has developed a Global Exploration Roadmap (GER) that reflects the coordinated international dialog and continued preparation for exploration beyond low-Earth orbit - beginning with the Moon and cis-lunar space, and continuing to near-Earth asteroids, and Mars. Space agencies agree that human space exploration will be most successful as an international endeavor, given the challenges of these missions. The roadmap demonstrates how initial capabilities can enable a variety of missions in the lunar vicinity, responding to individual and common goals and objectives, while contributing to building partnerships required for sustainable human space exploration that delivers value to the public.
Objects, Bodies and Space: Gender and Embodied Practices of Mattering in the Classroom
ERIC Educational Resources Information Center
Taylor, Carol A.
2013-01-01
This article focuses on objects, bodies and space to explore how the mundane materialities of classrooms do crucial but often unnoticed performative work in enacting gendered power. Drawing on ethnographic data from a UK sixth form college study, the article analyses a series of "material moments" to elaborate a material feminist…
Subjectivity, objectivity, and triangular space.
Britton, Ronald
2004-01-01
The author reviews his ideas on subjectivity, objectivity, and the third position in the psychoanalytic encounter, particularly in clinical work with borderline and narcissistic patients. Using the theories of Melanie Klein and Wilfred Bion as a basis, the author describes his concept of triangular space. A case presentation of a particular type of narcissistic patient illustrates the principles discussed.
Hiding and Searching Strategies of Adult Humans in a Virtual and a Real-Space Room
ERIC Educational Resources Information Center
Talbot, Katherine J.; Legge, Eric L. G.; Bulitko, Vadim; Spetch, Marcia L.
2009-01-01
Adults searched for or cached three objects in nine hiding locations in a virtual room or a real-space room. In both rooms, the locations selected by participants differed systematically between searching and hiding. Specifically, participants moved farther from origin and dispersed their choices more when hiding objects than when searching for…
A Coordinated Initialization Process for the Distributed Space Exploration Simulation (DSES)
NASA Technical Reports Server (NTRS)
Phillips, Robert; Dexter, Dan; Hasan, David; Crues, Edwin Z.
2007-01-01
This document describes the federate initialization process that was developed at the NASA Johnson Space Center with the HIIA Transfer Vehicle Flight Controller Trainer (HTV FCT) simulations and refined in the Distributed Space Exploration Simulation (DSES). These simulations use the High Level Architecture (HLA) IEEE 1516 to provide the communication and coordination between the distributed parts of the simulation. The purpose of the paper is to describe a generic initialization sequence that can be used to create a federate that can: 1. Properly initialize all HLA objects, object instances, interactions, and time management 2. Check for the presence of all federates 3. Coordinate startup with other federates 4. Robustly initialize and share initial object instance data with other federates.
From a lunar outpost to Mars - Science, policy and the U.S. Space Exploration Initiative
NASA Technical Reports Server (NTRS)
Pilcher, Carl B.
1992-01-01
The technological developments required for the Space Exploration Initiative (SEI) objectives are discussed in terms of scientific investigation and present U.S. space policy. The results of the 90-Day Study are listed which include explicit suggestions for the successful exploration of the moon and Mars. The Outreach/Synthesis program is described which provides four methods for eliciting ideas, technologies, and research venues for lunar and Martian missions. The results of the studies include 5 scientific objectives such as the relationship between the sun, planetary atmospheres, and climate. The protection of human life from potential extraterrestrial hazards such as radiation is also found to be a key objective of SEI as are the theoretical and practical issues of scientific research.
NASA Technical Reports Server (NTRS)
Pulliam, T. H.; Nemec, M.; Holst, T.; Zingg, D. W.; Kwak, Dochan (Technical Monitor)
2002-01-01
A comparison between an Evolutionary Algorithm (EA) and an Adjoint-Gradient (AG) Method applied to a two-dimensional Navier-Stokes code for airfoil design is presented. Both approaches use a common function evaluation code, the steady-state explicit part of the code,ARC2D. The parameterization of the design space is a common B-spline approach for an airfoil surface, which together with a common griding approach, restricts the AG and EA to the same design space. Results are presented for a class of viscous transonic airfoils in which the optimization tradeoff between drag minimization as one objective and lift maximization as another, produces the multi-objective design space. Comparisons are made for efficiency, accuracy and design consistency.
Space Operations Learning Center (SOLC) iPhone/iPad Application
NASA Technical Reports Server (NTRS)
Binebrink, Daniel; Kuok, Heng; Hammond, Malinda; Hull, Scott
2013-01-01
This iPhone application, Space Junk Sammy, is intended to be an educational application designed for Apple iPhones and iPads. This new concept educates kids in an innovative way about how orbital debris affects space missions. Orbital debris is becoming a very significant concern for NASA and all Earthorbiting space missions. Spacecraft in low-Earth orbit are in constant danger of being potentially damaged or destroyed by debris. High-profile spacecraft such as the International Space Station (ISS) and Hubble Space Telescope are dealing with orbital debris on a regular basis. Other basic educational concepts that are portrayed are low-Earth orbits, satellites, ISS, attitude control, and other facts that can be presented in betweenlevel popup screens. The Orbital Debris Cleanup game is relatively simple from the user s technical standpoint. It is a 2D game where the user s avatar is a satellite buddy, named Sammy, in orbit around Earth. Sammy is controlled by the user with the device s gyroscope as well as touchscreen controls. It has equipment used for taking care of the space debris objects on the screen. Sammy also has a claw, a laser deflector, and hydrazine rockets to grab or push the debris objects into a higher orbit or into a lower orbit to burn up in the Earth s atmosphere. The user interface shows Sammy and space debris objects constantly moving from left to right, where Sammy is trying to catch the debris objects before they move off the right side of the screen. Everything will be in constant motion to increase fun and add to the realism of orbiting the Earth. The satellite buddy is used to clean up the space debris and protect other satellites. Later levels will include a laser deflector and hydrazine rockets instead of a robotic claw to push the orbital debris into a higher orbit and out of the path of other satellites
Functional Requirements for Onboard Management of Space Shuttle Consumables. Volume 2
NASA Technical Reports Server (NTRS)
Graf, P. J.; Herwig, H. A.; Neel, L. W.
1973-01-01
This report documents the results of the study "Functional Requirements for Onboard Management of Space Shuttle Consumables." The study was conducted for the Mission Planning and Analysis Division of the NASA Lyndon B. Johnson Space Center, Houston, Texas, between 3 July 1972 and 16 November 1973. The overall study program objective was two-fold. The first objective was to define a generalized consumable management concept which is applicable to advanced spacecraft. The second objective was to develop a specific consumables management concept for the Space Shuttle vehicle and to generate the functional requirements for the onboard portion of that concept. Consumables management is the process of controlling or influencing the usage of expendable materials involved in vehicle subsystem operation. The report consists of two volumes. Volume I presents a description of the study activities related to general approaches for developing consumable management, concepts for advanced spacecraft applications, and functional requirements for a Shuttle consumables management concept. Volume II presents a detailed description of the onboard consumables management concept proposed for use on the Space Shuttle.
ESA seeks gravitational-wave proposals
NASA Astrophysics Data System (ADS)
Banks, Michael
2016-12-01
The European Space Agency (ESA) has put out a call for European scientists to submit proposals for the first space mission to observe gravitational waves - ripples in the fabric of space-time created by accelerating massive objects.
Research and Technology: Fiscal year 1982 report
NASA Technical Reports Server (NTRS)
1982-01-01
Accomplishments and research objectives are described in the following areas: (1) space sciences; (2) space and terrestrial applications; (3) flight projects and mission definition studies; (4) space tracking and data systems; and (5) space technology. Data analysis efforts, instrument development, and measurement projects are among the aspects considered.
NASA Technical Reports Server (NTRS)
Johnson, Nicholas L.
2006-01-01
Since the end of the Apollo program in 1972, human space flight has been restricted to altitudes below 600 km above the Earth s surface with most missions restricted to a ceiling below 400 km. An investigation of the tracked satellite population transiting and influencing the human space flight regime during the past 11 years (equivalent to a full solar cycle) has recently been completed. The overall effects of satellite breakups and solar activity are typically less pronounced in the human space flight regime than other regions of low Earth orbit. As of January 2006 nearly 1500 tracked objects resided in or traversed the human space flight regime, although two-thirds of these objects were in orbits of moderate to high eccentricity, significantly reducing their effect on human space flight safety. During the period investigated, the spatial density of tracked objects in the 350-400 km altitude regime of the International Space Station demonstrated a steady decline, actually decreasing by 50% by the end of the period. On the other hand, the region immediately above 600 km experienced a significant increase in its population density. This regime is important for future risk assessments, since this region represents the reservoir of debris which will influence human space flight safety in the future. The paper seeks to put into sharper perspective the risks posed to human space flight by the tracked satellite population, as well as the influences of solar activity and the effects of compliance with orbital debris mitigation guidelines on human space flight missions. Finally, the methods and successes of characterizing the population of smaller debris at human space flight regimes are addressed.
Design and Efficiency Analysis of Operational Scenarios for Space Situational Awareness Radar System
NASA Astrophysics Data System (ADS)
Choi, E. J.; Cho, S.; Jo, J. H.; Park, J.; Chung, T.; Park, J.; Jeon, H.; Yun, A.; Lee, Y.
In order to perform the surveillance and tracking of space objects, optical and radar sensors are the technical components for space situational awareness system. Especially, space situational awareness radar system in combination with optical sensors network plays an outstanding role for space situational awareness. At present, OWL-Net(Optical Wide Field patrol Network) optical system, which is the only infra structures for tracking of space objects in Korea is very limited in all-weather and observation time. Therefore, the development of radar system capable of continuous operation is becoming an essential space situational awareness element. Therefore, for an efficient space situational awareness at the current state, the strategy of the space situational awareness radar development should be considered. The purpose of this paper is to analyze the efficiency of radar system for detection and tracking of space objects. The detection capabilities are limited to an altitude of 2,000 km with debris size of 1 m2 in radar cross section (RCS) for the radar operating frequencies of L, S, C, X, and Ku-band. The power budget analysis results showed that the maximum detection range of 2,000km can be achieved with the transmitted power of 900 kW, transmit and receive antenna gains of 40 dB and 43 dB, respectively, pulse width of 2 ms, and a signal processing gain of 13.3dB, at frequency of 1.3GHz. The required signal-to-noise ratio (SNR) was assumed to be 12.6 dB for probability of detection of 80% with false alarm rate 10-6. Through the efficiency analysis and trade-off study, the key parameters of the radar system are designed. As a result, this research will provide the guideline for the conceptual design of space situational awareness system.
OPERA- A CNES Tool to Monitor Short and Middle Term Uncontrolled Re-Entries Using Mean Theories
NASA Astrophysics Data System (ADS)
Dolado, J. C.; Agueda, A.; Aivar, L.; Tirado, J.
2013-09-01
Objects in Low-Earth Orbits (LEO) and Highly Elliptical Orbits (HEO) are subjected to decay and re- entry into the atmosphere due mainly to the drag force. While being this process the best solution to avoid the proliferation of debris in space and ensure the sustainability of future space activities, it implies a threat to the population on ground. Thus, the prediction of the in-orbit lifetime of an object and the evaluation of the risk on population and ground assets constitutes a crucial task. This paper will concentrate on the first of these tasks.Unfortunately the lifetime of an object in space is remarkably difficult to predict. This is mainly due to the dependence of the atmospheric drag on a number of uncertain elements such as the density profile and its dependence on the solar activity, the atmospheric conditions, the mass and surface area of the object (very difficult to evaluate), its uncontrolled attitude, etc.In this paper we will present a method for the prediction of this lifetime based on publicly available Two-Line Elements (TLEs) from the American USSTRATCOM's Joint Space Operations Center (JSpOC). TLEs constitute an excellent source to access routinely orbital information for thousands of objects even though of their reduced and unpredictable accuracy.Additionally, the implementation of the method on a CNES's Java-based tool will be presented. This tool (OPERA) is executed routinely at CNES to predict the orbital lifetime of a whole catalogue of objects.
Virtual Boutique: a 3D modeling and content-based management approach to e-commerce
NASA Astrophysics Data System (ADS)
Paquet, Eric; El-Hakim, Sabry F.
2000-12-01
The Virtual Boutique is made out of three modules: the decor, the market and the search engine. The decor is the physical space occupied by the Virtual Boutique. It can reproduce any existing boutique. For this purpose, photogrammetry is used. A set of pictures of a real boutique or space is taken and a virtual 3D representation of this space is calculated from them. Calculations are performed with software developed at NRC. This representation consists of meshes and texture maps. The camera used in the acquisition process determines the resolution of the texture maps. Decorative elements are added like painting, computer generated objects and scanned objects. The objects are scanned with laser scanner developed at NRC. This scanner allows simultaneous acquisition of range and color information based on white laser beam triangulation. The second module, the market, is made out of all the merchandises and the manipulators, which are used to manipulate and compare the objects. The third module, the search engine, can search the inventory based on an object shown by the customer in order to retrieve similar objects base don shape and color. The items of interest are displayed in the boutique by reconfiguring the market space, which mean that the boutique can be continuously customized according to the customer's needs. The Virtual Boutique is entirely written in Java 3D and can run in mono and stereo mode and has been optimized in order to allow high quality rendering.
McDonnell, Terence E
2010-05-01
AIDS media lead unexpected lives once distributed through urban space: billboards fade, posters go missing, bumper stickers travel to other cities. The materiality of AIDS campaign objects and of the urban settings in which they are displayed structures how the public interprets their messages. Ethnographic observation of AIDS media in situ and interview data reveal how the materiality of objects and places shapes the availability of AIDS knowledge in Accra, Ghana. Significantly for AIDS organizations, these material conditions often systematically obstruct access to AIDS knowledge for particular groups. Attending to materiality rethinks how scholars assess the cultural power of media.
Recursive Branching Simulated Annealing Algorithm
NASA Technical Reports Server (NTRS)
Bolcar, Matthew; Smith, J. Scott; Aronstein, David
2012-01-01
This innovation is a variation of a simulated-annealing optimization algorithm that uses a recursive-branching structure to parallelize the search of a parameter space for the globally optimal solution to an objective. The algorithm has been demonstrated to be more effective at searching a parameter space than traditional simulated-annealing methods for a particular problem of interest, and it can readily be applied to a wide variety of optimization problems, including those with a parameter space having both discrete-value parameters (combinatorial) and continuous-variable parameters. It can take the place of a conventional simulated- annealing, Monte-Carlo, or random- walk algorithm. In a conventional simulated-annealing (SA) algorithm, a starting configuration is randomly selected within the parameter space. The algorithm randomly selects another configuration from the parameter space and evaluates the objective function for that configuration. If the objective function value is better than the previous value, the new configuration is adopted as the new point of interest in the parameter space. If the objective function value is worse than the previous value, the new configuration may be adopted, with a probability determined by a temperature parameter, used in analogy to annealing in metals. As the optimization continues, the region of the parameter space from which new configurations can be selected shrinks, and in conjunction with lowering the annealing temperature (and thus lowering the probability for adopting configurations in parameter space with worse objective functions), the algorithm can converge on the globally optimal configuration. The Recursive Branching Simulated Annealing (RBSA) algorithm shares some features with the SA algorithm, notably including the basic principles that a starting configuration is randomly selected from within the parameter space, the algorithm tests other configurations with the goal of finding the globally optimal solution, and the region from which new configurations can be selected shrinks as the search continues. The key difference between these algorithms is that in the SA algorithm, a single path, or trajectory, is taken in parameter space, from the starting point to the globally optimal solution, while in the RBSA algorithm, many trajectories are taken; by exploring multiple regions of the parameter space simultaneously, the algorithm has been shown to converge on the globally optimal solution about an order of magnitude faster than when using conventional algorithms. Novel features of the RBSA algorithm include: 1. More efficient searching of the parameter space due to the branching structure, in which multiple random configurations are generated and multiple promising regions of the parameter space are explored; 2. The implementation of a trust region for each parameter in the parameter space, which provides a natural way of enforcing upper- and lower-bound constraints on the parameters; and 3. The optional use of a constrained gradient- search optimization, performed on the continuous variables around each branch s configuration in parameter space to improve search efficiency by allowing for fast fine-tuning of the continuous variables within the trust region at that configuration point.
NASA Technical Reports Server (NTRS)
1989-01-01
The objective of the Space Transportation Booster Engine Configuration Study is to contribute to the ALS development effort by providing highly reliable, low cost booster engine concepts for both expendable and reusable rocket engines. The objectives of the Space Transportation Booster Engine (STBE) Configuration Study were: (1) to identify engine development configurations which enhance vehicle performance and provide operational flexibility at low cost; and (2) to explore innovative approaches to the follow-on Full-Scale Development (FSD) phase for the STBE.
NASA Technical Reports Server (NTRS)
Pace, R. E., Jr.; Craft, H. G., Jr.
1977-01-01
NASA has issued payload flight assignments for the first three Spacelab missions. The first two of these missions will have dual objectives, that of verifying Spacelab system performance and accomplishing meaningful space research. The first of these missions will be a joint NASA and ESA mission with a multidisciplinary payload. The second mission will verify a different Spacelab configuration while addressing the scientific disciplines of astrophysics. The third assigned mission will concentrate on utilizing the capabilities of Spacelab to perform meaningful experiments in space applications, primarily space processing. The paper describes these missions with their objectives, planned configuration and accommodation.
James Webb Space Telescope: The First Light Machine
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2007-01-01
Scheduled to begin its 10 year mission no sooner than 2013, the James Webb Space Telescope (JWST) will search for the first luminous objects of the Universe to help answer fundamental questions about how the Universe came to look like it does today. At 6.5 meters in diameter, JWST will be the world's largest space telescope. This talk reviews science objectives for JWST and how they drive the JWST architecture, e.g. aperture, wavelength range and operating temperature. Additionally, the talk provides an overview of the JWST primary mirror technology development and fabrication status.
NASA Technical Reports Server (NTRS)
1989-01-01
The objective of the Space Transportation Booster Engine (STBE) Configuration Study is to contribute to the Advanced Launch System (ALS) development effort by providing highly reliable, low cost booster engine concepts for both expendable and reusable rocket engines. The objectives of the space Transportation Booster Engine (STBE) Configuration Study were: (1) to identify engine configurations which enhance vehicle performance and provide operational flexibility at low cost, and (2) to explore innovative approaches to the follow-on Full-Scale Development (FSD) phase for the STBE.
General presentation including new structure
NASA Astrophysics Data System (ADS)
Soons, A.
2002-12-01
Electrical, electronic and electro-mechanical components play an essential role in the functional performance, quality, life cycle and costs of space systems. Their standardisation, product specification, development, evaluation, qualification and procurement must be based on a coherent and efficient approach, paying due attention to present and prospective European space policies and must be commensurate with user needs, market developments and technology trends. The European Space Components Coordination (ESCC) is established with the objective of harmonising the efforts concerning the various aspects of EEE space components by ESA. European national and international public space organisations, the component manufacturers and the user industries. The goal of the ESCC is to improve the availability of strategic EEE space components with the required performance and at affordable costs for institutional and commercial space programmes. It is the objective of ESCC to achieve this goal by harmonising the resources and development efforts for space components in the ESA Member States and by providing a single and unified system for the standardisation, product specification, evaluation, qualification and procurement of European EEE space components and for the certification of components and component manufacturers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reeves, Geoffrey D.
To advance our understanding of the space environment (from the Sun to the Earth and beyond) and to advance our ability to operate systems in space that protect life and society. Space Science is distinct from other field, such as astrophysics or cosmology, in that Space Science utilizes in-situ measurements from high altitude rockets, balloons and spacecraft or ground-based measurements of objects and conditions in space.
