Indoor communications networks realized through hybrid free-space optical and Wi-Fi links
NASA Astrophysics Data System (ADS)
Liverman, Spencer; Wang, Qiwei; Chu, Yu-Chung; Borah, Anindita; Wang, Songtao; Natarajan, Arun; Nguyen, Thinh; Wang, Alan X.
2018-01-01
Recently, free-space optical (FSO) networks have been investigated as a potential replacement for traditional WiFi networks due to their large bandwidth potentials. However, FSO networks often suffer from a lack of mobility. We present a hybrid free-space optical and radio frequency (RF) system that we have named WiFO, which seamlessly integrates free-space optical links with pre-existing WiFi networks. The free-space optical link in this system utilizes infrared LEDs operating at a wavelength of 850nm and is capable of transmitting 50Mbps over a three-meter distance. In this hybrid system, optical transmitters are embedded periodically throughout the ceiling of a workspace. Each transmitter directs an optical signal downward in a diffuse light cone, establishing a line of sight optical link. Line of sight communications links have an intrinsic physical layer of security due to the fact that a user must be directly in the path of transmission to access the link; however, this feature also poses a challenge for mobility. In our system, if the free-space optical link is interrupted, a control algorithm redirects traffic over a pre-existing WiFi link ensuring uninterrupted transmissions. After data packets are received, acknowledgments are sent back to a central access point via a WiFi link. As the demand for wireless bandwidth continues to increase exponentially, utilizing the unregulated bandwidth contained within optical spectrum will become necessary. Our fully functional hybrid free-space optical and WiFi prototype system takes full advantage of the untapped bandwidth potential in the optical spectrum, while also maintaining the mobility inherent in WiFi networks.
Results from the DOLCE (Deep Space Optical Link Communications Experiment) project
NASA Astrophysics Data System (ADS)
Baister, Guy; Kudielka, Klaus; Dreischer, Thomas; Tüchler, Michael
2009-02-01
Oerlikon Space AG has since 1995 been developing the OPTEL family of optical communications terminals. The optical terminals within the OPTEL family have been designed so as to be able to position Oerlikon Space for future opportunities open to this technology. These opportunities range from commercial optical satellite crosslinks between geostationary (GEO) satellites, deep space optical links between planetary probes and the Earth, as well as optical links between airborne platforms (either between the airborne platforms or between a platform and GEO satellite). The OPTEL terminal for deep space applications has been designed as an integrated RF-optical terminal for telemetry links between the science probe and Earth. The integrated architecture provides increased TM link capacities through the use of an optical link, while spacecraft navigation and telecommand are ensured by the classical RF link. The optical TM link employs pulsed laser communications operating at 1058nm to transmit data using PPM modulation to achieve a robust link to atmospheric degradation at the optical ground station. For deep space links from Lagrange (L1 / L2) data rates of 10 - 20 Mbps can be achieved for the same spacecraft budgets (mass and power) as an RF high gain antenna. Results of an inter-island test campaign to demonstrate the performance of the pulsed laser communications subsystem employing 32-PPM for links through the atmosphere over a distance of 142 km are presented. The transmitter of the communications subsystem is a master oscillator power amplifier (MOPA) employing a 1 W (average power) amplifier and the receiver a Si APD with a measured sensitivity of -70.9 dBm for 32-PPM modulation format at a user data rate of 10 Mbps and a bit error rate (BER) of 10-6.
Initial Characterization of Optical Communications with Disruption-Tolerant Network Protocols
NASA Technical Reports Server (NTRS)
Schoolcraft, Joshua; Wilson, Keith
2011-01-01
Disruption-tolerant networks (DTNs) are groups of network assets connected with a suite of communication protocol technologies designed to mitigate the effects of link delay and disruption. Application of DTN protocols to diverse groups of network resources in multiple sub-networks results in an overlay network-of-networks with autonomous data routing capability. In space environments where delay or disruption is expected, performance of this type of architecture (such as an interplanetary internet) can increase with the inclusion of new communications mediums and techniques. Space-based optical communication links are therefore an excellent building block of space DTN architectures. When compared to traditional radio frequency (RF) communications, optical systems can provide extremely power-efficient and high bandwidth links bridging sub-networks. Because optical links are more susceptible to link disruption and experience the same light-speed delays as RF, optical-enabled DTN architectures can lessen potential drawbacks and maintain the benefits of autonomous optical communications over deep space distances. These environment-driven expectations - link delay and interruption, along with asymmetric data rates - are the purpose of the proof-of-concept experiment outlined herein. In recognizing the potential of these two technologies, we report an initial experiment and characterization of the performance of a DTN-enabled space optical link. The experiment design employs a point-to-point free-space optical link configured to have asymmetric bandwidth. This link connects two networked systems running a DTN protocol implementation designed and written at JPL for use on spacecraft, and further configured for higher bandwidth performance. Comparing baseline data transmission metrics with and without periodic optical link interruptions, the experiment confirmed the DTN protocols' ability to handle real-world unexpected link outages while maintaining capability of reliably delivering data at relatively high rates. Finally, performance characterizations from this data suggest performance optimizations to configuration and protocols for future optical-specific DTN space link scenarios.
Considerations for an Earth Relay Satellite with RF and Optical Trunklines
NASA Technical Reports Server (NTRS)
Israel, David J.
2016-01-01
Support for user platforms through the use of optical links to geosynchronous relay spacecraft are expected to be part of the future space communications architecture. The European Data Relay Satellite System (EDRS) has its first node, EDRS-A, in orbit. The EDRS architecture includes space-to-space optical links with a Ka-Band feeder link or trunkline. NASA's Laser Communications Relay Demonstration (LCRD) mission, originally baselined to support a space-to-space optical link relayed with an optical trunkline, has added an Radio Frequency (RF) trunkline. The use of an RF trunkline avoids the outages suffered by an optical trunkline due to clouds, but an RF trunkline will be bandwidth limited. A space relay architecture with both RF and optical trunklines could relay critical realtime data, while also providing a high data volume capacity. This paper considers the relay user scenarios that could be supported, and the implications to the space relay system and operations. System trades such as the amount of onboard processing and storage required, the use of link layer switching vs. network layer routing, and the use of Delay/Disruption Tolerant Networking (DTN) are discussed.
A note on deep space optical communication link parameters
NASA Technical Reports Server (NTRS)
Dolinar, S. J.; Yuen, J. H.
1982-01-01
Topical communication in the context of a deep space communication link. Communication link analysis at the optical frequencies differs significantly from that at microwave frequencies such as the traditional S and X-bands used in deep space applications, due to the different technology of transmitter, antenna, modulators, and receivers. In addition, the important role of quantum noise in limiting system performance is quite different than that of thermal noise. The optical link design is put in a design control table format similar to a microwave telecom link design. Key considerations unique to the optical link are discussed.
NASA Technical Reports Server (NTRS)
Wilson, K.; Parvin, B.; Fugate, R.; Kervin, P.; Zingales, S.
2003-01-01
Future NASA deep space missions will fly advanced high resolution imaging instruments that will require high bandwidth links to return the huge data volumes generated by these instruments. Optical communications is a key technology for returning these large data volumes from deep space probes. Yet to cost effectively realize the high bandwidth potential of the optical link will require deployment of ground receivers in diverse locations to provide high link availability. A recent analysis of GOES weather satellite data showed that a network of ground stations located in Hawaii and the Southwest continental US can provide an average of 90% availability for the deep space optical link. JPL and AFRL are exploring the use of large telescopes in Hawaii, California, and Albuquerque to support the Mars Telesat laser communications demonstration. Designed to demonstrate multi-Mbps communications from Mars, the mission will investigate key operational strategies of future deep space optical communications network.
Near Sun Free-Space Optical Communications from Space
NASA Technical Reports Server (NTRS)
Biswas, Abhijit; Khatri, F.; Boroson, D.
2006-01-01
Free-space optical communications offers expanded data return capacity, from probes distributed throughout the solar system and beyond. Space-borne and Earth-based optical transceivers used for communicating optically, will periodically encounter near Sun pointing. This will result in an increase in the scattered background light flux, often contributing to degraded link performance. The varying duration of near Sun pointing link operations relative to the location of space-probes, is discussed in this paper. The impact of near Sun pointing on link performance for a direct detection photon-counting communications system is analyzed for both ground- and space-based Earth receivers. Finally, impact of near Sun pointing on spaceborne optical transceivers is discussed.
NASA Technical Reports Server (NTRS)
Wilson, K. E.; Wright, M.; Cesarone, R.; Ceniceros, J.; Shea, K.
2003-01-01
Optical communications can provide high-data-rate telemetry from deep-space probes with subsystems that have lower mass, consume less power, and are smaller than their radio frequency (RF) counterparts. However, because optical communication is more a.ected by weather than is RF communication, it requires groundstation site diversity to mitigate the adverse e.ects of inclement weather on the link. An optical relay satellite is not a.ected by weather and can provide 24-hour coverage of deep-space probes. Using such a relay satellite for the deep-space link and an 8.4-GHz (X-band) link to a ground station would support high-data-rate links from small deep-space probes with very little link loss due to inclement weather. We have reviewed past JPL-funded work on RF and optical relay satellites, and on proposed clustered and linearly dispersed optical subnets. Cost comparisons show that the life cycle costs of a 7-m optical relay station based on the heritage of the Next Generation Space Telescope is comparable to that of an 8-station subnet of 10- m optical ground stations. This makes the relay link an attractive option vis- a-vis a ground-station network.
NASA Astrophysics Data System (ADS)
Wilson, K. E.; Wright, M.; Cesarone, R.; Ceniceros, J.; Shea, K.
2003-01-01
Optical communications can provide high-data-rate telemetry from deep-space probes with subsystems that have lower mass, consume less power, and are smaller than their radio frequency (RF) counterparts. However, because optical communication is more affected by weather than is RF communication, it requires ground station site diversity to mitigate the adverse effects of inclement weather on the link. An optical relay satellite is not affected by weather and can provide 24-hour coverage of deep-space probes. Using such a relay satellite for the deep-space link and an 8.4-GHz (X-band) link to a ground station would support high-data-rate links from small deep-space probes with very little link loss due to inclement weather. We have reviewed past JPL-funded work on RF and optical relay satellites, and on proposed clustered and linearly dispersed optical subnets. Cost comparisons show that the life cycle costs of a 7-m optical relay station based on the heritage of the Next Generation Space Telescope is comparable to that of an 8-station subnet of 10-m optical ground stations. This makes the relay link an attractive option vis-a-vis a ground station network.
NASA's current activities in free space optical communications
NASA Astrophysics Data System (ADS)
Edwards, Bernard L.
2017-11-01
NASA and other space agencies around the world are currently developing free space optical communication systems for both space-to-ground links and space-to-space links. This paper provides an overview of NASA's current activities in free space optical communications with a focus on Near Earth applications. Activities to be discussed include the Lunar Laser Communication Demonstration, the Laser Communications Relay Demonstration, and the commercialization of the underlying technology. The paper will also briefly discuss ongoing efforts and studies for Deep Space optical communications. Finally the paper will discuss the development of international optical communication standards within the Consultative Committee for Space Data Systems.
NASA Technical Reports Server (NTRS)
Taylor, E. W.; Padden, R. J.; Berry, J. N.; Sanchez, A. D.; Chapman, S. P.
1991-01-01
A brief overview of the analysis performed on WL Experiment number 701 is presented, highlighting the successful operation of the first know active fiber optic links orbited in space. Four operating fiber optic links were exposed to the space environment for a period exceeding five years, situated aboard and external to the Long Duration Exposure Facility (LDEF). Despite the prolonged space exposure to radiation, wide temperature extremums, atomic oxygen interactions, and micrometeorite and debris impacts, the optical data links performed well within specification limits. Early Phillips Laboratory tests and analyses performed on the experiment and its recovered magnetic tape data strongly indicate that fiber optic application in space will have a high success rate.
NASA Astrophysics Data System (ADS)
Belmonte, Aniceto; Taylor, Michael T.; Hollberg, Leo; Kahn, Joseph M.
2017-02-01
The need for an accurate time and position reference on orbiting platforms motivates the study of time transfer over satellite optical communication links. The transfer of precise optical clock signals to space would benefit many fields in fundamental science and applications. However, the precise role of atmospheric turbulence during the optical time transfer process is not well-known and documented. In free-space optical links, atmospheric turbulence represents a major impairment, since it causes degradation of the spatial and temporal coherence of the optical signals. We present possible link scenarios in which the atmospheric channel behavior for time transfer between ground and space can be investigated, and have identified the major challenges to be overcome. We found in our analysis that, despite the limited reciprocity in uplink and downlink propagation, partial two-way cancellation of atmospheric effects still occurs. We established that laser communication links make possible high-quality time transfer in most practical propagation scenarios and over a single satellite visibility period. Our results demonstrate that sharing of optical communication resources for optical time transfer and range determination is an effective and relevant scheme for space clock developments and enabling for future space missions.
NASA Technical Reports Server (NTRS)
Begley, David L. (Editor); Seery, Bernard D. (Editor)
1991-01-01
The present volume on free-space laser communication technologies discusses system analysis, performance, and applications, pointing, acquisition, and tracking in beam control, laboratory demonstration systems, and transmitter and critical component technologies. Attention is given to a space station laser communication transceiver, meeting intersatellite links mission requirements by an adequate optical terminal design, an optical approach to proximity-operations communications for Space Station Freedom, and optical space-to-ground link availability assessment and diversity requirements. Topics addressed include nonmechanical steering of laser beams by multiple aperture antennas, a free-space simulator for laser transmission, heterodyne acquisition and tracking in a free-space diode laser link, and laser terminal attitude determination via autonomous star tracking. Also discussed are stability considerations in relay lens design for optical communications, liquid crystals for lasercom applications, and narrowband optical interference filters.
Analyses of space environment effects on active fiber optic links orbited aboard the LDEF
NASA Technical Reports Server (NTRS)
Taylor, Edward W.; Monarski, T. W.; Berry, J. N.; Sanchez, A. D.; Padden, R. J.; Chapman, S. P.
1993-01-01
The results of the 'Preliminary Analysis of WL Experiment no. 701, Space Environment Effects on Operating Fiber Optic Systems,' is correlated with space simulated post retrieval terrestrial studies performed on the M0004 experiment. Temperature cycling measurements were performed on the active optical data links for the purpose of assessing link signal to noise ratio and bit error rate performance some 69 months following the experiment deployment in low Earth orbit. The early results indicate a high correlation between pre-orbit, orbit, and post-orbit functionality of the first known and longest space demonstration of operating fiber optic systems.
Optical deep space communication via relay satellite
NASA Technical Reports Server (NTRS)
Gagliardi, R. M.; Vilnrotter, V. A.; Dolinar, S. J., Jr.
1981-01-01
The possible use of an optical for high rate data transmission from a deep space vehicle to an Earth-orbiting relay satellite while RF links are envisioned for the relay to Earth link was studied. A preliminary link analysis is presented for initial sizing of optical components and power levels, in terms of achievable data rates and feasible range distances. Modulation formats are restricted to pulsed laser operation, involving bot coded and uncoded schemes. The advantage of an optical link over present RF deep space link capabilities is shown. The problems of acquisition, pointing and tracking with narrow optical beams are presented and discussed. Mathematical models of beam trackers are derived, aiding in the design of such systems for minimizing beam pointing errors. The expected orbital geometry between spacecraft and relay satellite, and its impact on beam pointing dynamics are discussed.
Technology, Data Bases and System Analysis for Space-to-Ground Optical Communications
NASA Technical Reports Server (NTRS)
Lesh, James
1995-01-01
Optical communications is becoming an ever-increasingly important option for designers of space-to- ground communications links, whether it be for government or commercial applications. In this paper the technology being developed by NASA for use in space-to-ground optical communications is presented. Next, a program which is collecting a long term data base of atmospheric visibility statistics for optical propagation through the atmosphere will be described. Finally, a methodology for utilizing the statistics of the atmospheric data base in the analysis of space-to-ground links will be presented. This methodology takes into account the effects of station availability, is useful when comparing optical communications with microwave systems, and provides a rationale establishing the recommended link margin.
Enhanced correlation of received power-signal fluctuations in bidirectional optical links
NASA Astrophysics Data System (ADS)
Minet, Jean; Vorontsov, Mikhail A.; Polnau, Ernst; Dolfi, Daniel
2013-02-01
A study of the correlation between the power signals received at both ends of bidirectional free-space optical links is presented. By use of the quasi-optical approximation, we show that an ideal (theoretically 100%) power-signal correlation can be achieved in optical links with specially designed monostatic transceivers based on single-mode fiber collimators. The theoretical prediction of enhanced correlation is supported both by experiments conducted over a 7 km atmospheric path and wave optics numerical analysis of the corresponding bidirectional optical link. In the numerical simulations, we also compare correlation properties of received power signals for different atmospheric conditions and for optical links with monostatic and bistatic geometries based on single-mode fiber collimator and on power-in-the-bucket transceiver types. Applications of the observed phenomena for signal fading mitigation and turbulence-enhanced communication link security in free-space laser communication links are discussed.
Free-space optical communications research and demonstrations at the U.S. Naval Research Laboratory.
Rabinovich, W S; Moore, C I; Mahon, R; Goetz, P G; Burris, H R; Ferraro, M S; Murphy, J L; Thomas, L M; Gilbreath, G C; Vilcheck, M; Suite, M R
2015-11-01
Free-space optical communication can allow high-bandwidth data links that are hard to detect, intercept, or jam. This makes them attractive for many applications. However, these links also require very accurate pointing, and their availability is affected by weather. These challenges have limited the deployment of free-space optical systems. The U.S. Naval Research Laboratory has, for the last 15 years, engaged in research into atmospheric propagation and photonic components with a goal of characterizing and overcoming these limitations. In addition several demonstrations of free-space optical links in real-world Navy applications have been conducted. This paper reviews this work and the principles guiding it.
Radio Science from an Optical Communications Signal
NASA Technical Reports Server (NTRS)
Moision, Bruce; Asmar, Sami; Oudrhiri, Kamal
2013-01-01
NASA is currently developing the capability to deploy deep space optical communications links. This creates the opportunity to utilize the optical link to obtain range, doppler, and signal intensity estimates. These may, in turn, be used to complement or extend the capabilities of current radio science. In this paper we illustrate the achievable precision in estimating range, doppler, and received signal intensity of an non-coherent optical link (the current state-of-the-art for a deep-space link). We provide a joint estimation algorithm with performance close to the bound. We draw comparisons to estimates based on a coherent radio frequency signal, illustrating that large gains in either precision or observation time are possible with an optical link.
NASA Technical Reports Server (NTRS)
Taylor, E. W.; Berry, J. N.; Sanchez, A. D.; Padden, R. J.; Chapman, S. P.
1992-01-01
A brief overview of the analyses performed to date on WL Experiment-701 is presented. Four active digital fiber optic links were directly exposed to the space environment for a period of 2114 days. The links were situated aboard the Long Duration Exposure Facility (LDEF) with the cabled, single fiber windings atop an experimental tray containing instrumentation for exercising the experiment in orbit. Despite the unplanned and prolonged exposure to trapped and galactic radiation, wide temperature extremes, atomic oxygen interactions, and micro-meteorite and debris impacts, in most instances the optical data links performed well within the experimental limits. Analysis of the recorded orbital data clearly indicates that fiber optic applications in space will meet with success. Ongoing tests and analysis of the experiment at the Phillips Laboratory's Optoelectronics Laboratory will expand this premise, and establish the first known and extensive database of active fiber optic link performance during prolonged space exposure. WL Exp-701 was designed as a feasibility demonstration for fiber optic technology in space applications, and to study the performance of operating fiber systems exposed to space environmental factors such as galactic radiation, and wide temperature cycling. WL Exp-701 is widely acknowledged as a benchmark accomplishment that clearly demonstrates, for the first time, that fiber optic technology can be successfully used in a variety of space applications.
A 400 Gbps/100 m free-space optical link
NASA Astrophysics Data System (ADS)
Lin, Chun-Yu; Lu, Hai-Han; Ho, Chun-Ming; Cheng, Ming-Te; Huang, Sheng-Jhe; Wang, Yun-Chieh; Chi, Jing-Kai
2017-02-01
A 400 Gbps/100 m free-space optical (FSO) link with dense-wavelength-division-multiplexing (DWDM)/space-division-multiplexing (SDM) techniques and a doublet lens scheme is proposed. To the best of our knowledge, this is the first time that a link adopting DWDM and SDM techniques and a doublet lens scheme has demonstrated a 400 Gbps/100 m FSO link. The experimental results show that the free-space transmission rate is significantly enhanced by the DWDM and SDM techniques, and the free-space transmission distance is greatly increased by the doublet lens scheme. A 16-channel FSO link with a total transmission rate of 400 Gbps (25 Gbps/λ × 16 λ = 400 Gbps) over a 100 m free-space link is successfully demonstrated. Such a 400 Gbps/100 m DWDM/SDM FSO link provides the advantages of optical wireless communications for high transmission rates and long transmission distances, which is very useful for high-speed and long-haul light-based WiFi (LiFi) applications.
An Update on the CCSDS Optical Communications Working Group
NASA Technical Reports Server (NTRS)
Edwards, Bernard L.; Schulz, Klaus-Juergen; Hamkins, Jonathan; Robinson, Bryan; Alliss, Randall; Daddato, Robert; Schmidt, Christopher; Giggebach, Dirk; Braatz, Lena
2017-01-01
International space agencies around the world are currently developing optical communication systems for Near Earth and Deep Space applications for both robotic and human rated spacecraft. These applications include both links between spacecraft and links between spacecraft and ground. The Interagency Operation Advisory Group (IOAG) has stated that there is a strong business case for international cross support of spacecraft optical links. It further concluded that in order to enable cross support the links must be standardized. This paper will overview the history and structure of the space communications international standards body, the Consultative Committee for Space Data Systems (CCSDS), that will develop the standards and provide an update on the proceedings of the Optical Communications Working Group within CCSDS. This paper will also describe the set of optical communications standards being developed and outline some of the issues that must be addressed in the next few years. The paper will address in particular the ongoing work on application scenarios for deep space to ground called High Photon Efficiency, for LEO to ground called Low Complexity, for inter-satellite and near Earth to ground called High Data Rate, as well as associated atmospheric measurement techniques and link operations concepts.
Deep space optical communications experiment
NASA Technical Reports Server (NTRS)
Kinman, P.; Katz, J.; Gagliardi, R.
1983-01-01
An optical communications experiment between a deep space vehicle and an earth terminal is under consideration for later in this decade. The experimental link would be incoherent (direct detection) and would employ two-way cooperative pointing. The deep space optical transceiver would ride piggyback on a spacecraft with an independent scientific objective. Thus, this optical transceiver is being designed for minimum spacecraft impact - specifically, low mass and low power. The choices of laser transmitter, coding/modulation scheme, and pointing mechanization are discussed. A representative telemetry link budget is presented.
Feasibility assessment of optical technologies for reliable high capacity feeder links
NASA Astrophysics Data System (ADS)
Witternigg, Norbert; Schönhuber, Michael; Leitgeb, Erich; Plank, Thomas
2013-08-01
Space telecom scenarios like data relay satellite and broadband/broadcast service providers require reliable feeder links with high bandwidth/data rate for the communication between ground station and satellite. Free space optical communication (FSOC) is an attractive alternative to microwave links, improving performance by offering abundant bandwidth at small apertures of the optical terminals. At the same time Near-Earth communication by FSOC avoids interference with other services and is free of regulatory issues. The drawback however is the impairment by the laser propagation through the atmosphere at optical wavelengths. Also to be considered are questions of eye safety for ground personnel and aviation. In this paper we assess the user requirements for typical space telecom scenarios and compare these requirements with solutions using optical data links through the atmosphere. We suggest a site diversity scheme with a number of ground stations and a switching scheme using two optical terminals on-board the satellite. Considering the technology trade-offs between four different optical wavelengths we recommend the future use of 1.5 μm laser technology and calculate a link budget for an atmospheric condition of light haze on the optical path. By comparing link budgets we show an outlook to the future potential use of 10 μm laser technology.
Optical Communications from Planetary Distances
NASA Technical Reports Server (NTRS)
Davarian, F.; Farr, W.; Hemmati, H.; Piazzolla, S.
2008-01-01
Future planetary campaigns, including human missions, will require data rates difficult to realize by microwave links. Optical channels not only provide an abundance of bandwidth, they also allow for significant size, weight, and power reduction. Moreover, optical-based tracking may enhance spacecraft navigation with respect to microwave-based tracking. With all its advantages, optical communications from deep space is not without its challenges. Due to the extreme distance between the two ends of the link, specialized technologies are needed to enable communications in the deep space environment. Although some of the relevant technologies have been developed in the last decade, they remain to be validated in an appropriate domain. The required assets include efficient pulsed laser sources, modulators, transmitters, receivers, detectors, channel encoders, precise beam pointing technologies for the flight transceiver and large apertures for the ground receiver. Clearly, space qualification is required for the systems that are installed on a deep space probe. Another challenge is atmospheric effects on the optical beam. Typical candidate locations on the ground have a cloud-free line of sight only on the order of 60-70% of the time. Furthermore, atmospheric losses and background light can be problematic even during cloud-free periods. Lastly, operational methodologies are needed for efficient and cost effective management of optical links. For more than a decade, the National Aeronautics and Space Administration (NASA) has invested in relevant technologies and procedures to enable deep space optical communications capable of providing robust links with rates in the order of 1 Gb/s from Mars distance. A recent publication indicates that potential exists for 30-dB improvement in performance through technology development with respect to the state-of-the-art in the early years of this decade. The goal is to fulfill the deep space community needs from about 2020 to the foreseeable future. It is envisioned that, at least initially, optical links will be complemented by microwave assets for added robustness, especially for human missions. However, it is expected that as optical techniques mature, laser communications may be operated without conventional radio frequency links. The purpose of this paper is to briefly review the state-of-the-art in deep space laser communications and its challenges and discuss NASA-supported technology development efforts and plans for deep space optical communications at JPL.
MEMS tracking mirror system for a bidirectional free-space optical link.
Jeon, Sungho; Toshiyoshi, Hiroshi
2017-08-20
We report on a bidirectional free-space optical system that is capable of automatic connection and tracking of an optical link between two nodes. A piezoelectric micro-electro-mechanical systems (MEMS) optical scanner is used to steer a laser beam of two wavelengths superposed to visually present a communication zone, to search for the position of the remote node by means of the retro-reflector optics, and to transmit the data between the nodes. A feedback system is developed to control the MEMS scanner to dynamically establish the optical link within a 10-ms transition time and to keep track of the moving node.
NASA Astrophysics Data System (ADS)
Singh, Mehtab
2018-04-01
Free Space Optics (FSO) also known as Optical Wireless Communication (OWC) is a communication technology in which free space/air is used as the propagation medium and optical signals are used as the information carriers. One of the most crucial factors which degrade the performance of FSO link is the signal attenuation due to different atmospheric weather conditions such as haze, rain, storm, and fog. In this paper, an improved performance analysis of a 2.5 Gbps FSO link under rain conditions has been reported using Erbium-Doped Fiber Amplifier (EDFA) as a pre-amplifier. The results show that the maximum link distance for an FSO link under rain weather conditions with acceptable performance levels (Q ˜6 and BER ≤ 10-9 in the absence of EDFA pre-amplifier is 1,250 m which increases to 1,675 m with the use of EDFA pre-amplifier.
NASA Astrophysics Data System (ADS)
Djerroud, K.; Samain, E.; Clairon, A.; Acef, O.; Man, N.; Lemonde, P.; Wolf, P.
2017-11-01
We describe the realization of a 5 km free space coherent optical link through the turbulent atmosphere between a telescope and a ground target. We present the phase noise of the link, limited mainly by atmospheric turbulence and mechanical vibrations of the telescope and the target. We discuss the implications of our results for applications, with particular emphasis on optical Doppler ranging to satellites and long distance frequency transfer.
Transmitters and receivers in free space optical communications for Deep Space links
NASA Technical Reports Server (NTRS)
Beebe, J.
2003-01-01
Two of the many research areas integral making a Mars-Earth optical communication link a reality are optical antenna design and laser transmitter design. This paper addresses areas of both of these by exploring a mode-matched design for a cavity-dumped communications laser, and by reporting on the initial stages of the analysis of an existing 100 inch telescope for use as an optical communications receiver.
NASA Technical Reports Server (NTRS)
Begley, David L. (Editor); Seery, Bernard D. (Editor)
1990-01-01
Various papers on free-space laser communication technologies are presented. Individual topics addressed include: optical intersatellite link experiment between the earth station and ETS-VI, the Goddard optical communications program, technologies and techniques for lasercom terminal size, weight, and cost reduction, laser beam acquisition and tracking system for ETS-VI laser communication equipment, analog dividers for acquisition and tracking signal normalization, fine pointing mechanism using multilayered piezoelectric actuator for optical ISL system, analysis of SILEX tracking sensor performance, new telescope concept for space communication, telescope considered as a very high gain antenna, design of compact transceiver optical systems for optical intersatellite links, ultralightweight optics for laser communications, highly sensitive measurement method for stray light and retroreflected light, depolarization effects on free space laser transceiver communication systems, in-orbit measurements of microaccelerations of ESA's communication satellite Olympus, high-performance laser diode transmitter for optical free space communication, diode-pumped Nd:host laser transmitter for intersatellite optical communications, single-frequency diode-pumped laser for free-space communication.
NASA Astrophysics Data System (ADS)
Zhang, Lai-xian; Sun, Hua-yan; Zhao, Yan-zhong; Zheng, Yong-hui; Shan, Cong-miao
2013-08-01
Based on the cat-eye effect of optical system, free space optical communication based on cat-eye modulating retro-reflector can build communication link rapidly. Compared to classical free space optical communication system, system based on cat-eye modulating retro-reflector has great advantages such as building communication link more rapidly, a passive terminal is smaller, lighter and lower power consuming. The incident angle is an important factor of cat-eye effect, so it will affect the retro-reflecting communication link. In this paper, the principle and work flow of free space optical communication based on cat-eye modulating retro-reflector were introduced. Then, using the theory of geometric optics, the equivalent model of modulating retro-reflector with incidence angle was presented. The analytical solution of active area and retro-reflected light intensity of cat-eye modulating retro-reflector were given. Noise of PIN photodetector was analyzed, based on which, bit error rate of free space optical communication based on cat-eye modulating retro-reflector was presented. Finally, simulations were done to study the effect of incidence angle to the communication. The simulation results show that the incidence angle has little effect on active area and retro-reflected light intensity when the incidence beam is in the active field angle of cat-eye modulating retro-reflector. With certain system and condition, the communication link can rapidly be built when the incidence light beam is in the field angle, and the bit error rate increases greatly with link range. When link range is smaller than 35Km, the bit error rate is less than 10-16.
NASA Technical Reports Server (NTRS)
Reed, Robert A.; Ladbury, Ray L.; Day, John H. (Technical Monitor)
2000-01-01
Radiation effects in photonic and microelectronic components can impact the performance of high-speed digital optical data link in a variety of ways. This segment of the short course focuses on radiation effects in digital optical data links operating in the MHz to GHz regime. (Some of the information is applicable to frequencies above and below this regime) The three basic component level effects that should be considered are Total Ionizing Dose (TID), Displacement Damage Dose (DDD) and Single Event Effects (SEE). In some cases the system performance degradation can be quantified from component level tests, while in others a more holistic characterization approach must be taken. In Section 2.0 of this segment of the Short Course we will give a brief overview of the space radiation environment follow by a summary of the basic space radiation effects important for microelectronics and photonics listed above. The last part of this section will give an example of a typical mission radiation environment requirements. Section 3.0 gives an overview of intra-satellite digital optical data link systems. It contains a discussion of the digital optical data link and it's components. Also, we discuss some of the important system performance metrics that are impacted by radiation effects degradation of optical and optoelectronic component performance. Section 4.0 discusses radiation effects in optical and optoelectronic components. While each component effect will be discussed, the focus of this section is on degradation of passive optical components and SEE in photodiodes (other mechanisms are covered in segment II of this short course entitled "Photonic Devices with Complex and Multiple Failure Modes"). Section 5.0 will focus on optical data link system response to the space radiation environment. System level SEE ground testing will be discussed. Then we give a discussion of system level assessment of data link performance when operating in the space radiation environment.
Optical satellite communications in Europe
NASA Astrophysics Data System (ADS)
Sodnik, Zoran; Lutz, Hanspeter; Furch, Bernhard; Meyer, Rolf
2010-02-01
This paper describes optical satellite communication activities based on technology developments, which started in Europe more than 30 years ago and led in 2001 to the world-first optical inter-satellite communication link experiment (SILEX). SILEX proved that optical communication technologies can be reliably mastered in space and in 2006 the Japanese Space Agency (JAXA) joined the optical inter-satellite experiment from their own satellite. Since 2008 the German Space Agency (DLR) is operating an inter-satellite link between the NFIRE and TerraSAR-X satellites based on a second generation of laser communication technology, which will be used for the new European Data Relay Satellite (EDRS) system to be deployed in 2013.
Modeling and Performance Analysis of 10 Gbps Inter-satellite Optical Wireless Communication Link
NASA Astrophysics Data System (ADS)
Singh, Mehtab
2017-12-01
Free-space optical (FSO) communication has the advantages of two of the most predominant data transmission technologies - optical fiber communication and wireless communication. Most of the technical aspects of FSO are similar to that of optical fiber communication, with major difference in the information signal propagation medium which is free space in case of FSO rather than silica glass in optical fiber communication. One of the most important applications of FSO is inter-satellite optical wireless communication (IsOWC) links which will be deployed in the future in space. The IsOWC links have many advantages over the previously existing microwave satellite communication technologies such as higher bandwidth, lower power consumption, low cost of implementation, light size, and weight. In this paper, modeling and performance analysis of a 10-Gbps inter-satellite communication link with two satellites separated at a distance of 1,200 km has been done using OPTISYSTEM simulation software. Performance has been analyzed on the basis of quality factor, signal to noise ratio (SNR), and total power of the received signal.
Research on Retro-reflecting Modulation in Space Optical Communication System
NASA Astrophysics Data System (ADS)
Zhu, Yifeng; Wang, Guannan
2018-01-01
Retro-reflecting modulation space optical communication is a new type of free space optical communication technology. Unlike traditional free space optical communication system, it applys asymmetric optical systems to reduce the size, weight and power consumption of the system and can effectively solve the limits of traditional free space optical communication system application, so it can achieve the information transmission. This paper introduces the composition and working principle of retro-reflecting modulation optical communication system, analyzes the link budget of this system, reviews the types of optical system and optical modulator, summarizes this technology future research direction and application prospects.
Quantum Limits of Space-to-Ground Optical Communications
NASA Technical Reports Server (NTRS)
Hemmati, H.; Dolinar, S.
2012-01-01
Quantum limiting factors contributed by the transmitter, the optical channel, and the receiver of a space-to-ground optical communications link are described. Approaches to move toward the ultimate quantum limit are discussed.
NASA Technical Reports Server (NTRS)
Tedder, Sarah A.; Schoenholz, Bryan; Suddath, Shannon N.
2016-01-01
This paper describes the study of lateral misalignment tolerance of a symmetric high-rate free-space optical link (FSOL) for use between International Space Station (ISS) payload sites and the main cabin. The link will enable gigabit per second (Gbps) transmission of data, which is up to three orders of magnitude greater than the current capabilities. This application includes 10-20 meter links and requires minimum size, weight, and power (SWaP). The optical power must not present an eye hazard and must be easily integrated into the existing ISS infrastructure. On the ISS, rapid thermal changes and astronaut movement will cause flexure of the structure which will potentially misalign the free space transmit and receive optics 9 cm laterally and 0.2 degrees angularly. If this misalignment is not accounted for, a loss of the link or degradation of link performance will occur. Power measurements were collected to better understand the effect of various system design parameters on lateral misalignment. Parameters that were varied include: the type of small form pluggable (SFP) transceivers, type of fiber, and transmitted power level. A potential solution was identified that can reach the lateral misalignment tolerance (decenter span) required to create an FSOL on the ISS by using 105 m core fibers, a duplex SFP, two channels of light, and two fiber amplifiers.
The optical antenna system design research on earth integrative network laser link in the future
NASA Astrophysics Data System (ADS)
Liu, Xianzhu; Fu, Qiang; He, Jingyi
2014-11-01
Earth integrated information network can be real-time acquisition, transmission and processing the spatial information with the carrier based on space platforms, such as geostationary satellites or in low-orbit satellites, stratospheric balloons or unmanned and manned aircraft, etc. It is an essential infrastructure for China to constructed earth integrated information network. Earth integrated information network can not only support the highly dynamic and the real-time transmission of broadband down to earth observation, but the reliable transmission of the ultra remote and the large delay up to the deep space exploration, as well as provide services for the significant application of the ocean voyage, emergency rescue, navigation and positioning, air transportation, aerospace measurement or control and other fields.Thus the earth integrated information network can expand the human science, culture and productive activities to the space, ocean and even deep space, so it is the global research focus. The network of the laser communication link is an important component and the mean of communication in the earth integrated information network. Optimize the structure and design the system of the optical antenna is considered one of the difficulty key technologies for the space laser communication link network. Therefore, this paper presents an optical antenna system that it can be used in space laser communication link network.The antenna system was consisted by the plurality mirrors stitched with the rotational paraboloid as a substrate. The optical system structure of the multi-mirror stitched was simulated and emulated by the light tools software. Cassegrain form to be used in a relay optical system. The structural parameters of the relay optical system was optimized and designed by the optical design software of zemax. The results of the optimal design and simulation or emulation indicated that the antenna system had a good optical performance and a certain reference value in engineering. It can provide effective technical support to realize interconnection of earth integrated laser link information network in the future.
Networked Operations of Hybrid Radio Optical Communications Satellites
NASA Technical Reports Server (NTRS)
Hylton, Alan; Raible, Daniel
2014-01-01
In order to address the increasing communications needs of modern equipment in space, and to address the increasing number of objects in space, NASA is demonstrating the potential capability of optical communications for both deep space and near-Earth applications. The Integrated Radio Optical Communications (iROC) is a hybrid communications system that capitalizes on the best of both the optical and RF domains while using each technology to compensate for the other's shortcomings. Specifically, the data rates of the optical links can be higher than their RF counterparts, whereas the RF links have greater link availability. The focus of this paper is twofold: to consider the operations of one or more iROC nodes from a networking point of view, and to suggest specific areas of research to further the field. We consider the utility of Disruption Tolerant Networking (DTN) and the Virtual Mission Operation Center (VMOC) model.
High-sensitivity DPSK receiver for high-bandwidth free-space optical communication links.
Juarez, Juan C; Young, David W; Sluz, Joseph E; Stotts, Larry B
2011-05-23
A high-sensitivity modem and high-dynamic range optical automatic gain controller (OAGC) have been developed to provide maximum link margin and to overcome the dynamic nature of free-space optical links. A sensitivity of -48.9 dBm (10 photons per bit) at 10 Gbps was achieved employing a return-to-zero differential phase shift keying based modem and a commercial Reed-Solomon forward error correction system. Low-noise optical gain was provided by an OAGC with a noise figure of 4.1 dB (including system required input loses) and a dynamic range of greater than 60 dB.
High-speed laser communications in UAV scenarios
NASA Astrophysics Data System (ADS)
Griethe, Wolfgang; Gregory, Mark; Heine, Frank; Kämpfner, Hartmut
2011-05-01
Optical links, based on coherent homodyne detection and BPSK modulation with bidirectional data transmission of 5.6 Gbps over distances of about 5,000 km and BER of 10-8, have been sufficiently verified in space. The verification results show that this technology is suitable not only for space applications but also for applications in the troposphere. After a brief description of the Laser Communication Terminal (LCT) for space applications, the paper consequently discusses the future utilization of satellite-based optical data links for Beyond Line of Sight (BLOS) operations of High Altitude Long Endurance (HALE) Unmanned Aerial Vehicles (UAV). It is shown that the use of optical frequencies is the only logical consequence of an ever-increasing demand for bandwidth. In terms of Network Centric Warfare it is highly recommended that Unmanned Aircraft Systems (UAS) of the future should incorporate that technology which allows almost unlimited bandwidth. The advantages of optical communications especially for Intelligence, Surveillance and Reconnaissance (ISR) are underlined. Moreover, the preliminary design concept of an airborne laser communication terminal is described. Since optical bi-directional links have been tested between a LCT in space and a TESAT Optical Ground Station (OGS), preliminary analysis on tracking and BER performance and the impact of atmospheric disturbances on coherent links will be presented.
Free Space Optical Communication Utilizing Mid-Infrared Interband Cascade Laser
NASA Technical Reports Server (NTRS)
Soibel, A.; Wright, M.; Farr, W.; Keo, S.; Hill, C.; Yang, R. Q.; Liu, H. C.
2010-01-01
A Free Space Optical (FSO) link utilizing mid-IR Interband Cascade lasers has been demonstrated in the 3-5 micron atmospheric transmission window with data rates up to 70 Mb/s and bit-error-rate (BER) less than 10 (exp -8). The performance of the mid-IR FSO link has been compared with the performance of a near-IR link under various fog conditions using an indoor communication testbed. These experiments demonstrated the lower attenuation and scintillation advantages of a mid-IR FSO link through fog than a 1550 nm FSO link.
Hybrid Ground Station Technology for RF and Optical Communication Links
NASA Technical Reports Server (NTRS)
Davarian, Faramaz; Hoppe, D.; Charles, J.; Vilnrotter, V.; Sehic, A.; Hanson, T.; Gam, E.
2012-01-01
To support future enhancements of NASA's deep space and planetary communications and tracking services, the Jet Propulsion Laboratory is developing a hybrid ground station that will be capable of simultaneously supporting RF and optical communications. The main reason for adding optical links to the existing RF links is to significantly increase the capacity of deep space communications in support of future solar system exploration. It is envisioned that a mission employing an optical link will also use an RF link for telemetry and emergency purposes, hence the need for a hybrid ground station. A hybrid station may also reduce operations cost by requiring fewer staff than would be required to operate two stations. A number of approaches and techniques have been examined. The most promising ones have been prototyped for field examination and validation.
Demonstration of a High-Efficiency Free-Space Optical Communications Link
NASA Technical Reports Server (NTRS)
Birnbaum, Kevin; Farr, William; Gin, Jonathan; Moision, Bruce; Quirk, Kevin; Wright, Malcolm
2009-01-01
In this paper we discuss recent progress on the implementation of a hardware free-space optical communications test-bed. The test-bed implements an end-to-end communications system comprising a data encoder, modulator, laser-transmitter, telescope, detector, receiver and error-correction-code decoder. Implementation of each of the component systems is discussed, with an emphasis on 'real-world' system performance degradation and limitations. We have demonstrated real-time data rates of 44 Mbps and photon efficiencies of approximately 1.8 bits/photon over a 100m free-space optical link.
NASA Astrophysics Data System (ADS)
Singh, Mehtab
2017-12-01
Optical wireless communication (OWC) systems also known as Free space optics (FSO) are capable of providing high channel bandwidth, high data transmission rates, low power consumption, and high security. OWC links are being considered in different applications such as inter-satellite links, terrestrial links, and inter-aircraft communication links. This paper investigates the impact of different system parameters such as transmission power level, operating wavelength, transmitter pointing error angle, bit transmission rate, atmospheric attenuation, antenna aperture diameter, geometric losses, the responsivity of the photodetector, and link range on the performance of inter-aircraft optical wireless communication link.
Innovative on board payload optical architecture for high throughput satellites
NASA Astrophysics Data System (ADS)
Baudet, D.; Braux, B.; Prieur, O.; Hughes, R.; Wilkinson, M.; Latunde-Dada, K.; Jahns, J.; Lohmann, U.; Fey, D.; Karafolas, N.
2017-11-01
For the next generation of HighThroughPut (HTP) Telecommunications Satellites, space end users' needs will result in higher link speeds and an increase in the number of channels; up to 512 channels running at 10Gbits/s. By keeping electrical interconnections based on copper, the constraints in term of power dissipation, number of electrical wires and signal integrity will become too demanding. The replacement of the electrical links by optical links is the most adapted solution as it provides high speed links with low power consumption and no EMC/EMI. But replacing all electrical links by optical links of an On Board Payload (OBP) is challenging. It is not simply a matter of replacing electrical components with optical but rather the whole concept and architecture have to be rethought to achieve a high reliability and high performance optical solution. In this context, this paper will present the concept of an Innovative OBP Optical Architecture. The optical architecture was defined to meet the critical requirements of the application: signal speed, number of channels, space reliability, power dissipation, optical signals crossing and components availability. The resulting architecture is challenging and the need for new developments is highlighted. But this innovative optically interconnected architecture will substantially outperform standard electrical ones.
Effect of fog on free-space optical links employing imaging receivers.
Mahalati, Reza Nasiri; Kahn, Joseph M
2012-01-16
We analyze free-space optical links employing imaging receivers in the presence of misalignment and atmospheric effects, such as haze, fog or rain. We present a detailed propagation model based on the radiative transfer equation. We also compare the relative importance of two mechanisms by which these effects degrade link performance: signal attenuation and image blooming. We show that image blooming dominates over attenuation, except under medium-to-heavy fog conditions.
Vortex instability in turbulent free-space propagation
NASA Astrophysics Data System (ADS)
Lavery, Martin P. J.
2018-04-01
The spatial structuring of optical fields is integral within many next generation optical metrology and communication techniques. A verifiable physical model of the propagation of these optical fields in a turbulent environment is important for developing effective mitigation techniques for the modal degradation that occurs in a free-space link. We present a method to simulate this modal degradation that agrees with recently reported experimental findings. A 1.5 km free-space link is emulated by decomposing the optical turbulence that accumulates over a long distance link, into many, weakly perturbing steps of 10 m. This simulation shows that the high-order vortex at the centre of the helical phase profiles in modes that carry orbital angular momentum of | {\\ell }| ≥slant 2{\\hslash } are unstable and fracture into many vortices when they propagate over the link. This splitting presents issues for the application of turbulence mitigation techniques. The usefulness of pre-correction, post-correction, and complex field conjugation techniques are discussed.
Infrared cloud imaging in support of Earth-space optical communication.
Nugent, Paul W; Shaw, Joseph A; Piazzolla, Sabino
2009-05-11
The increasing need for high data return from near-Earth and deep-space missions is driving a demand for the establishment of Earth-space optical communication links. These links will require a nearly obstruction-free path to the communication platform, so there is a need to measure spatial and temporal statistics of clouds at potential ground-station sites. A technique is described that uses a ground-based thermal infrared imager to provide continuous day-night cloud detection and classification according to the cloud optical depth and potential communication channel attenuation. The benefit of retrieving cloud optical depth and corresponding attenuation is illustrated through measurements that identify cloudy times when optical communication may still be possible through thin clouds.
Development of the Free-space Optical Communications Analysis Software (FOCAS)
NASA Technical Reports Server (NTRS)
Jeganathan, M.; Mecherle, G.; Lesh, J.
1998-01-01
The Free-space Optical Communications Analysis Software (FOCAS) was developed at the Jet Propulsion Laboratory (JPL) to provide mission planners, systems engineers and communications engineers with an easy to use tool to analyze optical communications link.
Space Flight Applications of Optical Fiber; 30 Years of Space Flight Success
NASA Technical Reports Server (NTRS)
Ott, Melanie N.
2010-01-01
For over thirty years NASA has had success with space flight missions that utilize optical fiber component technology. One of the early environmental characterization experiments that included optical fiber was launched as the Long Duration Exposure Facility in 1978. Since then, multiple missions have launched with optical fiber components that functioned as expected, without failure throughout the mission life. The use of optical fiber in NASA space flight communications links and exploration and science instrumentation is reviewed.
All-optical retro-modulation for free-space optical communication.
Born, Brandon; Hristovski, Ilija R; Geoffroy-Gagnon, Simon; Holzman, Jonathan F
2018-02-19
This work presents device and system architectures for free-space optical and optical wireless communication at high data rates over multidirectional links. This is particularly important for all-optical networks, with high data rates, low latencies, and network protocol transparency, and for asymmetrical networks, with multidirectional links from one transceiver to multiple distributed transceivers. These two goals can be met by implementing a passive uplink via all-optical retro-modulation (AORM), which harnesses the optical power from an active downlink to form a passive uplink through retroreflection. The retroreflected optical power is modulated all-optically to ideally achieve terabit-per-second data rates. The proposed AORM architecture, for passive uplinks, uses high-refractive-index S-LAH79 hemispheres to realize effective retroreflection and an interior semiconductor thin film of CuO nanocrystals to realize ultrafast all-optical modulation on a timescale of approximately 770 fs. The AORM architecture is fabricated and tested, and ultimately shown to be capable of enabling multidirectional free-space optical communication with terabit-per-second aggregate data rates.
On Applications of Disruption Tolerant Networking to Optical Networking in Space
NASA Technical Reports Server (NTRS)
Hylton, Alan Guy; Raible, Daniel E.; Juergens, Jeffrey; Iannicca, Dennis
2012-01-01
The integration of optical communication links into space networks via Disruption Tolerant Networking (DTN) is a largely unexplored area of research. Building on successful foundational work accomplished at JPL, we discuss a multi-hop multi-path network featuring optical links. The experimental test bed is constructed at the NASA Glenn Research Center featuring multiple Ethernet-to-fiber converters coupled with free space optical (FSO) communication channels. The test bed architecture models communication paths from deployed Mars assets to the deep space network (DSN) and finally to the mission operations center (MOC). Reliable versus unreliable communication methods are investigated and discussed; including reliable transport protocols, custody transfer, and fragmentation. Potential commercial applications may include an optical communications infrastructure deployment to support developing nations and remote areas, which are unburdened with supporting an existing heritage means of telecommunications. Narrow laser beam widths and control of polarization states offer inherent physical layer security benefits with optical communications over RF solutions. This paper explores whether or not DTN is appropriate for space-based optical networks, optimal payload sizes, reliability, and a discussion on security.
NASA Astrophysics Data System (ADS)
Toyoshima, Morio; Takenaka, Hideki; Shoji, Yozo; Takayama, Yoshihisa; Koyama, Yoshisada; Kunimori, Hiroo
2012-05-01
Bi-directional ground-to-satellite laser communication experiments were successfully performed between the optical ground station developed by the National Institute of Information and Communications Technology (NICT), located in Koganei City in suburban Tokyo, and a low earth orbit (LEO) satellite, the "Kirari" Optical Inter-orbit Communications Engineering Test Satellite (OICETS). The experiments were conducted in cooperation with the Japan Aerospace Exploration Agency (JAXA), and called the Kirari Optical communication Demonstration Experiments with the NICT optical ground station (or KODEN). The ground-to-OICETS laser communication experiment was the first in-orbit demonstration involving the LEO satellite. The laser communication experiment was conducted since March 2006. The polarization characteristics of an artificial laser source in space, such as Stokes parameters, and the degree of polarization were measured through space-to-ground atmospheric transmission paths, which results contribute to the link estimation for quantum key distribution via space and provide the potential for enhancements in quantum cryptography on a global scale in the future. The Phase-5 experiment, international laser communications experiments were also successfully conducted with four optical ground stations located in the United States, Spain, Germany, and Japan from April 2009 to September 2009. The purpose of the Phase-5 experiment was to establish OICETS-to-ground laser communication links from the different optical ground stations and the statistical analyses such as the normalized power, scintillation index, probability density function, auto-covariance function, and power spectral density were performed. Thus the applicability of the satellite laser communications was demonstrated, aiming not only for geostationary earth orbit-LEO links but also for ground-to-LEO optical links. This paper presents the results of the KODEN experiments and mainly introduces the common analyses among the different optical ground stations.
The aero optics effect on near space laser communication optical system
NASA Astrophysics Data System (ADS)
Hu, Yuan; Fu, Yuegang; Jiang, Huilin
2013-08-01
With the developing of the space laser communication link, the performance index including higher transfer speed, extending transfer distance, and environmental adaptability, all ask the system accuracy and indexes improving. Special the developing near space platform, its environmental is extremes, the near space drone and other airplane flight speed is very quickly from the subsonic to supersonic. The aero optics effect caused by high speed will generate a thin turbulent air layer. It affects the performance of laser communication optical system by laser light vibration, deviation and so on, further more affects the performance of laser communication system working performance, even can't communication. Therefore, for achieving optical system indexes, we need do more research in optical system near space aero optics environmental adaptability. In this paper, near space link environmental characteristic are researched. And on the base of the aero optics theory, computer simulating method is applied to analyze the relationship among the altitude, the flight speed and the image dispersion. The result shows that, the aero optics effect cannot be ignored when the terminal is in low altitude or is moving with supersonic speed. The effect must be taken into considered from overall design. The result will provide the basis of research design.
Undersea Laser Communication with Narrow Beams
2015-09-29
Abstract Laser sources enable highly efficient optical communications links due to their ability to be focused into very directive beam profiles...Recent atmospheric and space optical links have demonstrated robust laser communications links at high rate with techniques that are applicable to the...undersea environment. These techniques contrast to the broad-angle beams utilized in most reported demonstrations of undersea optical communications
NASA Astrophysics Data System (ADS)
Heine, Frank; Saucke, Karen; Troendle, Daniel; Motzigemba, Matthias; Bischl, Hermann; Elser, Dominique; Marquardt, Christoph; Henninger, Hennes; Meyer, Rolf; Richter, Ines; Sodnik, Zoran
2017-02-01
Optical ground stations can be an alternative to radio frequency based transmit (forward) and receive (return) systems for data relay services and other applications including direct to earth optical communications from low earth orbit spacecrafts, deep space receivers, space based quantum key distribution systems and Tbps capacity feeder links to geostationary spacecrafts. The Tesat Transportable Adaptive Optical Ground Station is operational since September 2015 at the European Space Agency site in Tenerife, Spain.. This paper reports about the results of the 2016 experimental campaigns including the characterization of the optical channel from Tenerife for an optimized coding scheme, the performance of the T-AOGS under different atmospheric conditions and the first successful measurements of the suitability of the Alphasat LCT optical downlink performance for future continuous variable quantum key distribution systems.
Atmospheric propagation issues relevant to optical communications
NASA Technical Reports Server (NTRS)
Churnside, James H.; Shaik, Kamran
1989-01-01
Atmospheric propagation issues relevant to space-to-ground optical communications for near-earth applications are studied. Propagation effects, current optical communication activities, potential applications, and communication techniques are surveyed. It is concluded that a direct-detection space-to-ground link using redundant receiver sites and temporal encoding is likely to be employed to transmit earth-sensing satellite data to the ground some time in the future. Low-level, long-term studies of link availability, fading statistics, and turbulence climatology are recommended to support this type of application.
Daytime adaptive optics for deep space optical communications
NASA Technical Reports Server (NTRS)
Wilson, Keith; Troy, M.; Srinivasan, M.; Platt, B.; Vilnrotter, V.; Wright, M.; Garkanian, V.; Hemmati, H.
2003-01-01
The deep space optical communications subsystem offers a higher bandwidth communications link in smaller size, lower mass, and lower power consumption subsystem than does RF. To demonstrate the benefit of this technology to deep space communications NASA plans to launch an optical telecommunications package on the 2009 Mars Telecommunications orbiter spacecraft. Current performance goals are 30-Mbps from opposition, and 1-Mbps near conjunction (-3 degrees Sun-Earth-Probe angle). Yet, near conjunction the background noise from the day sky will degrade the performance of the optical link. Spectral and spatial filtering and higher modulation formats can mitigate the effects of background sky. Narrowband spectral filters can result in loss of link margin, and higher modulation formats require higher transmitted peak powers. In contrast, spatial filtering at the receiver has the potential of being lossless while providing the required sky background rejection. Adaptive optics techniques can correct wave front aberrations caused by atmospheric turbulence and enable near-diffraction-limited performance of the receiving telescope. Such performance facilitates spatial filtering, and allows the receiver field-of-view and hence the noise from the sky background to be reduced.
Quantum and classical optics-emerging links
NASA Astrophysics Data System (ADS)
Eberly, J. H.; Qian, Xiao-Feng; Qasimi, Asma Al; Ali, Hazrat; Alonso, M. A.; Gutiérrez-Cuevas, R.; Little, Bethany J.; Howell, John C.; Malhotra, Tanya; Vamivakas, A. N.
2016-06-01
Quantum optics and classical optics are linked in ways that are becoming apparent as a result of numerous recent detailed examinations of the relationships that elementary notions of optics have with each other. These elementary notions include interference, polarization, coherence, complementarity and entanglement. All of them are present in both quantum and classical optics. They have historic origins, and at least partly for this reason not all of them have quantitative definitions that are universally accepted. This makes further investigation into their engagement in optics very desirable. We pay particular attention to effects that arise from the mere co-existence of separately identifiable and readily available vector spaces. Exploitation of these vector-space relationships are shown to have unfamiliar theoretical implications and new options for observation. It is our goal to bring emerging quantum-classical links into wider view and to indicate directions in which forthcoming and future work will promote discussion and lead to unified understanding.
NASA Technical Reports Server (NTRS)
Wilson, K. E.; Antsos, D.; Roberts, L. C. Jr.,; Piazzolla, S.; Clare, L. P.; Croonquist, A. P.
2012-01-01
The Laser Communications Relay Demonstration (LCRD) project will demonstrate high bandwidth space to ground bi-directional optical communications links between a geosynchronous satellite and two LCRD optical ground stations located in the southwestern United States. The project plans to operate for two years with a possible extension to five. Objectives of the demonstration include the development of operational strategies to prototype optical link and relay services for the next generation tracking and data relay satellites. Key technologies to be demonstrated include adaptive optics to correct for clear air turbulence-induced wave front aberrations on the downlink, and advanced networking concepts for assured and automated data delivery. Expanded link availability will be demonstrated by supporting operations at small sun-Earth-probe angles. Planned optical modulation formats support future concepts of near-Earth satellite user services to a maximum of 1.244 Gb/s differential phase shift keying modulation and pulse position modulations formats for deep space links at data rates up to 311 Mb/s. Atmospheric monitoring instruments that will characterize the optical channel during the link include a sun photometer to measure atmospheric transmittance, a solar scintillometer, and a cloud camera to measure the line of sight cloud cover. This paper describes the planned development of the JPL optical ground station.
International standards for optical wireless communications: state-of-the-art and future directions
NASA Astrophysics Data System (ADS)
Marciniak, Marian
2017-10-01
As the number of active OWC installations is growing fast, the standards for compatibility of co-existing neighbouring systems are being developed. The paper addresses the Laser Safety (IEC standards), ITU-T Study Group 15 standards (G.640 Co-location longitudinally compatible interfaces for free space optical systems), ITU-Radiocommunication Sector standards (P.1817-1 Propagation data required for the design of terrestrial free-space optical links), and the IEEE Work in Progress - standardization activity on Visible Light Communications. International standards of FSO communications have been reviewed and discussed. ITU, IEC, and IEEE International standards for Free-Space Optical links have been reviewed. The system reliability and availability as well as security issues will be addressed as well in the talk.
Optical space-to-ground link availability assessment and diversity requirements
NASA Technical Reports Server (NTRS)
Chapman, William; Fitzmaurice, Michael
1991-01-01
The application of optical space-to-ground links (SGLs) for high speed data distribution from geosynchronous and low earth orbiting satellites (e.g., sensor data from the planned Earth Observing System), for lunar and Mars links, and for links from interplanetary probes has been a topic of considerable recent interest. These optical SGLs could conceivably represent the system's operational baseline, or could represent backup links in the event of a GEO relay terminal failure. In this paper the availability of optical SGLs for various system/orbit configurations is considered. Single CONUS sites are assessed for their probability of cloud free line of sight (PCFLOS), and cloud free field of view (PCFFOV). PCFLOS represents an availability metric for geosynchronous platforms, while PCFFOV is a relevant performance metric for non-geostationary platforms (e.g., low earth orbiting satellites). Additionally, the availability of multiple ground terminals utilized in a diversity configuration is considered. Availability statistics vs. the number of diversity sites are derived from climatological data bases for CONUS sites.
NASA Astrophysics Data System (ADS)
Deng, Peng; Kavehrad, Mohsen; Lou, Yan
2017-01-01
Flexible wireless datacenter networks based on free space optical communication (FSO) links are being considered as promising solutions to meet the future datacenter demands of high throughput, robustness to dynamic traffic patterns, cabling complexity and energy efficiency. Robust and precise steerable FSO links over dynamic traffic play a key role in the reconfigurable optical wireless datacenter inter-rack network. In this work, we propose and demonstrate a reconfigurable 10Gbps FSO system incorporated with smart beam acquisition and tracking mechanism based on gimballess two-axis MEMS micro-mirror and retro-reflective film marked aperture. The fast MEMS-based beam acquisition switches laser beam of FSO terminal from one rack to the next for reconfigurable networks, and the precise beam tracking makes FSO device auto-correct the misalignment in real-time. We evaluate the optical power loss and bit error rate performance of steerable FSO links at various directions. Experimental results suggest that the MEMS based beam steerable FSO links hold considerable promise for the future reconfigurable wireless datacenter networks.
Sub-microradian pointing for deep space optical telecommunications network
NASA Technical Reports Server (NTRS)
Ortiz, G.; Lee, S.; Alexander, J.
2001-01-01
This presentation will cover innovative hardware, algorithms, architectures, techniques and recent laboratory results that are applicable to all deep space optical communication links, such as the Mars Telecommunication Network to future interstellar missions.
Bit-error-rate testing of fiber optic data links for MMIC-based phased array antennas
NASA Technical Reports Server (NTRS)
Shalkhauser, K. A.; Kunath, R. R.; Daryoush, A. S.
1990-01-01
The measured bit-error-rate (BER) performance of a fiber optic data link to be used in satellite communications systems is presented and discussed. In the testing, the link was measured for its ability to carry high burst rate, serial-minimum shift keyed (SMSK) digital data similar to those used in actual space communications systems. The fiber optic data link, as part of a dual-segment injection-locked RF fiber optic link system, offers a means to distribute these signals to the many radiating elements of a phased array antenna. Test procedures, experimental arrangements, and test results are presented.
Infrared Free Space Communication - The Autonomous Testing of Free Space Infrared Communication
NASA Technical Reports Server (NTRS)
Heldman, Christopher
2017-01-01
Fiber optics has been a winning player in the game of high-speed communication and data transfer in cable connections. Yet, in free space RF has been the repeated choice of communication medium of the space industry. Investigating the benefits of free space optical communication over radio frequency is worthwhile. An increase in science data rate return capabilities could occur if optical communication is implemented. Optical communication systems also provide efficiencies in power, mass, and volume over RF systems1. Optical communication systems have been demonstrated from a satellite in orbit with the moon to earth, and resulted in the highest data rates ever seen through space (622Mbps)2. Because of these benefits, optical communication is far superior to RF. The HiDRA (High Data Rate Architecture) project is researching Passive Misalignment Mitigation of Dynamic Free Apace Optical Communication Links. The goal of this effort is to enable gigabit per second transmission of data in short range dynamic links (less than 100 meters). In practice this would enhance data rates between sites on the International Space Station with minimal size, weight, and power requirements. This paper will focus on an autonomous code and a hardware setup that will be used to fulfill the next step in the research being conducted. The free space optical communications pointing downfalls will be investigated. This was achieved by creating 5 python programs and a top-level code to automate this test.
High-Speed Operation of Interband Cascade Lasers
NASA Technical Reports Server (NTRS)
Soibel, Alexander; Hill, Cory J.; Keo, Sam A.; Wright, Malcom W.; Farr, William H.; Yang, Rui Q.; Liu, H. C.
2010-01-01
Optical sources operating in the atmospheric window of 3-5 microns are of particular interest for the development of free-space optical communication link. It is more advantageous to operate the free-space optical communication link in 3-5-microns atmospheric transmission window than at the telecom wavelength of 1.5 m due to lower optical scattering, scintillation, and background radiation. However, the realization of optical communications at the longer wavelength has encountered significant difficulties due to lack of adequate optical sources and detectors operating in the desirable wavelength regions. Interband Cascade (IC) lasers are novel semiconductor lasers that have a great potential for the realization of high-power, room-temperature optical sources in the 3-5-microns wavelength region, yet no experimental work, until this one, was done on high-speed direct modulation of IC lasers. Here, highspeed interband cascade laser, operating at wavelength 3.0 m, has been developed and the first direct measurement of the laser modulation bandwidth has been performed using a unique, highspeed quantum well infrared photodetector (QWIP). The developed laser has modulation bandwidth exceeding 3 GHz. This constitutes a significant increase of the IC laser modulation bandwidth over currently existing devices. This result has demonstrated suitability of IC lasers as a mid-IR light source for multi-GHz free-space optical communications links
20-Gbps optical LiFi transport system.
Ying, Cheng-Ling; Lu, Hai-Han; Li, Chung-Yi; Cheng, Chun-Jen; Peng, Peng-Chun; Ho, Wen-Jeng
2015-07-15
A 20-Gbps optical light-based WiFi (LiFi) transport system employing vertical-cavity surface-emitting laser (VCSEL) and external light injection technique with 16-quadrature amplitude modulation (QAM)-orthogonal frequency-division multiplexing (OFDM) modulating signal is proposed. Good bit error rate (BER) performance and clear constellation map are achieved in our proposed optical LiFi transport systems. An optical LiFi transport system, delivering 16-QAM-OFDM signal over a 6-m free-space link, with a data rate of 20 Gbps, is successfully demonstrated. Such a 20-Gbps optical LiFi transport system provides the advantage of a free-space communication link for high data rates, which can accelerate the visible laser light communication (VLLC) deployment.
NASA Technical Reports Server (NTRS)
Nappier, Jennifer M.; Tokars, Roger P.; Wroblewski, Adam C.
2016-01-01
The Integrated Radio and Optical Communications (iROC) project at the National Aeronautics and Space Administrations (NASA) Glenn Research Center is investigating the feasibility of a hybrid radio frequency (RF) and optical communication system for future deep space missions. As a part of this investigation, a test bed for a radio frequency (RF) and optical software defined radio (SDR) has been built. Receivers and modems for the NASA deep space optical waveform are not commercially available so a custom ground optical receiver system has been built. This paper documents the ground optical receiver, which is used in order to test the RF and optical SDR in a free space optical communications link.
NASA Technical Reports Server (NTRS)
Nappier, Jennifer M.; Tokars, Roger P.; Wroblewski, Adam C.
2016-01-01
The Integrated Radio and Optical Communications (iROC) project at the National Aeronautics and Space Administration's (NASA) Glenn Research Center is investigating the feasibility of a hybrid radio frequency (RF) and optical communication system for future deep space missions. As a part of this investigation, a test bed for a radio frequency (RF) and optical software defined radio (SDR) has been built. Receivers and modems for the NASA deep space optical waveform are not commercially available so a custom ground optical receiver system has been built. This paper documents the ground optical receiver, which is used in order to test the RF and optical SDR in a free space optical communications link.
The wavefront compensation of free space optics utilizing micro corner-cube-reflector arrays
NASA Astrophysics Data System (ADS)
You, Shengzui; Yang, Guowei; Li, Changying; Bi, Meihua; Fan, Bing
2018-01-01
The wavefront compensation effect of micro corner-cube-reflector arrays (MCCRAs) in modulating retroreflector (MRR) free-space optical (FSO) link is investigated theoretically and experimentally. Triangular aperture of MCCRAs has been optically characterized and studied in an indoor atmospheric turbulence channel. The use of the MCCRAs instead of a single corner-cube reflector (CCR) as the reflective device is found to improve dramatically the quality of the reflected beam spot. We draw a conclusion that the MCCRAs can in principle yield a powerful wavefront compensation in MRR FSO communication links.
Multi-rate DPSK optical transceivers for free-space applications
NASA Astrophysics Data System (ADS)
Caplan, D. O.; Carney, J. J.; Fitzgerald, J. J.; Gaschits, I.; Kaminsky, R.; Lund, G.; Hamilton, S. A.; Magliocco, R. J.; Murphy, R. J.; Rao, H. G.; Spellmeyer, N. W.; Wang, J. P.