NASA Development of Aerocapture Technologies
NASA Technical Reports Server (NTRS)
James, Bonnie; Munk, Michelle; Moon, Steve
2003-01-01
Aeroassist technology development is a vital part of the NASA ln-Space Propulsion Program (ISP), which is managed by the NASA Headquarters Office of Space Science, and implemented by the Marshall Space Flight Center in Huntsville, Alabama. Aeroassist is the general term given to various techniques to maneuver a space vehicle within an atmosphere, using aerodynamic forces in lieu of propulsive fuel. Within the ISP, the current aeroassist technology development focus is aerocapture. The objective of the ISP Aerocapture Technology Project (ATP) is to develop technologies that can enable and/or benefit NASA science missions by significantly reducing cost, mass, and/or travel times. To accomplish this objective, the ATP identifies and prioritizes the most promising technologies using systems analysis, technology advancement and peer review, coupled with NASA Headquarters Office of Space Science target requirements. Plans are focused on developing mid-Technology Readiness Level (TRL) technologies to TRL 6 (ready for technology demonstration in space).
NASA Development of Aerocapture Technologies
NASA Technical Reports Server (NTRS)
James, Bonnie; Munk, Michelle; Moon, Steve
2004-01-01
Aeroassist technology development is a vital part of the NASA In-Space Propulsion Program (ISP), which is managed by the NASA Headquarters Office of Space Science, and implemented by the Marshall Space Flight Center in Huntsville, Alabama. Aeroassist is the general term given to various techniques to maneuver a space vehicle within an atmosphere, using aerodynamic forces in lieu of propulsive fuel. Within the ISP, the current aeroassist technology development focus is aerocapture. The objective of the ISP Aerocapture Technology Project (ATP) is to develop technologies that can enable and/or benefit NASA science missions by significantly reducing cost, mass, and/or travel times. To accomplish this objective, the ATP identifies and prioritizes the most promising technologies using systems analysis, technology advancement and peer review, coupled with NASA Headquarters Office of Space Science target requirements. Plans are focused on developing mid-Technology Readiness Level (TRL) technologies to TRL 6 (ready for technology demonstration in space).
2003-05-02
KENNEDY SPACE CENTER, FLA. - Workers in NASA Spacecraft Hangar AE check the placement of the Space Infrared Telescope Facility (SIRTF), which has been returned to the hangar from the launch pad for further processing. SIRTF will remain in the clean room until it returns to the pad in early August. One of NASA's largest infrared telescopes to be launched, SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.
2003-05-02
KENNEDY SPACE CENTER, FLA. - Workers in NASA Spacecraft Hangar AE begin the next phase of processing of the Space Infrared Telescope Facility (SIRTF), which has been returned to the hangar from the launch pad. SIRTF will remain in the clean room until it returns to the pad in early August. One of NASA's largest infrared telescopes to be launched, SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.
Space qualification of silicon carbide for mirror applications: progress and future objectives
NASA Astrophysics Data System (ADS)
Palusinski, Iwona A.; Ghozeil, Isaac
2006-09-01
Production of optical silicon carbide (SiC) for mirror applications continues to evolve and there are renewed plans to use this material in future space-based systems. While SiC has the potential for rapid and cost-effective manufacturing of large, lightweight, athermal optical systems, this material's use in mirror applications is relatively new and has limited flight heritage. This combination of drivers stresses the necessity for a space qualification program for this material. Successful space qualification will require independent collaboration to absorb the high cost of executing this program while taking advantage of each contributing group's laboratory expertise to develop a comprehensive SiC database. This paper provides an overview of the trends and progress in the production of SiC, and identifies future objectives such as non-destructive evaluation and space-effects modeling to ensure proper implementation of this material into future space-based systems.
2003-05-02
KENNEDY SPACE CENTER, FLA. - Workers in NASA Spacecraft Hangar AE erect a ladder to reach the top of the Space Infrared Telescope Facility (SIRTF), which has been returned to the hangar from the launch pad. SIRTF will remain in the clean room until it returns to the pad in early August. One of NASA's largest infrared telescopes to be launched, SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.
2003-05-02
KENNEDY SPACE CENTER, FLA. - Workers in NASA Spacecraft Hangar AE remove a portion of a transportation canister from around the Space Infrared Telescope Facility (SIRTF), which has been returned to the hangar from the launch pad. SIRTF will remain in the clean room until it returns to the pad in early August. One of NASA's largest infrared telescopes to be launched, SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.
2003-05-02
KENNEDY SPACE CENTER, FLA. - Workers in NASA Spacecraft Hangar AE remove sections of the transportation canister from around the Space Infrared Telescope Facility (SIRTF), which has been returned to the hangar from the launch pad. SIRTF will remain in the clean room until it returns to the pad in early August. One of NASA's largest infrared telescopes to be launched, SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.
2003-05-02
KENNEDY SPACE CENTER, FLA. - Workers in NASA Spacecraft Hangar AE prepare to remove the canister from around the Space Infrared Telescope Facility (SIRTF), which has been returned to the hangar from the launch pad. SIRTF will remain in the clean room until it returns to the pad in early August. One of NASA's largest infrared telescopes to be launched, SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.
2003-05-02
KENNEDY SPACE CENTER, FLA. - In the NASA Spacecraft Hangar AE, the Space Infrared Telescope Facility (SIRTF), which has been returned to the hangar from the launch pad, is uncovered by workers following its arrival. SIRTF will remain in the clean room until it returns to the pad in early August. One of NASA's largest infrared telescopes to be launched, SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.
2003-05-02
KENNEDY SPACE CENTER, FLA. - Workers in NASA Spacecraft Hangar AE lift the protective cover from around the Space Infrared Telescope Facility (SIRTF), which has been returned to the hangar from the launch pad. SIRTF will remain in the clean room until it returns to the pad in early August. One of NASA's largest infrared telescopes to be launched, SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.
2003-05-02
KENNEDY SPACE CENTER, FLA. - Workers in NASA Spacecraft Hangar AE remove the protective cover from around the Space Infrared Telescope Facility (SIRTF), which has been returned to the hangar from the launch pad. SIRTF will remain in the clean room until it returns to the pad in early August. One of NASA's largest infrared telescopes to be launched, SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.
48 CFR 1852.228-76 - Cross-waiver of liability for international space station activities.
Code of Federal Regulations, 2014 CFR
2014-10-01
... by Space Objects, which entered into force on September 1, 1972, where the person, entity, or... for international space station activities. 1852.228-76 Section 1852.228-76 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CLAUSES AND FORMS SOLICITATION PROVISIONS AND...
48 CFR 1852.228-76 - Cross-waiver of liability for international space station activities.
Code of Federal Regulations, 2013 CFR
2013-10-01
... by Space Objects, which entered into force on September 1, 1972, where the person, entity, or... for international space station activities. 1852.228-76 Section 1852.228-76 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CLAUSES AND FORMS SOLICITATION PROVISIONS AND...
48 CFR 1852.228-76 - Cross-waiver of liability for space station activities.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Space Station” (the “Intergovernmental Agreement”) has entered into force, in accordance with Article 25... by Space Objects, which entered into force on September 1, 1972, where the person, entity, or... for space station activities. 1852.228-76 Section 1852.228-76 Federal Acquisition Regulations System...
NASA Technical Reports Server (NTRS)
1981-01-01
The objectives were to define, evaluate, and select concepts for evolving a space station in conjunction with the Space Platform for NASA science, Applications, Technology and DOD; and a permanently manned presence in space early, with a maximum of existing technology.
Multi-Site Simultaneous Time-Resolved Photometry with a Low Cost Electro-Optics System †
Gasdia, Forrest; Barjatya, Aroh; Bilardi, Sergei
2017-01-01
Sunlight reflected off of resident space objects can be used as an optical signal for astrometric orbit determination and for deducing geometric information about the object. With the increasing population of small satellites and debris in low Earth orbit, photometry is a powerful tool in operational support of space missions, whether for anomaly resolution or object identification. To accurately determine size, shape, spin rate, status of deployables, or attitude information of an unresolved resident space object, multi-hertz sample rate photometry is required to capture the relatively rapid changes in brightness that these objects can exhibit. OSCOM, which stands for Optical tracking and Spectral characterization of CubeSats for Operational Missions, is a low cost and portable telescope system capable of time-resolved small satellite photometry, and is field deployable on short notice for simultaneous observation from multiple sites. We present the electro-optical design principles behind OSCOM and light curves of the 1.5 U DICE-2 CubeSat and simultaneous observations of the main body of the ASTRO-H satellite after its fragmentation event. PMID:28556802
Growth in the Number of SSN Tracked Orbital Objects
NASA Technical Reports Server (NTRS)
Stansbery, Eugene G.
2004-01-01
The number of objects in earth orbit tracked by the US Space Surveillance Network (SSN) has experienced unprecedented growth since March, 2003. Approximately 2000 orbiting objects have been added to the "Analyst list" of tracked objects. This growth is primarily due to the resumption of full power/full time operation of the AN/FPS-108 Cobra Dane radar located on Shemya Island, AK. Cobra Dane is an L-band (23-cm wavelength) phased array radar which first became operational in 1977. Cobra Dane was a "Collateral Sensor" in the SSN until 1994 when its communication link with the Space Control Center (SCC) was closed. NASA and the Air Force conducted tests in 1999 using Cobra Dane to detect and track small debris. These tests confirmed that the radar was capable of detecting and maintaining orbits on objects as small as 5-cm diameter. Subsequently, Cobra Dane was reconnected to the SSN and resumed full power/full time space surveillance operations on March 4, 2003. This paper will examine the new data and its implications to the understanding of the orbital debris environment and orbital safety.
Multi-Site Simultaneous Time-Resolved Photometry with a Low Cost Electro-Optics System.
Gasdia, Forrest; Barjatya, Aroh; Bilardi, Sergei
2017-05-30
Sunlight reflected off of resident space objects can be used as an optical signal for astrometric orbit determination and for deducing geometric information about the object. With the increasing population of small satellites and debris in low Earth orbit, photometry is a powerful tool in operational support of space missions, whether for anomaly resolution or object identification. To accurately determine size, shape, spin rate, status of deployables, or attitude information of an unresolved resident space object, multi-hertz sample rate photometry is required to capture the relatively rapid changes in brightness that these objects can exhibit. OSCOM, which stands for Optical tracking and Spectral characterization of CubeSats for Operational Missions, is a low cost and portable telescope system capable of time-resolved small satellite photometry, and is field deployable on short notice for simultaneous observation from multiple sites. We present the electro-optical design principles behind OSCOM and light curves of the 1.5 U DICE-2 CubeSat and simultaneous observations of the main body of the ASTRO-H satellite after its fragmentation event.
Performance Analysis of an Actor-Based Distributed Simulation
NASA Technical Reports Server (NTRS)
Schoeffler, James D.
1998-01-01
Object-oriented design of simulation programs appears to be very attractive because of the natural association of components in the simulated system with objects. There is great potential in distributing the simulation across several computers for the purpose of parallel computation and its consequent handling of larger problems in less elapsed time. One approach to such a design is to use "actors", that is, active objects with their own thread of control. Because these objects execute concurrently, communication is via messages. This is in contrast to an object-oriented design using passive objects where communication between objects is via method calls (direct calls when they are in the same address space and remote procedure calls when they are in different address spaces or different machines). This paper describes a performance analysis program for the evaluation of a design for distributed simulations based upon actors.
Modeling of Diffuse Photometric Signatures of Satellites for Space Object Identification.
1982-12-01
to provide the groundwork for devel- opment of a computer program which could serve as an aid to tactical space object identification and analysis ...I Photometric Analysis Capability at the ADIC. . . . . .. 2 Operational Limitations of the Photometric Data Analysis Module (PDA...7 PDAM Diffuse Analysis . . . . . . . . . . . . . . . . . 7 Real World SOI Requirements vs POAN Capabilities . . . . 16 Statement of the Problem
Overview of NASA Power Technologies for Space and Aero Applications
NASA Technical Reports Server (NTRS)
Beach, Raymond F.
2014-01-01
To achieve the ambitious goals that NASA has outlined for the next decades considerable development of power technology will be necessary. This presentation outlines the development objectives for both the space and aero applications. It further looks at the various power technologies that support these objectives and examines drivers that will be a driving force for future development.
2003-09-03
KENNEDY SPACE CENTER, FLA. - Workers calibrate a tracking telescope, part of the Distant Object Attitude Measurement System (DOAMS), located in Cocoa Beach, Fla. The telescope provides optical support for launches from KSC and Cape Canaveral.
ERIC Educational Resources Information Center
Desyatov, Tymofiy
2015-01-01
The problem of professional training of teachers in foreign countries in terms of intercultural interaction of educational space objects has been studied in the paper. It has been stated that the current stage of human civilization development which is defined as the transition to a knowledge society, is characterized by qualitatively new…
Massive Gas Cloud Around Jupiter
NASA Technical Reports Server (NTRS)
2003-01-01
An innovative instrument on NASA's Cassini spacecraft makes the space environment around Jupiter visible, revealing a donut-shaped gas cloud encircling the planet.
The image was taken with the energetic neutral atom imaging technique by the Magnetospheric Imaging Instrument on Cassini as the spacecraft flew past Jupiter in early 2001 at a distance of about 10 million kilometers (6 million miles). This technique provides information about a source by detecting neutral atoms emitted by the source, comparable to how a camera reveals information about an object by detecting photons coming from the object.The central object in this image represents energetic neutral atom emissions from Jupiter itself. The outer two objects represent emissions from a donut-shaped cloud, or torus, that shares an orbit with Jupiter's moon Europa. The cloud's emissions appear dot-like because of the viewing angle. The torus is viewed edge-on, and the image is brightest at the line-of-sight angles that pass through the greatest volume of it.Cassini is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, Calif., manages Cassini for NASA's Office of Space Science, Washington, D.C.Foucauldian diagnostics: space, time, and the metaphysics of medicine.
Bishop, Jeffrey P
2009-08-01
This essay places Foucault's work into a philosophical context, recognizing that Foucault is difficult to place and demonstrates that Foucault remains in the Kantian tradition of philosophy, even if he sits at the margins of that tradition. For Kant, the forms of intuition-space and time-are the a priori conditions of the possibility of human experience and knowledge. For Foucault, the a priori conditions are political space and historical time. Foucault sees political space as central to understanding both the subject and objects of medicine, psychiatry, and the social sciences. Through this analysis one can see that medicine's metaphysics is a metaphysics of efficient causation, where medicine's objects are subjected to mechanisms of efficient control.
1999-12-01
Astronomers using NASA Hubble Space Telescope stumbled upon a mysterious object that grudgingly yielded clues to its identity. The object is classified as a planetary nebula, the glowing remains of a dying, lightweight star.
Close range fault tolerant noncontacting position sensor
Bingham, D.N.; Anderson, A.A.
1996-02-20
A method and system are disclosed for locating the three dimensional coordinates of a moving or stationary object in real time. The three dimensional coordinates of an object in half space or full space are determined based upon the time of arrival or phase of the wave front measured by a plurality of receiver elements and an established vector magnitudes proportional to the measured time of arrival or phase at each receiver element. The coordinates of the object are calculated by solving a matrix equation or a set of closed form algebraic equations. 3 figs.
NASA Technical Reports Server (NTRS)
Laughlin, Daniel
2008-01-01
Persistent Immersive Synthetic Environments (PISE) are not just connection points, they are meeting places. They are the new public squares, village centers, malt shops, malls and pubs all rolled into one. They come with a sense of 'thereness" that engages the mind like a real place does. Learning starts as a real code. The code defines "objects." The objects exist in computer space, known as the "grid." The objects and space combine to create a "place." A "world" is created, Before long, the grid and code becomes obscure, and the "world maintains focus.
The integrated scheduling system: A case study in project management
NASA Technical Reports Server (NTRS)
Bishop, Peter C.; Learned, David B.; Yoes, Cissy A.
1989-01-01
A prototype project management system was developed for the Level III Project Office for the Space Station Freedom. The main goal was to establish a framework for the Space Station Project Office whereby Project and Office Managers can jointly establish and review scheduled milestones and activities. The objective was to assist office managers in communicating their objectives, milestones, schedules, and other project information more effectively and efficiently. Consideration of sophisticated project management systems was included, but each of the systems had limitations in meeting the stated objectives.
Spacecraft Stabilization and Control for Capture of Non-Cooperative Space Objects
NASA Technical Reports Server (NTRS)
Joshi, Suresh; Kelkar, Atul G.
2014-01-01
This paper addresses stabilization and control issues in autonomous capture and manipulation of non-cooperative space objects such as asteroids, space debris, and orbital spacecraft in need of servicing. Such objects are characterized by unknown mass-inertia properties, unknown rotational motion, and irregular shapes, which makes it a challenging control problem. The problem is further compounded by the presence of inherent nonlinearities, signi cant elastic modes with low damping, and parameter uncertainties in the spacecraft. Robust dissipativity-based control laws are presented and are shown to provide global asymptotic stability in spite of model uncertainties and nonlinearities. It is shown that robust stabilization can be accomplished via model-independent dissipativity-based controllers using thrusters alone, while stabilization with attitude and position control can be accomplished using thrusters and torque actuators.
Micro-Macro Duality and Space-Time Emergence
NASA Astrophysics Data System (ADS)
Ojima, Izumi
2011-03-01
The microscopic origin of space-time geometry is explained on the basis of an emergence process associated with the condensation of infinite number of microscopic quanta responsible for symmetry breakdown, which implements the basic essence of "Quantum-Classical Correspondence" and of the forcing method in physical and mathematical contexts, respectively. From this viewpoint, the space-time dependence of physical quantities arises from the "logical extension" [8] to change "constant objects" into "variable objects" by tagging the order parameters associated with the condensation onto "constant objects"; the logical direction here from a value y to a domain variable x (to materialize the basic mechanism behind the Gel'fand isomorphism) is just opposite to that common in the usual definition of a function ƒ : x⟼ƒ(x) from its domain variable x to a value y = ƒ(x).
A method for real-time visual stimulus selection in the study of cortical object perception.
Leeds, Daniel D; Tarr, Michael J
2016-06-01
The properties utilized by visual object perception in the mid- and high-level ventral visual pathway are poorly understood. To better establish and explore possible models of these properties, we adopt a data-driven approach in which we repeatedly interrogate neural units using functional Magnetic Resonance Imaging (fMRI) to establish each unit's image selectivity. This approach to imaging necessitates a search through a broad space of stimulus properties using a limited number of samples. To more quickly identify the complex visual features underlying human cortical object perception, we implemented a new functional magnetic resonance imaging protocol in which visual stimuli are selected in real-time based on BOLD responses to recently shown images. Two variations of this protocol were developed, one relying on natural object stimuli and a second based on synthetic object stimuli, both embedded in feature spaces based on the complex visual properties of the objects. During fMRI scanning, we continuously controlled stimulus selection in the context of a real-time search through these image spaces in order to maximize neural responses across pre-determined 1cm(3) rain regions. Elsewhere we have reported the patterns of cortical selectivity revealed by this approach (Leeds et al., 2014). In contrast, here our objective is to present more detailed methods and explore the technical and biological factors influencing the behavior of our real-time stimulus search. We observe that: 1) Searches converged more reliably when exploring a more precisely parameterized space of synthetic objects; 2) real-time estimation of cortical responses to stimuli is reasonably consistent; 3) search behavior was acceptably robust to delays in stimulus displays and subject motion effects. Overall, our results indicate that real-time fMRI methods may provide a valuable platform for continuing study of localized neural selectivity, both for visual object representation and beyond. Copyright © 2016 Elsevier Inc. All rights reserved.
A method for real-time visual stimulus selection in the study of cortical object perception
Leeds, Daniel D.; Tarr, Michael J.
2016-01-01
The properties utilized by visual object perception in the mid- and high-level ventral visual pathway are poorly understood. To better establish and explore possible models of these properties, we adopt a data-driven approach in which we repeatedly interrogate neural units using functional Magnetic Resonance Imaging (fMRI) to establish each unit’s image selectivity. This approach to imaging necessitates a search through a broad space of stimulus properties using a limited number of samples. To more quickly identify the complex visual features underlying human cortical object perception, we implemented a new functional magnetic resonance imaging protocol in which visual stimuli are selected in real-time based on BOLD responses to recently shown images. Two variations of this protocol were developed, one relying on natural object stimuli and a second based on synthetic object stimuli, both embedded in feature spaces based on the complex visual properties of the objects. During fMRI scanning, we continuously controlled stimulus selection in the context of a real-time search through these image spaces in order to maximize neural responses across predetermined 1 cm3 brain regions. Elsewhere we have reported the patterns of cortical selectivity revealed by this approach (Leeds 2014). In contrast, here our objective is to present more detailed methods and explore the technical and biological factors influencing the behavior of our real-time stimulus search. We observe that: 1) Searches converged more reliably when exploring a more precisely parameterized space of synthetic objects; 2) Real-time estimation of cortical responses to stimuli are reasonably consistent; 3) Search behavior was acceptably robust to delays in stimulus displays and subject motion effects. Overall, our results indicate that real-time fMRI methods may provide a valuable platform for continuing study of localized neural selectivity, both for visual object representation and beyond. PMID:26973168
3D shape recovery of a newborn skull using thin-plate splines.
Lapeer, R J; Prager, R W
2000-01-01
The objective of this paper is to construct a mesh-model of a newborn skull for finite element analysis to study its deformation when subjected to the forces present during labour. The current state of medical imaging technology has reached a level which allows accurate visualisation and shape recovery of biological organs and body-parts. However, a sufficiently large set of medical images cannot always be obtained, often because of practical or ethical reasons, and the requirement to recover the shape of the biological object of interest has to be met by other means. Such is the case for a newborn skull. A method to recover the three-dimensional (3D) shape from (minimum) two orthogonal atlas images of the object of interest and a homologous object is described. This method is based on matching landmarks and curves on the orthogonal images of the object of interest with corresponding landmarks and curves on the homologous or 'master'-object which is fully defined in 3D space. On the basis of this set of corresponding landmarks, a thin-plate spline function can be derived to warp from the 'master'-object space to the 'slave'-object space. This method is applied to recover the 3D shape of a newborn skull. Images from orthogonal view-planes are obtained from an atlas. The homologous object is an adult skull, obtained from CT-images made available by the Visible Human Project. After shape recovery, a mesh-model of the newborn skull is generated.
Orbital debris and meteoroids: Results from retrieved spacecraft surfaces
NASA Astrophysics Data System (ADS)
Mandeville, J. C.
1993-08-01
Near-Earth space contains natural and man-made particles, whose size distribution ranges from submicron sized particles to cm sized objects. This environment causes a grave threat to space missions, mainly for future manned or long duration missions. Several experiments devoted to the study of this environment have been recently retrieved from space. Among them several were located on the NASA Long Duration Exposure Facility (LDEF) and on the Russian MIR Space Station. Evaluation of hypervelocity impact features gives valuable information on size distribution of small dust particles present in low Earth orbit. Chemical identification of projectile remnants is possible in many instances, thus allowing a discrimination between extraterrestrial particles and man-made orbital debris. A preliminary comparison of flight data with current modeling of meteoroids and space debris shows a fair agreement. However impact of particles identified as space debris on the trailing side of LDEF, not predicted by the models, could be the result of space debris in highly excentric orbits, probably associated with GTO objects.
Autonomous physics-based color learning under daylight
NASA Astrophysics Data System (ADS)
Berube Lauziere, Yves; Gingras, Denis J.; Ferrie, Frank P.
1999-09-01
An autonomous approach for learning the colors of specific objects assumed to have known body spectral reflectances is developed for daylight illumination conditions. The main issue is to be able to find these objects autonomously in a set of training images captured under a wide variety of daylight illumination conditions, and to extract their colors to determine color space regions that are representative of the objects' colors and their variations. The work begins by modeling color formation under daylight using the color formation equations and the semi-empirical model of Judd, MacAdam and Wyszecki (CIE daylight model) for representing the typical spectral distributions of daylight. This results in color space regions that serve as prior information in the initial phase of learning which consists in detecting small reliable clusters of pixels having the appropriate colors. These clusters are then expanded by a region growing technique using broader color space regions than those predicted by the model. This is to detect objects in a way that is able to account for color variations which the model cannot due to its limitations. Validation on the detected objects is performed to filter out those that are not of interest and to eliminate unreliable pixel color values extracted from the remaining ones. Detection results using the color space regions determined from color values obtained by this procedure are discussed.
NASA Astrophysics Data System (ADS)
Cha, J.; Ryu, J.; Lee, M.; Song, C.; Cho, Y.; Schumacher, P.; Mah, M.; Kim, D.
Conjunction prediction is one of the critical operations in space situational awareness (SSA). For geospace objects, common algorithms for conjunction prediction are usually based on all-pairwise check, spatial hash, or kd-tree. Computational load is usually reduced through some filters. However, there exists a good chance of missing potential collisions between space objects. We present a novel algorithm which both guarantees no missing conjunction and is efficient to answer to a variety of spatial queries including pairwise conjunction prediction. The algorithm takes only O(k log N) time for N objects in the worst case to answer conjunctions where k is a constant which is linear to prediction time length. The proposed algorithm, named DVD-COOP (Dynamic Voronoi Diagram-based Conjunctive Orbital Object Predictor), is based on the dynamic Voronoi diagram of moving spherical balls in 3D space. The algorithm has a preprocessing which consists of two steps: The construction of an initial Voronoi diagram (taking O(N) time on average) and the construction of a priority queue for the events of topology changes in the Voronoi diagram (taking O(N log N) time in the worst case). The scalability of the proposed algorithm is also discussed. We hope that the proposed Voronoi-approach will change the computational paradigm in spatial reasoning among space objects.
Advanced Exploration Systems Water Architecture Study Interim Results
NASA Technical Reports Server (NTRS)
Sargusingh, Miriam J.
2013-01-01
The mission of the Advanced Exploration System (AES) Water Recovery Project (WRP) is to develop advanced water recovery systems that enable NASA human exploration missions beyond low Earth orbit (LEO). The primary objective of the AES WRP is to develop water recovery technologies critical to near-term missions beyond LEO. The secondary objective is to continue to advance mid-readiness-level technologies to support future NASA missions. An effort is being undertaken to establish the architecture for the AES Water Recovery System (WRS) that meets both near- and long-term objectives. The resultant architecture will be used to guide future technical planning, establish a baseline development roadmap for technology infusion, and establish baseline assumptions for integrated ground and on-orbit Environmental Control and Life Support Systems definition. This study is being performed in three phases. Phase I established the scope of the study through definition of the mission requirements and constraints, as well as identifying all possible WRS configurations that meet the mission requirements. Phase II focused on the near-term space exploration objectives by establishing an International Space Station-derived reference schematic for long-duration (>180 day) in-space habitation. Phase III will focus on the long-term space exploration objectives, trading the viable WRS configurations identified in Phase I to identify the ideal exploration WRS. The results of Phases I and II are discussed in this paper.
Dynamic representation of 3D auditory space in the midbrain of the free-flying echolocating bat
2018-01-01
Essential to spatial orientation in the natural environment is a dynamic representation of direction and distance to objects. Despite the importance of 3D spatial localization to parse objects in the environment and to guide movement, most neurophysiological investigations of sensory mapping have been limited to studies of restrained subjects, tested with 2D, artificial stimuli. Here, we show for the first time that sensory neurons in the midbrain superior colliculus (SC) of the free-flying echolocating bat encode 3D egocentric space, and that the bat’s inspection of objects in the physical environment sharpens tuning of single neurons, and shifts peak responses to represent closer distances. These findings emerged from wireless neural recordings in free-flying bats, in combination with an echo model that computes the animal’s instantaneous stimulus space. Our research reveals dynamic 3D space coding in a freely moving mammal engaged in a real-world navigation task. PMID:29633711
NASA Technical Reports Server (NTRS)
Trolinger, James D.; Lal, Ravindra B.; Rangel, Roger; Witherow, William; Rogers, Jan
2001-01-01
The IML-1 Spaceflight produced over 1000 holograms of a well-defined particle field in the low g Spacelab environment; each containing as much as 1000 megabytes of information. This project took advantage of these data and the concept of holographic "virtual" spaceflight to advance the understanding of convection in the space shuttle environment, g-jitter effects on crystal growth, and complex transport phenomena in low Reynolds number flows. The first objective of the proposed work was to advance the understanding of microgravity effects on crystal growth. This objective was achieved through the use of existing holographic data recorded during the IML-1 Spaceflight. The second objective was to design a spaceflight experiment that exploits the "virtual space chamber concept" in which holograms of space chambers can provide a virtual access to space. This led to a flight definition project, which is now underway under a separate contract known as SHIVA, Spaceflight Holography Investigation in a Virtual Apparatus.
Large aperture diffractive space telescope
Hyde, Roderick A.
2001-01-01
A large (10's of meters) aperture space telescope including two separate spacecraft--an optical primary objective lens functioning as a magnifying glass and an optical secondary functioning as an eyepiece. The spacecraft are spaced up to several kilometers apart with the eyepiece directly behind the magnifying glass "aiming" at an intended target with their relative orientation determining the optical axis of the telescope and hence the targets being observed. The objective lens includes a very large-aperture, very-thin-membrane, diffractive lens, e.g., a Fresnel lens, which intercepts incoming light over its full aperture and focuses it towards the eyepiece. The eyepiece has a much smaller, meter-scale aperture and is designed to move along the focal surface of the objective lens, gathering up the incoming light and converting it to high quality images. The positions of the two space craft are controlled both to maintain a good optical focus and to point at desired targets which may be either earth bound or celestial.
Mental Representation of Spatial Cues During Spaceflight (3D-SPACE)
NASA Astrophysics Data System (ADS)
Clement, Gilles; Lathan, Corinna; Skinner, Anna; Lorigny, Eric
2008-06-01
The 3D-SPACE experiment is a joint effort between ESA and NASA to develop a simple virtual reality platform to enable astronauts to complete a series of tests while aboard the International Space Station (ISS). These tests will provide insights into the effects of the space environment on: (a) depth perception, by presenting 2D geometric illusions and 3D objects that subjects adjust with a finger trackball; (b) distance perception, by presenting natural or computer-generated 3D scenes where subjects estimate and report absolute distances or adjust distances; and (c) handwriting/drawing, by analyzing trajectories and velocities when subjects write or draw memorized objects with an electronic pen on a digitizing tablet. The objective of these tasks is to identify problems associated with 3D perception in astronauts with the goal of developing countermeasures to alleviate any associated performance risks. The equipment has been uploaded to the ISS in April 2008, and the first measurements should take place during Increment 17.
Rapid Thermal Processing (RTP) of semiconductors in space
NASA Technical Reports Server (NTRS)
Anderson, T. J.; Jones, K. S.
1993-01-01
The progress achieved on the project entitled 'Rapid Thermal Processing of Semiconductors in Space' for a 12 month period of activity ending March 31, 1993 is summarized. The activity of this group is being performed under the direct auspices of the ROMPS program. The main objective of this program is to develop and demonstrate the use of advanced robotics in space with rapid thermal process (RTP) of semiconductors providing the test technology. Rapid thermal processing is an ideal processing step for demonstration purposes since it encompasses many of the characteristics of other processes used in solid state device manufacturing. Furthermore, a low thermal budget is becoming more important in existing manufacturing practice, while a low thermal budget is critical to successful processing in space. A secondary objective of this project is to determine the influence of microgravity on the rapid thermal process for a variety of operating modes. In many instances, this involves one or more fluid phases. The advancement of microgravity processing science is an important ancillary objective.
2008 ESMD Space Grant Faculty Project
NASA Technical Reports Server (NTRS)
Murphy, Gloria; Conrad, James; Guo, Jiang; Lackey, Ellen; Lambright, Jonathan; Misra, Prabhakar; Prasad, Nadipuram; Radcliff, Roger; Selby, Gregory; Wersinger, Jean-Marie;
2008-01-01
Objectives of this project was to: Gather senior design project ideas and internship opportunities: Relative to space explorationnd In support of the ESMD Space Grant Student Project Support NASAs Educational Framework Outcome 1: Contribute to the development of the STEM workforce
NASA Medical Response to Human Spacecraft Accidents
NASA Technical Reports Server (NTRS)
Patlach, Robert
2010-01-01
Manned space flight is risky business. Accidents have occurred and may occur in the future. NASA's manned space flight programs, with all their successes, have had three fatal accidents, one at the launch pad and two in flight. The Apollo fire and the Challenger and Columbia accidents resulted in a loss of seventeen crewmembers. Russia's manned space flight programs have had three fatal accidents, one ground-based and two in flight. These accidents resulted in the loss of five crewmembers. Additionally, manned spacecraft have encountered numerous close calls with potential for disaster. The NASA Johnson Space Center Flight Safety Office has documented more than 70 spacecraft incidents, many of which could have become serious accidents. At the Johnson Space Center (JSC), medical contingency personnel are assigned to a Mishap Investigation Team. The team deploys to the accident site to gather and preserve evidence for the Accident Investigation Board. The JSC Medical Operations Branch has developed a flight surgeon accident response training class to capture the lessons learned from the Columbia accident. This presentation will address the NASA Mishap Investigation Team's medical objectives, planned response, and potential issues that could arise subsequent to a manned spacecraft accident. Educational Objectives are to understand the medical objectives and issues confronting the Mishap Investigation Team medical personnel subsequent to a human space flight accident.
Collaborative Commercial Space Situational Awareness
NASA Astrophysics Data System (ADS)
Kelso, T. S.; Hendrix, D.; Sibert, D.; Hall, R. A.; Therien, W.
2013-09-01
There is an increasing recognition by commercial and civil space operators of the need for space situational awareness (SSA) data to support ongoing conjunction analysis, maneuver planning, and radio frequency interference mitigation as part of daily operations. While some SSA data is available from the Joint Space Operations Center via the Space Track web site, access to raw observations and photometric data is limited due to national security considerations. These data, however, are of significant value in calibrating intra- and inter-operator orbit determination results, determining inter-system biases, and assessing operating profiles in the geostationary orbit. This paper details an ongoing collaborative effort to collect and process optical observations and photometric data using a network of low-cost telescope installations and shows how these data are being used to support ongoing operations in the Space Data Center. This presentation will demonstrate how by leveraging advance photometric processing algorithms developed for Missile Defense Agency and the Ballistic Missile Defense (BMD) mission ExoAnalytic and AGI have been able to provide actionable SSA for satellite operators from small telescopes in less than optimal viewing conditions. Space has become an increasingly cluttered environment requiring satellite operators to remain forever vigilant in order to prevent collisions to preserve their assets and prevent further cluttering the space environment. The Joint Space Operations Center (JSpOC), which tracks all objects in earth orbit, reports possible upcoming conjunctions to operators by providing Conjunction Summary Messages (CSMs). However due to large positional uncertainties in the forward predicted position of space objects at the time closest approach the volume of CSMs is excessive to the point that maneuvers in response to CSMs without additional screening is cost prohibitive. CSSI and the Space Data Association have been able to screen most CSMs by using more accurate operator ephemeris. By screening with operator ephemeris alone they have been able to demonstrate that safety limits will not be exceeded in a good number of these encounters and that extra delta-V need to not be expended in a Collision Avoidance (COLA) maneuver. However there remains a decent portion of alerts that may warrant action especially when the secondary object is an uncontrolled space object such as a dead satellite or rocket body. By dynamically tasking the ESpOC observatories to provide real-time tracking and photometric characterization of the secondary objects in response to these CSMs satellite operators benefit from an additional method of conjunction screening. The refined tracks and conjunction assessments obtained by ESpOC screening allows operators to safely reduce the number of COLAs performed in response to safe close approaches and provide optimized COLA maneuver planning in response to validated threats.
2001-08-01
This is the insignia of the STS-109 Space Shuttle mission. Carrying a crew of seven, the Space Shuttle Orbiter Columbia was launched with goals of maintenance and upgrades to the Hubble Space Telescope (HST). The Marshall Space Flight Center had the responsibility for the design, development, and construction of the HST, which is the most complex and sensitive optical telescope ever made, to study the cosmos from a low-Earth orbit. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than is visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. During the STS-109 mission, the telescope was captured and secured on a work stand in Columbia's payload bay using Columbia's robotic arm where four members of the crew performed five spacewalks completing system upgrades to the HST. Included in those upgrades were: The replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when it original coolant ran out. Lasting 10 days, 22 hours, and 11 minutes, the STS-109 mission was the 27th flight of the Orbiter Columbia and the 108th flight overall in NASA's Space Shuttle Program.
Space Debris Environment Remediation Concepts
NASA Technical Reports Server (NTRS)
Johnson, Nicholas L.; Klinkrad, Heiner
2009-01-01
Long-term projections of the space debris environment indicate that even drastic measures, such as an immediate, complete halt of launch and release activities, will not result in a stable environment of man-made space objects. Collision events between already existing space hardware will within a few decades start to dominate the debris population, and result in a net increase of the space debris population, also in size regimes which may cause further catastrophic collisions. Such a collisional cascading will ultimately lead to a run-away situation ("Kessler syndrome"), with no further possibility of human intervention. The International Academy of Astronautics (IAA) has been investigating the status and the stability of the space debris environment in several studies by first looking into space traffic management possibilities and then investigating means of mitigating the creation of space debris. In an ongoing activity, an IAA study group looks at ways of active space debris environment remediation. In contrast to the former mitigation study, the current activity concentrates on the active removal of small and large objects, such as defunct spacecraft, orbital stages, and mission-related objects, which serve as a latent mass reservoir that fuels initial catastrophic collisions and later collisional cascading. The paper will outline different mass removal concepts, e.g. based on directed energy, tethers (momentum exchange or electrodynamic), aerodynamic drag augmentation, solar sails, auxiliary propulsion units, retarding surfaces, or on-orbit capture. Apart from physical principles of the proposed concepts, their applicability to different orbital regimes, and their effectiveness concerning mass removal efficiency will be analyzed. The IAA activity on space debris environment remediation is a truly international project which involves more than 23 contributing authors from 9 different nations.
NASA Astrophysics Data System (ADS)
Eltsov, Anatoli V.; Karasev, Vladimir I.; Kolotkov, Vjacheslav V.; Kondranin, Timothy V.