2014-03-01
We describe a flexible high-sensitivity laser communication transceiver design that can significantly benefit performance and cost of NASA's satellite-based Laser Communications Relay Demonstration. Optical communications using differential phase shift keying, widely deployed for use in long-haul fiber-optic networks, is well known for its superior sensitivity and link performance over on-off keying, while maintaining a relatively straightforward design. However, unlike fiber-optic links, free-space applications often require operation over a wide dynamic range of power due to variations in link distance and channel conditions, which can include rapid kHz-class fading when operating through the turbulent atmosphere. Here we discuss the implementation of a robust, near-quantum-limited multi-rate DPSK transceiver, co-located transmitter and receiver subsystems that can operate efficiently over the highly-variable free-space channel. Key performance features will be presented on the master oscillator power amplifier (MOPA) based TX, including a wavelength-stabilized master laser, high-extinction-ratio burst-mode modulator, and 0.5 W single polarization power amplifier, as well as low-noise optically preamplified DSPK receiver and built-in test capabilities.
Carrasco-Casado, Alberto; Vilera, Mariafernanda; Vergaz, Ricardo; Cabrero, Juan Francisco
2013-04-10
The signals that will be received on Earth from deep-space probes in future implementations of free-space optical communication will be extremely weak, and new ground stations will have to be developed in order to support these links. This paper addresses the feasibility of using the technology developed in the gamma-ray telescopes that will make up the Cherenkov Telescope Array (CTA) observatory in the implementation of a new kind of ground station. Among the main advantages that these telescopes provide are the much larger apertures needed to overcome the power limitation that ground-based gamma-ray astronomy and optical communication both have. Also, the large number of big telescopes that will be built for CTA will make it possible to reduce costs by economy-scale production, enabling optical communications in the large telescopes that will be needed for future deep-space links.
Zou, Longfang; Cryan, Martin; Klemm, Maciej
2014-10-06
The concept of phase change material (PCM) based optical antennas and antenna arrays is proposed for dynamic beam shaping and steering utilized in free-space optical inter/intra chip interconnects. The essence of this concept lies in the fact that the behaviour of PCM based optical antennas will change due to the different optical properties of the amorphous and crystalline state of the PCM. By engineering optical antennas or antenna arrays, it is feasible to design dynamic optical links in a desired manner. In order to illustrate this concept, a PCM based tunable reflectarray is proposed for a scenario of a dynamic optical link between a source and two receivers. The designed reflectarray is able to switch the optical link between two receivers by switching the two states of the PCM. Two types of antennas are employed in the proposed tunable reflectarray to achieve full control of the wavefront of the reflected beam. Numerical studies show the expected binary beam steering at the optical communication wavelength of 1.55 μm. This study suggests a new research area of PCM based optical antennas and antenna arrays for dynamic optical switching and routing.
Coupling efficiency of laser beam to multimode fiber for free space optical communication
NASA Astrophysics Data System (ADS)
Arisa, Suguru; Takayama, Yoshihisa; Endo, Hiroyuki; Shimizu, Ryosuke; Fujiwara, Mikio; Sasaki, Masahide
2017-11-01
Recently, the free space optical (FSO) communications have been widely studied as an alternative for large capacity communications and its possible implementation in satellite and terrestrial laser links. In satellite communications, clouds can strongly attenuate the laser signal that would lead to high bit-error rates or temporal unavailability of the link. To overcome the cloud coverage effects, often site diversity technique is implemented. When using multiple ground stations though, simplified optical system is required to allow the usage of more flexible approaches. In terrestrial laser communications, several methods for optical system simplification by using a multimode fiber (MMF) have been proposed.
A fiber-coupled gas cell for space application
NASA Astrophysics Data System (ADS)
Thomin, Stéphane; Bera, Olivier; Beraud, Pascal; Lecallier, Arnaud; Tonck, Laurence; Belmana, Salem
2017-09-01
An increasing number of space-borne optical instruments now include fiber components. Telecom-type components have proved their reliability and versatility for space missions. Fibered lasers are now used for various purposes, such as remote IR-sounding missions, metrology, scientific missions and optical links (satellite-to-satellite, Earth-to-satellite).
CEMERLL: The Propagation of an Atmosphere-Compensated Laser Beam to the Apollo 15 Lunar Array
NASA Technical Reports Server (NTRS)
Fugate, R. Q.; Leatherman, P. R.; Wilson, K. E.
1997-01-01
Adaptive optics techniques can be used to realize a robust low bit-error-rate link by mitigating the atmosphere-induced signal fades in optical communications links between ground-based transmitters and deep-space probes.
NASA Astrophysics Data System (ADS)
Gupta, Amit; Shaina, Nagpal
2017-08-01
Intersymbol interference and attenuation of signal are two major parameters affecting the quality of transmission in Free Space Optical (FSO) Communication link. In this paper, the impact of these parameters on FSO communication link is analysed for delivering high-quality data transmission. The performance of the link is investigated under the influence of amplifier in the link. The performance parameters of the link like minimum bit error rate, received signal power and Quality factor are examined by employing erbium-doped fibre amplifier in the link. The effects of amplifier are visualized with the amount of received power. Further, the link is simulated for moderate weather conditions at various attenuation levels on transmitted signal. Finally, the designed link is analysed in adverse weather conditions by using high-power laser source for optimum performance.
Olivier, Serge; Delage, Laurent; Reynaud, Francois; Collomb, Virginie; Trouillon, Michel; Grelin, Jerome; Schanen, Isabelle; Minier, Vincent; Broquin, Jean-Emmanuel; Ruilier, Cyril; Leone, Bruno
2007-02-20
We present a three-telescope space-based interferometer prototype dedicated to high-resolution imaging. This project, named multiaperture fiber-linked interferometer (MAFL), was founded by the European Space Agency. The aim of the MAFL project is to propose, design, and implement for the first time to the best of our knowledge all the optical functions required for the global instrument on the same integrated optics (IO) component for controlling a three-arm interferometer and to obtain reliable science data. The coherent transport from telescopes to the IO component is achieved by means of highly birefringent optical fiber. The laboratory bench is presented, and the results are reported allowing us to validate the optical potentiality of the IO component in this frame. The validation measurements consist of the throughput of this optical device, the performances of metrological servoloop, and the instrumental contrasts and phase closure of the science fringes.
Laser communications through the atmosphere
NASA Technical Reports Server (NTRS)
Shaik, Kamran; Churnside, J. H.
1988-01-01
Atmospheric properties affecting laser propagation with reference to optical communications are reviewed. Some of the optical space network configurations and various diversity techniques that may need to be utilized to develop robust bi-directional space-earth laser communication links are explored.
Wu, Xiaojun; Wang, Hongxing; Song, Bo
2015-02-10
Fog and haze can lead to changes in extinction characteristics. Therefore, the performance of the free space optical link is highly influenced by severe weather conditions. Considering the influential behavior of weather conditions, a state-of-the-art solution for the observation of fog and haze over the sea surface is presented in this paper. A Mie scattering laser radar, with a wavelength of 532 nm, is used to observe the weather conditions of the sea surface environment. The horizontal extinction coefficients and visibilities are obtained from the observation data, and the results are presented in the paper. The changes in the characteristics of extinction coefficients and visibilities are analyzed based on both the short-term (6 days) severe weather data and long-term (6 months) data. Finally, the availability performance of the free space optical communication link is evaluated under the sea surface environment.
An optical approach to proximity-operations communications for Space Station Freedom
NASA Technical Reports Server (NTRS)
Marshalek, Robert G.
1991-01-01
An optical communications system is described that supports bi-directional interconnections between Space Station Freedom (SSF) and a host of attached and co-orbiting platforms. These proximity-operations (Prox-Ops) platforms are categorized by their maximum distance from SSF, with several remaining inside 1-km range and several extending out to 37-km and 2000-km ranges in the initial and growth phases, respectively. Two distinct Prox-Ops optical terminals are described. A 1-cm-aperture system is used on the short-range platforms to reduce payload mass, and a 10-cm-aperture system is used on the long-range platforms and on SSF to support the optical link budgets. The system supports up to four simultaneous user links, by assigning wavelengths to the various platforms and by using separate SSF terminals for each link.
jsc2017m000907_Making-fiber-Optics-in-Space
2017-12-05
To demonstrate potential scientific and commercial merits of manufacturing exotic optical fibers in space, a private company is working with NASA on an investigation headed to the International Space Station on the next Dragon cargo ship. Matthew Napoli, vice president of In-Space Operations for Made In Space, explains how the Optical Fiber Production in Microgravity investigation could lead to the production of materials with better properties, setting the stage for large scale manufacturing of high-quality fiber in space. This investigation follows up on research conducted in the 1990s by scientists at NASA’s Marshall Space Flight Center in Huntsville, Alabama. For more on space station science, please visit: https://archive.org/details/jsc2017m000907_Making-fiber-Optics-in-Space HD download link: https://archive.org/details/jsc2017m000907_Making-fiber-Optics-in-Space
Development of a 1-m Class Telescope at TMF to Support Optical Communications Demonstrations
NASA Technical Reports Server (NTRS)
Wilson, K. E.; Sandusky, J.
1998-01-01
With the impetus towards high data rate communications in inter-satellite and space-to-ground links, the small size, low-mass, and low-power consumption of optical communications is seen as a viable alternative to radio frequency links.
Laser guide stars for optical free-space communications
NASA Astrophysics Data System (ADS)
Mata-Calvo, Ramon; Bonaccini Calia, Domenico; Barrios, Ricardo; Centrone, Mauro; Giggenbach, Dirk; Lombardi, Gianluca; Becker, Peter; Zayer, Igor
2017-02-01
The German Aerospace Center (DLR) and the European Southern Observatory (ESO) performed a measurement campaign together in April and July 2016 at Teide-Observatory (Tenerife), with the support of the European Space Agency (ESA), to investigate the use of laser guide stars (LGS) in ground to space optical communications. Atmospheric turbulence causes strong signal fluctuations in the uplink, due to scintillation and beam wander. In space communications, the use of the downlink channel as reference for pointing and for pre-distortion adaptive optics is limited by the size of the isokinetic and isoplanatic angle in relation to the required point-ahead angle. Pointing and phase errors due to the decorrelation between downward and upward beam due to the point-ahead angle may have a severe impact on the required transmit power and the stability of the communications link. LGSs provide a self-tailored reference to any optical ground-to-space link, independently of turbulence conditions and required point-ahead angle. In photon-starved links, typically in deep-space scenarios, LGSs allow dedicating all downlink received signal to communications purposes, increasing the available link margin. The scope of the joint DLR-ESO measurement campaign was, first, to measure the absolute value of the beam wander (uplink-tilt) using a LGS, taking a natural star as a reference, and, second, to characterize the decrease of correlation between uplink-tilt and downlink-tilt with respect to the angular separation between both sources. This paper describes the experiments performed during the measurement campaigns, providing an overview of the measured data and the first outcomes of the data post-processing.
Progress towards the development of a source of entangled photons for Space
NASA Astrophysics Data System (ADS)
Fedrizzi, Alessandro; Jennewein, Thomas; Ursin, Rupert; Zeilinger, Anton
2007-03-01
Quantum entanglement offers exciting applications like quantum computing, quantum teleportation and quantum cryptography. Ground based quantum communication schemes in optical fibres however are limited to a distance of the order of ˜100 km. In order to extend this limit to a global scale we are working on the realization of an entanglement-based quantum communication transceiver for space deployment. Here we report on a compact, extremely bright source for polarization entangled photons meeting the scientific requirements for a potential space to ground optical link. The pair production rate exceeds 4*10̂6 pairs/s at just 20mW of laser diode pump power. Furthermore, we will present the results of various experiments proving the feasibility of quantum information in space, including a weak coherent pulse single-photon downlink from a LEO satellite and the distribution of entanglement over a 144km free space link, using ESAs optical ground station.
Wireless optical transceiver design, link analisys and alignment control for mobile communication
NASA Astrophysics Data System (ADS)
Zhou, Dayong
Pointing, acquisition and tracking of a free-space optical node in a mobile network experiencing misalignment due to adverse factors including vibration, motion and atmospheric turbulence requires a different approach than traditional free-space optical transceivers. A recent fiber-bundle approach for beam steering at the transmitter was investigated to provide continuous beam coverage at the receiver without the application of mechanical devices. Utilizing multiple fibers-lenses sets at the receiver was also proposed to enhance the tolerance of optical link misalignment. In this work, both laboratory experiments and software simulation were implemented to evaluate the optical link performance for different fiber-bundle-based transceiver setups as the link parameters were varied. The performance was evaluated in terms of the coverage area at the receiver, which is a measure of misalignment tolerance and is dependent not only on wavelength but on other key parameters such as link length, transmitted power, the pattern of transmitters, beam divergence, and the receiver construction. The results showed that fiber-bindle-based transceivers reveal significant potential to maximize the up time of the link, and the results also provide guidance on the further development of the overall system. To incorporate the proposed transceiver designs, an alignment control system was developed and evaluated as well. The laboratory results show that the optical control system successfully recovered and maintained the link while the receiver was in motion and the signal coverage at the target area was enhanced significantly.
Optical subnet concepts for the deep space network
NASA Technical Reports Server (NTRS)
Shaik, K.; Wonica, D.; Wilhelm, M.
1993-01-01
This article describes potential enhancements to the Deep Space Network, based on a subnet of receiving stations that will utilize optical communications technology in the post-2010 era. Two optical subnet concepts are presented that provide full line-of-sight coverage of the ecliptic, 24 hours a day, with high weather availability. The technical characteristics of the optical station and the user terminal are presented, as well as the effects of cloud cover, transmittance through the atmosphere, and background noise during daytime or nighttime operation on the communications link. In addition, this article identifies candidate geographic sites for the two network concepts and includes a link design for a hypothetical Pluto mission in 2015.
Orbital-angular-momentum-multiplexed free-space optical communication link using transmitter lenses.
Li, Long; Xie, Guodong; Ren, Yongxiong; Ahmed, Nisar; Huang, Hao; Zhao, Zhe; Liao, Peicheng; Lavery, Martin P J; Yan, Yan; Bao, ChangJing; Wang, Zhe; Willner, Asher J; Ashrafi, Nima; Ashrafi, Solyman; Tur, Moshe; Willner, Alan E
2016-03-10
In this paper, we explore the potential benefits and limitations of using transmitter lenses in an orbital-angular-momentum (OAM)-multiplexed free-space optical (FSO) communication link. Both simulation and experimental results indicate that within certain transmission distances, using lenses at the transmitter to focus OAM beams could reduce power loss in OAM-based FSO links and that this improvement might be more significant for higher-order OAM beams. Moreover, the use of transmitter lenses could enhance system tolerance to angular error between transmitter and receiver, but they might degrade tolerance to lateral displacement.
Low-loss reciprocal optical terminals for two-way time-frequency transfer.
Swann, W C; Sinclair, L C; Khader, I; Bergeron, H; Deschênes, J-D; Newbury, N R
2017-12-01
We present the design and performance of a low-cost, reciprocal, compact free-space terminal employing tip/tilt pointing compensation that enables optical two-way time-frequency transfer over free-space links across the turbulent atmosphere. The insertion loss of the terminals is ∼1.5 dB with total link losses of 15 dB, 24 dB, and 50 dB across horizontal, turbulent 2-km, 4-km, and 12-km links, respectively. The effects of turbulence on pointing control and aperture size, and their influence on the terminal design, are discussed.
Design of stabilized platforms for deep space optical communications (DSOC)
NASA Astrophysics Data System (ADS)
Jacka, N.; Walter, R.; Laughlin, D.; McNally, J.
2017-02-01
Numerous Deep Space Optical Communications (DSOC) demonstrations are planned by NASA to provide the basis for future implementation of optical communications links in planetary science missions and eventually manned missions to Mars. There is a need for a simple, robust precision optical stabilization concept for long-range free space optical communications applications suitable for optical apertures and masses larger than the current state of the art. We developed a stabilization concept by exploiting the ultra-low noise and wide bandwidth of ATA-proprietary Magnetohydrodynamic (MHD) angular rate sensors and building on prior practices of flexure-based isolation. We detail a stabilization approach tailored for deep space optical communications, and present an innovative prototype design and test results. Our prototype system provides sub-micro radian stabilization for a deep space optical link such as NASA's integrated Radio frequency and Optical Communications (iROC) and NASA's DSOC programs. Initial test results and simulations suggest that >40 dB broadband jitter rejection is possible without placing unrealistic expectations on the control loop bandwidth and flexure isolation frequency. This approach offers a simple, robust method for platform stabilization without requiring a gravity offload apparatus for ground testing or launch locks to survive a typical launch environment. This paper reviews alternative stabilization concepts, their advantages and disadvantages, as well as, their applicability to various optical communications applications. We present results from testing that subjected the prototype system to realistic spacecraft base motion and confirmed predicted sub-micro radian stabilization performance with a realistic 20-cm aperture.
NASA Astrophysics Data System (ADS)
Ho, Tzung-Hsien; Trisno, Sugianto; Smolyaninov, Igor I.; Milner, Stuart D.; Davis, Christopher C.
2004-02-01
Free space, dynamic, optical wireless communications will require topology control for optimization of network performance. Such networks may need to be configured for bi- or multiple-connectedness, reliability and quality-of-service. Topology control involves the introduction of new links and/or nodes into the network to achieve such performance objectives through autonomous reconfiguration as well as precise pointing, acquisition, tracking, and steering of laser beams. Reconfiguration may be required because of link degradation resulting from obscuration or node loss. As a result, the optical transceivers may need to be re-directed to new or existing nodes within the network and tracked on moving nodes. The redirection of transceivers may require operation over a whole sphere, so that small-angle beam steering techniques cannot be applied. In this context, we are studying the performance of optical wireless links using lightweight, bi-static transceivers mounted on high-performance stepping motor driven stages. These motors provide an angular resolution of 0.00072 degree at up to 80,000 steps per second. This paper focuses on the performance characteristics of these agile transceivers for pointing, acquisition, and tracking (PAT), including the influence of acceleration/deceleration time, motor angular speed, and angular re-adjustment, on latency and packet loss in small free space optical (FSO) wireless test networks.
NASA Astrophysics Data System (ADS)
Carbonneau, Theresa H.; Wisely, David R.
1998-01-01
Never before has the opportunity for terrestrial optical wireless communications links been so great. The high data rates attainable, up to OC-24, make it a very attractive and cost effective alternative to traditional fiber optic and microwave links. With today's demand for interactive multimedia-based applications, such as video conferencing and telemedicine, optical wireless products are the only ones that can provide the needed bandwidth in situations when it is too costly or impossible to install fiber optic cable. Recent developments in laser and optics technologies, in addition to auto beam tracking, permit transmission units to achieve excellent performance rates in all weather conditions.
Design of low SWaP optical terminals for free space optical communications
NASA Astrophysics Data System (ADS)
Shubert, P.; Cline, A.; McNally, J.; Pierson, R.
2017-02-01
Along with advantages in higher data rates, spectrum contention, and security, free space optical communications can provide size, weight, and power (SWaP) advantages over radio frequency (RF) systems. SWaP is always an issue in space systems and can be critical in applying free space optical communications to small satellite platforms. The system design of small space-based free space optical terminals with Gbps data rates is addressed. System architectures and requirements are defined to ensure the terminals are capable of acquisition, establishment and maintenance of a free space optical communications link. Design trades, identification of blocking technologies, and performance analyses are used to evaluate the practical limitations to terminal SWaP. Small terminal design concepts are developed to establish their practicality and feasibility. Techniques, such as modulation formats and capacity approaching encoding, are considered to mitigate the disadvantages brought by SWaP limitations, and performance as a function of SWaP is evaluated.
Studies of free-space optical links through simulated boundary layer and long-path turbulence
NASA Astrophysics Data System (ADS)
Wasiczko, Linda; Smolyaninov, Igor I.; Milner, Stuart D.; Davis, Christopher C.
2004-02-01
There is recent interest from the US Department of Defense in free space optical communication networks involving aircraft flying at various altitudes. The optical links between these aircraft may be as long as 100km, and involve communication between network nodes that are moving at sub-sonic speeds. An unresolved issue for links of this kind between pairs of aircraft is the effect of boundary layer turbulence near each aircraft, as well as along the atmospheric path between them. The deployment of optical wireless links in several different scenarios will be described. These include links near to the ground for which the turbulence parameter Cn2 varies along the path between transmitter (TX) and receiver (RX), high altitude links between aircraft, and ground to aircraft links. The last two of these may involve boundary layer turbulence near the aircraft node where the turbulence is localized either at the TX or at the RX. Some of the theoretical approaches to examining these situations will be described, as well as an ongoing program of research to examine these situations experimentally. Ways to mitigate the effects of node motion, and scintillation at the RX will be discussed, including the use of non-imaging concentrators at the RX.
Patulous Subarachnoid Space of the Optic Nerve Associated with X-Linked Hypophosphatemic Rickets.
Galvez-Ruiz, Alberto; Chaudhry, Imtiaz
2013-01-01
Although the deficiency forms are the most common manifestations of rickets, there are other forms of rickets that are resistant to vitamin D. Of these, the most common is X-linked hypophosphatemic rickets. Rickets represents a group of multiple cranial bone disorders-craniosynostosis and the presence of Chari I malformation being the most notable-that explain the increase in intracranial pressure. We present a 4-year-old patient with an unusual association of X-linked hypophosphataemic rickets, bilateral proptosis, and prominent bilateral widening of the optic nerve sheaths. Although the association between intracranial hypertension and rickets is known, to the best of our knowledge, such a prominent distention of the subarachnoid space of the optic nerve without papilloedema has not been previously described.
Optoelectronic interconnects for 3D wafer stacks
NASA Astrophysics Data System (ADS)
Ludwig, David E.; Carson, John C.; Lome, Louis S.
1996-01-01
Wafer and chip stacking are envisioned as a means of providing increased processing power within the small confines of a three-dimensional structure. Optoelectronic devices can play an important role in these dense 3-D processing electronic packages in two ways. In pure electronic processing, optoelectronics can provide a method for increasing the number of input/output communication channels within the layers of the 3-D chip stack. Non-free space communication links allow the density of highly parallel input/output ports to increase dramatically over typical edge bus connections. In hybrid processors, where electronics and optics play a role in defining the computational algorithm, free space communication links are typically utilized for, among other reasons, the increased network link complexity which can be achieved. Free space optical interconnections provide bandwidths and interconnection complexity unobtainable in pure electrical interconnections. Stacked 3-D architectures can provide the electronics real estate and structure to deal with the increased bandwidth and global information provided by free space optical communications. This paper provides definitions and examples of 3-D stacked architectures in optoelectronics processors. The benefits and issues of these technologies are discussed.
Optoelectronic interconnects for 3D wafer stacks
NASA Astrophysics Data System (ADS)
Ludwig, David; Carson, John C.; Lome, Louis S.
1996-01-01
Wafer and chip stacking are envisioned as means of providing increased processing power within the small confines of a three-dimensional structure. Optoelectronic devices can play an important role in these dense 3-D processing electronic packages in two ways. In pure electronic processing, optoelectronics can provide a method for increasing the number of input/output communication channels within the layers of the 3-D chip stack. Non-free space communication links allow the density of highly parallel input/output ports to increase dramatically over typical edge bus connections. In hybrid processors, where electronics and optics play a role in defining the computational algorithm, free space communication links are typically utilized for, among other reasons, the increased network link complexity which can be achieved. Free space optical interconnections provide bandwidths and interconnection complexity unobtainable in pure electrical interconnections. Stacked 3-D architectures can provide the electronics real estate and structure to deal with the increased bandwidth and global information provided by free space optical communications. This paper will provide definitions and examples of 3-D stacked architectures in optoelectronics processors. The benefits and issues of these technologies will be discussed.
Bohata, J; Zvanovec, S; Pesek, P; Korinek, T; Mansour Abadi, M; Ghassemlooy, Z
2016-03-10
This paper describes the experimental verification of the utilization of long-term evolution radio over fiber (RoF) and radio over free space optics (RoFSO) systems using dual-polarization signals for cloud radio access network applications determining the specific utilization limits. A number of free space optics configurations are proposed and investigated under different atmospheric turbulence regimes in order to recommend the best setup configuration. We show that the performance of the proposed link, based on the combination of RoF and RoFSO for 64 QAM at 2.6 GHz, is more affected by the turbulence based on the measured difference error vector magnitude value of 5.5%. It is further demonstrated the proposed systems can offer higher noise immunity under particular scenarios with the signal-to-noise ratio reliability limit of 5 dB in the radio frequency domain for RoF and 19.3 dB in the optical domain for a combination of RoF and RoFSO links.
Per-Pixel, Dual-Counter Scheme for Optical Communications
NASA Technical Reports Server (NTRS)
Farr, William H.; Bimbaum, Kevin M.; Quirk, Kevin J.; Sburlan, Suzana; Sahasrabudhe, Adit
2013-01-01
Free space optical communications links from deep space are projected to fulfill future NASA communication requirements for 2020 and beyond. Accurate laser-beam pointing is required to achieve high data rates at low power levels.This innovation is a per-pixel processing scheme using a pair of three-state digital counters to implement acquisition and tracking of a dim laser beacon transmitted from Earth for pointing control of an interplanetary optical communications system using a focal plane array of single sensitive detectors. It shows how to implement dim beacon acquisition and tracking for an interplanetary optical transceiver with a method that is suitable for both achieving theoretical performance, as well as supporting additional functions of high data rate forward links and precision spacecraft ranging.
Ren, Yongxiong; Huang, Hao; Xie, Guodong; Ahmed, Nisar; Yan, Yan; Erkmen, Baris I; Chandrasekaran, Nivedita; Lavery, Martin P J; Steinhoff, Nicholas K; Tur, Moshe; Dolinar, Samuel; Neifeld, Mark; Padgett, Miles J; Boyd, Robert W; Shapiro, Jeffrey H; Willner, Alan E
2013-10-15
We experimentally investigate the performance of an orbital angular momentum (OAM) multiplexed free space optical (FSO) communication link through emulated atmospheric turbulence. The turbulence effects on the crosstalk and system power penalty of the FSO link are characterized. The experimental results show that the power of the transmitted OAM mode will tend to spread uniformly onto the neighboring mode in medium-to-strong turbulence, resulting in severe crosstalk at the receiver. The power penalty is found to exceed 10 dB in a weak-to-medium turbulence condition due to the turbulence-induced crosstalk and power fluctuation of the received signal.
Microwave analog fiber-optic link for use in the deep space network
NASA Technical Reports Server (NTRS)
Logan, R. T., Jr.; Lutes, G. F.; Maleki, L.
1990-01-01
A novel fiber-optic system with dynamic range of up to 150 dB-Hz for transmission of microwave analog signals is described. The design, analysis, and laboratory evaluations of this system are reported, and potential applications in the NASA/JPL Deep Space Network are discussed.
NASA Technical Reports Server (NTRS)
Slobin, S. D.; Piazzolla, S.
2002-01-01
Cloud opacity is one of the main atmospheric physical phenomena that can jeopardize the successful completion of an optical link between a spacecraft and a ground station. Hence, the site location chosen for a telescope used for optical communications must rely on knowledge of weather and cloud cover statistics for the geographical area where the telescope itself is located.
Investigating Quantum Modulation States
2016-03-01
Coherent state quantum data encryption is highly interoperable with current classical optical infrastructure in both fiber and free space optical networks...hub’s field of regard has a transmit/receive module that are endpoints of the Lyot filter stage tree within the hub’s backend electro-optics control... mobile airborne and space-borne networking. Just like any laser communication technology, QC links are affected by several sources of distortions
Full-duplex lightwave transport systems based on long-haul SMF and optical free-space transmissions.
Chen, Chia-Yi; Lu, Hai-Han; Lin, Ying-Pyng; Wu, Po-Yi; Wu, Kuan-Hung; Yaug, Wei-Yuan
2013-10-07
A full-duplex lightwave transport system employing wavelength-division-multiplexing (WDM) and optical add-drop multiplexing techniques, as well as optical free-space transmission scheme is proposed and experimentally demonstrated. Over an 80-km single-mode fiber (SMF) and 2.4 m optical free-space transmissions, impressive bit error rate (BER) performance is obtained for long-haul fiber link and finite free-space transmission distance. Such a full-duplex lightwave transport system based on long-haul SMF and optical free-space transmissions has been successfully demonstrated, which cannot only present its advancement in lightwave application, but also reveal its simplicity and convenience for the real implementation. Our proposed systems are suitable for the lightwave communication systems in wired and wireless transmissions.
NASA Astrophysics Data System (ADS)
Gregory, M.; Troendle, D.; Muehlnikel, G.; Heine, F.; Meyer, R.; Lutzer, M.; Czichy, R.
2013-03-01
Tesat is performing inter-satellite links (ISLs) for over 5 years now. Besides the successful demonstration of the suitability of coherent laser communication for high speed data transmission in space, Tesat has also conducted two major satellite to ground link (SGL) campaigns during the last 3 years. A transportable ground station has been developed to measure the impact of atmospheric turbulence to the coherent system. The SGLs have been performed between the Tesat optical ground station and the two LEO satellites TerraSAR-X and NFIRE, both equipped with a Tesat LCT. The capability of the LCTs of measuring the signal intensity on a direct detection sensor and on a coherent sensor simultaneously makes the system unique for investigating the atmospheric distortion impacts. In this paper the main results of the SGL campaigns are presented, including BER performance for the uplink and downlink. Measured scintillation profiles versus elevation angles at different weather conditions are illustrated. Finally preliminary results of an adaptive optics system are presented that has been developed to be used in the transportable adaptive optical ground station (T-AOGS) acting as the counter terminal for the LCT mounted on Alphasat, a geostationary satellite of the European Space Agency (ESA), in autumn 2013.
All Optical Solution for Free Space Optics Point to Point Links
NASA Astrophysics Data System (ADS)
Hirayama, Daigo
Optical network systems are quickly replacing electrical network systems. Optical systems provide better bandwidth, faster data rates, better security to networks, and are less susceptible to noise. Free Space Optics (systems) still rely on numerous electrical systems such as the modulation and demodulation systems to convert optical signals to electrical signals for the transmitting laser. As the concept of the entirely optical network becomes more realizable, the electrical components of the FSO system will become a hindrance to communications. The focus of this thesis is to eliminate the electrical devices for the FSO point to point links by replacing them with optical devices. The concept is similar to an extended beam connector. However, where an extended beam connector deals with a gap of a few millimeters, my focus looks at distances from 100 meters to one kilometer. The aim is to achieve a detectable signal of 1nW at a distance of 500 meters at a wavelength of 1500-1600nm. This leads to application in building to building links and mobile networks. The research examines the design of the system in terms of generating the wave, the properties of the fiber feeding the wave, and the power necessary to achieve a usable distance. The simulation is executed in Code V by Synopsys, which is an industry standard to analyze optical systems. A usable device with a range of around 500m was achieved with an input power of 1mW. The approximations of the phase function resulted in some aberrations to the profile of the beam, but were not very detrimental to the function of the device. The removal of electrical devices from a FSO point to point link decreased the power used to establish the link and decreased the cost.
Simplified Architecture for Precise Aiming of a Deep-Space Communication Laser Transceiver
NASA Technical Reports Server (NTRS)
Ortiz, Gerard G.; Farr, William H.; Charles, Jeffrey R.
2011-01-01
The simplified architecture is a minimal system for a deep-space optical communications transceiver. For a deepspace optical communications link the simplest form of the transceiver requires (1) an efficient modulated optical source, (2) a point-ahead mechanism (PAM) to compensate for two-way light travel, (3) an aperture to reduce the divergence of the transmit laser communication signal and also to collect the uplink communication signal, and (4) a receive detector to sense the uplink communication signal. Additional components are introduced to mitigate for spacecraft microvibrations and to improve the pointing accuracy. The Canonical Transceiver implements this simplified architecture (see figure). A single photon-counting smart focal plane sensor combines acquisition, tracking, and forward link data detection functionality. This improves optical efficiency by eliminating channel splits. A transmit laser blind sensor (e.g. silicon with 1,550-nm beam) provides transmit beam-pointing feedback via the two-photon absorption (TPA) process. This vastly improves the transmit/receive isolation because only the focused transmit beam is detected. A piezoelectric tiptilt actuator implements the required point-ahead angle. This point-ahead mechanism has been demonstrated to have near zero quiescent power and is flight qualified. This architecture also uses an innovative 100-mHz resonant frequency passive isolation platform to filter spacecraft vibrations with voice coil actuators for active tip-tilt correction below the resonant frequency. The canonical deep-space optical communications transceiver makes synergistic use of innovative technologies to reduce size, weight, power, and cost. This optical transceiver can be used to retire risks associated with deep-space optical communications on a planetary pathfinder mission and is complementary to ongoing lunar and access link developments.
New trends in laser satellite communications: design and limitations
NASA Astrophysics Data System (ADS)
Císar, J.; Wilfert, O.; Fanjul-Vélez, F.; Ortega-Quijano, N.; Arce-Diego, J. L.
2008-11-01
Optical communications offer a capable alternative to radio frequency (RF) communications for applications where high data-rate is required. This technology is particularly promising and challenging in the field of future inter-satellite communications. The term laser satellite communications (LSC) stands for optical links between satellites and/or high altitude platforms (HAPs). However, optical links between an earth station and a satellite or HAPs can be also involved. This work gives an overview of nowadays laser satellite communications. Particularly, it is focused on the factors causing degradation of the optical beam in the atmosphere. If an optical link passes through the atmosphere, it suffers from various influences such as attenuation due to absorption and scattering, intensity fluctuations due to atmospheric turbulence and background radiation. Furthermore, platform vibrations cause mispointing and following tracking losses. Suitable devices and used pointing and tracking system for laser satellite communications are discussed. At the end, various scenarios of the optical links and calculations of their power link budgets and limitations are designed. Implemented software is used for calculation of optical links. This work proves that the Free Space Optics (FSO) systems on mobile platforms, like satellites and HAPs are a promising solution for future communication networks.
Achieving Operational Two-Way Laser Acquisition for OPALS Payload on the International Space Station
NASA Technical Reports Server (NTRS)
Abrahamson, Matthew J.; Oaida, Bogdan V.; Sindiy, Oleg; Biswas, Abhijit
2015-01-01
The Optical PAyload for Lasercomm Science (OPALS) experiment was installed on the International Space Station (ISS) in April 2014. Developed as a technology demonstration, its objective was to experiment with space-to-ground optical communications transmissions from Low Earth Orbit. More than a dozen successful optical links were established between a Wrightwood, California-based ground telescope and the OPALS flight terminal from June 2014 to September 2014. Each transmission required precise bi-directional pointing to be maintained between the space-based transmitter and ground-based receiver. This was accomplished by acquiring and tracking a laser beacon signal transmitted from the ground telescope to the OPALS flight terminal on the ISS. OPALS demonstrated the ability to nominally acquire the beacon within three seconds at 25deg elevation and maintain lock within 140 µrad (3(sigma)) for the full 150-second transmission duration while slewing at rates up to 1deg/sec. Additional acquisition attempts in low elevation and weather-challenged conditions provided valuable insight on the optical link robustness under off-nominal operational conditions.
Optical Communications Telescope Laboratory (OCTL) Support of Space to Ground Link Demonstrations
NASA Technical Reports Server (NTRS)
Biswas, Abhijit; Kovalik, Joseph M.; Wright, Malcolm W.; Roberts, William T.
2014-01-01
The NASA/JPL Optical Communication Telescope Laboratory (OCTL) was built for dedicated research and development toward supporting free-space laser communications from space. Recently, the OCTL telescope was used to support the Lunar Laser Communication Demonstration (LLCD) from the Lunar Atmospheric Dust Environment Explorer (LADEE) spacecraft and is planned for use with the upcoming Optical Payload for Lasercomm Science (OPALS) demonstration from the International Space Station (ISS). The use of OCTL to support these demonstrations is discussed in this report. The discussion will feed forward to ongoing and future space-to-ground laser communications as it advances toward becoming an operational capability.
Mobile free-space optical communications: a feasibility study of various battlefield scenarios
NASA Astrophysics Data System (ADS)
Harris, Alan; Al-Akkoumi, Mouhammad K.; Sluss, James J., Jr.
2012-06-01
Free Space Optics (FSO) technology was originally envisioned to be a viable solution for the provision of high bandwidth optical connectivity in the last mile of today's telecommunications infrastructure. Due to atmospheric limitations inherent to FSO technology, FSO is now widely envisioned as a solution for the provision of high bandwidth, temporary mobile communications links. The need for FSO communications links will increase as mobility is introduced to this technology. In this paper, a theoretical solution for adding mobility to FSO communication links is introduced. Three-dimensional power estimation studies are presented to represent mobile FSO transmission under various weather conditions. Three wavelengths, 0.85, 1.55 and 10 um, are tested and compared to illustrate the pros and cons of each source wavelength used for transmission, depending on prevalent weather conditions and atmospheric turbulence conditions. A simulation analysis of the transmission properties of the source wavelengths used in the study is shown.
Transmitter diversity verification on ARTEMIS geostationary satellite
NASA Astrophysics Data System (ADS)
Mata Calvo, Ramon; Becker, Peter; Giggenbach, Dirk; Moll, Florian; Schwarzer, Malte; Hinz, Martin; Sodnik, Zoran
2014-03-01
Optical feeder links will become the extension of the terrestrial fiber communications towards space, increasing data throughput in satellite communications by overcoming the spectrum limitations of classical RF-links. The geostationary telecommunication satellite Alphasat and the satellites forming the EDRS-system will become the next generation for high-speed data-relay services. The ESA satellite ARTEMIS, precursor for geostationary orbit (GEO) optical terminals, is still a privileged experiment platform to characterize the turbulent channel and investigate the challenges of free-space optical communication to GEO. In this framework, two measurement campaigns were conducted with the scope of verifying the benefits of transmitter diversity in the uplink. To evaluate this mitigation technique, intensity measurements were carried out at both ends of the link. The scintillation parameter is calculated and compared to theory and, additionally, the Fried Parameter is estimated by using a focus camera to monitor the turbulence strength.
Ultra-stable optical links for space and ground applications
NASA Astrophysics Data System (ADS)
Narbonneau, F.; Lours, M.; Daussy, C.; Lopez, O.; Clairon, A.; Santarelli, G.
2017-11-01
We have demonstrated the feasibility of a free-space ultra-stable optical link on a 3 meters test bench, operating at 100 MHz. With this type of link, it is possible to transfer a 100 MHz signal with a relative frequency stability of a few 10-14 at one second integration time, 10-16 at one day and a phase stability of a few picoseconds per day in presence of moderate mechanical vibrations and thermal fluctuations. The comparisons of modern clocks of distant (<100 km) Time and Frequency laboratories have a strong scientific interest. In this context we study a low noise frequency distribution via optical fibres. Some preliminary tests have been realized and the results are encouraging. We expect to transfer ultra stable oscillators with a relative frequency stability of a few 10-14 at one second integration time, 10-16 at one day.
NASA Astrophysics Data System (ADS)
Takenaka, Hideki; Koyama, Yoshisada; Akioka, Maki; Kolev, Dimitar; Iwakiri, Naohiko; Kunimori, Hiroo; Carrasco-Casado, Alberto; Munemasa, Yasushi; Okamoto, Eiji; Toyoshima, Morio
2016-03-01
Research and development of space optical communications is conducted in the National Institute of Information and Communications Technology (NICT). The NICT developed the Small Optical TrAnsponder (SOTA), which was embarked on a 50kg-class satellite and launched into a low earth orbit (LEO). The space-to-ground laser communication experiments have been conducted with the SOTA. Atmospheric turbulence causes signal fadings and becomes an issue to be solved in satellite-to-ground laser communication links. Therefore, as error-correcting functions, a Reed-Solomon (RS) code and a Low-Density Generator Matrix (LDGM) code are implemented in the communication system onboard the SOTA. In this paper, we present the in-orbit verification results of SOTA including the characteristic of the functions, the communication performance with the LDGM code via satellite-to-ground atmospheric paths, and the link budget analysis and the comparison between theoretical and experimental results.
NASA Astrophysics Data System (ADS)
Weng, Yi; He, Xuan; Wang, Junyi; Pan, Zhongqi
2017-01-01
Spatial-division multiplexing (SDM) techniques have been purposed to increase the capacity of optical fiber transmission links by utilizing multicore fibers or few-mode fibers (FMF). The most challenging impairments of SDMbased long-haul optical links mainly include modal dispersion and mode-dependent loss (MDL), whereas MDL arises from inline component imperfections, and breaks modal orthogonality thus degrading the capacity of multiple-inputmultiple- output (MIMO) receivers. To reduce MDL, optical approaches include mode scramblers and specialty fiber designs, yet these methods were burdened with high cost, yet cannot completely remove the accumulated MDL in the link. Besides, space-time trellis codes (STTC) were purposed to lessen MDL, but suffered from high complexity. In this work, we investigated the performance of space-time block-coding (STBC) scheme to mitigate MDL in SDM-based optical communication by exploiting space and delay diversity, whereas weight matrices of frequency-domain equalization (FDE) were updated heuristically using decision-directed recursive-least-squares (RLS) algorithm for convergence and channel estimation. The STBC was evaluated in a six-mode multiplexed system over 30-km FMF via 6×6 MIMO FDE, with modal gain offset 3 dB, core refractive index 1.49, numerical aperture 0.5. Results show that optical-signal-to-noise ratio (OSNR) tolerance can be improved via STBC by approximately 3.1, 4.9, 7.8 dB for QPSK, 16- and 64-QAM with respective bit-error-rates (BER) and minimum-mean-square-error (MMSE). Besides, we also evaluate the complexity optimization of STBC decoding scheme with zero-forcing decision feedback (ZFDF) equalizer by shortening the coding slot length, which is robust to frequency-selective fading channels, and can be scaled up for SDM systems with more dynamic channels.
AlGaInN laser diode technology for free-space and plastic optical fibre telecom applications
NASA Astrophysics Data System (ADS)
Najda, S. P.; Perlin, P.; Suski, T.; Marona, L.; Bóckowski, M.; Leszczyński, M.; Wisniewski, P.; Czernecki, R.; Kucharski, R.; Targowski, G.; Watson, S.; Kelly, A. E.; Watson, M. A.; Blanchard, P.; White, H.
2016-03-01
Gallium Nitride laser diodes fabricated from the AlGaInN material system is an emerging technology for laser sources from the UV to visible and is a potential key enabler for new system applications such as free-space (underwater & air bourne links) and plastic optical fibre telecommunications. We measure visible light (free-space and underwater) communications at high frequency (up to 2.5 Gbit/s) and in plastic optical fibre (POF) using a directly modulated GaN laser diode.
NASA Astrophysics Data System (ADS)
Zdravković, Nemanja; Cvetkovic, Aleksandra; Milic, Dejan; Djordjevic, Goran T.
2017-09-01
This paper analyses end-to-end packet error rate (PER) of a free-space optical decode-and-forward cooperative network over a gamma-gamma atmospheric turbulence channel in the presence of temporary random link blockage. Closed-form analytical expressions for PER are derived for the cases with and without transmission links being prone to blockage. Two cooperation protocols (denoted as 'selfish' and 'pilot-adaptive') are presented and compared, where the latter accounts for the presence of blockage and adapts transmission power. The influence of scintillation, link distance, average transmitted signal power, network topology and probability of an uplink and/or internode link being blocked are discussed when the destination applies equal gain combining. The results show that link blockage caused by obstacles can degrade system performance, causing an unavoidable PER floor. The implementation of the pilot-adaptive protocol improves performance when compared to the selfish protocol, diminishing internode link blockage and lowering the PER floor, especially for larger networks.
NASA Astrophysics Data System (ADS)
Prasad, Narasimha S.; Kratovil, Patrick T.; Tucker, Sara C.; Vallestero, Neil J.; Khusid, Mark
2004-01-01
A free-space, line-of-sight, ground-based optical link at 1.5 microns is attractive for tactical communications because it would provide eye-safety, covertness and jam-proof operation. However, the effects of atmospheric turbulence have to be appropriately mitigated for achieving acceptable bit-error-rate (BER) for reliable dissemination of information. Models to predict achievable BER at 1.5 microns for several beam propagation schemes that include beam scanning have been developed for various turbulence conditions. In this paper, we report performance characterization of free-space, high-data (>1Gb/s) rate beam propagation parameters at 1.5 microns for achieving BER reduction under the presence of turbulence. For standard free-space optical links, the mean SNR limits the achievable BER to lesser than 10-6 for Cn2 (structure constant of refractive index fluctuations) around 10-12 m-2/3. To validate these models, simultaneous measurements of structure constant of refractive index fluctuations, Cn2, and coherence diameter over tactical ranges have been carried out and analyzed. The effect of input beam conditioning to reduce BER levels have been explored. Furthermore, single and multiple transmit beams in conjunction with single and multiple detector arrangements have been examined. Based on these measurements, it is shown that the advantages of input beam conditioning coupled with modified receiver geometric characteristics would provide a path for BER reduction and hence, appreciable enhancements in data link reliability.
Spatial bandwidth considerations for optical communication through a free space propagation link.
Tyler, Glenn A
2011-12-01
This Letter concentrates on the transverse limitations imposed by a finite aperture optical propagation link that supports free space optical communication. Here it is assumed that a series of states, which are the spatial component of the message, are sent through the communication channel. The spatial bandwidth of the propagation link expressed as bits per transmitted photon is computed as the product of the average link efficiency times the entropy of the link. To facilitate the evaluation, it is assumed that the transmitted states are minimum energy loss orbital angular momentum states expressed in the form of f(nm)(r)exp(imθ), where the radial function is controlled to ensure that, for each quantum number denoted by the values of n and m, the minimum energy loss is obtained. The results illustrate that the bandwidth in units of bits per transmitted photon is very nearly equal to log(2)(N(2)(f)here log(2)(·) denotes the logarithm in base 2 and the Fresnel number, N(f)=(π/4)D(1)D(2)/(λz), where D(1) is the diameter of the transmitting aperture, D(2) is the diameter of the receiving aperture, λ is the wavelength of the light used, and z is the propagation distance. © 2011 Optical Society of America
El-Wakeel, Amr S; Mohammed, Nazmi A; Aly, Moustafa H
2016-09-10
In this work, a free space optical communication (FSO) link is proposed and utilized to explore and evaluate the FSO link performance under the joint occurrence of the atmospheric scattering and turbulence phenomena for 850 and 1550 nm operation. Diffraction and nondiffraction-limited systems are presented and evaluated for both wavelengths' operation, considering far-field conditions under different link distances. Bit error rate, pointing error angles, beam divergence angles, and link distance are the main performance indicators that are used to evaluate and compare the link performance under different system configurations and atmospheric phenomena combinations. A detailed study is performed to provide the merits of this work. For both far-field diffraction-limited and nondiffraction-limited systems, it is concluded that 1550 nm system operation is better than 850 nm for the whole presented joint occurrences of atmospheric scattering and turbulence.
24-26 GHz radio-over-fiber and free-space optics for fifth-generation systems.
Bohata, Jan; Komanec, Matěj; Spáčil, Jan; Ghassemlooy, Zabih; Zvánovec, Stanislav; Slavík, Radan
2018-03-01
This Letter outlines radio-over-fiber combined with radio-over-free-space optics (RoFSO) and radio frequency free-space transmission, which is of particular relevance for fifth-generation networks. Here, the frequency band of 24-26 GHz is adopted to demonstrate a low-cost, compact, and high-energy-efficient solution based on the direct intensity modulation and direct detection scheme. For our proof-of-concept demonstration, we use 64 quadrature amplitude modulation with a 100 MHz bandwidth. We assess the link performance by exposing the RoFSO section to atmospheric turbulence conditions. Further, we show that the measured minimum error vector magnitude (EVM) is 4.7% and also verify that the proposed system with the free-space-optics link span of 100 m under strong turbulence can deliver an acceptable EVM of <9% with signal-to-noise ratio levels of 22 dB and 10 dB with and without turbulence, respectively.
NASA Astrophysics Data System (ADS)
Mandal, Gour Chandra; Mukherjee, Rahul; Das, Binoy; Patra, Ardhendu Sekhar
2018-03-01
An innovative low cost reflective semiconductor amplifier (RSOA) based bidirectional Triple-play services (TPS) using wavelength division multiplexed radio on free-space-optics passive optical network (WDM-RoFSO-PON) is proposed and experimentally demonstrated to transmit data, voice and video services simultaneously. In this paper, the TPS (10 Gb/s data/voice and 1.49 Gb/s HDTV signal) are successfully transmitted over a 500 m free-space link in downstream and RSOA is utilized at the receiving site to broadcast 1.25 Gb/s data/voice signal over same free-space link in upstream by reusing the carrier, that makes the system cost-effective. High receiver sensitivity and signal-to-noise ratio (SNR), low bit-error-rate (BER) and low error vector magnitude (EVM), and excellent eye-diagrams in our proposed network build the system more reliable and stable with acceptable performance. Therefore, proposed WDM-RoFSO-PON could be the viable solution for future ubiquitous multiservice wireless network in the scenario of TPS.
Augmenting the SCaN Link Budget Tool with Validated Atmospheric Propagation
NASA Technical Reports Server (NTRS)
Steinkerchner, Leo; Welch, Bryan
2017-01-01
In any Earth-Space or Space-Earth communications link, atmospheric effects cause significant signal attenuation. In order to develop a communications system that is cost effective while meeting appropriate performance requirements, it is important to accurately predict these effects for the given link parameters. This project aimed to develop a Matlab(TradeMark) (The MathWorks, Inc.) program that could augment the existing Space Communications and Navigation (SCaN) Link Budget Tool with accurate predictions of atmospheric attenuation of both optical and radio-frequency signals according to the SCaN Optical Link Assessment Model Version 5 and the International Telecommunications Union, Radiocommunications Sector (ITU-R) atmospheric propagation loss model, respectively. When compared to data collected from the Advance Communications Technology Satellite (ACTS), the radio-frequency model predicted attenuation to within 1.3 dB of loss for 95 of measurements. Ultimately, this tool will be integrated into the SCaN Center for Engineering, Networks, Integration, and Communications (SCENIC) user interface in order to support analysis of existing SCaN systems and planning capabilities for future NASA missions.
Quick acquisition and recognition method for the beacon in deep space optical communications.
Wang, Qiang; Liu, Yuefei; Ma, Jing; Tan, Liying; Yu, Siyuan; Li, Changjiang
2016-12-01
In deep space optical communications, it is very difficult to acquire the beacon given the long communication distance. Acquisition efficiency is essential for establishing and holding the optical communication link. Here we proposed a quick acquisition and recognition method for the beacon in deep optical communications based on the characteristics of the deep optical link. To identify the beacon from the background light efficiently, we utilized the maximum similarity between the collecting image and the reference image for accurate recognition and acquisition of the beacon in the area of uncertainty. First, the collecting image and the reference image were processed by Fourier-Mellin. Second, image sampling and image matching were applied for the accurate positioning of the beacon. Finally, the field programmable gate array (FPGA)-based system was used to verify and realize this method. The experimental results showed that the acquisition time for the beacon was as fast as 8.1s. Future application of this method in the system design of deep optical communication will be beneficial.
InGaAs multiple quantum well modulating retro-reflector for free-space optical communications
NASA Astrophysics Data System (ADS)
Rabinovich, William S.; Gilbreath, G. Charmaine; Goetz, Peter G.; Mahon, Rita; Katzer, D. Scott; Ikossi-Anastasiou, Kiki; Binari, Steven C.; Meehan, Timothy J.; Stell, Mena F.; Sokolsky, Ilene; Vasquez, John A.; Vilcheck, Michael J.
2002-01-01
Modulating retro-reflectors provide means for free space optical communication without the need for a laser, telescope or pointer tracker on one end of the link. These systems work by coupling a retro-reflector with an electro- optic shutter. The modulating retro-reflector is then interrogated by a cw laser beam from a conventional optical communications system and returns a modulated signal beam to the interrogator. Over the last few years the Naval Research Laboratory has developed modulating retro-reflector based on corner cubes and large area Transmissive InGaAs multiple quantum well modulators. These devices can allow optical links at speeds up to about 10 Mbps. We will discuss the critical performance characteristics of such systems including modulating rate, power consumption, optical contrast ratio and operating wavelength. In addition a new modulating retro-reflector architecture based upon cat s eye retroreflectors will be discussed. This architecture has the possibility for data rates of hundreds of megabits per second at power consumptions below 100 mW.
NASA Astrophysics Data System (ADS)
Gregory, M.; Heine, F.; Kämpfner, H.; Meyer, R.; Fields, R.; Lunde, C.
2017-11-01
The increasing demand on high speed communication networks has stimulated the development of optical free space data transmission during the last years. TESAT has developed a laser communication terminal (LCT) that fulfills the need of a power efficient system whose capability has been successfully demonstrated at bidirectional space-to-space links and bidirectional space-to-ground links (SGLs) at a data rate of 5.625 GBit/s with a homodyne detection scheme and a BPSK modulation format. In comparison to a direct detection system, the homodyne detection scheme works as a bandpass filter. The transmission is immune to false light and even data transmission with the sun in the receiver field of view (FOV) is possible. Compared to common RF transmission which is implemented on spacecrafts for data transmission, optical transmission provides not only higher transmission rates (factor 10) but also shows excellent security features since the laser beams directivity making it immune to interception.
Entangled quantum key distribution over two free-space optical links.
Erven, C; Couteau, C; Laflamme, R; Weihs, G
2008-10-13
We report on the first real-time implementation of a quantum key distribution (QKD) system using entangled photon pairs that are sent over two free-space optical telescope links. The entangled photon pairs are produced with a type-II spontaneous parametric down-conversion source placed in a central, potentially untrusted, location. The two free-space links cover a distance of 435 m and 1,325 m respectively, producing a total separation of 1,575 m. The system relies on passive polarization analysis units, GPS timing receivers for synchronization, and custom written software to perform the complete QKD protocol including error correction and privacy amplification. Over 6.5 hours during the night, we observed an average raw key generation rate of 565 bits/s, an average quantum bit error rate (QBER) of 4.92%, and an average secure key generation rate of 85 bits/s.
Transmitter pointing loss calculation for free-space optical communications link analyses
NASA Technical Reports Server (NTRS)
Marshall, William K.
1987-01-01
In calculating the performance of free-space optical communications links, the transmitter pointing loss is one of the two most important factors. It is shown in this paper that the traditional formula for the instantaneous pointing loss (i.e., for the transmitter telescope far-field beam pattern) is quite inaccurate. A more accurate and practical approximation is developed in which the pointing loss is calculated using a Taylor series approximation. The four-term series is shown to be accurate to 0.1 dB for the theta angles not greater than 0.9 lambda/D (wavelength/telescope diameter).
Negative Avalanche Feedback Detectors for Photon-Counting Optical Communications
NASA Technical Reports Server (NTRS)
Farr, William H.
2009-01-01
Negative Avalanche Feedback photon counting detectors with near-infrared spectral sensitivity offer an alternative to conventional Geiger mode avalanche photodiode or phototube detectors for free space communications links at 1 and 1.55 microns. These devices demonstrate linear mode photon counting without requiring any external reset circuitry and may even be operated at room temperature. We have now characterized the detection efficiency, dark count rate, after-pulsing, and single photon jitter for three variants of this new detector class, as well as operated these uniquely simple to use devices in actual photon starved free space optical communications links.
Amaya, N; Irfan, M; Zervas, G; Nejabati, R; Simeonidou, D; Sakaguchi, J; Klaus, W; Puttnam, B J; Miyazawa, T; Awaji, Y; Wada, N; Henning, I
2013-04-08
We present the first elastic, space division multiplexing, and multi-granular network based on two 7-core MCF links and four programmable optical nodes able to switch traffic utilising the space, frequency and time dimensions with over 6000-fold bandwidth granularity. Results show good end-to-end performance on all channels with power penalties between 0.75 dB and 3.7 dB.
NASA Astrophysics Data System (ADS)
Wang, Xingle; Kiamilev, Fouad; Gui, Ping; Wang, Xiaoqing; Ekman, Jeremy; Zuo, Yongrong; Blankenberg, Jason; Haney, Michael
2006-06-01
A 2 Gb/s0.5 μm complementary metal-oxide semiconductor optical transceiver designed for board- or backplane level power-efficient interconnections is presented. The transceiver supports optical wake-on-link (OWL), an event-driven dynamic power-on technique. Depending on external events, the transceiver resides in either the active mode or the sleep mode and switches accordingly. The active-to-sleep transition shuts off the normal, gigabit link and turns on dedicated circuits to establish a low-power (~1.8 mW), low data rate (less than 100 Mbits/s) link. In contrast the normal, gigabit link consumes over 100 mW. Similarly the sleep-to-active transition shuts off the low-power link and turns on the normal, gigabit link. The low-power link, sharing the same optical channel with the normal, gigabit link, is used to achieve transmitter/receiver pair power-on synchronization and greatly reduces the power consumption of the transceiver. A free-space optical platform was built to evaluate the transceiver performance. The experiment successfully demonstrated the event-driven dynamic power-on operation. To our knowledge, this is the first time a dynamic power-on scheme has been implemented for optical interconnects. The areas of the circuits that implement the low-power link are approximately one-tenth of the areas of the gigabit link circuits.
Ahmed, Nisar; Zhao, Zhe; Li, Long; Huang, Hao; Lavery, Martin P J; Liao, Peicheng; Yan, Yan; Wang, Zhe; Xie, Guodong; Ren, Yongxiong; Almaiman, Ahmed; Willner, Asher J; Ashrafi, Solyman; Molisch, Andreas F; Tur, Moshe; Willner, Alan E
2016-03-01
We experimentally investigate the potential of using 'self-healing' Bessel-Gaussian beams carrying orbital-angular-momentum to overcome limitations in obstructed free-space optical and 28-GHz millimetre-wave communication links. We multiplex and transmit two beams (l = +1 and +3) over 1.4 metres in both the optical and millimetre-wave domains. Each optical beam carried 50-Gbaud quadrature-phase-shift-keyed data, and each millimetre-wave beam carried 1-Gbaud 16-quadrature-amplitude-modulated data. In both types of links, opaque disks of different sizes are used to obstruct the beams at different transverse positions. We observe self-healing after the obstructions, and assess crosstalk and power penalty when data is transmitted. Moreover, we show that Bessel-Gaussian orbital-angular-momentum beams are more tolerant to obstructions than non-Bessel orbital-angular-momentum beams. For example, when obstructions that are 1 and 0.44 the size of the l = +1 beam, are placed at beam centre, optical and millimetre-wave Bessel-Gaussian beams show ~6 dB and ~8 dB reduction in crosstalk, respectively.
Ahmed, Nisar; Zhao, Zhe; Li, Long; Huang, Hao; Lavery, Martin P. J.; Liao, Peicheng; Yan, Yan; Wang, Zhe; Xie, Guodong; Ren, Yongxiong; Almaiman, Ahmed; Willner, Asher J.; Ashrafi, Solyman; Molisch, Andreas F.; Tur, Moshe; Willner, Alan E.
2016-01-01
We experimentally investigate the potential of using ‘self-healing’ Bessel-Gaussian beams carrying orbital-angular-momentum to overcome limitations in obstructed free-space optical and 28-GHz millimetre-wave communication links. We multiplex and transmit two beams (l = +1 and +3) over 1.4 metres in both the optical and millimetre-wave domains. Each optical beam carried 50-Gbaud quadrature-phase-shift-keyed data, and each millimetre-wave beam carried 1-Gbaud 16-quadrature-amplitude-modulated data. In both types of links, opaque disks of different sizes are used to obstruct the beams at different transverse positions. We observe self-healing after the obstructions, and assess crosstalk and power penalty when data is transmitted. Moreover, we show that Bessel-Gaussian orbital-angular-momentum beams are more tolerant to obstructions than non-Bessel orbital-angular-momentum beams. For example, when obstructions that are 1 and 0.44 the size of the l = +1 beam, are placed at beam centre, optical and millimetre-wave Bessel-Gaussian beams show ~6 dB and ~8 dB reduction in crosstalk, respectively. PMID:26926068
NASA Technical Reports Server (NTRS)
Nappier, Jennifer M.; Zeleznikar, Daniel J.; Wroblewski, Adam C.; Tokars, Roger P.; Schoenholz, Bryan L.; Lantz, Nicholas C.
2017-01-01
The Integrated Radio and Optical Communications (iROC) project at the National Aeronautics and Space Administration (NASA) is investigating the merits of a hybrid radio frequency (RF) and optical communication system for deep space missions. In an effort to demonstrate the feasibility and advantages of a hybrid RF/Optical software defined radio (SDR), a laboratory prototype was assembled from primarily commercial-off-the-shelf (COTS) hardware components. This COTS platform has been used to demonstrate simultaneous transmission of the radio and optical communications waveforms through to the physical layer (telescope and antenna). This paper details the hardware and software used in the platform and various measures of its performance. A laboratory optical receiver platform has also been assembled in order to demonstrate hybrid free space links in combination with the transmitter.
Passive Optical Link Budget for LEO Space Surveillance
NASA Astrophysics Data System (ADS)
Wagner, P.; Hasenohr, T.; Hampf, D.; Sproll, F.; Humbert, L.; Rodmann, J.; Riede, W.
The rising space debris population is becoming an increasing risk for space assets. Even objects with the size of 10mm can cause major damages to active spacecraft. Especially the orbits around 800km high are densely populated with space debris objects. To assess the risk of collisions with active satellites, the Earth orbits need to be surveyed permanently. Space debris laser ranging systems for example can deliver highly accurate positional data for precise orbit determination. Therefor a priori information about the objects coarse trajectory is needed. Such initial orbit information can be provided by wide angle optical sensors. The Institute of Technical Physics at the German Aerospace Center in Stuttgart runs an observatory to perform passive as well as laser optical measurements to LEO objects. In order to detect unknown objects, a wide-angle imaging system with a field of view in the range of 5° to 15° equipped with an astronomical CCD camera and a commercial off the shelf (COTS) lens was designed to continuously observe the night sky for LEO objects. This paper presents the passive optical link budget for observing LEO objects to show the benefits and limits of the physical performance of an optical surveillance system. A compact COTS system is able to detect objects with a couple of decimeters in size while a large aperture telescope can detect objects with diameters below 10cm. Additionally, data captured by a passive optical staring system with a 10 cm aperture was analyzed. It is shown that 90% of all objects with a radar cross section larger than 2m² are detected with such a system during twilight conditions. The smallest detected LEO object with this system has a size of 0.32m x 0.32m x 0.26m. These measurements are compared to the developed link budget which allows an estimation of the performance of larger systems.
Deep Space Optical Link ARQ Performance Analysis
NASA Technical Reports Server (NTRS)
Clare, Loren; Miles, Gregory
2016-01-01
Substantial advancements have been made toward the use of optical communications for deep space exploration missions, promising a much higher volume of data to be communicated in comparison with present -day Radio Frequency (RF) based systems. One or more ground-based optical terminals are assumed to communicate with the spacecraft. Both short-term and long-term link outages will arise due to weather at the ground station(s), space platform pointing stability, and other effects. To mitigate these outages, an Automatic Repeat Query (ARQ) retransmission method is assumed, together with a reliable back channel for acknowledgement traffic. Specifically, the Licklider Transmission Protocol (LTP) is used, which is a component of the Disruption-Tolerant Networking (DTN) protocol suite that is well suited for high bandwidth-delay product links subject to disruptions. We provide an analysis of envisioned deep space mission scenarios and quantify buffering, latency and throughput performance, using a simulation in which long-term weather effects are modeled with a Gilbert -Elliot Markov chain, short-term outages occur as a Bernoulli process, and scheduled outages arising from geometric visibility or operational constraints are represented. We find that both short- and long-term effects impact throughput, but long-term weather effects dominate buffer sizing and overflow losses as well as latency performance.
Electronic-To-Optical-To-Electronic Packet-Data Conversion
NASA Technical Reports Server (NTRS)
Monacos, Steve
1996-01-01
Space-time multiplexer (STM) cell-based communication system designed to take advantage of both high throughput attainable in optical transmission links and flexibility and functionality of electronic processing, storage, and switching. Long packets segmented and transmitted optically by wavelength-division multiplexing. Performs optoelectronic and protocol conversion between electronic "store-and-forward" protocols and optical "hot-potato" protocols.
Optical Filter Assembly for Interplanetary Optical Communications
NASA Technical Reports Server (NTRS)
Chen, Yijiang; Hemmati, Hamid
2013-01-01
Ground-based, narrow-band, high throughput optical filters are required for optical links from deep space. We report on the development of a tunable filter assembly that operates at telecommunication window of 1550 nanometers. Low insertion loss of 0.5 decibels and bandwidth of 90 picometers over a 2000 nanometers operational range of detectors has been achieved.
Laser communication experiments between Sota and Meo optical ground station
NASA Astrophysics Data System (ADS)
Artaud, G.,; Issler, J.-L.; Védrenne, N.; Robert, C.; Petit, C.; Samain, E.; Phung, D.-H.; Maurice, N.; Toyoshima, M.; Kolev, D.
2017-09-01
Optical transmissions between earth and space have been identified as key technologies for future high data rate transmissions between satellites and ground. CNES is investigating the use of optics both for High data rate direct to Earth transfer from observation satellites in LEO, and for future telecommunications applications using optics for the high capacity Gateway link.
Atmospheric transmission calculations for optical frequencies
NASA Technical Reports Server (NTRS)
Shaik, Kamran
1989-01-01
A quantitative study of the transmission loss through the entire atmosphere for optical frequencies likely to be used for an earth-space communication link using existing data bases on scattering and absorption characteristics of the atmospheric constituents is presented.
Li, Ming; Cvijetic, Milorad
2015-02-20
We evaluate the performance of the coherent free space optics (FSO) employing quadrature array phase-shift keying (QPSK) modulation over the maritime atmosphere with atmospheric turbulence compensated by use of adaptive optics (AO). We have established a comprehensive FSO channel model for maritime conditions and also made a comprehensive comparison of performance between the maritime and terrestrial atmospheric links. The FSO links are modeled based on the intensity attenuation resulting from scattering and absorption effects, the log-amplitude fluctuations, and the phase distortions induced by turbulence. The obtained results show that the FSO system performance measured by the bit-error-rate (BER) can be significantly improved when the optimization of the AO system is achieved. Also, we find that the higher BER is observed in the maritime FSO channel with atmospheric turbulence, as compared to the terrestrial FSO systems if they experience the same turbulence strength.
Liu, Xiang; Chandrasekhar, S; Winzer, P J; Chraplyvy, A R; Tkach, R W; Zhu, B; Taunay, T F; Fishteyn, M; DiGiovanni, D J
2012-08-13
Coherent superposition of light waves has long been used in various fields of science, and recent advances in digital coherent detection and space-division multiplexing have enabled the coherent superposition of information-carrying optical signals to achieve better communication fidelity on amplified-spontaneous-noise limited communication links. However, fiber nonlinearity introduces highly correlated distortions on identical signals and diminishes the benefit of coherent superposition in nonlinear transmission regime. Here we experimentally demonstrate that through coordinated scrambling of signal constellations at the transmitter, together with appropriate unscrambling at the receiver, the full benefit of coherent superposition is retained in the nonlinear transmission regime of a space-diversity fiber link based on an innovatively engineered multi-core fiber. This scrambled coherent superposition may provide the flexibility of trading communication capacity for performance in future optical fiber networks, and may open new possibilities in high-performance and secure optical communications.
Design of compact off-axis four-mirror anastigmatic system for space communications
NASA Astrophysics Data System (ADS)
Zhao, Fa-cai; Sun, Quan-she; Chen, Kun-feng; Zhu, Xing-bang; Wang, Shao-shui; Wang, Guo-quan; Zheng, Xiang-liang
2013-08-01
The deployment of advanced hyperspectral imaging and other Earth sensing instruments onboard Earth observing satellites is driving the demand for high-data rate communications. Space laser communications technology offers the potential for significantly increasing in data return capability from space to Earth. Compared to the current state of the art radio frequency communications links, lasercom links operate at much higher carrier frequencies. The use of higher carrier frequencies implies a much smaller diffraction loss, which in turn, results in a much higher efficiency in delivering the signal energy. Optical communications meet the required data rates with small, low-mass, and low-power communications packages. The communications optical system assembly typically consists of a front aperture, reflection or refraction type telescope, with or without a solar rejection filter, aft optics, fine-pointing mirrors, and array detectors. Optical system used in space laser communications usually has long focal length, large aperture compared with common optical systems. So the reflective optical system is widely used. An unobstructed four-mirror anastigmatic telescope system was proposed, which was modified based on the theory about geometry optics of common-axis three-mirror systems. Intermediate image was between secondary and tertiary mirror. In order to fold the optical path, four-mirror was designed by adding the plane reflective mirror at intermediate image. The design was analyzed, then a system with effective aperture of 200mm and field of view of 1.0°x1.0° was designed, total length and magnification are 700mm and 20, respectively. The system has advantages of large magnification, relative short physical size and loose manufacturing tolerances.
NASA Astrophysics Data System (ADS)
Girach, Khalid; Bouazza-Marouf, K.; Kerr, David; Hewit, Jim
1994-11-01
The paper describes the investigations carried out to implement a line of sight control and communication link for a mobile robot vehicle for use in structured nuclear semi-hazardous environments. Line of sight free space optical laser communication links for remote teleoperation have important applications in hazardous environments. They have certain advantages over radio/microwave links and umbilical control such as greater protection against generation of and susceptance to electro-magnetic fields. The cable-less environment provides increased integrity and mechanical freedom to the mobile robot. However, to maintain the communication link, continuous point and tracking is required between the base station and the mobile vehicle. This paper presents a novel two ended optical tracking system utilizing the communication laser beams and photodetectors. The mobile robot is a six wheel drive vehicle with a manipulator arm which can operate in a variety of terrain. The operator obtains visual feedback information from cameras placed on the vehicle. From this information, the speed and direction of the vehicle can be controlled from a joystick panel. We describe the investigations carried out for the communication of analogue video and digital data signals over the laser link for speed and direction control.
Wright, Malcolm W; Morris, Jeffery F; Kovalik, Joseph M; Andrews, Kenneth S; Abrahamson, Matthew J; Biswas, Abhijit
2015-12-28
An adaptive optics (AO) testbed was integrated to the Optical PAyload for Lasercomm Science (OPALS) ground station telescope at the Optical Communications Telescope Laboratory (OCTL) as part of the free space laser communications experiment with the flight system on board the International Space Station (ISS). Atmospheric turbulence induced aberrations on the optical downlink were adaptively corrected during an overflight of the ISS so that the transmitted laser signal could be efficiently coupled into a single mode fiber continuously. A stable output Strehl ratio of around 0.6 was demonstrated along with the recovery of a 50 Mbps encoded high definition (HD) video transmission from the ISS at the output of the single mode fiber. This proof of concept demonstration validates multi-Gbps optical downlinks from fast slewing low-Earth orbiting (LEO) spacecraft to ground assets in a manner that potentially allows seamless space to ground connectivity for future high data-rates network.
FireFly: reconfigurable optical wireless networking data centers
NASA Astrophysics Data System (ADS)
Kavehrad, Mohsen; Deng, Peng; Gupta, H.; Longtin, J.; Das, S. R.; Sekar, V.
2017-01-01
We explore a novel, free-space optics based approach for building data center interconnects. Data centers (DCs) are a critical piece of today's networked applications in both private and public sectors. The key factors that have driven this trend are economies of scale, reduced management costs, better utilization of hardware via statistical multiplexing, and the ability to elastically scale applications in response to changing workload patterns. A robust DC network fabric is fundamental to the success of DCs and to ensure that the network does not become a bottleneck for high-performance applications. In this context, DC network design must satisfy several goals: high performance (e.g., high throughput and low latency), low equipment and management cost, robustness to dynamic traffic patterns, incremental expandability to add new servers or racks, and other practical concerns such as cabling complexity, and power and cooling costs. Current DC network architectures do not seem to provide a satisfactory solution, with respect to the above requirements. In particular, traditional static (wired) networks are either overprovisioned or oversubscribed. Recent works have tried to overcome the above limitations by augmenting a static (wired) "core" with some flexible links (RF-wireless or optical). These augmented architectures show promise, but offer only incremental improvement in performance. Specifically, RFwireless based augmented solutions also offer only limited performance improvement, due to inherent interference and range constraints of RF links. This paper explores an alternative design point—a fully flexible and all-wireless DC interrack network based on free-space optical (FSO) links. We call this FireFly as in; Free-space optical Inter-Rack nEtwork with high FLexibilitY. We will present our designs and tests using various configurations that can help the performance and reliability of the FSO links.
NASA Technical Reports Server (NTRS)
Nappier, Jennifer M.; Zeleznikar, Daniel J.; Wroblewski, Adam C.; Tokars, Roger P.; Schoenholz, Bryan L.; Lantz, Nicholas C.
2016-01-01
The Integrated Radio and Optical Communications (iROC) project at the National Aeronautics and Space Administration (NASA) is investigating the merits of a hybrid radio frequency (RF) and optical communication system for deep space missions. In an effort to demonstrate the feasibility and advantages of a hybrid RFOptical software defined radio (SDR), a laboratory prototype was assembled from primarily commercial-off-the-shelf (COTS) hardware components. This COTS platform has been used to demonstrate simultaneous transmission of the radio and optical communications waveforms through to the physical layer (telescope and antenna). This paper details the hardware and software used in the platform and various measures of its performance. A laboratory optical receiver platform has also been assembled in order to demonstrate hybrid free space links in combination with the transmitter.
NASA Astrophysics Data System (ADS)
Wasiczko, Linda M.; Smolyaninov, Igor I.; Davis, Christopher C.
2004-01-01
Free space optics (FSO) is one solution to the bandwidth bottleneck resulting from increased demand for broadband access. It is well known that atmospheric turbulence distorts the wavefront of a laser beam propagating through the atmosphere. This research investigates methods of reducing the effects of intensity scintillation and beam wander on the performance of free space optical communication systems, by characterizing system enhancement using either aperture averaging techniques or nonimaging optics. Compound Parabolic Concentrators, nonimaging optics made famous by Winston and Welford, are inexpensive elements that may be easily integrated into intensity modulation-direct detection receivers to reduce fading caused by beam wander and spot breakup in the focal plane. Aperture averaging provides a methodology to show the improvement of a given receiver aperture diameter in averaging out the optical scintillations over the received wavefront.
Simulative Analysis of Inter-Satellite Optical Wireless Communication (IsOWC) Link with EDFA
NASA Astrophysics Data System (ADS)
Singh, Mehtab; Singh, Navpreet
2018-04-01
In this paper, simulative analysis and performance comparison of different EDFA (Erbium-doped fiber amplifier) configurations in a 10 Gbps inter-satellite optical wireless communication (IsOWC) link have been reported for a 5,000 km long link and 1,550 nm operating wavelength. The results show that system in which both pre-amplifier and booster amplifier stages are implemented simultaneously outperforms systems with only pre-amplifier and booster amplifier stage. From the results, it can be seen that by deploying a transmission power level of 15 dBm, a link distance of 9,600 km can be achieved with a quality factor of 6.01 dB and BER (Bit error rate) of 1.07×10-9. Also, in this paper, the performance of an 8×7 Gbps WDM-IsOWC link has been reported. The results show that by using both EDFA pre-amplifier and booster amplifier stages, a link distance of 8,000 km for each channel is achievable with desired performance levels (Q≥6 and BER≤10-9). Also, the effect of channel spacing on the performance of WDM-IsOWC link is investigated. The results show that the received signal has acceptable performance levels when the channel spacing is 100 GHz but when the channel spacing is reduced to 80 GHz, the quality of the received signal degrades and link distance decreases.
Optoelectronics research for communication programs at the Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Krainak, Michael A.
1991-01-01
Current optoelectronics research and development of high-power, high-bandwidth laser transmitters, high-bandwidth, high-sensitivity optical receivers, pointing, acquisition and tracking components, and experimental and theoretical system modeling at the NASA Goddard Space Flight Center is reviewed. Program hardware and space flight milestones are presented. It is believed that these experiments will pave the way for intersatellite optical communications links for both the NASA Advanced Tracking and Data Relay Satellite System and commercial users in the 21st century.
Optimetrics for Precise Navigation
NASA Technical Reports Server (NTRS)
Yang, Guangning; Heckler, Gregory; Gramling, Cheryl
2017-01-01
Optimetrics for Precise Navigation will be implemented on existing optical communication links. The ranging and Doppler measurements are conducted over communication data frame and clock. The measurement accuracy is two orders of magnitude better than TDRSS. It also has other advantages of: The high optical carrier frequency enables: (1) Immunity from ionosphere and interplanetary Plasma noise floor, which is a performance limitation for RF tracking; and (2) High antenna gain reduces terminal size and volume, enables high precision tracking in Cubesat, and in deep space smallsat. High Optical Pointing Precision provides: (a) spacecraft orientation, (b) Minimal additional hardware to implement Precise Optimetrics over optical comm link; and (c) Continuous optical carrier phase measurement will enable the system presented here to accept future optical frequency standard with much higher clock accuracy.
Louri, A; Furlonge, S; Neocleous, C
1996-12-10
A prototype of a novel topology for scaleable optical interconnection networks called the optical multi-mesh hypercube (OMMH) is experimentally demonstrated to as high as a 150-Mbit/s data rate (2(7) - 1 nonreturn-to-zero pseudo-random data pattern) at a bit error rate of 10(-13)/link by the use of commercially available devices. OMMH is a scaleable network [Appl. Opt. 33, 7558 (1994); J. Lightwave Technol. 12, 704 (1994)] architecture that combines the positive features of the hypercube (small diameter, connectivity, symmetry, simple routing, and fault tolerance) and the mesh (constant node degree and size scaleability). The optical implementation method is divided into two levels: high-density local connections for the hypercube modules, and high-bit-rate, low-density, long connections for the mesh links connecting the hypercube modules. Free-space imaging systems utilizing vertical-cavity surface-emitting laser (VCSEL) arrays, lenslet arrays, space-invariant holographic techniques, and photodiode arrays are demonstrated for the local connections. Optobus fiber interconnects from Motorola are used for the long-distance connections. The OMMH was optimized to operate at the data rate of Motorola's Optobus (10-bit-wide, VCSEL-based bidirectional data interconnects at 150 Mbits/s). Difficulties encountered included the varying fan-out efficiencies of the different orders of the hologram, misalignment sensitivity of the free-space links, low power (1 mW) of the individual VCSEL's, and noise.
Fiber-Coupled Wide Field of View Optical Receiver for High Speed Space Communication
NASA Astrophysics Data System (ADS)
Suddath, Shannon N.
Research groups at NASA Glenn Research Center are interested in improving data rates on the International Space Station (ISS) using a free-space optical (FSO) link. However, known flexure of the ISS structure is expected to cause misalignment of the FSO link. Passive-control designs for mitigating misalignment are under investigation, including using a fiber-bundle for improved field of view. The designs must overcome the obstacle of coupling directly to fiber, rather than a photodetector, as NASA will maintain the use of small form-factor pluggable optical transceivers (SFPs) in the ISS network. In this thesis, a bundle-based receiver capable of coupling directly to fiber is designed, simulated, and tested in lab. Two 3-lens systems were evaluated for power performance in the lab, one with a 20 mm focal length aspheric lens and the other with a 50 mm focal length aspheric lens. The maximum output power achieved was 8 muW.
Zhou, Ting; Jia, Hao; Ding, Jianfeng; Zhang, Lei; Fu, Xin; Yang, Lin
2018-04-02
We present a silicon thermo-optic 2☓2 four-mode optical switch optimized for optical space switching plus local optical mode switching. Four asymmetric directional couplers are utilized for mode multiplexing and de-multiplexing. Sixteen 2☓2 single-mode optical switches based on balanced thermally tunable Mach-Zehnder interferometers are exploited for switching function. The measured insertion losses are 8.0~12.2 dB and the optical signal-to-noise ratios are larger than 11.2 dB in the wavelength range of 1525~1565 nm. The optical links in "all-bar" and "all-cross" states exhibit less than 2.0 dB and 1.4 dB power penalties respectively below 10 -9 bit error rates for 40 Gbps data transmission.
Analysis of link performance for the FOENEX laser communications system
NASA Astrophysics Data System (ADS)
Juarez, Juan C.; Young, David W.; Venkat, Radha A.; Brown, David M.; Brown, Andrea M.; Oberc, Rachel L.; Sluz, Joseph E.; Pike, H. Alan; Stotts, Larry B.
2012-06-01
A series of experiments were conducted to validate the performance of the free-space optical communications (FSOC) subsystem under DARPA's FOENEX program. Over six days, bidirectional links at ranges of 10 and 17 km were characterized during different periods of the day to evaluate link performance. This paper will present the test configuration, evaluate performance of the FSOC subsystem against a variety of characterization approaches, and discuss the impact of the results, particularly with regards to the optical terminals. Finally, this paper will summarize the impact of turbulence conditions on the FSOC subsystem and present methods for estimating performance under different link distances and turbulence conditions.
An Evaluation of Spacecraft Pointing Requirements for Optically Linked Satellite Systems
NASA Astrophysics Data System (ADS)
Gunter, B. C.; Dahl, T.
2017-12-01
Free space optical (laser) communications can offer certain advantages for many remote sensing applications, due primarily to the high data rates (Gb/s) and energy efficiences possible from such systems. An orbiting network of crosslinked satellites could potentially relay imagery and other high-volume data at near real-time intervals. To achieve this would require satellites actively tracking one or more satellites, as well as ground terminals. The narrow laser beam width utilized by the transmitting satellites pose technical challenges due to the higher pointing accuracy required for effective signal transmission, in particular if small satellites are involved. To better understand what it would take to realize such a small-satellite laser communication network, this study investigates the pointing requirements needed to support optical data links. A general method for characterizing pointing tolerance, angle rates and accelerations for line of site vectors is devised and applied to various case studies. Comparisons with state-of-the-art small satellite attitude control systems are also made to assess what is possible using current technology. The results help refine the trade space for designs for optically linked networks from the hardware aboard each satellite to the design of the satellite constellation itself.
Lee, It Ee; Ghassemlooy, Zabih; Ng, Wai Pang; Khalighi, Mohammad-Ali
2013-02-01
Joint beam width and spatial coherence length optimization is proposed to maximize the average capacity in partially coherent free-space optical links, under the combined effects of atmospheric turbulence and pointing errors. An optimization metric is introduced to enable feasible translation of the joint optimal transmitter beam parameters into an analogous level of divergence of the received optical beam. Results show that near-ideal average capacity is best achieved through the introduction of a larger receiver aperture and the joint optimization technique.
Passive long range acousto-optic sensor
NASA Astrophysics Data System (ADS)
Slater, Dan
2006-08-01
Alexander Graham Bell's photophone of 1880 was a simple free space optical communication device that used the sun to illuminate a reflective acoustic diaphragm. A selenium photocell located 213 m (700 ft) away converted the acoustically modulated light beam back into sound. A variation of the photophone is presented here that uses naturally formed free space acousto-optic communications links to provide passive multichannel long range acoustic sensing. This system, called RAS (remote acoustic sensor), functions as a long range microphone with a demonstrated range in excess of 40 km (25 miles).
Li, Long; Zhang, Runzhou; Xie, Guodong; Ren, Yongxiong; Zhao, Zhe; Wang, Zhe; Liu, Cong; Song, Haoqian; Pang, Kai; Bock, Robert; Tur, Moshe; Willner, Alan E
2018-05-15
In this Letter, we experimentally demonstrate beaconless beam displacement tracking for free-space optical communication link multiplexing multiple orbital angular momentum (OAM) beams, where the data-carrying OAM beams are used for position detection. 400 Gbit/s data transmission is demonstrated under emulated lateral displacement of up to ±10 mm with power penalties of less than 3 dB for all channels. Channel crosstalk is reduced by the beam tracking system to below -18 dB. Moreover, we investigate using a Gaussian beacon for beam displacement tracking, and achieve similar channel crosstalk and power penalties, compared with using the beaconless beam tracking.
Surof, Janis; Poliak, Juraj; Calvo, Ramon Mata
2017-06-01
Binary phase-shift keying optical transmission in the C-band with coherent intradyne reception is demonstrated over a long-range (10.45 km) link through the atmosphere. The link emulates representative channel conditions for geostationary optical feeder uplinks in satellite communications. The digital signal processing used in recovering the transmitted data and the performed measurements are described. Finally, the bit error rate results for 10 Gbit/s, 20 Gbit/s, and 30 Gbit/s of the outdoor experiments are presented and compared with back-to-back measurements and theory.
Retro-detective control structures for free-space optical communication links.
Jin, Xian; Barg, Jason E; Holzman, Jonathan F
2009-12-21
A corner-cube-based retro-detection photocell is introduced. The structure consists of three independent and mutually perpendicular photodiodes (PDs), whose differential photocurrents can be used to probe the alignment state of incident beams. These differential photocurrents are used in an actively-controlled triangulation procedure to optimize the communication channel alignment in a free-space optical (FSO) system. The active downlink and passive uplink communication capabilities of this system are demonstrated.
NASA Astrophysics Data System (ADS)
Wang, Huiqin; Wang, Xue; Cao, Minghua
2017-02-01
The spatial correlation extensively exists in the multiple-input multiple-output (MIMO) free space optical (FSO) communication systems due to the channel fading and the antenna space limitation. Wilkinson's method was utilized to investigate the impact of spatial correlation on the MIMO FSO communication system employing multipulse pulse-position modulation. Simulation results show that the existence of spatial correlation reduces the ergodic channel capacity, and the reception diversity is more competent to resist this kind of performance degradation.
NASA Astrophysics Data System (ADS)
Ma, Jianxin; Zhang, Junjie
2015-03-01
A novel full-duplex fiber-wireless link based on single sideband (SSB) optical millimeter (mm)-wave with 10 Gbit/s 4-pulse amplitude modulation (PAM) signal is proposed to provide alternative wired and 40 GHz wireless accesses for the user terminals. The SSB optical mm-wave with 4-PAM signal consists of two tones: one bears the 4-PAM signal and the other is unmodulated with high power. After transmission over the fiber to the hybrid optical network unit (HONU), the SSB optical mm-wave signal can be decomposed by fiber Bragg gratings (FBGs) as the SSB optical mm-wave signal with reduced carrier-to-sideband ratio (the baseband 4-PAM optical signal) and the uplink optical carrier for the wireless (wired) access. This makes the HONU free from the laser source. For the uplink, since the wireless access signal is converted to the baseband by power detection, both the transmitter in the HONU and the receiver in optical line terminal (OLT) are co-shared for both wireless and wired accesses, which makes the full duplex link much simpler. In our scheme, the optical electrical field of the square-root increment level 4-PAM signal assures an equal level spacing receiving for both the downlink wired and wireless accesses. Since the downlink wireless signal is down-converted to the baseband by power detection, RF local oscillator is unnecessary. To confirm the feasibility of our proposed scheme, a simulation full duplex link with 40 GHz SSB optical mm-wave with 10 Gbit/s 4-PAM signal is built. The simulation results show that both down- and up-links for either wired or wireless access can keep good performance even if the link length of the SSMF is extended to 40 km.
Polarization-insensitive PAM-4-carrying free-space orbital angular momentum (OAM) communications.
Liu, Jun; Wang, Jian
2016-02-22
We present a simple configuration incorporating single polarization-sensitive phase-only liquid crystal spatial light modulator (SLM) to facilitate polarization-insensitive free-space optical communications employing orbital angular momentum (OAM) modes. We experimentally demonstrate several polarization-insensitive optical communication subsystems by propagating a single OAM mode, multicasting 4 and 10 OAM modes, and multiplexing 8 OAM modes, respectively. Free-space polarization-insensitive optical communication links using OAM modes that carry four-level pulse-amplitude modulation (PAM-4) signal are demonstrated in the experiment. The observed optical signal-to-noise ratio (OSNR) penalties are less than 1 dB in both polarization-insensitive N-fold OAM modes multicasting and multiple OAM modes multiplexing at a bit-error rate (BER) of 2e-3 (enhanced forward-error correction (EFEC) threshold).
Quantum and Classical OpticsEmerging Links
2016-05-09
apparatus, the Young interferometer. Implementation of vector-space control directed at challenges in polarimetry have been mentioned and a number of...28 361–74 [5] Ambiguous issues in standard approaches to polarimetry can be clarified by recognizing classical optical entanglement. See Simon B N...Degree of polarization for optical near fields Phys. Rev. E 66 016615 Ellis J and Dogariu A 2005 Optical polarimetry of random fields Phys. Rev. Lett
Analysis of CPolSK-based FSO system working in space-to-ground channel
NASA Astrophysics Data System (ADS)
Su, Yuwei; Sato, Takuro
2018-03-01
In this article, the transmission performance of a circle polarization shift keying (CPolSK)-based free space optical (FSO) system working in space-to-ground channel is analyzed. Formulas describing the optical polarization distortion caused by the atmospheric turbulence and the communication qualities in terms of signal-to-noise-ratio (SNR), bit-error-ratio (BER) and outage probability of the proposed system are derived. Based on the Stokes parameters data measured by a Japanese optical communication satellite, we evaluate the space-to-ground FSO link and simulate the system performance under a varying regime of turbulence strength. The proposed system provides a more efficient way to compensate scintillation effects in a comparison with the on-off-keying (OOK)-based FSO system. These results are useful to the designing and evaluating of a deep space FSO communication system.
NASA Astrophysics Data System (ADS)
Feng, Xianglian; Wu, Zhihang; Wang, Tianshu; Zhang, Peng; Li, Xiaoyan; Jiang, Huilin; Su, Yuwei; He, Hongwei; Wang, Xiaoyan; Gao, Shiming
2018-03-01
Advanced multi-level modulation formats have shown their great potential in high-speed and high-spectral-efficiency optical communications. Using quadrature phase-shift keying (QPSK) modulation format for free-space optical (FSO) communication, a bidirectional high-speed FSO transmission link with the bit rates of up to 40 Gbit/s over ∼1 km, between two buildings in the campus of Changchun University of Science and Technology, Changchun, China, is experimentally demonstrated cooperating by capture and tracking systems. The eye-diagrams and constellation diagrams of the transmitted QPSK signals are clearly observed. By comparing the bit error rate (BER) curves before and after transmission, one can find that the receiving powers are both less than -16.5 dBm for the forward and backward transmissions of the bidirectional 20, 30, and 40 Gbit/s FSO links, and their power penalties due to the phase fluctuation of the atmospheric channel are both less than 2.6 dB, at the BER of 3.8 ×10-3.
850-nm hybrid fiber/free-space optical communications using orbital angular momentum modes.
Jurado-Navas, Antonio; Tatarczak, Anna; Lu, Xiaofeng; Olmos, Juan José Vegas; Garrido-Balsells, José María; Monroy, Idelfonso Tafur
2015-12-28
Light beams can carry orbital angular momentum (OAM) associated to the helicity of their phasefronts. These OAM modes can be employed to encode information onto a laser beam for transmitting not only in a fiber link but also in a free-space optical (FSO) one. Regarding this latter scenario, FSO communications are considered as an alternative and promising mean complementing the traditional optical communications in many applications where the use of fiber cable is not justified. This next generation FSO communication systems have attracted much interest recently, and the inclusion of beams carrying OAM modes can be seen as an efficient solution to increase the capacity and the security in the link. In this paper, we discuss an experimental demonstration of a proposal for next generation FSO communication system where a light beam carrying different OAM modes and affected by ℳ turbulence is coupled to the multimode fiber link. In addition, we report a better and more robust behavior of higher order OAM modes when the intermodal dispersion is dominant in the fiber after exceeding its maximum range of operation.
Anguita, Jaime A; Neifeld, Mark A; Vasic, Bane V
2007-09-10
By means of numerical simulations we analyze the statistical properties of the power fluctuations induced by the incoherent superposition of multiple transmitted laser beams in a terrestrial free-space optical communication link. The measured signals arising from different transmitted optical beams are found to be statistically correlated. This channel correlation increases with receiver aperture and propagation distance. We find a simple scaling rule for the spatial correlation coefficient in terms of the propagation distance and we are able to predict the scintillation reduction in previously reported experiments with good accuracy. We propose an approximation to the probability density function of the received power of a spatially correlated multiple-beam system in terms of the parameters of the single-channel gamma-gamma function. A bit-error-rate evaluation is also presented to demonstrate the improvement of a multibeam system over its single-beam counterpart.
Zhang, Junwen; Wang, Jing; Xu, Yuming; Xu, Mu; Lu, Feng; Cheng, Lin; Yu, Jianjun; Chang, Gee-Kung
2016-05-01
We propose and experimentally demonstrate a novel fiber-wireless integrated mobile backhaul network based on a hybrid millimeter-wave (MMW) and free-space-optics (FSO) architecture using an adaptive combining technique. Both 60 GHz MMW and FSO links are demonstrated and fully integrated with optical fibers in a scalable and cost-effective backhaul system setup. Joint signal processing with an adaptive diversity combining technique (ADCT) is utilized at the receiver side based on a maximum ratio combining algorithm. Mobile backhaul transportation of 4-Gb/s 16 quadrature amplitude modulation frequency-division multiplexing (QAM-OFDM) data is experimentally demonstrated and tested under various weather conditions synthesized in the lab. Performance improvement in terms of reduced error vector magnitude (EVM) and enhanced link reliability are validated under fog, rain, and turbulence conditions.
Data Relay Board with Protocol for High-Speed, Free-Space Optical Communications
NASA Technical Reports Server (NTRS)
Wright, Malcolm; Clare, Loren; Gould, Gary; Pedyash, Maxim
2004-01-01
In a free-space optical communication system, the mitigation of transient outages through the incorporation of error-control methods is of particular concern, the outages being caused by scintillation fades and obscurants. The focus of this innovative technology is the development of a data relay system for a reliable high-data-rate free-spacebased optical-transport network. The data relay boards will establish the link, maintain synchronous connection, group the data into frames, and provide for automatic retransmission (ARQ) of lost or erred frames. A certain Quality of Service (QoS) can then be ensured, compatible with the required data rate. The protocol to be used by the data relay system is based on the draft CCSDS standard data-link protocol Proximity-1, selected by orbiters to multiple lander assets in the Mars network, for example. In addition to providing data-link protocol capabilities for the free-space optical link and buffering the data, the data relay system will interface directly with user applications over Gigabit Ethernet and/or with highspeed storage resources via Fibre Channel. The hardware implementation is built on a network-processor-based architecture. This technology combines the power of a hardware switch capable of data switching and packet routing at Gbps rates, with the flexibility of a software- driven processor that can host highly adaptive and reconfigurable protocols used, for example, in wireless local-area networks (LANs). The system will be implemented in a modular multi-board fashion. The main hardware elements of the data relay system are the new data relay board developed by Rockwell Scientific, a COTS Gigabit Ethernet board for user interface, and a COTS Fibre Channel board that connects to local storage. The boards reside in a cPCI back plane, and can be housed in a VME-type enclosure.
High-speed digital fiber optic links for satellite traffic
NASA Technical Reports Server (NTRS)
Daryoush, A. S.; Ackerman, E.; Saedi, R.; Kunath, R. R.; Shalkhauser, K.
1989-01-01
Large aperture phased array antennas operating at millimeter wave frequencies are designed for space-based communications and imaging platforms. Array elements are comprised of active T/R modules which are linked to the central processing unit through high-speed fiber-optic networks. The system architecture satisfying system requirements at millimeter wave frequency is T/R level data mixing where data and frequency reference signals are distributed independently before mixing at the T/R modules. This paper demonstrates design procedures of a low loss high-speed fiber-optic link used for transmission of data signals over 600-900 MHz bandwidth inside satellite. The fiber-optic link is characterized for transmission of analog and digital data. A dynamic range of 79 dB/MHz was measured for analog data over the bandwidth. On the other hand, for bursted SMSK satellite traffic at 220 Mbps rates, BER of 2 x 10 to the -7th was measured for E(b)/N(o) of 14.3 dB.
NASA Technical Reports Server (NTRS)
Vyhnalek, Brian E.; Tedder, Sarah A.; Nappier, Jennifer M.
2018-01-01
Space-to-ground photon-counting optical communication links supporting high data rates over large distances require enhanced ground receiver sensitivity in order to reduce the mass and power burden on the spacecraft transmitter. Superconducting nanowire single-photon detectors (SNSPDs) have been demonstrated to offer superior performance in detection efficiency, timing resolution, and count rates over semiconductor photodetectors, and are a suitable technology for high photon efficiency links. Recently photon detectors based on superconducting nanowires have become commercially available, and we have assessed the characteristics and performance of one such commercial system as a candidate for potential utilization in ground receiver designs. The SNSPD system features independent channels which can be added modularly, and we analyze the scalability of the system to support different data rates, as well as consider coupling concepts and issues as the number of channels increases.
NASA Astrophysics Data System (ADS)
Chaudhary, Sushank; Amphawan, Angela
2017-11-01
In an attempt to meet the goal of distributing millimeter-wave (mm-wave) signals, recent years have witnessed significant relevance being given to combining radio frequency with optical fiber technologies. The future of radio-over-free-space-optics technology aims to build a universal platform for distributing millimeter waves for wireless local area networks without using expensive optical fibers. This work is focused on simultaneous transmission of four independent OFDM-based channels, each carrying 20 Gbps to 40 GHz data, by mode-division multiplexing of Laguerre-Gaussian mode with vortex lens and Hermite-Gaussian mode to realize a total transmission of 80 Gbps to 160 GHz data over 50-km free-space optical link. Moreover, the performance of the proposed system is also evaluated under the influence of various atmospheric turbulences, such as light fog, thin fog, and thick fog.
Modulation and coding for throughput-efficient optical free-space links
NASA Technical Reports Server (NTRS)
Georghiades, Costas N.
1993-01-01
Optical direct-detection systems are currently being considered for some high-speed inter-satellite links, where data-rates of a few hundred megabits per second are evisioned under power and pulsewidth constraints. In this paper we investigate the capacity, cutoff-rate and error-probability performance of uncoded and trellis-coded systems for various modulation schemes and under various throughput and power constraints. Modulation schemes considered are on-off keying (OOK), pulse-position modulation (PPM), overlapping PPM (OPPM) and multi-pulse (combinatorial) PPM (MPPM).
High speed optical wireless data transmission system for particle sensors in high energy physics
NASA Astrophysics Data System (ADS)
Ali, W.; Corsini, R.; Ciaramella, E.; Dell'Orso, R.; Messineo, A.; Palla, F.
2015-08-01
High speed optical fiber or copper wire communication systems are frequently deployed for readout data links used in particle physics detectors. Future detector upgrades will need more bandwidth for data transfer, but routing requirements for new cables or optical fiber will be challenging due to space limitations. Optical wireless communication (OWC) can provide high bandwidth connectivity with an advantage of reduced material budget and complexity of cable installation and management. In a collaborative effort, Scuola Superiore Sant'Anna and INFN Pisa are pursuing the development of a free-space optical link that could be installed in a future particle physics detector or upgrade. We describe initial studies of an OWC link using the inner tracker of the Compact Muon Solenoid (CMS) detector as a reference architecture. The results of two experiments are described: the first to verify that the laser source transmission wavelength of 1550 nm will not introduce fake signals in silicon strip sensors while the second was to study the source beam diameter and its tolerance to misalignment. For data rates of 2.5 Gb/s and 10 Gb/s over a 10 cm working distance it was observed that a tolerance limit of ±0.25 mm to ±0.8 mm can be obtained for misaligned systems with source beam diameters of 0.38 mm to 3.5 mm, respectively.
NASA Astrophysics Data System (ADS)
Winzer, Peter J.; Kalmar, Andras; Leeb, Walter R.
1999-04-01
We investigate the role of amplified spontaneous emission (ASE) produced by an optical booster amplifier at the transmitter of free-space optical communication links. In a communication terminal with a single telescope for both transmission and reception, this ASE power has to be taken into account in connection with transmit-to-receive channel isolation, especially since it partly occupies the same state of polarization and the same frequency band as the receive signal. We show that the booster ASE intercepted by the receiver can represent a non-negligible source of background radiation: In a typical optical intersatellite link scenario, the ASE power spectral density generated by the booster amplifier at the transmitter and coupled to the receiver will be on the order of 10-20 W/Hz, which equals the background radiation of the sun. Exploiting these findings for pointing, acquisition, and tracking (PAT) purposes, we describe a patent-pending PAT system doing without beacon lasers and without the need for diverting a part of the data signal for PAT. Utilizing the transmit booster ASE over a bandwidth of e.g. 20 nm at the receiver, a total power of about -46 dBm is available for PAT purposes without extra power consumption at the transmitter and without the need for beacon lAser alignment.
A Day in the Life of the Laser Communications Relay Demonstration Project
NASA Technical Reports Server (NTRS)
Edwards, Bernard; Israel, David; Caroglanian, Armen; Spero, James; Roberts, Tom; Moores, John
2016-01-01
This paper provides an overview of the planned concept of operations for the Laser Communications Relay Demonstration Project (LCRD), a joint project among NASA's Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory, California Institute of Technology (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT/LL). LCRD will provide at least two years of bi-directional optical communications at user data rates of up to 1.244 Gbps in an operational environment. The project lays the groundwork for establishing communications architecture and protocols, and developing the communications hardware and support infrastructure, concluding in a demonstration of optical communications' potential to meet NASA's growing need for higher data rates for future science and exploration missions. A pair of flight optical communications terminals will reside on a single commercial communications satellite in geostationary orbit; the two ground optical communications terminals will be located in Southern California and Hawaii. This paper summarizes the current LCRD architecture and key systems for the demonstration, focusing on what it will take to operate an optical communications relay that can support space-to-space, space-to-air, and space-to-ground optical links.
A Day in the Life of the Laser Communications Relay Demonstration (LCRD) Project.
NASA Technical Reports Server (NTRS)
Israel, David; Caroglanian, Armen; Edwards, Bernard; Spero, James; Roberts, Tom; Moores, John
2016-01-01
This presentation provides an overview of the planned concept of operations for the Laser Communications Relay Demonstration Project (LCRD), a joint project among NASA's Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory, California Institute of Technology (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MITLL). LCRD will provide at least two years of bi-directional optical communications at user data rates of up to 1.244 Gbps in an operational environment. The project lays the ground work for establishing communications architecture and protocols, and developing the communications hardware and support infrastructure, concluding in a demonstration of optical communications potential to meet NASAs growing need for higher data rates for future science and exploration missions. A pair of flight optical communications terminals will reside on a single commercial communications satellite in geostationary orbit; the two ground optical communications terminals will be located in Southern California and Hawaii. This paper summarizes the current LCRD architecture and key systems for the demonstration, focusing on what it will take to operate an optical communications relay that can support space-to-space, space-to-air, and space-to-ground optical links.
User manual of the CATSS system (version 1.0) communication analysis tool for space station
NASA Technical Reports Server (NTRS)
Tsang, C. S.; Su, Y. T.; Lindsey, W. C.
1983-01-01
The Communication Analysis Tool for the Space Station (CATSS) is a FORTRAN language software package capable of predicting the communications links performance for the Space Station (SS) communication and tracking (C & T) system. An interactive software package was currently developed to run on the DEC/VAX computers. The CATSS models and evaluates the various C & T links of the SS, which includes the modulation schemes such as Binary-Phase-Shift-Keying (BPSK), BPSK with Direct Sequence Spread Spectrum (PN/BPSK), and M-ary Frequency-Shift-Keying with Frequency Hopping (FH/MFSK). Optical Space Communication link is also included. CATSS is a C & T system engineering tool used to predict and analyze the system performance for different link environment. Identification of system weaknesses is achieved through evaluation of performance with varying system parameters. System tradeoff for different values of system parameters are made based on the performance prediction.
NASA Technical Reports Server (NTRS)
Davis, Scott; Lichter, Michael; Raible, Daniel
2016-01-01
Emergent data-intensive missions coupled with dramatic reductions in spacecraft size plus an increasing number of space-based missions necessitates new high performance, compact and low cost communications technology. Free space optical communications offer advantages including orders of magnitude increase for data rate performance, increased security, immunity to jamming and lack of frequency allocation requirements when compared with conventional radio frequency (RF) means. The spatial coherence and low divergence associated with the optical frequencies of laser communications lends themselves to superior performance, but this increased directionality also creates one of the primary technical challenges in establishing a laser communications link by repeatedly and reliably pointing the beam onto the receive aperture. Several solutions have emerged from wide angle (slow) mechanical articulation systems, fine (fast) steering mirrors and rotating prisms, inertial compensation gyros and vibration isolation cancellation systems, but each requires moving components and imparts a measured amount of burden on the host platform. The complexity, cost and size of current mechanically scanned solutions limits their platform applicability, and restricts the feasibility of deploying optical communications payloads on very compact spacecraft employing critical systems. A high speed, wide angle, non-mechanical solution is therefore desirable. The purpose of this work is to share the development, testing, and demonstration of a breadboard prototype electro-optic (EO) scanned laser-communication link (see Figure 1). This demonstration is a step toward realizing ultra-low Size, Weight and Power (SWaP) SmallSat/MicroSat EO non-mechanical laser beam steering modules for high bandwidth ( greater than Gbps) free-space data links operating in the 1550 nm wavelength bands. The elimination of all moving parts will dramatically reduce SWaP and cost, increase component lifetime and reliability, and simplify the system design of laser communication modules. This paper describes the target mission architectures and requirements (few cubic centimeters of volume, 10's of grams of weight with milliwatts of power) and design of the beam steering module. Laboratory metrology is used to determine the component performance including horizontal and vertical resolution (20urad) as a function of control voltage (see Figure 2), transition time (0.1-1ms), pointing repeatability and optic insertion loss. A test bed system demonstration, including a full laser communications link, is conducted. The capabilities of this new EO beam steerer provide an opportunity to dramatically improve space communications through increased utilization of laser technology on smaller platforms than were previously attainable.
Ren, Yongxiong; Wang, Zhe; Xie, Guodong; Li, Long; Willner, Asher J; Cao, Yinwen; Zhao, Zhe; Yan, Yan; Ahmed, Nisar; Ashrafi, Nima; Ashrafi, Solyman; Bock, Robert; Tur, Moshe; Willner, Alan E
2016-06-01
We explore the mitigation of atmospheric turbulence effects for orbital angular momentum (OAM)-based free-space optical (FSO) communications with multiple-input multiple-output (MIMO) architecture. Such a system employs multiple spatially separated aperture elements at the transmitter/receiver, and each transmitter aperture contains multiplexed data-carrying OAM beams. We propose to use spatial diversity combined with MIMO equalization to mitigate both weak and strong turbulence distortions. In a 2×2 FSO link with each transmitter aperture containing two multiplexed OAM modes of ℓ=+1 and ℓ=+3, we experimentally show that at least two OAM data channels could be recovered under both weak and strong turbulence distortions using selection diversity assisted with MIMO equalization.
NASA Astrophysics Data System (ADS)
Li, Shuhui; Chen, Shi; Gao, Chunqing; Willner, Alan E.; Wang, Jian
2018-02-01
Orbital angular momentum (OAM)-carrying beams have recently generated considerable interest due to their potential use in communication systems to increase transmission capacity and spectral efficiency. For OAM-based free-space optical (FSO) links, a critical challenge is the atmospheric turbulence that will distort the helical wavefronts of OAM beams leading to the decrease of received power, introducing crosstalk between multiple channels, and impairing link performance. In this paper, we review recent advances in turbulence effects compensation techniques for OAM-based FSO communication links. First, basic concepts of atmospheric turbulence and theoretical model are introduced. Second, atmospheric turbulence effects on OAM beams are theoretically and experimentally investigated and discussed. Then, several typical turbulence compensation approaches, including both adaptive optics-based (optical domain) and signal processing-based (electrical domain) techniques, are presented. Finally, key challenges and perspectives of compensation of turbulence-distorted OAM links are discussed.
Indoor Free Space Optic: a new prototype, realization and evaluation
NASA Astrophysics Data System (ADS)
Bouchet, Olivier; Besnard, Pascal; Mihaescu, Adrian
2008-08-01
The Free Space Optic (FSO) communication is a daily reality used by an increasing number of companies. For indoor environment, optical wireless communication becomes a good alternative with respect to radio proposals. For both technologies, the architecture is similar: emission/reception base station (Gateway or Bridge) are installed to cover zones, which are defined to ensure a quality of service. The customers may be connected to the Wireless Local Area Network (WLAN) with an adapter or module that emits and receives on this network. But due to its specific characteristics, wireless optical technology could present important advantages such as: Transmitted data security, medical immunity, high data rate, etc... Nevertheless, the optical system may have a limit on the network management aspect and link budget. The scope of this paper is to present a proposal at crossroads between optical fibre telecom system and data processing. In this document, we will present a prototype developed in Brittany during a regional collaborative project (Techim@ges). In order to answer to the management aspect and the link budget, this prototype uses an optical multiplexing technique in 1550 nm band: the Wavelength Division Multiple Access (WDMA). Moreover it also proposes a new class 1 high power emission solution. This full duplex system transmits these various wavelengths in free space, by using optical Multiplexer/Demultiplexer and optical modules. Each module has a defined and personal wavelength associated to the terminal identification (addresses MAC or IP). This approach permits a data rate at a minimum of a ten's Mbit/s per customer and potentially hundred Mbps for a line of sight system. The application field for the achieved and proposed prototype is potentially investigated from WLAN to WPAN.
Connectivity services based on optical ground-to-space links
NASA Astrophysics Data System (ADS)
Knopp, Marcus T.; Giggenbach, Dirk; Mata Calvo, Ramon; Fuchs, Christian; Saucke, Karen; Heine, Frank; Sellmaier, Florian; Huber, Felix
2018-07-01
Repeater systems in a geostationary orbit utilizing free-space optical-communication offer great potential to backup, process and archive large amounts of data collected or generated at remote locations. In contrast to existing or upcoming global satellite communication systems, such optical GEO relays are able to provide a huge return-channel data throughput with channel rates in the gigabit-per-second range. One of the most critical aspects of such data uplinks are atmospheric disturbances above the optical ground terminals used to connect to the space segment. In this study, we analyse the design drivers of optical ground stations for land-based applications. In particular, the effects of atmospheric attenuation and atmospheric turbulence are investigated. Moreover, we present implementation ideas of the necessary ground infrastructure and exemplify our results in a case study on the applicability of free-space optical satellite communication to the radio astronomy community. Our survey underpins pre-existing ventures to foster optical relay services like the Space-Data-Highway operating via the European Data Relay System. With well-designed, self-sufficient and small-sized ground terminals new user groups could be attracted, by offering alternatives to the emerging LEO mega-constellations and GEO-satellite communication systems, which operate at low return channel data rates across-the-board.
Tackling Africa's digital divide
NASA Astrophysics Data System (ADS)
Lavery, Martin P. J.; Abadi, Mojtaba Mansour; Bauer, Ralf; Brambilla, Gilberto; Cheng, Ling; Cox, Mitchell A.; Dudley, Angela; Ellis, Andrew D.; Fontaine, Nicolas K.; Kelly, Anthony E.; Marquardt, Christoph; Matlhane, Selaelo; Ndagano, Bienvenu; Petruccione, Francesco; Slavík, Radan; Romanato, Filippo; Rosales-Guzmán, Carmelo; Roux, Filippus S.; Roux, Kobus; Wang, Jian; Forbes, Andrew
2018-05-01
Innovations in `sustainable' photonics technologies such as free-space optical links and solar-powered equipment provide developing countries with new cost-effective opportunities for deploying future-proof telecommunication networks.
1991-08-15
G. E. Betts Analog Optical Links for High Dynamic L. M. Johnson Range C. H. Cox III Nonimaging Concentrators for Diode- P. Lacovara Pumped Slab Lasers...P. Gleckman* SPIEs 1991 International R. Holman* Symposium on Optical Science R. Winston * and Engineering, San Diego, California, Free-Space Board-to...xxv 1. ELECTROOPTICAL DEVICES 1 1.1 Optical Phase Difference Measurement and Correction Using AIGaAs Integrated Guided-Wave Components 1 1.2 Two
NASA Astrophysics Data System (ADS)
Upadhya, Abhijeet; Dwivedi, Vivek K.; Singh, G.
2018-06-01
In this paper, we have analyzed the performance of dual hop radio frequency (RF)/free-space optical (FSO) fixed gain relay environment confined by atmospheric turbulence induced fading channel over FSO link and modeled using α - μ distribution. The RF hop of the amplify-and-forward scheme undergoes the Rayleigh fading and the proposed system model also considers the pointing error effect on the FSO link. A novel and accurate mathematical expression of the probability density function for a FSO link experiencing α - μ distributed atmospheric turbulence in the presence of pointing error is derived. Further, we have presented analytical expressions of outage probability and bit error rate in terms of Meijer-G function. In addition to this, a useful and mathematically tractable closed-form expression for the end-to-end ergodic capacity of the dual hop scheme in terms of bivariate Fox's H function is derived. The atmospheric turbulence, misalignment errors and various binary modulation schemes for intensity modulation on optical wireless link are considered to yield the results. Finally, we have analyzed each of the three performance metrics for high SNR in order to represent them in terms of elementary functions and the achieved analytical results are supported by computer-based simulations.
NASA Technical Reports Server (NTRS)
Sandusky, John V.; Jeganathan, M.; Ortiz, G.; Biswas, A.; Lee, S.; Parker, G.; Liu, B.; Johnson, D.; DePew, J.; Lesh, J. R.
2000-01-01
Tlis paper presents an overview of the preliminary design of both the flight and ground systems of the Optical Communication Demonstration and High-Rate Link Facility which will demonstrate optical communication from the International Space Station to ground after its deployment in October 2002. The overview of the preliminary design of the Flight System proceeds by contrasting it with the design of the laboratory-model unit, emphasizing key changes and the rationale behind the design choices. After presenting the preliminary design of the Ground System, the timetable for the construction and deployment of the flight and ground systems is outlined.
Synchronization of Clocks Through 12 km of Strongly Turbulent Air Over a City.
Sinclair, Laura C; Swann, William C; Bergeron, Hugo; Baumann, Esther; Cermak, Michael; Coddington, Ian; Deschênes, Jean-Daniel; Giorgetta, Fabrizio R; Juarez, Juan C; Khader, Isaac; Petrillo, Keith G; Souza, Katherine T; Dennis, Michael L; Newbury, Nathan R
2016-10-15
We demonstrate real-time, femtosecond-level clock synchronization across a low-lying, strongly turbulent, 12-km horizontal air path by optical two-way time transfer. For this long horizontal free-space path, the integrated turbulence extends well into the strong turbulence regime corresponding to multiple scattering with a Rytov variance up to 7 and with the number of signal interruptions exceeding 100 per second. Nevertheless, optical two-way time transfer is used to synchronize a remote clock to a master clock with femtosecond-level agreement and with a relative time deviation dropping as low as a few hundred attoseconds. Synchronization is shown for a remote clock based on either an optical or microwave oscillator and using either tip-tilt or adaptive-optics free-space optical terminals. The performance is unaltered from optical two-way time transfer in weak turbulence across short links. These results confirm that the two-way reciprocity of the free-space time-of-flight is maintained both under strong turbulence and with the use of adaptive optics. The demonstrated robustness of optical two-way time transfer against strong turbulence and its compatibility with adaptive optics is encouraging for future femtosecond clock synchronization over very long distance ground-to-air free-space paths.
Synchronization of Clocks Through 12 km of Strongly Turbulent Air Over a City
Sinclair, Laura C.; Swann, William C.; Bergeron, Hugo; Baumann, Esther; Cermak, Michael; Coddington, Ian; Deschênes, Jean-Daniel; Giorgetta, Fabrizio R.; Juarez, Juan C.; Khader, Isaac; Petrillo, Keith G.; Souza, Katherine T.; Dennis, Michael L.; Newbury, Nathan R.
2018-01-01
We demonstrate real-time, femtosecond-level clock synchronization across a low-lying, strongly turbulent, 12-km horizontal air path by optical two-way time transfer. For this long horizontal free-space path, the integrated turbulence extends well into the strong turbulence regime corresponding to multiple scattering with a Rytov variance up to 7 and with the number of signal interruptions exceeding 100 per second. Nevertheless, optical two-way time transfer is used to synchronize a remote clock to a master clock with femtosecond-level agreement and with a relative time deviation dropping as low as a few hundred attoseconds. Synchronization is shown for a remote clock based on either an optical or microwave oscillator and using either tip-tilt or adaptive-optics free-space optical terminals. The performance is unaltered from optical two-way time transfer in weak turbulence across short links. These results confirm that the two-way reciprocity of the free-space time-of-flight is maintained both under strong turbulence and with the use of adaptive optics. The demonstrated robustness of optical two-way time transfer against strong turbulence and its compatibility with adaptive optics is encouraging for future femtosecond clock synchronization over very long distance ground-to-air free-space paths. PMID:29348695
NASA Astrophysics Data System (ADS)
Nagpal, Shaina; Gupta, Amit
2017-08-01
Free Space Optics (FSO) link exploits the tremendous network capacity and is capable of offering wireless communications similar to communications through optical fibres. However, FSO link is extremely weather dependent and the major effect on FSO links is due to adverse weather conditions like fog and snow. In this paper, an FSO link is designed using an array of receivers. The disparity of the link for very high attenuation conditions due to fog and snow is analysed using aperture averaging technique. Further effect of aperture averaging technique is investigated by comparing the systems using aperture averaging technique with systems not using aperture averaging technique. The performance of proposed model of FSO link has been evaluated in terms of Q factor, bit error rate (BER) and eye diagram.
Optical Communications Channel Combiner
NASA Technical Reports Server (NTRS)
Quirk, Kevin J.; Quirk, Kevin J.; Nguyen, Danh H.; Nguyen, Huy
2012-01-01
NASA has identified deep-space optical communications links as an integral part of a unified space communication network in order to provide data rates in excess of 100 Mb/s. The distances and limited power inherent in a deep-space optical downlink necessitate the use of photon-counting detectors and a power-efficient modulation such as pulse position modulation (PPM). For the output of each photodetector, whether from a separate telescope or a portion of the detection area, a communication receiver estimates a log-likelihood ratio for each PPM slot. To realize the full effective aperture of these receivers, their outputs must be combined prior to information decoding. A channel combiner was developed to synchronize the log-likelihood ratio (LLR) sequences of multiple receivers, and then combines these into a single LLR sequence for information decoding. The channel combiner synchronizes the LLR sequences of up to three receivers and then combines these into a single LLR sequence for output. The channel combiner has three channel inputs, each of which takes as input a sequence of four-bit LLRs for each PPM slot in a codeword via a XAUI 10 Gb/s quad optical fiber interface. The cross-correlation between the channels LLR time series are calculated and used to synchronize the sequences prior to combining. The output of the channel combiner is a sequence of four-bit LLRs for each PPM slot in a codeword via a XAUI 10 Gb/s quad optical fiber interface. The unit is controlled through a 1 Gb/s Ethernet UDP/IP interface. A deep-space optical communication link has not yet been demonstrated. This ground-station channel combiner was developed to demonstrate this capability and is unique in its ability to process such a signal.
Safe Laser Beam Propagation for Interplanetary Links
NASA Technical Reports Server (NTRS)
Wilson, Keith E.
2011-01-01
Ground-to-space laser uplinks to Earth–orbiting satellites and deep space probes serve both as a beacon and an uplink command channel for deep space probes and Earth-orbiting satellites. An acquisition and tracking point design to support a high bandwidth downlink from a 20-cm optical terminal on an orbiting Mars spacecraft typically calls for 2.5 kW of 1030-nm uplink optical power in 40 micro-radians divergent beams.2 The NOHD (nominal ocular hazard distance) of the 1030nm uplink is in excess of 2E5 km, approximately half the distance to the moon. Recognizing the possible threat of high power laser uplinks to the flying public and to sensitive Earth-orbiting satellites, JPL developed a three-tiered system at its Optical Communications Telescope Laboratory (OCTL) to ensure safe laser beam propagation through navigational and near-Earth space.
Energy efficient rateless codes for high speed data transfer over free space optical channels
NASA Astrophysics Data System (ADS)
Prakash, Geetha; Kulkarni, Muralidhar; Acharya, U. S.
2015-03-01
Terrestrial Free Space Optical (FSO) links transmit information by using the atmosphere (free space) as a medium. In this paper, we have investigated the use of Luby Transform (LT) codes as a means to mitigate the effects of data corruption induced by imperfect channel which usually takes the form of lost or corrupted packets. LT codes, which are a class of Fountain codes, can be used independent of the channel rate and as many code words as required can be generated to recover all the message bits irrespective of the channel performance. Achieving error free high data rates with limited energy resources is possible with FSO systems if error correction codes with minimal overheads on the power can be used. We also employ a combination of Binary Phase Shift Keying (BPSK) with provision for modification of threshold and optimized LT codes with belief propagation for decoding. These techniques provide additional protection even under strong turbulence regimes. Automatic Repeat Request (ARQ) is another method of improving link reliability. Performance of ARQ is limited by the number of retransmissions and the corresponding time delay. We prove through theoretical computations and simulations that LT codes consume less energy per bit. We validate the feasibility of using energy efficient LT codes over ARQ for FSO links to be used in optical wireless sensor networks within the eye safety limits.
Boluda-Ruiz, Rubén; García-Zambrana, Antonio; Castillo-Vázquez, Carmen; Castillo-Vázquez, Beatriz
2014-06-30
In this paper, a novel adaptive cooperative protocol with multiple relays using detect-and-forward (DF) over atmospheric turbulence channels with pointing errors is proposed. The adaptive DF cooperative protocol here analyzed is based on the selection of the optical path, source-destination or different source-relay links, with a greater value of fading gain or irradiance, maintaining a high diversity order. Closed-form asymptotic bit error-rate (BER) expressions are obtained for a cooperative free-space optical (FSO) communication system with Nr relays, when the irradiance of the transmitted optical beam is susceptible to either a wide range of turbulence conditions, following a gamma-gamma distribution of parameters α and β, or pointing errors, following a misalignment fading model where the effect of beam width, detector size and jitter variance is considered. A greater robustness for different link distances and pointing errors is corroborated by the obtained results if compared with similar cooperative schemes or equivalent multiple-input multiple-output (MIMO) systems. Simulation results are further demonstrated to confirm the accuracy and usefulness of the derived results.
NASA Technical Reports Server (NTRS)
1973-01-01
An optical system which can be incorporated in a present day or near future space-borne laser communications system is described. Techniques of implementing these systems are presented and their design problems and use are discussed. Optical system weight is estimated as a function of aperture diameter for a typical present day or near future laser communication system. The optical communications system considered is a two-way, high data rate optical communications link from a spacecraft to a spacecraft or from a spacecraft to a ground station. Each station has a laser transmitter and receiver and a pointing and tracking system. Thus each station can track the laser transmitter of the other. Optical beamwidths are considered to be as small as an arc-second with the beam pointed to a fraction of this beamwidth.
NASA Astrophysics Data System (ADS)
Fuchs, Christian; Poulenard, Sylvain; Perlot, Nicolas; Riedi, Jerome; Perdigues, Josep
2017-02-01
Optical satellite communications play an increasingly important role in a number of space applications. However, if the system concept includes optical links to the surface of the Earth, the limited availability due to clouds and other atmospheric impacts need to be considered to give a reliable estimate of the system performance. An OGS network is required for increasing the availability to acceptable figures. In order to realistically estimate the performance and achievable throughput in various scenarios, a simulation tool has been developed under ESA contract. The tool is based on a database of 5 years of cloud data with global coverage and can thus easily simulate different optical ground station network topologies for LEO- and GEO-to-ground links. Further parameters, like e.g. limited availability due to sun blinding and atmospheric turbulence, are considered as well. This paper gives an overview about the simulation tool, the cloud database, as well as the modelling behind the simulation scheme. Several scenarios have been investigated: LEO-to-ground links, GEO feeder links, and GEO relay links. The key results of the optical ground station network optimization and throughput estimations will be presented. The implications of key technical parameters, as e.g. memory size aboard the satellite, will be discussed. Finally, potential system designs for LEO- and GEO-systems will be presented.
NASA Astrophysics Data System (ADS)
Bertin, Clément; Cros, Sylvain; Saint-Antonin, Laurent; Schmutz, Nicolas
2015-10-01
The growing demand for high-speed broadband communications with low orbital or geostationary satellites is a major challenge. Using an optical link at 1.55 μm is an advantageous solution which potentially can increase the satellite throughput by a factor 10. Nevertheless, cloud cover is an obstacle for this optical frequency. Such communication requires an innovative management system to optimize the optical link availability between a satellite and several Optical Ground Stations (OGS). The Saint-Exupery Technological Research Institute (France) leads the project ALBS (French acronym for BroadBand Satellite Access). This initiative involving small and medium enterprises, industrial groups and research institutions specialized in aeronautics and space industries, is currently developing various solutions to increase the telecommunication satellite bandwidth. This paper presents the development of a preliminary prediction system preventing the cloud blockage of an optical link between a satellite and a given OGS. An infrared thermal camera continuously observes (night and day) the sky vault. Cloud patterns are observed and classified several times a minute. The impact of the detected clouds on the optical beam (obstruction or not) is determined by the retrieval of the cloud optical depth at the wavelength of communication. This retrieval is based on realistic cloud-modelling on libRadtran. Then, using subsequent images, cloud speed and trajectory are estimated. Cloud blockage over an OGS can then be forecast up to 30 minutes ahead. With this information, the preparation of the new link between the satellite and another OGS under a clear sky can be prepared before the link breaks due to cloud blockage.
Conceptual designs of onboard transceivers for ground-to-satellite quantum cryptography
NASA Astrophysics Data System (ADS)
Toyoshima, Morio; Shoji, Yozo; Takayama, Yoshihisa; Kunimori, Hiroo; Takeoka, Masahiro; Fujiwara, Mikio; Sasaki, Masahide
2009-05-01
A free-space quantum key distribution system is being developed by the National Institute of Information and Communications Technology (NICT) in Koganei, Japan. Quantum cryptography is a new technique for transmitting information where the security is guaranteed by the laws of physics. In such systems, a single photon is used for the quantum information. However, since the transmission distance in optical fibers is limited by the absorption of photons by the fiber, the maximum demonstrated range has been limited to about 100 km. Free-space quantum cryptography between an optical ground station and a satellite is a possible solution to extend the distance for a quantum network beyond the limits of optical fibers. At NICT, a laser communication demonstration between the NICT optical ground station and a low earth orbit satellite was successfully conducted in 2006. The use of free-space quantum key distribution for such space communication links is considered an important future application. This paper presents conceptual designs for the onboard transceivers for satellite quantum cryptography
Development of Laser Beam Transmission Strategies for Future Ground-to-Space Optical Communications
NASA Technical Reports Server (NTRS)
Wilson, Keith E.; Kovalik, Joseph M.; Biswas, Abhijit; Roberts, William T.
2007-01-01
Optical communications is a key technology to meet the bandwidth expansion required in the global information grid. High bandwidth bi-directional links between sub-orbital platforms and ground and space terminals can provide a seamless interconnectivity for rapid return of critical data to analysts. The JPL Optical Communications Telescope Laboratory (OCTL) is located in Wrightwood California at an altitude of 2.2.km. This 200 sq-m facility houses a state-of- the-art 1-m telescope and is used to develop operational strategies for ground-to-space laser beam propagation that include safe beam transmission through navigable air space, adaptive optics correction and multi-beam scintillation mitigation, and line of sight optical attenuation monitoring. JPL has received authorization from international satellite owners to transmit laser beams to more than twenty retro-reflecting satellites. This paper presents recent progress in the development of these operational strategies tested by narrow laser beam transmissions from the OCTL to retro-reflecting satellites. We present experimental results and compare our measurements with predicted performance for a variety of atmospheric conditions.
Space grating optical structure of the retina and RGB-color vision.
Lauinger, Norbert
2017-02-01
Diffraction of light at the spatial cellular phase grating outer nuclear layer of the retina could produce Fresnel near-field interferences in three RGB diffraction orders accessible to photoreceptors (cones/rods). At perpendicular light incidence the wavelengths of the RGB diffraction orders in photopic vision-a fundamental R-wave with two G+B-harmonics-correspond to the peak wavelengths of the spectral brightness sensitivity curves of the cones at 559 nmR, 537 nmG, and 447 nmB. In scotopic vision the R+G diffraction orders optically fuse at 512 nm, the peak value of the rod's spectral brightness sensitivity curve. The diffractive-optical transmission system with sender (resonator), space waves, and receiver antennae converts the spectral light components involved in imaging into RGB space. The colors seen at objects are diffractive-optical products in the eye, as the German philosopher A. Schopenhauer predicted. They are second related to the overall illumination in object space. The RGB transmission system is the missing link optically managing the spectral tuning of the RGB photopigments.
The Fiber Optic Subsystem Components on Express Logistics Carrier for International Space Station
NASA Technical Reports Server (NTRS)
Ott, Melanie N.; Switzer, Robert; Thomes, William Joe; Chuska, Richard; LaRocca, Frank; Day, Lance
2009-01-01
ISS SSP 50184 HRDL optical fiber communication subsystem, has system level requirements that were changed to accommodate large loss optical fiber links previously installed. SSQ22680 design is difficult to implement, no metal shell over socket/pin combination to protect the weak part of the pin. Additions to ISS are planned for the future. AVIM still used for interconnection in space flight applications without incident. Thermal cycling resulted in less than 0.25 dB max change in Insertion Loss for all types during cycling, nominal as compared to the AVIM. Vibration testing results conclusion; no significant changes, nominal as compared to AVIM.
The Italian Optical Telecommunications Payload: Breadboard Results
NASA Astrophysics Data System (ADS)
Bonino, L.; Caramia, M.; Catalano, V.; Ferrero, V.; Mata Calvo, R.
2008-08-01
The interest in satellite optical communication link has grown in the last years driven by the increasing demand in data downlink for scientific, planetary exploration and earth observation missions; in addition particular interest is also demonstrated by military market. In this context, the Italian Space Agency (ASI) is developing a program for feasibility demonstration of optical communication system with the goal of a prototype flight mission in the next future. The Paper intends to present the overall program plan and it is particularly focused on the activities performed during the Phase A2, relevant to stratospheric mission design and test campaign with an open field demonstrator of free space communications.
High Precision Ranging and Range-Rate Measurements over Free-Space-Laser Communication Link
NASA Technical Reports Server (NTRS)
Yang, Guangning; Lu, Wei; Krainak, Michael; Sun, Xiaoli
2016-01-01
We present a high-precision ranging and range-rate measurement system via an optical-ranging or combined ranging-communication link. A complete bench-top optical communication system was built. It included a ground terminal and a space terminal. Ranging and range rate tests were conducted in two configurations. In the communication configuration with 622 data rate, we achieved a two-way range-rate error of 2 microns/s, or a modified Allan deviation of 9 x 10 (exp -15) with 10 second averaging time. Ranging and range-rate as a function of Bit Error Rate of the communication link is reported. They are not sensitive to the link error rate. In the single-frequency amplitude modulation mode, we report a two-way range rate error of 0.8 microns/s, or a modified Allan deviation of 2.6 x 10 (exp -15) with 10 second averaging time. We identified the major noise sources in the current system as the transmitter modulation injected noise and receiver electronics generated noise. A new improved system will be constructed to further improve the system performance for both operating modes.
Sun, Tengfen; Liu, Minwen; Li, Yingchun; Wang, Min
2017-10-16
In this paper, we experimentally investigate the performance of crosstalk mitigation for 16-ary quadrature amplitude modulation orthogonal frequency division multiplexing (16QAM-OFDM) signals carrying orbital angular momentum (OAM) multiplexed free-space-optical communication (FSO) links using the pilot assisted Least Square (LS) algorithm. At the demodulating spatial light modulators (SLMs), we launch the distorted phase holograms which have the information of atmospheric turbulence obeying the modified Hill spectrum. And crosstalk can be introduced by these holograms with the experimental verification. The pilot assisted LS algorithm can efficiently improve the quality of system performance, the points of constellations get closer to the reference points and around two orders of magnitude improvement of bit-error rate (BER) is obtained.
Analysis of InP-based QCLs designed for application in optical transmitter of free-space optics
NASA Astrophysics Data System (ADS)
Pierscinski, Kamil; Mikołajczyk, Janusz; Szabra, Dariusz; Pierścińska, Dorota; Gutowski, Piotr; Bielecki, Zbigniew; Bugajski, Maciej
2017-10-01
In this paper, the study of AlInAs/InGaAs/InP Quantum Cascade Lasers application in Free Space Optical data link is performed. Implementation of such FSO link operated in long-wavelength infrared (LWIR: 8-12 μm) will be unique for construction of so-called RF/FSO hybrid communication system. The range of longer wavelengths provides better data transfer performance in the case of severe weather conditions, especially, fog, low haze or air turbulence. In the frame of this work, series of QCLs for application in FSO system were examined. They are characterized by different geometries and constructions towards best performance in optical link systems operated in the wavelength range of 8-12 μm. The preliminary test of QCLs included electrical measurements of pulsed light-current-voltage characteristics and time-resolved spectra. The obtained results made it possible to determine operation point for FSO. Their modulation performances were tested using the laboratory laser drivers. Based on measurements, both power and time parameters of QCLs pulses were investigated. These results defined critical values for FSO system. The second part of the analysis concerned the spatial parameters of QCLs radiation. Knowledge of spatial characteristics of emission is vital for FSO optics construction. To characterize spatial properties of beams, far-field patterns of emission were registered. Finally, the obtained results made it possible to optimize the optical transmitter construction and further performance of FSO laboratory model. This research was supported by The Polish National Centre for Research and Development grant DOB-BIO8/01/01/2016.
Belmonte, Aniceto; Taylor, Michael T; Hollberg, Leo; Kahn, Joseph M
2017-07-10
The need for an accurate time reference on orbiting platforms motivates study of time transfer via free-space optical communication links. The impact of atmospheric turbulence on earth-to-satellite optical time transfer has not been fully characterized, however. We analyze limits to two-way laser time transfer accuracy posed by anisoplanatic non-reciprocity between uplink and downlink. We show that despite limited reciprocity, two-way time transfer can still achieve sub-picosecond accuracy in realistic propagation scenarios over a single satellite visibility period.
Estimation of channel parameters and background irradiance for free-space optical link.
Khatoon, Afsana; Cowley, William G; Letzepis, Nick; Giggenbach, Dirk
2013-05-10
Free-space optical communication can experience severe fading due to optical scintillation in long-range links. Channel estimation is also corrupted by background and electrical noise. Accurate estimation of channel parameters and scintillation index (SI) depends on perfect removal of background irradiance. In this paper, we propose three different methods, the minimum-value (MV), mean-power (MP), and maximum-likelihood (ML) based methods, to remove the background irradiance from channel samples. The MV and MP methods do not require knowledge of the scintillation distribution. While the ML-based method assumes gamma-gamma scintillation, it can be easily modified to accommodate other distributions. Each estimator's performance is compared using simulation data as well as experimental measurements. The estimators' performance are evaluated from low- to high-SI areas using simulation data as well as experimental trials. The MV and MP methods have much lower complexity than the ML-based method. However, the ML-based method shows better SI and background-irradiance estimation performance.
Telecommunications and navigation systems design for manned Mars exploration missions
NASA Astrophysics Data System (ADS)
Hall, Justin R.; Hastrup, Rolf C.
1989-06-01
This paper discusses typical manned Mars exploration needs for telecommunications, including preliminary navigation support functions. It is a brief progress report on an ongoing study program within the current NASA JPL Deep Space Network (DSN) activities. A typical Mars exploration case is defined, and support approaches comparing microwave and optical frequency performance for both local in situ and Mars-earth links are described. Optical telecommunication and navigation technology development opportunities in a Mars exploration program are also identified. A local Mars system telecommunication relay and navigation capability for service support of all Mars missions has been proposed as part of an overall solar system communications network. The effects of light-time delay and occultations on real-time mission decision-making are discussed; the availability of increased local mass data storage may be more important than increasing peak data rates to earth. The long-term frequency use plan will most likely include a mix of microwave, millimeter-wave and optical link capabilities to meet a variety of deep space mission needs.
Telecommunications and navigation systems design for manned Mars exploration missions
NASA Technical Reports Server (NTRS)
Hall, Justin R.; Hastrup, Rolf C.
1989-01-01
This paper discusses typical manned Mars exploration needs for telecommunications, including preliminary navigation support functions. It is a brief progress report on an ongoing study program within the current NASA JPL Deep Space Network (DSN) activities. A typical Mars exploration case is defined, and support approaches comparing microwave and optical frequency performance for both local in situ and Mars-earth links are described. Optical telecommunication and navigation technology development opportunities in a Mars exploration program are also identified. A local Mars system telecommunication relay and navigation capability for service support of all Mars missions has been proposed as part of an overall solar system communications network. The effects of light-time delay and occultations on real-time mission decision-making are discussed; the availability of increased local mass data storage may be more important than increasing peak data rates to earth. The long-term frequency use plan will most likely include a mix of microwave, millimeter-wave and optical link capabilities to meet a variety of deep space mission needs.
Architectural design of a ground-based deep-space optical reception antenna
NASA Technical Reports Server (NTRS)
Kerr, E. L.