1997-06-01
The sharp increase of the man-induced pressure on the environment and hence the need to predict and monitor natural anomalies makes global monitoring of the ecosphere of planet Earth an issue of vital importance. The notion of the ecosphere covers three basic shells closely interacting with each other: the near-Earth space, the atmosphere and the Earth surface. In the near-Earth space (covering 100 to 2000 km altitudes) the primary objects of monitoring are: functioning artificial space objects, the fragments of their constructions or space rubbish (which by estimation amounts to 3.5 million pieces including 30,000 to 70,000 objects having dimensions sufficient for heavy damaging or even destroying functioning space objects) and objects of space origin (asteroids, meteorites and comets) whose trajectories come closely enough to the Earth. Maximum concentrations of space rubbish observed on orbits with altitudes of 800, 1000 and 1500 km and inclinations of 60 to 100 deg. are related in the first place to spacecraft launch requirements. Taking into account the number of launches implemented by different countries in the framework of their own space programs the probability of collision of functioning spacecraft with space rubbish may be estimation increase from (1.5 - 3.5)% at present to (15 - 40)% by 2020. Besides, registration of space radiation flow intensity and the solar activity is no less important in this space area. Subject to control in the atmosphere are time and space variations in temperature fields, humidity, tracing gas concentrations, first of all ozone and greenhouse gases, the state of the cloud cover, wind velocity, etc. The range of objects to be under environmental management of Earth surface is just as diverse and essentially should include the state of the surface and the near-surface layer of seas and oceans, internal reservoirs, the cryosphere and the land surface along with vegetation cover, natural resources and human activities. No matter how large the space (from several meters to hundreds of kilometers) and time (from an hour to several months) scales of the above monitoring might be there is a common dominating factor which could favor creation of a general- purpose observation and control system based on passive optoelectronic instrumentation of different levels of sophistication. This dominating factor refers to the possibility of obtaining information about the state of objects by way to recording parameters of radiation emitted by them in wavelengths of 250 nm to tens of microns. The fact that phenomena and processes occurring in the atmosphere are closely interrelated gives implications as to the structure of such a system which is supposed to be a common information network basically consisting of an orbiting constellation of a number of small-size spacecraft equipped with optoelectronic instrumentation of different complexity, and a ground segment to provide acquisition and processing of information about the status of every ecosphere shell including comprehensive thematic analysis. The existing domestic (based on the `Meteor', `Resurs-O', `Okean', etc. spacecraft) and foreign (NOAA, SPOT, LANDSAT, ERS, etc.) space systems are designed for solution of only a limited number of atmosphere monitoring issues, namely those related to meteorology and studies of natural resources. As for the near-Earth space there are at present only ground facilities whose monitoring capabilities are also limited. It should be noted that in recent years in the USA similar activities have been in full swing targeted at creation of a system like the one mentioned above (the Earth Observation System). A system comprising four spacecraft of the NOAA series and a distributed ground network for receiving analog (with 4 km spatial resolution) and digital (with 1 km spatial resolution) multispectral data pertaining to the status of the atmosphere and the underlying surface is currently operational. This system presents some unique features which make it in several applications superior to existing counterparts. The issue of creation and use of similar systems is complex and costly and it can be solved under today's Russian circumstances only at government level by joint efforts of multiple scientific and production organizations. One advantageous approach consists in building the above-mentioned systems using space complexes which have been already developed or are under development.
Charging of Space Debris and Their Dynamical Consequences
2016-01-08
field of plasmas and space physics . 15. SUBJECT TERMS Space Plasma Physics , Space Debris 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...opens up potential new areas of fundamental and applied research in the field of plasmas and space physics ...object in a plasma”, accepted for publication in Physics of Plasmas. (attached as Annexure III) For details on (iv) please refer to the
NASA Astrophysics Data System (ADS)
Tartakovsky, A.; Tong, M.; Brown, A. P.; Agh, C.
2013-09-01
We develop efficient spatiotemporal image processing algorithms for rejection of non-stationary clutter and tracking of multiple dim objects using non-linear track-before-detect methods. For clutter suppression, we include an innovative image alignment (registration) algorithm. The images are assumed to contain elements of the same scene, but taken at different angles, from different locations, and at different times, with substantial clutter non-stationarity. These challenges are typical for space-based and surface-based IR/EO moving sensors, e.g., highly elliptical orbit or low earth orbit scenarios. The algorithm assumes that the images are related via a planar homography, also known as the projective transformation. The parameters are estimated in an iterative manner, at each step adjusting the parameter vector so as to achieve improved alignment of the images. Operating in the parameter space rather than in the coordinate space is a new idea, which makes the algorithm more robust with respect to noise as well as to large inter-frame disturbances, while operating at real-time rates. For dim object tracking, we include new advancements to a particle non-linear filtering-based track-before-detect (TrbD) algorithm. The new TrbD algorithm includes both real-time full image search for resolved objects not yet in track and joint super-resolution and tracking of individual objects in closely spaced object (CSO) clusters. The real-time full image search provides near-optimal detection and tracking of multiple extremely dim, maneuvering objects/clusters. The super-resolution and tracking CSO TrbD algorithm provides efficient near-optimal estimation of the number of unresolved objects in a CSO cluster, as well as the locations, velocities, accelerations, and intensities of the individual objects. We demonstrate that the algorithm is able to accurately estimate the number of CSO objects and their locations when the initial uncertainty on the number of objects is large. We demonstrate performance of the TrbD algorithm both for satellite-based and surface-based EO/IR surveillance scenarios.
NASA Astrophysics Data System (ADS)
Koblick, D. C.; Shankar, P.; Xu, S.
Previously, there have been many commercial proposals and extensive academic studies regarding ground and space based sensors to assist a space surveillance network in obtaining metric observations of satellites and debris near Geosynchronous Earth Orbit (GEO). Most use physics based models for geometric constraints, lighting, and tasker/scheduler operations of sensor architectures. Under similar physics modeling assumptions, the space object catalog is often different due to proprietary standards and datasets. Lack of catalog commonality between studies creates barriers and difficulty comparing performance benefits of sensor trades. To solve this problem, we have constructed a future GEO space catalog from publicly available datasets and literature. The annual number of new payloads and rocket bodies is drawn from a Poisson distribution while the growth of the current GEO catalog is bootstrapped from the historical payload, upper stage, and debris data. We adopt a spherically symmetric explosion model and couple it with the NASA standard breakup model to simulate explosions of payloads and rocket bodies as they are the primary drivers of the debris population growth. The cumulative number of fragments follow a power-law distribution. Result from 1,000 random catalog growth simulations indicates that the GEO space object population in the year 2050 will include over 3,600 objects, nearly half of which are debris greater than 10 cm spherical diameter. The number of rocket bodies and dead payloads is projected to nearly double over the next 33 years. For comparison, the current Air Force Space Command catalog snapshot contains fewer than 50 pieces of debris and coarse Radar Cross Section (RCS) estimates which include: small, medium, and large. The current catalog may be sufficient for conjunction studies, but not for analyzing future sensor system performance. The 2050 GEO projected catalog will be available online for commercial/academic research and development.
Performance Analysis of Sensor Systems for Space Situational Awareness
NASA Astrophysics Data System (ADS)
Choi, Eun-Jung; Cho, Sungki; Jo, Jung Hyun; Park, Jang-Hyun; Chung, Taejin; Park, Jaewoo; Jeon, Hocheol; Yun, Ami; Lee, Yonghui
2017-12-01
With increased human activity in space, the risk of re-entry and collision between space objects is constantly increasing. Hence, the need for space situational awareness (SSA) programs has been acknowledged by many experienced space agencies. Optical and radar sensors, which enable the surveillance and tracking of space objects, are the most important technical components of SSA systems. In particular, combinations of radar systems and optical sensor networks play an outstanding role in SSA programs. At present, Korea operates the optical wide field patrol network (OWL-Net), the only optical system for tracking space objects. However, due to their dependence on weather conditions and observation time, it is not reasonable to use optical systems alone for SSA initiatives, as they have limited operational availability. Therefore, the strategies for developing radar systems should be considered for an efficient SSA system using currently available technology. The purpose of this paper is to analyze the performance of a radar system in detecting and tracking space objects. With the radar system investigated, the minimum sensitivity is defined as detection of a 1-m2 radar cross section (RCS) at an altitude of 2,000 km, with operating frequencies in the L, S, C, X or Ku-band. The results of power budget analysis showed that the maximum detection range of 2,000 km, which includes the low earth orbit (LEO) environment, can be achieved with a transmission power of 900 kW, transmit and receive antenna gains of 40 dB and 43 dB, respectively, a pulse width of 2 ms, and a signal processing gain of 13.3 dB, at a frequency of 1.3 GHz. We defined the key parameters of the radar following a performance analysis of the system. This research can thus provide guidelines for the conceptual design of radar systems for national SSA initiatives.
2014-02-01
object that may present a threat to his or h er satellites must still provide direction that responds to that threat This article discusses a dilemma...space-based threats .ŕ The Air Force achieves space superiority by conducting operations that support the war fighter (space force enhancement); by...the space era, threats and issues have arisen to chal- lenge US operations in these areas. Indeed, as declared in the National Security Space Strategy
NASA Astrophysics Data System (ADS)
Steinkogler, Cordula
2017-08-01
The Austrian Outer Space Act, which entered into force in December 2011; and the Austrian Outer Space Regulation, which has been in force since February 2015, form the legal framework for Austrian national space activities. The elaboration of national space legislation became necessary to ensure compliance with Austria's obligations as State Party to the five United Nations Space Treaties when the first two Austrian satellites were launched in 2012 and Austria became a launching state on its own. The legislation comprehensively regulates legal aspects related to space activities, such as authorization, supervision, and termination of space activities; registration and transfer of space objects; recourse of the government against the operator; as well as implementation of the law and sanctions for its infringement. One of the main purposes of the law is to ensure the authorization of national space activities. The Outer Space Act sets forth the main conditions for authorization, which inter alia refer to the expertise of the operator; requirements for orbital positions and frequency assignments; space debris mitigation, insurance requirements, and the safeguard of public order; public health; national security as well as Austrian foreign policy interests; and international law obligations. The Austrian Outer Space Regulation complements these provisions by specifying the documents the operator must submit as evidence of the fulfillment of the authorization conditions, which include the results of safety tests, emergency plans, and information on the collection and use of Earth observation data. Particular importance is attached to the mitigation of space debris. Operators are required to take measures in accordance with international space debris mitigation guidelines for the avoidance of operational debris, the prevention of on-orbit break-ups and collisions, and the removal of space objects from Earth orbit after the end of the mission. Another specificity of the Austrian space legislation is the possibility of an exemption from the insurance requirement or a reduction of the insurance sum, if the space activity is in the public interest. This allows support to space activities that serve science, research, and education. Moreover, the law also provides for the establishment of a national registry for objects launched into outer space by the competent Austrian Ministry. The first two Austrian satellites have been entered into this registry after their launch in 2012. The third Austrian satellite, launched in June 2017, will be the first satellite authorized under the Austrian space legislation.
The legal regime for private space tourism activities—An overview
NASA Astrophysics Data System (ADS)
Hobe, Stephan
2010-06-01
"Space tourism" denotes any commercial activity that offers customers direct or indirect experience with space travel. Various models for space tourism activities exist including the use of an aircraft and/or spacecraft. The paper surveys some of the most important legal aspects relevant to space tourism activities, such as, the delimitation of airspace and outer space, the applicable legal regime and the definition of aircraft and space object, authorization, registration, liability, as well as the legal status of space tourists.
Invited Paper: US Naval Space Surveillance Upgrade Program 1999-2003
NASA Astrophysics Data System (ADS)
Schumacher, Paul W., Jr.
2009-03-01
This paper reviews some of the main objectives, constraints and lessons learned in a particular US Navy program that ended in 2003 with the transition of the space surveillance mission, personnel and funding to the US Air Force. Because of changing needs for space situational awareness both for national security and global commercial reasons, the Air Force sensor program that is now emerging must necessarily be different in scope from the Navy program. However, the Navy program was the first US space surveillance sensor acquisition that addressed the problem of building a large catalog of small space objects. This problem was, and remains, a new one, because the existing catalog of space objects has been maintained since the launch of the first satellite, Sputnik I, on 4 October 1957. To date, it has always been possible to maintain a complete inventory of space objects without ever re-building the catalog ab initio, because of the relatively slow rate at which new satellites are launched into space. Now, with the probable introduction of new and very sensitive space surveillance systems in several countries in the coming years, the apparent satellite population will grow instantly by orders of magnitude as the previously invisible small-debris background population becomes visible. The problem of building a large catalog of possibly faint objects in a short time has become unavoidable. Yet, all existing methods of managing sensors, associating tracking data and predicting orbital uncertainties are inadequate for this task. For this reason, reviewing from a historical point of view the Navy's attempts to address some of these problems in a conceptual system design may give us a useful perspective, even though that particular program is defunct.My personal involvement with the Navy program included the entire duration and almost all aspects of the effort. Beginning in 1999, I participated in the formal identification of the need to improve the capability of the existing system, wrote the basic specification of system performance requirements, helped develop the Navy's Request for Proposals from industry, served on the source selection panel, reviewed the conceptual and preliminary designs of the new system, and finally assisted in the transition of the old system and mission to the Air Force in 2003-2004. Subsequently, in 2005, I joined Air Force Research Laboratory to work on projects related to space surveillance. Today, essentially all persons with first-hand technical knowledge of the Navy upgrade program and its background are either retired or work somewhere in the Air Force.
Rodríguez, Jaime; Martín, María T; Herráez, José; Arias, Pedro
2008-12-10
Photogrammetry is a science with many fields of application in civil engineering where image processing is used for different purposes. In most cases, the use of multiple images simultaneously for the reconstruction of 3D scenes is commonly used. However, the use of isolated images is becoming more and more frequent, for which it is necessary to calculate the orientation of the image with respect to the object space (exterior orientation), which is usually made through three rotations through known points in the object space (Euler angles). We describe the resolution of this problem by means of a single rotation through the vanishing line of the image space and completely external to the object, to be more precise, without any contact with it. The results obtained appear to be optimal, and the procedure is simple and of great utility, since no points over the object are required, which is very useful in situations where access is difficult.
NASA Astrophysics Data System (ADS)
Canepa, Simona
2017-10-01
How long does a space or an object have to last? If in the past an object or a building manufacturing was designed to last as much as possible, nowadays it is designed to have a life related to the time in which it will be used. Flexibility is what characterizes a space, it’s the ability to be variable and adaptable to changes in the lives of users or in relation to the use which these will make over time. The evolution of the labour market, the difficulty of inserting within it and the need to push more and more frequent move today in the trial of living space models increasingly flexible: people, especially young people, are forced to move on territory outlining a new condition to which the flexible nomadic dwellings offer an adequate response, ensuring high functional performance in confined spaces.
NASA Technical Reports Server (NTRS)
1998-01-01
The primary objective of this research project is to test the hypothesis that corticosteroids contribute to the adverse skeletal effects of space flight. To achieve this objective, serum corticosteroids, which are known to increase during space flight, must be maintained at normal physiologic levels in flight rats by a combination of adrenalectomy and corticosteroid supplementation via implanted hormone pellets. Bone analyses in these animals will then be compared to those of intact flight rats that, based on past experience, will undergo corticosteroid excess and bone loss during space flight. The results will reveal whether maintaining serum corticosteroids at physiologic levels in flight rats affects the skeletal abnormalities that normally develop during space flight. A positive response to this question would indicate that the bone loss and decreased bone formation associated with space flight are mediated, at least in part, by corticosteroid excess.
2003-09-03
KENNEDY SPACE CENTER, FLA. - A worker calibrates a tracking telescope, part of the Distant Object Attitude Measurement System (DOAMS), located in Cocoa Beach, Fla. The telescope provides optical support for launches from KSC and Cape Canaveral.
NASA Technical Reports Server (NTRS)
Wu, S. T.
1989-01-01
The objectives are to coordinate the activities of the Science Working Group (SWG) of the Advanced Solar Observatory (ASO) for the study of instruments accommodation and operation requirements on board space station. In order to facilitate the progress of the objective, two conferences were organized, together with two small group discussions.
2010-09-01
Discrimination of Closely-Spaced Geosynchronous Satellites – Phase Curve Analysis & New Small Business Innovative Research (SBIR) Efforts...such objects from one time epoch to another showcases the deficiencies in associating individual objects before and after the configuration change...1]) have emphasized examples of multiple satellites occupying the same geosynchronous slot, with individual satellites maneuvering about one another
Descriptions of Space Processing Applications Rocket (SPAR) experiments
NASA Technical Reports Server (NTRS)
Naumann, R. J. (Editor)
1979-01-01
The experiments for all the Space Processing Applications Rocket experiments, including those flown on previous Space Processing flights as well as those under development for future flights are described. The experiment objective, rationale, approach, and results or anticipated results are summarized.
Systematic observation of play behavior in autistic children.
Black, M; Freeman, B J; Montgomery, J
1975-12-01
The play behavior, defined as interaction with peers and objects, of five autistic children was systematically observed in four environments, i.e., a stark environment, a theraplay unit, a playroom, and an outside play deck. The preliminary results suggested that (1) with some children environment has little or no effect on their play behavior; (2) with multiple objects, autistic children frequently related to the objects rather than to their peers; (3) object play was most frequently at the manipulative stage and often included repetitive and negative behavior; (4) within a confined space with no objects present, autistic children frequently engaged in solitary repetitive behavior; and (5) within a confined space designed to facilitate a movement flow (theraplay), autistic children modeled and imitated and were involved in gross motor play together.
A Simple Model for the Orbital Debris Environment in GEO
NASA Astrophysics Data System (ADS)
Anilkumar, A. K.; Ananthasayanam, M. R.; Subba Rao, P. V.
The increase of space debris and its threat to commercial space activities in the Geosynchronous Earth Orbit (GEO) predictably cause concern regarding the environment over the long term. A variety of studies regarding space debris such as detection, modeling, protection and mitigation measures, is being pursued for the past couple of decades. Due to the absence of atmospheric drag to remove debris in GEO and the increasing number of utility satellites therein, the number of objects in GEO will continue to increase. The characterization of the GEO environment is critical for risk assessment and protection of future satellites and also to incorporate effective debris mitigation measures in the design and operations. The debris measurements in GEO have been limited to objects with size more than 60 cm. This paper provides an engineering model of the GEO environment by utilizing the philosophy and approach as laid out for the SIMPLE model proposed recently for LEO by the authors. The present study analyses the statistical characteristics of the GEO catalogued objects in order to arrive at a model for the GEO space debris environment. It is noted that the catalogued objects, as of now of around 800, by USSPACECOM across the years 1998 to 2004 have the same semi major axis mode (highest number density) around 35750 km above the earth. After removing the objects in the small bin around the mode, (35700, 35800) km containing around 40 percent (a value that is nearly constant across the years) of the objects, the number density of the other objects follow a single Laplace distribution with two parameters, namely location and scale. Across the years the location parameter of the above distribution does not significantly vary but the scale parameter shows a definite trend. These observations are successfully utilized in proposing a simple model for the GEO debris environment. References Ananthasayanam, M. R., Anil Kumar, A. K., and Subba Rao, P. V., ``A New Stochastic Impressionistic Low Earth (SIMPLE) Model of the Space Debris Scenario'', Conference Abstract COSPAR 02-A-01772, 2002. Ananthasayanam, M. R., Anilkumar, A. K., Subba Rao, P. V., and V. Adimurthy, ``Characterization of Eccentricity and Ballistic Coefficients of Space Debris in Altitude and Perigee Bins'', IAC-03-IAA5.p.04, Presented at the IAF Conference, Bremen, October 2003 and also to be published in the Proceedings of IAF Conference, Science and Technology Series, 2003.
LibHalfSpace: A C++ object-oriented library to study deformation and stress in elastic half-spaces
NASA Astrophysics Data System (ADS)
Ferrari, Claudio; Bonafede, Maurizio; Belardinelli, Maria Elina
2016-11-01
The study of deformation processes in elastic half-spaces is widely employed for many purposes (e.g. didactic, scientific investigation of real processes, inversion of geodetic data, etc.). We present a coherent programming interface containing a set of tools designed to make easier and faster the study of processes in an elastic half-space. LibHalfSpace is presented in the form of an object-oriented library. A set of well known and frequently used source models (Mogi source, penny shaped horizontal crack, inflating spheroid, Okada rectangular dislocation, etc.) are implemented to describe the potential usage and the versatility of the library. The common interface given to library tools enables us to switch easily among the effects produced by different deformation sources that can be monitored at the free surface. Furthermore, the library also offers an interface which simplifies the creation of new source models exploiting the features of object-oriented programming (OOP). These source models can be built as distributions of rectangular boundary elements. In order to better explain how new models can be deployed some examples are included in the library.