1989-01-01
An architectural design of a ground-based antenna (telescope) for receiving optical communications from deep space is presented. Physical and optical parameters, and their effect on the performance and cost considerations, are described. The channel capacity of the antenna is 100 kbits/s from Saturn and 5 Mbits/s from Mars. A novel sunshade is designed to permit optical communication even when the deep-space laser source is as close to the sun as 12 deg. Inserts in the tubes of the sunshade permit operations at solar elongations as small as 6 or 3 deg. The Nd:YAG source laser and the Fraunhofer filter (a narrow-band predetection optical filter) are tuned to match the Doppler shifts of the source and background. A typical Saturn-to-earth data link can reduce its source power requirement from 8.2 W to 2 W of laser output by employing a Fraunhofer filter instead of a conventional multilayer dielectric filter.
Infrared Fibers for Use in Space-Based Smart Structures
NASA Technical Reports Server (NTRS)
Tucker, Dennis S.; Nettles, Alan T.; Brantley, Lott W. (Technical Monitor)
2001-01-01
Infrared optical fibers are finding a number of applications including laser surgery, remote sensing, and nuclear radiation resistant links. Utilizing these fibers in space-based structures is another application, which can be exploited. Acoustic and thermal sensing are two areas in which these fibers could be utilized. In particular, fibers could be embedded in IM7/8552 toughened epoxy and incorporated into space structures both external and internal. ZBLAN optical fibers are a candidate, which have been studied extensively over the past 20 years for terrestrial applications. For the past seven years the effects of gravity on the crystallization behavior of ZBLAN optical fiber has been studied. It has been found that ZBLAN crystallization is suppressed in microgravity. This lack of crystallization leads to a fiber with better transmission characteristics than its terrestrial counterpart.
NASA Technical Reports Server (NTRS)
Grove, C. H.; Phillips, R. L.; Wojtasinski, R. J.
1975-01-01
A lightning instrumentation system was designed to record current magnitudes of lightning strikes that hit a launch pad service structure at NASA's Kennedy Space Center. The instrumentation system consists of a lightning ground rod with a current sensor coil, an optical transmitter, an optical fiber cable link, a detector receiver, and a recording system. The transmitter is a wideband pulse transformer driving an IR LED emitter. The transmitter operates linearly as a transducer. A low loss fiber bundle provides isolation of the recorder system from the electromagnetic field of the lightning strike. The output of an optical detector receiver module is sampled and recorded in digital format. The significant factors considered in the design were dynamic range, linearity, mechanical configuration, electromagnetic isolation, and temperature compensation.
NASA Astrophysics Data System (ADS)
Burrell, Derek J.; Middlebrook, Christopher T.
2017-08-01
Wireless communication systems that employ free-space optical links in place of radio/microwave technologies carry substantial benefits in terms of data throughput, network security and design efficiency. Along with these advantages comes the challenge of counteracting signal degradation caused by atmospheric turbulence in free-space environments. A fully coherent laser source experiences random phase delays along its traversing path in turbulent conditions forming a speckle pattern and lowering the received signal-to-noise ratio upon detection. Preliminary research has shown that receiver-side speckle contrast may be significantly reduced and signal-to-noise ratio increased accordingly through the use of a partially coherent light source. While dynamic diffusers and adaptive optics solutions have been proven effective, they also add expense and complexity to a system that relies on accessibility and robustness for successful implementation. A custom Hadamard diffractive matrix design is used to statically induce partial coherence in a transmitted beam to increase signal-to-noise ratio for experimental turbulence scenarios. Atmospheric phase screens are generated using an open-source software package and subsequently loaded into a spatial light modulator using nematic liquid crystals to modulate the phase.
Ren, Yongxiong; Wang, Zhe; Liao, Peicheng; Li, Long; Xie, Guodong; Huang, Hao; Zhao, Zhe; Yan, Yan; Ahmed, Nisar; Willner, Asher; Lavery, Martin P J; Ashrafi, Nima; Ashrafi, Solyman; Bock, Robert; Tur, Moshe; Djordjevic, Ivan B; Neifeld, Mark A; Willner, Alan E
2016-02-01
We experimentally demonstrate and characterize the performance of a 400-Gbit/s orbital angular momentum (OAM) multiplexed free-space optical link over 120 m on the roof of a building. Four OAM beams, each carrying a 100-Gbit/s quadrature-phase-shift-keyed channel are multiplexed and transmitted. We investigate the influence of channel impairments on the received power, intermodal crosstalk among channels, and system power penalties. Without laser tracking and compensation systems, the measured received power and crosstalk among OAM channels fluctuate by 4.5 dB and 5 dB, respectively, over 180 s. For a beam displacement of 2 mm that corresponds to a pointing error less than 16.7 μrad, the link bit error rates are below the forward error correction threshold of 3.8×10(-3) for all channels. Both experimental and simulation results show that power penalties increase rapidly when the displacement increases.
NASA Astrophysics Data System (ADS)
Alimi, Isiaka; Shahpari, Ali; Ribeiro, Vítor; Sousa, Artur; Monteiro, Paulo; Teixeira, António
2017-05-01
In this paper, we present experimental results on channel characterization of single input single output (SISO) free-space optical (FSO) communication link that is based on channel measurements. The histograms of the FSO channel samples and the log-normal distribution fittings are presented along with the measured scintillation index. Furthermore, we extend our studies to diversity schemes and propose a closed-form expression for determining ergodic channel capacity of multiple input multiple output (MIMO) FSO communication systems over atmospheric turbulence fading channels. The proposed empirical model is based on SISO FSO channel characterization. Also, the scintillation effects on the system performance are analyzed and results for different turbulence conditions are presented. Moreover, we observed that the histograms of the FSO channel samples that we collected from a 1548.51 nm link have good fits with log-normal distributions and the proposed model for MIMO FSO channel capacity is in conformity with the simulation results in terms of normalized mean-square error (NMSE).
An in-depth analysis and modelling of the Shuttle to MILA S-band telemetry link
NASA Technical Reports Server (NTRS)
Caroglanian, Armen; Pellerano, Fernando A.; Shama, Dale D.
1993-01-01
The S-Band radio frequency (RF) link between the Merritt Island (MILA) Tracking Station and the Space Shuttle launch pads is a critical communication path for prelaunch and launch operations. The proposed siting of the Center for Space Education (CSE) at the Visitor Center required a study to avoid RF line-of-sight blockage and reflection paths. The study revealed the trees near MILA's 9-meter (9-M) antennas are obstructing the optical line-of-sight. The studies found diffraction is the main propagation mechanism. This paper describes a link model based on the Geometric Theory of Diffraction.
Fiber optic reference frequency distribution to remote beam waveguide antennas
NASA Technical Reports Server (NTRS)
Calhoun, Malcolm; Kuhnle, Paul; Law, Julius
1995-01-01
In the NASA/JPL Deep Space Network (DSN), radio science experiments (probing outer planet atmospheres, rings, gravitational waves, etc.) and very long-base interferometry (VLBI) require ultra-stable, low phase noise reference frequency signals at the user locations. Typical locations for radio science/VLBI exciters and down-converters are the cone areas of the 34 m high efficiency antennas or the 70 m antennas, located several hundred meters from the reference frequency standards. Over the past three years, fiber optic distribution links have replaced coaxial cable distribution for reference frequencies to these antenna sites. Optical fibers are the preferred medium for distribution because of their low attenuation, immunity to EMI/IWI, and temperature stability. A new network of Beam Waveguide (BWG) antennas presently under construction in the DSN requires hydrogen maser stability at tens of kilometers distance from the frequency standards central location. The topic of this paper is the design and implementation of an optical fiber distribution link which provides ultra-stable reference frequencies to users at a remote BWG antenna. The temperature profile from the earth's surface to a depth of six feet over a time period of six months was used to optimize the placement of the fiber optic cables. In-situ evaluation of the fiber optic link performance indicates Allan deviation on the order of parts in 10(exp -15) at 1000 and 10,000 seconds averaging time; thus, the link stability degradation due to environmental conditions still preserves hydrogen maser stability at the user locations. This paper reports on the implementation of optical fibers and electro-optic devices for distributing very stable, low phase noise reference signals to remote BWG antenna locations. Allan deviation and phase noise test results for a 16 km fiber optic distribution link are presented in the paper.
Fiber optic reference frequency distribution to remote beam waveguide antennas
NASA Astrophysics Data System (ADS)
Calhoun, Malcolm; Kuhnle, Paul; Law, Julius
1995-05-01
In the NASA/JPL Deep Space Network (DSN), radio science experiments (probing outer planet atmospheres, rings, gravitational waves, etc.) and very long-base interferometry (VLBI) require ultra-stable, low phase noise reference frequency signals at the user locations. Typical locations for radio science/VLBI exciters and down-converters are the cone areas of the 34 m high efficiency antennas or the 70 m antennas, located several hundred meters from the reference frequency standards. Over the past three years, fiber optic distribution links have replaced coaxial cable distribution for reference frequencies to these antenna sites. Optical fibers are the preferred medium for distribution because of their low attenuation, immunity to EMI/IWI, and temperature stability. A new network of Beam Waveguide (BWG) antennas presently under construction in the DSN requires hydrogen maser stability at tens of kilometers distance from the frequency standards central location. The topic of this paper is the design and implementation of an optical fiber distribution link which provides ultra-stable reference frequencies to users at a remote BWG antenna. The temperature profile from the earth's surface to a depth of six feet over a time period of six months was used to optimize the placement of the fiber optic cables. In-situ evaluation of the fiber optic link performance indicates Allan deviation on the order of parts in 10(exp -15) at 1000 and 10,000 seconds averaging time; thus, the link stability degradation due to environmental conditions still preserves hydrogen maser stability at the user locations. This paper reports on the implementation of optical fibers and electro-optic devices for distributing very stable, low phase noise reference signals to remote BWG antenna locations. Allan deviation and phase noise test results for a 16 km fiber optic distribution link are presented in the paper.
NASA Astrophysics Data System (ADS)
Huang, Xu-Hong; Lu, Hai-Han; Donati, Silvano; Li, Chung-Yi; Wang, Yun-Chieh; Jheng, Yu-Bo; Chang, Jen-Chieh
2018-07-01
Two-way wireless-over-fiber and free-space optical (FSO)-over-fiber communication systems, with an optical carrier transmission for a hybrid 10 Gbps baseband data stream, are proposed and practically demonstrated. 10 Gbps/50 GHz and 10 Gbps/100 GHz millimeter-wave data signal transmissions are also proposed and practically demonstrated. An optical carrier with a 10 Gbps baseband data stream is delivered via a 50 km single-mode fiber transportation to effectively lower dispersion-induced limitation due to fiber links and distortion produced by beating among multiple optical sidebands. To our understanding, this experiment is foremost in employing an optical carrier transmission approach to a two-way wireless-over-fiber and FSO-over-fiber communication system to suppress fiber dispersion and distortion effectively. Bit error rate performs well for downlink and uplink deliveries via a 50 km single-mode fiber transportation with a 100 m FSO link/5 m RF wireless delivery. The offered two-way wireless-over-fiber and FSO-over-fiber communication system with an optical carrier transmission is a promising option. It should be interesting for signifying the progress in the integration of long-haul fiber-based trunks and short-range RF/optical wireless link-based branches.
Lu, Hai-Han; Wu, Hsiao-Wen; Li, Chung-Yi; Ho, Chun-Ming; Yang, Zih-Yi; Cheng, Ming-Te; Lu, Chang-Kai
2017-05-01
A bidirectional fiber-invisible laser light communication (IVLLC) and fiber-wireless convergence system with two orthogonally polarized optical sidebands for hybrid cable television (CATV)/millimeter-wave (MMW)/baseband (BB) signal transmission is proposed and experimentally demonstrated. Two optical sidebands generated by a 60-GHz MMW signal are orthogonally polarized and separated into different polarizations. These orthogonally polarized optical sidebands are delivered over a 40-km single-mode fiber (SMF) transport to effectually reduce the fiber dispersion induced by a 40-km SMF transmission and the distortion caused by the parallel polarized optical sidebands. To the best of our knowledge, this work is the first to adopt two orthogonally polarized optical sidebands in a bidirectional fiber-IVLLC and fiber-wireless convergence system to reduce fiber dispersion and distortion effectually. Good carrier-to-noise ratio, composite second order, composite triple beat, and bit error rate (BER) are achieved for downlink transmission at a 40-km SMF operation and a 100-m free-space optical (FSO) link/3-m RF wireless transmission. For up-link transmission, good BER performance is acquired over a 40-km SMF transport and a 100-m FSO link. The approach presented in this work signifies the advancements in the convergence of SMF-based backbone and optical/RF wireless-based feeder.
Shared protection based virtual network mapping in space division multiplexing optical networks
NASA Astrophysics Data System (ADS)
Zhang, Huibin; Wang, Wei; Zhao, Yongli; Zhang, Jie
2018-05-01
Space Division Multiplexing (SDM) has been introduced to improve the capacity of optical networks. In SDM optical networks, there are multiple cores/modes in each fiber link, and spectrum resources are multiplexed in both frequency and core/modes dimensions. Enabled by network virtualization technology, one SDM optical network substrate can be shared by several virtual networks operators. Similar with point-to-point connection services, virtual networks (VN) also need certain survivability to guard against network failures. Based on customers' heterogeneous requirements on the survivability of their virtual networks, this paper studies the shared protection based VN mapping problem and proposes a Minimum Free Frequency Slots (MFFS) mapping algorithm to improve spectrum efficiency. Simulation results show that the proposed algorithm can optimize SDM optical networks significantly in terms of blocking probability and spectrum utilization.
NASA Astrophysics Data System (ADS)
Bamiedakis, N.; McKendry, J. J. D.; Xie, E.; Gu, E.; Dawson, M. D.; Penty, R. V.; White, I. H.
2018-02-01
In recent years, light emitting diodes (LEDs) have gained renewed interest for use in visible light communication links (VLC) owing to their potential use as both high-quality power-efficient illumination sources as well as low-cost optical transmitters in free-space and guided-wave links. Applications that can benefit from their use include optical wireless systems (LiFi and Internet of Things), in-home and automotive networks, optical USBs and short-reach low-cost optical interconnects. However, VLC links suffer from the limited LED bandwidth (typically 100 MHz). As a result, a combination of novel LED devices, advanced modulation formats and multiplexing methods are employed to overcome this limitation and achieve high-speed (>1 Gb/s) data transmission over such links. In this work, we present recent advances in the formation of high-aggregate-capacity low cost guided wave VLC links using stacked polymer multimode waveguides and matching micro-pixelated LED (μLED) arrays. μLEDs have been shown to exhibit larger bandwidths (>200 MHz) than conventional broad-area LEDs and can be formed in large array configurations, while multimode polymer waveguides enable the formation of low-cost optical links onto standard PCBs. Here, three- and four-layered stacks of multimode waveguides, as well as matching GaN μLED arrays, are fabricated in order to generate high-density yet low-cost optical interconnects. Different waveguide topologies are implemented and are investigated in terms of loss and crosstalk performance. The initial results presented herein demonstrate good intrinsic crosstalk performance and indicate the potential to achieve >= 0.5 Tb/s/mm2 aggregate interconnection capacity using this low-cost technology.
NASA Astrophysics Data System (ADS)
Li, Hanshan
2016-04-01
To enhance the stability and reliability of multi-screens testing system, this paper studies multi-screens target optical information transmission link properties and performance in long-distance, sets up the discrete multi-tone modulation transmission model based on geometric model of laser multi-screens testing system and visible light information communication principle; analyzes the electro-optic and photoelectric conversion function of sender and receiver in target optical information communication system; researches target information transmission performance and transfer function of the generalized visible-light communication channel; found optical information communication transmission link light intensity space distribution model and distribution function; derives the SNR model of information transmission communication system. Through the calculation and experiment analysis, the results show that the transmission error rate increases with the increment of transmission rate in a certain channel modulation depth; when selecting the appropriate transmission rate, the bit error rate reach 0.01.
Free-space quantum cryptography with quantum and telecom communication channels
NASA Astrophysics Data System (ADS)
Toyoshima, Morio; Takayama, Yoshihisa; Klaus, Werner; Kunimori, Hiroo; Fujiwara, Mikio; Sasaki, Masahide
2008-07-01
Quantum cryptography is a new technique that uses the laws of physics to transmit information securely. In such systems, the vehicle to transfer quantum information is a single photon. However, the transmission distance is limited by the absorption of photons in an optical fiber in which the maximum demonstrated range is about 100 km. Free-space quantum cryptography between a ground station and a satellite is a way of sending the quantum information further distances than that with optical fibers since there is no birefringence effect in the atmosphere. At the National Institute of Information and Communications Technology (NICT), the laser communication demonstration between the NICT optical ground station and a low earth orbit satellite was successfully conducted in 2006. For such space communication links, free-space quantum cryptography is considered to be an important application in the future. We have developed a prototype system for free-space quantum cryptography using a weak coherent light and a telecom communication channel. The preliminary results are presented.
FSO and quality of service software prediction
NASA Astrophysics Data System (ADS)
Bouchet, O.; Marquis, T.; Chabane, M.; Alnaboulsi, M.; Sizun, H.
2005-08-01
Free-space optical (FSO) communication links constitute an alternative option to radio relay links and to optical cables facing growth needs in high-speed telecommunications (abundance of unregulated bandwidth, rapid installation, availability of low-cost optical components offering a high data rate, etc). Their operationalisation requires a good knowledge of the atmospheric effects which can negatively affect role propagation and the availability of the link, and thus to the quality of service (QoS). Better control of these phenomena will allow for the evaluation of system performance and thus assist with improving reliability. The aim of this paper is to compare the behavior of a FSO link located in south of France (Toulouse: with the following parameters: around 270 meters (0.2 mile) long, 34 Mbps data rate, 850 nm wavelength and PDH frame) with airport meteorological data. The second aim of the paper is to assess in-house FSO quality of service prediction software, through comparing simulations with the optical link data and the weather data. The analysis uses in-house software FSO quality of service prediction software ("FSO Prediction") developed by France Telecom Research & Development, which integrates news fog fading equations (compare to Kim & al.) and includes multiple effects (geometrical attenuation, atmospheric fading, rain, snow, scintillation and refraction attenuation due to atmospheric turbulence, optical mispointing attenuation). The FSO link field trial, intended to enable the demonstration and evaluation of these different effects, is described; and preliminary results of the field trial, from December 2004 to May 2005, are then presented.
LEO-to-ground polarization measurements aiming for space QKD using Small Optical TrAnsponder (SOTA).
Carrasco-Casado, Alberto; Kunimori, Hiroo; Takenaka, Hideki; Kubo-Oka, Toshihiro; Akioka, Maki; Fuse, Tetsuharu; Koyama, Yoshisada; Kolev, Dimitar; Munemasa, Yasushi; Toyoshima, Morio
2016-05-30
Quantum communication, and more specifically Quantum Key Distribution (QKD), enables the transmission of information in a theoretically secure way, guaranteed by the laws of quantum physics. Although fiber-based QKD has been readily available since several years ago, a global quantum communication network will require the development of space links, which remains to be demonstrated. NICT launched a LEO satellite in 2014 carrying a lasercom terminal (SOTA), designed for in-orbit technological demonstrations. In this paper, we present the results of the campaign to measure the polarization characteristics of the SOTA laser sources after propagating from LEO to ground. The most-widely used property for encoding information in free-space QKD is the polarization, and especially the linear polarization. Therefore, studying its behavior in a realistic link is a fundamental step for proving the feasibility of space quantum communications. The results of the polarization preservation of two highly-polarized lasers are presented here, including the first-time measurement of a linearly-polarized source at λ = 976 nm and a circularly-polarized source at λ = 1549 nm from space using a realistic QKD-like receiver, installed in the Optical Ground Station at the NICT Headquarters, in Tokyo, Japan.
10 Gbps Shuttle-to-Ground Adjunct Communication Link Capability Experiment
NASA Technical Reports Server (NTRS)
Ceniceros, J. M.; Sandusky, J. V.; Hemmati, H.
1999-01-01
A 1.2 Gbps space-to-ground laser communication experiment being developed for use on an EXpedite the PRocessing of Experiments to the Space Station (EXPRESS) Pallet Adapter can be adapted to fit the Hitchhiker cross-bay-carrier pallet and upgraded to data rates exceeding 1O Gbps. So modified, this instrument would enable both real-time data delivery and increased data volume for payloads using the Space Shuttle. Applications such as synthetic aperture radar and multispectral imaging collect large data volumes at a high rate and would benefit from the capability for real-time data delivery and from increased data downlink volume. Current shuttle downlink capability is limited to 50 Mbps, forcing such instruments to store large amounts of data for later analysis. While the technology is not yet sufficiently proven to be relied on as the primary communication link, when in view of the ground station it would increase the shuttle downlink rate capability 200 times, with typical total daily downlinks of 200 GB - as much data as the shuttle could downlink if it were able to maintain its maximum data rate continuously for one day. The lasercomm experiment, the Optical Communication Demonstration and High-Rate Link Facility (OCDHRLF), is being developed by the Jet Propulsion Laboratory's (JPL) Optical Communication Group through support from the International Space Station Engineering Research and Technology Development program. It is designed to work in conjunction with the Optical Communication Telescope Laboratory (OCTL) NASA's first optical communication ground station, which is under construction at JPL's Table Mountain Facility near Wrightwood, California. This paper discusses the modifications to the preliminary design of the flight system that would be necessary to adapt it to fit the Hitchhiker Cross-Bay Carrier. It also discusses orbit geometries which are favorable to the OCTL and potential non-NASA ground stations, anticipated burst-error-rates and bit-error-rates, and requirements for data collection on the ground.
Can 100Gb/s wavelengths be deployed using 10Gb/s engineering rules?
NASA Astrophysics Data System (ADS)
Saunders, Ross; Nicholl, Gary; Wollenweber, Kevin; Schmidt, Ted
2007-09-01
A key challenge set by carriers for 40Gb/s deployments was that the 40Gb/s wavelengths should be deployable over existing 10Gb/s DWDM systems, using 10Gb/s link engineering design rules. Typical 10Gb/s link engineering rules are: 1. Polarization Mode Dispersion (PMD) tolerance of 10ps (mean); 2. Chromatic Dispersion (CD) tolerance of +/-700ps/nm 3. Operation at 50GHz channel spacing, including transit through multiple cascaded [R]OADMs; 4. Optical reach up to 2,000km. By using a combination of advanced modulation formats and adaptive dispersion compensation (technologies rarely seen at 10Gb/s outside of the submarine systems space), vendors did respond to the challenge and broadly met this requirement. As we now start to explore feasible technologies for 100Gb/s optical transport, driven by 100GE port availability on core IP routers, the carrier challenge remains the same. 100Gb/s links should be deployable over existing 10Gb/s DWDM systems using 10Gb/s link engineering rules (as listed above). To meet this challenge, optical transport technology must evolve to yet another level of complexity/maturity in both modulation formats and adaptive compensation techniques. Many clues as to how this might be achieved can be gained by first studying sister telecommunications industries, e.g. satellite (QPSK, QAM, LDCP FEC codes), wireless (advanced DSP, MSK), HDTV (TCM), etc. The optical industry is not a pioneer of new ideas in modulation schemes and coding theory, we will always be followers. However, we do have the responsibility of developing the highest capacity "modems" on the planet to carry the core backbone traffic of the Internet. As such, the key to our success will be to analyze the pros and cons of advanced modulation/coding techniques and balance this with the practical limitations of high speed electronics processing speed and the challenges of real world optical layer impairments. This invited paper will present a view on what advanced technologies are likely candidates to support 100GE optical IP transport over existing 10Gb/s DWDM systems, using 10Gb/s link engineering rules.
Free space optical ultra-wideband communications over atmospheric turbulence channels.
Davaslioğlu, Kemal; Cağiral, Erman; Koca, Mutlu
2010-08-02
A hybrid impulse radio ultra-wideband (IR-UWB) communication system in which UWB pulses are transmitted over long distances through free space optical (FSO) links is proposed. FSO channels are characterized by random fluctuations in the received light intensity mainly due to the atmospheric turbulence. For this reason, theoretical detection error probability analysis is presented for the proposed system for a time-hopping pulse-position modulated (TH-PPM) UWB signal model under weak, moderate and strong turbulence conditions. For the optical system output distributed over radio frequency UWB channels, composite error analysis is also presented. The theoretical derivations are verified via simulation results, which indicate a computationally and spectrally efficient UWB-over-FSO system.
Bit-error rate for free-space adaptive optics laser communications.
Tyson, Robert K
2002-04-01
An analysis of adaptive optics compensation for atmospheric-turbulence-induced scintillation is presented with the figure of merit being the laser communications bit-error rate. The formulation covers weak, moderate, and strong turbulence; on-off keying; and amplitude-shift keying, over horizontal propagation paths or on a ground-to-space uplink or downlink. The theory shows that under some circumstances the bit-error rate can be improved by a few orders of magnitude with the addition of adaptive optics to compensate for the scintillation. Low-order compensation (less than 40 Zernike modes) appears to be feasible as well as beneficial for reducing the bit-error rate and increasing the throughput of the communication link.
Results of the Compensated Earth-Moon-Earth Retroreflector Laser Link (CEMERLL) Experiment
NASA Technical Reports Server (NTRS)
Wilson, K. E.; Leatherman, P. R.; Cleis, R.; Spinhirne, J.; Fugate, R. Q.
1997-01-01
Adaptive optics techniques can be used to realize a robust low bit-error-rate link by mitigating the atmosphere-induced signal fades in optical communications links between ground-based transmitters and deep-space probes. Phase I of the Compensated Earth-Moon-Earth Retroreflector Laser Link (CEMERLL) experiment demonstrated the first propagation of an atmosphere-compensated laser beam to the lunar retroreflectors. A 1.06-micron Nd:YAG laser beam was propagated through the full aperture of the 1.5-m telescope at the Starfire Optical Range (SOR), Kirtland Air Force Base, New Mexico, to the Apollo 15 retroreflector array at Hadley Rille. Laser guide-star adaptive optics were used to compensate turbulence-induced aberrations across the transmitter's 1.5-m aperture. A 3.5-m telescope, also located at the SOR, was used as a receiver for detecting the return signals. JPL-supplied Chebyshev polynomials of the retroreflector locations were used to develop tracking algorithms for the telescopes. At times we observed in excess of 100 photons returned from a single pulse when the outgoing beam from the 1.5-m telescope was corrected by the adaptive optics system. No returns were detected when the outgoing beam was uncompensated. The experiment was conducted from March through September 1994, during the first or last quarter of the Moon.
Recent developments in electroabsorption modulators at Acreo Swedish ICT
NASA Astrophysics Data System (ADS)
Wang, Qin; Zhang, Andy Z.; Almqvist, Susanne; Junique, Stephane; Noharet, Bertrand; Platt, Duncan; Salter, Michael; Andersson, Jan Y.
2015-03-01
Three types of electroabsorption modulators (EAMs) based on III-V semiconductor multiple quantum wells (MQW) are presented in this work. One is a novel monolithic integration traveling-wave EAM for an analog optical transmitter/transceiver to achieve integrated photonic mm-wave functions for broadband connectivity. Another one is composed of an integrated EAM 1D array in a photonic beam-former as a Ku-band phased array antenna for seamless aeronautical networking through integration of data links, radios, and antennas. The third one addresses the use of MQW EAMs in free space optical links through biological tissue for transcutaneous communication.
Channel modelling for free-space optical inter-HAP links using adaptive ARQ transmission
NASA Astrophysics Data System (ADS)
Parthasarathy, S.; Giggenbach, D.; Kirstädter, A.
2014-10-01
Free-space optical (FSO) communication systems have seen significant developments in recent years due to growing need for very high data rates and tap-proof communication. The operation of an FSO link is suited to diverse variety of applications such as satellites, High Altitude Platforms (HAPs), Unmanned Aerial Vehicles (UAVs), aircrafts, ground stations and other areas involving both civil and military situations. FSO communication systems face challenges due to different effects of the atmospheric channel. FSO channel primarily suffers from scintillation effects due to Index of Refraction Turbulence (IRT). In addition, acquisition and pointing becomes more difficult because of the high directivity of the transmitted beam: Miss-pointing of the transmitted beam and tracking errors at the receiver generate additional fading of the optical signal. High Altitude Platforms (HAPs) are quasi-stationary vehicles operating in the stratosphere. The slowly varying but precisely determined time-of-flight of the Inter-HAP channel adds to its characteristics. To propose a suitable ARQ scheme, proper theoretical understanding of the optical atmospheric propagation and modeling of a specific scenario FSO channel is required. In this paper, a bi-directional symmetrical Inter-HAP link has been selected and modeled. The Inter-HAP channel model is then investigated via simulations in terms of optical scintillation induced by IRT and in presence of pointing error. The performance characteristic of the model is then quantified in terms of fading statistics from which the Packet Error Probability (PEP) is calculated. Based on the PEP characteristics, we propose suitable ARQ schemes.
Full-Duplex Digital Communication on a Single Laser Beam
NASA Technical Reports Server (NTRS)
Hazzard, D. A.; MacCannell, J. A.; Lee, G.; Selves, E. R.; Moore, D.; Payne, J. A.; Garrett, C. D.; Dahlstrom, N.; Shay, T. M.
2006-01-01
A proposed free-space optical communication system would operate in a full-duplex mode, using a single constant-power laser beam for transmission and reception of binary signals at both ends of the free-space optical path. The system was conceived for two-way data communication between a ground station and a spacecraft in a low orbit around the Earth. It has been estimated that in this application, a data rate of 10 kb/s could be achieved at a ground-station-to-spacecraft distance of 320 km, using a laser power of only 100 mW. The basic system concept is also applicable to terrestrial free-space optical communications. The system (see figure) would include a diode laser at one end of the link (originally, the ground station) and a liquid-crystal- based retroreflecting modulator at the other end of the link (originally, the spacecraft). At the laser end, the beam to be transmitted would be made to pass through a quarter-wave plate, which would convert its linear polarization to right circular polarization. For transmission of data from the laser end to the retroreflector end, the laser beam would be modulated with subcarrier phase-shift keying (SC-PSK). The transmitted beam would then pass through an aperture- sharing element (ASE) - basically, a mirror with a hole in it, used to separate the paths of the transmitted and received light beams. The transmitted beam would continue outward through a telescope (which, in the original application, would be equipped with a spacecraft-tracking system) that would launch the transmitted beam along the free-space optical path to the retroreflector end.
NASA Astrophysics Data System (ADS)
Blasco, Julián.; Rico, Eloy; Genovard, Pablo; Sáez, Cristina; Navasquillo, Olga; Martí, Javier
2017-11-01
During past years, special efforts have been invested to develop optical links, both digital and analogue, for space applications, such as reference signal distribution or digital communication cables. The aim of this paper is to present the current DAS developments for these applications as well as future work to increase TRL levels and flight opportunities.
Jia, Honghui; Yin, Hongwei; Zhang, Hailiang; Wang, Xiaofeng; Chang, Shengli; Yang, Juncai
2013-11-01
Retroreflective free-space optical communication is important because of advantages such as small volume, low weight, and low power consumption. Link failure caused by bad weather conditions will occur because of the attenuated retroreflective signal and the increased scattering of the transmitted light. The scattering effect can be reduced because the physical properties (including polarization, wavefront, and phase) of the scattering signal are different from those of the retroreflective signal. The physical properties of the scattering signal are obtained using a polarization-sensitive Monte Carlo model, and the heterodyning scattering signal is obtained using heterodyning theory. Results show that, with optical heterodyning, the scattering effect is efficiently reduced, and advantages such as better adaptability to bad weather conditions, longer communication range, more compact transceiver design, larger covering area of the optical receiver, and easier target acquisition for the retromodulator than before can also be obtained.
Optical Phase Recovery and Locking in a PPM Laser Communication Link
NASA Technical Reports Server (NTRS)
Aveline, David C.; Yu, Nan; Farr, William H.
2012-01-01
Free-space optical communication holds great promise for future space missions requiring high data rates. For data communication in deep space, the current architecture employs pulse position modulation (PPM). In this scheme, the light is transmitted and detected as pulses within an array of time slots. While the PPM method is efficient for data transmission, the phase of the laser light is not utilized. The phase coherence of a PPM optical signal has been investigated with the goal of developing a new laser communication and ranging scheme that utilizes optical coherence within the established PPM architecture and photon-counting detection (PCD). Experimental measurements of a PPM modulated optical signal were conducted, and modeling code was developed to generate random PPM signals and simulate spectra via FFT (Fast Fourier Transform) analysis. The experimental results show very good agreement with the simulations and confirm that coherence is preserved despite modulation with high extinction ratios and very low duty cycles. A real-time technique has been developed to recover the phase information through the mixing of a PPM signal with a frequency-shifted local oscillator (LO). This mixed signal is amplified, filtered, and integrated to generate a voltage proportional to the phase of the modulated signal. By choosing an appropriate time constant for integration, one can maintain a phase lock despite long dark times between consecutive pulses with low duty cycle. A proof-of-principle demonstration was first achieved with an RF-based PPM signal and test setup. With the same principle method, an optical carrier within a PPM modulated laser beam could also be tracked and recovered. A reference laser was phase-locked to an independent pulsed laser signal with low-duty-cycle pseudo-random PPM codes. In this way, the drifting carrier frequency in the primary laser source is tracked via its phase change in the mixed beat note, while the corresponding voltage feedback maintains the phase lock between the two laser sources. The novelty and key significance of this work is that the carrier phase information can be harnessed within an optical communication link based on PPM-PCD architecture. This technology development could lead to quantum-limited efficient performance within the communication link itself, as well as enable high-resolution optical tracking capabilities for planetary science and spacecraft navigation.
Lyke, Stephen D; Voelz, David G; Roggemann, Michael C
2009-11-20
The probability density function (PDF) of aperture-averaged irradiance fluctuations is calculated from wave-optics simulations of a laser after propagating through atmospheric turbulence to investigate the evolution of the distribution as the aperture diameter is increased. The simulation data distribution is compared to theoretical gamma-gamma and lognormal PDF models under a variety of scintillation regimes from weak to strong. Results show that under weak scintillation conditions both the gamma-gamma and lognormal PDF models provide a good fit to the simulation data for all aperture sizes studied. Our results indicate that in moderate scintillation the gamma-gamma PDF provides a better fit to the simulation data than the lognormal PDF for all aperture sizes studied. In the strong scintillation regime, the simulation data distribution is gamma gamma for aperture sizes much smaller than the coherence radius rho0 and lognormal for aperture sizes on the order of rho0 and larger. Examples of how these results affect the bit-error rate of an on-off keyed free space optical communication link are presented.
NASA Astrophysics Data System (ADS)
Gopal, Pooja; Jain, V. K.; Kar, Subrat
2017-12-01
Degradation due to atmospheric turbulence leads to significant outage in a free space optical satellite uplink with fixed transmitter parameters. If the channel state is known at the transmitter, then its parameters can be suitably changed, and there could be a considerable improvement in channel capacity. However, the extremely long link length of an Earth-to-Geostationary Earth Orbit (GEO) satellite link would render feedback of channel state from the receiver infeasible, before the channel changes. In this paper, a channel pre-estimation method at the transmitter is proposed, and the expression for capacity with transmitter power and rate adaptation is derived. The results are compared with that of the capacity with outage. It is observed that there can be an improvement by a factor of 1.66 in achievable average capacity per Hertz with the adaptive transmitter. Also, the outage probability is reduced from 18.02 % to almost 0.
Peppas, Kostas P; Lazarakis, Fotis; Alexandridis, Antonis; Dangakis, Kostas
2012-08-01
In this Letter we investigate the error performance of multiple-input multiple-output free-space optical communication systems employing intensity modulation/direct detection and operating over strong atmospheric turbulence channels. Atmospheric-induced strong turbulence fading is modeled using the negative exponential distribution. For the considered system, an approximate yet accurate analytical expression for the average bit error probability is derived and an efficient method for its numerical evaluation is proposed. Numerically evaluated and computer simulation results are further provided to demonstrate the validity of the proposed mathematical analysis.
Theoretical evaluation of scattering effect on retroreflective free-space optical communication.
Yin, Hongwei; Lan, Tianpeng; Zhang, Hailiang; Jia, Honghui; Chang, Shengli; Yang, Juncai
2012-12-01
Retroreflective free-space optical (RFSO) communication is a new concept of optical communication; it consists of an optical transceiver and a retromodulator and has advantages such as light weight, small volume, and low power consumption. The power captured by the receiver consists of two parts: retroreflective and scattering. The retroreflective characteristics are obtained using an analytical formula, the scattering characteristics using a Monte Carlo model. Results show that the scattering power plays an important role in a RFSO communication link, especially when the communication range is long or the meteorological range is short. Some rules are also obtained for the sake of system design, which include increasing the range from the transmitter and the receiver properly, increasing the area of the retromodulator, limiting the field of view of the receiver, and limiting the beam divergence of the transmitter.
Quantum Limits of Space-to-Ground Optical Communications
NASA Technical Reports Server (NTRS)
Hemmati, H.; Dolinar, S.
2012-01-01
For a pure loss channel, the ultimate capacity can be achieved with classical coherent states (i.e., ideal laser light): (1) Capacity-achieving receiver (measurement) is yet to be determined. (2) Heterodyne detection approaches the ultimate capacity at high mean photon numbers. (3) Photon-counting approaches the ultimate capacity at low mean photon numbers. A number of current technology limits drive the achievable performance of free-space communication links. Approaching fundamental limits in the bandwidth-limited regime: (1) Heterodyne detection with high-order coherent-state modulation approaches ultimate limits. SOA improvements to laser phase noise, adaptive optics systems for atmospheric transmission would help. (2) High-order intensity modulation and photon-counting can approach heterodyne detection within approximately a factor of 2. This may have advantages over coherent detection in the presence of turbulence. Approaching fundamental limits in the photon-limited regime (1) Low-duty cycle binary coherent-state modulation (OOK, PPM) approaches ultimate limits. SOA improvements to laser extinction ratio, receiver dark noise, jitter, and blocking would help. (2) In some link geometries (near field links) number-state transmission could improve over coherent-state transmission
QIPS: quantum information and quantum physics in space
NASA Astrophysics Data System (ADS)
Schmitt-Manderbach, Tobias; Scheidl, Thomas; Ursin, Rupert; Tiefenbacher, Felix; Weier, Henning; Fürst, Martin; Jennewein, T.; Perdigues, J.; Sodnik, Z.; Rarity, J.; Zeilinger, Anton; Weinfurter, Harald
2017-11-01
The aim of the QIPS project (financed by ESA) is to explore quantum phenomena and to demonstrate quantum communication over long distances. Based on the current state-of-the-art a first study investigating the feasibility of space based quantum communication has to establish goals for mid-term and long-term missions, but also has to test the feasibility of key issues in a long distance ground-to-ground experiment. We have therefore designed a proof-of-concept demonstration for establishing single photon links over a distance of 144 km between the Canary Islands of La Palma and Tenerife to evaluate main limitations for future space experiments. Here we report on the progress of this project and present first measurements of crucial parameters of the optical free space link.
SpaceFibre: The Standard, Simulation, IP Cores and Test Equipment
NASA Astrophysics Data System (ADS)
Parkes, Steve; McClements, Chris; McLaren, David; Ferrer Florit, Albert; Gonzalez Villafranca, Alberto
2015-09-01
SpaceFibre is an emerging new standard for spacecraft on-board data-handling networks. Initially targeted to deliver multi-Gbit/s data rates for synthetic aperture radar and high-resolution, multi-spectral imaging instruments, SpaceFibre has developed into a unified network technology that integrates high bandwidth, with low latency, quality of service (QoS) and fault detection, isolation and recovery (FDIR). Furthermore SpaceFibre is backwards compatible with the widely used SpaceWire standard at the network level allowing simple interconnection of existing SpaceWire equipment to a SpaceFibre link or network. Developed by the University of Dundee for the European Space Agency (ESA) SpaceFibre is able to operate over fibre-optic and electrical cable and supports data rates of 2 Gbit/s in the near future and up to 5 Gbit/s long-term. Multi-laning improves the data-rate further to well over 20 Gbits/s. This paper details the current state of SpaceFibre which is now in the process of formal standardisation by the European Cooperation for Space Standardization (ECSS). It describes the SpaceFibre IP core being developed for ESA. The design of a SpaceFibre demonstration board is introduced and available SpaceFibre test and development equipment is described. The way in which several SpaceWire links can be concentrated over a single SpaceFibre link will be explained.
Optical Phased Array Antennas using Coupled Vertical Cavity Surface Emitting Lasers
NASA Technical Reports Server (NTRS)
Mueller, Carl H.; Rojas, Roberto A.; Nessel, James A.; Miranda, Felix A.
2007-01-01
High data rate communication links are needed to meet the needs of NASA as well as other organizations to develop space-based optical communication systems. These systems must be robust to high radiation environments, reliable, and operate over a wide temperature range. Highly desirable features include beam steering capability, reconfigurability, low power consumption, and small aperture size. Optical communication links, using coupled vertical cavity surface emitting laser radiating elements are promising candidates for the transmit portion of these communication links. In this talk we describe a mission scenario, and how the antenna requirements are derived from the mission needs. We describe a potential architecture for this type of antenna, and outline the advantages and drawbacks of this approach relative to competing technologies. The technology we are proposing used coupled arrays of 1550 nm vertical cavity surface emitting lasers for transmission. The feasibility of coupling these arrays together, to form coherent high-power beams that can be modulated at data rates exceeding 1 Gbps, will be explored. We will propose an architecture that enables electronic beam steering, thus mitigating the need for ancillary acquisition, tracking and beam pointing equipment such as needed for current optical communicatin systems. The beam-steering capability we are proposing also opens the possibility of using this technology for inter-satellite communicatin links, and satellite-to-surface links.
45 Mbps cat's eye modulating retro-reflector link over 7 Km
NASA Astrophysics Data System (ADS)
Rabinovich, W. S.; Mahon, R.; Goetz, P. G.; Swingen, L.; Murphy, J.; Ferraro, M.; Burris, R.; Suite, M.; Moore, C. I.; Gilbreath, G. C.; Binari, S.
2006-09-01
Modulating retro-reflectors (MRR) allow free space optical links with no need for pointing, tracking or a laser on one end of the link. They work by coupling a passive optical retro-reflector with an optical modulator. The most common kind of MRR uses a corner cube retro-reflector. These devices must have a modulator whose active area is as large as the area of the corner cube. This limits the ability to close longer range high speed links because the large aperture need to return sufficient light implies a large modulator capacitance. To overcome this limitation we developed the concept of a cat's eye MRR. Cat's eye MRRs place the modulator in the focal plane of a lens system designed to passively retro-reflect light. Because the light focuses onto the modulator, a small, low capacitance, modulator can be used with a large optical aperture. However, the position of the focal spot varies with the angle of incidence so an array of modulators must be placed in the focal plane, In addition, to avoid having to drive all the modulator pixels, an angle of arrival sensor must be used. We discuss several cat's eye MRR systems with near diffraction limited performance and bandwidths of 45 Mbps. We also discuss a link to a cat's eye MRR over a 7 Km range.
Deep-Space Optical Communications: Visions, Trends, and Prospects
NASA Technical Reports Server (NTRS)
Cesarone, R. J.; Abraham, D. S.; Shambayati, S.; Rush, J.
2011-01-01
Current key initiatives in deep-space optical communications are treated in terms of historical context, contemporary trends, and prospects for the future. An architectural perspective focusing on high-level drivers, systems, and related operations concepts is provided. Detailed subsystem and component topics are not addressed. A brief overview of past ideas and architectural concepts sets the stage for current developments. Current requirements that might drive a transition from radio frequencies to optical communications are examined. These drivers include mission demand for data rates and/or data volumes; spectrum to accommodate such data rates; and desired power, mass, and cost benefits. As is typical, benefits come with associated challenges. For optical communications, these include atmospheric effects, link availability, pointing, and background light. The paper describes how NASA's Space Communication and Navigation Office will respond to the drivers, achieve the benefits, and mitigate the challenges, as documented in its Optical Communications Roadmap. Some nontraditional architectures and operations concepts are advanced in an effort to realize benefits and mitigate challenges as quickly as possible. Radio frequency communications is considered as both a competitor to and a partner with optical communications. The paper concludes with some suggestions for two affordable first steps that can yet evolve into capable architectures that will fulfill the vision inherent in optical communications.
Underwater optical communications using orbital angular momentum-based spatial division multiplexing
NASA Astrophysics Data System (ADS)
Willner, Alan E.; Zhao, Zhe; Ren, Yongxiong; Li, Long; Xie, Guodong; Song, Haoqian; Liu, Cong; Zhang, Runzhou; Bao, Changjing; Pang, Kai
2018-02-01
In this paper, we review high-capacity underwater optical communications using orbital angular momentum (OAM)-based spatial division multiplexing. We discuss methods to generate and detect blue-green optical data-carrying OAM beams as well as various underwater effects, including attenuation, scattering, current, and thermal gradients on OAM beams. Attention is also given to the system performance of high-capacity underwater optical communication links using OAM-based space division multiplexing. The paper closes with a discussion of a digital signal processing (DSP) algorithm to mitigate the inter-mode crosstalk caused by thermal gradients.
Modeling of Adaptive Optics-Based Free-Space Communications Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilks, S C; Morris, J R; Brase, J M
2002-08-06
We introduce a wave-optics based simulation code written for air-optic laser communications links, that includes a detailed model of an adaptive optics compensation system. We present the results obtained by this model, where the phase of a communications laser beam is corrected, after it propagates through a turbulent atmosphere. The phase of the received laser beam is measured using a Shack-Hartmann wavefront sensor, and the correction method utilizes a MEMS mirror. Strehl improvement and amount of power coupled to the receiving fiber for both 1 km horizontal and 28 km slant paths are presented.
NASA Astrophysics Data System (ADS)
Carrasco-Casado, Alberto; Takenaka, Hideki; Kolev, Dimitar; Munemasa, Yasushi; Kunimori, Hiroo; Suzuki, Kenji; Fuse, Tetsuharu; Kubo-Oka, Toshihiro; Akioka, Maki; Koyama, Yoshisada; Toyoshima, Morio
2017-10-01
Free-space optical communications have held the promise of revolutionizing space communications for a long time. The benefits of increasing the bitrate while reducing the volume, mass and energy of the space terminals have attracted the attention of many researchers for a long time. In the last few years, more and more technology demonstrations have been taking place with participants from both the public and the private sector. The National Institute of Information and Communications Technology (NICT) in Japan has a long experience in this field. SOTA (Small Optical TrAnsponder) was the last NICT space lasercom mission, designed to demonstrate the potential of this technology applied to microsatellites. Since the beginning of SOTA mission in 2014, NICT regularly established communication using the Optical Ground Stations (OGS) located in the Headquarters at Koganei (Tokyo) to receive the SOTA signals, with over one hundred successful links. All the goals of the SOTA mission were fulfilled, including up to 10-Mbit/s downlinks using two different wavelengths and apertures, coarse and fine tracking of the OGS beacon, space-to-ground transmission of the on-board-camera images, experiments with different error correcting codes, interoperability with other international OGS, and experiments on quantum communications. The SOTA mission ended on November 2016, more than doubling the designed lifetime of 1-year. In this paper, the SOTA characteristics and basic operation are explained, along with the most relevant technological demonstrations.
Free-space quantum key distribution by rotation-invariant twisted photons.
Vallone, Giuseppe; D'Ambrosio, Vincenzo; Sponselli, Anna; Slussarenko, Sergei; Marrucci, Lorenzo; Sciarrino, Fabio; Villoresi, Paolo
2014-08-08
"Twisted photons" are photons carrying a well-defined nonzero value of orbital angular momentum (OAM). The associated optical wave exhibits a helical shape of the wavefront (hence the name) and an optical vortex at the beam axis. The OAM of light is attracting a growing interest for its potential in photonic applications ranging from particle manipulation, microscopy, and nanotechnologies to fundamental tests of quantum mechanics, classical data multiplexing, and quantum communication. Hitherto, however, all results obtained with optical OAM were limited to laboratory scale. Here, we report the experimental demonstration of a link for free-space quantum communication with OAM operating over a distance of 210 m. Our method exploits OAM in combination with optical polarization to encode the information in rotation-invariant photonic states, so as to guarantee full independence of the communication from the local reference frames of the transmitting and receiving units. In particular, we implement quantum key distribution, a protocol exploiting the features of quantum mechanics to guarantee unconditional security in cryptographic communication, demonstrating error-rate performances that are fully compatible with real-world application requirements. Our results extend previous achievements of OAM-based quantum communication by over 2 orders of magnitude in the link scale, providing an important step forward in achieving the vision of a worldwide quantum network.
Free-Space Quantum Key Distribution by Rotation-Invariant Twisted Photons
NASA Astrophysics Data System (ADS)
Vallone, Giuseppe; D'Ambrosio, Vincenzo; Sponselli, Anna; Slussarenko, Sergei; Marrucci, Lorenzo; Sciarrino, Fabio; Villoresi, Paolo
2014-08-01
"Twisted photons" are photons carrying a well-defined nonzero value of orbital angular momentum (OAM). The associated optical wave exhibits a helical shape of the wavefront (hence the name) and an optical vortex at the beam axis. The OAM of light is attracting a growing interest for its potential in photonic applications ranging from particle manipulation, microscopy, and nanotechnologies to fundamental tests of quantum mechanics, classical data multiplexing, and quantum communication. Hitherto, however, all results obtained with optical OAM were limited to laboratory scale. Here, we report the experimental demonstration of a link for free-space quantum communication with OAM operating over a distance of 210 m. Our method exploits OAM in combination with optical polarization to encode the information in rotation-invariant photonic states, so as to guarantee full independence of the communication from the local reference frames of the transmitting and receiving units. In particular, we implement quantum key distribution, a protocol exploiting the features of quantum mechanics to guarantee unconditional security in cryptographic communication, demonstrating error-rate performances that are fully compatible with real-world application requirements. Our results extend previous achievements of OAM-based quantum communication by over 2 orders of magnitude in the link scale, providing an important step forward in achieving the vision of a worldwide quantum network.
Thermal effects of optical antenna under the irradiation of laser
NASA Astrophysics Data System (ADS)
Sun, Yi; Li, Fu; Yang, Wenqiang; Yang, Jianfeng
2017-10-01
The laser communication terminal is a precision optical, mechanical, electrical integration device which operations extremely high accuracy. It is hard to improve the space environment adaptability in the hash vibration, thermal cycling, high vacuum and radiation conditions space environment. Accordingly, the optical antenna will be influenced by space thermal environment. Laser energy will be absorbed when optical antenna under the irradiation of laser. It can contribute to thermal distortion and make the beam quality degradation which affects the performance of laser communications links. This influence will aggravate when the laser power rising.Wavefront aberration is the distance between the ideal reference sphere and the actual distorted wavefront. The smaller the wavefront aberration, the better the optical performance of the optical antenna. On the contrary, the greater the wavefront aberration, the worse the performance of the optical antenna or even affect the normal operation of the optical antenna. The performance index of the optical antenna generally requires the wavefront aberration to be better than λ/20. Due to the different thermal and thermal expansion coefficients of the material, the effect of thermal deformation on the optical antenna can be reduced by matching the appropriate material. While the appropriate support structure and proper heat dissipation design can also reduce the impact. In this paper, the wavefront aberration of the optical antenna is better than λ/50 by the material matching and the appropriate support structure and the secondary design of the diameter of 5mm hole thermal design.
Free-space optical channel characterization and experimental validation in a coastal environment.
Alheadary, Wael G; Park, Ki-Hong; Alfaraj, Nasir; Guo, Yujian; Stegenburgs, Edgars; Ng, Tien Khee; Ooi, Boon S; Alouini, Mohamed-Slim
2018-03-19
Over the years, free-space optical (FSO) communication has attracted considerable research interest owing to its high transmission rates via the unbounded and unlicensed bandwidths. Nevertheless, various weather conditions lead to significant deterioration of the FSO link capabilities. In this context, we report on the modelling of the channel attenuation coefficient (β) for a coastal environment and related ambient, considering the effect of coastal air temperature (T), relative humidity (RH) and dew point (TD) by employing a mobile FSO communication system capable of achieving a transmission rate of 1 Gbps at an outdoor distance of 70 m for optical beam wavelengths of 1310 nm and 1550 nm. For further validation of the proposed models, an indoor measurement over a 1.5 m distance utilizing 1310 nm, 1550 nm, and 1064 nm lasers was also performed. The first model provides a general link between T and β, while the second model provides a relation between β, RH as well as TD. By validating our attenuation coefficient model with actual outdoor and indoor experiments, we obtained a scaling parameter x and decaying parameter c values of 19.94, 40.02, 45.82 and 0.03015, 0.04096, 0.0428 for wavelengths of 1550, 1310, 1064 nm, respectively. The proposed models are well validated over the large variation of temperature and humidity over the FSO link in a coastal region and emulated indoor environment.
Free Space Laser Communications
NASA Technical Reports Server (NTRS)
Lesh, James
2000-01-01
This presentation concerns the use of Laser communication for deep space applications. The presentation reviews the problems with electromagnetic beams and then the advantages and disadvantages of the use of optical communication. The presentation then reviews some of the spacecraft technology with pictures of some of the devices. The ground reception systems and the simplified link calculation are also reviewed. Recent and planned demonstration projects are also reviewed.
Two-Photon-Absorption Scheme for Optical Beam Tracking
NASA Technical Reports Server (NTRS)
Ortiz, Gerardo G.; Farr, William H.
2011-01-01
A new optical beam tracking approach for free-space optical communication links using two-photon absorption (TPA) in a high-bandgap detector material was demonstrated. This tracking scheme is part of the canonical architecture described in the preceding article. TPA is used to track a long-wavelength transmit laser while direct absorption on the same sensor simultaneously tracks a shorter-wavelength beacon. The TPA responsivity was measured for silicon using a PIN photodiode at a laser beacon wavelength of 1,550 nm. As expected, the responsivity shows a linear dependence with incident power level. The responsivity slope is 4.5 x 10(exp -7) A/W2. Also, optical beam spots from the 1,550-nm laser beacon were characterized on commercial charge coupled device (CCD) and complementary metal-oxide semiconductor (CMOS) imagers with as little as 13.7 microWatts of optical power (see figure). This new tracker technology offers an innovative solution to reduce system complexity, improve transmit/receive isolation, improve optical efficiency, improve signal-to-noise ratio (SNR), and reduce cost for free-space optical communications transceivers.
Gao, Zhengguang; Liu, Hongzhan; Ma, Xiaoping; Lu, Wei
2016-11-10
Multi-hop parallel relaying is considered in a free-space optical (FSO) communication system deploying binary phase-shift keying (BPSK) modulation under the combined effects of a gamma-gamma (GG) distribution and misalignment fading. Based on the best path selection criterion, the cumulative distribution function (CDF) of this cooperative random variable is derived. Then the performance of this optical mesh network is analyzed in detail. A Monte Carlo simulation is also conducted to demonstrate the effectiveness of the results for the average bit error rate (ABER) and outage probability. The numerical result proves that it needs a smaller average transmitted optical power to achieve the same ABER and outage probability when using the multi-hop parallel network in FSO links. Furthermore, the system use of more number of hops and cooperative paths can improve the quality of the communication.
Optical monitoring of QSO in the framework of the Gaia space mission
NASA Astrophysics Data System (ADS)
Taris, F.; Damljanovic, G.; Andrei, A.; Klotz, A.; Vachier, F.
2015-08-01
The Gaia astrometric mission of the European Space Agency has been launched the 19th December 2013. It will provide an astrometric catalogue of 500 000 extragalactic sources that could be the basis of a new optical reference frame. On the other hand, the current International Celestial Reference Frame (ICRF) is based on the observations of extragalactic sources at radio wavelength. The astrometric coordinates of sources in these two reference systems will have roughly the same uncertainty. It is then mandatory to observe a set of common targets at both optical and radio wavelength to link the ICRF with what could be called the GCRF (Gaia Celestial Reference Frame). We will show in this paper some results obtained with the TJO, Telescopi Juan Oro, from Observatori Astronomic del Montsec in Spain. It also presents some results obtained with the Lomb-Scargle and CLEAN algorithm methods applied to optical magnitude obtained with the TAROT telescopes.
NASA Astrophysics Data System (ADS)
Martínez, Noelia; Rodríguez Ramos, Luis Fernando; Sodnik, Zoran
2017-08-01
The Optical Ground Station (OGS), installed in the Teide Observatory since 1995, was built as part of ESA efforts in the research field of satellite optical communications to test laser telecommunication terminals on board of satellites in Low Earth Orbit and Geostationary Orbit. As far as one side of the link is settled on the Earth, the laser beam (either on the uplink or on the downlink) has to bear with the atmospheric turbulence. Within the framework of designing an Adaptive Optics system to improve the performance of the Free-Space Optical Communications at the OGS, turbulence conditions regarding uplink and downlink have been simulated within the OOMAO (Object-Oriented Matlab Adaptive Optics) Toolbox as well as the possible utilization of a Laser Guide Star to measure the wavefront in this context. Simulations have been carried out by reducing available atmospheric profiles regarding both night-time and day-time measurements and by having into account possible seasonal changes. An AO proposal to reduce atmospheric aberrations and, therefore, ameliorate FSO links performance is presented and analysed in this paper
Sources of background light on space based laser communications links
NASA Astrophysics Data System (ADS)
Farrell, Thomas C.
2018-05-01
We discuss the sources and levels of background light that should be expected on space based laser communication (lasercom) crosslinks and uplinks, as well as on downlinks to ground stations. The analyses are valid for both Earth orbiting satellites and inter-planetary links. Fundamental equations are derived suitable for first order system engineering analyses of potential lasercom systems. These divide sources of background light into two general categories: extended sources which fill the field of view of a receiver's optics, and point sources which cannot be resolved by the optics. Specific sources of background light are discussed, and expected power levels are estimated. For uplinks, reflected sunlight and blackbody radiation from the Earth dominates. For crosslinks, depending on specific link geometry, sources of background light may include the Sun in the field of view (FOV), reflected sunlight and blackbody radiation from planets and other bodies in the solar system, individual bright stars in the FOV, the amalgam of dim stars in the FOV, zodiacal light, and reflected sunlight off of the transmitting spacecraft. For downlinks, all of these potentially come into play, and the effects of the atmosphere, including turbulence, scattering, and absorption contribute as well. Methods for accounting for each of these are presented. Specific examples are presented to illustrate the relative contributions of each source for various link geometries.
NASA Astrophysics Data System (ADS)
Bechou, L.; Deshayes, Y.; Aupetit-Berthelemot, C.; Guerin, A.; Tronche, C.
Space missions for Earth Observation are called upon to carry a growing number of instruments in their payload, whose performances are increasing. Future space systems are therefore intended to generate huge amounts of data and a key challenge in coming years will therefore lie in the ability to transmit that significant quantity of data to ground. Thus very high data rate Payload Telemetry (PLTM) systems will be required to face the demand of the future Earth Exploration Satellite Systems and reliability is one of the major concern of such systems. An attractive approach associated with the concept of predictive modeling consists in analyzing the impact of components malfunctioning on the optical link performances taking into account the network requirements and experimental degradation laws. Reliability estimation is traditionally based on life-testing and a basic approach is to use Telcordia requirements (468GR) for optical telecommunication applications. However, due to the various interactions between components, operating lifetime of a system cannot be taken as the lifetime of the less reliable component. In this paper, an original methodology is proposed to estimate reliability of an optical communication system by using a dedicated system simulator for predictive modeling and design for reliability. At first, we present frameworks of point-to-point optical communication systems for space applications where high data rate (or frequency bandwidth), lower cost or mass saving are needed. Optoelectronics devices used in these systems can be similar to those found in terrestrial optical network. Particularly we report simulation results of transmission performances after introduction of DFB Laser diode parameters variations versus time extrapolated from accelerated tests based on terrestrial or submarine telecommunications qualification standards. Simulations are performed to investigate and predict the consequence of degradations of the Laser diode (acting as a - requency carrier) on system performances (eye diagram, quality factor and BER). The studied link consists in 4× 2.5 Gbits/s WDM channels with direct modulation and equally spaced (0,8 nm) around the 1550 nm central wavelength. Results clearly show that variation of fundamental parameters such as bias current or central wavelength induces a penalization of dynamic performances of the complete WDM link. In addition different degradation kinetics of aged Laser diodes from a same batch have been implemented to build the final distribution of Q-factor and BER values after 25 years. When considering long optical distance, fiber attenuation, EDFA noise, dispersion, PMD, ... penalize network performances that can be compensated using Forward Error Correction (FEC) coding. Three methods have been investigated in the case of On-Off Keying (OOK) transmission over an unipolar optical channel corrupted by Gaussian noise. Such system simulations highlight the impact of component parameter degradations on the whole network performances allowing to optimize various time and cost consuming sensitivity analyses at the early stage of the system development. Thus the validity of failure criteria in relation with mission profiles can be evaluated representing a significant part of the general PDfR effort in particular for aerospace applications.
Modeling a space-based quantum link that includes an adaptive optics system
NASA Astrophysics Data System (ADS)
Duchane, Alexander W.; Hodson, Douglas D.; Mailloux, Logan O.
2017-10-01
Quantum Key Distribution uses optical pulses to generate shared random bit strings between two locations. If a high percentage of the optical pulses are comprised of single photons, then the statistical nature of light and information theory can be used to generate secure shared random bit strings which can then be converted to keys for encryption systems. When these keys are incorporated along with symmetric encryption techniques such as a one-time pad, then this method of key generation and encryption is resistant to future advances in quantum computing which will significantly degrade the effectiveness of current asymmetric key sharing techniques. This research first reviews the transition of Quantum Key Distribution free-space experiments from the laboratory environment to field experiments, and finally, ongoing space experiments. Next, a propagation model for an optical pulse from low-earth orbit to ground and the effects of turbulence on the transmitted optical pulse is described. An Adaptive Optics system is modeled to correct for the aberrations caused by the atmosphere. The long-term point spread function of the completed low-earth orbit to ground optical system is explored in the results section. Finally, the impact of this optical system and its point spread function on an overall quantum key distribution system as well as the future work necessary to show this impact is described.
NASA Astrophysics Data System (ADS)
Fields, Renny A.; Kozlowski, David A.; Yura, Harold T.; Wong, Robert L.; Wicker, Josef M.; Lunde, Carl T.; Gregory, Mark; Wandernoth, Bernhard K.; Heine, Frank F.; Luna, Joseph J.
2011-11-01
5.625 Gbps bidirectional laser communication at 1064 nm has been demonstrated on a repeatable basis between a Tesat coherent laser communication terminal with a 6.5 cm diameter ground aperture mounted inside the European Space Agency Optical Ground Station dome at Izana, Tenerife and a similar space-based terminal (12.4 cm diameter aperture) on the Near-Field InfraRed Experiment (NFIRE) low-earth-orbiting spacecraft. Both night and day bidirectional links were demonstrated with the longest being 177 seconds in duration. Correlation with atmospheric models and preliminary atmospheric r0 and scintillation measurements have been made for the conditions tested, suggesting that such coherent systems can be deployed successfully at still lower altitudes without resorting to the use of adaptive optics for compensation.
Fade-resistant forward error correction method for free-space optical communications systems
Johnson, Gary W.; Dowla, Farid U.; Ruggiero, Anthony J.
2007-10-02
Free-space optical (FSO) laser communication systems offer exceptionally wide-bandwidth, secure connections between platforms that cannot other wise be connected via physical means such as optical fiber or cable. However, FSO links are subject to strong channel fading due to atmospheric turbulence and beam pointing errors, limiting practical performance and reliability. We have developed a fade-tolerant architecture based on forward error correcting codes (FECs) combined with delayed, redundant, sub-channels. This redundancy is made feasible though dense wavelength division multiplexing (WDM) and/or high-order M-ary modulation. Experiments and simulations show that error-free communications is feasible even when faced with fades that are tens of milliseconds long. We describe plans for practical implementation of a complete system operating at 2.5 Gbps.
Integrating free-space optical communication links with existing WiFi (WiFO) network
NASA Astrophysics Data System (ADS)
Liverman, S.; Wang, Q.; Chu, Y.; Duong, T.; Nguyen-Huu, D.; Wang, S.; Nguyen, T.; Wang, A. X.
2016-02-01
Recently, free-space optical (FSO) systems have generated great interest due to their large bandwidth potential and a line-of-sight physical layer of protection. In this paper, we propose WiFO, a novel hybrid system, FSO downlink and WiFi uplink, which will integrate currently available WiFi infrastructure with inexpensive infrared light emitting diodes. This system takes full advantage of the mobility inherent in WiFi networks while increasing the downlink bandwidth available to each end user. We report the results of our preliminary investigation that show the capabilities of our prototype design in terms of bandwidth, bit error rates, delays and transmission distances.
Development and characterisation of FPGA modems using forward error correction for FSOC
NASA Astrophysics Data System (ADS)
Mudge, Kerry A.; Grant, Kenneth J.; Clare, Bradley A.; Biggs, Colin L.; Cowley, William G.; Manning, Sean; Lechner, Gottfried
2016-05-01
In this paper we report on the performance of a free-space optical communications (FSOC) modem implemented in FPGA, with data rate variable up to 60 Mbps. To combat the effects of atmospheric scintillation, a 7/8 rate low density parity check (LDPC) forward error correction is implemented along with custom bit and frame synchronisation and a variable length interleaver. We report on the systematic performance evaluation of an optical communications link employing the FPGA modems using a laboratory test-bed to simulate the effects of atmospheric turbulence. Log-normal fading is imposed onto the transmitted free-space beam using a custom LabVIEW program and an acoustic-optic modulator. The scintillation index, transmitted optical power and the scintillation bandwidth can all be independently varied allowing testing over a wide range of optical channel conditions. In particular, bit-error-ratio (BER) performance for different interleaver lengths is investigated as a function of the scintillation bandwidth. The laboratory results are compared to field measurements over 1.5km.
NASA Technical Reports Server (NTRS)
Ortiz, G. G.; Lee, S.; Monacos, S.; Wright, M.; Biswas, A.
2003-01-01
A robust acquisition, tracking and pointing (ATP) subsystem is being developed for the 2.5 Gigabit per second (Gbps) Unmanned-Aerial-Vehicle (UAV) to ground free-space optical communications link project.
NASA Astrophysics Data System (ADS)
Dikmelik, Yamac
High-speed free-space optical communication systems have recently utilized components that have been developed for fiber-optic communication systems. The received laser beam in such a system must be coupled into a single-mode fiber at the input of a commercially available receiver module or a wavelength division demultiplexer. However, one effect of propagation through atmospheric turbulence is that the spatial coherence of a laser beam is degraded and the percentage of the available power that can be coupled into the single-mode fiber is limited. This dissertation presents a numerical evaluation of fiber coupling efficiency for laser light distorted by atmospheric turbulence. The results for weak fluctuation conditions provide the level of coupling efficiency that can be expected for a given turbulence strength. In addition, the results show that the link distance must be limited to 400 m under moderate turbulence conditions if the link budget requires a coupling efficiency of 0.1. We also investigate the use of a coherent fiber array as a receiver structure to improve the fiber coupling efficiency of a free-space optical communication system. Our numerical results show that a coherent fiber array that consists of seven subapertures would increase fiber coupling efficiency by a significant amount for representative turbulence conditions and link distances. The use of photo-emf detectors as elements of a wavefront sensor for an adaptive optics system is also considered as an alternative method of reducing the effects of turbulence on a free-space optical communication system. Dember and photo-emf currents are investigated in silicon photoconductive detectors both theoretically and experimentally. Our results show that Dember photocurrents dominate the response of high-purity silicon samples with top surface electrodes to a moving interference pattern. The use of surface electrodes leads to shadowed regions beneath the electrodes and Dember photocurrents appear under short circuit conditions. The dependence of the Dember photocurrent on the number and the position of the interference fringes between the electrodes is described by a single charge carrier model of the Dember effect under plane-wave illumination. The predicted Dember photocurrent is in good qualitative agreement with experimental results but the quantitative agreement is not very accurate. The latter can be improved by using a more complicated two-sign charge carrier model for the Dember photocurrent and by taking into account the Gaussian spatial profile of the illuminating beams. We also show theoretically that the photo-emf effect in silicon is weak compared to other semiconductors because of its relatively high intrinsic conductivity.
Adaptive free-space optical communications through turbulence using self-healing Bessel beams
Li, Shuhui; Wang, Jian
2017-01-01
We present a scheme to realize obstruction- and turbulence-tolerant free-space orbital angular momentum (OAM) multiplexing link by using self-healing Bessel beams accompanied by adaptive compensation techniques. Compensation of multiple 16-ary quadrature amplitude modulation (16-QAM) data carrying Bessel beams through emulated atmospheric turbulence and obstructions is demonstrated. The obtained experimental results indicate that the compensation scheme can effectively reduce the inter-channel crosstalk, improve the bit-error rate (BER) performance, and recuperate the nondiffracting property of Bessel beams. The proposed scheme might be used in future high-capacity OAM links which are affected by atmospheric turbulence and obstructions. PMID:28230076
Rosenkrantz, Etai; Arnon, Shlomi
2015-06-10
Nowadays, there is a renaissance in the field of space exploration. Current and future missions depend on astronauts and a swarm of robots for reconnaissance. In order to reduce the power consumption, weight, and size of the robots, an asymmetric communication system may be used. This is achieved by installing modulating retroreflectors (MRRs) on one side of the link and an interrogating laser on the other side. In this paper, we theoretically study an innovative device that can serve as an MRR in the infrared range of the spectrum. The device is based on a ferroelectric PZT thin film containing TiO2 coated Ag nanoparticles, which exhibit strong plasmonic resonance in the infrared range. After intensive analyses, which included calculations and simulations, we were able to design the device to operate at the 1550 nm wavelength. This is of great importance since the design of devices operating at 1550 nm as this wavelength is a mature technology widely used in free-space optics. Hence, this MRR can serve in asymmetric communication links relying on 1550 nm transmissions, which are also eye-safe. To the best of our knowledge, this is the first time coated metal nanoparticles have been proposed to modulate light in the infrared region. The performance of this device is unique, reaching a 17.5 dB modulation contrast with only a ±2 V operating voltage. This modulator may also be used for terrestrial communication such as fiber optics and optical interconnects in future data centers.
Free-space high data rate communications technologies for near terrestrial space
NASA Astrophysics Data System (ADS)
Edwards, C. L.; Bruzzi, J. R.; Boone, B. G.
2008-08-01
Recent progress at the Applied Physics Laboratory in high data rate communications technology development is described in this paper. System issues for developing and implementing high data rate downlinks from geosynchronous earth orbit to the ground, either for CONUS or in-theater users is considered. Technology is described that supports a viable dual-band multi-channel system concept. Modeling and simulation of micro-electro-mechanical systems (MEMS) beamsteering mirrors has been accomplished to evaluate the potential for this technology to support multi-channel optical links with pointing accuracies approaching 10 microradians. These models were validated experimentally down to levels in which Brownian motion was detected and characterized for single mirror devices only 500 microns across. This multi-channel beamsteering technology can be designed to address environmental compromises to free-space optical links, which derive from turbulence, clouds, as well as spacecraft vibration. Another technology concept is being pursued that is designed to mitigate the adverse effects of weather. It consists of a dual-band (RF/optical) antenna that is optimally designed in both bands simultaneously (e.g., Ku-band and near infrared). This technology would enable optical communications hardware to be seamlessly integrated with existing RF communications hardware on spacecraft platforms, while saving on mass and power, and improving overall system performance. These technology initiatives have been pursued principally because of potential sponsor interest in upgrading existing systems to accommodate quick data recovery and decision support, particularly for the warfighter in future conflicts where the exchange of large data sets such as high resolution imagery would have significant tactical benefits.
Performance of FSO Links using CSRZ, RZ, and NRZ and Effects of Atmospheric Turbulence
NASA Astrophysics Data System (ADS)
Nadeem, Lubna; Saadullah Qazi, M.; Hassam, Ammar
2018-04-01
Free space optical (FSO) communication is a wireless communication technology in which data is transferred from one point to another through highly directed beam of light. The main factors that limit the FSO link availability is the local weather conditions. It guarantees the potential of high bandwidth capacity over unlicensed optical wavelengths. The transmission medium of FSO is atmosphere and is significantly affected by the various weather conditions such as rain, fog, snow, wind, etc. In this paper, the modulation techniques under consideration are RZ, NRZ and CSRZ. Analysis is carried out regarding Q-factor with respect to varying distance, bit rates and input laser power.
Ka-Band Link Study and Analysis for a Mars Hybrid RF/Optical Software Defined Radio
NASA Technical Reports Server (NTRS)
Zeleznikar, Daniel J.; Nappier, Jennifer M.; Downey, Joseph A.
2014-01-01
The integrated radio and optical communications (iROC) project at the NASA Glenn Research Center (GRC) is investigating the feasibility of a hybrid RF and optical communication subsystem for future deep space missions. The hybrid communications subsystem enables the advancement of optical communications while simultaneously mitigating the risk of infusion by combining an experimental optical transmitter and telescope with a reliable Ka-band RF transmitter and antenna. The iROC communications subsystem seeks to maximize the total data return over the course of a potential 2-year mission in Mars orbit beginning in 2021. Although optical communication by itself offers potential for greater data return over RF, the reliable Ka-band link is also being designed for high data return capability in this hybrid system. A daily analysis of the RF link budget over the 2-year span is performed to optimize and provide detailed estimates of the RF data return. In particular, the bandwidth dependence of these data return estimates is analyzed for candidate waveforms. In this effort, a data return modeling tool was created to analyze candidate RF modulation and coding schemes with respect to their spectral efficiency, amplifier output power back-off, required digital to analog conversion (DAC) sampling rates, and support by ground receivers. A set of RF waveforms is recommended for use on the iROC platform.
Comparing Optical Oscillators across the Air to Milliradians in Phase and 10^{-17} in Frequency.
Sinclair, Laura C; Bergeron, Hugo; Swann, William C; Baumann, Esther; Deschênes, Jean-Daniel; Newbury, Nathan R
2018-02-02
We demonstrate carrier-phase optical two-way time-frequency transfer (carrier-phase OTWTFT) through the two-way exchange of frequency comb pulses. Carrier-phase OTWTFT achieves frequency comparisons with a residual instability of 1.2×10^{-17} at 1 s across a turbulent 4-km free space link, surpassing previous OTWTFT by 10-20 times and enabling future high-precision optical clock networks. Furthermore, by exploiting the carrier phase, this approach is able to continuously track changes in the relative optical phase of distant optical oscillators to 9 mrad (7 as) at 1 s averaging, effectively extending optical phase coherence over a broad spatial network for applications such as correlated spectroscopy between distant atomic clocks.
Optical PAyload for Lasercomm Science (OPALS) link validation
NASA Technical Reports Server (NTRS)
Biswas, Abhijit; Oaida, Bogdan V.; Andrews, Kenneth S.; Kovalik, Joseph M.; Abrahamson, Matthew J.; Wright, Malcolm W.
2015-01-01
Recently several day and nighttime links under diverse atmospheric conditions were completed using the Optical Payload for Lasercomm Science (OPALS) flight system on-board the International Space Station (ISS). In this paper we compare measured optical power and its variance at either end of the link with predictions that include atmospheric propagation models. For the 976 nm laser beacon mean power transmitted from the ground to the ISS the predicted mean irradiance of 10's of microwatts per square meter close to zenith and its decrease with range and increased air mass shows good agreement with predictions. The irradiance fluctuations sampled at 100 Hz also follow the expected increase in scintillation with air mass representative of atmospheric coherence lengths at zenith at 500 nm in the 3-8 cm range. The downlink predicted power of 100's of nanowatts was also reconciled within the uncertainty of the atmospheric losses. Expected link performance with uncoded bit-error rates less than 1E-4 required for the Reed-Solomon code to correct errors for video, text and file transmission was verified. The results of predicted and measured powers and fluctuations suggest the need for further study and refinement.
Discovery deep space optical communications (DSOC) transceiver
NASA Astrophysics Data System (ADS)
Roberts, W. Thomas
2017-02-01
NASA's 22 cm diameter Deep Space Optical Communications (DSOC) Transceiver is designed to provide a bidirectional optical link between a spacecraft in the inner solar system and an Earth-based optical ground station. This design, optimized for operation across a wide range of illumination conditions, is focused on minimizing blinding from stray light, and providing reliable, accurate attitude information to point its narrow communication beam accurately to the future location of the ground terminal. Though our transceiver will transmit in the 1550 nm waveband and receive in the 1064 nm waveband, the system design relies heavily on reflective optical elements, extending flexibility to be modified for use at different wavebands. The design makes use of common path propagation among transmit, receive and pointing verification optical channels to maintain precise alignment among its components, and to naturally correct for element misalignment resulting from launch or thermal element perturbations. This paper presents the results of trade studies showing the evolution of the design, unique operational characteristics of the design, elements that help to maintain minimal stray light contamination, and preliminary results from development and initial testing of a functional aluminum test model.
NASA Astrophysics Data System (ADS)
Kaur, Prabhmandeep; Jain, Virander Kumar; Kar, Subrat
2014-12-01
In this paper, we investigate the performance of a Free Space Optic (FSO) link considering the impairments caused by the presence of various weather conditions such as very clear air, drizzle, haze, fog, etc., and turbulence in the atmosphere. Analytic expression for the outage probability is derived using the gamma-gamma distribution for turbulence and accounting the effect of weather conditions using the Beer-Lambert's law. The effect of receiver diversity schemes using aperture averaging and array receivers on the outage probability is studied and compared. As the aperture diameter is increased, the outage probability decreases irrespective of the turbulence strength (weak, moderate and strong) and weather conditions. Similar effects are observed when the number of direct detection receivers in the array are increased. However, it is seen that as the desired level of performance in terms of the outage probability decreases, array receiver becomes the preferred choice as compared to the receiver with aperture averaging.
Design of a stabilized, compact gimbal for space-based free space optical communications (FSOC)
NASA Astrophysics Data System (ADS)
Cline, A.; Shubert, P.; McNally, J.; Jacka, N.; Pierson, R.
2017-02-01
Data transmits via optical communications through fibers at 10's of Terabits per second. Given the recent rapid explosion for bandwidth and competing demand for radio frequency (RF) spectrum allocations among differing interests, the need for space-based free space optical communications (FSOC) systems is ever increasing. FSOC systems offer advantages of higher data rates, smaller size and weight, narrower beam divergence, and lower power than RF systems. Lightweight, small form factor, and high performance two-axis gimbals are of strong interest for satellite FSOC applications. Small gimbal and optical terminal designs are important for widespread implementation of optical communications systems; in particular, for satellite-to-satellite crosslinks where the advantages of more secure communications links (Lower Probability of Intercept (LPI)/Lower Probability of Detect (LPD)) are very important. We developed design concepts for a small gimbal focusing on the use of commercial off-the-shelf (COTS) subsystems to establish their feasible implementation against the pointing stabilization, size, weight and power (SWaP), and performance challenges. The design drivers for the gimbal were weight, the elevation and azimuth field of regards, the form factor envelope (1U CubeSats), 100 μrad pointing accuracy, and 10 degrees per second slew capability. Innovations required in this development included a continuous fiber passed through an Azimuth Fiber Wrap and Elevation Fiber Wrap, overcoming typical mechanical and stress related limitations encountered with fiber optic cable wraps. In this presentation, we describe the configuration trades and design of such a gimbal.
Interconnection requirements in avionic systems
NASA Astrophysics Data System (ADS)
Vergnolle, Claude; Houssay, Bruno
1991-04-01
The future aircraft generation will have thousand smart electromagnetic sensors distributed allover. Each sensor is connected with fibers links to the main-frame computer in charge of the real time signal''s correlation. Such a computer must be compactly built and massively parallel: it needs the use of 3 D optical free-space interconnect between neighbouring boards and reconfigurable interconnects via holographic backplane. The optical interconnect facilities will be also used to build fault-tolerant computer through large redundancy.
NASA Technical Reports Server (NTRS)
Jackson, George L.; LaBel, Kenneth A.; Marshall, Cheryl; Barth, Janet; Seidleck, Christina; Marshall, Paul
1998-01-01
NASA Goddard Spare Flight Center's (GSFC) Dual Rate 1773 (DR1773) Experiment on the Microelectronic and Photonic Test Bed (MPTB) has provided valuable information on the performance of the AS 1773 fiber optic data bus in the space radiation environment. Correlation of preliminary experiment data to ground based radiation test results show the AS 1773 bus is employable in future spacecraft applications requiring radiation tolerant communication links.
Li, Ming; Gao, Wenbo; Cvijetic, Milorad
2017-01-10
As a continuation of our previous work [Appl. Opt.54, 1453 (2015)APOPAI0003-693510.1364/AO.54.001453] in which we have studied the performance of coherent free space optical (FSO) communication systems operating over a horizontal path, in this paper we study the coherent FSO system operating over a general slant path. We evaluated system bit-error-rate (BER) in the case when the quadrature phase-shift keying (QPSK) modulation format is applied and when an adaptive optics (AO) system is employed to mitigate the air turbulence effects for both maritime and terrestrial air transmission scenarios. We adopted a multiple-layer scheme to efficiently model the FSO slant-path links. The atmospheric channel fading was characterized by the wavefront phase distortions and the log-amplitude fluctuations. We derived analytical expressions to characterize log-amplitude fluctuations of air turbulence by asserting the aperture averaging within the frame of the multiple-layer model. The obtained results showed that use of AO enabled improvement of system performance for both uplinks and downlinks, and also revealed that it is more beneficial for the FSO downlinks. Also, AO employment brought larger enhancements in BER performance for the maritime slant-path FSO links than for the terrestrial ones, with an additional striking increase in performance when the AO correction is combined with the aperture averaging.
Extended model of restricted beam for FSO links
NASA Astrophysics Data System (ADS)
Poliak, Juraj; Wilfert, Otakar
2012-10-01
Modern wireless optical communication systems in many aspects overcome wire or radio communications. Their advantages are license-free operation and broad bandwidth that they offer. The medium in free-space optical (FSO) links is the atmosphere. Operation of outdoor FSO links struggles with many atmospheric phenomena that deteriorate phase and amplitude of the transmitted optical beam. This beam originates in the transmitter and is affected by its individual parts, especially by the lens socket and the transmitter aperture, where attenuation and diffraction effects take place. Both of these phenomena unfavourable influence the beam and cause degradation of link availability, or its total malfunction. Therefore, both of these phenomena should be modelled and simulated, so that one can judge the link function prior to the realization of the system. Not only the link availability and reliability are concerned, but also economic aspects. In addition, the transmitted beam is not, generally speaking, circularly symmetrical, what makes the link simulation more difficult. In a comprehensive model, it is necessary to take into account the ellipticity of the beam that is restricted by circularly symmetrical aperture where then the attenuation and diffraction occur. General model is too computationally extensive; therefore simplification of the calculations by means of analytical and numerical approaches will be discussed. Presented model is not only simulated using computer, but also experimentally proven. One can then deduce the ability of the model to describe the reality and to estimate how far can one go with approximations, i.e. limitations of the model are discussed.
Adaptive real time selection for quantum key distribution in lossy and turbulent free-space channels
NASA Astrophysics Data System (ADS)
Vallone, Giuseppe; Marangon, Davide G.; Canale, Matteo; Savorgnan, Ilaria; Bacco, Davide; Barbieri, Mauro; Calimani, Simon; Barbieri, Cesare; Laurenti, Nicola; Villoresi, Paolo
2015-04-01
The unconditional security in the creation of cryptographic keys obtained by quantum key distribution (QKD) protocols will induce a quantum leap in free-space communication privacy in the same way that we are beginning to realize secure optical fiber connections. However, free-space channels, in particular those with long links and the presence of atmospheric turbulence, are affected by losses, fluctuating transmissivity, and background light that impair the conditions for secure QKD. Here we introduce a method to contrast the atmospheric turbulence in QKD experiments. Our adaptive real time selection (ARTS) technique at the receiver is based on the selection of the intervals with higher channel transmissivity. We demonstrate, using data from the Canary Island 143-km free-space link, that conditions with unacceptable average quantum bit error rate which would prevent the generation of a secure key can be used once parsed according to the instantaneous scintillation using the ARTS technique.
Concurrent Design used in the Design of Space Instruments
NASA Technical Reports Server (NTRS)
Oxnevad, Knut I.
1998-01-01
At the Project Design Center at the Jet Propulsion Laboratory, a concurrent design environment is under development for supporting development and analyses of space instruments in the early, conceptual design phases. This environment is being utilized by a Team I, a multidisciplinary group of experts. Team I is providing study and proposal support. To provide the required support, the Team I concurrent design environment features effectively interconnected high-end optics, CAD, and thermal design and analysis tools. Innovative approaches for linking tools, and for transferring files between applications have been implemented. These approaches together with effective sharing of geometry between the optics, CAD, and thermal tools are already showing significant timesavings.
Wang, Ke; Nirmalathas, Ampalavanapillai; Lim, Christina; Skafidas, Efstratios; Alameh, Kamal
2013-07-01
In this paper, we propose and experimentally demonstrate a free-space based high-speed reconfigurable card-to-card optical interconnect architecture with broadcast capability, which is required for control functionalities and efficient parallel computing applications. Experimental results show that 10 Gb/s data can be broadcast to all receiving channels for up to 30 cm with a worst-case receiver sensitivity better than -12.20 dBm. In addition, arbitrary multicasting with the same architecture is also investigated. 10 Gb/s reconfigurable point-to-point link and multicast channels are simultaneously demonstrated with a measured receiver sensitivity power penalty of ~1.3 dB due to crosstalk.
Atmospheric Propagation Effects Relevant to Optical Communications
NASA Technical Reports Server (NTRS)
Shaik, K. S.
1988-01-01
A number of atmospheric phenomena affect the propagation of light. This article reviews the effects of clear-air turbulence as well as atmospheric turbidity on optical communications. Among the phenomena considered are astronomical and random refraction, scintillation, beam broadening, spatial coherence, angle of arrival, aperture averaging, absorption and scattering, and the effect of opaque clouds. An extensive reference list is also provided for further study, Useful information on the atmospheric propagation of light in resolution to optical deep-space communications to an earth-based receiving station is available, however, further data must be generated before such a link can be designed with committed performance.
Atmospheric propagation effects relevant to optical communications
NASA Technical Reports Server (NTRS)
Shaik, K. S.
1988-01-01
A number of atmospheric phenomena affect the propagation of light. The effects of clear air turbulence are reviewed as well as atmospheric turbidity on optical communications. Among the phenomena considered are astronomical and random refraction, scintillation, beam broadening, spatial coherence, angle of arrival, aperture averaging, absorption and scattering, and the effect of opaque clouds. An extensive reference list is also provided for further study. Useful information on the atmospheric propagation of light in relation to optical deep space communications to an earth based receiving station is available, however, further data must be generated before such a link can be designed with committed performance.
The SILEX experiment system operations
NASA Technical Reports Server (NTRS)
Demelenne, B.
1994-01-01
The European Space Agency is going to conduct an inter orbit link experiment which will connect a low Earth orbiting satellite and a Geostationary satellite via optical terminals. This experiment has been called SILEX (Semiconductor Inter satellite Link EXperiment). Two payloads will be built. One called PASTEL (PASsager de TELecommunication) will be embarked on the French Earth observation satellite SPOT4. The future European experimental data relay satellite ARTEMIS (Advanced Relay and TEchnology MISsion) will carry the OPALE terminal (Optical PAyload Experiment). The principal characteristic of the mission is a 50 Megabits flow of data transmitted via the optical satellite link. The relay satellite will route the data via its feeder link thus permitting a real time reception in the European region of images taken by the observation satellite. The PASTEL terminal has been designed to cover up to 9 communication sessions per day with an average of 5. The number of daily contact opportunities with the low earth orbiting satellite will be increased and the duration will be much longer than the traditional passes over a ground station. The terminals have an autonomy of 24 hours with respect to ground control. Each terminal will contain its own orbit model and that of its counter terminal for orbit prediction and for precise computation of pointing direction. Due to the very narrow field of view of the communication laser beam, the orbit propagation calculation needs to be done with a very high accuracy. The European Space Agency is responsible for the operation of both terminals. A PASTEL Mission Control System (PMCS) is being developed to control the PASTEL terminal on board SPOT4. The PMCS will interface with the SPOT4 Control Centre for the execution of the PASTEL operations. The PMCS will also interface with the ARTEMIS Mission Control System for the planning and the coordination of the operation. It is the first time that laser technology will be used to support inter-satellite links in Europe. Due to the complexity and experimental character of this new optical technology, the SILEX experiment control facilities will be designed to allow as much operational flexibility as possible.
Point-ahead limitation on reciprocity tracking. [in earth-space optical link
NASA Technical Reports Server (NTRS)
Shapiro, J. H.
1975-01-01
The average power received at a spacecraft from a reciprocity-tracking transmitter is shown to be the free-space diffraction-limited result times a gain-reduction factor that is due to the point-ahead requirement. For a constant-power transmitter, the gain-reduction factor is approximately equal to the appropriate spherical-wave mutual-coherence function. For a constant-average-power transmitter, an exact expression is obtained for the gain-reduction factor.
Monitoring Spacecraft Telemetry Via Optical or RF Link
NASA Technical Reports Server (NTRS)
Fielhauer, K. B.; Boone, B. G.
2011-01-01
A patent disclosure document discusses a photonic method for connecting a spacecraft with a launch vehicle upper-stage telemetry system as a means for monitoring a spacecraft fs health and status during and right after separation and deployment. This method also provides an efficient opto-coupled capability for prelaunch built-in-test (BIT) on the ground to enable more efficient and timely integration, preflight checkout, and a means to obviate any local EMI (electromagnetic interference) during integration and test. Additional utility can be envisioned for BIT on other platforms, such as the International Space Station (ISS). The photonic telemetry system implements an optical free-space link with a divergent laser transmitter beam spoiled over a significant cone angle to accommodate changes in spacecraft position without having to angle track it during deployment. Since the spacecraft may lose attitude control and tumble during deployment, the transmitted laser beam interrogates any one of several low-profile meso-scale retro-reflective spatial light modulators (SLMs) deployed over the surface of the spacecraft. The return signal beam, modulated by the SLMs, contains health, status, and attitude information received back at the launch vehicle. Very compact low-power opto-coupler technology already exists for the received signal (requiring relatively low bandwidths, e.g., .200 kbps) to enable transfer to a forward pass RF relay from the launch vehicle to TDRSS (Tracking and Data Relay Satellite System) or another recipient. The link would be active during separation and post-separation to monitor spacecraft health, status, attitude, or other data inventories until attitude recovery and ground control can be re-established. An optical link would not interfere with the existing upper stage telemetry and beacon systems, thus meeting launch vehicle EMI environmental constraints.
NASA Astrophysics Data System (ADS)
Zhao, Shengmei; Wang, Le; Zou, Li; Gong, Longyan; Cheng, Weiwen; Zheng, Baoyu; Chen, Hanwu
2016-10-01
A free-space optical (FSO) communication link with multiplexed orbital angular momentum (OAM) modes has been demonstrated to largely enhance the system capacity without a corresponding increase in spectral bandwidth, but the performance of the link is unavoidably degraded by atmospheric turbulence (AT). In this paper, we propose a turbulence mitigation scheme to improve AT tolerance of the OAM-multiplexed FSO communication link using both channel coding and wavefront correction. In the scheme, we utilize a wavefront correction method to mitigate the phase distortion first, and then we use a channel code to further correct the errors in each OAM mode. The improvement of AT tolerance is discussed over the performance of the link with or without channel coding/wavefront correction. The results show that the bit error rate performance has been improved greatly. The detrimental effect of AT on the OAM-multiplexed FSO communication link could be removed by the proposed scheme even in the relatively strong turbulence regime, such as Cn2 = 3.6 ×10-14m - 2 / 3.
In-Band Asymmetry Compensation for Accurate Time/Phase Transport over Optical Transport Network
Siu, Sammy; Hu, Hsiu-fang; Lin, Shinn-Yan; Liao, Chia-Shu; Lai, Yi-Liang
2014-01-01
The demands of precise time/phase synchronization have been increasing recently due to the next generation of telecommunication synchronization. This paper studies the issues that are relevant to distributing accurate time/phase over optical transport network (OTN). Each node and link can introduce asymmetry, which affects the adequate time/phase accuracy over the networks. In order to achieve better accuracy, protocol level full timing support is used (e.g., Telecom-Boundary clock). Due to chromatic dispersion, the use of different wavelengths consequently causes fiber link delay asymmetry. The analytical result indicates that it introduces significant time error (i.e., phase offset) within 0.3397 ns/km in C-band or 0.3943 ns/km in L-band depending on the wavelength spacing. With the proposed scheme in this paper, the fiber link delay asymmetry can be compensated relying on the estimated mean fiber link delay by the Telecom-Boundary clock, while the OTN control plane is responsible for processing the fiber link delay asymmetry to determine the asymmetry compensation in the timing chain. PMID:24982948
Optical data communication: fundamentals and future directions
NASA Astrophysics Data System (ADS)
DeCusatis, Casimer M.
1998-12-01
An overview of optical data communications is provided, beginning with a brief history and discussion of the unique requirements that distinguish this subfield from related areas such as telecommunications. Each of the major datacom standards is then discussed, including the physical layer specification, distances and data rates, fiber and connector types, data frame structures, and network considerations. These standards can be categorized by their prevailing applications, either storage [Enterprise System Connection, Fiber Channel Connection, and Fiber Channel], coupling (Fiber Channel), or networking [Fiber Distributed Data Interface, Gigabit Ethernet, and asynchronous transfer mode/synchronous optical network]. We also present some emerging technologies and their applications, including parallel optical interconnects, plastic optical fiber, wavelength multiplexing, and free- space optical links. We conclude with some cost/performance trade-offs and predictions of future bandwidth trends.
Vertical laser beam propagation through the troposphere
NASA Technical Reports Server (NTRS)
Minott, P. O.; Bufton, J. L.; Schaefer, W. H.; Grolemund, D. A.
1974-01-01
The characteristics of the earth's atmosphere and its effects upon laser beams was investigated in a series of balloon borne, optical propagation experiments. These experiments were designed to simulate the space to ground laser link. An experiment to determine the amplitude fluctuation, commonly called scintillation, caused by the atmosphere was described.
3-D integrated heterogeneous intra-chip free-space optical interconnect.
Ciftcioglu, Berkehan; Berman, Rebecca; Wang, Shang; Hu, Jianyun; Savidis, Ioannis; Jain, Manish; Moore, Duncan; Huang, Michael; Friedman, Eby G; Wicks, Gary; Wu, Hui
2012-02-13
This paper presents the first chip-scale demonstration of an intra-chip free-space optical interconnect (FSOI) we recently proposed. This interconnect system provides point-to-point free-space optical links between any two communication nodes, and hence constructs an all-to-all intra-chip communication fabric, which can be extended for inter-chip communications as well. Unlike electrical and other waveguide-based optical interconnects, FSOI exhibits low latency, high energy efficiency, and large bandwidth density, and hence can significantly improve the performance of future many-core chips. In this paper, we evaluate the performance of the proposed FSOI interconnect, and compare it to a waveguide-based optical interconnect with wavelength division multiplexing (WDM). It shows that the FSOI system can achieve significantly lower loss and higher energy efficiency than the WDM system, even with optimistic assumptions for the latter. A 1×1-cm2 chip prototype is fabricated on a germanium substrate with integrated photodetectors. Commercial 850-nm GaAs vertical-cavity-surface-emitting-lasers (VCSELs) and fabricated fused silica microlenses are 3-D integrated on top of the substrate. At 1.4-cm distance, the measured optical transmission loss is 5 dB, the crosstalk is less than -20 dB, and the electrical-to-electrical bandwidth is 3.3 GHz. The latter is mainly limited by the 5-GHz VCSEL.
The network and transmission of based on the principle of laser multipoint communication
NASA Astrophysics Data System (ADS)
Fu, Qiang; Liu, Xianzhu; Jiang, Huilin; Hu, Yuan; Jiang, Lun
2014-11-01
Space laser communication is the perfectly choose to the earth integrated information backbone network in the future. This paper introduces the structure of the earth integrated information network that is a large capacity integrated high-speed broadband information network, a variety of communications platforms were densely interconnected together, such as the land, sea, air and deep air users or aircraft, the technologies of the intelligent high-speed processing, switching and routing were adopt. According to the principle of maximum effective comprehensive utilization of information resources, get accurately information, fast processing and efficient transmission through inter-satellite, satellite earth, sky and ground station and other links. Namely it will be a space-based, air-based and ground-based integrated information network. It will be started from the trends of laser communication. The current situation of laser multi-point communications were expounded, the transmission scheme of the dynamic multi-point between wireless laser communication n network has been carefully studied, a variety of laser communication network transmission schemes the corresponding characteristics and scope described in detail , described the optical multiplexer machine that based on the multiport form of communication is applied to relay backbone link; the optical multiplexer-based on the form of the segmentation receiver field of view is applied to small angle link, the optical multiplexer-based form of three concentric spheres structure is applied to short distances, motorized occasions, and the multi-point stitching structure based on the rotation paraboloid is applied to inter-satellite communications in detail. The multi-point laser communication terminal apparatus consist of the transmitting and receiving antenna, a relay optical system, the spectroscopic system, communication system and communication receiver transmitter system. The communication forms of optical multiplexer more than four goals or more, the ratio of received power and volume weight will be Obvious advantages, and can track multiple moving targets in flexible.It would to provide reference for the construction of earth integrated information networks.
Toyoshima, Morio; Takenaka, Hideki; Shoji, Yozo; Takayama, Yoshihisa; Koyama, Yoshisada; Kunimori, Hiroo
2009-12-07
The polarization characteristics of an artificial laser source in space were measured through space-to-ground atmospheric transmission paths. An existing Japanese laser communication satellite and optical ground station were used to measure Stokes parameters and the degree of polarization of the laser beam transmitted from the satellite. As a result, the polarization was preserved within an rms error of 1.6 degrees, and the degree of polarization was 99.4+/-4.4% through the space-to-ground atmosphere. These results contribute to the link estimation for quantum key distribution via space and provide the potential for enhancements in quantum cryptography worldwide in the future.
Entanglement-based Free Space Quantum Cryptography in Daylight
NASA Astrophysics Data System (ADS)
Gerhardt, Ilja; Peloso, Matthew P.; Ho, Caleb; Lamas-Linares, Antia; Kurtsiefer, Christian
2009-05-01
In quantum key distribution (QKD) two families of protocols are established: One, based on preparing and sending approximations of single photons, the other based on measurements on entangled photon pairs, which allow to establish a secret key using less assumptions on the size of a Hilbert space. The larger optical bandwidth of photon pairs in comparison with light used for the first family makes establishing a free space link challenging. We present a complete entanglement based QKD system following the BBM92 protocol, which generates a secure key continuously 24 hours a day between distant parties. Spectral, spatial and temporal filtering schemes were introduced to a previous setup, suppressing more than 30,B of background. We are able to establish the link during daytime, and have developed an algorithm to start and maintain time synchronization with simple crystal oscillators.
Advanced Broadband Links for TIER III UAV Data Communication
NASA Astrophysics Data System (ADS)
Griethe, Wolfgang; Gregory, Mark; Heine, Frank; Kampfner, Hartmut
2011-08-01
Unmanned Aeronautical Vehicle (UAV) are getting more and more importance because of their prominent role as national reconnaissance systems, for disaster monitoring, and environmental mapping. However, the existence of reliable and robust data links are indispensable for Unmanned Aircraft System (UAS) missions. In particular for Beyond Line-Of-Sight operations (BLOS) of Tier III UAVs, satellite data links are a key element since extensive sensor data have to be transmitted preferably in real-time or near real-time.The paper demonstrates that the continuously increasing number of UAS and the intensified use of high resolution sensors will reveal RF-bandwidth as a limitating factor in the communication chain of Tier III UAVs. The RF-bandwidth gap can be partly closed by use of high-order modulation, of course, but much more progress in terms of bandwidth allocation can be achieved by using optical transmission technology. Consequently, the paper underlines that meanwhile this technology has been sufficiently verified in space, and shows that optical links are suited as well for broadband communications of Tier III UAVs. Moreover, the advantages of LaserCom in UAV scenarios and its importance for Network Centric Warfare (NCW) as well as for Command, Control, Communications, Computers, Intelligens, Surveillance, and Reconnaissance (C4ISR) are emphasized. Numerous practical topics and design requirements, relevant for the establishment of optical links onboard of Tier III UAVs, are discussed.
Quantum cascade lasers and the Kruse model in free space optical communication.
Corrigan, Paul; Martini, Rainer; Whittaker, Edward A; Bethea, Clyde
2009-03-16
Mid-infrared (MIR) free space optical communication has seen renewed interest in recent years due to advances in quantum cascade lasers. We present data from a multi-wavelength test-bed operated in the New York metropolitan area under realistic weather conditions. We show that a mid-infrared source (8.1 microm) provides enhanced link stability with 2x to 3x greater transmission over near infrared wavelengths (1.3 microm & 1.5 microm) during fog formation and up to 10x after a short scavenging rain event where fog developed and visibility reduced to approximately 1 km. We attribute the improvement to less Mie scattering at longer wavelengths. We confirm that this result is generally consistent with the empirical benchmark Kruse model at visibilities above 2.5 km, but towards the 1 km eye-seeing limit we measured the equivalent MIR visibility to be > 10 km. (c) 2008 Optical Society of America
Path profiles of Cn2 derived from radiometer temperature measurements and geometrical ray tracing
NASA Astrophysics Data System (ADS)
Vyhnalek, Brian E.
2017-02-01
Atmospheric turbulence has significant impairments on the operation of Free-Space Optical (FSO) communication systems, in particular temporal and spatial intensity fluctuations at the receiving aperture resulting in power surges and fades, changes in angle of arrival, spatial coherence degradation, etc. The refractive index structure parameter C 2 n is a statistical measure of the strength of turbulence in the atmosphere and is highly dependent upon vertical height. Therefore to understand atmospheric turbulence effects on vertical FSO communication links such as space-to-ground links, it is necessary to specify C 2 n profiles along the atmospheric propagation path. To avoid the limitations on the applicability of classical approaches, propagation simulation through geometrical ray tracing is applied. This is achieved by considering the atmosphere along the optical propagation path as a spatial distribution of spherical bubbles with varying relative refractive index deviations representing turbulent eddies. The relative deviations of the refractive index are statistically determined from altitude-dependent and time varying temperature fluctuations, as measured by a microwave profiling radiometer. For each representative atmosphere ray paths are analyzed using geometrical optics, which is particularly advantageous in situations of strong turbulence where there is severe wavefront distortion and discontinuity. The refractive index structure parameter is then determined as a function of height and time.
Path Profiles of Cn2 Derived from Radiometer Temperature Measurements and Geometrical Ray Tracing
NASA Technical Reports Server (NTRS)
Vyhnalek, Brian E.
2017-01-01
Atmospheric turbulence has significant impairments on the operation of Free-Space Optical (FSO) communication systems, in particular temporal and spatial intensity fluctuations at the receiving aperture resulting in power surges and fades, changes in angle of arrival, spatial coherence degradation, etc. The refractive index structure parameter Cn2 is a statistical measure of the strength of turbulence in the atmosphere and is highly dependent upon vertical height. Therefore to understand atmospheric turbulence effects on vertical FSO communication links such as space-to-ground links, it is necessary to specify Cn2 profiles along the atmospheric propagation path. To avoid the limitations on the applicability of classical approaches, propagation simulation through geometrical ray tracing is applied. This is achieved by considering the atmosphere along the optical propagation path as a spatial distribution of spherical bubbles with varying relative refractive index deviations representing turbulent eddies. The relative deviations of the refractive index are statistically determined from altitude-dependent and time-varying temperature fluctuations, as measured by a microwave profiling radiometer. For each representative atmosphere ray paths are analyzed using geometrical optics, which is particularly advantageous in situations of strong turbulence where there is severe wavefront distortion and discontinuity. The refractive index structure parameter is then determined as a function of height and time.
Li, Long; Zhang, Runzhou; Zhao, Zhe; Xie, Guodong; Liao, Peicheng; Pang, Kai; Song, Haoqian; Liu, Cong; Ren, Yongxiong; Labroille, Guillaume; Jian, Pu; Starodubov, Dmitry; Lynn, Brittany; Bock, Robert; Tur, Moshe; Willner, Alan E
2017-12-12
We explore the use of orbital-angular-momentum (OAM)-multiplexing to increase the capacity of free-space data transmission to moving platforms, with an added potential benefit of decreasing the probability of data intercept. Specifically, we experimentally demonstrate and characterize the performance of an OAM-multiplexed, free-space optical (FSO) communications link between a ground transmitter and a ground receiver via a moving unmanned-aerial-vehicle (UAV). We achieve a total capacity of 80 Gbit/s up to 100-m-roundtrip link by multiplexing 2 OAM beams, each carrying a 40-Gbit/s quadrature-phase-shift-keying (QPSK) signal. Moreover, we investigate for static, hovering, and moving conditions the effects of channel impairments, including: misalignments, propeller-induced airflows, power loss, intermodal crosstalk, and system bit error rate (BER). We find the following: (a) when the UAV hovers in the air, the power on the desired mode fluctuates by 2.1 dB, while the crosstalk to the other mode is -19 dB below the power on the desired mode; and (b) when the UAV moves in the air, the power fluctuation on the desired mode increases to 4.3 dB and the crosstalk to the other mode increases to -10 dB. Furthermore, the channel crosstalk decreases with an increase in OAM mode spacing.
NASA Astrophysics Data System (ADS)
Vanderka, Ales; Hajek, Lukas; Bednarek, Lukas; Latal, Jan; Vitasek, Jan; Hejduk, Stanislav; Vasinek, Vladimir
2016-09-01
In this article the author's team deals with using Wavelength Division Multiplexing (WDM) for Free Space Optical (FSO) Communications. In FSO communication occurs due to the influence of atmospheric effect (attenuation, and fluctuation of the received power signal, influence turbulence) and the WDM channel suffers from interchannel crosstalk. There is considered only the one direction. The behavior FSO link was tested for one or eight channels. Here we will be dealing with modulation schemes OOK (On-Off keying), QAM (Quadrature Amplitude Modulation) and Subcarrier Intensity Modulation (SIM) based on a BPSK (Binary Phase Shift Keying). Simulation software OptiSystem 14 was used for tasting. For simulation some parameters were set according to real FSO link such as the datarate 1.25 Gbps, link range 1.4 km. Simulated FSO link used wavelength of 1550 nm with 0.8 nm spacing. There is obtained the influence of crosstalk and modulation format for the BER, depending on the amount of turbulence in the propagation medium.
Characterization of dual-polarization LTE radio over a free-space optical turbulence channel.
Bohata, J; Zvanovec, S; Korinek, T; Mansour Abadi, M; Ghassemlooy, Z
2015-08-10
A dual polarization (DP) radio over a free-space optical (FSO) communication link using a long-term evolution (LTE) radio signal is proposed and analyzed under different turbulence channel conditions. Radio signal transmission over the DP FSO channel is experimentally verified by means of error vector magnitude (EVM) statistics. We demonstrate that such a system, employing a 64 quadrature amplitude modulation at the frequency bands of 800 MHz and 2.6 GHz, evinces reliability with <8% of EVM in a turbulent channel. Based on the results, we show that transmitting the LTE signal over the FSO channel is a potential solution for last-mile access or backbone networks, when using multiple-input multiple-output based DP signals.
Two-dimensional beam steering using a thermo-optic silicon photonic optical phased array
NASA Astrophysics Data System (ADS)
Rabinovich, William S.; Goetz, Peter G.; Pruessner, Marcel W.; Mahon, Rita; Ferraro, Mike S.; Park, Doe; Fleet, Erin; DePrenger, Michael J.
2016-11-01
Many components for free-space optical (FSO) communication systems have shrunken in size over the last decade. However, the steering systems have remained large and power hungry. Nonmechanical beam steering offers a path to reducing the size of these systems. Optical phased arrays can allow integrated beam steering elements. One of the most important aspects of an optical phased array technology is its scalability to a large number of elements. Silicon photonics can potentially offer this scalability using CMOS foundry techniques. A phased array that can steer in two dimensions using the thermo-optic effect is demonstrated. No wavelength tuning of the input laser is needed and the design allows a simple control system with only two inputs. A benchtop FSO link with the phased array in both transmit and receive mode is demonstrated.
NASA Astrophysics Data System (ADS)
Yuksel, Heba; Davis, Christopher C.
2006-09-01
Intensity fluctuations at the receiver in free space optical (FSO) communication links lead to a received power variance that depends on the size of the receiver aperture. Increasing the size of the receiver aperture reduces the power variance. This effect of the receiver size on power variance is called aperture averaging. If there were no aperture size limitation at the receiver, then there would be no turbulence-induced scintillation. In practice, there is always a tradeoff between aperture size, transceiver weight, and potential transceiver agility for pointing, acquisition and tracking (PAT) of FSO communication links. We have developed a geometrical simulation model to predict the aperture averaging factor. This model is used to simulate the aperture averaging effect at given range by using a large number of rays, Gaussian as well as uniformly distributed, propagating through simulated turbulence into a circular receiver of varying aperture size. Turbulence is simulated by filling the propagation path with spherical bubbles of varying sizes and refractive index discontinuities statistically distributed according to various models. For each statistical representation of the atmosphere, the three-dimensional trajectory of each ray is analyzed using geometrical optics. These Monte Carlo techniques have proved capable of assessing the aperture averaging effect, in particular, the quantitative expected reduction in intensity fluctuations with increasing aperture diameter. In addition, beam wander results have demonstrated the range-cubed dependence of mean-squared beam wander. An effective turbulence parameter can also be determined by correlating beam wander behavior with the path length.
Multilevel microvibration test for performance predictions of a space optical load platform
NASA Astrophysics Data System (ADS)
Li, Shiqi; Zhang, Heng; Liu, Shiping; Wang, Yue
2018-05-01
This paper presents a framework for the multilevel microvibration analysis and test of a space optical load platform. The test framework is conducted on three levels, including instrument, subsystem, and system level. Disturbance source experimental investigations are performed to evaluate the vibration amplitude and study vibration mechanism. Transfer characteristics of space camera are validated by a subsystem test, which allows the calculation of transfer functions from various disturbance sources to optical performance outputs. In order to identify the influence of the source on the spacecraft performance, a system level microvibration measurement test has been performed on the ground. From the time domain analysis and spectrum analysis of multilevel microvibration tests, we concluded that the disturbance source has a significant effect on its installation position. After transmitted through mechanical links, the residual vibration reduces to a background noise level. In addition, the angular microvibration of the platform jitter is mainly concentrated in the rotation of y-axes. This work is applied to a real practical application involving the high resolution satellite camera system.
Availability of free-space optics (FSO) and hybrid FSO/RF systems
NASA Astrophysics Data System (ADS)
Kim, Isaac I.; Korevaar, Eric J.
2001-11-01
Free Space Optics (FSO) has become a viable, high-bandwidth wireless alternative to fiber optic cabling. The primary advantages of FSO over fiber are its rapid deployment time and significant cost savings. The disadvantage of FSO over fiber is that laser power attenuation through the atmosphere is variable and difficult to predict, since it is weather airports, the link availability as a function of distance can be predicted for any FSO system. These availability curves provide a good indication of the reasonable link distances for FSO systems in a particular geographical area. FSO link distances can vary greatly from desert areas like Las Vegas to heavy-fog cities like St. Johns NF. Another factor in determining FSO distance limitations is the link availability expectation of the application. For enterprise applications, link availability requirements are generally greater than 99%. This allows for longer FSO link ranges, based on the availability curves. The enterprise market is where the majority of FSO systems have been deployed. The carriers and ISPs are another potential large user of FSO systems, especially for last-mile metro access applications. If FSO systems are to be used in telecommunication applications, they will need to meet much higher availability requirements. Carrier-class availability is generally considered to be 99.999% (5 nines). An analysis of link budgets and visibility-limiting weather conditions indicates that to meet carrier-class availability, FSO links should normally be less than 140m (there are cities like Phoenix and Las Vegas where this 99.999% distance limitation increases significantly). This calculation is based on a 53 dB link budget. This concept is extended to the best possible FSO system, which would have a 10 W transmitter and a photocounting detector with a sensitivity of 1 nW. This FSO system would have a 100 dB link margin, which would only increase the 99.999% link distance to 286 m. A more practical solution to extending the high availability range would be to back up the FSO link with a lower data rate radio frequency (RF) link. This hybrid FSO/RF system would extend the 99.999% link range to longer distances and open up a much larger metro/access market to the carriers. It is important to realize that as the link range increases, there will be a slight decrease in overall bandwidth. To show the geographical dependence of FSO performance, the first map of FSO availabilities contoured over North America is presented. This map is the first step to developing an attenuation map for predicting FSO performance, which could be used in similar fashion to the International Telecommunication Union (ITU)/Crane maps for predicting microwave performance.
Multi-core fiber amplifier arrays for intra-satellite links
NASA Astrophysics Data System (ADS)
Kechagias, Marios; Crabb, Jonathan; Stampoulidis, Leontios; Farzana, Jihan; Kehayas, Efstratios; Filipowicz, Marta; Napierala, Marek; Murawski, Michal; Nasilowski, Tomasz; Barbero, Juan
2017-09-01
In this paper we present erbium doped fibre (EDF) aimed at signal amplification within satellite photonic payload systems operating in C telecommunication band. In such volume-hungry applications, the use of advanced optical transmission techniques such as space division multiplexing (SDM) can be advantageous to reduce the component and cable count.
NASA Technical Reports Server (NTRS)
Savich, Gregory R.
2004-01-01
The time when computing power is limited by the copper wire inherent in the computer system and not the speed of the microprocessor is rapidly approaching. With constant advances in computer technology, many researchers believe that in only a few years, optical interconnects will begin to replace copper wires in your Central Processing Unit (CPU). On a more macroscopic scale, the telecommunications industry has already made the switch to optical data transmission as, to date, fiber optic technology is the only reasonable method of reliable, long range data transmission. Within the span of a decade, we will see optical technologies move from the macroscopic world of the telecommunications industry to the microscopic world of the computer chip. Already, the communications industry is marketing commercially available optical links to connect two personal computers, thereby eliminating the need for standard and comparatively slow wired and wireless Ethernet transfers and greatly increasing the distance the computers can be separated. As processing demands continue to increase, the realm of optical communications will continue to move closer to the microprocessor and quite possibly onto the microprocessor itself. A day may come when copper connections are used only to supply power, not transfer data. This summer s work marks some of the beginning stages of a 5 to 10 year, long-term research project to create and study a free-space, 1 Gigabit/sec optical interconnect. The research will result in a novel fabricated, chip-to-chip interconnect consisting of a Vertical Cavity Surface Emitting Laser (VCSEL) Diode linked through free space to a Metal- Semiconductor-Metal (MSM) Photodetector with the possible integration of microlenses for signal focusing and Micro-Electromechanical Systems (MEMS) devices for optical signal steering. The advantages, disadvantages, and practicality of incorporating flip-chip mounting technologies will also be addressed. My work began with the design and construction of a test setup for the experiment and then appropriate characterization of the test system. Specifically, I am involved in the characterization of a commercially available 1550nm wavelength, 5mW diode laser and a study of its modulation bandwidth. Commercially produced photodetectors as well as the incorporation of microwave technology, in the form of RF input and output, are used in the characterization procedure. The next stage involves the use of a probe station and network analyzer to characterize and test a series of photodetectors fabricated on a 2 inch, Indium Gallium Arsenide (InGaAs) wafer in the Branch s microlithography lab. Other project responsibilities include, but are not limited to the incorporation of a transimpedance amplifier to the photodetector circuit; a study of VCSEL technology; bit error rate analysis of an optical interconnect system; and analysis of free space divergence of the VCSEL, optical path length of the interconnect; and any other pertinent optical properties of the one gigabit per second interconnect for fabrication and testing.
Misalignment corrections in optical interconnects
NASA Astrophysics Data System (ADS)
Song, Deqiang
Optical interconnects are considered a promising solution for long distance and high bitrate data transmissions, outperforming electrical interconnects in terms of loss and dispersion. Due to the bandwidth and distance advantage of optical interconnects, longer links have been implemented with optics. Recent studies show that optical interconnects have clear advantages even at very short distances---intra system interconnects. The biggest challenge for such optical interconnects is the alignment tolerance. Many free space optical components require very precise assembly and installation, and therefore the overall cost could be increased. This thesis studied the misalignment tolerance and possible alignment correction solutions for optical interconnects at backplane or board level. First the alignment tolerance for free space couplers was simulated and the result indicated the most critical alignments occur between the VCSEL, waveguide and microlens arrays. An in-situ microlens array fabrication method was designed and experimentally demonstrated, with no observable misalignment with the waveguide array. At the receiver side, conical lens arrays were proposed to replace simple microlens arrays for a larger angular alignment tolerance. Multilayer simulation models in CodeV were built to optimized the refractive index and shape profiles of the conical lens arrays. Conical lenses fabricated with micro injection molding machine and fiber etching were characterized. Active component VCSOA was used to correct misalignment in optical connectors between the board and backplane. The alignment correction capability were characterized for both DC and AC (1GHz) optical signal. The speed and bandwidth of the VCSOA was measured and compared with a same structure VCSEL. Based on the optical inverter being studied in our lab, an all-optical flip-flop was demonstrated using a pair of VCSOAs. This memory cell with random access ability can store one bit optical signal with set or reset beam. The operating conditions were studied to generate two stable states between the VCSOA pair. The entire functionality test was implemented with free space optical components.
NASA Technical Reports Server (NTRS)
Rawat, Banmali
2000-01-01
The multimode fiber bandwidth enhancement techniques to meet the Gigabit Ethernet standards for local area networks (LAN) of the Kennedy Space Center and other NASA centers have been discussed. Connector with lateral offset coupling between single mode launch fiber cable and the multimode fiber cable has been thoroughly investigated. An optimization of connector position offset for 8 km long optical fiber link at 1300 nm with 9 micrometer diameter single mode fiber (SMF) and 50 micrometer diameter multimode fiber (MMF) coupling has been obtained. The optimization is done in terms of bandwidth, eye-pattern, and bit pattern measurements. It is simpler, is a highly practical approach and is cheaper as no additional cost to manufacture the offset type of connectors is involved.
Two dimensional thermo-optic beam steering using a silicon photonic optical phased array
NASA Astrophysics Data System (ADS)
Mahon, Rita; Preussner, Marcel W.; Rabinovich, William S.; Goetz, Peter G.; Kozak, Dmitry A.; Ferraro, Mike S.; Murphy, James L.
2016-03-01
Components for free space optical communication terminals such as lasers, amplifiers, and receivers have all seen substantial reduction in both size and power consumption over the past several decades. However, pointing systems, such as fast steering mirrors and gimbals, have remained large, slow and power-hungry. Optical phased arrays provide a possible solution for non-mechanical beam steering devices that can be compact and lower in power. Silicon photonics is a promising technology for phased arrays because it has the potential to scale to many elements and may be compatible with CMOS technology thereby enabling batch fabrication. For most free space optical communication applications, two-dimensional beam steering is needed. To date, silicon photonic phased arrays have achieved two-dimensional steering by combining thermo-optic steering, in-plane, with wavelength tuning by means of an output grating to give angular tuning, out-of-plane. While this architecture might work for certain static communication links, it would be difficult to implement for moving platforms. Other approaches have required N2 controls for an NxN element phased array, which leads to complexity. Hence, in this work we demonstrate steering using the thermo-optic effect for both dimensions with a simplified steering mechanism requiring only two control signals, one for each steering dimension.
Design and construction of a telescope simulator for LISA optical bench testing
NASA Astrophysics Data System (ADS)
Bogenstahl, J.; Tröbs, M.; d'Arcio, L.; Diekmann, C.; Fitzsimons, E. D.; Hennig, J. S.; Hey, F. G.; Killow, C. J.; Lieser, M.; Lucarelli, S.; Perreur-Lloyd, M.; Pijnenburg, J.; Robertson, D. I.; Taylor, A.; Ward, H.; Weise, D.; Heinzel, G.; Danzmann, K.
2017-11-01
LISA (Laser Interferometer Space Antenna) is a proposed space-based instrument for astrophysical observations via the measurement of gravitational waves at mHz frequencies. The triangular constellation of the three LISA satellites will allow interferometric measurement of the changes in distance along the arms. On board each LISA satellite there will be two optical benches, one for each testmass, that measure the distance to the local test mass and to the remote optical bench on the distant satellite. For technology development, an Optical Bench Elegant Bread Board (OB EBB) is currently under construction. To verify the performance of the EBB, another optical bench - the so-called telescope simulator bench - will be constructed to simulate the beam coming from the far spacecraft. The optical beam from the telescope simulator will be superimposed with the light on the LISA OB, in order to simulate the link between two LISA satellites. Similarly in reverse, the optical beam from the LISA OB will be picked up and measured on the telescope simulator bench. Furthermore, the telescope simulator houses a test mass simulator. A gold coated mirror which can be manipulated by an actuator simulates the test mass movements. This paper presents the layout and design of the bench for the telescope simulator and test mass simulator.
Optical detectors for GaAs MMIC integration: Technology assessment
NASA Technical Reports Server (NTRS)
Claspy, P. C.; Bhasin, K. B.
1989-01-01
Fiber optic links are being considered to transmit digital and analog signals in phased array antenna feed networks in space communications systems. The radiating elements in these arrays will be GaAs monolithic microwave integrated circuits (MMIC's) in numbers ranging from a few hundred to several thousand. If such optical interconnects are to be practical it appears essential that the associated components, including detectors, be monolithically integrated on the same chip as the microwave circuitry. The general issue of monolithic integration of microwave and optoelectronic components is addressed from the point of view of fabrication technology and compatibility. Particular attention is given to the fabrication technology of various types of GaAs optical detectors that are designed to operate at a wavelength of 830 nm.
A technology assessment of alternative communications systems for the space exploration initiative
NASA Technical Reports Server (NTRS)
Ponchak, Denise S.; Zuzek, John E.; Whyte, Wayne A., Jr.; Spence, Rodney L.; Sohn, Philip Y.
1990-01-01
Telecommunications, Navigation, and Information Management (TNIM) services are vital to accomplish the ambitious goals of the Space Exploration Initiative (SEI). A technology assessment is provided for four alternative lunar and Mars operational TNIM systems based on detailed communications link analyses. The four alternative systems range from a minimum to a fully enhanced capability and use frequencies from S-band, through Ka-band, and up to optical wavelengths. Included are technology development schedules as they relate to present SEI mission architecture time frames.
Predicting the performance of linear optical detectors in free space laser communication links
NASA Astrophysics Data System (ADS)
Farrell, Thomas C.
2018-05-01
While the fundamental performance limit for optical communications is set by the quantum nature of light, in practical systems background light, dark current, and thermal noise of the electronics also degrade performance. In this paper, we derive a set of equations predicting the performance of PIN diodes and linear mode avalanche photo diodes (APDs) in the presence of such noise sources. Electrons generated by signal, background, and dark current shot noise are well modeled in PIN diodes as Poissonian statistical processes. In APDs, on the other hand, the amplifying effects of the device result in statistics that are distinctly non-Poissonian. Thermal noise is well modeled as Gaussian. In this paper, we appeal to the central limit theorem and treat both the variability of the signal and the sum of noise sources as Gaussian. Comparison against Monte-Carlo simulation of PIN diode performance (where we do model shot noise with draws from a Poissonian distribution) validates the legitimacy of this approximation. On-off keying, M-ary pulse position, and binary differential phase shift keying modulation are modeled. We conclude with examples showing how the equations may be used in a link budget to estimate the performance of optical links using linear receivers.
Space Applications of Industrial Laser Systems (SAILS)
NASA Technical Reports Server (NTRS)
Mueller, Robert E.; McCay, T. Dwayne; McCay, Mary Helen; Bible, Brice
1995-01-01
A program is under way to develop a YAG laser based materials processing workstation to fly in the cargo bay of the Space Shuttle. The system will be capable of cutting and welding steel, aluminum, and Inconel alloys of the type planned for use on Space Station Freedom. As well as demonstrating the ability of a YAG laser to perform remote (fiber-optic delivered) repair and fabrication operations in space, fundamental data will be collected on these interactions for comparison with terrestrial data and models. The flight system, scheduled to fly in 1995, will be constructed as two modules to fit into the standard Get Away Special (GAS) canisters. The first can holds the laser and its power supply, to be constructed by our industrial partner, Lumonics Industrial Processing Division. The second canister has the materials processing workstation and the command and data acquisition subsystems. These components will be provided by groups at the University of Tennessee Space Institute (UTSI) and the University of Waterloo. The cans are linked by a fiber-optic cable which transmits the beam from the laser head to the workstation.
Weak beacon detection for air-to-ground optical wireless link establishment.
Han, Yaoqiang; Dang, Anhong; Tang, Junxiong; Guo, Hong
2010-02-01
In an air-to-ground free-space optical communication system, strong background interference seriously affects the beacon detection, which makes it difficult to establish the optical link. In this paper, we propose a correlation beacon detection scheme under strong background interference conditions. As opposed to traditional beacon detection schemes, the beacon is modulated by an m-sequence at the transmitting terminal with a digital differential matched filter (DDMF) array introduced at the receiving end to detect the modulated beacon. This scheme is capable of suppressing both strong interference and noise by correlation reception of the received image sequence. In addition, the DDMF array enables each pixel of the image sensor to have its own DDMF of the same structure to process its received image sequence in parallel, thus it makes fast beacon detection possible. Theoretical analysis and an outdoor experiment have been demonstrated and show that the proposed scheme can realize fast and effective beacon detection under strong background interference conditions. Consequently, the required beacon transmission power can also be reduced dramatically.
Wavelength assignment algorithm considering the state of neighborhood links for OBS networks
NASA Astrophysics Data System (ADS)
Tanaka, Yu; Hirota, Yusuke; Tode, Hideki; Murakami, Koso
2005-10-01
Recently, Optical WDM technology is introduced into backbone networks. On the other hand, as the future optical switching scheme, Optical Burst Switching (OBS) systems become a realistic solution. OBS systems do not consider buffering in intermediate nodes. Thus, it is an important issue to avoid overlapping wavelength reservation between partially interfered paths. To solve this problem, so far, the wavelength assignment scheme which has priority management tables has been proposed. This method achieves the reduction of burst blocking probability. However, this priority management table requires huge memory space. In this paper, we propose a wavelength assignment algorithm that reduces both the number of priority management tables and burst blocking probability. To reduce priority management tables, we allocate and manage them for each link. To reduce burst blocking probability, our method announces information about the change of their priorities to intermediate nodes. We evaluate its performance in terms of the burst blocking probability and the reduction rate of priority management tables.
1989-01-11
EFFECT OF BANK-TO-TURN VERSUS SKID-TO-TURN STEERING ON THE MANOEUVRABILITY OF AUTONOMOUS PRECISION GUIDED MUUNITION AGAINST GROUND TARGETS by B.J.Damen...space. Basic Relationships of an Interferometer Gyro The Sagnac effect in the fiber optic gyro causes a phase shift in the sensor col during rotation with... a read-out coupler and an.avalanche photodiode for optical detection. The opto module is rigidly connected with the sensor module via a fiber link
Interchip link system using an optical wiring method.
Cho, In-Kui; Ryu, Jin-Hwa; Jeong, Myung-Yung
2008-08-15
A chip-scale optical link system is presented with a transmitter/receiver and optical wire link. The interchip link system consists of a metal optical bench, a printed circuit board module, a driver/receiver integrated circuit, a vertical cavity surface-emitting laser/photodiode array, and an optical wire link composed of plastic optical fibers (POFs). We have developed a downsized POF and an optical wiring method that allows on-site installation with a simple annealing as optical wiring technologies for achieving high-density optical interchip interconnection within such devices. Successful data transfer measurements are presented.
Free-space propagation of high-dimensional structured optical fields in an urban environment
Lavery, Martin P. J.; Peuntinger, Christian; Günthner, Kevin; Banzer, Peter; Elser, Dominique; Boyd, Robert W.; Padgett, Miles J.; Marquardt, Christoph; Leuchs, Gerd
2017-01-01
Spatially structured optical fields have been used to enhance the functionality of a wide variety of systems that use light for sensing or information transfer. As higher-dimensional modes become a solution of choice in optical systems, it is important to develop channel models that suitably predict the effect of atmospheric turbulence on these modes. We investigate the propagation of a set of orthogonal spatial modes across a free-space channel between two buildings separated by 1.6 km. Given the circular geometry of a common optical lens, the orthogonal mode set we choose to implement is that described by the Laguerre-Gaussian (LG) field equations. Our study focuses on the preservation of phase purity, which is vital for spatial multiplexing and any system requiring full quantum-state tomography. We present experimental data for the modal degradation in a real urban environment and draw a comparison to recognized theoretical predictions of the link. Our findings indicate that adaptations to channel models are required to simulate the effects of atmospheric turbulence placed on high-dimensional structured modes that propagate over a long distance. Our study indicates that with mitigation of vortex splitting, potentially through precorrection techniques, one could overcome the challenges in a real point-to-point free-space channel in an urban environment. PMID:29075663
Free-space propagation of high-dimensional structured optical fields in an urban environment.
Lavery, Martin P J; Peuntinger, Christian; Günthner, Kevin; Banzer, Peter; Elser, Dominique; Boyd, Robert W; Padgett, Miles J; Marquardt, Christoph; Leuchs, Gerd
2017-10-01
Spatially structured optical fields have been used to enhance the functionality of a wide variety of systems that use light for sensing or information transfer. As higher-dimensional modes become a solution of choice in optical systems, it is important to develop channel models that suitably predict the effect of atmospheric turbulence on these modes. We investigate the propagation of a set of orthogonal spatial modes across a free-space channel between two buildings separated by 1.6 km. Given the circular geometry of a common optical lens, the orthogonal mode set we choose to implement is that described by the Laguerre-Gaussian (LG) field equations. Our study focuses on the preservation of phase purity, which is vital for spatial multiplexing and any system requiring full quantum-state tomography. We present experimental data for the modal degradation in a real urban environment and draw a comparison to recognized theoretical predictions of the link. Our findings indicate that adaptations to channel models are required to simulate the effects of atmospheric turbulence placed on high-dimensional structured modes that propagate over a long distance. Our study indicates that with mitigation of vortex splitting, potentially through precorrection techniques, one could overcome the challenges in a real point-to-point free-space channel in an urban environment.
High data rate optical transceiver terminal
NASA Technical Reports Server (NTRS)
Clarke, E. S.
1973-01-01
The objectives of this study were: (1) to design a 400 Mbps optical transceiver terminal to operate from a high-altitude balloon-borne platform in order to permit the quantitative evaluation of a space-qualifiable optical communications system design, (2) to design an atmospheric propagation experiment to operate in conjunction with the terminal to measure the degrading effects of the atmosphere on the links, and (3) to design typical optical communications experiments for space-borne laboratories in the 1980-1990 time frame. As a result of the study, a transceiver package has been configured for demonstration flights during late 1974. The transceiver contains a 400 Mbps transmitter, a 400 Mbps receiver, and acquisition and tracking receivers. The transmitter is a Nd:YAG, 200 Mhz, mode-locked, CW, diode-pumped laser operating at 1.06 um requiring 50 mW for 6 db margin. It will be designed to implement Pulse Quaternary Modulation (PQM). The 400 Mbps receiver utilizes a Dynamic Crossed-Field Photomultiplier (DCFP) detector. The acquisition receiver is a Quadrant Photomultiplier Tube (QPMT) and receives a 400 Mbps signal chopped at 0.1 Mhz.
Quantum cascade lasers as metrological tools for space optics
NASA Astrophysics Data System (ADS)
Bartalini, S.; Borri, S.; Galli, I.; Mazzotti, D.; Cancio Pastor, P.; Giusfredi, G.; De Natale, P.
2017-11-01
A distributed-feedback quantum-cascade laser working in the 4.3÷4.4 mm range has been frequency stabilized to the Lamb-dip center of a CO2 ro-vibrational transition by means of first-derivative locking to the saturated absorption signal, and its absolute frequency counted with a kHz-level precision and an overall uncertainty of 75 kHz. This has been made possible by an optical link between the QCL and a near-IR Optical Frequency Comb Synthesizer, thanks to a non-linear sum-frequency generation process with a fiber-amplified Nd:YAG laser. The implementation of a new spectroscopic technique, known as polarization spectroscopy, provides an improved signal for the locking loop, and will lead to a narrower laser emission and a drastic improvement in the frequency stability, that in principle is limited only by the stability of the optical frequency comb synthesizer (few parts in 1013). These results confirm quantum cascade lasers as reliable sources not only for high-sensitivity, but also for highprecision measurements, ranking them as optimal laser sources for space applications.
Integrated RF/Optical Interplanetary Networking Preliminary Explorations and Empirical Results
NASA Technical Reports Server (NTRS)
Raible, Daniel E.; Hylton, Alan G.
2012-01-01
Over the last decade interplanetary telecommunication capabilities have been significantly expanded--specifically in support of the Mars exploration rover and lander missions. NASA is continuing to drive advances in new, high payoff optical communications technologies to enhance the network to Gbps performance from Mars, and the transition from technology demonstration to operational system is examined through a hybrid RF/optical approach. Such a system combines the best features of RF and optical communications considering availability and performance to realize a dual band trunk line operating within characteristic constraints. Disconnection due to planetary obscuration and solar conjunction, link delays, timing, ground terminal mission congestion and scheduling policy along with space and atmospheric weather disruptions all imply the need for network protocol solutions to ultimately manage the physical layer in a transparent manner to the end user. Delay Tolerant Networking (DTN) is an approach under evaluation which addresses these challenges. A multi-hop multi-path hybrid RF and optical test bed has been constructed to emulate the integrated deep space network and to support protocol and hardware refinement. Initial experimental results characterize several of these challenges and evaluate the effectiveness of DTN as a solution to mitigate them.
NASA Astrophysics Data System (ADS)
Varotsos, G. K.; Nistazakis, H. E.; Petkovic, M. I.; Djordjevic, G. T.; Tombras, G. S.
2017-11-01
Over the last years terrestrial free-space optical (FSO) communication systems have demonstrated an increasing scientific and commercial interest in response to the growing demands for ultra high bandwidth, cost-effective and secure wireless data transmissions. However, due the signal propagation through the atmosphere, the performance of such links depends strongly on the atmospheric conditions such as weather phenomena and turbulence effect. Additionally, their operation is affected significantly by the pointing errors effect which is caused by the misalignment of the optical beam between the transmitter and the receiver. In order to address this significant performance degradation, several statistical models have been proposed, while particular attention has been also given to diversity methods. Here, the turbulence-induced fading of the received optical signal irradiance is studied through the M (alaga) distribution, which is an accurate model suitable for weak to strong turbulence conditions and unifies most of the well-known, previously emerged models. Thus, taking into account the atmospheric turbulence conditions along with the pointing errors effect with nonzero boresight and the modulation technique that is used, we derive mathematical expressions for the estimation of the average bit error rate performance for SIMO FSO links. Finally, proper numerical results are given to verify our derived expressions and Monte Carlo simulations are also provided to further validate the accuracy of the analysis proposed and the obtained mathematical expressions.
Wang, Ping; Zhang, Lu; Guo, Lixin; Huang, Feng; Shang, Tao; Wang, Ranran; Yang, Yintang
2014-08-25
The average bit error rate (BER) for binary phase-shift keying (BPSK) modulation in free-space optical (FSO) links over turbulence atmosphere modeled by the exponentiated Weibull (EW) distribution is investigated in detail. The effects of aperture averaging on the average BERs for BPSK modulation under weak-to-strong turbulence conditions are studied. The average BERs of EW distribution are compared with Lognormal (LN) and Gamma-Gamma (GG) distributions in weak and strong turbulence atmosphere, respectively. The outage probability is also obtained for different turbulence strengths and receiver aperture sizes. The analytical results deduced by the generalized Gauss-Laguerre quadrature rule are verified by the Monte Carlo simulation. This work is helpful for the design of receivers for FSO communication systems.
Probing coherence in microcavity frequency combs via optical pulse shaping
NASA Astrophysics Data System (ADS)
Ferdous, Fahmida; Miao, Houxun; Wang, Pei-Hsun; Leaird, Daniel E.; Srinivasan, Kartik; Chen, Lei; Aksyuk, Vladimir; Weiner, Andrew M.