Fini, Chiara; Bardi, Lara; Epifanio, Alessandra; Committeri, Giorgia; Moors, Agnes; Brass, Marcel
2017-03-01
When we have to judge the distance between another person and an object (social condition), we judge this distance as being smaller compared to judging the distance between two objects (nonsocial condition). It has been suggested that this compression is mediated by the attribution of a motor potential to the reference frame (other person vs. object). In order to explore the neural basis of this effect, we investigated whether the modulation of activity in the inferior frontal cortex (IFC) of the left hemisphere (recruited during visuospatial processes with a social component) changes the way we categorize space in a social compared with a nonsocial condition. We applied transcranial direct current stimulation to the left IFC, with different polarities (anodal, cathodal, and sham) while subjects performed an extrapersonal space categorization task. Interestingly, anodal stimulation of IFC induced an higher compression of space in the social compared to nonsocial condition. By contrast, cathodal stimulation induced the opposite effect. Furthermore, we found that this effect is modulated by interindividual differences in cognitive perspective taking. Our data support the idea that IFC is recruited during the social categorization of space.
Marginal Space Deep Learning: Efficient Architecture for Volumetric Image Parsing.
Ghesu, Florin C; Krubasik, Edward; Georgescu, Bogdan; Singh, Vivek; Yefeng Zheng; Hornegger, Joachim; Comaniciu, Dorin
2016-05-01
Robust and fast solutions for anatomical object detection and segmentation support the entire clinical workflow from diagnosis, patient stratification, therapy planning, intervention and follow-up. Current state-of-the-art techniques for parsing volumetric medical image data are typically based on machine learning methods that exploit large annotated image databases. Two main challenges need to be addressed, these are the efficiency in scanning high-dimensional parametric spaces and the need for representative image features which require significant efforts of manual engineering. We propose a pipeline for object detection and segmentation in the context of volumetric image parsing, solving a two-step learning problem: anatomical pose estimation and boundary delineation. For this task we introduce Marginal Space Deep Learning (MSDL), a novel framework exploiting both the strengths of efficient object parametrization in hierarchical marginal spaces and the automated feature design of Deep Learning (DL) network architectures. In the 3D context, the application of deep learning systems is limited by the very high complexity of the parametrization. More specifically 9 parameters are necessary to describe a restricted affine transformation in 3D, resulting in a prohibitive amount of billions of scanning hypotheses. The mechanism of marginal space learning provides excellent run-time performance by learning classifiers in clustered, high-probability regions in spaces of gradually increasing dimensionality. To further increase computational efficiency and robustness, in our system we learn sparse adaptive data sampling patterns that automatically capture the structure of the input. Given the object localization, we propose a DL-based active shape model to estimate the non-rigid object boundary. Experimental results are presented on the aortic valve in ultrasound using an extensive dataset of 2891 volumes from 869 patients, showing significant improvements of up to 45.2% over the state-of-the-art. To our knowledge, this is the first successful demonstration of the DL potential to detection and segmentation in full 3D data with parametrized representations.
Need for a network of observatories for space debris dynamical and physical characterization
NASA Astrophysics Data System (ADS)
Piergentili, Fabrizio; Santoni, Fabio; Castronuovo, Marco; Portelli, Claudio; Cardona, Tommaso; Arena, Lorenzo; Sciré, Gioacchino; Seitzer, Patrick
2016-01-01
Space debris represents a major concern for space missions since the risk of impact with uncontrolled objects has increased dramatically in recent years. Passive and active mitigation countermeasures are currently under consideration but, at the base of any of such corrective actions is the space debris continuous monitoring through ground based surveillance systems.At the present, many space agencies have the capability to get optical measurements of space orbiting objects mainly relaying on single observatories. The recent research in the field of space debris, demonstrated how it is possible to increase the effectiveness of optical measurements exploitation by using joint observations of the same target from different sites.The University of Rome "La Sapienza", in collaboration with Italian Space Agency (ASI), is developing a scientific network of observatories dedicated to Space Debris deployed in Italy (S5Scope at Rome and SPADE at Matera) and in Kenya at the Broglio Space Center in Malindi (EQUO). ASI founded a program dedicated to space debris, in order to spread the Italian capability to deal with different aspects of this issue. In this framework, the University of Rome is in charge of coordinating the observatories network both in the operation scheduling and in the data analysis. This work describes the features of the observatories dedicated to space debris observation, highlighting their capabilities and detailing their instrumentation. Moreover, the main features of the scheduler under development, devoted to harmonizing the operations of the network, will be shown. This is a new system, which will autonomously coordinate the observations, aiming to optimize results in terms of number of followed targets, amount of time dedicated to survey, accuracy of orbit determination and feasibility of attitude determination through photometric data.Thus, the authors will describe the techniques developed and applied (i) to implement the multi-site orbit determination and (ii) to solve the attitude motion of uncontrolled orbiting objects by exploiting photometric quasi-simultaneous measurements.
Life sciences payload definition and integration study. Volume 1: Management summary
NASA Technical Reports Server (NTRS)
1972-01-01
The objectives of a study program to determine the life sciences payloads required for conducting biomedical experiments during space missions are presented. The objectives are defined as: (1) to identify the research functions which must be performed aboard life sciences spacecraft laboratories and the equipment needed to support these functions and (2) to develop layouts and preliminary conceptual designs of several potential baseline payloads for the accomplishment of life research in space. Payload configurations and subsystems are described and illustrated. Tables of data are included to identify the material requirements for the space missions.
NASA Technical Reports Server (NTRS)
Weisbin, C. R. (Editor)
2004-01-01
A workshop entitled, "Outstanding Research Issues in Systematic Technology Prioritization for New Space Missions," was convened on April 21-22, 2004 in San Diego, California to review the status of methods for objective resource allocation, to discuss the research barriers remaining, and to formulate recommendations for future development and application. The workshop explored the state-of-the-art in decision analysis in the context of being able to objectively allocate constrained technical resources to enable future space missions and optimize science return. This article summarizes the highlights of the meeting results.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Preparing for Return to Flight, workers at KSC walk the grounds around Launch Pad 39B looking for Foreign Object Debris, or FOD. The pad was recently refurbished and any possible debris left behind must be removed from the area prior to launch. Foreign objects that are alien to flight systems may cause material damage or may make the system or equipment inoperable, unsafe or less efficient. The Return to Flight mission STS-114 aboard Space Shuttle Discovery will carry supplies and equipment to the International Space Station. Discovery is scheduled for launch in a window from May 15 to June 3.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Preparing for Return to Flight, workers at KSC walk the grounds around Launch Pad 39B looking for Foreign Object Debris, or FOD. The pad was recently refurbished and any possible debris left behind must be removed from the area prior to launch. Foreign objects that are alien to flight systems may cause material damage or may make the system or equipment inoperable, unsafe or less efficient. The Return to Flight mission STS-114 aboard Space Shuttle Discovery will carry supplies and equipment to the International Space Station. Discovery is scheduled for launch in a window from May 15 to June 3.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Preparing for Return to Flight, workers at KSC walk the grounds around Launch Pad 39B looking for Foreign Object Debris, or FOD. The pad was recently refurbished and any possible debris left behind must be removed from the area prior to launch. Foreign objects that are alien to flight systems may cause material damage or may make the system or equipment inoperable, unsafe or less efficient. The Return to Flight mission STS-114 aboard Space Shuttle Discovery will carry supplies and equipment to the International Space Station. Discovery is scheduled for launch in a window from May 15 to June 3.
The Systems Autonomy Demonstration Project - Catalyst for Space Station advanced automation
NASA Technical Reports Server (NTRS)
Healey, Kathleen J.
1988-01-01
The Systems Autonomy Demonstration Project (SADP) was initiated by NASA to address the advanced automation needs for the Space Station program. The application of advanced automation to the Space Station's operations management system (OMS) is discussed. The SADP's future goals and objectives are discussed with respect to OMS functional requirements, design, and desired evolutionary capabilities. Major technical challenges facing the designers, developers, and users of the OMS are identified in order to guide the definition of objectives, plans, and scenarios for future SADP demonstrations, and to focus the efforts on the supporting research.
The James Webb Space Telescope (JWST), The First Light Machine
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2013-01-01
Scheduled to begin its 10 year mission after 2018, the James Webb Space Telescope (JWST) will search for the first luminous objects of the Universe to help answer fundamental questions about how the Universe came to look like it does today. At 6.5 meters in diameter, JWST will be the world s largest space telescope. This talk reviews science objectives for JWST and how they drive the JWST architecture, e.g. aperture, wavelength range and operating temperature. Additionally, the talk provides an overview of the JWST primary mirror technology development and fabrication status.
Space Transportation Booster Engine (STBE) configuration study
NASA Technical Reports Server (NTRS)
1986-01-01
The overall objective of this Space Transportation Booster Engine (STBE) study is to identify candidate engine configurations which enhance vehicle performance and provide operational flexibility at low cost. The specific objectives are as follows: (1) to identify and evaluate candidate LOX/HC engine configurations for the Advanced Space Transportation System for an early 1995 IOC and a late 2000 IOC; (2) to select one optimum engine for each time period; 3) to prepare a conceptual design for each configuration; (4) to develop a technology plan for the 2000 IOC engine; and, (5) to prepare preliminary programmatic planning and analysis for the 1995 IOC engine.
STS-45 Space Shuttle mission report
NASA Technical Reports Server (NTRS)
Fricke, Robert W.
1992-01-01
The STS-45 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-sixth flight of the Space Shuttle Program and the eleventh flight of the Orbiter Vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an External Tank (ET) designated as ET-44 (LWT-37); three Space Shuttle main engines (SSME's), which were serial numbers 2024, 2012, and 2028 in positions 1, 2, and 3, respectively; and two Solid Rocket Boosters (SRB's) designated as BI-049. The lightweight redesigned Solid Rocket Motors (RSRM's) installed in each of the SRB's were designated as 360L021A for the left SRM and 360W021B for the right SRM. The primary objective of this mission was to successfully perform the planned operations of the Atmospheric Laboratory for Applications and Science-1 (ATLAS-1) and the Shuttle Solar Backscatter Ultraviolet Instrument (SSBUV) payloads. The secondary objectives were to successfully perform all operations necessary to support the requirements of the following: the Space Tissue Loss-01 (STL-01) experiment; the Radiation Monitoring Equipment-3 (RME-3) experiment; the Visual Function Tester-2 (VFT-2) experiment; the Cloud Logic to Optimize use of Defense System (CLOUDS-1A) experiment; the Shuttle Amateur Radio Experiment 2 (SAREX-2) Configuration B; the Investigation into Polymer Membranes Processing experiment; and the Get-Away Special (GAS) payload G-229. The Ultraviolet Plume Instrument (UVPI) was a payload of opportunity that required no special maneuvers. In addition to the primary and secondary objectives, the crew was tasked to perform as many as 10 Development Test Objectives (DTO'S) and 14 Detailed Supplementary Objectives (DSO's).
STS-45 Space Shuttle mission report
NASA Astrophysics Data System (ADS)
Fricke, Robert W.
1992-05-01
The STS-45 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-sixth flight of the Space Shuttle Program and the eleventh flight of the Orbiter Vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an External Tank (ET) designated as ET-44 (LWT-37); three Space Shuttle main engines (SSME's), which were serial numbers 2024, 2012, and 2028 in positions 1, 2, and 3, respectively; and two Solid Rocket Boosters (SRB's) designated as BI-049. The lightweight redesigned Solid Rocket Motors (RSRM's) installed in each of the SRB's were designated as 360L021A for the left SRM and 360W021B for the right SRM. The primary objective of this mission was to successfully perform the planned operations of the Atmospheric Laboratory for Applications and Science-1 (ATLAS-1) and the Shuttle Solar Backscatter Ultraviolet Instrument (SSBUV) payloads. The secondary objectives were to successfully perform all operations necessary to support the requirements of the following: the Space Tissue Loss-01 (STL-01) experiment; the Radiation Monitoring Equipment-3 (RME-3) experiment; the Visual Function Tester-2 (VFT-2) experiment; the Cloud Logic to Optimize use of Defense System (CLOUDS-1A) experiment; the Shuttle Amateur Radio Experiment 2 (SAREX-2) Configuration B; the Investigation into Polymer Membranes Processing experiment; and the Get-Away Special (GAS) payload G-229. The Ultraviolet Plume Instrument (UVPI) was a payload of opportunity that required no special maneuvers. In addition to the primary and secondary objectives, the crew was tasked to perform as many as 10 Development Test Objectives (DTO'S) and 14 Detailed Supplementary Objectives (DSO's).
Robot Acting on Moving Bodies (RAMBO): Interaction with tumbling objects
NASA Technical Reports Server (NTRS)
Davis, Larry S.; Dementhon, Daniel; Bestul, Thor; Ziavras, Sotirios; Srinivasan, H. V.; Siddalingaiah, Madhu; Harwood, David
1989-01-01
Interaction with tumbling objects will become more common as human activities in space expand. Attempting to interact with a large complex object translating and rotating in space, a human operator using only his visual and mental capacities may not be able to estimate the object motion, plan actions or control those actions. A robot system (RAMBO) equipped with a camera, which, given a sequence of simple tasks, can perform these tasks on a tumbling object, is being developed. RAMBO is given a complete geometric model of the object. A low level vision module extracts and groups characteristic features in images of the object. The positions of the object are determined in a sequence of images, and a motion estimate of the object is obtained. This motion estimate is used to plan trajectories of the robot tool to relative locations rearby the object sufficient for achieving the tasks. More specifically, low level vision uses parallel algorithms for image enhancement by symmetric nearest neighbor filtering, edge detection by local gradient operators, and corner extraction by sector filtering. The object pose estimation is a Hough transform method accumulating position hypotheses obtained by matching triples of image features (corners) to triples of model features. To maximize computing speed, the estimate of the position in space of a triple of features is obtained by decomposing its perspective view into a product of rotations and a scaled orthographic projection. This allows use of 2-D lookup tables at each stage of the decomposition. The position hypotheses for each possible match of model feature triples and image feature triples are calculated in parallel. Trajectory planning combines heuristic and dynamic programming techniques. Then trajectories are created using dynamic interpolations between initial and goal trajectories. All the parallel algorithms run on a Connection Machine CM-2 with 16K processors.
NASA Technical Reports Server (NTRS)
Douglas, F. C.; Galasso, F. S.
1974-01-01
Studies which have been done in an earth-based laboratory environment have generally not yielded specimens with the degree of perfection required of the eutectic microstructure to provide test data to evaluate their nonstructural applications. It has been recognized that the low-g environment of an orbiting space laboratory provides a unique environment to re-examine the process of solidification with the goal of producing better microstructures. The objective of this program is to evaluate the feasibility of using the space environment for producing eutectics with microstructures which can be of value on earth. In carrying out this objective, evaluative investigations were carried out on the technology of solidification in a 1-g environment to provide sound baseline data for planning space laboratory experiments.
Ye, Tao; Zhou, Fuqiang
2015-04-10
When imaged by detectors, space targets (including satellites and debris) and background stars have similar point-spread functions, and both objects appear to change as detectors track targets. Therefore, traditional tracking methods cannot separate targets from stars and cannot directly recognize targets in 2D images. Consequently, we propose an autonomous space target recognition and tracking approach using a star sensor technique and a Kalman filter (KF). A two-step method for subpixel-scale detection of star objects (including stars and targets) is developed, and the combination of the star sensor technique and a KF is used to track targets. The experimental results show that the proposed method is adequate for autonomously recognizing and tracking space targets.
Space Weather Studies at Istanbul Technical University
NASA Astrophysics Data System (ADS)
Kaymaz, Zerefsan
2016-07-01
This presentation will introduce the Upper Atmosphere and Space Weather Laboratory of Istanbul Technical University (ITU). It has been established to support the educational needs of the Faculty of Aeronautics and Astronautics in 2011 to conduct scientific research in Space Weather, Space Environment, Space Environment-Spacecraft Interactions, Space instrumentation and Upper Atmospheric studies. Currently the laboratory has some essential infrastructure and the most instrumentation for ionospheric observations and ground induced currents from the magnetosphere. The laboratory has two subunits: SWIFT dealing with Space Weather Instrumentation and Forecasting unit and SWDPA dealing with Space Weather Data Processing and Analysis. The research area covers wide range of upper atmospheric and space science studies from ionosphere, ionosphere-magnetosphere coupling, magnetic storms and magnetospheric substorms, distant magnetotail, magnetopause and bow shock studies, as well as solar and solar wind disturbances and their interaction with the Earth's space environment. We also study the spacecraft environment interaction and novel plasma instrument design. Several scientific projects have been carried out in the laboratory. Operational objectives of our laboratory will be carried out with the collaboration of NASA's Space Weather Laboratory and the facilities are in the process of integration to their prediction services. Educational and research objectives, as well as the examples from the research carried out in our laboratory will be demonstrated in this presentation.
Streak detection and analysis pipeline for space-debris optical images
NASA Astrophysics Data System (ADS)
Virtanen, Jenni; Poikonen, Jonne; Säntti, Tero; Komulainen, Tuomo; Torppa, Johanna; Granvik, Mikael; Muinonen, Karri; Pentikäinen, Hanna; Martikainen, Julia; Näränen, Jyri; Lehti, Jussi; Flohrer, Tim
2016-04-01
We describe a novel data-processing and analysis pipeline for optical observations of moving objects, either of natural (asteroids, meteors) or artificial origin (satellites, space debris). The monitoring of the space object populations requires reliable acquisition of observational data, to support the development and validation of population models and to build and maintain catalogues of orbital elements. The orbital catalogues are, in turn, needed for the assessment of close approaches (for asteroids, with the Earth; for satellites, with each other) and for the support of contingency situations or launches. For both types of populations, there is also increasing interest to detect fainter objects corresponding to the small end of the size distribution. The ESA-funded StreakDet (streak detection and astrometric reduction) activity has aimed at formulating and discussing suitable approaches for the detection and astrometric reduction of object trails, or streaks, in optical observations. Our two main focuses are objects in lower altitudes and space-based observations (i.e., high angular velocities), resulting in long (potentially curved) and faint streaks in the optical images. In particular, we concentrate on single-image (as compared to consecutive frames of the same field) and low-SNR detection of objects. Particular attention has been paid to the process of extraction of all necessary information from one image (segmentation), and subsequently, to efficient reduction of the extracted data (classification). We have developed an automated streak detection and processing pipeline and demonstrated its performance with an extensive database of semisynthetic images simulating streak observations both from ground-based and space-based observing platforms. The average processing time per image is about 13 s for a typical 2k-by-2k image. For long streaks (length >100 pixels), primary targets of the pipeline, the detection sensitivity (true positives) is about 90% for both scenarios for the bright streaks (SNR > 1), while in the low-SNR regime, the sensitivity is still 50% at SNR = 0.5 .
NASA Astrophysics Data System (ADS)
Utzmann, Jens; Flohrer, Tim; Schildknecht, Thomas; Wagner, Axel; Silha, Jiri; Willemsen, Philip; Teston, Frederic
This paper presents the capabilities of a Space-Based Space Surveillance (SBSS) demonstration mission for Space Surveillance and Tracking (SST) based on a micro-satellite platform. The results have been produced in the frame of ESA’s "Assessment Study for Space Based Space Surveillance Demonstration Mission" performed by the Airbus Defence and Space consortium. Space Surveillance and Tracking is part of Space Situational Awareness (SSA) and covers the detection, tracking and cataloguing of space debris and satellites. Derived SST services comprise a catalogue of these man-made objects, collision warning, detection and characterisation of in-orbit fragmentations, sub-catalogue debris characterisation, etc. The assessment of SBSS in a SST system architecture has shown that both an operational SBSS and also already a well-designed space-based demonstrator can provide substantial performance in terms of surveillance and tracking of beyond-LEO objects. Especially the early deployment of a demonstrator, possible by using standard equipment, could boost initial operating capability and create a self-maintained object catalogue. Furthermore, unique statistical information about small-size LEO debris (mm size) can be collected in-situ. Unlike classical technology demonstration missions, the primary goal is the demonstration and optimisation of the functional elements in a complex end-to-end chain (mission planning, observation strategies, data acquisition, processing and fusion, etc.) until the final products can be offered to the users. Also past and current missions by the US (SBV, SBSS) and Canada (Sapphire, NEOSSat) underline the advantages of space-based space surveillance. The presented SBSS system concept takes the ESA SST System Requirements (derived within the ESA SSA Preparatory Program) into account and aims at fulfilling SST core requirements in a stand-alone manner. Additionally, requirments for detection and characterisation of small-sized LEO debris are considered. The evaluation of the concept has shown that an according solution can be implemented with low technological effort and risk. The paper presents details of the system concept, candidate micro-satellite platforms, the observation strategy and the results of performance simulations for space debris coverage and cataloguing accuracy.