2012-09-01
Recent investigations of microcavity frequency combs based on cascaded four-wave mixing have revealed a link between the evolution of the optical spectrum and the observed temporal coherence. Here we study a silicon nitride microresonator for which the initial four-wave mixing sidebands are spaced by multiple free spectral ranges (FSRs) from the pump, then fill in to yield a comb with single FSR spacing, resulting in partial coherence. By using a pulse shaper to select and manipulate the phase of various subsets of spectral lines, we are able to probe the structure of the coherence within the partially coherent comb. Our data demonstrate strong variation in the degree of mutual coherence between different groups of lines and provide support for a simple model of partially coherent comb formation.
NASA Technical Reports Server (NTRS)
Spence, Rodney L.
1993-01-01
The important principles of direct- and heterodyne-detection optical free-space communications are reviewed. Signal-to-noise-ratio (SNR) and bit-error-rate (BER) expressions are derived for both the direct-detection and heterodyne-detection optical receivers. For the heterodyne system, performance degradation resulting from received-signal and local oscillator-beam misalignment and laser phase noise is analyzed. Determination of interfering background power from local and extended background sources is discussed. The BER performance of direct- and heterodyne-detection optical links in the presence of Rayleigh-distributed random pointing and tracking errors is described. Finally, several optical systems employing Nd:YAG, GaAs, and CO2 laser sources are evaluated and compared to assess their feasibility in providing high-data-rate (10- to 1000-Mbps) Mars-to-Earth communications. It is shown that the root mean square (rms) pointing and tracking accuracy is a critical factor in defining the system transmitting laser-power requirements and telescope size and that, for a given rms error, there is an optimum telescope aperture size that minimizes the required power. The results of the analysis conducted indicate that, barring the achievement of extremely small rms pointing and tracking errors (less than 0.2 microrad), the two most promising types of optical systems are those that use an Nd:YAG laser (lambda = 1.064 microns) and high-order pulse position modulator (PPM) and direct detection, and those that use a CO2 laser (lambda = 10.6 microns) and phase shifting keying homodyne modulation and coherent detection. For example, for a PPM order of M = 64 and an rms pointing accuracy of 0.4 microrad, an Nd:YAG system can be used to implement a 100-Mbps Mars link with a 40-cm transmitting telescope, a 20-W laser, and a 10-m receiving photon bucket. Under the same conditions, a CO2 system would require 3-m transmitting and receiving telescopes and a 32-W laser to implement such a link. Other types of optical systems, such as a semiconductor laser systems, are impractical in the presence of large rms pointing errors because of the high power requirements of the 100-Mbps Mars link, even when optimal-size telescopes are used.
Continuous adaptive beam pointing and tracking for laser power transmission.
Schäfer, Christian A
2010-06-21
The adaptive beam pointing concept has been revisited for the purpose of controlled transmission of laser energy from an optical transmitter to a target. After illumination, a bidirectional link is established by a retro-reflector on the target and an amplifier-phase conjugate mirror (A-PCM) on the transmitter. By setting the retro-reflector's aperture smaller than the diffraction limited spot size but big enough to provide sufficient amount of optical feedback, a stable link can be maintained and light that hits the retro-reflector's surrounded area can simultaneously be reconverted into usable electric energy. The phase conjugate feedback ensures that amplifier's distortions are compensated and the target tracked accurately.After deriving basic arithmetic expressions for the proposed system, a section is devoted for the motivation of free-space laser power transmission which is supposed to find varied applicability in space. As an example, power transmission from a satellite to the earth is described where recently proposed solar power generating structures on high-altitudes receive the power above the clouds to provide constant energy supply.In the experimental part, an A-PCM setup with reflectivity of about R(A-PCM) = 100 was realized using a semiconductor optical amplifier and a photorefractive self-pumped PCM. Simulation results show that a reflectivity of R(A-PCM)>1000 could be obtained by improving the self-pumped PCM's efficiency. That would lead to a transmission efficiency of eta>90%.
NASA Technical Reports Server (NTRS)
Bhasin, Kul B.; Warner, Joseph D.; Oleson, Steven; Schier, James
2014-01-01
The main purpose of the Small Space-Based Geosynchronous Earth orbiting (GEO) satellite is to provide a space link to the user mission spacecraft for relaying data through ground networks to user Mission Control Centers. The Small Space Based Satellite (SSBS) will provide services comparable to those of a NASA Tracking Data Relay Satellite (TDRS) for the same type of links. The SSBS services will keep the user burden the same or lower than for TDRS and will support the same or higher data rates than those currently supported by TDRS. At present, TDRSS provides links and coverage below GEO; however, SSBS links and coverage capability to above GEO missions are being considered for the future, especially for Human Space Flight Missions (HSF). There is also a rising need for the capability to support high data rate links (exceeding 1 Gbps) for imaging applications. The communication payload on the SSBS will provide S/Ka-band single access links to the mission and a Ku-band link to the ground, with an optical communication payload as an option. To design the communication payload, various link budgets were analyzed and many possible operational scenarios examined. To reduce user burden, using a larger-sized antenna than is currently in use by TDRS was considered. Because of the SSBS design size, it was found that a SpaceX Falcon 9 rocket could deliver three SSBSs to GEO. This will greatly reduce the launch costs per satellite. Using electric propulsion was also evaluated versus using chemical propulsion; the power system size and time to orbit for various power systems were also considered. This paper will describe how the SSBS will meet future service requirements, concept of operations, and the design to meet NASA users' needs for below and above GEO missions. These users' needs not only address the observational mission requirements but also possible HSF missions to the year 2030. We will provide the trade-off analysis of the communication payload design in terms of the number of links looking above and below GEO; the detailed design of a GEO SSBS spacecraft bus and its accommodation of the communication payload, and a summary of the trade study that resulted in the selection of the Falcon 9 launch vehicle to deploy the SSBS and its impact on cost reductions per satellite. ======================================================================== Several initiatives have taken place within NASA1 and international space agencies2 to create a human exploration strategy for expanding human presence into the solar system; these initiatives have been driven by multiple factors to benefit Earth. Of the many elements in the strategy one stands out: to send robotic and human missions to destinations beyond Low Earth Orbit (LEO), including cis-lunar space, Near-Earth Asteroids (NEAs), the Moon, and Mars and its moons.3, 4 The time frame for human exploration to various destinations, based on the public information available,1,4 is shown in Figure 1. Advance planning is needed to define how future space communications services will be provided in the new budget environment to meet future space communications needs. The spacecraft for these missions can be dispersed anywhere from below LEO to beyond GEO, and to various destinations within the solar system. NASA's Space Communications and Navigation (SCaN) program office provides communication and tracking services to space missions during launch, in-orbit testing, and operation phases. Currently, SCaN's space networking relay satellites mainly provide services to users below GEO, at Near Earth Orbit (NEO), below LEO, and in deep space. The potential exists for using a space-based relay satellite, located in the vicinity of various solar system destinations, to provide communication space links to missions both below and above its orbit. Such relays can meet the needs of human exploration missions for maximum connectivity to Earth locations and for reduced latency. In the past, several studies assessed the ability of satellite-based relays working above GEO in conjunction with Earth ground stations. Many of these focused on the trade between space relay and direct-to-Earth station links5,6,7. Several others focused on top-level architecture based on relays at various destinations8,9,10,11,12. Much has changed in terms of microwave and optical technology since the publication of the referenced papers; Ka-band communication systems are being deployed, optical communication is being demonstrated, and spacecraft buses are becoming increasingly more functional and operational. A design concept study was undertaken to access the potential for deploying a Small Space-Based Satellite (SSBS) relay capable of serving missions between LEO and NEO. The needs of future human exploration missions were analyzed, and a notional relay-based architecture concept was generated as shown in Fig. 1. Relay satellites in Earth through cis-Lunar orbits are normally located in stable orbits requiring low fuel consumption. Relay satellites for Mars orbit are normally selected based on the mission requirement and projected fuel consumption. Relay satellites have extreme commonalities of functions between them, differing only in the redundancy and frequencies used; therefore, the relay satellite in GEO was selected for further analysis since it will be the first step in achieving a relay-based architecture for human exploration missions (see Fig.Figure 2). The mission design methodology developed by the Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) team13 was used to produce the satellite relay design and to perform various design trades. At the start of the activity, the team was provided with the detailed concept of the notional architecture and the system and communication payload drivers.
Aerospace laser communications technology as enabler for worldwide quantum key distribution
NASA Astrophysics Data System (ADS)
Moll, Florian; Weinfurter, Harald; Rau, Markus; Schmidt, Christopher; Melén, Gwen; Vogl, Tobias; Nauerth, Sebastian; Fuchs, Christian
2016-04-01
A worldwide growing interest in fast and secure data communications pushes technology development along two lines. While fast communications can be realized using laser communications in fiber and free-space, inherently secure communications can be achieved using quantum key distribution (QKD). By combining both technologies in a single device, many synergies can be exploited, therefore reducing size, weight and power of future systems. In recent experiments we demonstrated quantum communications over large distances as well as between an aircraft and a ground station which proved the feasibility of QKD between moving partners. Satellites thus may be used as trusted nodes in combination with QKD receiver stations on ground, thereby enabling fast and secure communications on a global scale. We discuss the previous experiment with emphasis on necessary developments to be done and corresponding ongoing research work of German Aerospace Center (DLR) and Ludwig Maximilians University Munich (LMU). DLR is performing research on satellite and ground terminals for the high-rate laser communication component, which are enabling technologies for the QKD link. We describe the concept and hardware of three generations of OSIRIS (Optical High Speed Infrared Link System) laser communication terminals for low Earth orbiting satellites. The first type applies laser beam pointing solely based on classical satellite control, the second uses an optical feedback to the satellite bus and the third, currently being in design phase, comprises of a special coarse pointing assembly to control beam direction independent of satellite orientation. Ongoing work also targets optical terminals for CubeSats. A further increase of beam pointing accuracy can be achieved with a fine pointing assembly. Two ground stations will be available for future testing, an advanced stationary ground station and a transportable ground station. In parallel the LMU QKD source size will be reduced by more than an order of magnitude thereby simplifying its integration into future free-space optical communication links with CubeSats.
Robust optical wireless links over turbulent media using diversity solutions
NASA Astrophysics Data System (ADS)
Moradi, Hassan
Free-space optic (FSO) technology, i.e., optical wireless communication (OWC), is widely recognized as superior to radio frequency (RF) in many aspects. Visible and invisible optical wireless links solve first/last mile connectivity problems and provide secure, jam-free communication. FSO is license-free and delivers high-speed data rates in the order of Gigabits. Its advantages have fostered significant research efforts aimed at utilizing optical wireless communication, e.g. visible light communication (VLC), for high-speed, secure, indoor communication under the IEEE 802.15.7 standard. However, conventional optical wireless links demand precise optical alignment and suffer from atmospheric turbulence. When compared with RF, they suffer a low degree of reliability and lack robustness. Pointing errors cause optical transceiver misalignment, adversely affecting system reliability. Furthermore, atmospheric turbulence causes irradiance fluctuations and beam broadening of transmitted light. Innovative solutions to overcome limitations on the exploitation of high-speed optical wireless links are greatly needed. Spatial diversity is known to improve RF wireless communication systems. Similar diversity approaches can be adapted for FSO systems to improve its reliability and robustness; however, careful diversity design is needed since FSO apertures typically remain unbalanced as a result of FSO system sensitivity to misalignment. Conventional diversity combining schemes require persistent aperture monitoring and repetitive switching, thus increasing FSO implementation complexities. Furthermore, current RF diversity combining schemes may not be optimized to address the issue of unbalanced FSO receiving apertures. This dissertation investigates two efficient diversity combining schemes for multi-receiving FSO systems: switched diversity combining and generalized selection combining. Both can be exploited to reduce complexity and improve combining efficiency. Unlike maximum ratio combing, equal gain combining, and selective combining, switched diversity simplifies receiver design by avoiding unnecessary switching among receiving apertures. The most significant advantage of generalized combining is its ability to exclude apertures with low quality that could potentially affect the resultant output signal performance. This dissertation also investigates mobile FSO by considering a multi-receiving system in which all receiving FSO apertures are circularly placed on a platform. System mobility and performance are analyzed. Performance results confirm improvements when using angular diversity and generalized selection combining. The precis of this dissertation establishes the foundation of reliable FSO communications using efficient diversity-based solutions. Performance parameters are analyzed mathematically, and then evaluated using computer simulations. A testbed prototype is developed to facilitate the evaluation of optical wireless links via lab experiments.
Measurement of optical intensity fluctuation over an 11.8 km turbulent path.
Jiang, Yijun; Ma, Jing; Tan, Liying; Yu, Siyuan; Du, Wenhe
2008-05-12
An 11.8km optical link is established to examine the intensity fluctuation of the laser beam transmission through atmosphere turbulence. Probability density function, fade statistic, and high-frequency spectrum are researched based on the analysis of the experimental data collected in each season of a year, including both weak and strong fluctuation cases. Finally, the daily variation curve of scintillation index is given, compared with the variation of refractive-index structure parameter C(n) (2), which is calculated from the experimental data of angle of arrival. This work provides the experimental results that are helpful to the atmospheric propagation research and the free-space optical communication system design.
Optical link by using optical wiring method for reducing EMI
NASA Astrophysics Data System (ADS)
Cho, In-Kui; Kwon, Jong-Hwa; Choi, Sung-Woong; Bondarik, Alexander; Yun, Je-Hoon; Kim, Chang-Joo; Ahn, Seung-Beom; Jeong, Myung-Yung; Park, Hyo Hoon
2008-12-01
A practical optical link system was prepared with a transmitter (Tx) and receiver (Rx) for reducing EMI (electromagnetic interference). The optical TRx module consisted of a metal optical bench, a module printed circuit board (PCB), a driver/receiver IC, a VCSEL/PD array, and an optical link block composed of plastic optical fiber (POF). For the optical interconnection between the light-sources and detectors, an optical wiring method has been proposed to enable easy assembly. The key benefit of fiber optic link is the absence of electromagnetic interference (EMI) noise creation and susceptibility. This paper provides a method for optical interconnection between an optical Tx and an optical Rx, comprising the following steps: (i) forming a light source device, an optical detection device, and an optical transmission unit on a substrate (metal optical bench (MOB)); (ii) preparing a flexible optical transmission-connection medium (optical wiring link) to optically connect the light source device formed on the substrate with the optical detection device; and (iii) directly connecting one end of the surface-finished optical transmission connection medium with the light source device and the other end with the optical detection device. Electronic interconnections have uniquely electronic problems such as EMI, shorting, and ground loops. Since these problems only arise during transduction (electronics-to-optics or opticsto- electronics), the purely optical part and optical link(interconnection) is free of these problems. 1 An optical link system constructed with TRx modules was fabricated and the optical characteristics about data links and EMI levels were measured. The results clearly demonstrate that the use of an optical wiring method can provide robust and cost-effective assembly for reducing EMI of inter-chip interconnect. We successfully achieved a 4.5 Gb/s data transmission rate without EMI problems.
Miniature laser ignited bellows motor
NASA Technical Reports Server (NTRS)
Renfro, Steven L.; Beckman, Tom M.
1994-01-01
A miniature optically ignited actuation device has been demonstrated using a laser diode as an ignition source. This pyrotechnic driven motor provides between 4 and 6 lbs of linear force across a 0.090 inch diameter surface. The physical envelope of the device is 1/2 inch long and 1/8 inch diameter. This unique application of optical energy can be used as a mechanical link in optical arming systems or other applications where low shock actuation is desired and space is limited. An analysis was performed to determine pyrotechnic materials suitable to actuate a bellows device constructed of aluminum or stainless steel. The aluminum bellows was chosen for further development and several candidate pyrotechnics were evaluated. The velocity profile and delivered force were quantified using an non-intrusive optical motion sensor.
Kenning, Tyler J; Pinheiro-Neto, Carlos D
2018-04-01
The extended endoscopic endonasal approach can be utilized to surgically treat pathology within the suprasellar space. This relies on a sufficient corridor and interval between the superior aspect of the pituitary gland and the optic chiasm. Tumors located in the retrochiasmatic space and within the third ventricle, however, may not have a widened interval through which to work. With mass effect on the superior and posterior aspect of the optic chiasm, the corridor between the chiasm and the pituitary gland might even be further narrowed. This may negate the possibility of utilizing the endoscopic endonasal approach for the management of pathology in this location. We present a case of a retrochiasmatic craniopharyngioma with a narrow resection corridor that was treated with the extended endoscopic approach and we review techniques to potentially overcome this limitation. The link to the video can be found at: https://youtu.be/ogRZj-aBqeQ .
Intra-Chip Free-Space Optical Interconnect: System, Device, Integration and Prototyping
NASA Astrophysics Data System (ADS)
Ciftcioglu, Berkehan
Currently, on-chip optical interconnect schemes already proposed utilize circuit switching using wavelength division multiplexing (WDM) or all-optical packet switching, all based on planar optical waveguides and related photonic devices such as microrings. These proposed approaches pose significant challenges in latency, energy efficiency, integration, and scalability. This thesis presents a new alternative approach by utilizing free-space optics. This 3-D integrated intra-chip free-space optical interconnect (FSOI) leverages mature photonic devices such as integrated lasers, photodiodes, microlenses and mirrors. It takes full advantages of the latest developments in 3-D integration technologies. This interconnect system provides point-to-point free-space optical links between any two communication nodes to construct an all-to-all intra-chip communication network with little or no arbitration. Therefore, it has significant networking advantages over conventional electrical and waveguide-based optical interconnects. An FSOI system is evaluated based on the real device parameters, predictive technology models and International Roadmap of Semiconductor's predictions. A single FSOI link achieves 10-Gbps data rate with 0.5-pJ/bit energy efficiency and less than 10--12 bit-error-rate (BER). A system using this individual link can provide scalability up to 36 nodes, providing 10-Tbps aggregate bandwidth. A comparison analysis performed between a WDM-based waveguide interconnect system and the proposed FSOI system shows that FSOI achieves better energy efficiency than the WDM one as the technology scales. Similarly, network simulation on a 16-core microprocessor using the proposed FSOI system instead of mesh networks has been shown to speed up the system by 12% and reduce the energy consumption by 33%. As a part of the development of a 3-D integrated FSOI system, operating at 850 nm with a 10-Gbps data rate per optical link, the photonics devices and optical components are individually designed and fabricated. The photodiodes (PDs) are designed to have large area for efficient light coupling and low capacitance to achieve large bandwidth, while achieving reasonably high responsivity. A metal-semiconductor-metal (MSM) structure is chosen over p-i-n ones to reduce parasitic capacitance per area, to allow less stringent microlens-to-PD alignment for efficient light coupling with a large bandwidth. A novel MSM germanium PD is implemented using an amorphous silicon (a-Si) layer on top of the undoped germanium substrate, serving as a barrier enhancement layer, mitigating the low Schottky barrier height for holes due to fermi level pinning and a surface passivation layer, preventing charge accumulation and image force lowering of the barrier. Therefore, the dark current is reduced and low-frequency gain is eliminated. The PDs achieve a 13-GHz bandwidth with a 0.315-A/W responsivity and a 1.7-nAmum² dark current density. The microlenses are fabricated on a fused silica substrate based on the photoresist melt-and-reflow technique, followed by dry etching into fused silica substrate. The measured focal length of a 220-mum aperture size microlens is 350-mum away from the backside of the substrate. The vertical-cavity surface-emitting lasers (VCSELs) are fabricated on a commercial molecular beam epitaxially (MBE) grown GaAs wafer. The fabricated 8-mum aperture size VCSEL can achieve 0.65-mW optical power at a 1.5-mA forward bias current with a threshold current of 0.48 mA and a 0.67-A/W slope efficiency. Three prototypes are implemented via integrating the individually fabricated components using non-conductive epoxy and wirebonding. The first prototype, built on a printed circuit board (PCB) using commercial VCSEL arrays, achieves a 5-dB transmission loss and less than -30-dB crosstalk at 1-cm distance with a small-signal bandwidth of 10 GHz, limited by the VCSEL. The second board-level prototype uses all fabricated components integrated on a PCB. The prototype achieves a 9-dB transmission loss at 3-cm distance and a 4.4-GHz bandwidth. The chip-level prototype is built on a germanium carrier with integrated MSM Ge PDs, microlenses on fused silica and VCSEL chip on GaAs substrates. The prototype achieves 4-dB transmission loss at 1 cm and 3.3-GHz bandwidth, limited by commercial VCSEL bandwidth. (Abstract shortened by UMI.)
Line of sight pointing technology for laser communication system between aircrafts
NASA Astrophysics Data System (ADS)
Zhao, Xin; Liu, Yunqing; Song, Yansong
2017-12-01
In space optical communications, it is important to obtain the most efficient performance of line of sight (LOS) pointing system. The errors of position (latitude, longitude, and altitude), attitude angles (pitch, yaw, and roll), and installation angle among a different coordinates system are usually ineluctable when assembling and running an aircraft optical communication terminal. These errors would lead to pointing errors and make it difficult for the LOS system to point to its terminal to establish a communication link. The LOS pointing technology of an aircraft optical communication system has been researched using a transformation matrix between the coordinate systems of two aircraft terminals. A method of LOS calibration has been proposed to reduce the pointing error. In a flight test, a successful 144-km link was established between two aircrafts. The position and attitude angles of the aircraft have been obtained to calculate the pointing angle in azimuth and elevation provided by using a double-antenna GPS/INS system. The size of the field of uncertainty (FOU) and the pointing accuracy are analyzed based on error theory, and it has been also measured using an observation camera installed next to the optical LOS. Our results show that the FOU of aircraft optical communications is 10 mrad without a filter, which is the foundation to acquisition strategy and scanning time.
First Experimental Demonstration of Full-Duplex Optical Communication on a Single Beam
NASA Technical Reports Server (NTRS)
Garrett, Christopher David; Shay, Thomas
2001-01-01
The satellite industry is driven by the need to reduce costs. One way they have sought to do this is by reducing the size and weight of the satellite because of the extremely high cost per kilogram incurred launching a payload into orbit. The main difficulty in this approach is the lack of power capacity in a small satellite. One of the largest loads on a satellite's power system is the communications system. This has driven the need for a low-power communications system. This document examines a novel method of communicating optically with a low-Earth-orbit satellite from the ground without the need for a laser on the payload. The goal is to show the feasibility of such a system as a solution to the small satellite low-powered communication problem. Specially, that the system described herein: is capable of ground to low-Earth-orbit communications, has very little space-borne mass, and draws little power from the satellite. First, the system (hereafter referred to as LOWCAL "Lightweight Optical Wavelength Communication without A Laser in space") will be explained with details of the formats used and the link budgets. Discussions will be presented on the development of some of the system hardware (the laser diode driver, liquid crystal driver, and decision electronics for both the up and down links.) Finally, experimental test results of the entire system operating in a laboratory environment are presented and compared to theory. The results of the laboratory experiment support the original thesis: retro-modulated optical communications can meet the needs of the small satellite community. The system is capable of 10-kbps communication, has low space-borne mass, and draws little power from the satellite (less than 100-mW measured for the laboratory experiment, less than 1.5-W calculated for the Shuttle experiment).
Guan, Binbin; Scott, Ryan P; Qin, Chuan; Fontaine, Nicolas K; Su, Tiehui; Ferrari, Carlo; Cappuzzo, Mark; Klemens, Fred; Keller, Bob; Earnshaw, Mark; Yoo, S J B
2014-01-13
We demonstrate free-space space-division-multiplexing (SDM) with 15 orbital angular momentum (OAM) states using a three-dimensional (3D) photonic integrated circuit (PIC). The hybrid device consists of a silica planar lightwave circuit (PLC) coupled to a 3D waveguide circuit to multiplex/demultiplex OAM states. The low excess loss hybrid device is used in individual and two simultaneous OAM states multiplexing and demultiplexing link experiments with a 20 Gb/s, 1.67 b/s/Hz quadrature phase shift keyed (QPSK) signal, which shows error-free performance for 379,960 tested bits for all OAM states.
Integrated InP frequency discriminator for Phase-modulated microwave photonic links.
Fandiño, J S; Doménech, J D; Muñoz, P; Capmany, J
2013-02-11
We report the design, fabrication and characterization of an integrated frequency discriminator on InP technology for microwave photonic phase modulated links. The optical chip is, to the best of our knowledge, the first reported in an active platform and the first to include the optical detectors. The discriminator, designed as a linear filter in intensity, features preliminary SFDR values the range between 67 and 79 dB.Hz(2/3) for signal frequencies in the range of 5-9 GHz limited, in principle, by the high value of the optical losses arising from the use of several free space coupling devices in our experimental setup. As discussed, these losses can be readily reduced by the use of integrated spot-size converters improving the SFDR by 17.3 dB (84-96 dB.Hz(2/3)). Further increase up to a range of (104-116 dB.Hz(2/3)) is possible by reducing the system noise eliminating the EDFA employed in the setup and using a commercially available laser source providing higher output power and lower relative intensity noise. Other paths for improvement requiring a filter redesign to be linear in the optical field are also discussed.
Engineering planetary lasers for interstellar communication. M.S. Thesis
NASA Technical Reports Server (NTRS)
Sherwood, Brent
1988-01-01
Transmitting large amounts of data efficiently among neighboring stars will vitally support any eventual contact with extrasolar intelligence, whether alien or human. Laser carriers are particularly suitable for high-quality, targeted links. Space laser transmitter systems designed by this work, based on both demonstrated and imminent advanced space technology, could achieve reliable data transfer rates as high as 1 kb/s to matched receivers as far away as 25 pc, a distance including over 700 approximately solar-type stars. The centerpiece of this demonstration study is a fleet of automated spacecraft incorporating adaptive neural-net optical processing active structures, nuclear electric power plants, annular momentum control devices, and ion propulsion. Together the craft sustain, condition, modulate, and direct to stellar targets an infrared laser beam extracted from the natural mesospheric, solar-pumped, stimulated CO2 emission recently discovered at Venus. For a culture already supported by mature interplanetary industry, the cost of building planetary or high-power space laser systems for interstellar communication would be marginal, making such projects relevant for the next human century. Links using high-power lasers might support data transfer rates as high as optical frequencies could ever allow. A nanotechnological society such as we might become would inevitably use 10 to the 20th power b/yr transmission to promote its own evolutionary expansion out of the galaxy.
ISS Fiber Optic Failure Investigation Root Cause Report
NASA Technical Reports Server (NTRS)
Leidecker, Henning; Plante, Jeannette
2000-01-01
In August of 1999, Boeing Corporation (Boeing) engineers began investigating failures of optical fiber being used on International Space Station flight hardware. Catastrophic failures of the fiber were linked to a defect in the glass fiber. Following several meetings of Boeing and NASA engineers and managers, Boeing created and led an investigation team, which examined the reliability of the cable installed in the U.S. Lab. NASA Goddard Space Flight Center's Components Technologies and Radiation Effects Branch (GSFC) led a team investigating the root cause of the failures. Information was gathered from: regular telecons and other communications with the investigation team, investigative trips to the cable distributor's plant, the cable manufacturing plant and the fiber manufacturing plant (including a review of build records), destructive and non-destructive testing, and expertise supplied by scientists from Dupont, and Lucent-Bell Laboratories. Several theories were established early on which were not able to completely address the destructive physical analysis and experiential evidence. Lucent suggested hydrofluoric acid (HF) etching of the glass and successfully duplicated the "rocket engine" defect. Strength testing coupled with examination of the low strength break sites linked features in the polyimide coating with latent defect sites. The information provided below explains what was learned about the susceptibility of the pre-cabled fiber to failure when cabled as it was for Space Station and the nature of the latent defects.
Robust Network Design - Connectivity and Beyond
2015-01-15
utilize a heterogeneous set of physical links (RF, Optical/Laser and SATCOM), for interconnecting a set of terrestrial, space and highly mobile airborne...design of mobility patterns of airborne platforms to provide stable operating conditions, the design of networks that enable graceful performance...research effort, Airborne Network research was primarily directed towards Mobile Ad-hoc Networks (MANET). From our experience in design and
Boluda-Ruiz, Rubén; García-Zambrana, Antonio; Castillo-Vázquez, Carmen; Castillo-Vázquez, Beatriz
2016-10-03
A novel accurate and useful approximation of the well-known Beckmann distribution is presented here, which is used to model generalized pointing errors in the context of free-space optical (FSO) communication systems. We derive an approximate closed-form probability density function (PDF) for the composite gamma-gamma (GG) atmospheric turbulence with the pointing error model using the proposed approximation of the Beckmann distribution, which is valid for most practical terrestrial FSO links. This approximation takes into account the effect of the beam width, different jitters for the elevation and the horizontal displacement and the simultaneous effect of nonzero boresight errors for each axis at the receiver plane. Additionally, the proposed approximation allows us to delimit two different FSO scenarios. The first of them is when atmospheric turbulence is the dominant effect in relation to generalized pointing errors, and the second one when generalized pointing error is the dominant effect in relation to atmospheric turbulence. The second FSO scenario has not been studied in-depth by the research community. Moreover, the accuracy of the method is measured both visually and quantitatively using curve-fitting metrics. Simulation results are further included to confirm the analytical results.
Brown, David M; Juarez, Juan C; Brown, Andrea M
2013-12-01
A laser differential image-motion monitor (DIMM) system was designed and constructed as part of a turbulence characterization suite during the DARPA free-space optical experimental network experiment (FOENEX) program. The developed link measurement system measures the atmospheric coherence length (r0), atmospheric scintillation, and power in the bucket for the 1550 nm band. DIMM measurements are made with two separate apertures coupled to a single InGaAs camera. The angle of arrival (AoA) for the wavefront at each aperture can be calculated based on focal spot movements imaged by the camera. By utilizing a single camera for the simultaneous measurement of the focal spots, the correlation of the variance in the AoA allows a straightforward computation of r0 as in traditional DIMM systems. Standard measurements of scintillation and power in the bucket are made with the same apertures by redirecting a percentage of the incoming signals to InGaAs detectors integrated with logarithmic amplifiers for high sensitivity and high dynamic range. By leveraging two, small apertures, the instrument forms a small size and weight configuration for mounting to actively tracking laser communication terminals for characterizing link performance.
Space Applications of Industrial Laser Systems (SAILS)
NASA Technical Reports Server (NTRS)
Mueller, Robert E.; McCay, T. Dwayne; McCay, Mary Helen; Bible, Brice
1992-01-01
A program is under way to develop a YAG laser based materials processing workstation to fly in the cargo bay of the Space Shuttle. The system will be capable of cutting and welding steel, aluminum and Inconel alloys of the type planned for use on the Space Station Freedom. As well as demonstrating the ability of a YAG laser to perform remote (fiber-optic delivered) repair and fabrication operations in space, fundamental data will be collected on these interactions for comparison with terrestrial data and models. The flight system, scheduled to fly in 1995, will be constructed as two modules to fit into standard Get Away Special (GAS) canisters. The first can holds the laser and its power supply, to be constructed by our industrial partner, Lumonics Industrial Processing Division. The second canister has the materials processing workstation and the command and data acquisition subsystems. These components will be provided by groups at UTSI and the University of Waterloo. The cans are linked by a fiber-optic cable which transmits the beam from the laser head to the workstation.
EAGLE: relay mirror technology development
NASA Astrophysics Data System (ADS)
Hartman, Mary; Restaino, Sergio R.; Baker, Jeffrey T.; Payne, Don M.; Bukley, Jerry W.
2002-06-01
EAGLE (Evolutionary Air & Space Global Laser Engagement) is the proposed high power weapon system with a high power laser source, a relay mirror constellation, and the necessary ground and communications links. The relay mirror itself will be a satellite composed of two optically-coupled telescopes/mirrors used to redirect laser energy from ground, air, or space based laser sources to distant points on the earth or space. The receiver telescope captures the incoming energy, relays it through an optical system that cleans up the beam, then a separate transmitter telescope/mirror redirects the laser energy at the desired target. Not only is it a key component in extending the range of DoD's current laser weapon systems, it also enables ancillary missions. Furthermore, if the vacuum of space is utilized, then the atmospheric effects on the laser beam propagation will be greatly attenuated. Finally, several critical technologies are being developed to make the EAGLE/Relay Mirror concept a reality, and the Relay Mirror Technology Development Program was set up to address them. This paper will discuss each critical technology, the current state of the work, and the future implications of this program.
Wang, Qiang; Tan, Liying; Ma, Jing; Yu, Siyuan; Jiang, Yijun
2012-01-16
Satellite platform vibration causes the misalignment between incident direction of the beacon and optical axis of the satellite optical communication system, which also leads to the instability of the laser link and reduces the precision of the system. So how to simulate the satellite platform vibration is a very important work in the ground test of satellite optical communication systems. In general, a vibration device is used for simulating the satellite platform vibration, but the simulation effect is not ideal because of the limited randomness. An approach is reasonable, which uses a natural random process for simulating the satellite platform vibration. In this paper, we discuss feasibility of the concept that the effect of angle of arrival fluctuation is taken as an effective simulation of satellite platform vibration in the ground test of the satellite optical communication system. Spectrum characteristic of satellite platform vibration is introduced, referring to the model used by the European Space Agency (ESA) in the SILEX program and that given by National Aeronautics and Space Development Agency (NASDA) of Japan. Spectrum characteristic of angle of arrival fluctuation is analyzed based on the measured data from an 11.16km bi-directional free space laser transmission experiment. Spectrum characteristic of these two effects is compared. The results show that spectra of these two effects have similar variation trend with the variation of frequency and feasibility of the concept is proved by the comparison results. At last the procedure of this method is proposed, which uses the power spectra of angle of arrival fluctuation to simulate that of the satellite platform vibration. The new approach is good for the ground test of satellite optical communication systems.
Design and analysis study of a spacecraft optical transceiver package
NASA Technical Reports Server (NTRS)
Lambert, S. G.
1985-01-01
A detailed system level design of an Optical Transceiver Package (OPTRANSPAC) for a deep space vehicle whose mission is outer planet exploration is developed. In addition to the terminal design, this study provides estimates of the dynamic environments to be encountered by the transceiver throughout its mission life. Optical communication link analysis, optical thin lens design, electronic functional design and mechanical layout and packaging are employed in the terminal design. Results of the study describe an Optical Transceiver Package capable of communicating to an Earth Orbiting Relay Station at a distance of 10 Astronomical Units (AU) and data rates up to 100 KBPS. The transceiver is also capable of receiving 1 KBPS of command data from the Earth Relay. The physical dimensions of the terminal are contained within a 3.5' x 1.5' x 2.0' envelope and the transceiver weight and power are estimated at 52.2 Kg (115 pounds) and 57 watts, respectively.
SpaceFibre: The Standard and the Multi-Lane Layer
NASA Astrophysics Data System (ADS)
Parkes, Steve; McClements, Chris; McLaren, David; Florit, Albert Ferrer; Gonzalez Villafranca, Alberto
2016-08-01
SpaceFibre is a new standard for spacecraft on-board data-handling networks, initially designed to deliver multi-Gbit/s data rates for synthetic aperture radar and high-resolution, multi-spectral imaging instruments, The addition of quality of service (QoS) and fault detection, isolation and recovery (FDIR) capabilities to SpaceFibre has resulted in a unified network technology. SpaceFibre provides high bandwidth, low latency, fault isolation and recovery suitable for space applications, and novel QoS that combines priority, bandwidth reservation and scheduling and which provides babbling node protection. SpaceFibre is backwards compatible with the widely used SpaceWire standard at the network level allowing simple interconnection of existing SpaceWire equipment to a SpaceFibre link or network.Developed by STAR-Dundee and the University of Dundee for the European Space Agency (ESA) SpaceFibre is able to operate over fibre-optic and electrical cable. A single lane of SpaceFibre comprises four signals (TX+/- and RX+/-) and supports data rates of 2 Gbits/s (2.5 Gbits/s data signalling rate) with data rates up to 5 Gbits/s already planned.Several lanes can operate together to provide a multi- lane link. Multi-laning increases the data-rate to well over 20 Gbits/s.This paper details the current state of SpaceFibre which is now in the process of formal standardisation by the European Cooperation for Space Standardization (ECSS). The multi-lane layer of SpaceFibre is then described.
Self-starting harmonic frequency comb generation in a quantum cascade laser
NASA Astrophysics Data System (ADS)
Kazakov, Dmitry; Piccardo, Marco; Wang, Yongrui; Chevalier, Paul; Mansuripur, Tobias S.; Xie, Feng; Zah, Chung-en; Lascola, Kevin; Belyanin, Alexey; Capasso, Federico
2017-12-01
Optical frequency combs1,2 establish a rigid phase-coherent link between microwave and optical domains and are emerging as high-precision tools in an increasing number of applications3. Frequency combs with large intermodal spacing are employed in the field of microwave photonics for radiofrequency arbitrary waveform synthesis4,5 and for the generation of terahertz tones of high spectral purity in future wireless communication networks6,7. Here, we demonstrate self-starting harmonic frequency comb generation with a terahertz repetition rate in a quantum cascade laser. The large intermodal spacing caused by the suppression of tens of adjacent cavity modes originates from a parametric contribution to the gain due to temporal modulations of population inversion in the laser8,9. Using multiheterodyne self-detection, the mode spacing of the harmonic comb is shown to be uniform to within 5 × 10-12 parts of the central frequency. This new harmonic comb state extends the range of applications of quantum cascade laser frequency combs10-13.
Commercial Production of Heavy Metal Fluoride Glass Fiber in Space
NASA Technical Reports Server (NTRS)
Tucker, Dennis S.; Workman, Gary L.; Smith, Guy A.
1998-01-01
International Space Station Alpha (ISSA) will provide a platform not only for materials research but also a possible means to produce products in space which cannot be easily produced on the ground. Some products may even be superior to those now produced in unit gravity due to the lack of gravity induced convection effects. Our research with ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN glass) has shown that gravity does indeed play a major role in the crystallization behavior of this material. At the present time ZBLAN is being produced on earth in fiber optic form for use in surgical lasers and fiber optic lasers among other applications. High attenuation coefficients, however, have kept this material from being used in other applications such as long haul data transmission links. The high attenuation coefficients are due to impurities which can be removed through improved processing techniques and crystals which can only be removed or prevented from forming by processing in a reduced gravity environment.
NASA Astrophysics Data System (ADS)
Ma, Jing; Fu, Yulong; Tan, Liying; Yu, Siyuan; Xie, Xiaolong
2018-05-01
Spatial diversity as an effective technique to mitigate the turbulence fading has been widely utilized in free space optical (FSO) communication systems. The received signals, however, will suffer from channel correlation due to insufficient spacing between component antennas. In this paper, the new expressions of the channel correlation coefficient and specifically its components (the large- and small-scale channel correlation coefficients) for a plane wave with aperture effects are derived for horizontal link in moderate-to-strong turbulence, using a non-Kolmogorov spectrum that has a generalized power law in the range of 3-4 instead of the fixed classical Kolmogorov power law of 11/3. And then the influence of power law variations on the channel correlation coefficient and its components are analysed. The numerical results indicated that various value of the power law lead to varying effects on the channel correlation coefficient and its components. This work will help with the further investigation on the fading correlation in spatial diversity systems.
NASA Technical Reports Server (NTRS)
Lestrade, J.-F.; Preston, R. A.; Slade, M. A.
1983-01-01
The concept of typing the Hipparcos optical and the JPL VLBI frames of reference by means of VLBI measurements of the positions and proper motions of the radio components of some bright stars is considered. The properties of the thermal and non-thermal radio-stars are discussed and 22 candidate stars are selected to achieve this tie. A description is given of the first VLBI attempt to detect these stars on the intercontinental baselines of the Deep Space Network with the Mark II recording system.
Chip-to-chip optical link by using optical wiring method
NASA Astrophysics Data System (ADS)
Cho, In-Kui; Ahn, Seoung Ho; Jeong, Myung-Yung; Rho, Byung Sup; Park, Hyo Hoon
2008-01-01
A practical optical link system was prepared with a transmitter (Tx) and receiver (Rx). The optical TRx module consisted of a metal optical bench, a module printed circuit board (PCB), a driver/receiver IC, a VCSEL/PD array, and an optical link block composed of plastic optical fiber (POF). For the optical interconnection between the light-sources and detectors, an optical wiring method has been proposed to enable easy assembly. This paper provides a method for optical interconnection between an optical Tx and an optical Rx, comprising the following steps: (a) forming a light source device, an optical detection device, and an optical transmission unit on a substrate (metal optical bench (MOB)); (b) preparing a flexible optical transmission-connection medium (optical wiring link) to optically connect the light source device formed on the substrate with the optical detection device; and (c) directly connecting one end of the surface-finished optical transmission connection medium with the light source device and the other end with the optical detection device. A chip-to-chip optical link system constructed with TRx modules was fabricated and the optical characteristics were measured. The results clearly demonstrate that the use of an optical wiring method can provide robust and cost-effective assembly for vertical-cavity surface-emitting lasers (VCSELs) and photodiodes (PDs). We successfully achieved a 5 Gb/s data transmission rate with this optical link.
Optical coherence tomography in the diagnosis of juvenile X-linked retinoschisis.
Eriksson, Urban; Larsson, Eva; Holmström, Gerd
2004-04-01
To describe the value of optical coherence tomography (OCT) as a diagnostic tool in the diagnosis of X-linked retinoschisis. We report three boys aged between 8 and 17 years, diagnosed with X-linked retinoschisis. During investigations they were examined with OCT (Zeiss Humphrey OCT 1, upgraded version). Single scans of the central posterior pole and the region around the vascular arcades were obtained. Two of the boys underwent full-field ERG according to ISCEV standards. Genetic analysis was performed in all three boys, with sequencing of the XLRS gene. The OCT results revealed a pattern with a cleavage of the retina in two distinct planes, one deep (outer retina) and one superficial. This was very obvious in one patient and a similar but not as pronounced pattern was seen in the other two cases. The two layers were superficially connected with thin-walled, vertical palisades, separated by low reflective, cystoid spaces, confluent and most prominent in the foveal region. Full-field ERG and/or DNA analysis are well known methods used for diagnosis of X-linked juvenile retinoschisis. In this paper, we suggest that OCT can also be a helpful diagnostic tool.
Novel laser communications transceiver with internal gimbal-less pointing and tracking
NASA Astrophysics Data System (ADS)
Chalfant, Charles H., III; Orlando, Fred J., Jr.; Gregory, Jeff T.; Sulham, Clifford; O'Neal, Chad B.; Taylor, Geoffrey W.; Craig, Douglas M.; Foshee, James J.; Lovett, J. Timothy
2002-12-01
This paper describes a novel laser communications transceiver for use in multi-platform satellite networks or clusters that provides internal pointing and tracking technique allowing static mounting of the transceiver subsystems and minimal use of mechanical stabilization techniques. This eliminates the need for the large, power hungry, mechanical gimbals that are required for laser cross-link pointing, acquisition and tracking. The miniature transceiver is designed for pointing accuracies required for satellite cross-link distances of between 500 meters to 5000 meters. Specifically, the designs are targeting Air Force Research Lab's TechSat21 Program, although alternative transceiver configurations can provide for much greater link distances and other satellite systems. The receiver and transmitter are connected via fiber optic cabling from a separate electronics subsystem containing the optoelectronics PCBs, thereby eliminating active optoelectronic elements from the transceiver's mechanical housing. The internal acquisition and tracking capability is provided by an advanced micro-electro-mechanical system (MEMS) and an optical design that provides a specific field-of-view based on the satellite cluster's interface specifications. The acquisition & tracking control electronics will utilize conventional closed loop tracking techniques. The link optical power budget and optoelectronics designs allow use of transmitter sources with output powers of near 100 mW. The transceiver will provide data rates of up to 2.5 Gbps and operate at either 1310 nm or 1550 nm. In addition to space-based satellite to satellite cross-links, we are planning to develop a broad range of applications including air to air communications between highly mobile airborne platforms and terrestrial fixed point to point communications.
NASA Astrophysics Data System (ADS)
Anguita, Jaime A.; Neifeld, Mark A.; Vasic, Bane V.
2008-05-01
A multichannel free-space optical (FSO) communication system based on orbital angular momentum (OAM)-carrying beams is studied. We numerically analyze the effects of atmospheric turbulence on the system and find that turbulence induces attenuation and crosstalk among channels. Based on a model in which the constituent channels are binary symmetric and crosstalk is a Gaussian noise source, we find optimal sets of OAM states at each turbulence condition studied and determine the aggregate capacity of the multichannel system at those conditions. OAM-multiplexed FSO systems that operate in the weak turbulence regime are found to offer good performance. We verify that the aggregate capacity decreases as the turbulence increases. A per-channel bit-error rate evaluation is presented to show the uneven effects of crosstalk on the constituent channels.
Differential phase-shift keying and channel equalization in free space optical communication system
NASA Astrophysics Data System (ADS)
Zhang, Dai; Hao, Shiqi; Zhao, Qingsong; Wan, Xiongfeng; Xu, Chenlu
2018-01-01
We present the performance benefits of differential phase-shift keying (DPSK) modulation in eliminating influence from atmospheric turbulence, especially for coherent free space optical (FSO) communication with a high communication rate. Analytic expression of detected signal is derived, based on which, homodyne detection efficiency is calculated to indicate the performance of wavefront compensation. Considered laser pulses always suffer from atmospheric scattering effect by clouds, intersymbol interference (ISI) in high-speed FSO communication link is analyzed. Correspondingly, the channel equalization method of a binormalized modified constant modulus algorithm based on set-membership filtering (SM-BNMCMA) is proposed to solve the ISI problem. Finally, through the comparison with existing channel equalization methods, its performance benefits of both ISI elimination and convergence speed are verified. The research findings have theoretical significance in a high-speed FSO communication system.
A 4-channel coil array interconnection by analog direct modulation optical link for 1.5-T MRI.
Yuan, Jing; Wei, Juan; Shen, Gary X
2008-10-01
Optical glass fiber shows great advantages over coaxial cables in terms of electromagnetic interference, thus, it should be considered a potential alternative for magnetic resonance imaging (MRI) receive coil interconnection, especially for a large number coil array at high field. In this paper, we propose a 4-channel analog direct modulation optical link for a 1.5-T MRI coil array interconnection. First, a general direct modulated optical link is compared to an external modulated optical link. And then the link performances of the proposed direct modulated optical link, including power gain, frequency response, and dynamic range, are analyzed and measured. Phantom and in vivo head images obtained using this optical link are demonstrated for comparison with those obtained by cable connections. The signal-to-noise (SNR) analysis shows that the optical link achieves 6%-8% SNR a improvement over coaxial cables by elimination of electrical interference between cables during MR signal transmission.
NASA Astrophysics Data System (ADS)
Vu, Minh Q.; Nguyen, Nga T. T.; Pham, Hien T. T.; Dang, Ngoc T.
2018-03-01
High-altitude platforms (HAPs) are flexible, non-pollutant and cost-effective infrastructures compared to satellite or old terrestrial systems. They are being researched and developed widely in Europe, USA, Japan, Korea, and so on. However, the current limited data rates and the overload of radio frequency (RF) spectrum are problems which the developers for HAPs are confronting because most of them use RF links to communicate with the ground stations (GSs) or each other. In this paper, we propose an all-optical two-way half-duplex relaying free-space optical (FSO) communication for HAP-based backhaul networks, which connect the base transceiver station (BTS) to the core network (CN) via a single HAP. Our proposed backhaul solution can be deployed quickly and flexibly for disaster relief and for serving users in both urban environments and remote areas. The key subsystem of HAP is an optical regenerate-and-forward (ORF) equipped with an optical hard-limiter (OHL) and an optical XOR gate to perform all-optical processing and help mitigate the background noise. In addition, two-way half-duplex relaying can be provided thanks to the use of network coding scheme. The closed-form expression for the bit error rate (BER) of our proposed system under the effect of path loss, atmospheric turbulence, and noise induced by the background light is formulated. The numerical results are demonstrated to prove the feasibility of our proposed system with the verification by using Monte-Carlo (M-C) simulations.
NASA Astrophysics Data System (ADS)
Mazher, Wamidh Jalil; Ibrahim, Hadeel T.; Ucan, Osman N.; Bayat, Oguz
2018-03-01
This paper aims to design a drone swarm network by employing free-space optical (FSO) communication for detecting and deep decision making of topological problems (e.g., oil pipeline leak), where deep decision making requires the highest image resolution. Drones have been widely used for monitoring and detecting problems in industrial applications during which the drone sends images from the on-air camera video stream using radio frequency (RF) signals. To obtain higher-resolution images, higher bandwidth (BW) is required. The current study proposed the use of the FSO communication system to facilitate higher BW for higher image resolution. Moreover, the number of drones required to survey a large physical area exceeded the capabilities of RF technologies. Our configuration of the drones is V-shaped swarm with one leading drone called mother drone (DM). The optical decode-and-forward (DF) technique is used to send the optical payloads of all drones in V-shaped swarm to the single ground station through DM. Furthermore, it is found that the transmitted optical power (Pt) is required for each drone based on the threshold outage probability of FSO link failure among the onboard optical-DF drones. The bit error rate of optical payload is calculated based on optical-DF onboard processing. Finally, the number of drones required for different image resolutions based on the size of the considered topological area is optimized.
Singular trajectories: space-time domain topology of developing speckle fields
NASA Astrophysics Data System (ADS)
Vasil'ev, Vasiliy; Soskin, Marat S.
2010-02-01
It is shown the space-time dynamics of optical singularities is fully described by singularities trajectories in space-time domain, or evolution of transverse coordinates(x, y) in some fixed plane z0. The dynamics of generic developing speckle fields was realized experimentally by laser induced scattering in LiNbO3:Fe photorefractive crystal. The space-time trajectories of singularities can be divided topologically on two classes with essentially different scenario and duration. Some of them (direct topological reactions) consist from nucleation of singularities pair at some (x, y, z0, t) point, their movement and annihilation. They possess form of closed loops with relatively short time of existence. Another much more probable class of trajectories are chain topological reactions. Each of them consists from sequence of links, i.e. of singularities nucleation in various points (xi yi, ti) and following annihilation of both singularities in other space-time points with alien singularities of opposite topological indices. Their topology and properties are established. Chain topological reactions can stop on the borders of a developing speckle field or go to infinity. Examples of measured both types of topological reactions for optical vortices (polarization C points) in scalar (elliptically polarized) natural developing speckle fields are presented.
NASA Astrophysics Data System (ADS)
Gupta, Amit; Nagpal, Shaina
2017-05-01
Inter-satellite optical wireless communication (IsOWC) systems can be chosen over existing microwave satellite systems for deploying in space in the future due to their high bandwidth, small size, light weight, low power and low cost. However, the IsOWC system suffers from various attenuations due to weather conditions, turbulence or scintillations which limit its performance and decreases its availability. So, in order to improve the performance, IsOWC system using directly modulated laser source is proposed in this work. The system is designed and evaluated to be suitable for high data rate transmissions up to 10 Gbps. The performance of the system is investigated in order to reduce the cost and complexity of link and improving the quality of information signal. Further the proposed IsOWC system is analysed using BER analyser, power meter and oscilloscope Visualizer.
Critical issues in assuring long lifetime and fail-safe operation of optical communications network
NASA Astrophysics Data System (ADS)
Paul, Dilip K.
1993-09-01
Major factors in assuring long lifetime and fail-safe operation in optical communications networks are reviewed in this paper. Reliable functionality to design specifications, complexity of implementation, and cost are the most critical issues. As economics is the driving force to set the goals as well as priorities for the design, development, safe operation, and maintenance schedules of reliable networks, a balance is sought between the degree of reliability enhancement, cost, and acceptable outage of services. Protecting both the link and the network with high reliability components, hardware duplication, and diversity routing can ensure the best network availability. Case examples include both fiber optic and lasercom systems. Also, the state-of-the-art reliability of photonics in space environment is presented.
Multi-link laser interferometer architecture for a next generation GRACE
NASA Astrophysics Data System (ADS)
Francis, Samuel Peter
When GRACE Follow-On (GRACE-FO) launches, it will be the first time a laser interferometer has been used to measure displacement between spacecraft. In the future, interspacecraft laser interferometry will be used in LISA, a space-based gravitational wave detector, that requires the change in separation between three spacecraft to be measured with a resolution of 1 pm/rtHz. The sensitivity of an interspacecraft interferometer is potentially limited by spacecraft degrees-of-freedom, such as rotation, coupling into the interspacecraft displacement measurement. GRACE-FO and LISA therefore have strict requirements placed on the positioning and alignment of the interferometers during spacecraft integration. Decades of work has gone into adapting traditionally lab-based techniques for these space applications. As an example, GRACE-FO stops rotation of the two spacecraft from coupling into displacement using the triple mirror assembly. The triple mirror assembly is a precision optic, comprised of three mirrors, that function as a retroreflector. Provided the triple mirror assembly vertex coincides with the spacecraft centre of mass, any spacecraft rotation will asymmetrically lengthen and shorten the optical pathlengths of the incoming and outgoing beams, ensuring that the round trip pathlength between the spacecraft is unaffected. To achieve the required displacement sensitivity, the triple mirror assembly vertex must be positioned within 0.5 mm of the spacecraft centre of mass, making spacecraft integration challenging. In this thesis a new, all-fibre interferometer architecture is presented that aims to simplify the positioning and alignment of space-based interferometers. Using multiple interspacecraft link measurements and high-speed signal processing the interspacecraft displacement is synthesised in post-processing. The multi-link interferometry concept is similar to the triple mirror assembly's symmetric suppression of rotation, however, since the rotation-to-pathlength cancellation is performed in post-processing, the weighting of each interspacecraft link measurement can be optimised to completely cancel any rotation coupled error. Consequently, any uncertainty in the positioning of the multi-link interferometer during spacecraft integration can be corrected for in post-processing. The strict hardware integration requirements of current interferometers can therefore be relaxed, enabling a new class of simpler, cheaper missions. (Abstract shortened by ProQuest.).
Multiplexing of spatial modes in the mid-IR region
NASA Astrophysics Data System (ADS)
Gailele, Lucas; Maweza, Loyiso; Dudley, Angela; Ndagano, Bienvenu; Rosales-Guzman, Carmelo; Forbes, Andrew
2017-02-01
Traditional optical communication systems optimize multiplexing in polarization and wavelength both trans- mitted in fiber and free-space to attain high bandwidth data communication. Yet despite these technologies, we are expected to reach a bandwidth ceiling in the near future. Communications using orbital angular momentum (OAM) carrying modes offers infinite dimensional states, providing means to increase link capacity by multiplexing spatially overlapping modes in both the azimuthal and radial degrees of freedom. OAM modes are multiplexed and de-multiplexed by the use of spatial light modulators (SLM). Implementation of complex amplitude modulation is employed on laser beams phase and amplitude to generate Laguerre-Gaussian (LG) modes. Modal decomposition is employed to detect these modes due to their orthogonality as they propagate in space. We demonstrate data transfer by sending images as a proof-of concept in a lab-based scheme. We demonstrate the creation and detection of OAM modes in the mid-IR region as a precursor to a mid-IR free-space communication link.
Ultra-stable clock laser system development towards space applications.
Świerad, Dariusz; Häfner, Sebastian; Vogt, Stefan; Venon, Bertrand; Holleville, David; Bize, Sébastien; Kulosa, André; Bode, Sebastian; Singh, Yeshpal; Bongs, Kai; Rasel, Ernst Maria; Lodewyck, Jérôme; Le Targat, Rodolphe; Lisdat, Christian; Sterr, Uwe
2016-09-26
The increasing performance of optical lattice clocks has made them attractive for scientific applications in space and thus has pushed the development of their components including the interrogation lasers of the clock transitions towards being suitable for space, which amongst others requires making them more power efficient, radiation hardened, smaller, lighter as well as more mechanically stable. Here we present the development towards a space-compatible interrogation laser system for a strontium lattice clock constructed within the Space Optical Clock (SOC2) project where we have concentrated on mechanical rigidity and size. The laser reaches a fractional frequency instability of 7.9 × 10 -16 at 300 ms averaging time. The laser system uses a single extended cavity diode laser that gives enough power for interrogating the atoms, frequency comparison by a frequency comb and diagnostics. It includes fibre link stabilisation to the atomic package and to the comb. The optics module containing the laser has dimensions 60 × 45 × 8 cm 3 ; and the ultra-stable reference cavity used for frequency stabilisation with its vacuum system takes 30 × 30 × 30 cm 3 . The acceleration sensitivities in three orthogonal directions of the cavity are 3.6 × 10 -10 /g, 5.8 × 10 -10 /g and 3.1 × 10 -10 /g, where g ≈ 9.8 m/s 2 is the standard gravitational acceleration.
Tellez, Jason A; Schmidt, Jason D
2011-08-20
The propagation of a free-space optical communications signal through atmospheric turbulence experiences random fluctuations in intensity, including signal fades, which negatively impact the performance of the communications link. The gamma-gamma probability density function is commonly used to model the scintillation of a single beam. One proposed method to reduce the occurrence of scintillation-induced fades at the receiver plane involves the use of multiple beams propagating through independent paths, resulting in a sum of independent gamma-gamma random variables. Recently an analytical model for the probability distribution of irradiance from the sum of multiple independent beams was developed. Because truly independent beams are practically impossible to create, we present here a more general but approximate model for the distribution of beams traveling through partially correlated paths. This model compares favorably with wave-optics simulations and highlights the reduced scintillation as the number of transmitted beams is increased. Additionally, a pulse-position modulation scheme is used to reduce the impact of signal fades when they occur. Analytical and simulated results showed significantly improved performance when compared to fixed threshold on/off keying. © 2011 Optical Society of America
Integrated optic single-ring filter for narrowband phase demodulation
NASA Astrophysics Data System (ADS)
Madsen, C. K.
2017-05-01
Integrated optic notch filters are key building blocks for higher-order spectral filter responses and have been demonstrated in many technology platforms from dielectrics (such as Si3N4) to semiconductors (Si photonics). Photonic-assisted RF processing applications for notch filters include identifying and filtering out high-amplitude, narrowband signals that may be interfering with the desired signal, including undesired frequencies detected in radar and free-space optical links. The fundamental tradeoffs for bandwidth and rejection depth as a function of the roundtrip loss and coupling coefficient are investigated along with the resulting spectral phase response for minimum-phase and maximum-phase responses compared to the critical coupling condition and integration within a Mach Zehnder interferometer. Based on a full width at half maximum criterion, it is shown that maximum-phase responses offer the smallest bandwidths for a given roundtrip loss. Then, a new role for passive notch filters in combination with high-speed electro-optic phase modulation is explored around narrowband phase-to-amplitude demodulation using a single ring operating on one sideband. Applications may include microwave processing and instantaneous frequency measurement (IFM) for radar, space and defense applications.
NASA Astrophysics Data System (ADS)
Brown, Justin; Woolf, David; Hensley, Joel
2016-05-01
Quantum key distribution can provide secure optical data links using the established BB84 protocol, though solar backgrounds severely limit the performance through free space. Several approaches to reduce the solar background include time-gating the photon signal, limiting the field of view through geometrical design of the optical system, and spectral rejection using interference filters. Despite optimization of these parameters, the solar background continues to dominate under daytime atmospheric conditions. We demonstrate an improved spectral filter by replacing the interference filter (Δν ~ 50 GHz) with an atomic line filter (Δν ~ 1 GHz) based on optical rotation of linearly polarized light through a warm Rb vapor. By controlling the magnetic field and the optical depth of the vapor, a spectrally narrow region can be transmitted between crossed polarizers. We find that the transmission is more complex than a single peak and evaluate peak transmission as well as a ratio of peak transmission to average transmission of the local spectrum. We compare filters containing a natural abundance of Rb with those containing isotopically pure 87 Rb and 85 Rb. A filter providing > 95 % transmission and Δν ~ 1.1 GHz is achieved.
NASA Astrophysics Data System (ADS)
Zheng, Xuezhe; Marchand, Philippe J.; Huang, Dawei; Kibar, Osman; Ozkan, Nur S. E.; Esener, Sadik C.
1999-09-01
We present a proof of concept and a feasibility demonstration of a practical packaging approach in which free-space optical interconnects (FSOI s) can be integrated simply on electronic multichip modules (MCM s) for intra-MCM board interconnects. Our system-level packaging architecture is based on a modified folded 4 f imaging system that has been implemented with only off-the-shelf optics, conventional electronic packaging, and passive-assembly techniques to yield a potentially low-cost and manufacturable packaging solution. The prototypical system as built supports 48 independent FSOI channels with 8 separate laser and detector chips, for which each chip consists of a one-dimensional array of 12 devices. All the chips are assembled on a single substrate that consists of a printed circuit board or a ceramic MCM. Optical link channel efficiencies of greater than 90% and interchannel cross talk of less than 20 dB at low frequency have been measured. The system is compact at only 10 in. 3 (25.4 cm 3 ) and is scalable, as it can easily accommodate additional chips as well as two-dimensional optoelectronic device arrays for increased interconnection density.
Experimental FSO network availability estimation using interactive fog condition monitoring
NASA Astrophysics Data System (ADS)
Turán, Ján.; Ovseník, Łuboš
2016-12-01
Free Space Optics (FSO) is a license free Line of Sight (LOS) telecommunication technology which offers full duplex connectivity. FSO uses infrared beams of light to provide optical broadband connection and it can be installed literally in a few hours. Data rates go through from several hundreds of Mb/s to several Gb/s and range is from several 100 m up to several km. FSO link advantages: Easy connection establishment, License free communication, No excavation are needed, Highly secure and safe, Allows through window connectivity and single customer service and Compliments fiber by accelerating the first and last mile. FSO link disadvantages: Transmission media is air, Weather and climate dependence, Attenuation due to rain, snow and fog, Scattering of laser beam, Absorption of laser beam, Building motion and Air pollution. In this paper FSO availability evaluation is based on long term measured data from Fog sensor developed and installed at TUKE experimental FSO network in TUKE campus, Košice, Slovakia. Our FSO experimental network has three links with different physical distances between each FSO heads. Weather conditions have a tremendous impact on FSO operation in terms of FSO availability. FSO link availability is the percentage of time over a year that the FSO link will be operational. It is necessary to evaluate the climate and weather at the actual geographical location where FSO link is going to be mounted. It is important to determine the impact of a light scattering, absorption, turbulence and receiving optical power at the particular FSO link. Visibility has one of the most critical influences on the quality of an FSO optical transmission channel. FSO link availability is usually estimated using visibility information collected from nearby airport weather stations. Raw data from fog sensor (Fog Density, Relative Humidity, Temperature measured at each ms) are collected and processed by FSO Simulator software package developed at our Department. Based on FSO link data the FSO link and experimental FSO network availability was estimated for years from 2007 up to 2015. The average FSO network availability up to 98,3378 % was measured (for the BER 10-9). From the experimental data also Hybrid RF/FSO link availability was evaluated. As the weather conditions for FSO and RF link are complementary (FSO works well in rain and RF works well in fog) Hybrid FSO/RF system long time average availability was much better up to 99,9986 %.
Compensated Fiber-Optic Frequency Distribution Equipment
2010-11-01
fiber optic links have been developed and deployed, providing stability sufficient to transfer hydrogen maser-derived frequency references in intra...effectively compensate for the added noise and instability of an inter-facility fiber - optic frequency distribution link , it is important to understand the...dispersion (the variation in group velocity as a function of optical wavelength) may also affect the performance of the fiber optic link , when link
Lee, It Ee; Ghassemlooy, Zabih; Ng, Wai Pang; Khalighi, Mohammad-Ali; Liaw, Shien-Kuei
2016-01-01
Joint effects of aperture averaging and beam width on the performance of free-space optical communication links, under the impairments of atmospheric loss, turbulence, and pointing errors (PEs), are investigated from an information theory perspective. The propagation of a spatially partially coherent Gaussian-beam wave through a random turbulent medium is characterized, taking into account the diverging and focusing properties of the optical beam as well as the scintillation and beam wander effects. Results show that a noticeable improvement in the average channel capacity can be achieved with an enlarged receiver aperture in the moderate-to-strong turbulence regime, even without knowledge of the channel state information. In particular, it is observed that the optimum beam width can be reduced to improve the channel capacity, albeit the presence of scintillation and PEs, given that either one or both of these adverse effects are least dominant. We show that, under strong turbulence conditions, the beam width increases linearly with the Rytov variance for a relatively smaller PE loss but changes exponentially with steeper increments for higher PE losses. Our findings conclude that the optimal beam width is dependent on the combined effects of turbulence and PEs, and this parameter should be adjusted according to the varying atmospheric channel conditions. Therefore, we demonstrate that the maximum channel capacity is best achieved through the introduction of a larger receiver aperture and a beam-width optimization technique.
Optical techniques to feed and control GaAs MMIC modules for phased array antenna applications
NASA Astrophysics Data System (ADS)
Bhasin, K. B.; Anzic, G.; Kunath, R. R.; Connolly, D. J.
A complex signal distribution system is required to feed and control GaAs monolithic microwave integrated circuits (MMICs) for phased array antenna applications above 20 GHz. Each MMIC module will require one or more RF lines, one or more bias voltage lines, and digital lines to provide a minimum of 10 bits of combined phase and gain control information. In a closely spaced array, the routing of these multiple lines presents difficult topology problems as well as a high probability of signal interference. To overcome GaAs MMIC phased array signal distribution problems optical fibers interconnected to monolithically integrated optical components with GaAs MMIC array elements are proposed as a solution. System architecture considerations using optical fibers are described. The analog and digital optical links to respectively feed and control MMIC elements are analyzed. It is concluded that a fiber optic network will reduce weight and complexity, and increase reliability and performance, but higher power will be required.
Optical techniques to feed and control GaAs MMIC modules for phased array antenna applications
NASA Technical Reports Server (NTRS)
Bhasin, K. B.; Anzic, G.; Kunath, R. R.; Connolly, D. J.
1986-01-01
A complex signal distribution system is required to feed and control GaAs monolithic microwave integrated circuits (MMICs) for phased array antenna applications above 20 GHz. Each MMIC module will require one or more RF lines, one or more bias voltage lines, and digital lines to provide a minimum of 10 bits of combined phase and gain control information. In a closely spaced array, the routing of these multiple lines presents difficult topology problems as well as a high probability of signal interference. To overcome GaAs MMIC phased array signal distribution problems optical fibers interconnected to monolithically integrated optical components with GaAs MMIC array elements are proposed as a solution. System architecture considerations using optical fibers are described. The analog and digital optical links to respectively feed and control MMIC elements are analyzed. It is concluded that a fiber optic network will reduce weight and complexity, and increase reliability and performance, but higher power will be required.
Space station tracking requirements feasibility study, volume 2
NASA Technical Reports Server (NTRS)
Udalov, Sergei; Dodds, James
1988-01-01
The objective of this feasibility study is to determine analytically the accuracies of various sensors being considered as candidates for Space Station use. Specifically, the studies were performed whether or not the candidate sensors are capable of providing the required accuracy, or if alternate sensor approaches should be investigated. Other topics related to operation in the Space Station environment were considered as directed by NASA-JSC. The following topics are addressed: (1) Space Station GPS; (2) Space Station Radar; (3) Docking Sensors; (4) Space Station Link Analysis; (5) Antenna Switching, Power Control, and AGC Functions for Multiple Access; (6) Multichannel Modems; (7) FTS/EVA Emergency Shutdown; (8) Space Station Information Systems Coding; (9) Wanderer Study; and (10) Optical Communications System Analysis. Brief overviews of the abovementioned topics are given. Wherever applicable, the appropriate appendices provide detailed technical analysis. The report is presented in two volumes. This is Volume 2, containing Appendices K through U.
Space station tracking requirements feasibility study, volume 1
NASA Technical Reports Server (NTRS)
Udalov, Sergei; Dodds, James
1988-01-01
The objective of this feasibility study is to determine analytically the accuracies of various sensors being considered as candidates for Space Station use. Specifically, the studies were performed whether or not the candidate sensors are capable of providing the required accuracy, or if alternate sensor approaches be investigated. Other topics related to operation in the Space Station environment were considered as directed by NASA-JCS. The following topics are addressed: (1) Space Station GPS; (2) Space Station Radar; (3) Docking Sensors; (4) Space Station Link Analysis; (5) Antenna Switching, Power Control, and AGC Functions for Multiple Access; (6) Multichannel Modems; (7) FTS/EVA Emergency Shutdown; (8) Space Station Information Systems Coding; (9) Wanderer Study; and (10) Optical Communications System Analysis. Brief overviews of the abovementioned topics are given. Wherever applicable, the appropriate appendices provide detailed technical analysis. The report is presented in two volumes. This is Volume 1, containing the main body and Appendices A through J.
A direct modulated optical link for MRI RF receive coil interconnection.