Resolving human object recognition in space and time
Cichy, Radoslaw Martin; Pantazis, Dimitrios; Oliva, Aude
2014-01-01
A comprehensive picture of object processing in the human brain requires combining both spatial and temporal information about brain activity. Here, we acquired human magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) responses to 92 object images. Multivariate pattern classification applied to MEG revealed the time course of object processing: whereas individual images were discriminated by visual representations early, ordinate and superordinate category levels emerged relatively later. Using representational similarity analysis, we combine human fMRI and MEG to show content-specific correspondence between early MEG responses and primary visual cortex (V1), and later MEG responses and inferior temporal (IT) cortex. We identified transient and persistent neural activities during object processing, with sources in V1 and IT., Finally, human MEG signals were correlated to single-unit responses in monkey IT. Together, our findings provide an integrated space- and time-resolved view of human object categorization during the first few hundred milliseconds of vision. PMID:24464044
Systems and Methods for Data Visualization Using Three-Dimensional Displays
NASA Technical Reports Server (NTRS)
Davidoff, Scott (Inventor); Djorgovski, Stanislav G. (Inventor); Estrada, Vicente (Inventor); Donalek, Ciro (Inventor)
2017-01-01
Data visualization systems and methods for generating 3D visualizations of a multidimensional data space are described. In one embodiment a 3D data visualization application directs a processing system to: load a set of multidimensional data points into a visualization table; create representations of a set of 3D objects corresponding to the set of data points; receive mappings of data dimensions to visualization attributes; determine the visualization attributes of the set of 3D objects based upon the selected mappings of data dimensions to 3D object attributes; update a visibility dimension in the visualization table for each of the plurality of 3D object to reflect the visibility of each 3D object based upon the selected mappings of data dimensions to visualization attributes; and interactively render 3D data visualizations of the 3D objects within the virtual space from viewpoints determined based upon received user input.
Proceedings of the Space Shuttle Sortie Workshop. Volume 1: Policy and system characteristics
NASA Technical Reports Server (NTRS)
1972-01-01
The workshop held to definitize the utilization of the space shuttle is reported, and the objectives of the workshop are listed. The policy papers are presented along with concepts of the space shuttle program, and the sortie workshop.
ERIC Educational Resources Information Center
Schmidt, William G.
1997-01-01
Provides an overview of the current practice and fascinating future of legal issues involved in outer space exploration and colonization. Current space law, by necessity, addresses broad principles rather than specific incidents. Nonetheless, it covers a variety of issues including commercial development, rescue agreements, object registration,…
Contamination assessment for OSSA space station IOC payloads
NASA Technical Reports Server (NTRS)
Wu, S. T.
1987-01-01
An assessment is made of NASA/OSSA space station IOC payloads. The report has two main objectives, i.e., to provide realistic contamination requirements for space station attached payloads, serviced payloads and platforms, and to determine unknowns or major impacts requiring further assessment.
A knowledge-based machine vision system for space station automation
NASA Technical Reports Server (NTRS)
Chipman, Laure J.; Ranganath, H. S.
1989-01-01
A simple knowledge-based approach to the recognition of objects in man-made scenes is being developed. Specifically, the system under development is a proposed enhancement to a robot arm for use in the space station laboratory module. The system will take a request from a user to find a specific object, and locate that object by using its camera input and information from a knowledge base describing the scene layout and attributes of the object types included in the scene. In order to use realistic test images in developing the system, researchers are using photographs of actual NASA simulator panels, which provide similar types of scenes to those expected in the space station environment. Figure 1 shows one of these photographs. In traditional approaches to image analysis, the image is transformed step by step into a symbolic representation of the scene. Often the first steps of the transformation are done without any reference to knowledge of the scene or objects. Segmentation of an image into regions generally produces a counterintuitive result in which regions do not correspond to objects in the image. After segmentation, a merging procedure attempts to group regions into meaningful units that will more nearly correspond to objects. Here, researchers avoid segmenting the image as a whole, and instead use a knowledge-directed approach to locate objects in the scene. The knowledge-based approach to scene analysis is described and the categories of knowledge used in the system are discussed.
Thermal cycle testing of Space Station Freedom solar array blanket coupons
NASA Technical Reports Server (NTRS)
Scheiman, David A.; Schieman, David A.
1991-01-01
Lewis Research Center is presently conducting thermal cycle testing of solar array blanket coupons that represent the baseline design for Space Station Freedom. Four coupons were fabricated as part of the Photovoltaic Array Environment Protection (PAEP) Program, NAS 3-25079, at Lockheed Missile and Space Company. The objective of the testing is to demonstrate the durability or operational lifetime of the solar array welded interconnect design within the durability or operational lifetime of the solar array welded interconnect design within a low earth orbit (LEO) thermal cycling environment. Secondary objectives include the observation and identification of potential failure modes and effects that may occur within the solar array blanket coupons as a result of thermal cycling. The objectives, test articles, test chamber, performance evaluation, test requirements, and test results are presented for the successful completion of 60,000 thermal cycles.
Maximum entropy perception-action space: a Bayesian model of eye movement selection
NASA Astrophysics Data System (ADS)
Colas, Francis; Bessière, Pierre; Girard, Benoît
2011-03-01
In this article, we investigate the issue of the selection of eye movements in a free-eye Multiple Object Tracking task. We propose a Bayesian model of retinotopic maps with a complex logarithmic mapping. This model is structured in two parts: a representation of the visual scene, and a decision model based on the representation. We compare different decision models based on different features of the representation and we show that taking into account uncertainty helps predict the eye movements of subjects recorded in a psychophysics experiment. Finally, based on experimental data, we postulate that the complex logarithmic mapping has a functional relevance, as the density of objects in this space in more uniform than expected. This may indicate that the representation space and control strategies are such that the object density is of maximum entropy.
Cortical networks for encoding near and far space in the non-human primate.
Cléry, Justine; Guipponi, Olivier; Odouard, Soline; Wardak, Claire; Ben Hamed, Suliann
2018-08-01
While extra-personal space is often erroneously considered as a unique entity, early neuropsychological studies report a dissociation between near and far space processing both in humans and in monkeys. Here, we use functional MRI in a naturalistic 3D environment to describe the non-human primate near and far space cortical networks. We describe the co-occurrence of two extended functional networks respectively dedicated to near and far space processing. Specifically, far space processing involves occipital, temporal, parietal, posterior cingulate as well as orbitofrontal regions not activated by near space, possibly subserving the processing of the shape and identity of objects. In contrast, near space processing involves temporal, parietal, prefrontal and premotor regions not activated by far space, possibly subserving the preparation of an arm/hand mediated action in this proximal space. Interestingly, this network also involves somatosensory regions, suggesting a cross-modal anticipation of touch by a nearby object. Last, we also describe cortical regions that process both far and near space with a preference for one or the other. This suggests a continuous encoding of relative distance to the body, in the form of a far-to-near gradient. We propose that these cortical gradients in space representation subserve the physically delineable peripersonal spaces described in numerous psychology and psychophysics studies. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA space biology accomplishments, 1982
NASA Technical Reports Server (NTRS)
Halstead, T. W.; Pleasant, L. G.
1983-01-01
Summaries of NASA's Space Biology Program projects are provided. The goals, objectives, accomplishments, and future plans of each project are described in this publication as individual technical summaries.
Strategic considerations in Indian space programme—Towards maximising socio-economic benefits
NASA Astrophysics Data System (ADS)
Sridhara Murthi, K. R.; Madhusudan, H. N.
2008-07-01
Strategic thinking and planning have been the hallmarks of Indian space programme, whose objectives are sharply focused on deriving socio-economic benefits of space technology. The purpose of this paper is to identify various strategies, which played a role in different phases of the programme, contributing to social and economic outcomes and effectiveness. While self-reliant development of technological capacity and evaluation of applications with involvement of users formed the backbone of strategy in the initial phase of the programme, subsequent strategies were centred on development of organisational culture and systems, industry role and promotion of spin offs. Other strategies dealt with the response to challenges inherent in space endeavours in terms of risk management, sustainability, investments and long-term commitments, judicious make or buy decisions, safeguard of sensitive technologies, space commerce and finally harmonising international cooperation with national objectives. The strategies in the programme were consistently driven by a clear-cut vision and objectives to develop and use space technology in diverse areas where space systems become relevant for socio-economic development such as telecommunications and broadcasting, meteorology, disaster management support, remote sensing of natural and anthropogenic phenomena, and positioning and navigation services. This paper synthesises various studies and experiences in India in order to analyse strategies in the face of changes in technology, application needs and international policies. It also examines the effectiveness of these strategies in terms of economic and social costs and benefits. Based on the above analysis, a typical conceptual model for use of space for development is suggested.
Overview of NASA's Space Solar Power Technology Advanced Research and Development Program
NASA Technical Reports Server (NTRS)
Howell, Joe; Mankins, John C.; Davis, N. Jan (Technical Monitor)
2001-01-01
Large solar power satellite (SPS) systems that might provide base load power into terrestrial markets were examined extensively in the 1970s by the US Department of Energy (DOE) and the National Aeronautics and Space Administration (NASA). Following a hiatus of about 15 years, the subject of space solar power (SSP) was reexamined by NASA from 1995-1997 in the 'fresh look' study, and during 1998 in an SSP 'concept definition study', and during 1999-2000 in the SSP Exploratory Research and Technology (SERT) program. As a result of these efforts, during 2001, NASA has initiated the SSP Technology Advanced Research and Development (STAR-Dev) program based on informed decisions. The goal of the STAR-Dev program is to conduct preliminary strategic technology research and development to enable large, multi-megawatt to gigawatt-class space solar power (SSP) systems and wireless power transmission (WPT) for government missions and commercial markets (in-space and terrestrial). Specific objectives include: (1) Release a NASA Research Announcement (NRA) for SSP Projects; (2) Conduct systems studies; (3) Develop Component Technologies; (4) Develop Ground and Flight demonstration systems; and (5) Assess and/or Initiate Partnerships. Accomplishing these objectives will allow informed future decisions regarding further SSP and related research and development investments by both NASA management and prospective external partners. In particular, accomplishing these objectives will also guide further definition of SSP and related technology roadmaps including performance objectives, resources and schedules; including 'multi-purpose' applications (commercial, science, and other government).
First Lunar Outpost support study
NASA Technical Reports Server (NTRS)
Bartz, Christopher; Cook, John; Rusingizandekwe, Jean-Luc
1993-01-01
The First Lunar Outpost (FLO) is the first manned step in the accomplishment of the Space Exploration Initiative, the Vice President's directive to NASA on the 20th anniversary of the Apollo moon landing. FLO's broad objectives are the establishment of a permanent human presence on the moon, supporting the utilization of extraterrestrial resources in a long-term, sustained program. The primary objective is to emplace and validate the first elements of a man tended outpost on the lunar surface to provide the basis for: (1) establishing, maintaining and expanding human activities and influence across the surface; (2) establishing, maintaining and enhancing human safety and productivity; (3) accommodating space transportation operations to and from the surface; (4) accommodating production of scientific information; (5) exploiting in-situ resources. Secondary objectives are: (1) to conduct local, small scale science (including life science); (2) In-situ resource utilization (ISRU) demonstrations; (3) engineering and operations tests; (4) to characterize the local environment; and (5) to explore locally. The current work is part of ongoing research at the Sasakawa International Center for Space Architecture supporting NASA's First Lunar Outpost initiative. Research at SICSA supporting the First Lunar Outpost initiative has been funded through the Space Exploration Initiatives office at Johnson Space Center. The objectives of the current study are to further develop a module concept from an evaluation of volumetric and programmatic requirements, and pursue a high fidelity design of this concept, with the intention of providing a high fidelity design mockup to research planetary design issues and evaluate future design concepts.
Development and Operation of the Microshutter Array System
NASA Technical Reports Server (NTRS)
Jhabvala, M. D.; Franz, D.; King, T.; Kletetschka, G.; Kutyrev, A. S.; Li, M. J.
2008-01-01
The microshutter array (MSA) is a key component in the James Webb Space Telescope Near Infrared Spectrometer (NIRSpec) instrument. The James Webb Space Telescope is the next generation of a space-borne astronomy platform that is scheduled to be launched in 2013. However, in order to effectively operate the array and meet the severe operational requirements associated with a space flight mission has placed enormous constraints on the microshutter array subsystem. This paper will present an overview and description of the entire microshutter subsystem including the microshutter array, the hybridized array assembly, the integrated CMOS electronics, mechanical mounting module and the test methodology and performance of the fully assembled microshutter subsystem. The NIRSpec is a European Space Agency (ESA) instrument requiring four fully assembled microshutter arrays, or quads, which are independently addressed to allow for the imaging of selected celestial objects onto the two 4 mega pixel IR detectors. Each microshutter array must have no more than approx.8 shutters which are failed in the open mode (depending on how many are failed closed) out of the 62,415 (365x171) total number of shutters per array. The driving science requirement is to be able to select up to 100 objects at a time to be spectrally imaged at the focal plane. The spectrum is dispersed in the direction of the 171 shutters so if there is an unwanted open shutter in that row the light from an object passing through that failed open shutter will corrupt the spectrum from the intended object.
Moving through Life-Space Areas and Objectively Measured Physical Activity of Older People.
Portegijs, Erja; Tsai, Li-Tang; Rantanen, Taina; Rantakokko, Merja
2015-01-01
Physical activity-an important determinant of health and function in old age-may vary according to the life-space area reached. Our aim was to study how moving through greater life-space areas is associated with greater physical activity of community-dwelling older people. The association between objectively measured physical activity and life-space area reached on different days by the same individual was studied using one-week longitudinal data, to provide insight in causal relationships. One-week surveillance of objectively assessed physical activity of community-dwelling 70-90-year-old people in central Finland from the "Life-space mobility in old age" cohort substudy (N = 174). In spring 2012, participants wore an accelerometer for 7 days and completed a daily diary including the largest life-space area reached (inside home, outside home, neighborhood, town, and beyond town). The daily step count, and the time in moderate (incl. walking) and low activity and sedentary behavior were assessed. Differences in physical activity between days on which different life-space areas were reached were tested using Generalized Estimation Equation models (within-group comparison). Participants' mean age was 80.4±4.2 years and 63.5% were female. Participants had higher average step counts (p < .001) and greater moderate and low activity time (p < .001) on days when greater life-space areas were reached, from the home to the town area. Only low activity time continued to increase when moving beyond the town. Community-dwelling older people were more physically active on days when they moved through greater life-space areas. While it is unknown whether physical activity was a motivator to leave the home, intervention studies are needed to determine whether facilitation of daily outdoor mobility, regardless of the purpose, may be beneficial in terms of promoting physical activity.
Prism adaptation does not alter object-based attention in healthy participants.
Bultitude, Janet H; List, Alexandra; Aimola Davies, Anne M
2013-01-01
Hemispatial neglect ('neglect') is a disabling condition that can follow damage to the right side of the brain, in which patients show difficulty in responding to or orienting towards objects and events that occur on the left side of space. Symptoms of neglect can manifest in both space- and object-based frames of reference. Although patients can show a combination of these two forms of neglect, they are considered separable and have distinct neurological bases. In recent years considerable evidence has emerged to demonstrate that spatial symptoms of neglect can be reduced by an intervention called prism adaptation. Patients point towards objects viewed through prismatic lenses that shift the visual image to the right. Approximately five minutes of repeated pointing results in a leftward recalibration of pointing and improved performance on standard clinical tests for neglect. The understanding of prism adaptation has also been advanced through studies of healthy participants, in whom adaptation to leftward prismatic shifts results in temporary neglect-like performance. Here we examined the effect of prism adaptation on the performance of healthy participants who completed a computerised test of space- and object-based attention. Participants underwent adaptation to leftward- or rightward-shifting prisms, or performed neutral pointing according to a between-groups design. Significant pointing after-effects were found for both prism groups, indicating successful adaptation. In addition, the results of the computerised test revealed larger reaction-time costs associated with shifts of attention between two objects compared to shifts of attention within the same object, replicating previous work. However there were no differences in the performance of the three groups, indicating that prism adaptation did not influence space- or object-based attention for this task. When combined with existing literature, the results are consistent with the proposal that prism adaptation may only perturb cognitive functions for which normal baseline performance is already biased.
Prism adaptation does not alter object-based attention in healthy participants
Bultitude, Janet H.
2013-01-01
Hemispatial neglect (‘neglect’) is a disabling condition that can follow damage to the right side of the brain, in which patients show difficulty in responding to or orienting towards objects and events that occur on the left side of space. Symptoms of neglect can manifest in both space- and object-based frames of reference. Although patients can show a combination of these two forms of neglect, they are considered separable and have distinct neurological bases. In recent years considerable evidence has emerged to demonstrate that spatial symptoms of neglect can be reduced by an intervention called prism adaptation. Patients point towards objects viewed through prismatic lenses that shift the visual image to the right. Approximately five minutes of repeated pointing results in a leftward recalibration of pointing and improved performance on standard clinical tests for neglect. The understanding of prism adaptation has also been advanced through studies of healthy participants, in whom adaptation to leftward prismatic shifts results in temporary neglect-like performance. Here we examined the effect of prism adaptation on the performance of healthy participants who completed a computerised test of space- and object-based attention. Participants underwent adaptation to leftward- or rightward-shifting prisms, or performed neutral pointing according to a between-groups design. Significant pointing after-effects were found for both prism groups, indicating successful adaptation. In addition, the results of the computerised test revealed larger reaction-time costs associated with shifts of attention between two objects compared to shifts of attention within the same object, replicating previous work. However there were no differences in the performance of the three groups, indicating that prism adaptation did not influence space- or object-based attention for this task. When combined with existing literature, the results are consistent with the proposal that prism adaptation may only perturb cognitive functions for which normal baseline performance is already biased. PMID:24715960
Color-Space Outliers in DPOSS: Quasars and Peculiar Objects
NASA Astrophysics Data System (ADS)
Djorgovski, S. G.; Gal, R. R.; Mahabal, A.; Brunner, R.; Castro, S. M.; Odewahn, S. C.; de Carvalho, R. R.; DPOSS Team
2000-12-01
The processing of DPOSS, a digital version of the POSS-II sky atlas, is now nearly complete. The resulting Palomar--Norris Sky Catalog (PNSC) is expected to contain > 5 x 107 galaxies and > 109 stars, including large numbers of quasars and other unresolved sources. For objects morphologically classified as stellar (i.e., PSF-like), colors and magnitudes provide the only additional source of discriminating information. We investigate the distribution of objects in the parameter space of (g-r) and (r-i) colors as a function of magnitude. Normal stars form a well-defined (temperature) sequence in this parameter space, and we explore the nature of the objects which deviate significantly from this stellar locus. The causes of the deviations include: non-thermal or peculiar spectra, interagalactic absorption (for high-z quasars), presence of strong emission lines in one or more of the bandpasses, or strong variability (because the plates are taken at widely separated epochs). In addition to minor contamination by misclassified compact galaxies, we find the following: (1) Quasars at z > 4; to date, ~ 100 of these objects have been found, and used for a variety of follow-up studies. They are made publicly available immediately after discovery, through http://astro.caltech.edu/ ~george/z4.qsos. (2) Type-2 quasars in the redshift interval z ~ 0.31 - 0.38. (3) Other quasars, starburst and emission-line galaxies, and emission-line stars. (4) Objects with highly peculiar spectra, some or all of which may be rare subtypes of BAL QSOs. (5) Highly variable stars and optical transients, some of which may be GRB ``orphan afterglows''. To date, systematic searches have been made only for (1) and (2); other types of objects were found serendipitously. However, we plan to explore systematically all of the statistically significant outliers in this parameter space. This illustrates the potential of large digital sky surveys for discovery of rare types of objects, both known (e.g., high-z quasars) and as yet unknown.