Yuan, Jing; Wei, Juan; Shen, G X
2007-11-01
Optical glass fiber is a promising alternative to traditional coaxial cables for MRI RF receive coil interconnection to avoid any crosstalk and electromagnetic interference between multiple channels. A direct modulated optical link is proposed for MRI coil interconnection in this paper. The link performances of power gain, frequency response and dynamic range are measured. Phantom and in vivo human head images have been demonstrated by the connection of this direct modulated optical link to a head coil on a 0.3T MRI scanner for the first time. Comparable image qualities to coaxial cable link verify the feasibility of using the optical link for imaging with minor modification on the existing scanners. This optical link could also be easily extended for multi-channel array interconnections at high field of 1.5 T.
Debunking the recurring myth of a magic wavelength for free-space optics
NASA Astrophysics Data System (ADS)
Korevaar, Eric J.; Kim, Isaac I.; McArthur, Bruce
2002-12-01
Free-Space Optics (FSO) is a proven, reliable technology for last mile telecommunications applications, used worldwide for both enterprise network building-to-building connections and for wireless access to more traditional land line communications networks. In most mid-latitude coastal cities, link availability at distances above a few hundred meters is primarily affected by fog and low clouds. At longer distances, heavy rain and snow can also affect the link. The most mature technology used in FSO equipment relies on low cost semiconductor lasers or LED"s operating in the near infrared at wavelengths of 785 nm or 850 nm. In the past few years, systems operating at 1550 nm have also been developed. At first the vendors of these systems claimed that the 1550 nm wavelength had better propagation characteristics in severe weather than the 785 nm wavelength. With further analysis and research, those claims were withdrawn. Now there are claims that even longer wavelengths near 10 microns will solve the FSO link availability issues associated with severe weather. Hype about such magic wavelengths for FSO is both a disservice to the investors who will lose the money they are investing based on exaggerated claims, and to the rest of the FSO industry which should be creating realistic expectations for the capability of its equipment. In the weather conditions which normally cause the highest attenuation for FSO systems, namely coastal fog and low clouds, 10 microns offers no propagation advantage over shorter wavelengths.
NASA Astrophysics Data System (ADS)
Serpa-Imbett, C. M.; Marín-Alfonso, J.; Gómez-Santamaría, C.; Betancur-Agudelo, L.; Amaya-Fernández, F.
2013-12-01
Space division multiplexing in multicore fibers is one of the most promise technologies in order to support transmissions of next-generation peta-to-exaflop-scale supercomputers and mega data centers, owing to advantages in terms of costs and space saving of the new optical fibers with multiple cores. Additionally, multicore fibers allow photonic signal processing in optical communication systems, taking advantage of the mode coupling phenomena. In this work, we numerically have simulated an optical MIMO-OFDM (multiple-input multiple-output orthogonal frequency division multiplexing) by using the coded Alamouti to be transmitted through a twin-core fiber with low coupling. Furthermore, an optical OFDM is transmitted through a core of a singlemode fiber, using pilot-aided channel estimation. We compare the transmission performance in the twin-core fiber and in the singlemode fiber taking into account numerical results of the bit-error rate, considering linear propagation, and Gaussian noise through an optical fiber link. We carry out an optical fiber transmission of OFDM frames using 8 PSK and 16 QAM, with bit rates values of 130 Gb/s and 170 Gb/s, respectively. We obtain a penalty around 4 dB for the 8 PSK transmissions, after 100 km of linear fiber optic propagation for both singlemode and twin core fiber. We obtain a penalty around 6 dB for the 16 QAM transmissions, with linear propagation after 100 km of optical fiber. The transmission in a two-core fiber by using Alamouti coded OFDM-MIMO exhibits a better performance, offering a good alternative in the mitigation of fiber impairments, allowing to expand Alamouti coded in multichannel systems spatially multiplexed in multicore fibers.
Simulation studies on the effect of positioning tolerances on optical coupling efficiency
NASA Astrophysics Data System (ADS)
Pamidighantam, Ramana V.; Yeo, Yongkee; Sudharsanam, Krishnamachari; Lee, Sik Pong; Iyer, Mahadevan K.
2002-08-01
The development of Optoelectronic components for communications is converging towards access networks where device cost makes a significant impact on the market acceptance. Thus, the device design engineer needs to input assembly, fabrication and process constraints into the design at an early stage. The present study is part of a Project on Packaging of Optical Components that IME, Singapore has initiated as part of an ongoing Electronics Packaging Research Consortium with industry partnership. In the present study, the coupling of optical radiation from a laser diode to optical fiber is simulated for a fiber optic transmitter component development project. Different optical configurations based on direct coupling, spherical ball lenses, integral lensed fibers and thermally expanded fibers are created within the commercially available transmitter package space. The effect of optical element variables on the placement tolerance is analyzed and will be reported. The effect of alignment tolerances on the optical coupling is analyzed. Simulation results are presented recommending realizable alignment and placement tolerances to develop a low cost short range link distance transmitter.
Performance improvements of MOEMS-based diffractive arrays: address isolation and optical switching
NASA Astrophysics Data System (ADS)
Panaman, Ganesh; Madison, Seth; Sano, Michael; Castracane, James
2005-01-01
Micro-Opto-Electro-Mechanical Systems (MOEMS) have found a variety of applications in fields such as telecommunications, spectroscopy and display technology. MOEMS-based optical switching is currently under investigation for the increased flexibility that such devices provide for reconfiguration of the I/O network for inter-chip communication applications. This potential not only adds an additional degree of freedom for adjustment of transmitter/receiver links but also allows for fine alignment of individual channels in the network link. Further, this use of diffractive arrays for specific applications combines beam steering/adjustment capabilities with the inherent wavelength dependence of the diffractive approach for channel separation and de-multiplexing. Research and development has been concentrated on the progression from single MOEMS components to parallel arrays integrated with optical source arrays for a successful feasibility demonstration. Successful development of such an approach will have a major impact of the next generation communication protocols. This paper will focus on the current status of the MOEMS research program for Free Space Optical inter-chip communication at the College of NanoScale Science and Engineering, University at Albany-SUNY (CNSE). New versions of diffractive arrays stemming from the basic MEMS Compound Grating (MCG; patent #5,999,319) have been produced through various fabrication methods including the MUMPs process1. Most MEMS components relying on electrostatic actuation tend to require high actuation voltages (>20V) compared to the typical 5V levels prevalent in conventional integrated circuits. The specific goal is to yield improved performance while minimizing the power consumption of the components. Structural modifications through the variation in the ruling/electrode spacing distance and array wiring layout through individually addressable gratings have been studied to understand effects on the actuation voltage and cross talk, respectively. A detailed overview of the optical and mechanical properties will be included. Modeling results along with the mechanical and optical testing results have been detailed and compared with previously obtained results. Future work focuses on alternate material sets for a reduction in operational voltage, improvements in optical efficiency and technology demonstrators for verification of massively parallel I/O performance.
Free-Space Quantum Key Distribution using Polarization Entangled Photons
NASA Astrophysics Data System (ADS)
Kurtsiefer, Christian
2007-06-01
We report on a complete experimental implementation of a quantum key distribution protocol through a free space link using polarization-entangled photon pairs from a compact parametric down-conversion source [1]. Based on a BB84-equivalent protocol, we generated without interruption over 10 hours a secret key free-space optical link distance of 1.5 km with a rate up to 950 bits per second after error correction and privacy amplification. Our system is based on two time stamp units and relies on no specific hardware channel for coincidence identification besides an IP link. For that, initial clock synchronization with an accuracy of better than 2 ns is achieved, based on a conventional NTP protocol and a tiered cross correlation of time tags on both sides. Time tags are used to servo a local clock, allowing a streamed measurement on correctly identified photon pairs. Contrary to the majority of quantum key distribution systems, this approach does not require a trusted large-bandwidth random number generator, but integrates that into the physical key generation process. We discuss our current progress of implementing a key distribution via an atmospherical link during daylight conditions, and possible attack scenarios on a physical timing information side channel to a entanglement-based key distribution system. [1] I. Marcikic, A. Lamas-Linares, C. Kurtsiefer, Appl. Phys. Lett. 89, 101122 (2006).
The CCSDS Next Generation Space Data Link Protocol (NGSLP)
NASA Technical Reports Server (NTRS)
Kazz, Greg J.; Greenberg, Edward
2014-01-01
The CCSDS space link protocols i.e., Telemetry (TM), Telecommand (TC), Advanced Orbiting Systems (AOS) were developed in the early growth period of the space program. They were designed to meet the needs of the early missions, be compatible with the available technology and focused on the specific link environments. Digital technology was in its infancy and spacecraft power and mass issues enforced severe constraints on flight implementations. Therefore the Telecommand protocol was designed around a simple Bose, Hocquenghem, Chaudhuri (BCH) code that provided little coding gain and limited error detection but was relatively simple to decode on board. The infusion of the concatenated Convolutional and Reed-Solomon codes5 for telemetry was a major milestone and transformed telemetry applications by providing them the ability to more efficiently utilize the telemetry link and its ability to deliver user data. The ability to significantly lower the error rates on the telemetry links enabled the use of packet telemetry and data compression. The infusion of the high performance codes for telemetry was enabled by the advent of digital processing, but it was limited to earth based systems supporting telemetry. The latest CCSDS space link protocol, Proximity-1 was developed in early 2000 to meet the needs of short-range, bi-directional, fixed or mobile radio links characterized by short time delays, moderate but not weak signals, and short independent sessions. Proximity-1 has been successfully deployed on both NASA and ESA missions at Mars and is planned to be utilized by all Mars missions in development. A new age has arisen, one that now provides the means to perform advanced digital processing in spacecraft systems enabling the use of improved transponders, digital correlators, and high performance forward error correcting codes for all communications links. Flight transponders utilizing digital technology have emerged and can efficiently provide the means to make the next leap in performance for space link communications. Field Programmable Gate Arrays (FPGAs) provide the capability to incorporate high performance forward error correcting codes implemented within software transponders providing improved performance in data transfer, ranging, link security, and time correlation. Given these synergistic technological breakthroughs, the time has come to take advantage of them in applying them to both on going (e.g., command, telemetry) and emerging (e.g., space link security, optical communication) space link applications. However one of the constraining factors within the Data Link Layer in realizing these performance gains is the lack of a generic transfer frame format and common supporting services amongst the existing CCSDS link layer protocols. Currently each of the four CCSDS link layer protocols (TM, TC, AOS, and Proximity-1) have unique formats and services which prohibits their reuse across the totality of all space link applications of CCSDS member space agencies. For example, Mars missions. These missions implement their proximity data link layer using the Proximity-1 frame format and the services it supports but is still required to support the direct from Earth (TC) protocols and the Direct To Earth (AOS/TM) protocols. The prime purpose of this paper, is to describe a new general purpose CCSDS Data Link layer protocol, the NGSLP that will provide the required services along with a common transfer frame format for all the CCSDS space links (ground to/from space and space to space links) targeted for emerging missions after a CCSDS agency-wide coordinated date. This paper will also describe related options that can be included for the Coding and Synchronization sub-layer of the Data Link layer to extend the capacities of the link and additionally provide an independence of the transfer frame sub-layer from the coding sublayer. This feature will provide missions the option of running either the currently performed synchronous coding and transfer frame data link or an asynchronous coding/frame data link, in which the transfer frame length is independent of the block size of the code. The benefits from the elimination of this constraint (frame synchronized to the code block) will simplify the interface between the transponder and the data handling equipment and reduce implementation costs and complexities. The benefits include: inclusion of encoders/decoders into transmitters and receivers without regard to data link protocols, providing the ability to insert latency sensitive messages into the link to support launch, landing/docking, telerobotics. and Variable Coded Modulation (VCM). In addition the ability to transfer different sized frames can provide a backup for delivering stored anomaly engineering data simultaneously with real time data, or relaying of frames from various sources onto a trunk line for delivery to Earth.
Design of an optical PPM communication link in the presence of component tolerances
NASA Technical Reports Server (NTRS)
Chen, C.-C.
1988-01-01
A systematic approach is described for estimating the performance of an optical direct detection pulse position modulation (PPM) communication link in the presence of parameter tolerances. This approach was incorporated into the JPL optical link analysis program to provide a useful tool for optical link design. Given a set of system parameters and their tolerance specifications, the program will calculate the nominal performance margin and its standard deviation. Through use of these values, the optical link can be designed to perform adequately even under adverse operating conditions.
Kazaura, Kamugisha; Omae, Kazunori; Suzuki, Toshiji; Matsumoto, Mitsuji; Mutafungwa, Edward; Korhonen, Timo O; Murakami, Tadaaki; Takahashi, Koichi; Matsumoto, Hideki; Wakamori, Kazuhiko; Arimoto, Yoshinori
2006-06-12
The deterioration and deformation of a free-space optical beam wave-front as it propagates through the atmosphere can reduce the link availability and may introduce burst errors thus degrading the performance of the system. We investigate the suitability of utilizing soft-computing (SC) based tools for improving performance of free-space optical (FSO) communications systems. The SC based tools are used for the prediction of key parameters of a FSO communications system. Measured data collected from an experimental FSO communication system is used as training and testing data for a proposed multi-layer neural network predictor (MNNP) used to predict future parameter values. The predicted parameters are essential for reducing transmission errors by improving the antenna's accuracy of tracking data beams. This is particularly essential for periods considered to be of strong atmospheric turbulence. The parameter values predicted using the proposed tool show acceptable conformity with original measurements.
Zhao, S M; Leach, J; Gong, L Y; Ding, J; Zheng, B Y
2012-01-02
The effect of atmosphere turbulence on light's spatial structure compromises the information capacity of photons carrying the Orbital Angular Momentum (OAM) in free-space optical (FSO) communications. In this paper, we study two aberration correction methods to mitigate this effect. The first one is the Shack-Hartmann wavefront correction method, which is based on the Zernike polynomials, and the second is a phase correction method specific to OAM states. Our numerical results show that the phase correction method for OAM states outperforms the Shark-Hartmann wavefront correction method, although both methods improve significantly purity of a single OAM state and the channel capacities of FSO communication link. At the same time, our experimental results show that the values of participation functions go down at the phase correction method for OAM states, i.e., the correction method ameliorates effectively the bad effect of atmosphere turbulence.
Development of Telecommunications of Prao ASC Lpi RAS
NASA Astrophysics Data System (ADS)
Isaev, E. A.; Dumskiy, D. V.; Likhachev, S. F.; Shatskaya, M. V.; Pugachev, V. D.; Samodurov, V. A.
The new modern and reliable data storage system was acquired in 2010 in order to develop internal telecommunication resources of the Observatory. The system is designed for store large amounts of observation data obtained from the three radio-astronomy complexes (PT-22, DKR-1000 and BSA). The digital switching system - "Elcom" is installed in the Pushchino Radio Astronomy Observatory to ensure the observatory by phone communications. The phone communication between buildings of the observatory carried out over fiber-optic data links by using the ip-telephony. The direct optical channel from tracking station RT-22 in Pushchino to Moscow processing center has been created and put into operation to transfer large amounts of data at the final stage of the establishment of ground infrastructure for the international space project "Radioastron". A separate backup system for processing and storing data is organized in Pushchino Radio Astronomy Observatory to eliminate data loss during communication sessions with the Space Telescope.
NASA Astrophysics Data System (ADS)
Isleif, Katharina-Sophie; Bischof, Lea; Ast, Stefan; Penkert, Daniel; Schwarze, Thomas S.; Fernández Barranco, Germán; Zwetz, Max; Veith, Sonja; Hennig, Jan-Simon; Tröbs, Michael; Reiche, Jens; Gerberding, Oliver; Danzmann, Karsten; Heinzel, Gerhard
2018-04-01
LISA is a proposed space-based laser interferometer detecting gravitational waves by measuring distances between free-floating test masses housed in three satellites in a triangular constellation with laser links in-between. Each satellite contains two optical benches that are articulated by moving optical subassemblies for compensating the breathing angle in the constellation. The phase reference distribution system, also known as backlink, forms an optical bi-directional path between the intra-satellite benches. In this work we discuss phase reference implementations with a target non-reciprocity of at most 2π μrad \\sqrtHz-1 , equivalent to 1 pm \\sqrtHz-1 for a wavelength of 1064 nm in the frequency band from 0.1 mHz to 1 Hz. One phase reference uses a steered free beam connection, the other one a fiber together with additional laser frequencies. The noise characteristics of these implementations will be compared in a single interferometric set-up with a previously successfully tested direct fiber connection. We show the design of this interferometer created by optical simulations including ghost beam analysis, component alignment and noise estimation. First experimental results of a free beam laser link between two optical set-ups that are co-rotating by ±1° are presented. This experiment demonstrates sufficient thermal stability during rotation of less than 10‑4 K \\sqrtHz-1 at 1 mHz and operation of the free beam steering mirror control over more than 1 week.
ACES microwave link requirements.
Uhrich, P M; Guillernot, P; Aubry, P; Gonzalez, F; Salomon, C
2000-01-01
Atomic Clock Ensemble in Space (ACES) is a project of the European Space Agency on-board the future International Space Station (ISS). The payload consists mainly of two atomic frequency standards, one space hydrogen maser (SHM) prepared by the Observatoire de Neuchatel (Switzerland), and one cold atom caesium clock called PHARAO prepared by the CNES (France), with the participation of the BNM-LPTF, the ENS-LKB, and the CNRS-LHA. Because of the anticipated performances of these clocks on-board the ISS, the requirements of the links between the payload and the clocks on the Earth are at the limits of the known potential of the optical or microwave techniques. The microwave link (MWL) requirements are described in this paper. Taking into account the characteristics of the ISS orbit, and fixing an arbitrary limit to the additional noise brought to the clock readings by the MWL, the computation of the required stability leads to two kinds of requirements: the first one at the subpicosecond level over each single continuous pass of the ISS above any Earth station, and the second one at the level of one part in 10(16) and below over a one day or more averaging period. Moreover, the ISS orbit parameters should lead to a knowledge of the ACES clock position at the m level, and of the ACES clock speed at the mm/s level.
NASA Astrophysics Data System (ADS)
Dabiri, Mohammad Taghi; Sadough, Seyed Mohammad Sajad
2018-04-01
In the free-space optical (FSO) links, atmospheric turbulence lead to scintillation in the received signal. Due to its ease of implementation, intensity modulation with direct detection (IM/DD) based on ON-OFF keying (OOK) is a popular signaling scheme in these systems. Over turbulence channel, to detect OOK symbols in a blind way, i.e., without sending pilot symbols, an expectation-maximization (EM)-based detection method was recently proposed in the literature related to free-space optical (FSO) communication. However, the performance of EM-based detection methods severely depends on the length of the observation interval (Ls). To choose the optimum values of Ls at target bit error rates (BER)s of FSO communications which are commonly lower than 10-9, Monte-Carlo simulations would be very cumbersome and require a very long processing time. To facilitate performance evaluation, in this letter we derive the analytic expressions for BER and outage probability. Numerical results validate the accuracy of our derived analytic expressions. Our results may serve to evaluate the optimum value for Ls without resorting to time-consuming Monte-Carlo simulations.
Planes, Mikael; Brand, Jérémie; Lewandowski, Simon; Remaury, Stéphanie; Solé, Stéphane; Le Coz, Cédric; Carlotti, Stéphane; Sèbe, Gilles
2016-10-07
This work investigates the possibility of using cellulose nanocrystals (CNCs) as biobased nanoadditives in protective polydimethylsiloxane (PDMS) space coatings, to improve the thermal and optical performances of the material. CNCs produced from wood pulp were functionalized in different conditions with the objective to improve their dispersibility in the PDMS matrix, increase their thermal stability and provide photoactive functions. Polysiloxane, cinnamate, chloroacetate and trifluoroacetate moieties were accordingly anchored at the CNCs surface by silylation, using two different approaches, or acylation with different functional vinyl esters. The modified CNCs were thoroughly characterized by FT-IR spectroscopy, solid-state NMR spectroscopy and thermogravimetric analysis, before being incorporated into a PDMS space coating formulation in low concentration (0.5 to 4 wt %). The cross-linked PDMS films were subsequently investigated with regards to their mechanical behavior, thermal stability and optical properties after photoaging. Results revealed that the CNC additives could significantly improve the thermal stability of the PDMS coating, up to 140 °C, depending on the treatment and CNC concentration, without affecting the mechanical properties and transparency of the material. In addition, the PDMS films loaded with as low as 1 wt % halogenated nanoparticles, exhibited an improved UV-stability after irradiation in geostationary conditions.
Secure communications using quantum cryptography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, R.J.; Buttler, W.T.; Kwiat, P.G.
1997-08-01
The secure distribution of the secret random bit sequences known as {open_quotes}key{close_quotes} material, is an essential precursor to their use for the encryption and decryption of confidential communications. Quantum cryptography is an emerging technology for secure key distribution with single-photon transmissions, nor evade detection (eavesdropping raises the key error rate above a threshold value). We have developed experimental quantum cryptography systems based on the transmission of non-orthogonal single-photon states to generate shared key material over multi-kilometer optical fiber paths and over line-of-sight links. In both cases, key material is built up using the transmission of a single-photon per bit ofmore » an initial secret random sequence. A quantum-mechanically random subset of this sequence is identified, becoming the key material after a data reconciliation stage with the sender. In our optical fiber experiment we have performed quantum key distribution over 24-km of underground optical fiber using single-photon interference states, demonstrating that secure, real-time key generation over {open_quotes}open{close_quotes} multi-km node-to-node optical fiber communications links is possible. We have also constructed a quantum key distribution system for free-space, line-of-sight transmission using single-photon polarization states, which is currently undergoing laboratory testing. 7 figs.« less
NASA Astrophysics Data System (ADS)
Nordal Petersen, Martin; Nuijts, Roeland; Lange Bjørn, Lars
2014-05-01
This article presents an advanced optical model for simulation of alien wavelengths in multi-domain and multi-vendor dense wavelength-division multiplexing networks. The model aids optical network planners with a better understanding of the non-linear effects present in dense wavelength-division multiplexing systems and better utilization of alien wavelengths in future applications. The limiting physical effects for alien wavelengths are investigated in relation to power levels, channel spacing, and other factors. The simulation results are verified through experimental setup in live multi-domain dense wavelength-division multiplexing systems between two national research networks: SURFnet in Holland and NORDUnet in Denmark.
Results From Phase-1 and Phase-2 GOLD Experiments
NASA Technical Reports Server (NTRS)
Wilson, K.; Jeganathan, M.; Lesh, J. R.; James, J.; Xu, G.
1997-01-01
The Ground/Orbiter Lasercomm Demonstration conducted between the Japanese Engineering Test Satellite (ETS-VI) and the ground station at JPL's Table Mountain Facility, Wrightwood, California, was the rst ground-to-space two-way optical communications experiment. Experiment objectives included validating the performance predictions of the optical link. Atmospheric attenuation and seeing measurements were made during the experiment, and data were analyzed. Downlink telemetry data recovered over the course of the experiment provided information on in-orbit performance of the ETS-VI's laser communications equipment. Biterror rates as low as 10 4 were measured on the uplink and 10 5 on the downlink. Measured signal powers agreed well with theoretical predictions.
Silicon photonics WDM transmitter with single section semiconductor mode-locked laser
NASA Astrophysics Data System (ADS)
Müller, Juliana; Hauck, Johannes; Shen, Bin; Romero-García, Sebastian; Islamova, Elmira; Azadeh, Saeed Sharif; Joshi, Siddharth; Chimot, Nicolas; Moscoso-Mártir, Alvaro; Merget, Florian; Lelarge, François; Witzens, Jeremy
2015-04-01
We demonstrate a wavelength domain-multiplexed (WDM) optical link relying on a single section semiconductor mode-locked laser (SS-MLL) with quantum dash (Q-Dash) gain material to generate 25 optical carriers spaced by 60.8 GHz, as well as silicon photonics (SiP) resonant ring modulators (RRMs) to modulate individual optical channels. The link requires optical reamplification provided by an erbium-doped fiber amplifier (EDFA) in the system experiments reported here. Open eye diagrams with signal quality factors (Q-factors) above 7 are measured with a commercial receiver (Rx). For higher compactness and cost effectiveness, reamplification of the modulated channels with a semiconductor optical amplifier (SOA) operated in the linear regime is highly desirable. System and device characterization indicate compatibility with the latter. While we expect channel counts to be primarily limited by the saturation output power level of the SOA, we estimate a single SOA to support more than eight channels. Prior to describing the system experiments, component design and detailed characterization results are reported including design and characterization of RRMs, ring-based resonant optical add-drop multiplexers (RR-OADMs) and thermal tuners, S-parameters resulting from the interoperation of RRMs and RR-OADMs, and characterization of Q-Dash SS-MLLs reamplified with a commercial SOA. Particular emphasis is placed on peaking effects in the transfer functions of RRMs and RR-OADMs resulting from transient effects in the optical domain, as well as on the characterization of SS-MLLs in regard to relative intensity noise (RIN), stability of the modes of operation, and excess noise after reamplification.
High speed QPPM direct detection optical communication receivers for FSDD intersatellite links
NASA Technical Reports Server (NTRS)
Davidson, Frederic M.; Sun, Xiaoli
1993-01-01
This final report consists of four separate reports, one for each project involved in this contract. The first report is entitled '325 Mbps QPPM (quaternary pulse position modulation) Direct Detection Free Space Optical Communication Encoder and Receiver,' which was our primary work. The second report is entitled 'Test Results of the 325 Mbps QPPM High Speed Data Transmission GaAs ASICs,' which describes our work in connection with Galaxy Microsystems, Inc. who produced these ASICs for NASA. The third report, 'Receiver Performance Analysis of BPPM Optical Communication Systems Using 1.3 micron Wavelength Transmitter and InGaAs PIN Photodiodes,' was prepared at the request of the NASA/Photonics Branch for their efforts in upgrading the 1773 optical fiber data bus. The fourth report, 'Photomultiplier Tubes for Use at 1.064 micron Wavelength,' was also prepared at the request of the NASA/Photonics Branch as a research project.
Space-time variability of raindrop size distributions along a 2.2 km microwave link path
NASA Astrophysics Data System (ADS)
van Leth, Tommy; Uijlenhoet, Remko; Overeem, Aart; Leijnse, Hidde; Berne, Alexis
2017-04-01
The Wageningen Urban Rainfall Experiment (WURex14-15) was dedicated to address several errors and uncertainties associated with quantitative precipitation estimates from microwave links. The core of the experiment consisted of three co-located microwave links installed between two major buildings on the Wageningen University campus, approximately 2.2 km apart: a 38 GHz commercial microwave link, provided by T-Mobile NL, and 26 GHz and 38 GHz (dual-polarization) research microwave links from RAL. Transmitting and receiving antennas were attached to masts installed on the roofs of the two buildings, about 30 m above the ground. This setup was complemented with a Scintec infrared Large-Aperture Scintillometer, installed over the same path, an automatic rain gauge, as well as 5 Parsivel optical disdrometers positioned at several locations along the path. Temporal sampling of the received signals was performed at a rate of 20 Hz. The setup was being monitored by time-lapse cameras to assess the state of the antennas as well as the atmosphere. Finally, data were available from the KNMI weather radars and an automated weather station situated just outside Wageningen. The experiment has been active between August 2014 and December 2015. We present preliminary results regarding the space-time variability of raindrop size distributions from the Parsivel disdrometers along the 2.2 km microwave link path.
Characterizing quantum channels with non-separable states of classical light
NASA Astrophysics Data System (ADS)
Ndagano, Bienvenu; Perez-Garcia, Benjamin; Roux, Filippus S.; McLaren, Melanie; Rosales-Guzman, Carmelo; Zhang, Yingwen; Mouane, Othmane; Hernandez-Aranda, Raul I.; Konrad, Thomas; Forbes, Andrew
2017-04-01
High-dimensional entanglement with spatial modes of light promises increased security and information capacity over quantum channels. Unfortunately, entanglement decays due to perturbations, corrupting quantum links that cannot be repaired without performing quantum tomography on the channel. Paradoxically, the channel tomography itself is not possible without a working link. Here we overcome this problem with a robust approach to characterize quantum channels by means of classical light. Using free-space communication in a turbulent atmosphere as an example, we show that the state evolution of classically entangled degrees of freedom is equivalent to that of quantum entangled photons, thus providing new physical insights into the notion of classical entanglement. The analysis of quantum channels by means of classical light in real time unravels stochastic dynamics in terms of pure state trajectories, and thus enables precise quantum error correction in short- and long-haul optical communication, in both free space and fibre.
State-of-the-art fiber optics for short distance frequency reference distribution
NASA Astrophysics Data System (ADS)
Lutes, G. F.; Primas, L. E.
1989-05-01
A number of recently developed fiber-optic components that hold the promise of unprecedented stability for passively stabilized frequency distribution links are characterized. These components include a fiber-optic transmitter, an optical isolator, and a new type of fiber-optic cable. A novel laser transmitter exhibits extremely low sensitivity to intensity and polarization changes of reflected light due to cable flexure. This virtually eliminates one of the shortcomings in previous laser transmitters. A high-isolation, low-loss optical isolator has been developed which also virtually eliminates laser sensitivity to changes in intensity and polarization of reflected light. A newly developed fiber has been tested. This fiber has a thermal coefficient of delay of less than 0.5 parts per million per deg C, nearly 20 times lower than the best coaxial hardline cable and 10 times lower than any previous fiber-optic cable. These components are highly suitable for distribution systems with short extent, such as within a Deep Space Communications Complex. Here, these new components are described and the test results presented.
State-of-the-art fiber optics for short distance frequency reference distribution
NASA Technical Reports Server (NTRS)
Lutes, G. F.; Primas, L. E.
1989-01-01
A number of recently developed fiber-optic components that hold the promise of unprecedented stability for passively stabilized frequency distribution links are characterized. These components include a fiber-optic transmitter, an optical isolator, and a new type of fiber-optic cable. A novel laser transmitter exhibits extremely low sensitivity to intensity and polarization changes of reflected light due to cable flexure. This virtually eliminates one of the shortcomings in previous laser transmitters. A high-isolation, low-loss optical isolator has been developed which also virtually eliminates laser sensitivity to changes in intensity and polarization of reflected light. A newly developed fiber has been tested. This fiber has a thermal coefficient of delay of less than 0.5 parts per million per deg C, nearly 20 times lower than the best coaxial hardline cable and 10 times lower than any previous fiber-optic cable. These components are highly suitable for distribution systems with short extent, such as within a Deep Space Communications Complex. Here, these new components are described and the test results presented.
Next-Generation NASA Earth-Orbiting Relay Satellites: Fusing Optical and Microwave Communications
NASA Technical Reports Server (NTRS)
Israel, David J.; Shaw, Harry
2018-01-01
NASA is currently considering architectures and concepts for the generation of relay satellites that will replace the Tracking and Data Relay Satellite (TDRS) constellation, which has been flying since 1983. TDRS-M, the last of the second TDRS generation, launched in August 2017, extending the life of the TDRS constellation beyond 2030. However, opportunities exist to re-engineer the concepts of geosynchronous Earth relay satellites. The needs of the relay satellite customers have changed dramatically over the last 34 years since the first TDRS launch. There is a demand for greater bandwidth as the availability of the traditional RF spectrum for space communications diminishes and the demand for ground station access grows. The next generation of NASA relay satellites will provide for operations that have factored in these new constraints. In this paper, we describe a heterogeneous constellation of geosynchronous relay satellites employing optical and RF communications. The new constellation will enable new optical communications services formed by user-to-space relay, space relay-to-space relay and space relay-to-ground links. It will build upon the experience from the Lunar Laser Communications Demonstration from 2013 and the Laser Communications Relay Demonstration to be launched in 2019.Simultaneous to establishment of the optical communications space segment, spacecraft in the TDRS constellation will be replaced with RF relay satellites with targeted subsets of the TDRS capabilities. This disaggregation of the TDRS service model will allow for flexibility in replenishing the needs of legacy users as well as addition of new capabilities for future users. It will also permit the U.S. government access to launch capabilities such as rideshare and to hosted payloads that were not previously available.In this paper, we also explore how the next generation of Earth relay satellites provides a significant boost in the opportunities for commercial providers to the communications space segment. For optical communications, the backbone of this effort is adoption of commercial technologies from the terrestrial high-bandwidth telecommunications industry into optical payloads. For RF communications, the explosion of software-defined radio, high-speed digital signal processing technologies and networking from areas such as 5G multicarrier will be important. Future commercial providers will not be limited to a small set of large aerospace companies. Ultimately, entirely government-owned and -operated satellite communications will phase out and make way for commercial business models that satisfy NASA's satellite communications requirements. The competition being provided by new entrants in the space communications business may result in a future in which all NASA communications needs can be satisfied commercially.
Next-Generation NASA Earth-Orbiting Relay Satellites: Fusing Microwave and Optical Communications
NASA Technical Reports Server (NTRS)
Israel, David J.
2018-01-01
NASA is currently considering architectures and concepts for the generation of relay satellites that will replace the Tracking and Data Relay Satellite (TDRS) constellation, which has been flying since 1983. TDRS-M, the last of the second TDRS generation, launched in August 2017, extending the life of the TDRS constellation beyond 2030. However, opportunities exist to re-engineer the concepts of geosynchronous Earth relay satellites. The needs of the relay satellite customers have changed dramatically over the last 34 years since the first TDRS launch. There is a demand for greater bandwidth as the availability of the traditional RF spectrum for space communications diminishes and the demand for ground station access grows. The next generation of NASA relay satellites will provide for operations that have factored in these new constraints. In this paper, we describe a heterogeneous constellation of geosynchronous relay satellites employing optical and RF communications. The new constellation will enable new optical communications services formed by user-to-space relay, space relay-to-space relay and space relay-to-ground links. It will build upon the experience from the Lunar Laser Communications Demonstration from 2013 and the Laser Communications Relay Demonstration to be launched in 2019.Simultaneous to establishment of the optical communications space segment, spacecraft in the TDRS constellation will be replaced with RF relay satellites with targeted subsets of the TDRS capabilities. This disaggregation of the TDRS service model will allow for flexibility in replenishing the needs of legacy users as well as addition of new capabilities for future users. It will also permit the U.S. government access to launch capabilities such as rideshare and to hosted payloads that were not previously available. In this paper, we also explore how the next generation of Earth relay satellites provides a significant boost in the opportunities for commercial providers to the communications space segment. For optical communications, the backbone of this effort is adoption of commercial technologies from the terrestrial high-bandwidth telecommunications industry into optical payloads. For RF communications, the explosion of software-defined radio, high-speed digital signal processing technologies and networking from areas such as 5G multicarrier will be important. Future commercial providers will not be limited to a small set of large aerospace companies. Ultimately, entirely government-owned and -operated satellite communications will phase out and make way for commercial business models that satisfy NASAs satellite communications requirements. The competition being provided by new entrants in the space communications business may result in a future in which all NASA communications needs can be satisfied commercially.
Digital optical feeder links system for broadband geostationary satellite
NASA Astrophysics Data System (ADS)
Poulenard, Sylvain; Mège, Alexandre; Fuchs, Christian; Perlot, Nicolas; Riedi, Jerome; Perdigues, Josep
2017-02-01
An optical link based on a multiplex of wavelengths at 1.55μm is foreseen to be a valuable solution for the feeder link of the next generation of high-throughput geostationary satellite. The main satellite operator specifications for such link are an availability of 99.9% over the year, a capacity around 500Gbit/s and to be bent-pipe. Optical ground station networks connected to Terabit/s terrestrial fibers are proposed. The availability of the optical feeder link is simulated over 5 years based on a state-of-the-art cloud mask data bank and an atmospheric turbulence strength model. Yearly and seasonal optical feeder link availabilities are derived and discussed. On-ground and on-board terminals are designed to be compliant with 10Gbit/s per optical channel data rate taking into account adaptive optic systems to mitigate the impact of atmospheric turbulences on single-mode optical fiber receivers. The forward and return transmission chains, concept and implementation, are described. These are based on a digital transparent on-off keying optical link with digitalization of the DVB-S2 and DVB-RCS signals prior to the transmission, and a forward error correcting code. In addition, the satellite architecture is described taking into account optical and radiofrequency payloads as well as their interfaces.
Wang, Minghao; Yuan, Xiuhua; Ma, Donglin
2017-04-01
Nonuniformly correlated partially coherent beams (PCBs) have extraordinary propagation properties, making it possible to further improve the performance of free-space optical communications. In this paper, a series of PCBs with varying degrees of coherence in the radial direction, academically called radial partially coherent beams (RPCBs), are considered. RPCBs with arbitrary coherence distributions can be created by adjusting the amplitude profile of a spatial modulation function imposed on a uniformly correlated phase screen. Since RPCBs cannot be well characterized by the coherence length, a modulation depth factor is introduced as an indicator of the overall distribution of coherence. By wave optics simulation, free-space and atmospheric propagation properties of RPCBs with (inverse) Gaussian and super-Gaussian coherence distributions are examined in comparison with conventional Gaussian Schell-model beams. Furthermore, the impacts of varying central coherent areas are studied. Simulation results reveal that under comparable overall coherence, beams with a highly coherent core and a less coherent margin exhibit a smaller beam spread and greater on-axis intensity, which is mainly due to the self-focusing phenomenon right after the beam exits the transmitter. Particularly, those RPCBs with super-Gaussian coherence distributions will repeatedly focus during propagation, resulting in even greater intensities. Additionally, RPCBs also have a considerable ability to reduce scintillation. And it is demonstrated that those properties have made RPCBs very effective in improving the mean signal-to-noise ratio of small optical receivers, especially in relatively short, weakly fluctuating links.
SMART-1 Technology and Science Experiments in Preparation of Future Missions and ESA Cornerstones
NASA Astrophysics Data System (ADS)
Marini, A. E.; Racca, G. D.; Foing, B. H.; SMART-1 Project
1999-12-01
SMART-1 is the first ESA Small Mission for Advanced Research in Technology, aimed at the demonstration of enabling technologies for future scientific missions. SMART-1's prime technology objective is the demonstration of the solar primary electric propulsion, a key for future interplanetary missions. SMART-1 will use a Stationary Plasma Thruster engine, cruising 15 months to capture a Moon polar orbit. A gallery of images of the spacecraft is available at the web site: http://www.estec.esa.nl/spdwww/smart1/html/11742.html SMART-1 payload aims at monitoring the electric propulsion and its spacecraft environment and to test novel instrument technologies. The Diagnostic Instruments include SPEDE, a spacecraft potential plasma and charged particles detector, to characterise both spacecraft and planetary environment, together with EPDP, a suite of sensors monitoring secondary thrust-ions, charging and deposition effects. Innovative spacecraft technologies will be tested on SMART-1 : Lithium batteries and KATE, an experimental X/Ka-band deep-space transponder, to support radio-science, to monitor the accelerations of the electric propulsion and to test turbo-code technique, enhancing the return of scientific data. The scientific instruments for imaging and spectrometry are: \\begin{itemize} D-CIXS, a compact X-ray spectrometer based on novel SCD detectors and micro-structure optics, to observe X-ray celectial objects and to perform lunar chemistry measurements. SIR, a miniaturised quasi-monolithic point-spectrometer, operating in the Near-IR (0.9 ÷ 2.4 micron), to survey the lunar crust in previously uncovered optical regions. AMIE, a miniature camera based on 3-D integrated electronics, imaging the Moon, and other bodies and supporting LASER-LINK and RSIS. RSIS and LASER-LINK are investigations performed with the SMART-1 Payload: \\begin{itemize} RSIS: A radio-science Experiment to validate in-orbit determination of the libration of the celestial target, based on high-accuracy tracking in Ka-band and imaging of a surface landmark LASER-LINK: a demonstration of acquisition of a deep-space laser-link from the ESA Optical Ground Station at Tenerife, validating also the novel sub-apertured telescope designed for the mitigation of atmospheric scintillation disturbances.
Coherent optical modulation for antenna remoting
NASA Technical Reports Server (NTRS)
Fitzmartin, D. J.; Gels, R. G.; Balboni, E. J.
1991-01-01
A coherent fiber optic link employing wideband frequency modulation (FM) of the optical carrier is used to transfer radio frequency (RF) or microwave signals. This system is used to link a remotely located antenna to a conveniently located electronics processing site. The advantages of coherent analog fiber optic systems over non-coherent intensity modulated fiber optic analog transmission systems are described. An optical FM link employing an indirect transmitter to frequency modulate the optical carrier and a microwave delay line discriminator receiver is described. Measured performance data for a video signal centered at 60 MHz is presented showing the use of wideband FM in the link.
Photonic polymer-blend structures and method for making
Barnes, Michael D.
2004-06-29
The present invention comprises the formation of photonic polymer-blend structures having tunable optical and mechanical properties. The photonic polymer-blend structures comprise monomer units of spherical microparticles of a polymer-blend material wherein the spherical microparticles have surfaces partially merged with one another in a robust inter-particle bond having a tunable inter-particle separation or bond length sequentially attached in a desired and programmable architecture. The photonic polymer-blend structures of the present invention can be linked by several hundred individual particles sequentially linked to form complex three-dimensional structures or highly ordered two-dimensional arrays of 3D columns with 2D spacing.
Anand, N; Satheesh, S K; Krishna Moorthy, K
2017-07-15
Effects of absorbing atmospheric aerosols in modulating the tropospheric refractive index structure parameter (Cn2) are estimated using high resolution radiosonde and multi-satellite data along with a radiative transfer model. We report the influence of variations in residence time and vertical distribution of aerosols in modulating Cn2 and why the aerosol induced atmospheric heating needs to be considered while estimating a free space optical communication link budget. The results show that performance of the link is seriously affected if large concentrations of absorbing aerosols reside for a long time in the atmospheric path.
Resolution requirements for aero-optical simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mani, Ali; Wang Meng; Moin, Parviz
2008-11-10
Analytical criteria are developed to estimate the error of aero-optical computations due to inadequate spatial resolution of refractive index fields in high Reynolds number flow simulations. The unresolved turbulence structures are assumed to be locally isotropic and at low turbulent Mach number. Based on the Kolmogorov spectrum for the unresolved structures, the computational error of the optical path length is estimated and linked to the resulting error in the computed far-field optical irradiance. It is shown that in the high Reynolds number limit, for a given geometry and Mach number, the spatial resolution required to capture aero-optics within a pre-specifiedmore » error margin does not scale with Reynolds number. In typical aero-optical applications this resolution requirement is much lower than the resolution required for direct numerical simulation, and therefore, a typical large-eddy simulation can capture the aero-optical effects. The analysis is extended to complex turbulent flow simulations in which non-uniform grid spacings are used to better resolve the local turbulence structures. As a demonstration, the analysis is used to estimate the error of aero-optical computation for an optical beam passing through turbulent wake of flow over a cylinder.« less
Distributed transverse stress measurement along an optic fiber using polarimetric OFDR.
Wei, Changjiang; Chen, Hongxin; Chen, Xiaojun; Chen, David; Li, Zhihong; Yao, X Steve
2016-06-15
We report a novel polarimetric optical frequency domain reflectometer (P-OFDR) that can simultaneously measure both space-resolved transverse stresses and light back-reflections along an optic fiber with sub-mm spatial resolution. By inducing transversal stresses and optical back-reflections at multiple points along a length of optic fiber, we demonstrate that our system can unambiguously distinguish the stresses from the back-reflections of a fiber with a fiber length longer than 800 m, a spatial resolution of 0.5 mm, a maximum stress level of up to 200 kpsi (1379 Mpa), a minimum stress of about 10 kpsi (69 Mpa), and a stress measurement uncertainty of 10%. We show that our P-OFDR can clearly identify the locations and magnitudes of the stresses inside a fiber coil induced during a fiber winding process. The P-OFDR can be used for fiber health monitoring for critical fiber links, fiber gyro coil characterization, and other distributed fiber sensing applications.
Anticipated uncertainty budgets of PRARETIME and T2L2 techniques as applied to ExTRAS
NASA Technical Reports Server (NTRS)
Thomas, Claudine; Wolf, Peter; Uhrich, Pierre J. M.; Schaefer, W.; Nau, H.; Veillet, Christian
1995-01-01
The Experiment on Timing Ranging and Atmospheric Soundings, ExTRAS, was conceived jointly by the European Space Agency, ESA, and the Russian Space Agency, RSA. It is also designated the 'Hydrogen-maser in Space/Meteor-3M project'. The launch of the satellite is scheduled for early 1997. The package, to be flown on board a Russian meteorological satellite includes ultra-stable frequency and time sources, namely two active and auto-tuned hydrogen masers. Communication between the on-board hydrogen masers and the ground station clocks is effected by means of a microwave link using the modified version for time transfer of the Precise Range And Range-rate Equipment, PRARETIME, technique, and an optical link which uses the Time Transfer by Laser Link, T2L2, method. Both the PRARETIME and T2L2 techniques operate in a two-directional mode, which makes it possible to carry out accurate transmissions without precise knowledge of the satellite and station positions. Due to the exceptional quality of the on-board clocks and to the high performance of the communication techniques with the satellite, satellite clock monitoring and ground clocks synchronization are anticipated to be performed with uncertainties below 0.5 ns (1 sigma). Uncertainty budgets and related comments are presented.
Microgravity-Induced Fluid Shift and Ophthalmic Changes
Nelson, Emily S.; Mulugeta, Lealem; Myers, Jerry G.
2014-01-01
Although changes to visual acuity in spaceflight have been observed in some astronauts since the early days of the space program, the impact to the crew was considered minor. Since that time, missions to the International Space Station have extended the typical duration of time spent in microgravity from a few days or weeks to many months. This has been accompanied by the emergence of a variety of ophthalmic pathologies in a significant proportion of long-duration crewmembers, including globe flattening, choroidal folding, optic disc edema, and optic nerve kinking, among others. The clinical findings of affected astronauts are reminiscent of terrestrial pathologies such as idiopathic intracranial hypertension that are characterized by high intracranial pressure. As a result, NASA has placed an emphasis on determining the relevant factors and their interactions that are responsible for detrimental ophthalmic response to space. This article will describe the Visual Impairment and Intracranial Pressure syndrome, link it to key factors in physiological adaptation to the microgravity environment, particularly a cephalad shifting of bodily fluids, and discuss the implications for ocular biomechanics and physiological function in long-duration spaceflight. PMID:25387162
Satellite-to-ground quantum key distribution.
Liao, Sheng-Kai; Cai, Wen-Qi; Liu, Wei-Yue; Zhang, Liang; Li, Yang; Ren, Ji-Gang; Yin, Juan; Shen, Qi; Cao, Yuan; Li, Zheng-Ping; Li, Feng-Zhi; Chen, Xia-Wei; Sun, Li-Hua; Jia, Jian-Jun; Wu, Jin-Cai; Jiang, Xiao-Jun; Wang, Jian-Feng; Huang, Yong-Mei; Wang, Qiang; Zhou, Yi-Lin; Deng, Lei; Xi, Tao; Ma, Lu; Hu, Tai; Zhang, Qiang; Chen, Yu-Ao; Liu, Nai-Le; Wang, Xiang-Bin; Zhu, Zhen-Cai; Lu, Chao-Yang; Shu, Rong; Peng, Cheng-Zhi; Wang, Jian-Yu; Pan, Jian-Wei
2017-09-07
Quantum key distribution (QKD) uses individual light quanta in quantum superposition states to guarantee unconditional communication security between distant parties. However, the distance over which QKD is achievable has been limited to a few hundred kilometres, owing to the channel loss that occurs when using optical fibres or terrestrial free space that exponentially reduces the photon transmission rate. Satellite-based QKD has the potential to help to establish a global-scale quantum network, owing to the negligible photon loss and decoherence experienced in empty space. Here we report the development and launch of a low-Earth-orbit satellite for implementing decoy-state QKD-a form of QKD that uses weak coherent pulses at high channel loss and is secure because photon-number-splitting eavesdropping can be detected. We achieve a kilohertz key rate from the satellite to the ground over a distance of up to 1,200 kilometres. This key rate is around 20 orders of magnitudes greater than that expected using an optical fibre of the same length. The establishment of a reliable and efficient space-to-ground link for quantum-state transmission paves the way to global-scale quantum networks.
Cascaded multiplexed optical link on a telecommunication network for frequency dissemination.
Lopez, Olivier; Haboucha, Adil; Kéfélian, Fabien; Jiang, Haifeng; Chanteau, Bruno; Roncin, Vincent; Chardonnet, Christian; Amy-Klein, Anne; Santarelli, Giorgio
2010-08-02
We demonstrate a cascaded optical link for ultrastable frequency dissemination comprised of two compensated links of 150 km and a repeater station. Each link includes 114 km of Internet fiber simultaneously carrying data traffic through a dense wavelength division multiplexing technology, and passes through two routing centers of the telecommunication network. The optical reference signal is inserted in and extracted from the communication network using bidirectional optical add-drop multiplexers. The repeater station operates autonomously ensuring noise compensation on the two links and the ultra-stable signal optical regeneration. The compensated link shows a fractional frequency instability of 3 x 10(-15) at one second measurement time and 5 x 10(-20) at 20 hours. This work paves the way to a wide dissemination of ultra-stable optical clock signals between distant laboratories via the Internet network.
Potentials of RF/FSO Communication in UAS Operations
NASA Astrophysics Data System (ADS)
Griethe, Wolfgang; Heine, Frank
2013-08-01
Free Space Optical Communications (FSOC) has gained particular attention during the past few years and is progressing continuously. With the successful in-orbit verification of a Laser Communication Terminal (LCT), the coherent homodyne BPSK scheme advanced to a standard for Free-Space Optical Communication (FSOC) which now prevails more and more. The LCT is presently operated on satellites in Low Earth Orbit (LEO). In the near future, the LCT will be operated in Geosynchronous Orbit (GEO) onboard the ALPHASAT-TDP and the European Data Relay System (EDRS). In other words, the LCT has reached a point of maturity to realize its practical application. With existence of such space assets the time has come for other utilization beyond that of optical Inter-Satellite Links (ISL). Aeronautical applications, as for instance High Altitude Long Endurance (HALE) or Medium Altitude Long Endurance (MALE) Unmanned Aerial Systems (UAS) have to be addressed. This is caused due to an extremely high demand for bandwidth. Driving factors and advantages of FSOC in HALE/MALE UAS missions are highlighted. Numerous practice-related issues are described concerning the space segment, the aeronautical segment as well as the ground segment. The advantages for UAS missions are described resulting from the utilization of FSOC exclusively for wideband transmission of sensor data while vehicle Command & Control (C2) can be maintained, as before, via RF communication. Moreover, the paper discusses FSOC as an enabler for the integration of air and space-based wideband Intelligence, Surveillance & Reconnaissance (ISR) systems into existent military command and control networks. From the given information it can be concluded that FSOC contributes to the future increase of air-and space power.
A compact frequency stabilized telecom laser diode for space applications
NASA Astrophysics Data System (ADS)
Philippe, C.; Holleville, D.; Le Targat, R.; Wolf, P.; Leveque, T.; Le Goff, R.; Martaud, E.; Acef, O.
2017-09-01
We report on a Telecom laser diode (LD) frequency stabilization to a narrow iodine hyperfine line in the green range, after frequency tripling process using fibered nonlinear waveguide PPLN crystals. We have generated up to 300 mW optical power in the green range ( 514 nm) from 800 mW of infrared power ( 1542 nm), corresponding to a nonlinear conversion efficiency h = P3?/P? 36%. Less than 10 mW of the generated green power are used for Doppler-free spectroscopy of 127I2 molecular iodine, and -therefore- for the frequency stabilization purpose. The frequency tripling optical setup is very compact (< 5 l), fully fibered, and could operate over the full C-band of the Telecom range (1530 nm - 1565 nm). Several thousands of hyperfine iodine lines may thus be interrogated in the 510 nm - 521 nm range. We build up an optical bench used at first in free space configuration, using the well-known modulation transfer spectroscopy technique (MTS), in order to test the potential of this new frequency standard based on the couple "1.5 ?m laser / iodine molecule". We have already demonstrated a preliminary frequency stability of 4.8 x 10-14 ? -1/2 with a minimum value of 6 x 10-15 reached after 50 s of integration time, conferred to a laser diode operating at 1542.1 nm. We focus now our efforts to expand the frequency stability to a longer integration time in order to meet requirements of many space experiments, such earth gravity missions, inters satellites links or space to ground communications. Furthermore, we investigate the potential of a new approach based on frequency modulation technique (FM), associated to a 3rd harmonic detection of iodine lines to increase the compactness of the optical setup.
Multicore fiber beamforming network for broadband satellite communications
NASA Astrophysics Data System (ADS)
Zainullin, Airat; Vidal, Borja; Macho, Andres; Llorente, Roberto
2017-02-01
Multi-core fiber (MCF) has been one of the main innovations in fiber optics in the last decade. Reported work on MCF has been focused on increasing the transmission capacity of optical communication links by exploiting space-division multiplexing. Additionally, MCF presents a strong potential in optical beamforming networks. The use of MCF can increase the compactness of the broadband antenna array controller. This is of utmost importance in platforms where size and weight are critical parameters such as communications satellites and airplanes. Here, an optical beamforming architecture that exploits the space-division capacity of MCF to implement compact optical beamforming networks is proposed, being a new application field for MCF. The experimental demonstration of this system using a 4-core MCF that controls a four-element antenna array is reported. An analysis of the impact of MCF on the performance of antenna arrays is presented. The analysis indicates that the main limitation comes from the relatively high insertion loss in the MCF fan-in and fan-out devices, which leads to angle dependent losses which can be mitigated by using fixed optical attenuators or a photonic lantern to reduce MCF insertion loss. The crosstalk requirements are also experimentally evaluated for the proposed MCF-based architecture. The potential signal impairment in the beamforming network is analytically evaluated, being of special importance when MCF with a large number of cores is considered. Finally, the optimization of the proposed MCF-based beamforming network is addressed targeting the scalability to large arrays.
Macular hole in juvenile X-linked retinoschisis.
Al-Swaina, Nayef; Nowilaty, Sawsan R
2013-10-01
An 18 year-old male with no antecedent of trauma, systemic syndrome or myopia was referred for surgical treatment of a full thickness macular hole in the left eye. A more careful inspection revealed discrete foveal cystic changes in the fellow eye and subtle peripheral depigmented retinal pigment epithelial changes in both eyes. A spectral-domain optical coherence tomography (SD-OCT) scan confirmed, in addition to the full thickness macular hole in the left eye, microcystic spaces in the nuclear layers of both retinae. The diagnosis of X-linked retinoschisis was confirmed with a full field electroretinogram displaying the typical negative ERG. Macular holes are uncommon in the young and those complicating X-linked retinoschisis are rare. This report highlights the importance of investigating the presence of a macular hole in a young patient and illustrates the clinical and SD-OCT clues beyond the foveal center which led to the correct diagnosis of X-linked juvenile retinoschisis.
Cascaded optical fiber link using the internet network for remote clocks comparison.
Chiodo, Nicola; Quintin, Nicolas; Stefani, Fabio; Wiotte, Fabrice; Camisard, Emilie; Chardonnet, Christian; Santarelli, Giorgio; Amy-Klein, Anne; Pottie, Paul-Eric; Lopez, Olivier
2015-12-28
We report a cascaded optical link of 1100 km for ultra-stable frequency distribution over an Internet fiber network. The link is composed of four spans for which the propagation noise is actively compensated. The robustness and the performance of the link are ensured by five fully automated optoelectronic stations, two of them at the link ends, and three deployed on the field and connecting the spans. This device coherently regenerates the optical signal with the heterodyne optical phase locking of a low-noise laser diode. Optical detection of the beat-note signals for the laser lock and the link noise compensation are obtained with stable and low-noise fibered optical interferometer. We show 3.5 days of continuous operation of the noise-compensated 4-span cascaded link leading to fractional frequency instability of 4x10(-16) at 1-s measurement time and 1x10(-19) at 2000 s. This cascaded link was extended to 1480-km with the same performance. This work is a significant step towards a sustainable wide area ultra-stable optical frequency distribution and comparison network at a very high level of performance.
Quantum teleportation and entanglement distribution over 100-kilometre free-space channels.
Yin, Juan; Ren, Ji-Gang; Lu, He; Cao, Yuan; Yong, Hai-Lin; Wu, Yu-Ping; Liu, Chang; Liao, Sheng-Kai; Zhou, Fei; Jiang, Yan; Cai, Xin-Dong; Xu, Ping; Pan, Ge-Sheng; Jia, Jian-Jun; Huang, Yong-Mei; Yin, Hao; Wang, Jian-Yu; Chen, Yu-Ao; Peng, Cheng-Zhi; Pan, Jian-Wei
2012-08-09
Transferring an unknown quantum state over arbitrary distances is essential for large-scale quantum communication and distributed quantum networks. It can be achieved with the help of long-distance quantum teleportation and entanglement distribution. The latter is also important for fundamental tests of the laws of quantum mechanics. Although quantum teleportation and entanglement distribution over moderate distances have been realized using optical fibre links, the huge photon loss and decoherence in fibres necessitate the use of quantum repeaters for larger distances. However, the practical realization of quantum repeaters remains experimentally challenging. Free-space channels, first used for quantum key distribution, offer a more promising approach because photon loss and decoherence are almost negligible in the atmosphere. Furthermore, by using satellites, ultra-long-distance quantum communication and tests of quantum foundations could be achieved on a global scale. Previous experiments have achieved free-space distribution of entangled photon pairs over distances of 600 metres (ref. 14) and 13 kilometres (ref. 15), and transfer of triggered single photons over a 144-kilometre one-link free-space channel. Most recently, following a modified scheme, free-space quantum teleportation over 16 kilometres was demonstrated with a single pair of entangled photons. Here we report quantum teleportation of independent qubits over a 97-kilometre one-link free-space channel with multi-photon entanglement. An average fidelity of 80.4 ± 0.9 per cent is achieved for six distinct states. Furthermore, we demonstrate entanglement distribution over a two-link channel, in which the entangled photons are separated by 101.8 kilometres. Violation of the Clauser-Horne-Shimony-Holt inequality is observed without the locality loophole. Besides being of fundamental interest, our results represent an important step towards a global quantum network. Moreover, the high-frequency and high-accuracy acquiring, pointing and tracking technique developed in our experiment can be directly used for future satellite-based quantum communication and large-scale tests of quantum foundations.
Atmospheric propagation characteristics of highest importance to commercial free space optics
NASA Astrophysics Data System (ADS)
Korevaar, Eric J.; Kim, Isaac I.; McArthur, Bruce
2003-04-01
There is a certain amount of disconnect between the perception and reality of Free Space Optics (FSO), both in the marketplace and in the technical community. In the marketplace, the requirement for FSO technology has not grown to even a fraction of the levels predicted a few years ago. In the technical community, proposed solutions for the limitations of FSO continue to miss the mark. The main commercial limitation for FSO is that light does not propagate very far in dense fog, which occurs a non-negligible amount of the time. There is no known solution for this problem (other than using microwave or other modality backup systems), and therefore FSO equipment has to be priced very competitively to sell in a marketplace dominated by copper wire, fiber optic cabling and increasingly lower cost and higher bandwidth wireless microwave equipment. Expensive technologies such as adaptive optics, which could potentially increase equipment range in clear weather, do not justify the added cost when expected bad weather conditions are taken into account. In this paper we present a simple equation to fit average data for probability of exceeding different atmospheric attenuation values. This average attenuation equation is then used to compare the expected availability performance as a function of link distance for representative FSO systems of different cost.
Space Applications Industrial Laser System (SAILS)
NASA Technical Reports Server (NTRS)
Mccay, T. D.; Bible, J. B.; Mueller, R. E.
1993-01-01
A program is underway to develop a YAG laser based materials processing workstation to fly in the cargo bay of the Space Shuttle. This workstation, called Space Applications Industrial Laser System (SAILS), will be capable of cutting and welding steel, aluminum, and Inconel alloys of the type planned for use in constructing the Space Station Freedom. As well as demonstrating the ability of a YAG laser to perform remote (fiber-optic delivered) repair and fabrication operations in space, fundamental data will be collected on these interactions for comparison with terrestrial data and models. The flight system, scheduled to fly in 1996, will be constructed as three modules using standard Get-Away-Special (GAS) canisters. The first module holds the laser head and cooling system, while the second contains a high peak power electrical supply. The third module houses the materials processing workstation and the command and data acquisition subsystems. The laser head and workstation cansisters are linked by a fiber-optic cable to transmit the laser light. The team assembled to carry out this project includes Lumonics Industrial Products (laser), Tennessee Technological University (structural analysis and fabrication), Auburn University Center for Space Power (electrical engineering), University of Waterloo (low-g laser process consulting), and CSTAR/UTSI (data acquisition, control, software, integration, experiment design). This report describes the SAILS program and highlights recent activities undertaken at CSTAR.
Embedded calibration system for the DIII-D Langmuir probe analog fiber optic links
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watkins, J. G.; Rajpal, R.; Mandaliya, H.
2012-10-15
This paper describes a generally applicable technique for simultaneously measuring offset and gain of 64 analog fiber optic data links used for the DIII-D fixed Langmuir probes by embedding a reference voltage waveform in the optical transmitted signal before every tokamak shot. The calibrated data channels allow calibration of the power supply control fiber optic links as well. The array of fiber optic links and the embedded calibration system described here makes possible the use of superior modern data acquisition electronics in the control room.
Ren, Yongxiong; Li, Long; Wang, Zhe; ...
2016-09-12
To increase system capacity of underwater optical communications, we employ the spatial domain to simultaneously transmit multiple orthogonal spatial beams, each carrying an independent data channel. In this paper, we show up to a 40-Gbit/s link by multiplexing and transmitting four green orbital angular momentum (OAM) beams through a single aperture. Moreover, we investigate the degrading effects of scattering/turbidity, water current, and thermal gradient-induced turbulence, and we find that thermal gradients cause the most distortions and turbidity causes the most loss. We show systems results using two different data generation techniques, one at 1064 nm for 10-Gbit/s/beam and one atmore » 520 nm for 1-Gbit/s/beam; we use both techniques since present data-modulation technologies are faster for infrared (IR) than for green. For the 40-Gbit/s link, data is modulated in the IR, and OAM imprinting is performed in the green using a specially-designed metasurface phase mask. For the 4-Gbit/s link, a green laser diode is directly modulated. Lastly, we show that inter-channel crosstalk induced by thermal gradients can be mitigated using multi-channel equalisation processing.« less
Ren, Yongxiong; Li, Long; Wang, Zhe; Kamali, Seyedeh Mahsa; Arbabi, Ehsan; Arbabi, Amir; Zhao, Zhe; Xie, Guodong; Cao, Yinwen; Ahmed, Nisar; Yan, Yan; Liu, Cong; Willner, Asher J.; Ashrafi, Solyman; Tur, Moshe; Faraon, Andrei; Willner, Alan E.
2016-01-01
To increase system capacity of underwater optical communications, we employ the spatial domain to simultaneously transmit multiple orthogonal spatial beams, each carrying an independent data channel. In this paper, we show up to a 40-Gbit/s link by multiplexing and transmitting four green orbital angular momentum (OAM) beams through a single aperture. Moreover, we investigate the degrading effects of scattering/turbidity, water current, and thermal gradient-induced turbulence, and we find that thermal gradients cause the most distortions and turbidity causes the most loss. We show systems results using two different data generation techniques, one at 1064 nm for 10-Gbit/s/beam and one at 520 nm for 1-Gbit/s/beam; we use both techniques since present data-modulation technologies are faster for infrared (IR) than for green. For the 40-Gbit/s link, data is modulated in the IR, and OAM imprinting is performed in the green using a specially-designed metasurface phase mask. For the 4-Gbit/s link, a green laser diode is directly modulated. Finally, we show that inter-channel crosstalk induced by thermal gradients can be mitigated using multi-channel equalisation processing. PMID:27615808
NASA Astrophysics Data System (ADS)
Ren, Yongxiong; Li, Long; Wang, Zhe; Kamali, Seyedeh Mahsa; Arbabi, Ehsan; Arbabi, Amir; Zhao, Zhe; Xie, Guodong; Cao, Yinwen; Ahmed, Nisar; Yan, Yan; Liu, Cong; Willner, Asher J.; Ashrafi, Solyman; Tur, Moshe; Faraon, Andrei; Willner, Alan E.
2016-09-01
To increase system capacity of underwater optical communications, we employ the spatial domain to simultaneously transmit multiple orthogonal spatial beams, each carrying an independent data channel. In this paper, we show up to a 40-Gbit/s link by multiplexing and transmitting four green orbital angular momentum (OAM) beams through a single aperture. Moreover, we investigate the degrading effects of scattering/turbidity, water current, and thermal gradient-induced turbulence, and we find that thermal gradients cause the most distortions and turbidity causes the most loss. We show systems results using two different data generation techniques, one at 1064 nm for 10-Gbit/s/beam and one at 520 nm for 1-Gbit/s/beam; we use both techniques since present data-modulation technologies are faster for infrared (IR) than for green. For the 40-Gbit/s link, data is modulated in the IR, and OAM imprinting is performed in the green using a specially-designed metasurface phase mask. For the 4-Gbit/s link, a green laser diode is directly modulated. Finally, we show that inter-channel crosstalk induced by thermal gradients can be mitigated using multi-channel equalisation processing.
The Laser Communications Relay Demonstration Experiment Program
NASA Technical Reports Server (NTRS)
Israel, Dave
2017-01-01
This paper elaborates on the Laser Communications Relay Demonstration (LCRD) Experiment Program, which will engage in a number of pre-determined experiments and also call upon a wide variety of experimenters to test new laser communications technology and techniques, and to gather valuable data. LCRD is a joint project between NASAs Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT LL). LCRD will test the functionality in various settings and scenarios of optical communications links from a GEO payload to ground stations in Southern California and Hawaii over a two-year period following launch in 2019. The LCRD investigator team will execute numerous experiments to test critical aspects of laser communications activities over real links and systems, collecting data on the effects of atmospheric turbulence and weather on performance and communications availability. LCRD will also incorporate emulations of target scenarios, including direct-to-Earth (DTE) links from user spacecraft and optical relay providers supporting user spacecraft. To supplement and expand upon the results of these experiments, the project also includes a Guest Experimenters Program, which encourages individuals and groups from government agencies, academia and industry to propose diverse experiment ideas.
The Laser Communications Relay Demonstration Experiment Program
NASA Technical Reports Server (NTRS)
Israel, David J.; Edwards, Bernard L.; Moores, John D.; Piazzolla, Sabino; Merritt, Scott
2017-01-01
This paper elaborates on the Laser Communications Relay Demonstration (LCRD) Experiment Program, which will engage in a number of pre-determined experiments and also call upon a wide variety of experimenters to test new laser communications technology and techniques, and to gather valuable data. LCRD is a joint project between NASA's Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT LL). LCRD will test the functionality in various settings and scenarios of optical communications links from a GEO (Geosynchronous Earth Orbit) payload to ground stations in Southern California and Hawaii over a two-year period following launch in 2019. The LCRD investigator team will execute numerous experiments to test critical aspects of laser communications activities over real links and systems, collecting data on the effects of atmospheric turbulence and weather on performance and communications availability. LCRD will also incorporate emulations of target scenarios, including direct-to-Earth (DTE) links from user spacecraft and optical relay providers supporting user spacecraft. To supplement and expand upon the results of these experiments, the project also includes a Guest Experimenters Program, which encourages individuals and groups from government agencies, academia and industry to propose diverse experiment ideas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Yongxiong; Li, Long; Wang, Zhe
To increase system capacity of underwater optical communications, we employ the spatial domain to simultaneously transmit multiple orthogonal spatial beams, each carrying an independent data channel. In this paper, we show up to a 40-Gbit/s link by multiplexing and transmitting four green orbital angular momentum (OAM) beams through a single aperture. Moreover, we investigate the degrading effects of scattering/turbidity, water current, and thermal gradient-induced turbulence, and we find that thermal gradients cause the most distortions and turbidity causes the most loss. We show systems results using two different data generation techniques, one at 1064 nm for 10-Gbit/s/beam and one atmore » 520 nm for 1-Gbit/s/beam; we use both techniques since present data-modulation technologies are faster for infrared (IR) than for green. For the 40-Gbit/s link, data is modulated in the IR, and OAM imprinting is performed in the green using a specially-designed metasurface phase mask. For the 4-Gbit/s link, a green laser diode is directly modulated. Lastly, we show that inter-channel crosstalk induced by thermal gradients can be mitigated using multi-channel equalisation processing.« less
Ren, Yongxiong; Li, Long; Wang, Zhe; Kamali, Seyedeh Mahsa; Arbabi, Ehsan; Arbabi, Amir; Zhao, Zhe; Xie, Guodong; Cao, Yinwen; Ahmed, Nisar; Yan, Yan; Liu, Cong; Willner, Asher J; Ashrafi, Solyman; Tur, Moshe; Faraon, Andrei; Willner, Alan E
2016-09-12
To increase system capacity of underwater optical communications, we employ the spatial domain to simultaneously transmit multiple orthogonal spatial beams, each carrying an independent data channel. In this paper, we show up to a 40-Gbit/s link by multiplexing and transmitting four green orbital angular momentum (OAM) beams through a single aperture. Moreover, we investigate the degrading effects of scattering/turbidity, water current, and thermal gradient-induced turbulence, and we find that thermal gradients cause the most distortions and turbidity causes the most loss. We show systems results using two different data generation techniques, one at 1064 nm for 10-Gbit/s/beam and one at 520 nm for 1-Gbit/s/beam; we use both techniques since present data-modulation technologies are faster for infrared (IR) than for green. For the 40-Gbit/s link, data is modulated in the IR, and OAM imprinting is performed in the green using a specially-designed metasurface phase mask. For the 4-Gbit/s link, a green laser diode is directly modulated. Finally, we show that inter-channel crosstalk induced by thermal gradients can be mitigated using multi-channel equalisation processing.