Benefit Estimation Model for Tourist Spaceflights
NASA Astrophysics Data System (ADS)
Goehlich, Robert A.
2003-01-01
It is believed that the only potential means for significant reduction of the recurrent launch cost, which results in a stimulation of human space colonization, is to make the launcher reusable, to increase its reliability, and to make it suitable for new markets such as mass space tourism. But such space projects, that have long range aspects are very difficult to finance, because even politicians would like to see a reasonable benefit during their term in office, because they want to be able to explain this investment to the taxpayer. This forces planners to use benefit models instead of intuitive judgement to convince sceptical decision-makers to support new investments in space. Benefit models provide insights into complex relationships and force a better definition of goals. A new approach is introduced in the paper that allows to estimate the benefits to be expected from a new space venture. The main objective why humans should explore space is determined in this study to ``improve the quality of life''. This main objective is broken down in sub objectives, which can be analysed with respect to different interest groups. Such interest groups are the operator of a space transportation system, the passenger, and the government. For example, the operator is strongly interested in profit, while the passenger is mainly interested in amusement, while the government is primarily interested in self-esteem and prestige. This leads to different individual satisfactory levels, which are usable for the optimisation process of reusable launch vehicles.
Iachini, Tina; Ruggiero, Gennaro; Ruotolo, Francesco; Vinciguerra, Michela
2014-11-01
The aim of this study was to explore the role of motor resources in peripersonal space encoding: are they intrinsic to spatial processes or due to action potentiality of objects? To answer this question, we disentangled the effects of motor resources on object manipulability and spatial processing in peripersonal and extrapersonal spaces. Participants had to localize manipulable and non-manipulable 3-D stimuli presented within peripersonal or extrapersonal spaces of an immersive virtual reality scenario. To assess the contribution of motor resources to the spatial task a motor interference paradigm was used. In Experiment 1, localization judgments were provided with the left hand while the right dominant arm could be free or blocked. Results showed that participants were faster and more accurate in localizing both manipulable and non-manipulable stimuli in peripersonal space with their arms free. On the other hand, in extrapersonal space there was no significant effect of motor interference. Experiment 2 replicated these results by using alternatively both hands to give the response and controlling the possible effect of the orientation of object handles. Overall, the pattern of results suggests that the encoding of peripersonal space involves motor processes per se, and not because of the presence of manipulable stimuli. It is argued that this motor grounding reflects the adaptive need of anticipating what may happen near the body and preparing to react in time. Copyright © 2014. Published by Elsevier B.V.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Washington, DC.
This lesson guide accompanies the Hubble Deep Field set of 10 lithographs and introduces 4 astronomy lesson plans for middle school students. Lessons include: (1) "How Many Objects Are There?"; (2) "Classifying and Identifying"; (3) "Estimating Distances in Space"; and (4) "Review and Assessment." Appendices…
NASA Technical Reports Server (NTRS)
Abell, Paul A.
2011-01-01
Human exploration of near-Earth objects (NEOs) beginning circa 2025 - 2030 is one of the stated objectives of U.S. National Space Policy. Piloted missions to these bodies would further development of deep space mission systems and technologies, obtain better understanding of the origin and evolution of our Solar System, and support research for asteroid deflection and hazard mitigation strategies. This presentation will discuss some of the physical characteristics of NEOs and review some of the current plans for NEO research and exploration from both a human and robotic mission perspective.
A Coordinated Initialization Process for the Distributed Space Exploration Simulation
NASA Technical Reports Server (NTRS)
Crues, Edwin Z.; Phillips, Robert G.; Dexter, Dan; Hasan, David
2007-01-01
A viewgraph presentation on the federate initialization process for the Distributed Space Exploration Simulation (DSES) is described. The topics include: 1) Background: DSES; 2) Simulation requirements; 3) Nine Step Initialization; 4) Step 1: Create the Federation; 5) Step 2: Publish and Subscribe; 6) Step 3: Create Object Instances; 7) Step 4: Confirm All Federates Have Joined; 8) Step 5: Achieve initialize Synchronization Point; 9) Step 6: Update Object Instances With Initial Data; 10) Step 7: Wait for Object Reflections; 11) Step 8: Set Up Time Management; 12) Step 9: Achieve startup Synchronization Point; and 13) Conclusions
Erlikhman, Gennady; Gurariy, Gennadiy; Mruczek, Ryan E.B.; Caplovitz, Gideon P.
2016-01-01
Oftentimes, objects are only partially and transiently visible as parts of them become occluded during observer or object motion. The visual system can integrate such object fragments across space and time into perceptual wholes or spatiotemporal objects. This integrative and dynamic process may involve both ventral and dorsal visual processing pathways, along which shape and spatial representations are thought to arise. We measured fMRI BOLD response to spatiotemporal objects and used multi-voxel pattern analysis (MVPA) to decode shape information across 20 topographic regions of visual cortex. Object identity could be decoded throughout visual cortex, including intermediate (V3A, V3B, hV4, LO1-2,) and dorsal (TO1-2, and IPS0-1) visual areas. Shape-specific information, therefore, may not be limited to early and ventral visual areas, particularly when it is dynamic and must be integrated. Contrary to the classic view that the representation of objects is the purview of the ventral stream, intermediate and dorsal areas may play a distinct and critical role in the construction of object representations across space and time. PMID:27033688
NASA's Orbital Debris Conjuction Assessment and Collision Avoidance Strategy
NASA Technical Reports Server (NTRS)
Gavin, Richard T.
2010-01-01
NASA has successfully used debris avoidance maneuvers to protect our spacecraft for more than 20 . years. This process which started out using parametric data and maneuver boxes has seen considerable evolution and now allows us to continue nominal operations for all but the most threatening objects. This has greatly reduced the interruptions to the critical mission objectives being pursued by NASA s Space Station, Space Shuttle, and robotic satellites.
Technical Objective Document. Fiscal Year 1989
1987-12-01
other special interest areas/technologies; and throuch a " delphi " process with the Center Technical Investment Committee *develop a "puts and takes...radar and larce optical systems in space, the detection and trackina of low observables, and the operation of sensors for tracking objects in space for...for reducing the processing time for adaptive beamforming in receive arrays, self-coherina techniques in larce distributed arrays and array self
NASA Technical Reports Server (NTRS)
Stevens, H. D.; Miles, E. S.; Rock, S. J.; Cannon, R. H.
1994-01-01
Expanding man's presence in space requires capable, dexterous robots capable of being controlled from the Earth. Traditional 'hand-in-glove' control paradigms require the human operator to directly control virtually every aspect of the robot's operation. While the human provides excellent judgment and perception, human interaction is limited by low bandwidth, delayed communications. These delays make 'hand-in-glove' operation from Earth impractical. In order to alleviate many of the problems inherent to remote operation, Stanford University's Aerospace Robotics Laboratory (ARL) has developed the Object-Based Task-Level Control architecture. Object-Based Task-Level Control (OBTLC) removes the burden of teleoperation from the human operator and enables execution of tasks not possible with current techniques. OBTLC is a hierarchical approach to control where the human operator is able to specify high-level, object-related tasks through an intuitive graphical user interface. Infrequent task-level command replace constant joystick operations, eliminating communications bandwidth and time delay problems. The details of robot control and task execution are handled entirely by the robot and computer control system. The ARL has implemented the OBTLC architecture on a set of Free-Flying Space Robots. The capability of the OBTLC architecture has been demonstrated by controlling the ARL Free-Flying Space Robots from NASA Ames Research Center.
NASA Astrophysics Data System (ADS)
Kaplan, M. L.; van Cleve, J. E.; Alcock, C.
2003-12-01
Detection and characterization of the small bodies of the outer solar system presents unique challenges to terrestrial based sensing systems, principally the inverse 4th power decrease of reflected and thermal signals with target distance from the Sun. These limits are surpassed by new techniques [1,2,3] employing star-object occultation event sensing, which are capable of detecting sub-kilometer objects in the Kuiper Belt and Oort cloud. This poster will present an instrument and space mission concept based on adaptations of the NASA Discovery Kepler program currently in development at Ball Aerospace and Technologies Corp. Instrument technologies to enable this space science mission are being pursued and will be described. In particular, key attributes of an optimized payload include the ability to provide: 1) Coarse spectral resolution (using an objective spectrometer approach) 2) Wide FOV, simultaneous object monitoring (up to 150,000 stars employing select data regions within a large focal plane mosaic) 3) Fast temporal frame integration and readout architectures (10 to 50 msec for each monitored object) 4) Real-time, intelligent change detection processing (to limit raw data volumes) The Minor Body Surveyor combines the focal plane and processing technology elements into a densely packaged format to support general space mission issues of mass and power consumption, as well as telemetry resources. Mode flexibility is incorporated into the real-time processing elements to allow for either temporal (Occultations) or spatial (Moving targets) change detection. In addition, a basic image capture mode is provided for general pointing and field reference measurements. The overall space mission architecture is described as well. [1] M. E. Bailey. Can 'Invisible' Bodies be Observed in the Solar System. Nature, 259:290-+, January 1976. [2] T. S. Axelrod, C. Alcock, K. H. Cook, and H.-S. Park. A Direct Census of the Oort Cloud with a Robotic Telescope. In ASP Conf. Ser. 34: Robotic Telescopes in the 1990s, pages 171-181, 1992. [3] F. Roques and M. Moncuquet. A Detection Method for Small Kuiper Belt Objects: The Search for Stellar Occultations. Icarus, 147:530-544, October 2000.
The Role of Visual Working Memory in Attentive Tracking of Unique Objects
ERIC Educational Resources Information Center
Makovski, Tal; Jiang, Yuhong V.
2009-01-01
When tracking moving objects in space humans usually attend to the objects' spatial locations and update this information over time. To what extent do surface features assist attentive tracking? In this study we asked participants to track identical or uniquely colored objects. Tracking was enhanced when objects were unique in color. The benefit…
Satellite situation report, volume 31, number 1
NASA Technical Reports Server (NTRS)
1991-01-01
Data computed at GSFC, NORAD, or provided by satellite owners is reported. A space objects box score is presented of objects in orbit and decayed objects. Data of objects in orbit is presented in tabular form and the table headings include name of the object, catalog number, source, launch date, period minutes, inclination, apogee KM., perigee KM., and transmitting frequency.
Free-floating dual-arm robots for space assembly
NASA Technical Reports Server (NTRS)
Agrawal, Sunil Kumar; Chen, M. Y.
1994-01-01
Freely moving systems in space conserve linear and angular momentum. As moving systems collide, the velocities get altered due to transfer of momentum. The development of strategies for assembly in a free-floating work environment requires a good understanding of primitives such as self motion of the robot, propulsion of the robot due to onboard thrusters, docking of the robot, retrieval of an object from a collection of objects, and release of an object in an object pool. The analytics of such assemblies involve not only kinematics and rigid body dynamics but also collision and impact dynamics of multibody systems. In an effort to understand such assemblies in zero gravity space environment, we are currently developing at Ohio University a free-floating assembly facility with a dual-arm planar robot equipped with thrusters, a free-floating material table, and a free-floating assembly table. The objective is to pick up workpieces from the material table and combine them into prespecified assemblies. This paper presents analytical models of assembly primitives and strategies for overall assembly. A computer simulation of an assembly is developed using the analytical models. The experiment facility will be used to verify the theoretical predictions.
A laser-optical system to re-enter or lower low Earth orbit space debris
NASA Astrophysics Data System (ADS)
Phipps, Claude R.
2014-01-01
Collisions among existing Low Earth Orbit (LEO) debris are now a main source of new debris, threatening future use of LEO space. Due to their greater number, small (1-10 cm) debris are the main threat, while large (>10 cm) objects are the main source of new debris. Flying up and interacting with each large object is inefficient due to the energy cost of orbit plane changes, and quite expensive per object removed. Strategically, it is imperative to remove both small and large debris. Laser-Orbital-Debris-Removal (LODR), is the only solution that can address both large and small debris. In this paper, we briefly review ground-based LODR, and discuss how a polar location can dramatically increase its effectiveness for the important class of sun-synchronous orbit (SSO) objects. With 20% clear weather, a laser-optical system at either pole could lower the 8-ton ENVISAT by 40 km in about 8 weeks, reducing the hazard it represents by a factor of four. We also discuss the advantages and disadvantages of a space-based LODR system. We estimate cost per object removed for these systems. International cooperation is essential for designing, building and operating any such system.
Optical system for object detection and delineation in space
NASA Astrophysics Data System (ADS)
Handelman, Amir; Shwartz, Shoam; Donitza, Liad; Chaplanov, Loran
2018-01-01
Object recognition and delineation is an important task in many environments, such as in crime scenes and operating rooms. Marking evidence or surgical tools and attracting the attention of the surrounding staff to the marked objects can affect people's lives. We present an optical system comprising a camera, computer, and small laser projector that can detect and delineate objects in the environment. To prove the optical system's concept, we show that it can operate in a hypothetical crime scene in which a pistol is present and automatically recognize and segment it by various computer-vision algorithms. Based on such segmentation, the laser projector illuminates the actual boundaries of the pistol and thus allows the persons in the scene to comfortably locate and measure the pistol without holding any intermediator device, such as an augmented reality handheld device, glasses, or screens. Using additional optical devices, such as diffraction grating and a cylinder lens, the pistol size can be estimated. The exact location of the pistol in space remains static, even after its removal. Our optical system can be fixed or dynamically moved, making it suitable for various applications that require marking of objects in space.
2012 DR30, The Most Distant Solar System Object
NASA Astrophysics Data System (ADS)
Kiss, Csaba; Szabó, G.; Pál, A.; Kiss, L.; Sárneczky, K.; Müller, T.; Vilenius, E.; Santos-Sanz, P.; Lellouch, E.; Conn, B.; Ortiz, J.; Duffard, R.; Morales, N.; Horner, J.; Bannister, M.; Stansberry, J.
2012-10-01
2012 DR30, the most distant TNO in the Solar System (a=1103 AU) has recently been observed with the Herschel Space Observatory. Radiometric model results using the far-infrared fluxes and visual range data show a dark and cratered surface (p_V = 6%) and provide a diameter of 200km. If considered as a Centaur, this is the fifth largest object known in this dynamical class. Recent visual range measurements indicate the presence of methane ice on the surface, a feature that has been seen previously for objects with diameters of >=1000km only (like Eris, Makemake and Pluto). The presence of methane ice can be explained assuming that the object spent most of its lifetime in a very cold environment and has been recently placed to its present orbit. This scenario is in agreement with the results of a dynamical study of the object's orbit, also suggesting an Oort-cloud origin. This research has been supported by the following grants: (1) The PECS program of the European Space Agency (ESA) and the Hungarian Space Office, PECS-98073; (2) C.K. and A.P. acknowledges the support of the Bolyai Research Fellowship of the Hungarian Academy of Sciences.
Lee Masson, Haemy; Bulthé, Jessica; Op de Beeck, Hans P; Wallraven, Christian
2016-08-01
Humans are highly adept at multisensory processing of object shape in both vision and touch. Previous studies have mostly focused on where visually perceived object-shape information can be decoded, with haptic shape processing receiving less attention. Here, we investigate visuo-haptic shape processing in the human brain using multivoxel correlation analyses. Importantly, we use tangible, parametrically defined novel objects as stimuli. Two groups of participants first performed either a visual or haptic similarity-judgment task. The resulting perceptual object-shape spaces were highly similar and matched the physical parameter space. In a subsequent fMRI experiment, objects were first compared within the learned modality and then in the other modality in a one-back task. When correlating neural similarity spaces with perceptual spaces, visually perceived shape was decoded well in the occipital lobe along with the ventral pathway, whereas haptically perceived shape information was mainly found in the parietal lobe, including frontal cortex. Interestingly, ventrolateral occipito-temporal cortex decoded shape in both modalities, highlighting this as an area capable of detailed visuo-haptic shape processing. Finally, we found haptic shape representations in early visual cortex (in the absence of visual input), when participants switched from visual to haptic exploration, suggesting top-down involvement of visual imagery on haptic shape processing. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Computational Physics for Space Flight Applications
NASA Technical Reports Server (NTRS)
Reed, Robert A.
2004-01-01
This paper presents viewgraphs on computational physics for space flight applications. The topics include: 1) Introduction to space radiation effects in microelectronics; 2) Using applied physics to help NASA meet mission objectives; 3) Example of applied computational physics; and 4) Future directions in applied computational physics.
2003-05-02
KENNEDY SPACE CENTER, FLA. - Workers in NASA Spacecraft Hangar AE prepare to begin further processing of the Space Infrared Telescope Facility (SIRTF), which has been returned to the hangar from the launch pad. Sections of the transportation canister used in the move are in the foreground. SIRTF will remain in the clean room until it returns to the pad in early August. One of NASA's largest infrared telescopes to be launched, SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.
A knowledge base architecture for distributed knowledge agents
NASA Technical Reports Server (NTRS)
Riedesel, Joel; Walls, Bryan
1990-01-01
A tuple space based object oriented model for knowledge base representation and interpretation is presented. An architecture for managing distributed knowledge agents is then implemented within the model. The general model is based upon a database implementation of a tuple space. Objects are then defined as an additional layer upon the database. The tuple space may or may not be distributed depending upon the database implementation. A language for representing knowledge and inference strategy is defined whose implementation takes advantage of the tuple space. The general model may then be instantiated in many different forms, each of which may be a distinct knowledge agent. Knowledge agents may communicate using tuple space mechanisms as in the LINDA model as well as using more well known message passing mechanisms. An implementation of the model is presented describing strategies used to keep inference tractable without giving up expressivity. An example applied to a power management and distribution network for Space Station Freedom is given.
2002-03-01
Carrying the STS-109 crew of seven, the Space Shuttle Orbiter Columbia blasted from its launch pad as it began its 27th flight and 108th flight overall in NASA's Space Shuttle Program. Launched March 1, 2002, the goal of the mission was the maintenance and upgrade of the Hubble Space Telescope (HST) which was developed, designed, and constructed by the Marshall Space Flight Center. Captured and secured on a work stand in Columbia's payload bay using Columbia's robotic arm, the HST received the following upgrades: replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when it original coolant ran out. Four of the crewmembers performed 5 space walks in the 10 days, 22 hours, and 11 minutes of the the STS-109 mission.
Johnson Space Center's strategic game plan: Charting a course to the year 2000 and beyond
NASA Technical Reports Server (NTRS)
1987-01-01
The Johnson Space Center has established five major goals to meet the Nation's expectation of maintaining U.S. preeminence in space. The first three are technical in nature. They define the basic mission-the reason for being. The two goals relating to the Space Shuttle and Space Station are obviously the most demanding in their immediate claim for major resources. The third goal is equally important in that the technical competence must be maintained and enhanced. The remaining two goals address the two critical success factors required for achieving the first three. One goal pertains to maintaining and enhancing the highly skilled work force. The other goal concerns the important relations with other key members of the U.S. space team. Each goal is listed along with a proposed strategy or approach for implementing each goal. Subsequently, each goal is accompanied by a brief explanation and a set of objectives. These objectives provide the specific targets of opportunity for focusing the immediate efforts.