Topological Vortex and Knotted Dissipative Optical 3D Solitons Generated by 2D Vortex Solitons
NASA Astrophysics Data System (ADS)
Veretenov, N. A.; Fedorov, S. V.; Rosanov, N. N.
2017-12-01
We predict a new class of three-dimensional (3D) topological dissipative optical one-component solitons in homogeneous laser media with fast saturable absorption. Their skeletons formed by vortex lines where the field vanishes are tangles, i.e., Nc knotted or unknotted, linked or unlinked closed lines and M unclosed lines that thread all the closed lines and end at the infinitely far soliton periphery. They are generated by embedding two-dimensional laser solitons or their complexes in 3D space after their rotation around an unclosed, infinite vortex line with topological charge M0 (Nc , M , and M0 are integers). With such structure propagation, the "hula-hoop" solitons form; their stability is confirmed numerically. For the solitons found, all vortex lines have unit topological charge: the number of closed lines Nc=1 and 2 (unknots, trefoils, and Solomon knots links); unclosed vortex lines are unknotted and unlinked, their number M =1 , 2, and 3.
Topological Vortex and Knotted Dissipative Optical 3D Solitons Generated by 2D Vortex Solitons.
Veretenov, N A; Fedorov, S V; Rosanov, N N
2017-12-29
We predict a new class of three-dimensional (3D) topological dissipative optical one-component solitons in homogeneous laser media with fast saturable absorption. Their skeletons formed by vortex lines where the field vanishes are tangles, i.e., N_{c} knotted or unknotted, linked or unlinked closed lines and M unclosed lines that thread all the closed lines and end at the infinitely far soliton periphery. They are generated by embedding two-dimensional laser solitons or their complexes in 3D space after their rotation around an unclosed, infinite vortex line with topological charge M_{0} (N_{c}, M, and M_{0} are integers). With such structure propagation, the "hula-hoop" solitons form; their stability is confirmed numerically. For the solitons found, all vortex lines have unit topological charge: the number of closed lines N_{c}=1 and 2 (unknots, trefoils, and Solomon knots links); unclosed vortex lines are unknotted and unlinked, their number M=1, 2, and 3.
Retro-modulators and fast beam steering for free-space optical communications
NASA Astrophysics Data System (ADS)
Chan, Trevor Keith
Free-space optical (FSO) communications is a means of secure, high bandwidth communication through the use of a modulated laser beam in free-space as the information medium. The chaotic nature of the atmosphere and the motion of the communication nodes make laser alignment a crucial concern. The employment of retro-reflecting modulators makes the bidirectional quality of a communication link into a one sided alignment problem. While there are existing retro-reflecting modulators, their trade-offs create a lack of abilities (such as aperture size, angular range, high modulation speeds, economic viability) which do not fulfill the requirements for certain applications. Also, the beam must be directed towards the intended receiver. Form mobile or scintillated communication links, beam direction must be adaptable in real time. Once again, this area suffers from trade-offs where beamsteering speed is often limited. Research used to mitigate the trade-offs and adapt the devices into viable options for a wider range of applications is explored in this dissertation. Two forms of retro-modulators were explored; a MEMS deformable mirror retro-modulator and a solid silicon retro-modulator that modulated the light by frustrated total internal reflection (FTIR). The MEMS version offered a high speed, scalable, wavelength/angle insensitive retro-modulator which can be massed produced at low cost, while the solid retro-modulator offered a large field of view with low cost as well. Both modulator's design, simulated performances, fabrication and experimental characterization are described in this dissertation. An ultra-fast beamscanner was also designed using 2-dimensional dispersion. By using wavelength switching for directional control, a beamscanner was developed that could switch light faster than pre-existing beamscanners while the beams characteristics (most importantly its aperture) could be freely adjusted by the independent optics. This beamscanner was preceded by our work on a large channel wavelength demultiplexer which combined two orthogonally oriented wavelength demultiplexers. This created a 2-dimensional array of spots in free-space. The light was directed be a collimating lens into a specific direction based on its wavelength. The performance of this beamscanner was simulated by modeling the dispersive properties of the components.
NASA Astrophysics Data System (ADS)
Nugent, P. W.; Shaw, J. A.; Piazzolla, S.
2013-02-01
The continuous demand for high data return in deep space and near-Earth satellite missions has led NASA and international institutions to consider alternative technologies for high-data-rate communications. One solution is the establishment of wide-bandwidth Earth-space optical communication links, which require (among other things) a nearly obstruction-free atmospheric path. Considering the atmospheric channel, the most common and most apparent impairments on Earth-space optical communication paths arise from clouds. Therefore, the characterization of the statistical behavior of cloud coverage for optical communication ground station candidate sites is of vital importance. In this article, we describe the development and deployment of a ground-based, long-wavelength infrared cloud imaging system able to monitor and characterize the cloud coverage. This system is based on a commercially available camera with a 62-deg diagonal field of view. A novel internal-shutter-based calibration technique allows radiometric calibration of the camera, which operates without a thermoelectric cooler. This cloud imaging system provides continuous day-night cloud detection with constant sensitivity. The cloud imaging system also includes data-processing algorithms that calculate and remove atmospheric emission to isolate cloud signatures, and enable classification of clouds according to their optical attenuation. Measurements of long-wavelength infrared cloud radiance are used to retrieve the optical attenuation (cloud optical depth due to absorption and scattering) in the wavelength range of interest from visible to near-infrared, where the cloud attenuation is quite constant. This article addresses the specifics of the operation, calibration, and data processing of the imaging system that was deployed at the NASA/JPL Table Mountain Facility (TMF) in California. Data are reported from July 2008 to July 2010. These data describe seasonal variability in cloud cover at the TMF site, with cloud amount (percentage of cloudy pixels) peaking at just over 51 percent during February, of which more than 60 percent had optical attenuation exceeding 12 dB at wavelengths in the range from the visible to the near-infrared. The lowest cloud amount was found during August, averaging 19.6 percent, and these clouds were mostly optically thin, with low attenuation.
Driving Chemical Reactions in Plasmonic Nanogaps with Electrohydrodynamic Flow.
Thrift, William J; Nguyen, Cuong Q; Darvishzadeh-Varcheie, Mahsa; Zare, Siavash; Sharac, Nicholas; Sanderson, Robert N; Dupper, Torin J; Hochbaum, Allon I; Capolino, Filippo; Abdolhosseini Qomi, Mohammad Javad; Ragan, Regina
2017-11-28
Nanoparticles from colloidal solution-with controlled composition, size, and shape-serve as excellent building blocks for plasmonic devices and metasurfaces. However, understanding hierarchical driving forces affecting the geometry of oligomers and interparticle gap spacings is still needed to fabricate high-density architectures over large areas. Here, electrohydrodynamic (EHD) flow is used as a long-range driving force to enable carbodiimide cross-linking between nanospheres and produces oligomers exhibiting sub-nanometer gap spacing over mm 2 areas. Anhydride linkers between nanospheres are observed via surface-enhanced Raman scattering (SERS) spectroscopy. The anhydride linkers are cleavable via nucleophilic substitution and enable placement of nucleophilic molecules in electromagnetic hotspots. Atomistic simulations elucidate that the transient attractive force provided by EHD flow is needed to provide a sufficient residence time for anhydride cross-linking to overcome slow reaction kinetics. This synergistic analysis shows assembly involves an interplay between long-range driving forces increasing nanoparticle-nanoparticle interactions and probability that ligands are in proximity to overcome activation energy barriers associated with short-range chemical reactions. Absorption spectroscopy and electromagnetic full-wave simulations show that variations in nanogap spacing have a greater influence on optical response than variations in close-packed oligomer geometry. The EHD flow-anhydride cross-linking assembly method enables close-packed oligomers with uniform gap spacings that produce uniform SERS enhancement factors. These results demonstrate the efficacy of colloidal driving forces to selectively enable chemical reactions leading to future assembly platforms for large-area nanodevices.
LINKING Lyα AND LOW-IONIZATION TRANSITIONS AT LOW OPTICAL DEPTH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaskot, A. E.; Oey, M. S.
2014-08-20
We suggest that low optical depth in the Lyman continuum (LyC) may relate the Lyα emission, C II and Si II absorption, and C II* and Si II* emission seen in high-redshift galaxies. We base this analysis on Hubble Space Telescope Cosmic Origins Spectrograph spectra of four Green Pea (GP) galaxies, which may be analogs of z > 2 Lyα emitters (LAEs). In the two GPs with the strongest Lyα emission, the Lyα line profiles show reduced signs of resonant scattering. Instead, the Lyα profiles resemble the Hα line profiles of evolved star ejecta, suggesting that the Lyα emission originatesmore » from a low column density and similar outflow geometry. The weak C II absorption and presence of non-resonant C II* emission in these GPs support this interpretation and imply a low LyC optical depth along the line of sight. In two additional GPs, weak Lyα emission and strong C II absorption suggest a higher optical depth. These two GPs differ in their Lyα profile shapes and C II* emission strengths, however, indicating different inclinations of the outflows to our line of sight. With these four GPs as examples, we explain the observed trends linking Lyα, C II, and C II* in stacked LAE spectra, in the context of optical depth and geometric effects. Specifically, in some galaxies with strong Lyα emission, a low LyC optical depth may allow Lyα to escape with reduced scattering. Furthermore, C II absorption, C II* emission, and Lyα profile shape can reveal the optical depth, constrain the orientation of neutral outflows in LAEs, and identify candidate LyC emitters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonsago, C. Alosious; Albert, Helen Merina; Karthikeyan, J.
2012-07-15
Highlights: ► L-Histidinium maleate 1.5-hydrate, a new organic crystal has been grown for the first time. ► The crystal structure is reported for the first time (CCDC 845975). ► The crystal belongs to monoclinic system with space group P2{sub 1}, Z = 4, a = 11.4656(7) Å, b = 8.0530(5) Å, c = 14.9705(9) Å and β = 101.657(2)°. ► The optical absorption study substantiates the complete transparency of the crystal. ► Kurtz powder SHG test confirms the nonlinear property of the crystal. -- Abstract: A new organic nonlinear optical material L-histidinium maleate 1.5-hydrate (LHM) with the molecular formula C{submore » 10}H{sub 16}N{sub 3}O{sub 7.5} has been successfully synthesized from aqueous solution by slow solvent evaporation method. The structural characterization of the grown crystal was carried out by single crystal X-ray diffraction at 293(2) K. In the crystal, molecules are linked through inter and intramolecular N-H⋯O and O-H⋯O hydrogen bonds, generate edge fused ring motif. The hydrogen bonded motifs are linked to each other to form a three dimensional network. The FT-IR spectroscopy was used to identify the functional groups of the synthesized compound. The optical behavior of the grown crystal was examined by UV–visible spectral analysis, which shows that the optical absorption is almost negligible in the wavelength range 280–1300 nm. The nonlinear optical property was confirmed by the powder technique of Kurtz and Perry. The thermal behavior of the grown crystal was analyzed by thermogravimetric analysis.« less
NASA Astrophysics Data System (ADS)
Mishra, Neha; Sriram Kumar, D.; Jha, Pranav Kumar
2017-06-01
In this paper, we investigate the performance of the dual-hop free space optical (FSO) communication systems under the effect of strong atmospheric turbulence together with misalignment effects (pointing error). We consider a relay assisted link using decode and forward (DF) relaying protocol between source and destination with the assumption that Channel State Information is available at both transmitting and receiving terminals. The atmospheric turbulence channels are modeled by k-distribution with pointing error impairment. The exact closed form expression is derived for outage probability and bit error rate and illustrated through numerical plots. Further BER results are compared for the different modulation schemes.
Performance of synchronous optical receivers using atmospheric compensation techniques.
Belmonte, Aniceto; Khan, Joseph
2008-09-01
We model the impact of atmospheric turbulence-induced phase and amplitude fluctuations on free-space optical links using synchronous detection. We derive exact expressions for the probability density function of the signal-to-noise ratio in the presence of turbulence. We consider the effects of log-normal amplitude fluctuations and Gaussian phase fluctuations, in addition to local oscillator shot noise, for both passive receivers and those employing active modal compensation of wave-front phase distortion. We compute error probabilities for M-ary phase-shift keying, and evaluate the impact of various parameters, including the ratio of receiver aperture diameter to the wave-front coherence diameter, and the number of modes compensated.
NASA Astrophysics Data System (ADS)
Moision, Bruce; Erkmen, Baris; Keyes, Edward; Belt, Todd; Bowen, Oliver; Brinkley, Devin; Csonka, Paul; Eglington, Michael; Kazmierski, Andrei; Kim, Nam-hyong; Moody, John; Tu, Thanh; Vermeer, William
2017-02-01
Internet connectivity is limited and in some cases non-existent for a significant part of the world's population. Project Loon aims to address this with a network of high-altitude balloons traveling in the stratosphere, at an altitude of approximately 20 km. The balloons navigate by using the stratified wind layers at different altitudes, adjusting the balloon's altitude to catch winds in a desired direction. Data transfer is achieved by 1) uplinking a signal from an Internet-connected ground station to a balloon terminal, 2) crosslinking the signal through the balloon network to reach the geographic area of the users, and 3) downlinking the signal directly to the end-users' phones or other LTE-enabled devices. We describe Loon's progress on utilizing free-space optical communications (FSOC) for the inter-balloon crosslinks. FSOC, offering high data rates and long communication ranges, is well-suited for communication between high-altitude platforms. A stratospheric link is sufficiently high to be above weather events (clouds, fog, rain, etc.), and the impact of atmospheric turbulence is significantly weaker than at ground level. In addition, being in the stratosphere as opposed to space helps avoid the typical challenges faced by space-based systems, namely operation in a vacuum environment with significant radiation. Finally, the angular pointing disturbances introduced by a floating balloon-based platform are notably less than any propelled platform, which simplifies the disturbance rejection requirements on the FSOC system. We summarize results from Project Loon's early-phase experimental inter-balloon links at 20 km altitude, demonstrating full duplex 130 Mbps throughput at distances in excess of 100 km over the course of several-day flights. The terminals utilize a monostatic design, with dual wavelengths for communication and a dedicated wide-angle beacon for pointing, acquisition, and tracking. We summarize the constraints on the terminal design, and the key design trades that led to our initial system. We illustrate measured performance during flight tests: received signal power variations with range, pointing system performance, and data throughput.
A family with X-linked optic atrophy linked to the OPA2 locus Xp11.4-Xp11.2.
Katz, Bradley J; Zhao, Yu; Warner, Judith E A; Tong, Zongzhong; Yang, Zhenglin; Zhang, Kang
2006-10-15
Autosomal dominant optic atrophy (ADOA) is the most common inherited optic atrophy. Clinical features of ADOA include a slowly progressive bilateral loss of visual acuity, constriction of peripheral visual fields, central scotomas, and color vision abnormalities. Although ADOA is the most commonly inherited optic atrophy, autosomal recessive, X-linked, mitochondrial, and sporadic forms have also been reported. Four families with X-linked optic atrophy (XLOA) were previously described. One family was subsequently linked to Xp11.4-Xp11.2 (OPA2). This investigation studied one multi-generation family with an apparently X-linked form of optic atrophy and compared their clinical characteristics with those of the previously described families, and determined whether this family was linked to the same genetic locus. Fifteen individuals in a three-generation Idaho family underwent complete eye examination, color vision testing, automated perimetry, and fundus photography. Polymorphic markers were used to genotype each individual and to determine linkage. Visual acuities ranged from 20/30 to 20/100. All affected subjects had significant optic nerve pallor. Obligate female carriers were clinically unaffected. Preliminary linkage analysis (LOD score = 1.8) revealed that the disease gene localized to the OPA2 locus on Xp11.4-Xp11.2. Four forms of inherited optic neuropathy, ADOA, autosomal recessive optic atrophy (Costeff Syndrome), Leber hereditary optic neuropathy, and Charcot-Marie-Tooth disease with optic atrophy, are associated with mitochondrial dysfunction. Future identification of the XLOA gene will reveal whether this form of optic atrophy is also associated with a mitochondrial defect. Identification of the XLOA gene will advance our understanding of the inherited optic neuropathies and perhaps suggest treatments for these diseases. An improved understanding of inherited optic neuropathies may in turn advance our understanding of acquired optic nerve diseases, such as glaucoma and ischemic optic neuropathy. (c) 2006 Wiley-Liss, Inc.
Reconfigurable routing protocol for free space optical sensor networks.
Xie, Rong; Yang, Won-Hyuk; Kim, Young-Chon
2012-01-01
Recently, free space optical sensor networks (FSOSNs), which are based on free space optics (FSO) instead of radio frequency (RF), have gained increasing visibility over traditional wireless sensor networks (WSNs) due to their advantages such as larger capacity, higher security, and lower cost. However, the performance of FSOSNs is restricted to the requirement of a direct line-of-sight (LOS) path between a sender and a receiver pair. Once a node dies of energy depletion, the network would probably suffer from a dramatic decrease of connectivity, resulting in a huge loss of data packets. Thus, this paper proposes a reconfigurable routing protocol (RRP) to overcome this problem by dynamically reconfiguring the network virtual topology. The RRP works in three phases: (1) virtual topology construction, (2) routing establishment, and (3) reconfigurable routing. When data transmission begins, the data packets are first routed through the shortest hop paths. Then a reconfiguration is initiated by the node whose residual energy falls below a threshold. Nodes affected by this dying node are classified into two types, namely maintenance nodes and adjustment nodes, and they are reconfigured according to the types. An energy model is designed to evaluate the performance of RRP through OPNET simulation. Our simulation results indicate that the RRP achieves better performance compared with the simple-link protocol and a direct reconfiguration scheme in terms of connectivity, network lifetime, packet delivery ratio and the number of living nodes.
LOLA: a 40.000 km optical link between an aircraft and a geostationary satellite
NASA Astrophysics Data System (ADS)
Cazaubiel, Vincent; Planche, Gilles; Chorvalli, Vincent; Le Hors, Lénaïc.; Roy, Bernard; Giraud, Emmanuel; Vaillon, Ludovic; Carre, Francois; Decourbey, Eric
2017-11-01
The LOLA program aims at characterising a 40.000 km optical link through the atmosphere between a high altitude aircraft and a geostationary platform. It opens a new area in the field of optical communications with moving platforms. A complete new optical terminal has been designed and manufactured for this program. The optical terminal architecture includes a specific pointing subsystem to acquire and stabilize the line of sight despite the induced vibrations from the aircraft and the moving pattern from the received laser signal. The optical configuration features a silicon carbide telescope and optical bench to ensure a high thermoelastic angular stability between receive and transmit beams. The communications subsystem includes fibered laser diodes developed in Europe and high performance avalanche photo detectors. Specific encoding patterns are used to maintain the performance of the link despite potential strong fading of the signal. A specific optical link model through the atmosphere has been developed and has been validated thanks to the optical link measurements performed between ARTEMIS and the Optical Ground Station located in the Canarian islands. This model will be used during the flight tests campaign that is to start this summer.
Method and apparatus for free-space quantum key distribution in daylight
Hughes, Richard J.; Buttler, William T.; Lamoreaux, Steve K.; Morgan, George L.; Nordholt, Jane E.; Peterson, C. Glen; Kwiat, Paul G.
2004-06-08
A quantum cryptography apparatus securely generates a key to be used for secure transmission between a sender and a receiver connected by an atmospheric transmission link. A first laser outputs a timing bright light pulse; other lasers output polarized optical data pulses after having been enabled by a random bit generator. Output optics transmit output light from the lasers that is received by receiving optics. A first beam splitter receives light from the receiving optics, where a received timing bright light pulse is directed to a delay circuit for establishing a timing window for receiving light from the lasers and where an optical data pulse from one of the lasers has a probability of being either transmitted by the beam splitter or reflected by the beam splitter. A first polarizer receives transmitted optical data pulses to output one data bit value and a second polarizer receives reflected optical data pulses to output a second data bit value. A computer receives pulses representing receipt of a timing bright timing pulse and the first and second data bit values, where receipt of the first and second data bit values is indexed by the bright timing pulse.
NASA Technical Reports Server (NTRS)
Grubbs, Rodney
2016-01-01
The first live High Definition Television (HDTV) from a spacecraft was in November, 2006, nearly ten years before the 2016 SpaceOps Conference. Much has changed since then. Now, live HDTV from the International Space Station (ISS) is routine. HDTV cameras stream live video views of the Earth from the exterior of the ISS every day on UStream, and HDTV has even flown around the Moon on a Japanese Space Agency spacecraft. A great deal has been learned about the operations applicability of HDTV and high resolution imagery since that first live broadcast. This paper will discuss the current state of real-time and file based HDTV and higher resolution video for space operations. A potential roadmap will be provided for further development and innovations of high-resolution digital motion imagery, including gaps in technology enablers, especially for deep space and unmanned missions. Specific topics to be covered in the paper will include: An update on radiation tolerance and performance of various camera types and sensors and ramifications on the future applicability of these types of cameras for space operations; Practical experience with downlinking very large imagery files with breaks in link coverage; Ramifications of larger camera resolutions like Ultra-High Definition, 6,000 [pixels] and 8,000 [pixels] in space applications; Enabling technologies such as the High Efficiency Video Codec, Bundle Streaming Delay Tolerant Networking, Optical Communications and Bayer Pattern Sensors and other similar innovations; Likely future operations scenarios for deep space missions with extreme latency and intermittent communications links.
NASA Astrophysics Data System (ADS)
Abaza, Mohamed; Mesleh, Raed; Mansour, Ali; Aggoune, el-Hadi
2015-01-01
The performance analysis of a multi-hop decode and forward relaying free-space optical (FSO) communication system is presented in this paper. The considered FSO system uses intensity modulation and direct detection as means of transmission and reception. Atmospheric turbulence impacts are modeled as a log-normal channel, and different weather attenuation effects and geometric losses are taken into account. It is shown that multi-hop is an efficient technique to mitigate such effects in FSO communication systems. A comparison with direct link and multiple-input single-output (MISO) systems considering correlation effects at the transmitter is provided. Results show that MISO multi-hop FSO systems are superior than their counterparts over links exhibiting high attenuation. Monte Carlo simulation results are provided to validate the bit error rate (BER) analyses and conclusions.
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. House Committee on Science, Space and Technology.
The integration of television into a digital framework makes possible the merger of television and computers. Development of a digital system will permit the consumer to receive television and computer images on the same screen at a quality approaching 35mm film. If fiber optic telecommunications lines are linked to the home and standards are…
Abu-Almaalie, Zina; Ghassemlooy, Zabih; Bhatnagar, Manav R; Le-Minh, Hoa; Aslam, Nauman; Liaw, Shien-Kuei; Lee, It Ee
2016-11-20
Physical layer network coding (PNC) improves the throughput in wireless networks by enabling two nodes to exchange information using a minimum number of time slots. The PNC technique is proposed for two-way relay channel free space optical (TWR-FSO) communications with the aim of maximizing the utilization of network resources. The multipair TWR-FSO is considered in this paper, where a single antenna on each pair seeks to communicate via a common receiver aperture at the relay. Therefore, chip interleaving is adopted as a technique to separate the different transmitted signals at the relay node to perform PNC mapping. Accordingly, this scheme relies on the iterative multiuser technique for detection of users at the receiver. The bit error rate (BER) performance of the proposed system is examined under the combined influences of atmospheric loss, turbulence-induced channel fading, and pointing errors (PEs). By adopting the joint PNC mapping with interleaving and multiuser detection techniques, the BER results show that the proposed scheme can achieve a significant performance improvement against the degrading effects of turbulences and PEs. It is also demonstrated that a larger number of simultaneous users can be supported with this new scheme in establishing a communication link between multiple pairs of nodes in two time slots, thereby improving the channel capacity.
Yang, Chunyong; Xu, Chuang; Ni, Wenjun; Gan, Yu; Hou, Jin; Chen, Shaoping
2017-10-16
A novel scheme is proposed to mitigate the atmospheric turbulence effect in free space optical (FSO) communication employing orbital angular momentum (OAM) multiplexing. In this scheme, the Gaussian beam is used as an auxiliary light with a common-path to obtain the distortion information caused by atmospheric turbulence. After turbulence, the heterodyne coherent detection technology is demonstrated to realize the turbulence mitigation. With the same turbulence distortion, the OAM beams and the Gaussian beam are respectively utilized as the signal light and the local oscillation light. Then the turbulence distortion is counteracted to a large extent. Meanwhile, a phase matching method is proposed to select the specific OAM mode. The discrimination between the neighboring OAM modes is obviously improved by detecting the output photocurrent. Moreover, two methods of beam size adjustment have been analyzed to achieve better performance for turbulence mitigation. Numerical results show that the system bit error rate (BER) can reach 10 -5 under strong turbulence in simulation situation.
Yan, Xu; Guo, Lixin; Cheng, Mingjian; Li, Jiangting
2018-05-14
Orbital angular momentum (OAM) mode crosstalk induced by atmospheric turbulence is a challenging phenomenon commonly occurring in OAM-based free-space optical (FSO) communication. Recent advances have facilitated new practicable methods using abruptly autofocusing light beams for weakening the turbulence effect on the FSO link. In this work, we show that a circular phase-locked Airy vortex beam array (AVBA) with sufficient elements has the inherent ability to form an abruptly autofocusing light beam carrying OAM, and its focusing properties can be controlled on demand by adjusting the topological charge values and locations of these vortices embedded in the array elements. The performance of a tailored Airy vortex beam array (TAVBA) through atmospheric turbulence is numerically studied. In a comparison with the ring Airy vortex beam (RAVB), the results indicate that TAVBA can be a superior light source for effectively reducing the intermodal crosstalk and vortex splitting, thus leading to improvement in the FSO system performance.
NASA Technical Reports Server (NTRS)
Tasca, D. M.
1981-01-01
Single event upset phenomena are discussed, taking into account cosmic ray induced errors in IIL microprocessors and logic devices, single event upsets in NMOS microprocessors, a prediction model for bipolar RAMs in a high energy ion/proton environment, the search for neutron-induced hard errors in VLSI structures, soft errors due to protons in the radiation belt, and the use of an ion microbeam to study single event upsets in microcircuits. Basic mechanisms in materials and devices are examined, giving attention to gamma induced noise in CCD's, the annealing of MOS capacitors, an analysis of photobleaching techniques for the radiation hardening of fiber optic data links, a hardened field insulator, the simulation of radiation damage in solids, and the manufacturing of radiation resistant optical fibers. Energy deposition and dosimetry is considered along with SGEMP/IEMP, radiation effects in devices, space radiation effects and spacecraft charging, EMP/SREMP, and aspects of fabrication, testing, and hardness assurance.
NASA Technical Reports Server (NTRS)
Bozyan, Elizabeth P.; Hemenway, Paul D.; Argue, A. Noel
1990-01-01
Observations of a set of 89 extragalactic objects (EGOs) will be made with the Hubble Space Telescope Fine Guidance Sensors and Planetary Camera in order to link the HIPPARCOS Instrumental System to an extragalactic coordinate system. Most of the sources chosen for observation contain compact radio sources and stellarlike nuclei; 65 percent are optical variables beyond a 0.2 mag limit. To ensure proper exposure times, accurate mean magnitudes are necessary. In many cases, the average magnitudes listed in the literature were not adequate. The literature was searched for all relevant photometric information for the EGOs, and photometric parameters were derived, including mean magnitude, maximum range, and timescale of variability. This paper presents the results of that search and the parameters derived. The results will allow exposure times to be estimated such that an observed magnitude different from the tabular magnitude by 0.5 mag in either direction will not degrade the astrometric centering ability on a Planetary Camera CCD frame.
NASA Technical Reports Server (NTRS)
Lo, C. John; Klein, Kerry; Jones, William R., Jr.; Jansen, Mark J.; Wemhoner, Jens
2009-01-01
A study of hybrid material couples using the Spiral Orbit Tribometer (SOT) was initiated to investigate both lubricated (Pennzane X2000 and Brayco 815Z) and unlubricated Si3N4, 440C SS, Rex 20, Cronidur X30 and X40 plates with Cerbec SN-101-C (Si3N4) and 440C balls. The hybrid wheel/bearing assembly will be used on the Linear Optical Delay Line (LODL) stage as an element of the NASA Space Interferometry Mission (SIM). SIM is an orbiting interferometer linking a pair of telescopes within the spacecraft and, by using an interferometry technique and several precision optical stages, is able to measure the motions of known stars much better than current ground or space based systems. This measurement will provide the data to "infer" the existence of any plants, undetectable by other methods, orbiting these known stars.
NASA Technical Reports Server (NTRS)
Edwards, C. D.
1990-01-01
Connected-element interferometry (CEI) has the potential to provide high-accuracy angular spacecraft tracking on short baselines by making use of the very precise phase delay observable. Within the Goldstone Deep Space Communications Complex (DSCC), one of three tracking complexes in the NASA Deep Space Network, baselines of up to 21 km in length are available. Analysis of data from a series of short-baseline phase-delay interferometry experiments are presented to demonstrate the potential tracking accuracy on these baselines. Repeated differential observations of pairs of angularly close extragalactic radio sources were made to simulate differential spacecraft-quasar measurements. Fiber-optic data links and a correlation processor are currently being developed and installed at Goldstone for a demonstration of real-time CEI in 1990.
NASA Astrophysics Data System (ADS)
Zou, Li; Wang, Le; Zhao, Shengmei
2017-10-01
Atmospheric turbulence (AT) induced crosstalk can significantly impair the performance of free-space optical (FSO) communication link using orbital angular momentum (OAM) multiplexing. In this paper, we propose a spatial diversity (SD) turbulence mitigation scheme in an OAM-multiplexed FSO communication link. First, we present a SD mitigation model for the OAM-multiplexed FSO communication link under AT. Then we present a SD combining technique based on equal gain to enhance AT tolerance of the OAM-multiplexed FSO communication link. The numerical results show that performance of the OAM-multiplexed communication link has greatly improved by the proposed scheme. When the turbulence strength Cn2 is 5 × 10-15m - 2 / 3, the transmission distance is 1000 m and the channel signal-to-noise ratio (SNR) is 20 dB, the bit-error-rate (BER) performance of four spatial multiplexed OAM modes lm = + 1 , + 2 , + 3 , + 4 are 3 fold increase in comparison with those results without the proposed scheme. The proposed scheme is a promising direction for compensating the interference caused by AT in the OAM-multiplexed FSO communication link.
Space optics; Proceedings of the Seminar, Huntsville, Ala., May 22-24, 1979
NASA Technical Reports Server (NTRS)
Wyman, C. L.
1979-01-01
The seminar focused on infrared systems, the space telescope, new design for space astronomy, future earth resources systems, and planetary systems. Papers were presented on infrared astronomy satellite, infrared telescope on Spacelab 2, design alternatives for the Shuttle Infrared Telescope Facility, Spacelab 2 infrared telescope cryogenic system, geometrical theory of diffraction and telescope stray-light analysis, Space Telescope scientific instruments, faint-object spectrograph for the Space Telescope, light scattering from multilayer optics, bidirectional reflectance distribution function measurements of stray light suppression coatings for the Space Telescope, optical fabrication of a 60-in. mirror, interferogram analysis for space optics, nuclear-pumped lasers for space application, geophysical fluid flow experiment, coherent rays for optical astronomy in space, optical system with fiber-optical elements, and Pioneer-Venus solar flux radiometer.
Effect of Pointing Error on the BER Performance of an Optical CDMA FSO Link with SIK Receiver
NASA Astrophysics Data System (ADS)
Nazrul Islam, A. K. M.; Majumder, S. P.
2017-12-01
An analytical approach is presented for an optical code division multiple access (OCDMA) system over free space optical (FSO) channel considering the effect of pointing error between the transmitter and the receiver. Analysis is carried out with an optical sequence inverse keying (SIK) correlator receiver with intensity modulation and direct detection (IM/DD) to find the bit error rate (BER) with pointing error. The results are evaluated numerically in terms of signal-to-noise plus multi-access interference (MAI) ratio, BER and power penalty due to pointing error. It is noticed that the OCDMA FSO system is highly affected by pointing error with significant power penalty at a BER of 10-6 and 10-9. For example, penalty at BER 10-9 is found to be 9 dB corresponding to normalized pointing error of 1.4 for 16 users with processing gain of 256 and is reduced to 6.9 dB when the processing gain is increased to 1,024.
Laser Ground System for Communication Experiments with ARTEMIS
NASA Astrophysics Data System (ADS)
Kuzkov, Volodymyr; Volovyk, Dmytro; Kuzkov, Sergii; Sodnik, Zoran; Pukha, Sergii; Caramia, Vincenzo
2012-10-01
The ARTEMIS satellite with the OPALE laser communication terminal on-board was launched on 12 July, 2001. 1789 laser communications sessions were performed between ARTEMIS and SPOT-4 (PASTEL) from 01 April 2003 to 09 January 2008 with total duration of 378 hours. Regular laser communication experiments between ESA's Optical Ground Station (OGS - altitude 2400 m above see level) and ARTEMIS in various atmosphere conditions were also performed. The Japanese Space Agency (JAXA) launched the KIRARI (OICETS) satellite with laser communication terminal called LUCE. Laser communication links between KIRARI and ARTEMIS were successfully realized and international laser communications experiments from the KIRARI satellite were also successfully performed with optical ground stations located in the USA (JPL), Spain (ESA OGS), Germany (DLR), and Japan (NICT). The German Space Agency (DLR) performed laser communication links between two LEO satellites (TerraSAR-X and NFIRE), demonstrating data transfer rates of 5.6Gbit/s and performed laser communication experiments between the satellites and the ESA optical ground station. To reduce the influence of weather conditions on laser communication between satellites and ground stations, a network of optical stations situated in different atmosphere regions needs to be created. In 2002, the Main Astronomical Observatory (MAO) started the development of its own laser communication system to be placed into the Cassegrain focus of its 0.7m AZT-2 telescope (Fe = 10.5m), located in Kyiv 190 meters above sea level. The work was supported by the National Space Agency of Ukraine and by ESA ARTEMIS has an orbital position of 21.4° E and an orbital inclination of more than 9.75°. As a result we developed a precise tracking system for AZT-2 telescope (weighing more than 2 tons) using micro-step motors. Software was developed for computer control of the telescope to track the satellite's orbit and a tracking accuracy of 0.6 arcsec was achieved. A compact terminal for Laser Atmosphere and Communication Experiments with Satellite (LACES) has been produced. The LACES terminal includes: A CMOS camera of the pointing subsystem, a CCD camera of the tracking subsystem, an avalanche photodiode receiver module with thermoelectric cooling, a laser transmitter module with thermoelectric temperature control, a tip/tilt atmospheric turbulence compensation subsystem with movable mirrors, a four-quadrant photo-detector, a bit error rate tester module and other optical and electronic components. The principal subsystems and optical elements are mounted on a platform (weight < 20kg), which is located in the Cassegrain focus of the telescope. All systems were tested with ARTEMIS. The telemetry and dump buffer information from OPALE received by the control center in Redu (Belgium) was analyzed. During the beacon scan, the acquisition phase of laser link between OPALE laser terminal of ARTEMIS and LACES laser terminal started and laser signals from AZT-2 were detected by acquisition and tracking CCD sensors of OPALE. Some of the tests were performed in cloudy conditions. A description of our laser ground system and the experimental results will be presented in the report.
Laser Safety Method For Duplex Open Loop Parallel Optical Link
Baumgartner, Steven John; Hedin, Daniel Scott; Paschal, Matthew James
2003-12-02
A method and apparatus are provided to ensure that laser optical power does not exceed a "safe" level in an open loop parallel optical link in the event that a fiber optic ribbon cable is broken or otherwise severed. A duplex parallel optical link includes a transmitter and receiver pair and a fiber optic ribbon that includes a designated number of channels that cannot be split. The duplex transceiver includes a corresponding transmitter and receiver that are physically attached to each other and cannot be detached therefrom, so as to ensure safe, laser optical power in the event that the fiber optic ribbon cable is broken or severed. Safe optical power is ensured by redundant current and voltage safety checks.
Astronomy. Laser telemetry from space.
Bland-Hawthorn, Joss; Harwit, Alex; Harwit, Martin
2002-07-26
Space missions currently on the drawing boards are expected to gather data at rates exceeding the transmission capabilities of today's telemetry systems by many orders of magnitude. Even on current missions, onboard data compression techniques are being implemented to compensate for lack of transmission speed. But while data compression can minimize the loss of data, it is no substitute for transmitting all of the data through a faster communications link. The transmission problem will soon reach crisis proportions and will affect astronomical, Earth resources, geophysical, meteorological, planetary and other space science missions. To overcome this communications bottleneck, the authors advocate the implementation of telemetry systems based on near-infrared laser transmission techniques. The fiber-optics communications industry has developed most of the basic components required for signal transmission in this wavelength band, which should make such a system affordable on scales relevant to the cost of anticipated space science missions.
Performance of a laser microsatellite network with an optical preamplifier.
Arnon, Shlomi
2005-04-01
Laser satellite communication (LSC) uses free space as a propagation medium for various applications, such as intersatellite communication or satellite networking. An LSC system includes a laser transmitter and an optical receiver. For communication to occur, the line of sight of the transmitter and the receiver must be aligned. However, mechanical vibration and electronic noise in the control system reduce alignment between the transmitter laser beam and the receiver field of view (FOV), which results in pointing errors. The outcome of pointing errors is fading of the received signal, which leads to impaired link performance. An LSC system is considered in which the optical preamplifier is incorporated into the receiver, and a bit error probability (BEP) model is derived that takes into account the statistics of the pointing error as well as the optical amplifier and communication system parameters. The model and the numerical calculation results indicate that random pointing errors of sigma(chi)2G > 0.05 penalize communication performance dramatically for all combinations of optical amplifier gains and noise figures that were calculated.
NASA Technical Reports Server (NTRS)
Sun, Xiaoli; Davidson, Frederic M.
1990-01-01
A newly developed 220 Mbps free-space 4-ary pulse position modulation (PPM) direct detection optical communication system is described. High speed GaAs integrated circuits were used to construct the PPM encoder and receiver electronic circuits. Both PPM slot and word timing recovery were provided in the PPM receiver. The optical transmitter consisted of an AlGaAs laser diode (Mitsubishi ML5702A, lambda=821nm) and a high speed driver unit. The photodetector consisted of a silicon avalanche photodiode (APD) (RCA30902S) preceded by an optical interference filter (delta lambda=10nm). Preliminary tests showed that the self-synchronized PPM receiver could achieve a receiver bit error rate of less than 10(exp -6) at 25 nW average received optical signal power or 360 photons per transmitted information bit. The relatively poor receiver sensitivity was believed to be caused by the insufficient electronic bandwidth of the APD preamplifier and the poor linearity of the preamplifier high frequency response.
Testing and performance analysis of a 650 Mbps QPPM modem for free-space laser communications
NASA Astrophysics Data System (ADS)
Mortensen, Dale J.
1994-08-01
The testing and performance of a prototype modem developed at NASA Lewis Research Center for high-speed free-space direct detection optical communications is described. The testing was performed under laboratory conditions using computer control with specially developed test equipment that simulates free-space link conditions. The modem employs quaternary pulse position modulation (QPPM) at 325 Megabits per second (Mbps) on two optical channels, which are multiplexed to transmit a single 650 Mbps data stream. The measured results indicate that the receiver's automatic gain control (AGC), phased-locked-loop slot clock recovery, digital symbol clock recovery, matched filtering, and maximum likelihood data recovery circuits were found to have only 1.5 dB combined implementation loss during bit-error-rate (BER) performance measurements. Pseudo random bit sequences and real-time high quality video sources were used to supply 650 Mbps and 325 Mbps data streams to the modem. Additional testing revealed that Doppler frequency shifting can be easily tracked by the receiver, that simulated pointing errors are readily compensated for by the AGC circuits, and that channel timing skew affects the BER performance in an expected manner. Overall, the needed technologies for a high-speed laser communications modem were demonstrated.
QPPM receiver for free-space laser communications
NASA Technical Reports Server (NTRS)
Budinger, J. M.; Mohamed, J. H.; Nagy, L. A.; Lizanich, P. J.; Mortensen, D. J.
1994-01-01
A prototype receiver developed at NASA Lewis Research Center for direct detection and demodulation of quaternary pulse position modulated (QPPM) optical carriers is described. The receiver enables dual-channel communications at 325-Megabits per second (Mbps) per channel. The optical components of the prototype receiver are briefly described. The electronic components, comprising the analog signal conditioning, slot clock recovery, matched filter and maximum likelihood data recovery circuits are described in more detail. A novel digital symbol clock recovery technique is presented as an alternative to conventional analog methods. Simulated link degradations including noise and pointing-error induced amplitude variations are applied. The bit-error-rate performance of the electronic portion of the prototype receiver under varying optical signal-to-noise power ratios is found to be within 1.5-dB of theory. Implementation of the receiver as a hybrid of analog and digital application specific integrated circuits is planned.
Acousto-optic pointing and tracking systems for free-space laser communications
NASA Astrophysics Data System (ADS)
Nikulin, V.; Khandekar, R.; Sofka, J.; Tartakovsky, G.
2005-08-01
Implementation of long-range laser communication systems holds great promise for high-bandwidth applications. They are viewed as a technology that in the nearest future will handle most of the "last mile" communication traffic for the individual subscribers, corporate offices, military, and possibly deep space probes. Indeed, lasers allow for concentration of energy within tightly focused beams and narrow spectral interval, thus offering high throughput, information security, weight and size of components and power requirements that could not be matched by RF systems. However, the advantages of optical communication systems come in the same package with several major challenges. In particular, high data rates should be complemented by high-precision wide-bandwidth position control of a laser beam. In many applications the ability to maintain a link is affected by the complex maneuvers performed by mobile communication platforms, resident vibrations, and atmospheric effects. The search for the most effective and reliable way to shape and steer the laser beam is an on-going effort. This paper is focused on the application of acousto-optic technology as an alternative to electro-mechanical devices. With realization that an acousto-optic Bragg cell is only a component of the entire communication system, which should perform complex tasks of acquisition, pointing, and tracking of the remote terminal, we present an attempt to consider this problem from the "systems" point of view.
NASA Astrophysics Data System (ADS)
Murawski, Robert K.
Quantum Cascade Lasers (QCL) are unique unipolar conduction band devices designed to emit in the mid infrared region (MIR). They have been employed very successfully in spectroscopy and sensing applications. Motivated by predictions of modulation bandwidths above 100 GHz, communication links based on QCLs were recently demonstrated. However, the intrinsic device circuitry of the QCL limits its bandwidth. In this thesis a new All-Optical Modulation of the QCL is presented and investigated both theoretically and experimentally. This method of modulation allows for full access to the bandwidth as well as unique optical control of the MIR laser emission. For this purpose, conduction and valence band wave functions for the complex QCL structure are presented allowing for the first time calculations of their interband energy resonances. Based on this knowledge, a novel optical modulation scheme is developed utilizing interband transition for laser modulation. Using laser rate equations, more accurate predictions for the response function can be derived. Optical modulation is shown to be superior to direct modulation. In addition to this theoretical framework, first experiments are presented on the effects of illuminating a QCL with additional lasers at or above the interband gap. The first demonstration of All-Optical Modulation was achieved using time varying near infrared illumination and the complimentary signature in the MIR QCL emission was observed. In addition to extending the knowledge base of QCL research by a first calculation of its valence band structure, this work opens new possibilities in modulation and control of the QCL's MIR emission by interband transition. Application of this technique range from fundamental physics research (e.g. electron coherence) to ultrafast communication (e.g. free-space links) and high-resolution spectroscopy.
High-speed optical feeder-link system using adaptive optics
NASA Astrophysics Data System (ADS)
Arimoto, Yoshinori; Hayano, Yutaka; Klaus, Werner
1997-05-01
We propose a satellite laser communication system between a ground station and a geostationary satellite, named high- speed optical feeder link system. It is based on the application of (a) high-speed optical devices, which have been developed for ground-based high-speed fiber-optic communications, and (b) the adaptive optics which compensates wavefront distortions due to atmospheric turbulences using a real time feedback control. A link budget study shows that a system with 10-Gbps bit-rate are available assuming the state-of-the-art device performance of the Er-doped fiber amplifier. We further discuss preliminary measurement results of the atmospheric turbulence at the telescope site in Tokyo, and present current study on the design of the key components for the feeder-link laser transceiver.
Thermoreversible networks for moldable photo-responsive elastomers (Presentation Recording)
NASA Astrophysics Data System (ADS)
Kornfield, Julia A.; Kurji, Zuleikha
2015-10-01
Soft-solids that retain the responsive optical anisotropy of liquid crystals (LC) can be used as mechano-optical, electro-optical and electro-mechanical elements. We use self-assembly of block copolymers to create reversible LC gels and elastomers that flow at elevated temperatures and physically cross link upon cooling. In the melt, they can be spun, coated or molded. Segregation of the end-blocks forms uniform and uniformly spaced crosslinks. Matched sets of block copolymers are synthesized from a single "prepolymer." Specifically, we begin with polymers having polystyrene (PS) end blocks and a poly(1,2-butadiene) midblock. The pendant vinyl groups along the backbone of the midblock are used to graft mesogens, converting it to a side-group LC polymer (SGLCP). In the present case, cyanobiphenyl groups are used as the nonphotoresponsive mesogens and azobenzene groups are used as photoresponsive mesogens. Here we show that matched pairs of block copolymers, with and without photo-responsive mesogens, provide model systems in which the optical density can be adjusted while holding other properties fixed (cross-link density, modulus, birefringence, isotropic-nematic transition temperature). For example, a triblock in which the SGLCP block has 95% cyanobiphenyl and 5% azo side groups is miscible with one having 100% cyanobiphenyl side groups. Simply blending the two gives a series of LC elastomers that have from 0 to 5% azo, while having all other physical properties matched. Results will be presented that show the outcomesof this approach to systematic and largely independent control of optical density and photo-mechanical sensitivity.
García-Zambrana, Antonio; Castillo-Vázquez, Carmen; Castillo-Vázquez, Beatriz
2014-01-01
A novel bit-detect-and-forward (BDF) relaying scheme based on repetition coding with the relay is proposed, significantly improving the robustness to impairments proper to free-space optical (FSO) communications such as unsuitable alignment between transmitter and receiver as well as fluctuations in the irradiance of the transmitted optical beam due to the atmospheric turbulence. Closed-form asymptotic bit-error-rate (BER) expressions are derived for a 3-way FSO communication setup. Fully exploiting the potential time-diversity available in the relay turbulent channel, a relevant better performance is achieved, showing a greater robustness to the relay location since a high diversity gain is provided regardless of the source-destination link distance. PMID:24587711
Grating-based real-time smart optics for biomedicine and communications
NASA Astrophysics Data System (ADS)
Yaqoob, Zahid
Novel photonic systems are proposed and experimentally validated using active as well as passive wavelength dispersive optical devices in unique fashions to solve important system level application problems in biomedicine and laser communications. Specifically for the first time are proposed, high dynamic range variable optical attenuators (VOAs) using bulk acousto-optics (AO). These AO-based architectures have excellent characteristics such as high laser damage threshold (e.g., 1 Watt CW laser power operations), large (e.g., >40 dB) dynamic range, and microsecond domain attenuation setting speed. The demonstrated architectures show potentials for compact, low static insertion loss, and low power VOA designs for wavelength division multiplexed (WDM) fiber-optic communication networks and high speed photonic signal processing for optical and radio frequency (RF) radar and electronic warfare (EW). Acoustic diffraction of light in isotropic media has been manipulated to design and demonstrate on a proof-of-principle basis, the first bulk AO-based optical coherence tomography (OCT) system for high-resolution sub-surface tissue diagnostics. As opposed to the current OCT systems that use mechanical means to generate optical delays, both free-space as well as fiber-optic AO-based OCT systems utilize unique electronically-controlled acousto-optically switched no-moving parts optical delay lines and therefore promise microsecond speed OCT data acquisition rates. The proposed OCT systems also feature high (e.g., >100 MHz) intermediate frequency for low 1/f noise heterodyne detection. For the first time, two agile laser beam steering schemes that are members of a new beam steering technology known as Multiplexed-Optical Scanner Technology (MOST) are theoretically investigated and experimentally demonstrated. The new scanner technologies are based on wavelength and space manipulations and possess remarkable features such as a no-moving parts fast (e.g., microseconds domain or less) beam switching speed option, large (e.g., several centimeters) scanner apertures for high-resolution scans, and large (e.g., >10°) angular scans in more than one dimensions. These incredible features make these scanners excellent candidates for high-end applications. Specifically discussed and experimentally analyzed for the first time are novel MOST-based systems for agile free-space lasercom links, internal and external cavity scanning biomedical probes, and high-speed optical data handling such as barcode scanners. In addition, a novel low sidelobe wavelength selection filter based on a single bulk crystal acousto-optic tunable filter device is theoretically analyzed and experimentally demonstrated showing its versatility as a scanner control fiber-optic component for interfacing with the proposed wavelength based optical scanners. In conclusion, this thesis has shown how powerful photonic systems can be realized via novel architectures using active and passive wavelength sensitive optics leading to advanced solutions for the biomedical and laser communications research communities.
Realization of 10 GHz minus 30dB on-chip micro-optical links with Si-Ge RF bi-polar technology
NASA Astrophysics Data System (ADS)
Ogudo, Kingsley A.; Snyman, Lukas W.; Polleux, Jean-Luc; Viana, Carlos; Tegegne, Zerihun
2014-06-01
Si Avalanche based LEDs technology has been developed in the 650 -850nm wavelength regime [1, 2]. Correspondingly, small micro-dimensioned detectors with pW/μm2 sensitivity have been developed for the same wavelength range utilizing Si-Ge detector technology with detection efficiencies of up to 0.85, and with a transition frequencies of up to 80 GHz [3] A series of on-chip optical links of 50 micron length, utilizing 650 - 850 nm propagation wavelength have been designed and realized, utilizing a Si Ge radio frequency bipolar process. Micron dimensioned optical sources, waveguides and detectors were all integrated on the same chip to form a complete optical link on-chip. Avalanche based Si LEDs (Si Av LEDs), Schottky contacting, TEOS densification strategies, silicon nitride based waveguides, and state of the art Si-Ge bipolar detector technologies were used as key design strategies. Best performances show optical coupling from source to detector of up to 10GHz and - 40dBm total optical link budget loss with a potential transition frequency coupling of up to 40GHz utilizing Si Ge based LEDs. The technology is particularly suitable for application as on-chip optical links, optical MEMS and MOEMS, as well as for optical interconnects utilizing low loss, side surface, waveguide- to-optical fiber coupling. Most particularly is one of our designed waveguide which have a good core axis alignment with the optical source and yield 10GHz -30dB on-chip micro-optical links as shown in Fig 9 (c). The technology as developed has been appropriately IP protected.
Jing, Wencai; Zhang, Yimo; Zhou, Ge
2002-07-15
A new structure for bit synchronization in a tera-bit/s optical interconnection network has been designed using micro-electro-mechanical system (MEMS) technique. Link multiplexing has been adopted to reduce data packet communication latency. To eliminate link set-up time, adjustable optical delay lines (AODLs) have been adopted to shift the phases of the distributed optical clock signals for bit synchronization. By changing the optical path distance of the optical clock signal, the phase of the clock signal can be shifted at a very high resolution. A phase-shift resolution of 0.1 ps can be easily achieved with 30-microm alternation of the optical path length in vacuum.
2008-06-01
and hopefully a better linearization. The edges were treated in a different manner than before. Their voltages only varied between 0–2000-nm...followed by tilt, and then other optical aberrations such as focus, astigmatism , 54 defocus, and coma. These aberations continue to increase in complexity as...testing proved that the linearization LUT was adequate for also reproducing Zernike shapes on the DM. In the lowest-order terms ( astigmatism and tilt) the
Research reports: 1990 NASA/ASEE Summer Faculty Fellowship Program
NASA Technical Reports Server (NTRS)
Anderson, Loren A. (Editor); Beymer, Mark A. (Editor)
1990-01-01
A collection of technical reports on research conducted by the participants in this program is presented. The topics covered include: human-computer interface software, multimode fiber optic communication links, electrochemical impedance spectroscopy, rocket-triggered lightning, robotics, a flammability study of thin polymeric film materials, a vortex shedding flowmeter, modeling of flow systems, monomethyl hydrazine vapor detection, a rocket noise filter system using digital filters, computer programs, lower body negative pressure, closed ecological systems, and others. Several reports with respect to space shuttle orbiters are presented.
2010-09-10
photodiode with internal resistor followed by a high-gain RF amplifier , and c) a p-i-n photodiode followed by a transimpedance amplifier (TIA). We...gain, RF electrical amplifier ; and 3) a p-i-n photodiode followed by a transimpedance amplifier . Finally, we perform calculations to predict the...common photoreceiver is a p-i-n or avalanche photodiode with a built-in transimpedance amplifier (TIA) and often incorporating automatic gain control
Optical Communication with Semiconductor Laser Diode. Interim Progress Report. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Davidson, Frederic; Sun, Xiaoli
1989-01-01
Theoretical and experimental performance limits of a free-space direct detection optical communication system were studied using a semiconductor laser diode as the optical transmitter and a silicon avalanche photodiode (APD) as the receiver photodetector. Optical systems using these components are under consideration as replacements for microwave satellite communication links. Optical pulse position modulation (PPM) was chosen as the signal format. An experimental system was constructed that used an aluminum gallium arsenide semiconductor laser diode as the transmitter and a silicon avalanche photodiode photodetector. The system used Q=4 PPM signaling at a source data rate of 25 megabits per second. The PPM signal format requires regeneration of PPM slot clock and word clock waveforms in the receiver. A nearly exact computational procedure was developed to compute receiver bit error rate without using the Gaussion approximation. A transition detector slot clock recovery system using a phase lock loop was developed and implemented. A novel word clock recovery system was also developed. It was found that the results of the nearly exact computational procedure agreed well with actual measurements of receiver performance. The receiver sensitivity achieved was the closest to the quantum limit yet reported for an optical communication system of this type.
Adaptive and reliably acknowledged FSO communications
NASA Astrophysics Data System (ADS)
Fitz, Michael P.; Halford, Thomas R.; Kose, Cenk; Cromwell, Jonathan; Gordon, Steven
2015-05-01
Atmospheric turbulence causes the receive signal intensity on free space optical (FSO) communication links to vary over time. Scintillation fades can stymie connectivity for milliseconds at a time. To approach the information-theoretic limits of communication in such time-varying channels, it necessary to either code across extremely long blocks of data - thereby inducing unacceptable delays - or to vary the code rate according to the instantaneous channel conditions. We describe the design, laboratory testing, and over-the-air testing of an FSO modem that employs a protocol with adaptive coded modulation (ACM) and hybrid automatic repeat request. For links with fixed throughput, this protocol provides a 10dB reduction in the required received signal-to-noise ratio (SNR); for links with fixed range, this protocol provides the greater than a 3x increase in throughput. Independent U.S. Government tests demonstrate that our protocol effectively adapts the code rate to match the instantaneous channel conditions. The modem is able to provide throughputs in excess of 850 Mbps on links with ranges greater than 15 kilometers.
Ultra-stable long distance optical frequency distribution using the Internet fiber network.
Lopez, Olivier; Haboucha, Adil; Chanteau, Bruno; Chardonnet, Christian; Amy-Klein, Anne; Santarelli, Giorgio
2012-10-08
We report an optical link of 540 km for ultrastable frequency distribution over the Internet fiber network. The stable frequency optical signal is processed enabling uninterrupted propagation on both directions. The robustness and the performance of the link are enhanced by a cost effective fully automated optoelectronic station. This device is able to coherently regenerate the return optical signal with a heterodyne optical phase locking of a low noise laser diode. Moreover the incoming signal polarization variation are tracked and processed in order to maintain beat note amplitudes within the operation range. Stable fibered optical interferometer enables optical detection of the link round trip phase signal. The phase-noise compensated link shows a fractional frequency instability in 10 Hz bandwidth of 5 × 10(-15) at one second measurement time and 2 × 10(-19) at 30,000 s. This work is a significant step towards a sustainable wide area ultrastable optical frequency distribution and comparison network.
Applications of Emerging Parallel Optical Link Technology to High Energy Physics Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chramowicz, J.; Kwan, S.; Prosser, A.
2011-09-01
Modern particle detectors depend upon optical fiber links to deliver event data to upstream trigger and data processing systems. Future detector systems can benefit from the development of dense arrangements of high speed optical links emerging from the telecommunications and storage area network market segments. These links support data transfers in each direction at rates up to 120 Gbps in packages that minimize or even eliminate edge connector requirements. Emerging products include a class of devices known as optical engines which permit assembly of the optical transceivers in close proximity to the electrical interfaces of ASICs and FPGAs which handlemore » the data in parallel electrical format. Such assemblies will reduce required printed circuit board area and minimize electromagnetic interference and susceptibility. We will present test results of some of these parallel components and report on the development of pluggable FPGA Mezzanine Cards equipped with optical engines to provide to collaborators on the Versatile Link Common Project for the HI-LHC at CERN.« less
NASA Astrophysics Data System (ADS)
Pazder, John; Fournier, Paul; Pawluczyk, Rafal; van Kooten, Maaike
2014-07-01
We report results of the extensive development work done on the 270-m optical fiber link for the GRACES project and a preliminary investigations into a high numerical aperture fiber for astronomy. The Gemini Remote Access CFHT ESPaDOnS Spectrograph (GRACES) is an instrumentation experiment to link ESPaDOnS, a bench-mounted highresolution optical spectrograph at CFHT, to the Gemini-North telescope with an optical fiber link. A 270-m fiber link with less than 14% Focal Ratio Degradation (FRD) has been developed jointly by HIA and FiberTech Optica for the experiment. A preliminary study has been conducted by HIA into a high numerical aperture fiber (0.26 numerical aperture) with the intended application of wide field optical spectrographs fiber fed from the telescope prime focus. The Laboratory test results of FRD, transmission, and stability for the GRACES fiber link and preliminary FRD measurements of the high numerical aperture fiber tests are reported.
NASA Astrophysics Data System (ADS)
Zaldívar Huerta, Ignacio E.; Pérez Montaña, Diego F.; Nava, Pablo Hernández; Juárez, Alejandro García; Asomoza, Jorge Rodríguez; Leal Cruz, Ana L.
2013-12-01
We experimentally demonstrate the use of an electro-optical transmission system for distribution of video over long-haul optical point-to-point links using a microwave photonic filter in the frequency range of 0.01-10 GHz. The frequency response of the microwave photonic filter consists of four band-pass windows centered at frequencies that can be tailored to the function of the spectral free range of the optical source, the chromatic dispersion parameter of the optical fiber used, as well as the length of the optical link. In particular, filtering effect is obtained by the interaction of an externally modulated multimode laser diode emitting at 1.5 μm associated to the length of a dispersive optical fiber. Filtered microwave signals are used as electrical carriers to transmit TV-signal over long-haul optical links point-to-point. Transmission of TV-signal coded on the microwave band-pass windows located at 4.62, 6.86, 4.0 and 6.0 GHz are achieved over optical links of 25.25 km and 28.25 km, respectively. Practical applications for this approach lie in the field of the FTTH access network for distribution of services as video, voice, and data.
NASA Astrophysics Data System (ADS)
Ma, Jianxin
2016-07-01
A full-duplex radio-over fiber (RoF) link scheme based on single sideband (SSB) optical millimeter (mm)-wave signal with polarization-rotated optical carrier is proposed to realize the source-free colorless base station (BS), in which a polarization beam splitter (PBS) is used to abstract part of the optical carrier for conveying the uplink data. Since the optical carrier for the uplink does not bear the downlink signal, no cross-talk from the downlink contaminates the uplink signal. The simulation results demonstrate that both down- and up-links maintain good performance. The mm-wave signal distribution network based on the proposed full duplex fiber link scheme can use the uniform source-free colorless BSs, which makes the access system very simpler.
A comparison of 8.415-, 32.0- and 565646-GHz deep space telemetry links
NASA Technical Reports Server (NTRS)
Dickinson, R. M.
1985-01-01
An economic and performance comparison is made of spacecraft telecommunication links at 8.415, 32.0, and 565646 GHz (0.53-micron wavelength) for the return of 3.43 x 10 to the 11th power bits from a Saturn Orbiter/Titan Probe mission in year 2000. Technical performance and costs for both ends of the links are included. Spacecraft antenna or telescope efficiencies, pointing losses, ground-based or Earth-orbiting relay terminals efficiencies, noise temperatures, recurring and nonrecurring engineering, and maintenance and operations costs are modeled. Weather effects, dc-to-RF or laser power conversion efficiencies, gravity and other environment distortions gain reductions, and the cost of pointing and tracking are analyzed. The effort is focused primarily on the microwave frequency links. There are large uncertainties in the cost results, but conclusions indicate that for a mid-1990's launch, the Ka-band system is as cost effective as X-band. The Ka-band system has a data rate advantage as compared to the X-band system for the same dc power input to the spacecraft. The magnitude of the advantage is a complex function of the weather at the DSN stations and the elevation angle of the ground antenna. A simple numerical comparison of the advantage is difficult and curves are provided. The optical frequency link is more costly based on the launch-to-orbit costs for the orbiting terminal. A more detailed study of the optical system is recommended to quantify astrometric tracking benefits and improve the accuracy of the cost estimate.
Link Performance Analysis of a Ship-to-Ship Laser Communication System
2012-03-01
the optical output by a modulating signal. Direct detection requires only the intensity, and not the phase information, of the input signal to...links have a higher signal-to-noise ratio ( ) as compared to RF link. However, at approximately 108 km, the SNR for the optical links is much... optical signal received is mixed with a light signal generated from a local oscillator laser (LO-laser). The combined signals are then impinged onto the
Deriving Leaf Area Index (LAI) from multiple lidar remote sensing systems
NASA Astrophysics Data System (ADS)
Tang, H.; Dubayah, R.; Zhao, F.
2012-12-01
LAI is an important biophysical variable linking biogeochemical cycles of earth systems. Observations with passive optical remote sensing are plagued by saturation and results from different passive and active sensors are often inconsistent. Recently lidar remote sensing has been applied to derive vertical canopy structure including LAI and its vertical profile. In this research we compare LAI retrievals from three different types of lidar sensors. The study areas include the La Selva Biological Station in Costa Rica and Sierra Nevada Forest in California. We first obtain independent LAI estimates from different lidar systems including airborne lidar (LVIS), spaceborne lidar (GLAS) and ground lidar (Echidna). LAI retrievals are then evaluated between sensors as a function of scale, land cover type and sensor characteristics. We also assess the accuracy of these LAI products against ground measurements. By providing a link between ground observations, ground lidar, aircraft and space-based lidar we hope to demonstrate a path for deriving more accurate estimates of LAI on a global basis, and to provide a more robust means of validating passive optical estimates of this important variable.
Advanced optical fiber communication systems
NASA Astrophysics Data System (ADS)
Kazovsky, Leonid G.
1994-03-01
Our research is focused on three major aspects of advanced optical fiber communication systems: dynamic wavelength division multiplexing (WDM) networks, fiber nonlinearities, and high dynamic range coherent analog optical links. In the area of WDM networks, we have designed and implemented two high-speed interface boards and measured their throughput and latency. Furthermore, we designed and constructed an experimental PSK/ASK transceiver that simultaneously transmits packet-switched ASK data and circuit-switched PSK data on the same optical carrier. In the area of fiber nonlinearities, we investigated the theoretical impact of modulation frequency on cross-phase modulation (XPM) in dispersive fibers. In the area of high dynamic range coherent analog optical links, we developed theoretical expressions for the RF power transfer ratio (or RF power gain) and the noise figure (NF) of angle-modulated links. We then compared the RF power gains and noise figures of these links to that of an intensity modulated direct detection (DD) link.
Bayne, Michael G; Scher, Jeremy A; Ellis, Benjamin H; Chakraborty, Arindam
2018-05-21
Electron-hole or quasiparticle representation plays a central role in describing electronic excitations in many-electron systems. For charge-neutral excitation, the electron-hole interaction kernel is the quantity of interest for calculating important excitation properties such as optical gap, optical spectra, electron-hole recombination and electron-hole binding energies. The electron-hole interaction kernel can be formally derived from the density-density correlation function using both Green's function and TDDFT formalism. The accurate determination of the electron-hole interaction kernel remains a significant challenge for precise calculations of optical properties in the GW+BSE formalism. From the TDDFT perspective, the electron-hole interaction kernel has been viewed as a path to systematic development of frequency-dependent exchange-correlation functionals. Traditional approaches, such as MBPT formalism, use unoccupied states (which are defined with respect to Fermi vacuum) to construct the electron-hole interaction kernel. However, the inclusion of unoccupied states has long been recognized as the leading computational bottleneck that limits the application of this approach for larger finite systems. In this work, an alternative derivation that avoids using unoccupied states to construct the electron-hole interaction kernel is presented. The central idea of this approach is to use explicitly correlated geminal functions for treating electron-electron correlation for both ground and excited state wave functions. Using this ansatz, it is derived using both diagrammatic and algebraic techniques that the electron-hole interaction kernel can be expressed only in terms of linked closed-loop diagrams. It is proved that the cancellation of unlinked diagrams is a consequence of linked-cluster theorem in real-space representation. The electron-hole interaction kernel derived in this work was used to calculate excitation energies in many-electron systems and results were found to be in good agreement with the EOM-CCSD and GW+BSE methods. The numerical results highlight the effectiveness of the developed method for overcoming the computational barrier of accurately determining the electron-hole interaction kernel to applications of large finite systems such as quantum dots and nanorods.
Simultaneous transfer of optical frequency and time over 306 km long-haul optical fibre link
NASA Astrophysics Data System (ADS)
Hucl, Vaclav; Cizek, Martin; Pravdova, Lenka; Rerucha, Simon; Hrabina, Jan; Mikel, Bretislav; Smotlacha, Vladimir; Vojtech, Josef; Lazar, Josef; Cip, Ondrej
2016-12-01
Optical fibre links for distributing optical frequencies and time stamps were researched and experimentally tested in the past fifteen years. They have been used mainly for stability comparison of experimental optical clocks. But recent development puts demands on a technology transfer from laboratory experiments to the real industry. The remote calibration of interrogators of Fibre Bragg Grating strain sensory networks is one of important examples. The first step of the adoption the time and frequency broadcasting should be the drop-out free long-term operation of this technology between research laboratories connected via long-haul fibre links. We present a 306 km long-haul optical fibre link between the cities of Prague and Brno in the Czech Republic where a coherent transfer of stable optical frequency and a stable time signal has been firstly demonstrated. The link between ISI CAS Brno and CESNET Prague uses an internet communication fibre where a window of 1540-1546 nm is dedicated for the coherent transfer and 1PPS signal. The link is equipped with 6 bidirectional EDFA amplifiers. The optical frequency standard based on the highly-coherent laser Koheras Adjustik working at 1540.5 nm and stabilized with a saturation absorption spectroscopy technique was used for the coherent wave transfer. The suppression of the Doppler shift induced by the optical fibre was based on an accoustooptical modulator with a servo-loop including a fast PID controller processing the beat-note frequency given by mixing of the Adjustik laser (Brno) and the reflected frequency of this laser from the far end of 306 km long-haul fibre link (Prague). We verified the Doppler shift suppression for the coherent wave with a measuring method analysing the transport delay of the 1PPS signal.