Space Shuttle Mission STS-61: Hubble Space Telescope servicing mission-01
NASA Technical Reports Server (NTRS)
1993-01-01
This press kit for the December 1993 flight of Endeavour on Space Shuttle Mission STS-61 includes a general release, cargo bay payloads and activities, in-cabin payloads, and STS-61 crew biographies. This flight will see the first in a series of planned visits to the orbiting Hubble Space Telescope (HST). The first HST servicing mission has three primary objectives: restoring the planned scientific capabilities, restoring reliability of HST systems and validating the HST on-orbit servicing concept. These objectives will be accomplished in a variety of tasks performed by the astronauts in Endeavour's cargo bay. The primary servicing task list is topped by the replacement of the spacecraft's solar arrays. The spherical aberration of the primary mirror will be compensated by the installation of the Wide Field/Planetary Camera-II and the Corrective Optics Space Telescope Axial Replacement. New gyroscopes will also be installed along with fuse plugs and electronic units.
Space and biotechnology: An industry profile
NASA Technical Reports Server (NTRS)
Johnston, Richard S.; Norton, David J.; Tom, Baldwin H.
1988-01-01
The results of a study conducted by the Center for Space and Advanced Technology (CSAT) for NASA-JSC are presented. The objectives were to determine the interests and attitudes of the U.S. biotechnology industry toward space biotechnology and to prepare a concise review of the current activities of the biotechnology industry. In order to accomplish these objectives, two primary actions were taken. First, a questionnaire was designed, reviewed, and distributed to U.S. biotechnology companies. Second, reviews of the various biotechnology fields were prepared in several aspects of the industry. For each review, leading figures in the field were asked to prepare a brief review pointing out key trends and current industry technical problems. The result is a readable narrative of the biotechnology industry which will provide space scientists and engineers valuable clues as to where the space environment can be explored to advance the U.S. biotechnology industry.
STS-79 Space Shuttle Mission Report
NASA Technical Reports Server (NTRS)
Fricke, Robert W., Jr.
1996-01-01
STS-79 was the fourth of nine planned missions to the Russian Mir Space Station. This report summarizes the activities such as rendezvous and docking and spaceborne experiment operations. The report also discusses the Orbiter, External Tank (ET), Solid Rocket Boosters (SRB), Reusable Solid Rocket Motor (RSRM) and the space shuttle main engine (SSME) systems performance during the flight. The primary objectives of this flight were to rendezvous and dock with the Mir Space Station and exchange a Mir Astronaut. A double Spacehab module carried science experiments and hardware, risk mitigation experiments (RME's) and Russian logistics in support of program requirements. Additionally, phase 1 program science experiments were carried in the middeck. Spacehab-05 operations were performed. The secondary objectives of the flight were to perform the operations necessary for the Shuttle Amateur Radio Experiment-2 (SAREX-2). Also, as a payload of opportunity, the requirements of Midcourse Space Experiment (MSX) were completed.
Living with a Star (LWS) Space Environment Testbeds (SET), Mission Carrier Overview and Capabilities
NASA Technical Reports Server (NTRS)
Patschke, Robert; Barth, Janet; Label, Ken; Mariano, Carolyn; Pham, Karen; Brewer, Dana; Cuviello, Michael; Kobe, David; Wu, Carl; Jarosz, Donald
2004-01-01
NASA has initiated the Living With a Star (LWS) Program to develop the scientific understanding to address the aspects of the Connected Sun-Earth system that affect life and society. A goal of the program is to bridge the gap between science, engineering, and user application communities. This will enable future science, operational, and commercial objectives in space and atmospheric environments by improving engineering approaches to the accommodation and/or mitigation of the effects of solar variability on technological systems. The three program elements of the LWS Program are Science Missions; Targeted Research and Technology; and Space Environment Testbeds (SETS). SET is an ideal platform for small experiments performing research on space environment effects on technologies and on the mitigation of space weather effects. A short description of the LWS Program will be given, and the SET will be described in detail, giving the mission objectives, available carrier services, and upcoming flight opportunities.
The challenge of the US Space Station
NASA Technical Reports Server (NTRS)
Beggs, J. M.
1985-01-01
The U.S. Space Station program is described. The objectives of the present national space policy are reviewed. International involvement and commercial use of space are the two strategies involved in the development of the Space Station. The Space Station is to be a multifunctional, modular, permanent facility with manned and unmanned platforms. The functions of the Space Station for space research projects, such as material processing and electrophoresis, are examined. The infrastructure required for commercialization of space is analyzed. NASA's space policy aimed at stimulating space commerce is discussed. NASA's plans to reduce the financial, institutional, and technical risks of space research are studied.
The 1985 long-range program plan
NASA Technical Reports Server (NTRS)
1984-01-01
That continual evolution of NASA's research and development, is reflected in the missions, goals, and objectives planned for FY1985 and later years, in accordance with the responsibilities by the National Aeronautics and Space Act of 1958, as amended. New starts for the next ten years and space program activities to year 2000 are highlighted including space science and applications, space flight, space station, space tracking and data systems, and space research and technology. Space programs for the early 21st century and aeronautics programs up to and beyond the year 2000 are also covered.
Attention modulates perception of visual space
Zhou, Liu; Deng, Chenglong; Ooi, Teng Leng; He, Zijiang J.
2017-01-01
Attention readily facilitates the detection and discrimination of objects, but it is not known whether it helps to form the vast volume of visual space that contains the objects and where actions are implemented. Conventional wisdom suggests not, given the effortless ease with which we perceive three-dimensional (3D) scenes on opening our eyes. Here, we show evidence to the contrary. In Experiment 1, the observer judged the location of a briefly presented target, placed either on the textured ground or ceiling surface. Judged location was more accurate for a target on the ground, provided that the ground was visible and that the observer directed attention to the lower visual field, not the upper field. This reveals that attention facilitates space perception with reference to the ground. Experiment 2 showed that judged location of a target in mid-air, with both ground and ceiling surfaces present, was more accurate when the observer directed their attention to the lower visual field; this indicates that the attention effect extends to visual space above the ground. These findings underscore the role of attention in anchoring visual orientation in space, which is arguably a primal event that enhances one’s ability to interact with objects and surface layouts within the visual space. The fact that the effect of attention was contingent on the ground being visible suggests that our terrestrial visual system is best served by its ecological niche. PMID:29177198
NASA Technical Reports Server (NTRS)
2005-01-01
Galaxies aren't the only objects filling up the view of NASA's Galaxy Evolution Explorer. Since its launch in 2003, the space telescope -- originally designed to observe galaxies across the universe in ultraviolet light -- has discovered a festive sky blinking with flaring and erupting stars, as well as streaking asteroids, satellites and space debris. One such streaking object -- possibly an Earth-orbiting satellite -- can be seen here flying across the telescope's sight in this sped-up movie. This probable satellite appears during the last 5 minutes of a 13.5-minute observation. It looks elongated because each picture frame containing the moving object is 19 seconds long. Faint ghost images on either side of the source are detector artifacts caused by the object's extreme brightness. These bonus objects are being collected in to public catalogues for other astronomers to study.NASA Technical Reports Server (NTRS)
Vanrooy, D. L.; Smith, R. M.; Lynn, M. S.
1974-01-01
An application development system (ADS) is examined for remotely sensed, multispectral data at the Earth Observations Division (EOD) at Johnson Space Center. Design goals are detailed, along with design objectives that an ideal system should contain. The design objectives were arranged according to the priorities of EOD's program objectives. Four systems available to EOD were then measured against the ideal ADS as defined by the design objectives and their associated priorities. This was accomplished by rating each of the systems on each of the design objectives. Utilizing the established priorities, it was determined how each system stood up as an ADS. Recommendations were made as to possible courses of action for EOD to pursue to obtain a more efficient ADS.
Tsai, L-T; Portegijs, E; Rantakokko, M; Viljanen, A; Saajanaho, M; Eronen, J; Rantanen, T
2015-08-01
The purpose of this cross-sectional study was to investigate the association between objectively measured physical activity and life-space mobility in community-dwelling older people. Life-space refers to the spatial area a person purposefully moves through in daily life (bedroom, home, yard, neighborhood, town, and beyond) and life-space mobility to the frequency of travel and the help needed when moving through different life-space areas. The study population comprised community-living 75- to 90-year-old people {n = 174; median age 79.7 [interquartile range (IQR) 7.1]}, participating in the accelerometer substudy of Life-Space Mobility in Old Age (LISPE) project. Step counts and activity time were measured by an accelerometer (Hookie "AM20 Activity Meter") for 7 days. Life-space mobility was assessed with Life-Space Assessment (LSA) questionnaire. Altogether, 16% had a life-space area restricted to the neighborhood when moving independently. Participants with a restricted life space were less physically active and about 70% of them had exceptionally low values in daily step counts (≤ 615 steps) and moderate activity time (≤ 6.8 min). Higher step counts and activity time correlated positively with life-space mobility. Prospective studies are needed to clarify the temporal order of low physical activity level and restriction in life-space mobility. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
The National Reconnaissance Office at 50 years: A Brief History
2011-09-01
routine speech about U.S. achievements in space at Kennedy Space Center , President Carter mentioned that “photoreconnaissance satellites have become...plane that could fly in the thin atmosphere of high altitudes. Another significant challenge was the launch of large objects into space on a...nucleus of the National Aeronautics and Space Administration’s (NASA) Marshall Space Flight Center , which developed the Saturn moon rocket. NRO and
2003-08-25
KENNEDY SPACE CENTER, FLA. - NASA's Space Infrared Telescope Facility (SIRTF) lifts off from Launch Pad 17-B, Cape Canaveral Air Force Station, on Aug. 25 at 1:35:39 a.m. EDT. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Consisting of a 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF will be the largest infrared telescope ever launched into space. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” Its highly sensitive instruments will give a unique view of the Universe and peer into regions of space that are hidden from optical telescopes.
2003-08-14
KENNEDY SPACE CENTER, FLA. - In the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) waits for encapsulation. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Consisting of a 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF will be the largest infrared telescope ever launched into space. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” Its highly sensitive instruments will give a unique view of the Universe and peer into regions of space that are hidden from optical telescopes.
1999-08-01
Designed by the crew members, the STS-103 emblem depicts the Space Shuttle Discovery approaching the Hubble Space Telescope (HST) prior to its capture and berthing. The purpose of the mission was to remove and replace some of the Telescope's older and out-of-date systems with newer, more reliable and more capable ones, and to make repairs to HST's exterior thermal insulation that had been damaged by more than nine years of exposure to the space environment. The horizontal and vertical lines centered on the Telescope symbolize the ability to reach and maintain a desired attitude in space, essential to the instrument's scientific operation. The preservation of this ability was one of the primary objectives of the mission. After the flight, the Telescope resumed its successful exploration of deep space and will continue to be used to study solar system objects, stars in the making, late phases of stellar evolution, galaxies and the early history of the universe. HST, as represented on this emblem was inspired by views from previous servicing missions, with its solar arrays illuminated by the Sun, providing a striking contrast with the blackness of space and the night side of Earth.
NASA Astrophysics Data System (ADS)
Torteeka, Peerapong; Gao, Peng-Qi; Shen, Ming; Guo, Xiao-Zhang; Yang, Da-Tao; Yu, Huan-Huan; Zhou, Wei-Ping; Zhao, You
2017-02-01
Although tracking with a passive optical telescope is a powerful technique for space debris observation, it is limited by its sensitivity to dynamic background noise. Traditionally, in the field of astronomy, static background subtraction based on a median image technique has been used to extract moving space objects prior to the tracking operation, as this is computationally efficient. The main disadvantage of this technique is that it is not robust to variable illumination conditions. In this article, we propose an approach for tracking small and dim space debris in the context of a dynamic background via one of the optical telescopes that is part of the space surveillance network project, named the Asia-Pacific ground-based Optical Space Observation System or APOSOS. The approach combines a fuzzy running Gaussian average for robust moving-object extraction with dim-target tracking using a particle-filter-based track-before-detect method. The performance of the proposed algorithm is experimentally evaluated, and the results show that the scheme achieves a satisfactory level of accuracy for space debris tracking.
NASA Astrophysics Data System (ADS)
Knudsen, Steven; Golubovic, Leonardo
Prospects to build Space Elevator (SE) systems have become realistic with ultra-strong materials such as carbon nano-tubes and diamond nano-threads. At cosmic length-scales, space elevators can be modeled as polymer like floppy strings of tethered mass beads. A new venue in SE science has emerged with the introduction of the Rotating Space Elevator (RSE) concept supported by novel algorithms discussed in this presentation. An RSE is a loopy string reaching into outer space. Unlike the classical geostationary SE concepts of Tsiolkovsky, Artsutanov, and Pearson, our RSE exhibits an internal rotation. Thanks to this, objects sliding along the RSE loop spontaneously oscillate between two turning points, one of which is close to the Earth whereas the other one is in outer space. The RSE concept thus solves a major problem in SE technology which is how to supply energy to the climbers moving along space elevator strings. The investigation of the classical and statistical mechanics of a floppy string interacting with objects sliding along it required development of subtle computational algorithms described in this presentation
Design of an auto change mechanism and intelligent gripper for the space station
NASA Technical Reports Server (NTRS)
Dehoff, Paul H.; Naik, Dipak P.
1989-01-01
Robot gripping of objects in space is inherently demanding and dangerous and nowhere is this more clearly reflected than in the design of the robot gripper. An object which escapes the gripper in a micro g environment is launched not dropped. To prevent this, the gripper must have sensors and signal processing to determine that the object is properly grasped, e.g., grip points and gripping forces and, if not, to provide information to the robot to enable closed loop corrections to be made. The sensors and sensor strategies employed in the NASA/GSFC Split-Rail Parallel Gripper are described. Objectives and requirements are given followed by the design of the sensor suite, sensor fusion techniques and supporting algorithms.
Coupled Low-thrust Trajectory and System Optimization via Multi-Objective Hybrid Optimal Control
NASA Technical Reports Server (NTRS)
Vavrina, Matthew A.; Englander, Jacob Aldo; Ghosh, Alexander R.
2015-01-01
The optimization of low-thrust trajectories is tightly coupled with the spacecraft hardware. Trading trajectory characteristics with system parameters ton identify viable solutions and determine mission sensitivities across discrete hardware configurations is labor intensive. Local independent optimization runs can sample the design space, but a global exploration that resolves the relationships between the system variables across multiple objectives enables a full mapping of the optimal solution space. A multi-objective, hybrid optimal control algorithm is formulated using a multi-objective genetic algorithm as an outer loop systems optimizer around a global trajectory optimizer. The coupled problem is solved simultaneously to generate Pareto-optimal solutions in a single execution. The automated approach is demonstrated on two boulder return missions.
Humanly space objects-Perception and connection with the observer
NASA Astrophysics Data System (ADS)
Balint, Tibor S.; Hall, Ashley
2015-05-01
Expanding humanity into space is an inevitable step in our quest to explore our world. Yet space exploration is costly, and the awaiting environment challenges us with extreme cold, heat, vacuum and radiation, unlike anything encountered on Earth. Thus, the few pioneers who experience it needed to be well protected throughout their spaceflight. The resulting isolation heightens the senses and increases the desire to make humanly connections with any other perceived manifestation of life. Such connections may occur via sensory inputs, namely vision, touch, sound, smell, and taste. This then follows the process of sensing, interpreting, and recognizing familiar patterns, or learning from new experiences. The desire to connect could even transfer to observed objects, if their movements and characteristics trigger the appropriate desires from the observer. When ordered in a familiar way, for example visual stimuli from lights and movements of an object, it may create a perceived real bond with an observer, and evoke the feeling of surprise when the expected behavior changes to something no longer predictable or recognizable. These behavior patterns can be designed into an object and performed autonomously in front of an observer, in our case an astronaut. The experience may introduce multiple responses, including communication, connection, empathy, order, and disorder. While emotions are clearly evoked in the observer and may seem one sided, in effect the object itself provides a decoupled bond, connectivity and communication between the observer and the artist-designer of the object. In this paper we will discuss examples from the field of arts and other domains, including robotics, where human perception through object interaction was explored, and investigate the starting point for new innovative design concepts and future prototype designs, that extend these experiences beyond the boundaries of Earth, while taking advantage of remoteness and the zero gravity environment. Through a form of emotional connection and design, these concepts will focus on the connection and brief emotional bond between a humanly animate object in space and a co-located observer in spaceflight. We conclude that beyond providing creative expressions for humanly contacts, these experiences may also provide further insights into human perception in spaceflight, and could be tested on the International Space Station, and serve as a stepping-stone towards use on long-duration spaceflight to Mars.
History of Hubble Space Telescope (HST)
1986-01-01
This image illustrates the Hubble Space Telescope's (HST's) Optical Telescope Assembly (OTA). One of the three major elements of the HST, the OTA consists of two mirrors (a primary mirror and a secondary mirror), support trusses, and the focal plane structure. The mirrors collect and focus light from selected celestial objects and are housed near the center of the telescope. The primary mirror captures light from objects in space and focuses it toward the secondary mirror. The secondary mirror redirects the light to a focal plane where the Scientific Instruments are located. The primary mirror is 94.5 inches (2.4 meters) in diameter and the secondary mirror is 12.2 inches (0.3 meters) in diameter. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth Orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from the Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The spacecraft is 42.5 feet (13 meters) long and weighs 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.
NASA Astrophysics Data System (ADS)
Abell, Paul; Barbee, B. W.; Mink, R. G.; Adamo, D. R.; Alberding, C. M.; Mazanek, D. D.; Johnson, L. N.; Yeomans, D. K.; Chodas, P. W.; Chamberlin, A. B.; Benner, L. A. M.; Drake, B. G.; Friedensen, V. P.
2012-10-01
Introduction: Much attention has recently been focused on human exploration of near-Earth asteroids (NEAs). Detailed planning for deep space exploration and identification of potential NEA targets for human space flight requires selecting objects from the growing list of known NEAs. NASA therefore initiated the Near-Earth Object Human Space Flight Accessible Target Study (NHATS), which uses dynamical trajectory performance constraints to identify potentially accessible NEAs. Accessibility Criteria: Future NASA human space flight capability is being defined while the Orion Multi-Purpose Crew Vehicle and Space Launch System are under development. Velocity change and mission duration are two of the most critical factors in any human spaceflight endeavor, so the most accessible NEAs tend to be those with orbits similar to Earth’s. To be classified as NHATS-compliant, a NEA must offer at least one round-trip trajectory solution satisfying purposely inclusive constraints, including total mission change in velocity ≤ 12 km/s, mission duration ≤ 450 days (with at least 8 days at the NEA), Earth departure between Jan 1, 2015 and Dec 31, 2040, Earth departure C3 ≤ 60 km2/s2, and Earth return atmospheric entry speed ≤ 12 km/s. Monitoring and Updates: The NHATS list of potentially accessible targets is continuously updated as NEAs are discovered and orbit solutions for known NEAs are improved. The current list of accessible NEAs identified as potentially viable for future human exploration under the NHATS criteria is available to the international community via a website maintained by NASA’s NEO Program Office (http://neo.jpl.nasa.gov/nhats/). This website also lists predicted optical and radar observing opportunities for each NHATS-compliant NEA to facilitate acquisition of follow-up observations. Conclusions: This list of NEAs will be useful for analyzing robotic mission opportunities, identifying optimal round trip human space flight trajectories, and highlighting attractive objects of interest for future ground-based observation opportunities.